Sample records for fabrication photoemission studies

  1. Surface studies of solids using integral X-ray-induced photoemission yield

    PubMed Central

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-01-01

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence. PMID:27874041

  2. Surface studies of solids using integral x-ray-induced photoemission yield

    DOE PAGES

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-11-22

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permitmore » extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence.« less

  3. Photocathode device that replenishes photoemissive coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, themore » linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.« less

  4. Surface intervalley scattering on GaAs(110) studied with picosecond laser photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1990-01-01

    Laser-based photoemission sources provide the unique opportunity to study dynamic electronic processes at surfaces and interfaces. Using angle-resolved, laser photoemission with < 1 ps time resolution, we have directly observed a new surface band at the X¯ point in the GaAs(110) surface Brillouin zone. The appearance of electron population in this valley occurs only as a result of scattering from the directly photoexcited valley at overlineГ. The momentum resolution of our experiment has permitted us to isolate the dynamic electron population changes at both overlineГ and X¯ and to deduce the scattering time between the two valleys.

  5. Resonant photoemission study of pyrite-type NiS2, CoS2 and FeS2

    NASA Astrophysics Data System (ADS)

    Fujimori, A.; Mamiya, K.; Mizokawa, T.; Miyadai, T.; Sekiguchi, T.; Takahashi, H.; Môri, N.; Suga, S.

    1996-12-01

    The electronic structure of pyrite-type NiS2, CoS2, and FeS2 has been studied by photoemission spectroscopy. From resonant photoemission studies and configuration-interaction cluster-model analysis of the spectra, NiS2 is found to be a charge-transfer-type insulator, the band gap of which is formed between the occupied S 3p and the empty Ni 3d states. Cluster-model calculations indicate that the short Fe-S distance favors the low-spin (S=0) ground state in FeS2 compared to the high-spin FeS. Resonant photoemission results indicate a sign of electron correlation in the nonmagnetic semiconductor FeS2.

  6. Multiplet Splitting Effects on Core-Level Photoemission and Inverse-Photoemission Spectra of Uranium Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Okada, Kozo

    1999-03-01

    The present paper discusses the role of U 5f-5f exchange interaction (J) in the inverse photoemission spectrum (IPES) and the U 4f x-ray photoemission spectrum (XPS) of uranium intermetallic compounds. The origin of the broad main peak in the IPES of UPd3 and UPd2Al3, for instance, is ascribed to the exchange coupling effects of 5f electrons. In other words, whether the ground state is of high-spin or of low-spin is directly reflected in the width of the IPES. On the other hand, the interpretation for the U 4f photoemission spectrum is not so greatly influenced by J. The full-multiplet calculations are also performed for an U4+ ion for comparison.

  7. Photoemissive coating

    NASA Technical Reports Server (NTRS)

    Gange, R. A.

    1972-01-01

    Polystyrene coating is applied to holographic storage tube substrate via glow discharge polymerization in an inert environment. After deposition of styrene coating, antimony and then cesium are added to produce photoemissive layer. Technique is utilized in preparing perfectly organized polymeric films useful as single-crystal membranes.

  8. Electronic structure of Mott-insulator CaCu3Ti4O12: Photoemission and inverse photoemission study

    NASA Astrophysics Data System (ADS)

    Im, H. J.; Iwataki, M.; Yamazaki, S.; Usui, T.; Adachi, S.; Tsunekawa, M.; Watanabe, T.; Takegahara, K.; Kimura, S.; Matsunami, M.; Sato, H.; Namatame, H.; Taniguchi, M.

    2015-09-01

    We have performed the photoemission and inverse photoemission experiments to elucidate the origin of Mott insulating states in A-site ordered perovskite CaCu3Ti4O12 (CCTO). Experimental results have revealed that Cu 3d-O 2p hybridized bands, which are located around the Fermi level in the prediction of the local-density approximation (LDA) band calculations, are actually separated into the upper Hubbard band at ~1.5 eV and the lower Hubbard band at ~-1.7 eV with a band gap of ~1.5-1.8 eV. We also observed that Cu 3d peak at ~-3.8 eV and Ti 3d peak at ~3.8 eV are further away from each other than as indicated in the LDA calculations. In addition, it is found that the multiplet structure around -9 eV includes a considerable number of O 2p states. These observations indicate that the Cu 3d and Ti 3d electrons hybridized with the O 2p states are strongly correlated, which originates in the Mott-insulating states of CCTO.

  9. Resolving Nonadiabatic Dynamics of Hydrated Electrons Using Ultrafast Photoemission Anisotropy.

    PubMed

    Karashima, Shutaro; Yamamoto, Yo-Ichi; Suzuki, Toshinori

    2016-04-01

    We have studied ultrafast nonadiabatic dynamics of excess electrons trapped in the band gap of liquid water using time- and angle-resolved photoemission spectroscopy. Anisotropic photoemission from the first excited state was discovered, which enabled unambiguous identification of nonadiabatic transition to the ground state in 60 fs in H_{2}O and 100 fs in D_{2}O. The photoelectron kinetic energy distribution exhibited a rapid spectral shift in ca. 20 fs, which is ascribed to the librational response of a hydration shell to electronic excitation. Photoemission anisotropy indicates that the electron orbital in the excited state is depolarized in less than 40 fs.

  10. Estimate of the Coulomb correlation energy in CeAg2Ge2 from inverse photoemission and high resolution photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Banik, Soma; Arya, A.; Bendounan, Azzedine; Maniraj, M.; Thamizhavel, A.; Vobornik, I.; Dhar, S. K.; Deb, S. K.

    2014-08-01

    The occupied and the unoccupied electronic structure of CeAg2Ge2 single crystal has been studied using high resolution photoemission and inverse photoemission spectroscopy, respectively. High resolution photoemission reveals the clear signature of Ce 4f states in the occupied electronic structure which was not observed clearly in our earlier studies. The Coulomb correlation energy in this system has been determined experimentally from the position of the 4f states above and below the Fermi level. Theoretically, the correlation energy has been determined by using the first principles density functional calculations within the generalized gradient approximations taking into account the strong intra-atomic (on-site) interaction Hubbard Ueff term. The calculated valence band shows minor changes in the spectral shape with increasing Ueff due to the fact that the density of Ce 4f state is narrow in the occupied part and is hybridized with the Ce 5d, Ag 4d and Ge 4p states. On the other hand, substantial changes are observed in the spectral shape of the calculated conduction band with increasing Ueff since the density of Ce 4f state is very large in the unoccupied part, compared to other states. The estimated value of correlation energy for CeAg2Ge2 from the experiment and the theory is ≈ 4.2 eV. The resonant photoemission data are analyzed in the framework of the single-impurity Anderson model which further confirms the presence of the Coulomb correlation energy and small hybridization in this system.

  11. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  12. Single and double photoemission and generalizations

    NASA Astrophysics Data System (ADS)

    Pavlyukh, Yaroslav

    2016-03-01

    A unified diagrammatic treatment of single and double electron photoemission currents is presented. The irreducible lesser density-density response function is the starting point of these derivations. Diagrams for higher order processes in which several electrons are observed in coincidence can likewise be obtained. For physically relevant situations, in which the photoemission cross-section can be written as the Fermi Golden rule, the diagrams from the nonequilibrium Green's function approach can be put in direct correspondence with the diagrams of the scattering theory.

  13. Quantitative analysis of valence photoemission spectra and quasiparticle excitations at chromophore-semiconductor interfaces.

    PubMed

    Patrick, Christopher E; Giustino, Feliciano

    2012-09-14

    Investigating quasiparticle excitations of molecules on surfaces through photoemission spectroscopy forms a major part of nanotechnology research. Resolving spectral features at these interfaces requires a comprehensive theory of electron removal and addition processes in molecules and solids which captures the complex interplay of image charges, thermal effects, and configurational disorder. Here, we develop such a theory and calculate the quasiparticle energy-level alignment and the valence photoemission spectrum for the prototype biomimetic solar cell interface between anatase TiO(2) and the N3 chromophore. By directly matching our calculated photoemission spectrum to experimental data, we clarify the atomistic origin of the chromophore peak at low binding energy. This case study sets a new standard in the interpretation of photoemission spectroscopy at complex chromophore-semiconductor interfaces.

  14. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  15. Measurement of the background in Auger-Photoemission Spectra (APECS) associated with multi-electron and inelastic valence band photoemission processes

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, Karthik; Hulbert, Steven; Weiss, Alex

    2014-03-01

    Auger Photoelectron Coincidence Spectroscopy (APECS), in which the Auger spectra is measured in coincidence with the core level photoelectron, is capable of pulling difficult to observe low energy Auger peaks out of a large background due mostly to inelastically scattered valence band photoelectrons. However the APECS method alone cannot eliminate the background due to valence band VB photoemission processes in which the initial photon energy is shared by 2 or more electrons and one of the electrons is in the energy range of the core level photoemission peak. Here we describe an experimental method for estimating the contributions from these background processes in the case of an Ag N23VV Auger spectra obtained in coincidence with the 4p photoemission peak. A beam of 180eV photons was incident on a Ag sample and a series of coincidence measurements were made with one cylindrical mirror analyzer (CMA) set at a fixed energies between the core and the valence band and the other CMA scanned over a range corresponding to electrons leaving the surface between 0eV and the 70eV. The spectra obtained were then used to obtain an estimate of the background in the APECS spectra due to multi-electron and inelastic VB photoemission processes. NSF, Welch Foundation.

  16. Fabrication and structure characterization of te butterfly nanostructures.

    PubMed

    Wong, Tailun; She, Guangwei; Cheng, Chun; Li, Wei; Shi, Wensheng; Zhang, Xiaohong; Wang, Ning

    2011-12-01

    Te nanowires and butterfly nanostructures have been fabricated by template-free electrodeposition (TFED) in aqueous solution. By high-resolution transmission electron microscopy (HRTEM) study, the favored growth directions of the nanowires and the wings of the butterfly nanostructures were determined to be along the [0001] direction of trigonal Te, and the twinning plane of the butterfly nanostructures was (11-22). The cathodoluminescence measurements carried out at different positions of the butterfly nanostructure indicated that the twin boundaries influenced the photoemission efficiency.

  17. Large Band Gap of alpha-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sinn, Soobin; Kim, Choong Hyun; Sandilands, Luke; Lee, Kyungdong; Won, Choongjae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    The Kitaev honeycomb lattice model has attracted great attention because of its possibility to stabilize a quantum spin liquid ground state. Recently, it was proposed that alpha-RuCl3 is its material realization and the first 4 d relativistic Mott insulator from an optical spectrum and LDA + U + SO calculations. Here, we present photoemission and inverse photoemission spectra of alpha-RuCl3. The observed band gap is about 1.8 eV, which suggests that the previously assigned optical gap of 0.3 eV is misinterpreted, and that the strong peak at about 1.2 eV in the optical spectrum may be associated with an actual optical gap. Assuming a strong excitonic effect of 0.6 eV in the optical spectrum, all the structures except for the peak at 0.3 eV are consistent with our electronic spectra. When compared with LDA + U + SO calculations, the value of U should be considerably larger than the previous one, which implies that the spin-orbit coupling is not a necessary ingredient for the insulating mechanism of alpha-RuCl3. We also present angle-resolved photoemission spectra to be compared with LDA + U + SO and LDA +DMFT calculations.

  18. Bulk sensitive hard x-ray photoemission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less

  19. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  20. Electronic Structures of Purple Bronze KMo6O17 Studied by X-Ray Photoemission Spectra

    NASA Astrophysics Data System (ADS)

    Qin, Xiaokui; Wei, Junyin; Shi, Jing; Tian, Mingliang; Chen, Hong; Tian, Decheng

    X-ray photoemission spectroscopy study has been performed for the purple bronze KMo6O17. The structures of conduction band and valence band are analogous to the results of ultraviolet photoemission spectra and are also consistent with the model of Travaglini et al., but the gap between conduction and valence band is insignificant. The shape of asymmetric and broadening line of O-1s is due to unresolved contributions from the many inequivalent oxygen sites in this crystal structure. Mo 3d core-level spectrum reveals that there are two kinds of valence states of Molybdenum (Mo+5 and Mo+6). The calculated average valence state is about +5.6, which is consistent with the expectation value from the composition of this material. The tail of Mo-3d spectrum toward higher binding energy is the consequence of the excitation of electron-hole pairs with singularity index of 0.21.

  1. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    DOE PAGES

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; ...

    2013-01-12

    We subjected device-grade TlBr to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl 2, Br:MeOH and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  2. X-ray photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Lee, J.-S.; Kim, H.; Cirignano, L.; Shah, K.

    2013-04-01

    Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. As-polished TlBr was treated separately with HCl, SOCl2, Br:MeOH, and HF solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p, and S 2p core lines were used to evaluate surface chemistry and shallow heterojunction formation. Surface chemistry and valence band electronic structure were correlated with the goal of optimizing the long-term stability and radiation response.

  3. Photoemission-based microelectronic devices

    PubMed Central

    Forati, Ebrahim; Dill, Tyler J.; Tao, Andrea R.; Sievenpiper, Dan

    2016-01-01

    The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices. PMID:27811946

  4. Photoemission analysis of chemically modified TlBr surfaces for improved radiation detectors

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Lee, J.-S.; Stanford, J. A.; Grant, W. K.; Voss, L. F.; Beck, P. R.; Graff, R. T.; Swanberg, E. L.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L. J.; Shah, K.

    2013-09-01

    Device-grade TlBr was subjected to various chemical treatments used in room temperature radiation detector fabrication to determine the resulting surface composition and electronic structure. Samples of as polished TlBr were treated separately with 2%Br:MeOH, 10%HF, 10%HCl and 96%SOCl2 solutions. High-resolution photoemission measurements on the valence band electronic structure and Tl 4f, Br 3d, Cl 2p and S 2p core lines were used to evaluate surface chemistry. Results suggest anion substitution at the surface with subsequent shallow heterojunction formation. Surface chemistry and valence band electronic structure were further correlated with the goal of optimizing the long-term stability and radiation response.

  5. Photoemission Spectroscopy of Delta- Plutonium: Experimental Review

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.

    2002-03-01

    The electronic structure of Plutonium, particularly delta- Plutonium, remains ill defined and without direct experimental verification. Recently, we have embarked upon a program of study of alpha- and delta- Plutonium, using synchrotron radiation from the Advanced Light Source in Berkeley, CA, USA [1]. This work is set within the context of Plutonium Aging [2] and the complexities of Plutonium Science [3]. The resonant photoemission of delta-plutonium is in partial agreement with an atomic, localized model of resonant photoemission, which would be consistent with a correlated electronic structure. The results of our synchrotron- based studies will be compared with those of recent laboratory- based works [4,5,6]. The talk will conclude with a brief discussion of our plans for the future, such as the performance of spin-resolving and dichroic photoemission measurements of Plutonium [7] and the development of single crystal ultrathin films of Plutonium. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, D.K. Shuh, G. van der Laan, D.A. Arena, and J.G. Tobin, “5f Resonant Photoemission from Plutonium”, UCRL-JC-140782, Surf. Sci. Lett., accepted October 2001. 2. B.D. Wirth, A.J. Schwartz, M.J. Fluss, M.J. Caturla, M.A. Wall, and W.G. Wolfer, MRS Bulletin 26, 679 (2001). 3. S.S. Hecker, MRS Bulletin 26, 667 (2001). 4. T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001); MRS Bulletin 26, 684 (2001); Phys. Rev. Lett. 84, 3378 (2000). 5. A.J. Arko, J.J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000). 6. L.E. Cox, O. Eriksson, and B.R. Cooper, Phys. Rev. B 46, 13571 (1992). 7. J. Tobin, D.A. Arena, B. Chung, P. Roussel, J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E

  6. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  7. Simultaneous measurements of photoemission and morphology of various Al alloys during mechanical deformation

    NASA Astrophysics Data System (ADS)

    Cai, M.; Li, W.; Dickinson, J. T.

    2006-11-01

    We report simultaneous measurements of strain and photoelectron emission from high purity Al (1350), Al-Mg (5052), Al-Mn (3003), Al-Cu (2024), and Al-Mg-Si (6061) alloys under uniaxial tension due to pulsed excimer laser radiation (248nm). The emission of low-energy photoelectrons is sensitive to deformation-induced changes in surface morphology, including the formation of slip lines and slip bands. Alloy composition and surface treatment significantly influence the photoemission during deformation. Surface oxide enhances the signal-to-noise level during photoemission measurement. In the early stage of deformation (strain ⩽0.04), photoemission intensity increases gradually in a nonlinear fashion. While subsequent photoemission increases almost linearly with strain until failure in samples with thin oxide layer (˜31Å), there are two linear segments of photoemission for the samples with oxide of 45Å. The onset of strain localization corresponds to the intersection point of two linear segments, usually at a strain of 0.08-0.20. A constitutive model incorporating microstructure evolution and work hardening during tensile deformation is proposed to qualitatively interpret the growth of the photoemission as a function of strain. Photoemissions from various alloys are interpreted in the light of surface treatment, work function, composition, and microstructural development during deformation.

  8. Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje

    We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.

  9. Electronic and geometric structure of thin CoO(100) films studied by angle-resolved photoemission spectroscopy and Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Heiler, M.; Chassé, A.; Schindler, K.-M.; Hollering, M.; Neddermeyer, H.

    2000-05-01

    We have prepared ordered thin films of CoO by evaporating cobalt in an O 2 atmosphere on to a heated (500 K) Ag(100) substrate. The geometric and electronic structure of the films was characterized by means of Auger electron diffraction (AED) and angle-resolved photoemission spectroscopy (ARUPS), respectively. The experimental AED results were compared with simulated data, which showed that the film grows in (100) orientation on the Ag(100) substrate. Synchrotron-radiation-induced photoemission investigations were performed in the photon energy range from 25 eV to 67 eV. The dispersion of the transitions was found to be similar to that of previous results on a single-crystal CoO(100) surface. The resonance behaviour of the photoemission lines in the valence-band region was investigated by constant-initial-state (CIS) spectroscopy. The implications of this behaviour for assignment of the photoemission lines to specific electronic transitions is discussed and compared with published theoretical models of the electronic structure.

  10. Optical study of HgCdTe infrared photodetectors using internal photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Yan-Feng; Unil Perera, A. G., E-mail: uperera@gsu.edu; Wijewarnasuriya, Priyalal S.

    2014-03-31

    We report a study of internal photoemission spectroscopy (IPE) applied to a n-type Hg{sub 1−x}Cd{sub x}Te/Hg{sub 1−y}Cd{sub y}Te heterojunction. An exponential line-shape of the absorption tail in HgCdTe is identified by IPE fittings of the near-threshold quantum yield spectra. The reduction of quantum yield (at higher photon energy) below the fitting value is explained as a result of carrier-phonon scatterings. In addition, the obtained bias independence of the IPE threshold indicates a negligible electron barrier at the heterojunction interface.

  11. Topological surface state of α -Sn on InSb(001) as studied by photoemission

    NASA Astrophysics Data System (ADS)

    Scholz, M. R.; Rogalev, V. A.; Dudy, L.; Reis, F.; Adler, F.; Aulbach, J.; Collins-McIntyre, L. J.; Duffy, L. B.; Yang, H. F.; Chen, Y. L.; Hesjedal, T.; Liu, Z. K.; Hoesch, M.; Muff, S.; Dil, J. H.; Schäfer, J.; Claessen, R.

    2018-02-01

    We report on the electronic structure of the elemental topological semimetal α -Sn on InSb(001). High-resolution angle-resolved photoemission data allow us to observe the topological surface state (TSS) that is degenerate with the bulk band structure and show that the former is unaffected by different surface reconstructions. An unintentional p -type doping of the as-grown films was compensated by deposition of potassium or tellurium after the growth, thereby shifting the Dirac point of the surface state below the Fermi level. We show that, while having the potential to break time-reversal symmetry, iron impurities with a coverage of up to 0.25 monolayers do not have any further impact on the surface state beyond that of K or Te. Furthermore, we have measured the spin-momentum locking of electrons from the TSS by means of spin-resolved photoemission. Our results show that the spin vector lies fully in-plane, but it also has a finite radial component. Finally, we analyze the decay of photoholes introduced in the photoemission process, and by this gain insight into the many-body interactions in the system. Surprisingly, we extract quasiparticle lifetimes comparable to other topological materials where the TSS is located within a bulk band gap. We argue that the main decay of photoholes is caused by intraband scattering, while scattering into bulk states is suppressed due to different orbital symmetries of bulk and surface states.

  12. Picosecond Dynamics Of The GaAs (110) Surface Studied With Laser Photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.; Lilie, M. I.

    1988-08-01

    A novel laser system and detection scheme is described which has been developed to investigate the transient dynamics of photoexcited electrons at material surfaces and interfaces with photoemission. The excited carrier population on the surface of GaAs (110) and the related Cr/GaAs (110) surface has been studied with 1-2 picosecond time resolution. Studies reveal a rapid rise and fall of the photexcited carrier population at the clean semiconductor surface within 15 picoseconds of excitation. For times greater than 15 picoseconds the carrier density decays slowly. Studies of the photoexcited surface after deposition of small numbers of Cr atoms reveal a remarkable decrease in the carrier density observed at the surface for a coverage as low as .006 monolayer.

  13. Study on photoemission surface of varied doping GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Du, Ruijuan; Ding, Huan; Gao, Youtang; Chang, Benkang

    2014-09-01

    For varied doping GaN photocathode, from bulk to surface the doping concentrations are distributed from high to low. The varied doping GaN photocathode may produce directional inside electric field within the material, so the higher quantum efficiency can be obtained. The photoemission surface of varied doping GaN photocathode is very important to the high quantum efficiency, but the forming process of the surface state after Cs activation or Cs/O activation has been not known completely. Encircling the photoemission mechanism of varied GaN photocathode, considering the experiment phenomena during the activation and the successful activation results, the varied GaN photocathode surface model [GaN(Mg):Cs]:O-Cs after activation with cesium and oxygen was given. According to GaN photocathode activation process and the change of electronic affinity, the comparatively ideal NEA property can be achieved by Cs or Cs/O activation, and higher quantum efficiency can be obtained. The results show: The effective NEA characteristic of GaN can be gotten only by Cs. [GaN(Mg):Cs] dipoles form the first dipole layer, the positive end is toward the vacuum side. In the activation processing with Cs/O, the second dipole layer is formed by O-Cs dipoles, A O-Cs dipole includes one oxygen atom and two Cs atoms, and the positive end is also toward the vacuum side thus the escape of electrons can be promoted.

  14. A Dust Grain Photoemission Experiment

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F., Jr.; Abbas, M. M.; Comfort, R. H.

    2000-01-01

    A laboratory experiment has been developed at Marshall Space Flight Center to study the interaction of micron-sized particles with plasmas and FUV radiation. The intent is to investigate the conditions under which particles of various compositions and sizes become charged, or discharged, while exposed to an electron beam and/or UV radiation. This experiment uses a unique laboratory where a single charged micron size particle is suspended in a quadrupole trap and then subjected to a controlled environment. Tests are performed using different materials and sizes, ranging from 10 microns to 1 micron, to determine the particle's charge while being subjected to an electron beam and /or UV radiation. The focus of this presentation will be on preliminary results from UV photoemission tests, but past results from electron beam, secondary electron emission tests will also be highlighted. A monochromator is used to spectrally resolve UV in the 120 nm to 300 nm range. This enables photoemission measurements as a function of wavelength. Electron beam tests are conducted using I to 3 micron sized aluminum oxide particles subjected to energies between 100 eV to 3 KeV. It was found that for both positive and negative particles the potential tended toward neutrality over time with possible equilibrium potentials between -0.8 Volts and 0.8 Volts.

  15. Bypassing the energy-time uncertainty in time-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Randi, Francesco; Fausti, Daniele; Eckstein, Martin

    2017-03-01

    The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.

  16. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies.

    PubMed

    Sinn, Soobin; Kim, Choong Hyun; Kim, Beom Hyun; Lee, Kyung Dong; Won, Choong Jae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    2016-12-21

    Recently, α-RuCl 3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl 3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl 3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl 6 3- cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl 3 is a J eff  = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl 3 .

  17. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies

    NASA Astrophysics Data System (ADS)

    Sinn, Soobin; Kim, Choong Hyun; Kim, Beom Hyun; Lee, Kyung Dong; Won, Choong Jae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    2016-12-01

    Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl63- cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3.

  18. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies

    PubMed Central

    Sinn, Soobin; Kim, Choong Hyun; Kim, Beom Hyun; Lee, Kyung Dong; Won, Choong Jae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    2016-01-01

    Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl63− cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3. PMID:28000731

  19. a Study on SODIUM(110) and Other Nearly Free Electron Metals Using Angle Resolved Photoemission Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Lyo, In-Whan

    Electronic properties of the epitaxially grown Na(110) film have been studied using angle resolved ultraviolet photoemission spectroscopy with synchrotron radiation as the light source. Na provides an ideal ground to study the fundamental aspects of the electron-electron interactions in metals, because of its simple Fermi surface and small pseudopotential. The absolute band structure of Na(110) using angle resolved photoemission spectroscopy has been mapped out using the extrema searching method. The advantage of this approach is that the usual assumption of the unoccupied state dispersion is not required. We have found that the dispersion of Na(1l0) is very close to the parabolic band with the effective mass 1.21 M_{rm e} at 90 K. Self-consistent calculations of the self-energy for the homogeneous electron gas have been performed using the Green's function technique within the framework of the GW approximation, in the hope of understanding the narrowing mechanism of the bandwidth observed for all the nearly-free-electron (NFE) metals. Good agreements between the experimental data and our calculated self-energy were obtained not only for our data on k-dependency from Na(l10), but also for the total bandwidth corrections for other NFE metals, only if dielectric functions beyond the random phase approximation were used. Our findings emphasize the importance of the screening by long wavelength plasmons. Off-normal spectra of angle resolved photoemission from Na(110) show strong asymmetry of the bulk peak intensity for the wide range of photon energies. Using a simple analysis, we show this asymmetry has an origin in the interference of the surface Umklapp electrons with the normal electrons. We have also performed the detailed experimental studies of the anomalous Fermi level structure observed in the forbidden gap region of Na. This was claimed by A. W. Overhauser as the evidence of the charge density wave in the alkali metal. The possibility of this hypothesis is

  20. Charge transfer and symmetry reduction at the CuPc/Ag(110) interface studied by photoemission tomography

    NASA Astrophysics Data System (ADS)

    Schönauer, K.; Weiss, S.; Feyer, V.; Lüftner, D.; Stadtmüller, B.; Schwarz, D.; Sueyoshi, T.; Kumpf, C.; Puschnig, P.; Ramsey, M. G.; Tautz, F. S.; Soubatch, S.

    2016-11-01

    On the Ag(110) surface copper phthalocyanine (CuPc) orders in two structurally similar superstructures, as revealed by low-energy electron diffraction. Scanning tunneling microscopy (STM) shows that in both superstructures the molecular planes are oriented parallel to the surface and the long molecular axes, defined as diagonals of the square molecule, are rotated by ≃±32∘ away from the high-symmetry directions [1 1 ¯0 ] and [001] of the silver surface. Similarly to many other adsorbed metal phthalocyanines, the CuPc molecules on Ag(110) appear in STM as crosslike features with twofold symmetry. Photoemission tomography based on angle-resolved photoemission spectroscopy reveals a charge transfer from the substrate into the molecule. A symmetry analysis of experimental and theoretical constant binding energy maps of the photoemission intensity in the kx,ky -plane points to a preferential occupation of one of the two initially degenerate lowest unoccupied molecular orbitals (LUMOs) of eg symmetry. The occupied eg orbital is rotated by 32∘ against the [001] direction of the substrate. The lifting of the degeneracy of the LUMOs and the related reduction of the symmetry of the adsorbed CuPc molecule are attributed to an anisotropy in the chemical reactivity of the Ag(110) surface.

  1. X-ray photoemission study of the infinite-layer cuprate superconductor Sr(0.9) La (0.1) CuO(2)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Jung, C. U.; Kim, J. Y.; Kim, M. S.; Lee, S. Y.; Lee, S. I.

    2001-01-01

    The electron-doped infinite-layer superconductor Sr(0.9)La(0.1) CuO(2) is studied with x-ray photoemission spectroscopy (XPS). A nonaqueous chemical etchant is shown to effectively remove contaminants and to yield surfaces from which signals intrinsic to the superconductor dominate.

  2. Integrated experimental setup for angle resolved photoemission spectroscopy of transuranic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Kevin S.; Joyce, John J.; Durakiewicz, Tomasz

    2013-09-15

    We have developed the Angle Resolved Photoemission Spectroscopy (ARPES) system for transuranic materials. The ARPES transuranic system is an endstation upgrade to the Laser Plasma Light Source (LPLS) at Los Alamos National Laboratory. The LPLS is a tunable light source for photoemission with a photon energy range covering the vacuum ultraviolet (VUV) and soft x-ray regions (27–140 eV). The LPLS was designed and developed for transuranic materials. Transuranic photoemission is currently not permitted at the public synchrotrons worldwide in the VUV energy range due to sample encapsulation requirements. With the addition of the ARPES capability to the LPLS system theremore » is an excellent opportunity to explore new details centered on the electronic structure of actinide and transuranic materials.« less

  3. Novel system for picosecond photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.; Lilie, M. I.

    1988-09-01

    This article describes a laser-based source and detection scheme for performing time-resolved photoemission studies of materials. The pulsed laser source produces intense picosecond pulses of coherent radiation that are nearly continuously tunable from the near infrared to photon energies up to 13 eV. To achieve high sensitivity, a novel multianode time-of-flight spectrometer has been built that generates an angularly resolved intensity versus kinetic energy spectrum with better than 100-meV resolution. The source and detector provide an opportunity to study the electronic dynamics of excited systems on a picosecond time scale.

  4. Two-photon photoemission from a copper cathode in an Χ-band photoinjector

    DOE PAGES

    Li, H.; Limborg-Deprey, C.; Adolphsen, C.; ...

    2016-02-24

    This study presents two-photon photoemission from a copper cathode in an X-band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R) of the copper surface for 400 nm photons (R=0.48) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when themore » incident laser intensity is above 300 GW/cm 2. At the same laser pulse energy (E) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X-band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.« less

  5. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    PubMed

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-09

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  6. Rotatable spin-polarized electron source for inverse-photoemission experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolwijk, S. D., E-mail: Sebastian.Stolwijk@wwu.de; Wortelen, H.; Schmidt, A. B.

    2014-01-15

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111)more » highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.« less

  7. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Spann, James F., Jr.; Craven, Paul D.; West, E.; Pratico, Jared; Scheianu, D.; Tankosic, D.; Venturini, C. C.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 1 - 100 micrometer diameter are levitated in a vacuum chamber at pressures approx. 10(exp -5) torr and exposed to a collimated beam of UV radiation in the 120-300 nanometers spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV radiation wavelength with a spectral resolution of 8 nanometers. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on Al2O3 and silicate particles, and in particular on JSC-1 Mars regolith simulants, to determine the photoelectron yields and surface equilibrium potentials of dust particles when exposed to UV radiation in the 120-250 micrometers spectral range. A brief discussion of the experimental procedure, the results of photoemission experiments, and comparisons with theoretical models will be presented.

  8. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; He, Shaolong; Liu, Guodong; Zhao, Lin; Yu, Li; Zhang, Wentao

    2018-06-01

    The significant progress in angle-resolved photoemission spectroscopy (ARPES) in last three decades has elevated it from a traditional band mapping tool to a precise probe of many-body interactions and dynamics of quasiparticles in complex quantum systems. The recent developments of deep ultraviolet (DUV, including ultraviolet and vacuum ultraviolet) laser-based ARPES have further pushed this technique to a new level. In this paper, we review some latest developments in DUV laser-based photoemission systems, including the super-high energy and momentum resolution ARPES, the spin-resolved ARPES, the time-of-flight ARPES, and the time-resolved ARPES. We also highlight some scientific applications in the study of electronic structure in unconventional superconductors and topological materials using these state-of-the-art DUV laser-based ARPES. Finally we provide our perspectives on the future directions in the development of laser-based photoemission systems.

  9. Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion

    PubMed Central

    2015-01-01

    We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G0W0 calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron–hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6–3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO. PMID:24689856

  10. Resonant photoemission spectroscopic studies of SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Chauhan, R. S.; Panchal, Gyanendra; Singh, C. P.; Dar, Tanveer A.; Phase, D. M.; Choudhary, R. J.

    2017-09-01

    We report the structural and electronic properties of single phase, polycrystalline rutile tetragonal SnO2 thin film grown on Si (100) substrate by pulsed laser deposition technique. X-ray photoelectron and resonant photoemission spectroscopic (RPES) studies divulge that Sn is present in 4+ (˜91%) valence state with a very small involvement of 2+ (˜9%) valence state at the surface. Valence band spectrum of the film shows prominent contribution due to the Sn4+ valence state. RPES measurements were performed in the Sn 4d→5p photo absorption region. This study shows that O-2p, Sn-5s, and Sn-5p partial density of states are the main contributions to the valence band of this material. The resonance behavior of these three contributions has been analyzed. Constant initial state versus photon energy plots suggest that the low binding energy feature at ˜2.8 eV results from the hybridization of the O-2p and mixed valence states of Sn, while remaining features at higher binding energies are due to the hybridization between O-2p (bonding) orbitals and Sn4+ valence state.

  11. Accurate determination of the valence band edge in hard x-ray photoemission spectra using GW theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lischner, Johannes, E-mail: jlischner597@gmail.com; Department of Physics and Department of Materials and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ; Nemšák, Slavomír

    We introduce a new method for determining accurate values of the valence-band maximum in x-ray photoemission spectra. Specifically, we align the sharpest peak in the valence-band region of the experimental spectrum with the corresponding feature of a theoretical valence-band density of states curve from ab initio GW theory calculations. This method is particularly useful for soft and hard x-ray photoemission studies of materials with a mixture of valence-band characters, where strong matrix element effects can render standard methods for extracting the valence-band maximum unreliable. We apply our method to hydrogen-terminated boron-doped diamond, which is a promising substrate material for novelmore » solar cell devices. By carrying out photoemission experiments with variable light polarizations, we verify the accuracy of our analysis and the general validity of the method.« less

  12. Unoccupied surface states of LaB6(001) studied by k -resolved inverse photoemission

    NASA Astrophysics Data System (ADS)

    Morimoto, Osamu; Kunii, Satoru; Kakizaki, Akito

    2006-06-01

    We have measured k -resolved inverse photoemission spectra of LaB6(001) to study unoccupied surface states. The surface states are observed near the Fermi level (EF) and at 6.8eV above EF , which are originated from La5d and La4f states, respectively. The surface state near EF shows energy dispersion along the Γ - M direction of the surface Brillouin zone, which does not agree with that of a recently reported theoretical calculation. It is deduced that at a LaB6(001) surface, electrons are transferred from the subsurface to the topmost La layer. This charge redistribution can reduce surface dipole moments.

  13. One-step model of photoemission from single-crystal surfaces

    DOE PAGES

    Karkare, Siddharth; Wan, Weishi; Feng, Jun; ...

    2017-02-28

    In our paper, we present a three-dimensional one-step photoemission model that can be used to calculate the quantum efficiency and momentum distributions of electrons photoemitted from ordered single-crystal surfaces close to the photoemission threshold. Using Ag(111) as an example, we also show that the model can not only calculate the quantum efficiency from the surface state accurately without using any ad hoc parameters, but also provides a theoretical quantitative explanation of the vectorial photoelectric effect. This model in conjunction with other band structure and wave function calculation techniques can be effectively used to screen single-crystal photoemitters for use as electronmore » sources for particle accelerator and ultrafast electron diffraction applications.« less

  14. Charge-density-wave partial gap opening in quasi-2D KMo 6O 17 purple bronze studied by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Pantin, V.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-05-01

    Low dimensional (LD) metallic oxides have been a subject of continuous interest in the last two decades, mainly due to the electronic instabilities that they present at low temperatures. In particular, charge density waves (CDW) instabilities associated with a strong electron-phonon interaction have been found in Molybdenum metallic oxides such as KMo 6O 17 purple bronze. We report an angle resolved photoemission (ARPES) study from room temperature (RT) to T ˜40 K well below the Peierls transition temperature for this material, with CDW transition temperature TCDW ˜120 K. We have focused on photoemission spectra along ΓM high symmetry direction as well as photoemission measurements were taken as a function of temperature at one representative kF point in the Brillouin zone in order to look for the characteristic gap opening after the phase transition. We found out a pseudogap opening and a decrease in the density of states near the Fermi energy, EF, consistent with the partial removal of the nested portions of the Fermi surface (FS) at temperature below the CDW transition. In order to elucidate possible Fermi liquid (FL) or non-Fermi liquid (NFL) behaviour we have compared the ARPES data with that one reported on quasi-1D K 0.3MoO 3 blue bronze.

  15. An Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronning, Filip

    2002-03-19

    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on themore » compound Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La{sub 2-x}Sr{sub x}CuO{sub 4} where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca{sub 1.9}Na{sub 0.1}CuO{sub 2}Cl{sub 2} is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation

  16. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    NASA Astrophysics Data System (ADS)

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.; Kemper, A. F.; Devereaux, T. P.

    2017-11-01

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d -wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d -wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. We comment on the necessary conditions for detecting the amplitude mode in trARPES experiments.

  17. Photoemission and Photoabsorption Investigation of the Electronic Structure of Ytterbium Doped Strontium Fluoroapatite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, A J; van Buuren, T; Bostedt, C

    X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure was used to evaluate the density of occupied states of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N{sub 4,5}-edge), Sr 3d (M{sub 4,5}-edge), P 2p (L{sub 2,3}-edge), F 1s and O 1s (K-edges) absorption edges. These results provide the first measurements of the electronic structure and surface chemistry of this material.

  18. An LDA+U study of the photoemission spectra of ground state phase of americium and curium

    NASA Astrophysics Data System (ADS)

    Islam, Md; Ray, Asok

    2009-03-01

    We have investigated the photoemission spectra and other ground state properties such as equilibrium volume and bulk modulus of dhcp americium and the density of states and magnetic properties of dhcp curium using LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities much better than that calculated using spin polarized configuration. The DOS calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, U is observed to increase the splitting between occupied and unoccupied bands by enhancing Stoner parameter. The results are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium, exchange interaction appears to play the dominant role in its magnetic stability.

  19. Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Braun, Jürgen; Minár, Ján; Ebert, Hubert

    2018-04-01

    Various apparative developments extended the potential of angle-resolved photoemission spectroscopy tremendously during the last two decades. Modern experimental arrangements consisting of new photon sources, analyzers and detectors supply not only extremely high angle and energy resolution but also spin resolution. This provides an adequate platform to study in detail new materials like low-dimensional magnetic structures, Rashba systems, topological insulator materials or high TC superconductors. The interest in such systems has grown enormously not only because of their technological relevance but even more because of exciting new physics. Furthermore, the use of photon energies from few eV up to several keV makes this experimental technique a rather unique tool to investigate the electronic properties of solids and surfaces. The following article reviews the corresponding recent theoretical developments in the field of angle-resolved photoemission with a special emphasis on correlation effects, temperature and relativistic aspects. The most successful theoretical approach to deal with angle-resolved photoemission is the so-called spectral function or one-step formulation of the photoemission process. Nowadays, the one-step model allows for photocurrent calculations for photon energies ranging from a few eV to more than 10 keV, to deal with arbitrarily ordered and disordered systems, to account for finite temperatures, and considering in addition strong correlation effects within the dynamical mean-field theory or similar advanced approaches.

  20. Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission

    NASA Astrophysics Data System (ADS)

    Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao

    2016-02-01

    Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.

  1. Electronic Structure of Ytterbium-Doped Strontium Fluoroapatite: Photoemission and Photoabsorption Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Art J.; Van Buuren, Tony W.; Bostedt, C

    X-ray photoemission and x-ray photoabsorption were used to study the composition and the electronic structure of ytterbium-doped strontium fluoroapatite (Yb:S-FAP). High resolution photoemission measurements on the valence band electronic structure and Sr 3d, P 2p and 2s, Yb 4d and 4p, F 1s and O 1s core lines were used to evaluate the surface and near surface chemistry of this fluoroapatite. Element specific density of unoccupied electronic states in Yb:S-FAP were probed by x-ray absorption spectroscopy (XAS) at the Yb 4d (N4,5-edge), Sr 3d (M4,5-edge), P 2p (L2,3-edge), F 1s and O 1s (K-edges) absorption edges. These results provide themore » first measurements of the electronic structure and surface chemistry of this material.« less

  2. Heterojunction-Internal-Photoemission Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    New type of photodetector adds options for design of imaging devices. Heterojunction-internal-photoemission (HIP) infrared photodetectors proposed for incorporation into planar arrays in imaging devices required to function well at wavelengths from 8 to 17 micrometers and at temperatures above 65 K. Photoexcited electrons cross energy barrier at heterojunction and swept toward collection layer. Array of such detectors made by etching mesa structures. HIP layers stacked to increase quantum efficiency. Also built into integrated circuits including silicon multiplexer/readout circuits.

  3. Attosecond-controlled photoemission from metal nanowire tips in the few-electron regime

    NASA Astrophysics Data System (ADS)

    Ahn, B.; Schötz, J.; Kang, M.; Okell, W. A.; Mitra, S.; Förg, B.; Zherebtsov, S.; Süßmann, F.; Burger, C.; Kübel, M.; Liu, C.; Wirth, A.; Di Fabrizio, E.; Yanagisawa, H.; Kim, D.; Kim, B.; Kling, M. F.

    2017-03-01

    Metal nanotip photoemitters have proven to be versatile in fundamental nanoplasmonics research and applications, including, e.g., the generation of ultrafast electron pulses, the adiabatic focusing of plasmons, and as light-triggered electron sources for microscopy. Here, we report the generation of high energy photoelectrons (up to 160 eV) in photoemission from single-crystalline nanowire tips in few-cycle, 750-nm laser fields at peak intensities of (2-7.3) × 1012 W/cm2. Recording the carrier-envelope phase (CEP)-dependent photoemission from the nanowire tips allows us to identify rescattering contributions and also permits us to determine the high-energy cutoff of the electron spectra as a function of laser intensity. So far these types of experiments from metal nanotips have been limited to an emission regime with less than one electron per pulse. We detect up to 13 e/shot and given the limited detection efficiency, we expect up to a few ten times more electrons being emitted from the nanowire. Within the investigated intensity range, we find linear scaling of cutoff energies. The nonlinear scaling of electron count rates is consistent with tunneling photoemission occurring in the absence of significant charge interaction. The high electron energy gain is attributed to field-induced rescattering in the enhanced nanolocalized fields at the wires apex, where a strong CEP-modulation is indicative of the attosecond control of photoemission.

  4. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    DOE PAGES

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.; ...

    2017-11-20

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less

  5. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less

  6. Photoemission from sodium on ice: a mechanism for positive and negative charge coexistence in the mesosphere.

    PubMed

    Vondrak, Tomas; Plane, John M C; Meech, Stephen R

    2006-03-09

    Photoemission from sodium deposited on ice films is described. Deposition of 0.02 ML of sodium is found to dramatically reduce the threshold for photoemission from the ice film to (2.3+/-0.2) eV. Thus, the cross-section for photoemission reaches >10(-18) cm2 in the visible region of the spectrum. It is proposed that the initial state is a solvated electron on the ice surface, which is supported by optical transmission spectroscopy. The potential significance of these results in understanding unexplained charging phenomena in the mesosphere is discussed.

  7. Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Thumm, U.

    2018-04-01

    Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.

  8. Comparative Photoemission Study of Actinide (Am, Pu, Np and U) Metals, Nitrides, and Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gouder, Thomas; Seibert, Alice; Rebizant, Jean

    2007-07-01

    Core-level and valence-band spectra of Pu and the other early actinide compounds show remarkable systematics, which can be understood in the framework of final state screening. We compare the early actinide (U, Np, Pu and Am) metals, nitrides and hydrides and a few other specific compounds (PuSe, PuS, PuCx, PuSix) prepared as thin films by sputter deposition. In choosing these systems, we combine inherent 5f band narrowing, due to 5f orbital contraction throughout the actinide series, with variations of the chemical environment in the compounds. Goal of this work was to learn more on the electronic structure of the earlymore » actinide systems and to achieve the correct interpretation of their photoemission spectra. The highly correlated nature of the 5f states in systems, which are on the verge to localization, makes this a challenging task, because of the peculiar interplay between ground state DOS and final-state effects. Their influence can be estimated by doing systematic studies on systems with different (5f) bandwidths. We conclude on the basis of such systematic experiments that final-state effects due to strong e-e correlations in narrow 5f-band systems lead to multiplet like structures, analogous to those observed in the case of systems with localized electron states. Such observations in essentially band-like 5f-systems was first surprising, but the astonishing similarity of photoemission spectra of very different chemical systems (e.g. PuSe, Pu{sub 2}C{sub 3}..) points to a common origin, relating them to atomic features rather than material dependent density of states (DOS) features. (authors)« less

  9. Photoemission intensity oscillations from quantum-well states in the Ag/V(100) overlayer system

    NASA Astrophysics Data System (ADS)

    Milun, M.; Pervan, P.; Gumhalter, B.; Woodruff, D. P.

    1999-02-01

    Extensive measurements have been made of the photoemission intensities recorded along the surface normal from quantum-well (QW) states of pseudomorphic Ag layers on V(100) in thicknesses from 1-7 ML as a function of photon energy in the range 15-45 eV. In all cases the QW states lead to intense peaks in the photoemission spectra which show strong oscillations in intensity with photon energy, the energy period of the oscillations becoming shorter as the films become thicker. These effects are explained in terms of interference of surface and interfaces photoemission from the sharp changes in potential at the well boundaries, and a semiquantitative description is achieved via calculations based on a simple asymmetric square-well description in the Adawi formulation of surface photoemission. An alternative picture in which intensity peaks are predicted to correspond to the conditions for direct transitions from bulk states of the overlayer material at the same initial-state energy is shown to be in direct contradiction with some of our observations. The reason for this failure, and the relationship of alternative views of the physical processes, are discussed.

  10. Core-Level Photoemission Investigations of the CADMIUM-TELLURIDE(100) and INDIUM-ANTIMONY(100) Surface and Interfacial Structures.

    NASA Astrophysics Data System (ADS)

    John, Peter James

    1988-12-01

    Photoemission techniques, utilizing a synchrotron light source, were used to analyze the clean (100) surfaces of the zinc-blende semiconductor materials CdTe and InSb. Several interfacial systems involving the surfaces of these materials were also studied, including the CdTe(100)-Ag interface, the CdTe(100)-Sb system, and the InSb(100)-Sn interface. High -energy electron diffraction was also employed to acquire information about of surface structure. A one-domain (2x1) structure was observed for the CdTe(100) surface. Analysis of photoemission spectra of the Cd 4d core level for this surface structure revealed two components resulting from Cd surface atoms. The total intensity of these components accounts for a full monolayer of Cd atoms on the surface. A structural model is discussed commensurate with these results. Photoemission spectra of the Cd and Te 4d core levels indicate that Ag or Sb deposited on the CdTe(100)-(2x1) surface at room temperature do not bound strongly to the surface Cd atoms. The room temperature growth characteristics for these two elements on the CdTe(100)-(2x1) are discussed. The growth at elevated substrate temperatures was also studied for Sb deposition. The InSb(100) surface differed from the CdTe(100) surface. Using molecular beam epitaxy, several structures could be generated for the InSb(100) surface, including a c(8x2), a c(4x4), an asymmetric (1x3), a symmetric (1x3), and a (1x1). Analysis of photoemission intensities and line shapes indicates that the c(4x4) surface is terminated with 1{3 over 4} monolayers of Sb atoms. The c(8x2) surface is found to be terminated with {3over 4} monolayer of In atoms. Structural models for both of these surfaces are proposed based upon the photoemission results and upon models of the similar GaAs(100) structures. The room temperature growth characteristics of grey Sn on the InSb(100)-c(4x4) and InSb(100)-c(8x2) surfaces were studied with photoemission. The discontinuity in the valence band maximum

  11. Photoemission study of electronic structure of the half-metallic ferromagnet Co3Sn2S2

    NASA Astrophysics Data System (ADS)

    Holder, M.; Dedkov, Yu. S.; Kade, A.; Rosner, H.; Schnelle, W.; Leithe-Jasper, A.; Weihrich, R.; Molodtsov, S. L.

    2009-05-01

    Surface electronic structure of polycrystalline and single-crystalline samples of the half-metallic ferromagnet Co3Sn2S2 was studied by means of angle-resolved and core-level photoemissions. The experiments were performed in temperature regimes both above and below a Curie temperature of 176.9 K. The spectroscopic results are compared to local-spin density approximation band-structure calculations for the bulk samples. It is found that the surface sensitive experimental data are generally reproduced by the bulk computation suggesting that the theoretically predicted half-metallic properties of Co3Sn2S2 are retained at the surface.

  12. Reactive molecular beam epitaxial growth and in situ photoemission spectroscopy study of iridate superlattices

    NASA Astrophysics Data System (ADS)

    Fan, C. C.; Liu, Z. T.; Cai, S. H.; Wang, Z.; Xiang, P.; Zhang, K. L.; Liu, W. L.; Liu, J. S.; Wang, P.; Zheng, Y.; Shen, D. W.; You, L. X.

    2017-08-01

    High-quality (001)-oriented perovskite [(SrIrO3)m/(SrTiO3)] superlattices (m=1/2, 1, 2, 3 and ∞ ) films have been grown on SrTiO3(001) epitaxially using reactive molecular beam epitaxy. Compared to previously reported superlattices synthesized by pulsed laser deposition, our superlattices exhibit superior crystalline, interface and surface structure, which have been confirmed by high-resolution X-ray diffraction, scanning transmission electron microscopy and atomic force microscopy, respectively. The transport measurements confirm a novel insulator-metal transition with the change of dimensionality in these superlattices, and our first systematic in situ photoemission spectroscopy study indicates that the increasing strength of effective correlations induced by reducing dimensionality would be the dominating origin of this transition.

  13. Application of the Lucy–Richardson Deconvolution Procedure to High Resolution Photoemission Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rameau, J.; Yang, H.-B.; Johnson, P.D.

    2010-07-01

    Angle-resolved photoemission has developed into one of the leading probes of the electronic structure and associated dynamics of condensed matter systems. As with any experimental technique the ability to resolve features in the spectra is ultimately limited by the resolution of the instrumentation used in the measurement. Previously developed for sharpening astronomical images, the Lucy-Richardson deconvolution technique proves to be a useful tool for improving the photoemission spectra obtained in modern hemispherical electron spectrometers where the photoelectron spectrum is displayed as a 2D image in energy and momentum space.

  14. Capability of insulator study by photoemission electron microscopy at SPring-8.

    PubMed

    Ohkochi, Takuo; Kotsugi, Masato; Yamada, Keisuke; Kawano, Kenji; Horiba, Koji; Kitajima, Fumio; Oura, Masaki; Shiraki, Susumu; Hitosugi, Taro; Oshima, Masaharu; Ono, Teruo; Kinoshita, Toyohiko; Muro, Takayuki; Watanabe, Yoshio

    2013-07-01

    The observation method of photoemission electron microscopy (PEEM) on insulating samples has been established in an extremely simple way. Surface conductivity is induced locally on an insulating surface by continuous radiation of soft X-rays, and Au films close to the area of interest allow the accumulated charges on the insulated area to be released to ground level. Magnetic domain observations of a NiZn ferrite, local X-ray absorption spectroscopy of sapphire, high-resolution imaging of a poorly conducting Li0.9CoO2 film surface, and Au pattern evaporation on a fine rock particle are demonstrated. Using this technique, all users' experiments on poorly conducting samples have been performed successfully at the PEEM experimental station of SPring-8.

  15. Photoemission and Auger-electron spectroscopic study of the Chevrel-phase compound FexMo6S8

    NASA Astrophysics Data System (ADS)

    Fujimori, A.; Sekita, M.; Wada, H.

    1986-05-01

    The electronic structure of the Chevrel-phase compound FexMo6S8 has been studied by photoemission and Auger-electron spectroscopy. Core-level shifts suggest a large charge transfer from the Fe atoms to the Mo6S8 clusters and a small Mo-to-S charge transfer within the cluster. Line-shape asymmetry in the core levels indicates that the density of states (DOS) at the Fermi level has a finite S 3p component as well as the dominant Mo 3d character. Satellite structure and exchange splitting in the Fe core levels point to weak Fe 3d-S 3p hybridization in spite of the short Fe-S distances comparable to that in FeS. The x-ray and ultraviolet valence-band photoemission spectra and the Mo 4d partial DOS obtained by deconvoluting the Mo M4,5VV Auger spectrum are compared with existing band-structure calculations, and the Mo 4d-S 3p bonding character, the structure of the Mo 4d-derived conduction band etc., are discussed. In particular, it is shown that the conduction-band structure is sensitive to the noncubic distortion of the crystal through changes in the intercluster Mo 4d-S 3p hybridization. A pronounced final-state effect is found in the Mo M4,5N2,3V Auger spectrum and is attributed to strong 4p-4d intershell coupling.

  16. Computational Exploration of the Surface Properties of Cs2Te5 Photoemissive Material

    NASA Astrophysics Data System (ADS)

    Ruth, Anthony; Nemeth, Karoly; Harkay, Katherine; Spentzouris, Linda; Terry, Jeff

    2013-03-01

    Cs2Te is a broadly used photoemissive material due to its exceptionally high quantum efficiency (~ 20%). Our group has recently predicted that the acetylation of this material (Cs2TeC2) would lower its workfunction down to about 2.4 eV from ~ 3 eV, and preserve its high quantum efficiency. Such a modification is advantageous because visible light can be used in the operation of such a photoemissive device instead of ultraviolet light. To explore other variants of Cs2Te, we conducted DFT-based computational analysis of the photoemissive properties of Cs2Te5 which is a known phase of Cs and Te. Cs2Te5 attracted our attention for its rod-like 1D Te substructures embedded in a Cs matrix. This structure is similar to Cs2TeC2 as Cs2TeC2 contains TeC2 polymeric rods in a Cs matrix. In addition to that, exploration of various Cesium Telluride phases is necessary to better understand the working of Cs2Te photocathodes. We have calculated surface energies, workfunctions, and optical absorption spectra of several different surfaces of Cs2Te5. A comparison of the properties of various Cs2Te5 surfaces and their utilization in photoemissive devices will be presented.

  17. Interface states and internal photoemission in p-type GaAs metal-oxide-semiconductor surfaces

    NASA Technical Reports Server (NTRS)

    Kashkarov, P. K.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    An interface photodischarge study of p-type GaAs metal-oxide-semiconductor (MOS) structures revealed the presence of deep interface states and shallow donors and acceptors which were previously observed in n-type GaAs MOS through sub-band-gap photoionization transitions. For higher photon energies, internal photoemission was observed, i.e., injection of electrons to the conduction band of the oxide from either the metal (Au) or from the GaAs valence band; the threshold energies were found to be 3.25 and 3.7 + or - 0.1 eV, respectively. The measured photoemission current exhibited a thermal activation energy of about 0.06 eV, which is consistent with a hopping mechanism of electron transport in the oxide.

  18. Photoemission studies of CdTe(100) and the Ag-CdTe(100) interface: Surface structure, growth behavior, Schottky barrier, and surface photovoltage

    NASA Astrophysics Data System (ADS)

    John, P.; Miller, T.; Hsieh, T. C.; Shapiro, A. P.; Wachs, A. L.; Chiang, T.-C.

    1986-11-01

    The clean CdTe(100) surface prepared by sputtering and annealing was studied with high-energy electron diffraction (HEED) and photoemission. HEED showed the surface to be a one-domain, (2×1) reconstruction. Photoemission spectra showed two surface-shifted components for the Cd 4d core level, with an intensity ratio of about 1:3, accounting for nearly an entire atomic layer. No surface-induced shifts for the Te 4d core level were detected. A model is proposed for the surface structure in which the surface layer is free of Te, and Cd atoms form dimers resulting in a (2×1) reconstruction; in addition, about (1/4) of the surface area is covered by excess loosely attached Cd atoms. Ag was evaporated on the surface at room temperature and found to grow three dimensionally in the [111] direction. The Ag was found to interact only weakly with the substrate, although the Cd atoms originally loosely bound on top of the surface were found to float on the evaporated Ag islands. A small coverage-dependent surface photovoltage, induced by the synchrotron radiation used for photoemission, was observed; with this effect taken into account, band bending was monitored, the final Fermi-level position being near 0.96 eV above the valence-band maximum. This corresponds to a Schottky-barrier height of about 0.60 eV for the n-type sample used in this experiment. The mechanism for generation of the surface photovoltage will be discussed.

  19. Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics?

    PubMed

    Mahns, Benjamin; Roth, Friedrich; Knupfer, Martin

    2012-04-07

    The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.

  20. Valence-band and core-level photoemission study of single-crystal Bi2CaSr2Cu2O8 superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Z.-X.; Lindberg, P. A. P.; Wells, B. O.; Mitzi, D. B.; Lindau, I.; Spicer, W. E.; Kapitulnik, A.

    1988-12-01

    High-quality single crystals of Bi2CaSr2Cu2O8 superconductors have been prepared and cleaved in ultrahigh vacuum. Low-energy electron diffraction measurements show that the surface structure is consistent with the bulk crystal structure. Ultraviolet photoemission and x-ray photoemission experiments were performed on these well-characterized sample surfaces. The valence-band and the core-level spectra obtained from the single-crystal surfaces are in agreement with spectra recorded from polycrystalline samples, justifying earlier results from polycrystalline samples. Cu satellites are observed both in the valence band and Cu 2p core level, signaling the strong correlation among the Cu 3d electrons. The O 1s core-level data exhibit a sharp, single peak at 529-eV binding energy without any clear satellite structures.

  1. Photoemission study of tris(8-hydroxyquinoline) aluminum/aluminum oxide/tris(8-hydroxyquinoline) aluminum interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Huanjun; Zorba, Serkan; Gao Yongli

    2006-12-01

    The evolution of the interface electronic structure of a sandwich structure involving aluminum oxide and tris(8-hydroxyquinoline) aluminum (Alq), i.e. (Alq/AlO{sub x}/Alq), has been investigated with photoemission spectroscopy. Strong chemical reactions have been observed due to aluminum deposition onto the Alq substrate. The subsequent oxygen exposure releases some of the Alq molecules from the interaction with aluminum. Finally, the deposition of the top Alq layer leads to an asymmetry in the electronic energy level alignment with respect to the AlO{sub x} interlayer.

  2. Photoemission and photoionization time delays and rates

    PubMed Central

    Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.

    2017-01-01

    Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414

  3. Electronic structure of LiCoO2 thin films: A combined photoemission spectroscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram

    2010-11-01

    The electronic properties of LiCoO2 have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO2 thin films deposited “in situ” by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by OK XAS. The structure of the CoL absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9eV .

  4. Synchrotron-Radiation Photoemission Study of Electronic Structures of a Cs-Doped Rubrene Surface

    NASA Astrophysics Data System (ADS)

    Cheng, Chiu-Ping; Lu, Meng-Han; Chu, Yu-Ya; Pi, Tun-Wen

    Using synchrotron-radiation photoemission spectroscopy, we have studied the electronic structure of a cesium-doped rubrene thin film. The addition of cesium atoms causes the movement of the valence-band spectra and the change in line shapes at different concentration that can be separated into four different stages. In the first stage, the cesium atoms continuously diffuse into the substrate, and the Fermi level moves in the energy gap as a result of an electron transferred from the cesium to the rubrene. The second stage, in which the shifts of the spectra are interrupted, is characterized by the introduction of two in-gap states. When increasing doping of cesium into the third stage, the spectra move again; whereas, the line shapes maintain at the stoichiometric ratio of one. In the fourth stage, new in-gap states appear, which are the highest occupied molecular orbital (HOMO) and HOMO+1 states of (rubrene)2- anion.

  5. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip.

    PubMed

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-18

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  6. Spin-resolved photoemission study of epitaxially grown MoSe 2 and WSe 2 thin films

    DOE PAGES

    Mo, Sung-Kwan; Hwang, Choongyu; Zhang, Yi; ...

    2016-09-12

    Few-layer thick MoSe 2 and WSe 2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin–orbit coupling. Here, we report a spin-resolved photoemission study of MoSe 2 and WSe 2 thin film samples epitaxially grown on a bilayer graphene substrate. Furthermore, we only found spin polarization in the single- and trilayer samples—not in the bilayer sample—mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricatemore » coupling between the spin and orbital degrees of freedom in this class of material.« less

  7. Soft X-ray photoemission study of Co2(Cr1-xFex)Ga Heusler compounds

    NASA Astrophysics Data System (ADS)

    Tsunekawa, Masanori; Hattori, Yoshiro; Sekiyama, Akira; Fujiwara, Hidenori; Suga, Shigemasa; Muro, Takayuki; Kanomata, Takeshi; Imada, Shin

    2015-08-01

    We have performed soft X-ray photoemission spectroscopy (SXPES) and X-ray absorption spectroscopy (XAS) of the Co-based Heusler compounds Co2(Cr1-xFex)Ga (x = 0.0, 0.4, and 1.0) in order to study their electronic structures. Band-structure calculation was carried out and compared with the experimental results. SXPES spectra show hν-dependence, revealing the contributions of the Co, Cr, and Fe 3d electronic states in the valence band. The band width observed by the SXPES seems to be narrower than that predicted by the band-structure calculation. XAS spectra depend strongly on the the value of x in Co2(Cr1-xFex)Ga. The electron correlation effects are found to be stronger as x changes from 0.0 to 1.0.

  8. Theory of Photoemission in Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, Axel

    2008-07-01

    A theory is presented which describes the photoemission spectra of actinide compounds starting from the atomic limit of isolated actinide ions. The multiplets of the ion are calculated and an additional term is introduced to describe the interaction with the sea of conduction electrons. This leads to complex mixed-valent ground states, which describes well the rich spectrum observed for PuSe. In particular, the three-peak feature, which is often seen in Pu and Pu compounds in the vicinity of the Fermi level originates from f{sup 6} {yields} f{sup 5} emission. The theory is further applied to PuSb, PuCoGa{sub 5} and Am.more » (author)« less

  9. Photoemission, NMR, susceptibility and specific heat in V and A15 V 3Pt

    NASA Astrophysics Data System (ADS)

    Amamou, A.; Turek, P.; Kuentzler, R.

    1982-08-01

    We present a study on the electronic structure of V and V 3Pt, based on photoemission (XPS and UPS) measurements and on the examination of previous band calculations, specific heat, susceptibility and NMR results. Photoemission spectra on pure V, in particular the XPS one, show a good agreement with band calculations ; the He II spectrum exhibits a strong satellite which could be attributed to a simple Auger effect or to a resonant process. Photoemission on V 3Pt allows an evaluation of the partial densities of states (PDOS) ; the Vanadium PDOS is similar to that of pure element, at least for the upper part of the valence band ; meanwhile the Platinium partial EDOS is drastically modified. This can be understood in the framework of electronic structure of compounds involving early and late transition metals where the atomic structure seems to play an important role. An evaluation of the EDOS's at the Fermi level n(E F) can also be tempted and compared to those obtained from the other mentioned techniques. Therefore it is suggested that for Vanadium n(E F) is similar to that of pure element ; for Platinium n(E F) is strongly reduced. Finally the analysis of the electronic specific heat of V, Pt and V 3Pt indicates that the parameter of electron-phonon coupling determined by the Mc Millan's theory is likely underesti:ated, due to the occurence of an estimated coupling in V and V 3Pt.

  10. Multidimensional photoemission spectroscopy—the space-charge limit

    NASA Astrophysics Data System (ADS)

    Schönhense, B.; Medjanik, K.; Fedchenko, O.; Chernov, S.; Ellguth, M.; Vasilyev, D.; Oelsner, A.; Viefhaus, J.; Kutnyakhov, D.; Wurth, W.; Elmers, H. J.; Schönhense, G.

    2018-03-01

    Photoelectron spectroscopy, especially at pulsed sources, is ultimately limited by the Coulomb interaction in the electron cloud, changing energy and angular distribution of the photoelectrons. A detailed understanding of this phenomenon is crucial for future pump-probe photoemission studies at (x-ray) free electron lasers and high-harmonic photon sources. Measurements have been performed for Ir(111) at hν = 1000 eV with photon flux densities between ˜102 and 104 photons per pulse and μm2 (beamline P04/PETRA III, DESY Hamburg), revealing space-charge induced energy shifts of up to 10 eV. In order to correct the essential part of the energy shift and restore the electron distributions close to the Fermi energy, we developed a semi-analytical theory for the space-charge effect in cathode-lens instruments (momentum microscopes, photoemission electron microscopes). The theory predicts a Lorentzian profile of energy isosurfaces and allows us to quantify the charge cloud from measured energy profiles. The correction is essential for the determination of the Fermi surface, as we demonstrate by means of ‘k-space movies’ for the prototypical high-Z material tungsten. In an energy interval of about 1 eV below the Fermi edge, the bandstructure can be restored up to substantial shifts of ˜7 eV. Scattered photoelectrons strongly enhance the inelastic background in the region several eV below E F, proving that the majority of scattering events involves a slow electron. The correction yields a gain of two orders of magnitude in usable intensity compared with the uncorrected case (assuming a tolerable shift of 250 meV). The results are particularly important for future experiments at SASE-type free electron lasers, since the correction also works for strongly fluctuating (but known) pulse intensities.

  11. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    PubMed

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  12. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    NASA Astrophysics Data System (ADS)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  13. X-ray photoemission study of NiS2-xSex (x=0.0 1.2)

    NASA Astrophysics Data System (ADS)

    Krishnakumar, S. R.; Sarma, D. D.

    2003-10-01

    Electronic structure of NiS2-xSex system has been investigated for various compositions (x) using x-ray photoemission spectroscopy. An analysis of the core-level as well as the valence-band spectra of NiS2 in conjunction with many-body cluster calculations provides a quantitative description of the electronic structure of this compound. With increasing Se content, the on-site Coulomb correlation strength (U) does not change, while the bandwidth W of the system increases, driving the system from a covalent insulating state to a pd-metallic state.

  14. Measurement of Nanoplasmonic Field Enhancement with Ultrafast Photoemission.

    PubMed

    Rácz, Péter; Pápa, Zsuzsanna; Márton, István; Budai, Judit; Wróbel, Piotr; Stefaniuk, Tomasz; Prietl, Christine; Krenn, Joachim R; Dombi, Péter

    2017-02-08

    Probing nanooptical near-fields is a major challenge in plasmonics. Here, we demonstrate an experimental method utilizing ultrafast photoemission from plasmonic nanostructures that is capable of probing the maximum nanoplasmonic field enhancement in any metallic surface environment. Directly measured field enhancement values for various samples are in good agreement with detailed finite-difference time-domain simulations. These results establish ultrafast plasmonic photoelectrons as versatile probes for nanoplasmonic near-fields.

  15. DC High Voltage Conditioning of Photoemission Guns at Jefferson Lab FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Benson, S. V.; Biallas, G.

    2009-08-04

    DC high voltage photoemission electron guns with GaAs photocathodes have been used to produce polarized electron beams for nuclear physics experiments for about 3 decades with great success. In the late 1990s, Jefferson Lab adopted this gun technology for a free electron laser (FEL), but to assist with high bunch charge operation, considerably higher bias voltage is required compared to the photoguns used at the Jefferson Lab Continuous Electron Beam Accelerator Facility. The FEL gun has been conditioned above 400 kV several times, albeit encountering non-trivial challenges with ceramic insulators and field emission from electrodes. Recently, high voltage processing withmore » krypton gas was employed to process very stubborn field emitters. This work presents a summary of the high voltage techniques used to high voltage condition the Jefferson Lab FEL photoemission gun.« less

  16. Astigmatism correction in x-ray scanning photoemission microscope with use of elliptical zone plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, H.; Ko, C.; Anderson, E.

    1992-03-02

    We report the impact of an elliptical, high resolution zone plate on the performance of an initially astigmatic soft x-ray scanning photoemission microscope. A zone plate with carefully calibrated eccentricity has been used to eliminate astigmatism arising from transport optics, and an improvement of about a factor of 3 in spatial resolution was achieved. The resolution is still dominated by the source size and chromatic aberrations rather than by diffraction and coma, and a further gain of about a factor of 2 in resolution is possible. Sub 100 nm photoemission microscopy with primary photoelectrons is now within reach.

  17. A LDA + U study of the photoemission spectra of the double hexagonal close packed phases of Am and Cm

    NASA Astrophysics Data System (ADS)

    Islam, M. Fhokrul; Ray, Asok K.

    2010-05-01

    We have investigated the photoemission spectra and other electronic structure properties such as equilibrium volume and bulk modulus of double hexagonal close packed (dhcp) americium and the density of states (DOS) and magnetic properties of dhcp curium using the LDA+U method. Our calculations show that spin polarized americium is energetically favorable but spin degenerate configuration produces experimental quantities significantly better than those calculated using the spin polarized configuration. The density of states calculated using LDA+U with both non-magnetic and spin polarized configurations is compared and the non-magnetic DOS is shown to be in good agreement with experimental photoemission spectra when U=4.5 eV. In spin polarized case, the onsite interaction parameter, U, is observed to increase the splitting between occupied and unoccupied bands by enhancing the Stoner parameter. The DOS of both non-magnetic americium and anti-ferromagnetic curium are shown to be in good agreement with that calculated using dynamical mean field theory for these two heavy actinides. For curium exchange interaction appears to play a dominant role in magnetic stability.

  18. Three-dimensional superconducting gap in FeSe from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kushnirenko, Y. S.; Fedorov, A. V.; Haubold, E.; Thirupathaiah, S.; Wolf, T.; Aswartham, S.; Morozov, I.; Kim, T. K.; Büchner, B.; Borisenko, S. V.

    2018-05-01

    We present a systematic angle-resolved photoemission spectroscopy study of the superconducting gap in FeSe. The gap function is determined in a full Brillouin zone including all Fermi surfaces and kz dependence. We find significant anisotropy of the superconducting gap in all momentum directions. While the in-plane anisotropy can be explained by both nematicity-induced pairing anisotropy and orbital-selective pairing, the kz anisotropy requires an additional refinement of the theoretical approaches.

  19. Energy- and k -resolved mapping of the magnetic circular dichroism in threshold photoemission from Co films on Pt(111)

    NASA Astrophysics Data System (ADS)

    Staab, Maximilian; Kutnyakhov, Dmytro; Wallauer, Robert; Chernov, Sergey; Medjanik, Katerina; Elmers, Hans Joachim; Kläui, Mathias; Schönhense, Gerd

    2017-04-01

    The magnetic circular dichroism in threshold photoemission (TPMCD) for perpendicularly magnetized fcc Co films on Pt(111) has been revisited. A complete mapping of the spectral function I (EB,kx,ky) (binding energy EB, momentum parallel to surface kx, ky) and the corresponding TPMCD asymmetry distribution AMCD(EB,kx,ky) has been performed for one-photon and two-photon photoemission using time-of-flight momentum microscopy. The experimental results allow distinguishing direct from indirect transitions. The measurements reveal clear band features of direct transitions from bulk bands that show a nontrivial asymmetry pattern. A significant homogeneous background with substantial asymmetry stemming from indirect transitions superposes direct transitions. Two-photon photoemission reveals enhanced emission intensity via an image potential state, acting as intermediate state. The image potential state enhances not only intensity but also asymmetry. The present results demonstrate that two-photon photoemission is a powerful method for mapping the spin-polarized unoccupied band structures and points out pathways for applying TPMCD as a contrast mechanism for various classes of magnetic materials.

  20. Thin noble metal films on Si (111) investigated by optical second-harmonic generation and photoemission

    NASA Astrophysics Data System (ADS)

    Pedersen, K.; Kristensen, T. B.; Pedersen, T. G.; Morgen, P.; Li, Z.; Hoffmann, S. V.

    2002-05-01

    Thin noble metal films (Ag, Au and Cu) on Si (111) have been investigated by optical second-harmonic generation (SHG) in combination with synchrotron radiation photoemission spectroscopy. The valence band spectra of Ag films show a quantization of the sp-band in the 4-eV energy range from the Fermi level down to the onset of the d-bands. For Cu and Au the corresponding energy range is much narrower and quantization effects are less visible. Quantization effects in SHG are observed as oscillations in the signal as a function of film thickness. The oscillations are strongest for Ag and less pronounced for Cu, in agreement with valence band photoemission spectra. In the case of Au, a reacted layer floating on top of the Au film masks the observation of quantum well levels by photoemission. However, SHG shows a well-developed quantization of levels in the Au film below the reacted layer. For Ag films, the relation between film thickness and photon energy of the SHG resonances indicates different types of resonances, some of which involve both quantum well and substrate states.

  1. Photoemission study of the electronic structure and charge density waves of Na₂Ti₂Sb₂O

    DOE PAGES

    Tan, S. Y.; Jiang, J.; Ye, Z. R.; ...

    2015-04-30

    The electronic structure of Na₂Ti₂Sb₂O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na₂Ti₂Sb₂O in the non-magnetic state, which indicates that there is no magnetic order in Na₂Ti₂Sb₂O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na₂Ti₂Sb₂O. Photon energy dependent ARPES results suggest that the electronic structure of Na₂Ti₂Sb₂O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV atmore » 7 K, indicating that Na₂Ti₂Sb₂O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime. (author)« less

  2. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    PubMed

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  3. Attosecond time-resolved streaked photoemission from Mg-covered W(110) surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Thumm, Uwe

    2015-05-01

    We formulate a quantum-mechanical model for infrared-streaked photoelectron emission by an ultrashort extreme ultraviolet pulse from adsorbate-covered metal surfaces. Applying this numerical model to ultrathin Mg adsorbates on W(110) substrates, we analyze streaked photoelectron spectra and attosecond streaking time delays for photoemission from the Mg/W(110) conduction band and Mg(2p) and W(4f) core levels. Based on this analysis, we propose the use of attosecond streaking spectroscopy on adsorbate-covered surfaces with variable adsorbate thickness as a method for investigating (a) electron transport in condensed-matter systems and (b) metal-adsorbate-interface properties at subatomic length and time scales. Our calculated streaked photoemission spectra and time delays agree with recently obtained experimental data. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Grant No. DE-FG02-86ER13491 and NSF Grant PHY-1068752.

  4. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  5. Thickness-dependent change in the valence band offset of the SiO{sub 2}/Si interface studied using synchrotron-radiation photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoda, S., E-mail: toyoda.satoshi.4w@kyoto-u.ac.jp; Oshima, M.

    2016-08-28

    We have studied the thickness-dependent change in the valence band offset (VBO) of the SiO{sub 2}/Si(001) interface using synchrotron-radiation photoemission spectroscopy with soft and hard X-rays. The SiO{sub 2}-film thickness (T{sub ox}) and X-ray irradiation time (t{sub irrad}) were systematically parameterized to distinguish between the “intrinsic” T{sub ox} effects in the VBOs and the “extrinsic” differential charging phenomena in SiO{sub 2} films on Si substrates. The results revealed that at a spontaneous time (t{sub irrad} ≈ 5 s) that suppresses the differential charging phenomena as much as possible, the experimental VBO abruptly increases as a function of T{sub ox} and graduallymore » saturates to the traditional VBO value range determined by the internal photoemission and photoconduction measurements. This effect is not attributed to the differential charging phenomena, but rather it is attributed to the “intrinsic” T{sub ox}-dependent change in the VBO. The two possible physical behaviors include electronic polarization and image charge. We have derived the electronic polarization contribution from experimental data by carefully describing the effects of the long-range image charges based on the classical dielectric-screening model.« less

  6. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  7. Resonant photoemission studies of the heavy-fermion superconductors CeCu/sub 2/Si/sub 2/, UBe/sub 13/, and UPt/sub 3/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, R.D.; denBoer, M.L.; Raaen, S.

    1984-08-01

    Valence-band photoemission studies, using synchrotron light and employing Fano resonances to enhance f-derived features, were made of the three known heavy-fermion superconductors: CeCu/sub 2/Si/sub 2/, UBe/sub 13/, and UPt/sub 3/. The results for CeCu/sub 2/Si/sub 2/ and UBe/sub 13/ contrast markedly with those reported earlier, reflecting closer control of surface contamination in the present study. We infer from the present study and other considerations that in all three systems there is sig- nificant hybridization between the f electrons and the nearest-neighbor ligands, which may be essential to the phenomenon of heavy-fermion superconductivity.

  8. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    PubMed

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  9. Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, H.; Yin, Z. P.; Wu, S. F.

    In the iron-based superconductors (FeSCs), orbital differentiation is an important phenomenon, whereby correlations stronger on the d xy orbital than on the d xz/d yz orbital yield quasi-particles with d xy orbital character having larger mass renormalization and abnormal temperature evolution. However, the physical origin of this orbital di erentiation is debated between the Hund's coupling induced unbinding of spin and orbital degrees of freedom and the Hubbard interaction instigated orbital selective Mott transition. Here we use angle-resolved photoemission spectroscopy to identify an orbital-dependent correlation-induced quasi-particle (QP) anomaly in LiFeAs. Lastly, the excellent agreement between our photoemission measurements and first-principlesmore » many-body theory calculations shows that the orbital-differentiated QP lifetime anomalies in LiFeAs are controlled by the Hund's coupling.« less

  10. Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs

    DOE PAGES

    Miao, H.; Yin, Z. P.; Wu, S. F.; ...

    2016-11-14

    In the iron-based superconductors (FeSCs), orbital differentiation is an important phenomenon, whereby correlations stronger on the d xy orbital than on the d xz/d yz orbital yield quasi-particles with d xy orbital character having larger mass renormalization and abnormal temperature evolution. However, the physical origin of this orbital di erentiation is debated between the Hund's coupling induced unbinding of spin and orbital degrees of freedom and the Hubbard interaction instigated orbital selective Mott transition. Here we use angle-resolved photoemission spectroscopy to identify an orbital-dependent correlation-induced quasi-particle (QP) anomaly in LiFeAs. Lastly, the excellent agreement between our photoemission measurements and first-principlesmore » many-body theory calculations shows that the orbital-differentiated QP lifetime anomalies in LiFeAs are controlled by the Hund's coupling.« less

  11. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    NASA Astrophysics Data System (ADS)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.

    2018-03-01

    We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  12. Electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun

    The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. Inmore » addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).« less

  13. Visualizing electron dynamics in organic materials: Charge transport through molecules and angular resolved photoemission

    NASA Astrophysics Data System (ADS)

    Kümmel, Stephan

    Being able to visualize the dynamics of electrons in organic materials is a fascinating perspective. Simulations based on time-dependent density functional theory allow to realize this hope, as they visualize the flow of charge through molecular structures in real-space and real-time. We here present results on two fundamental processes: Photoemission from organic semiconductor molecules and charge transport through molecular structures. In the first part we demonstrate that angular resolved photoemission intensities - from both theory and experiment - can often be interpreted as a visualization of molecular orbitals. However, counter-intuitive quantum-mechanical electron dynamics such as emission perpendicular to the direction of the electrical field can substantially alter the picture, adding surprising features to the molecular orbital interpretation. In a second study we calculate the flow of charge through conjugated molecules. The calculations show in real time how breaks in the conjugation can lead to a local buildup of charge and the formation of local electrical dipoles. These can interact with neighboring molecular chains. As a consequence, collections of ''molecular electrical wires'' can show distinctly different characteristics than ''classical electrical wires''. German Science Foundation GRK 1640.

  14. Rare-Earth Fourth-Order Multipole Moment in Cubic ErCo2 Probed by Linear Dichroism in Core-Level Photoemission

    NASA Astrophysics Data System (ADS)

    Abozeed, Amina A.; Kadono, Toshiharu; Sekiyama, Akira; Fujiwara, Hidenori; Higashiya, Atsushi; Yamasaki, Atsushi; Kanai, Yuina; Yamagami, Kohei; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Andreev, Alexander V.; Wada, Hirofumi; Imada, Shin

    2018-03-01

    We developed a method to experimentally quantify the fourth-order multipole moment of the rare-earth 4f orbital. Linear dichroism (LD) in the Er 3d5/2 core-level photoemission spectra of cubic ErCo2 was measured using bulk-sensitive hard X-ray photoemission spectroscopy. Theoretical calculation reproduced the observed LD, and the result showed that the observed result does not contradict the suggested Γ 83 ground state. Theoretical calculation further showed a linear relationship between the LD size and the size of the fourth-order multipole moment of the Er3+ ion, which is proportional to the expectation value < O40 + 5O44> , where Onm are the Stevens operators. These analyses indicate that the LD in 3d photoemission spectra can be used to quantify the average fourth-order multipole moment of rare-earth atoms in a cubic crystal electric field.

  15. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less

  16. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    DOE PAGES

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; ...

    2017-09-11

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing techniquemore » commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (~11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Here, tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.« less

  17. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain <10 MV/m at the desired operating voltage aiming at little or no field emission once conditioned. Typical electrode surface preparation involves diamond-paste polishing by skilled personnel, requiring several weeks of effort per electrode. In this work, we describe a centrifugal barrel-polishing technique commonly used for polishing the interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  18. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Alo, E-mail: alo_dutta@yahoo.com; Saha, Sujoy; Kumari, Premlata

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strengthmore » between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.« less

  19. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.

    In this work, we have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. Lastly, the large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  20. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    DOE PAGES

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; ...

    2018-03-23

    In this work, we have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. Lastly, the large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  1. Nonlocal screening effects on core-level photoemission spectra investigated by large-cluster models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, K.; Kotani, A.

    1995-08-15

    The copper 2{ital p} core-level x-ray photoemission spectrum in CuO{sub 2} plane systems is calculated by means of large-cluster models to investigate in detail the nonlocal screening effects, which were pointed out by van Veenendaal {ital et} {ital al}. [Phys. Rev. B 47, 11 462 (1993)]. Calculating the hole distributions for the initial and final states of photoemission, we show that the atomic coordination in a cluster strongly affects accessible final states. Accordingly, we point out that the interpretation for Cu{sub 3}O{sub 10} given by van Veenendaal {ital et} {ital al}. is not always general. Moreover, it is shown thatmore » the spectrum can be remarkably affected by whether or not the O 2{ital p}{sub {pi}} orbits are taken into account in the calculations. We also introduce a Hartree-Fock approximation in order to treat much larger-cluster models.« less

  2. Photoemission properties of Eu-doped Zr1- x Ce x O2 (x = 0-0.2) nanoparticles prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Ozawa, Masakuni; Matsumoto, Masashi; Hattori, Masatomo

    2018-01-01

    Photoluminescent Eu-doped ZrO2 and Zr1- x Ce x O2 (x = 0-0.2) nanoparticles were prepared by a hydrothermal method. X-ray diffraction and Raman spectra indicated the formation of tetragonal crystals of ZrO2 and its solid solutions with a grain size of less than 10 nm diameter after heat treatment at 400 °C. The photoemission spectra of Zr1- x Ce x O2:Eu3+ nanocrystalline samples showed the typical emission of Eu3+ ions assigned to 5D0 → 7F1 (590 nm) and 5D0 → 7F2 (610 nm) transitions and additional emissions of 5D0 → 7F J with higher J of 3-5. Increasing the CeO2 concentration reduced the emission intensity, and the emission peak shift was affected by a local lattice distortion, i.e., CeO2 concentration. The present study provided fundamental knowledge that is expected to enable the fabrication of ZrO2-based nanocrystal phosphor materials and a measure for controlling the emission peak shift and intensity in oxide fluorite-based phosphor.

  3. Radiation transport in kinetic simulations and the influence of photoemission on electron current in self-sustaining discharges

    DOE PAGES

    Fierro, Andrew S.; Moore, Christopher Hudson; Scheiner, Brett; ...

    2017-01-12

    A kinetic description for electronic excitation of helium for principal quantum number nmore » $$\\leqslant $$ 4 has been included into a particle-in-cell (PIC) simulation utilizing direct simulation Monte Carlo (DSMC) for electron-neutral interactions. The excited electronic levels radiate state-dependent photons with wavelengths from the extreme ultraviolet (EUV) to visible regimes. Photon wavelengths are chosen according to a Voigt distribution accounting for the natural, pressure, and Doppler broadened linewidths. This method allows for reconstruction of the emission spectrum for a non-thermalized electron energy distribution function (EEDF) and investigation of high energy photon effects on surfaces, specifically photoemission. A parallel plate discharge with a fixed field (i.e. space charge neglected) is used to investigate the effects of including photoemission for a Townsend discharge. When operating at a voltage near the self-sustaining discharge threshold, it is observed that the electron current into the anode is higher when including photoemission from the cathode than without even when accounting for self-absorption from ground state atoms. As a result, the photocurrent has been observed to account for as much as 20% of the total current from the cathode under steady-state conditions.« less

  4. Three-dimensional characterization of extreme ultraviolet mask blank defects by interference contrast photoemission electron microscopy.

    PubMed

    Lin, Jingquan; Weber, Nils; Escher, Matthias; Maul, Jochen; Han, Hak-Seung; Merkel, Michael; Wurm, Stefan; Schönhense, Gerd; Kleineberg, Ulf

    2008-09-29

    A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary to obtain best visibility of the defect on mask blank. A comparative experiment reveals superiority of the interference contrast photoemission electron microscope (Extreme UV illumination) over a topographic contrast one (UV illumination with Hg discharge lamp) in detecting extreme ultraviolet mask blank phase defects. A depth-resolved detection of a mask blank defect, either by measuring anti-node peak shift in the EUV-PEEM image under varying inspection wavelength condition or by counting interference fringes with a fixed illumination wavelength, is discussed.

  5. Vacuum scanning capillary photoemission microscopy.

    PubMed

    Aseyev, S A; Cherkun, A P; Mironov, B N; Petrunin, V V; Chekalin, S V

    2017-08-01

    We demonstrate the use of a conical capillary in a scanning probe microscopy for surface analysis. The probe can measure photoemission from a substrate by transmitting photoelectrons along the capillary as a function of probe position. The technique is demonstrated on a model substrate consisting of a gold reflecting layer on a compact disc which has been illuminated by an unfocused laser beam with a wavelength 400nm, from a femtosecond laser with a beam size of 4mm. A quartz capillary with a 2-µm aperture has been used in the experiments. The period of gold microstructure, shown to be 1.6µ, was measured by the conical probe operating in shear force mode. In shear force regime, the dielectric capillary has been used as a "classical" SPM tip, which provided images reflecting the surface topology. In a photoelectron regime photoelectrons passed through hollow tip and entered a detector. The spatial distribution of the recorded photoelectrons consisted of periodic mountain-valley strips, resembling the surface profile of the sample. Submicron spatial resolution has been achieved. This approach paves the way to study pulsed photodesorption of large organic molecular ions with high spatial and element resolution using the combination of a hollow-tip scanner with time-of-flight technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators

    NASA Astrophysics Data System (ADS)

    Plumb, Nicholas C.; Radović, Milan

    2017-11-01

    Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.

  7. X-ray photoemission analysis of clean and carbon monoxide-chemisorbed platinum(111) stepped surfaces using a curved crystal

    DOE PAGES

    Walter, Andrew L.; Schiller, Frederik; Corso, Martina; ...

    2015-11-12

    Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Throughmore » such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. Lastly, these results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions.« less

  8. X-ray photoemission analysis of clean and carbon monoxide-chemisorbed platinum(111) stepped surfaces using a curved crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Andrew L.; Schiller, Frederik; Corso, Martina

    Surface chemistry and catalysis studies could significantly gain from the systematic variation of surface active sites, tested under the very same conditions. Curved crystals are excellent platforms to perform such systematics, which may in turn allow to better resolve fundamental properties and reveal new phenomena. This is demonstrated here for the carbon monoxide/platinum system. We curve a platinum crystal around the high-symmetry (111) direction and carry out photoemission scans on top. This renders the spatial core-level imaging of carbon monoxide adsorbed on a 'tunable' vicinal surface, allowing a straightforward visualization of the rich chemisorption phenomenology at steps and terraces. Throughmore » such photoemission images we probe a characteristic elastic strain variation at stepped surfaces, and unveil subtle stress-release effects on clean and covered vicinal surfaces. Lastly, these results offer the prospect of applying the curved surface approach to rationally investigate the chemical activity of surfaces under real pressure conditions.« less

  9. The development of photoemission spectroscopy and its application to the study of semiconductor interfaces Observations on the interplay between basic and applied research (Welch Memorial Lecture)

    NASA Technical Reports Server (NTRS)

    Spicer, W. E.

    1985-01-01

    A sketch is given of the development of photoemission electron spectroscopy (PES) with emphasis on the author's own experience. Emphasis is placed: (1) on the period between 1958-1970; (2) on the various developments which were required for PES to emerge; and (3) on the strong interactions between applied/fundamental and knowledge/empirically based research. A more detailed discussion is given of the recent (1975-present) application of PES to study the interfaces of III-V semiconductors.

  10. Short-period oscillations in photoemission from thin films of Cr(100)

    NASA Astrophysics Data System (ADS)

    Vyalikh, Denis V.; Zahn, Peter; Richter, Manuel; Dedkov, Yu. S.; Molodtsov, S. L.

    2005-07-01

    Angle-resolved photoemission (PE) study of thin films of Cr grown on Fe(100) reveals thickness-dependent short-period oscillations of the PE intensity close to the Fermi energy at k‖˜0 . The oscillations are assigned to quantum-well states (QWS) caused by the nesting between the Fermi-surface sheets around the Γ and the X points in the Brillouin zone of antiferromagnetic Cr. The experimental data are confirmed by density-functional calculations applying a screened Korringa-Kohn-Rostoker Green’s function method. The period of the experimentally observed QWS oscillations amounts to about 2.6 monolayers and is larger than the fundamental 2-monolayer period of antiferromagnetic coupling in Cr.

  11. Effects of spin excitons on the surface states of SmB 6 : A photoemission study

    DOE PAGES

    Arab, Arian; Gray, A. X.; Nemšák, S.; ...

    2016-12-12

    We present the results of a high-resolution valence-band photoemission spectroscopic study of SmB 6 which shows evidence for a V-shaped density of states of surface origin within the bulk gap. The spectroscopy data are interpreted in terms of the existence of heavy 4 f surface states, which may be useful in resolving the controversy concerning the disparate surface Fermi-surface velocities observed in experiments. Most importantly, we find that the temperature dependence of the valence-band spectrum indicates that a small feature appears at a binding energy of about - 9 meV at low temperatures. We also attribute this feature tomore » a resonance caused by the spin-exciton scattering in SmB 6 which destroys the protection of surface states due to time-reversal invariance and spin-momentum locking. Thus, the existence of a low-energy spin exciton may be responsible for the scattering, which suppresses the formation of coherent surface quasiparticles and the appearance of the saturation of the resistivity to temperatures much lower than the coherence temperature associated with the opening of the bulk gap.« less

  12. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  13. Metal/silicon Interfaces and Their Oxidation Behavior - Photoemission Spectroscopy Analysis.

    NASA Astrophysics Data System (ADS)

    Yeh, Jyh-Jye

    Synchrotron radiation photoemission spectroscopy was used to study Ni/Si and Au/Si interface properties on the atomic scale at room temperature, after high temperature annealing and after oxygen exposures. Room temperature studies of metal/Si interfaces provide background for an understanding of the interface structure after elevated temperature annealing. Oxidation studies of Si surfaces covered with metal overlayers yield insight about the effect of metal atoms in the Si oxidation mechanisms and are useful in the identification of subtle differences in bonding relations between atoms at the metal/Si interfaces. Core level and valence band spectra with variable surface sensitivities were used to study the interactions between metal, Si, and oxygen for metal coverages and oxide thickness in the monolayer region. Interface morphology at the initial stage of metal/Si interface formation and after oxidation was modeled on the basis of the evolutions of metal and Si signals at different probing depths in the photoemission experiment. Both Ni/Si and Au/Si interfaces formed at room temperature have a diffusive region at the interface. This is composed of a layer of metal-Si alloy, formed by Si outdiffusion into the metal overlayer, above a layer of interstitial metal atoms in the Si substrate. Different atomic structures of these two regions at Ni/Si interface can account for the two different growth orientations of epitaxial Ni disilicides on the Si(111) surface after thermal annealing. Annealing the Au/Si interface at high temperature depletes all the Au atoms except for one monolayer of Au on the Si(111) surface. These phenomena are attributed to differences in the metal-Si chemical bonding relations associated with specific atomic structures. After oxygen exposures, both the Ni disilicide surface and Au covered Si surfaces (with different coverages and surface orderings) show silicon in higher oxidation states, in comparison to oxidized silicon on a clean surface

  14. Photoemission Studies of Kondo Lattice Compounds YbNi3(Ga1-xAlx)9

    NASA Astrophysics Data System (ADS)

    Utsumi, Yuki; Sato, Hitoshi; Nagata, Heisuke; Kodama, Junichi; Ohara, Shigeo; Yamashita, Tetsuro; Mimura, Kojiro; Motonami, Satoru; Arita, Masashi; Ueda, Shigenori; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki

    We have investigated the electronic structure of YbNi3 (Ga1-xAlx)9 (x = 0, 0.05, 0.10, 0.15) by means of hard x-ray (hν ˜ 6 keV) and low energy (hν ˜ 7 eV) photoemission spectroscopies (HAXPES and LEPES). Both Yb2+ and Yb3+ components are observed in the Yb 3d HAXPES spectra, which is an evidence of the valence fluctuation in YbNi3(Ga1-xAlx)9. A substitution of an Al ion for a Ga ion in YbNi3Ga9 changes the Yb ion into a trivalent state. The LEPES spectra of YbNi3Ga9 clearly exhibit the Kondo peak near the Fermi level (EF) and the Kondo temperature is estimated to be TK ˜ 550 K. With the Al substitution, the Kondo peak is shifted toward EF, indicating the decrease of TK

  15. Valence-band structure of organic radical p-CF3PNN investigated by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Anzai, Hiroaki; Takakura, Ryosuke; Ono, Yusuke; Ishihara, Suzuna; Sato, Hitoshi; Namatame, Hirofumi; Taniguchi, Masaki; Matsui, Toshiyuki; Noguchi, Satoru; Hosokoshi, Yuko

    2018-05-01

    We study the electronic structure of p-trifluoromethylphenyl nitronyl nitroxide (p-CF3PNN), which forms a one-dimensional alternating antiferromagnetic chain of molecules, using angle-resolved photoemission spectroscopy. A singly occupied molecular orbital (SOMO) is observed clearly at ∼ 2 eV in the valence-band spectra. The small band gap and the overlap between the SOMO orbitals in the NO groups are associated with the antiferromagnetic interaction between neighboring spins.

  16. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschini, F.; Hedayat, H.; Dallera, C.

    2014-12-15

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

  17. Delayed photo-emission model for beam optics codes

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...

    2016-11-22

    Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less

  18. Angle resolved photoemission study of Fermi surfaces and single-particle excitations of quasi-low dimensional materials

    NASA Astrophysics Data System (ADS)

    Gweon, Gey-Hong

    Using angle resolved photoemission spectroscopy (ARPES) as the main experimental tool and the single particle Green's function as the main theoretical tool, materials of various degrees of low dimensionality and different ground states are studied. The underlying theme of this thesis is that of one dimensional physics, which includes charge density waves (CDW's) and the Luttinger liquid (LL). The LL is the prime example of a lattice non-Fermi liquid (non-FL) and CDW fluctuations also give non-FL behaviors. Non-FL physics is an emerging paradigm of condensed matter physics. It is thought by some researchers that one dimensional LL behavior is a key element in solving the high temperature superconductivity problem. TiTe2 is a quasi-2 dimensional (quasi-2D) Fermi liquid (FL) material very well suited for ARPES lineshape studies. I report ARPES spectra at 300 K which show an unusual behavior of a peak moving through the Fermi energy (EF). I also report a good fit of the ARPES spectra at 25 K obtained by using a causal Green's function proposed by K. Matho. SmTe3 is a quasi-2D CDW material. The near EF ARPES spectra and intensity map reveal rich details of an anisotropic gap and imperfectly nested Fermi surface (FS) for a high temperature CDW. A simple model of imperfect nesting can be constructed from these data and predicts a CDW wavevector in very good agreement with the value known from electron diffraction. NaMo6O17 and KMo 6O17 are also quasi-2D CDW materials. The "hidden nesting" or "hidden 1 dimensionality" picture for the CDW is confirmed very well by our direct image of the FS. K0.3MoO3, the so-called "blue bronze," is a quasi-1 dimensional (quasi-1D) CDW material. Even in its metallic phase above the CDW transition temperature, its photoemission spectra show an anomalously weak intensity at EF and no clear metallic Fermi edge. I compare predictions of an LL model and a CDW fluctuation model regarding these aspects, and find that the LL scenario explains them

  19. Plasmon satellites in valence-band photoemission spectroscopy. Ab initio study of the photon-energy dependence in semiconductors

    NASA Astrophysics Data System (ADS)

    Guzzo, M.; Kas, J. J.; Sottile, F.; Silly, M. G.; Sirotti, F.; Rehr, J. J.; Reining, L.

    2012-09-01

    We present experimental data and theoretical results for valence-band satellites in semiconductors, using the prototypical example of bulk silicon. In a previous publication we introduced a new approach that allows us to describe satellites in valence photoemission spectroscopy, in good agreement with experiment. Here we give more details; we show how the the spectra change with photon energy, and how the theory explains this behaviour. We also describe how we include several effects which are important to obtain a correct comparison between theory and experiment, such as secondary electrons and photon cross sections. In particular the inclusion of extrinsic losses and their dependence on the photon energy are key to the description of the energy dependence of spectra.

  20. Depth-resolved electronic structure of spintronic nanostructures and complex materials with soft and hard x-ray photoemission

    NASA Astrophysics Data System (ADS)

    Gray, Alexander

    In this dissertation we describe several new directions in the field of x-ray photoelectron spectroscopy, with a particular focus on the enhancement and control of the depth sensitivity and selectivity of the measurement. Enhancement of the depth sensitivity is achieved by going to higher photon energies with hard x-ray excitation and taking advantage of the resulting larger electron inelastic mean-free paths. This novel approach provides a more accurate picture of bulk electronic structure, when compared to the traditional soft x-ray photoelectron spectroscopy (XPS) which, for some systems, may be too strongly influenced by surface effects. We present three case-studies wherein such hard x-ray photoelectron spectroscopy (HAXPES) in the multi-keV regime is used to probe the bulk properties of complex thin-film materials, which would be otherwise impossible to investigate using conventional soft x-ray XPS. Namely, (1) we directly observe the opening of a semiconducting gap in epitaxial Cr0.80Al0.20 alloy thin films and confirm this with theory, (2) we study the electronic and structural properties of near-Heusler FexSi1-x alloy thin films of various composition and degrees of crystallinity, and (3) we observe the Mott metal-to-insulator transition in the ultra-thin epitaxial LaNiO3 films via core-level and valence-band spectroscopies. By performing the experiments at the photon energy of 5.95 keV, the bulk-sensitivity of the measurements, characterized by the inelastic mean-free path of the photoemitted electrons, is enhanced by a factor of 4--7 compared to the conventional soft x-ray photoelectron spectroscopy. The experimental results are compared to calculations performed using various first-principle theoretical approaches, such as the density-functional theory and the one-step theory of photoemission. Furthermore, we present the first results of hard x-ray angle-resolved photoemission measurements (HARPES), at excitation energies of 3.24 and 5.95 keV. In a

  1. Spin-Resolved Circularly Polarised Resonant Photoemission: Cu as a Model System

    NASA Astrophysics Data System (ADS)

    Brookes, N. B.

    A brief introduction to the technique of spin resolved resonant photoemission using circularly polarised soft x-rays is given. The method is illustrated by considering the simple case of Cu2+. Starting from CuO we show how the same ideas can be applied to more complex and interesting cases, such as the model compound Sr2CuO2Cl2 and an optimally doped high temperature superconductor, Bi2Sr2CaCu2O8+δ.

  2. Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushida, Soh; Yamamoto, Yohei; Braam, Daniel

    2015-12-31

    Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMOPPV) self-assembles to form well-defined spheres with several micrometers in diameter upon addition of a methanol vapor into a chloroform solution of MDMOPPV. The single sphere of MDMOPPV with 5.7 µm diameter exhibits whispering gallery mode (WGM) photoemission upon excitation with focused laser beam. The periodic emission lines are characterized by transverse electric and magnetic WGMs, and Q-factor reaches ∼345 at the highest.

  3. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  4. Photoemission study of the electronic structure and charge density waves of Na2Ti2Sb2O.

    PubMed

    Tan, S Y; Jiang, J; Ye, Z R; Niu, X H; Song, Y; Zhang, C L; Dai, P C; Xie, B P; Lai, X C; Feng, D L

    2015-04-30

    The electronic structure of Na2Ti2Sb2O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na2Ti2Sb2O in the non-magnetic state, which indicates that there is no magnetic order in Na2Ti2Sb2O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na2Ti2Sb2O. Photon energy dependent ARPES results suggest that the electronic structure of Na2Ti2Sb2O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV at 7 K, indicating that Na2Ti2Sb2O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime.

  5. Fingerprints of spin-orbital polarons and of their disorder in the photoemission spectra of doped Mott insulators with orbital degeneracy

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Oleś, Andrzej M.; Horsch, Peter

    2018-04-01

    We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission spectra of doped transition metal oxides in the Mott insulating regime by the example of the R1 -xCaxVO3 perovskites, where R = La, ⋯, Lu. A fundamental characteristic of these vanadium d2 compounds with partly filled t2 g valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of magnetic order in high-Tc cuprates at low defect concentration. We study the disordered electronic structure of such doped Mott-Hubbard insulators within the unrestricted Hartree-Fock approximation and, as a result, manage to explain the spectral features that occur in photoemission and inverse photoemission. In particular, (i) the atomic multiplet excitations in the inverse photoemission spectra and the various defect-related states and satellites are qualitatively well reproduced, (ii) a robust Mott gap survives up to large doping, and (iii) we show that the defect states inside the Mott gap develop a soft gap at the Fermi energy. The soft defect-states gap, which separates the highest occupied from the lowest unoccupied states, can be characterized by a shape and a scale parameter extracted from a Weibull statistical sampling of the density of states near the chemical potential. These parameters provide a criterion and a comprehensive schematization for the insulator-metal transition in disordered systems. Our results provide clear indications that doped holes are bound to charged defects and form small spin-orbital polarons whose internal kinetic energy is responsible for the opening of the soft defect-states gap. We show that this kinetic gap survives disorder fluctuations of defects and is amplified by the long-range electron-electron interactions, whereas we observe a Coulomb singularity in the atomic limit. The small size of spin-orbital polarons is inferred by an analysis of the inverse participation ratio and by

  6. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

  7. Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy.

    PubMed

    Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W

    2016-07-20

    The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.

  8. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yu; Vishik, Inna M.; Yi, Ming

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone ofmore » most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.« less

  9. Organic [6,6]-phenyl-C61-butyric-acid-methyl-ester field effect transistors: Analysis of the contact properties by combined photoemission spectroscopy and electrical measurements

    NASA Astrophysics Data System (ADS)

    Scheinert, S.; Grobosch, M.; Sprogies, J.; Hörselmann, I.; Knupfer, M.; Paasch, G.

    2013-05-01

    Carrier injection barriers determined by photoemission spectroscopy for organic/metal interfaces are widely accepted to determine the performance of organic field-effect transistors (OFET), which strongly depends on this interface at the source/drain contacts. This assumption is checked here in detail, and a more sophisticated connection is presented. According to the preparation process described in our recently published article [S. Scheinert, J. Appl. Phys. 111, 064502 (2012)], we prepared PCBM/Au and PCBM/Al samples to characterize the interface by photoemission and electrical measurements of PCBM based OFETs with bottom and top (TOC) contacts, respectively. The larger drain currents for TOC OFETs indicate the presence of Schottky contacts at source/drain for both metals. The hole injection barrier as determined by photoemission is 1.8 eV for both Al and Au. Therefore, the electron injection barriers are also the same. In contrast, the drain currents are orders of magnitude larger for the transistors with the Al contacts than for those with the Au contacts. We show that indeed the injection is determined by two other properties measured also by photoemission, the (reduced) work functions, and the interface dipoles, which have different sign for each contact material. In addition, we demonstrate by core-level and valence band photoemission that the deposition of gold as top contact onto PCBM results in the growth of small gold clusters. With increasing gold coverage, the clusters grow inside and begin to form a metallic, but not uniform, closed film onto PCBM.

  10. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    DOE PAGES

    Zhang, Z.; Li, R.; To, H.; ...

    2016-11-22

    Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  11. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Li, R.; To, H.; Andonian, G.; Pirez, E.; Meade, D.; Maxson, J.; Musumeci, P.

    2017-09-01

    Nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  12. Surface-plasmon enhanced photoemission of a silver nano-patterned photocathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Li, R.; To, H.

    Here, nano-patterned photocathodes (NPC) take advantage of plasmonic effects to resonantly increase absorption of light and localize electromagnetic field intensity on metal surfaces leading to surface-plasmon enhanced photoemission. In this paper, we report the status of NPC research at UCLA including in particular the optimization of the dimensions of a nanohole array on a silver wafer to enhance plasmonic response at 800 nm light, the development of a spectrally-resolved reflectivity measurement setup for quick nanopattern validation, and of a novel cathode plug to enable high power tests of NPCs on single crystal substrates in a high gradient radiofrequency gun.

  13. Photoemission spectra and band structures of simple metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shung, K.W.; Mahan, G.D.

    1988-08-15

    We present a detailed calculation of the angle-resolved photoemission spectra of Na. The calculation follows a theory by Mahan, which allows for the inclusion of various bulk and surface effects. We find it important to take into account various broadening effects in order to explain the anomalous structure at E/sub F/, which was found by Jensen and Plummer in the spectra of Na. The broadening effects also help to resolve the discrepancy of the conduction-band width. Efforts are made to compare our results with new measurements of Plummer and Lyo. We discuss the ambiguity concerning the sign of the crystalmore » potential and comment on charge-density waves in the systems. We have also generalized our discussions to other simple metals like K.« less

  14. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Breton, J.-C., E-mail: jean-christophe.lebreton@univ-rennes1.fr; Tricot, S.; Delhaye, G.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron–graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that themore » hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.« less

  15. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Le Breton, J.-C.; Tricot, S.; Delhaye, G.; Lépine, B.; Turban, P.; Schieffer, P.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron-graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that the hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.

  16. Unoccupied Surface State on Ag(110) as Revealed by Inverse Photoemission

    NASA Astrophysics Data System (ADS)

    Reihl, B.; Schlittler, R. R.; Neff, H.

    1984-05-01

    By use of the new technique of k-resolved inverse photoemission spectroscopy, an unoccupied s-like surface state on Ag(110) has been detected, which lies within the projected L2'-->L1 gap of the bulk. At the X¯ point of the surface Brillouin zone, the energy of the surface state is 1.65 eV above the Fermi level EF, and exhibits a band dispersion E(k∥) towards higher energies. The surface-state emission is immediately quenched when the surface is exposed to very small amounts of oxygen or hydrogen.

  17. Interband quasiparticle scattering in superconducting LiFeAs reconciles photoemission and tunneling measurements.

    PubMed

    Hess, Christian; Sykora, Steffen; Hänke, Torben; Schlegel, Ronny; Baumann, Danny; Zabolotnyy, Volodymyr B; Harnagea, Luminita; Wurmehl, Sabine; van den Brink, Jeroen; Büchner, Bernd

    2013-01-04

    Several angle-resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within holelike bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the holelike bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.

  18. Direct observation of pure pentavalent uranium in U2O5 thin films by high resolution photoemission spectroscopy.

    PubMed

    Gouder, T; Eloirdi, R; Caciuffo, R

    2018-05-29

    Thin films of the elusive intermediate uranium oxide U 2 O 5 have been prepared by exposing UO 3 precursor multilayers to atomic hydrogen. Electron photoemission spectra measured about the uranium 4f core-level doublet contain sharp satellites separated by 7.9(1) eV from the 4f main lines, whilst satellites characteristics of the U(IV) and U(VI) oxidation states, expected respectively at 6.9(1) and 9.7(1) eV from the main 4f lines, are absent. This shows that uranium ions in the films are in a pure pentavalent oxidation state, in contrast to previous investigations of binary oxides claiming that U(V) occurs only as a metastable intermediate state coexisting with U(IV) and U(VI) species. The ratio between the 5f valence band and 4f core-level uranium photoemission intensities decreases by about 50% from UO 2 to U 2 O 5 , which is consistent with the 5f  2 (UO 2 ) and 5f  1 (U 2 O 5 ) electronic configurations of the initial state. Our studies conclusively establish the stability of uranium pentoxide.

  19. Solar Cell Fabrication Studies Pertinent to Developing Countries.

    NASA Astrophysics Data System (ADS)

    Prah, Joseph Henry

    That there is a need in the world today, and in the Third World in particular, for developing renewable energy sources is a proposition without question. Toward that end, the harnessing of solar energy has attracted much attention recently. In this thesis, we have addressed the question of Photovoltaics among the many approaches to the problem as being of poignant relevance in the Third World. Based on our studies, which involved the physics of solar cells, various solar cell configurations, the materials for their fabrication and their fabrication sequences, we arrived at the conclusion that silicon homojunction solar cells are best suited to the present needs and environment of, and suitable for development in the Third World, though Cadmium Sulphide-Cuprous Sulphide solar cell could be considered as a viable future candidate. Attendant with the adoption of photovoltaics as electric energy supply, is the problem of technology transfer and development. Towards that goal, we carried out in the laboratory, the fabrication of solar cells using very simple fabrication sequences and materials to demonstrate that tolerable efficiencies are achievable by their use. The view is also presented that for a thriving and viable solar cell industry in the Third World, the sine qua non is an integrated national policies involving all facets of solar cell manufacture and application, namely, material processing and fabrication, basic research, and development and socio -economic acceptance of solar cell appliances. To demonstrate how basic research could benefit solar cell fabrication, we undertook a number of experiments, such as varying our fabrication sequences and materials, finding their radiation tolerance, and carrying out Deep Level Transient Spectroscopy (DLTS) studies, in an attempt to understand some of the fabrication and environmental factors which limit solar cell performance. We thus found that subjecting wafers to preheat treatments does not improve solar cell

  20. Detection of a Fermi-level crossing in Si(557)-Au with inverse photoemission

    NASA Astrophysics Data System (ADS)

    Lipton-Duffin, J. A.; MacLeod, J. M.; McLean, A. B.

    2006-06-01

    The unoccupied energy bands of the quasi-one-dimensional (1D) Si(557)-Au system have been studied with momentum-resolved inverse photoemission. A band is found that lies (0.4±0.4)eV above the Fermi level at the center of the surface Brillouin zone (Γ¯) . It disperses to higher binding energy, along the Γ Kmacr direction, and crosses the Fermi level at k‖=0.5±0.1Å-1 . The corresponding direction in real space is parallel to both the rows of silicon adatoms and the rows of embedded gold atoms that are distinctive features of this surface reconstruction. The location of the crossing is in good agreement with previously published photoemission data [Altmann , Phys. Rev. B 64, 035406 (2001); Ahn , Phys. Rev. Lett. 91, 196403 (2003)], where two closely spaced bands were found to disperse from the Kmacr zone boundary to lower binding energy and then cross the Fermi level. In addition to the band mentioned above, a band was found that has parabolic dispersion along Γ Kmacr , the direction that is parallel to the rows of embedded gold atoms. The band minimum for the parabolic band lies (0.8±0.4)eV below the vacuum level and it has an effective mass m*=(1.0±0.1)me , where me is the free electron mass. Perpendicular to the rows of gold atoms, as expected for a state with quasi-1D symmetry, it has flat dispersion. This band may be an image state resonance, overlapping the silicon conduction band continuum, and it is spatially localized to the edge of the silicon terraces.

  1. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    NASA Astrophysics Data System (ADS)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  2. Xenon-plasma-light low-energy ultrahigh-resolution photoemission study of Co(S1-xSex)2 (x=0.075)

    NASA Astrophysics Data System (ADS)

    Sato, Takafumi; Souma, Seigo; Sugawara, Katsuaki; Nakayama, Kosuke; Raj, Satyabrata; Hiraka, Haruhiro; Takahashi, Takashi

    2007-09-01

    We have performed low-energy ultrahigh-resolution photoemission spectroscopy on Co(S1-xSex)2 (x=0.075) to elucidate the bulk electronic states responsible for the ferromagnetic transition. By using a newly developed plasma-driven low-energy xenon (Xe) discharge lamp (hν=8.436eV) , we clearly observed a sharp quasiparticle peak at the Fermi level together with the remarkable temperature dependence of the electron density of states across the transition temperature. Comparison with the experimental result by the HeIα resonance line (hν=21.218eV) indicates that the sharp quasiparticle is of bulk origin and is produced by the Fermi-level crossing of the Co 3d eg↓ subband.

  3. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy

    PubMed Central

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-01-01

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature. PMID:25702631

  4. High-resolution angle-resolved photoemission study of electronic structure and charge-density wave formation in HoTe3

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan

    We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.

  5. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies.

    PubMed

    Mahatha, S K; Patel, K D; Menon, Krishnakumar S R

    2012-11-28

    Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).

  6. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, S.; Gammon, W.J.; Pappas, D.P.

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetrymore » has several features which are out of phase with the fine structure of the total yield.« less

  7. Surface intervalley scattering on GaAs(110): Direct observation with picosecond laser photoemission

    NASA Astrophysics Data System (ADS)

    Haight, R.; Silberman, J. A.

    1989-02-01

    Angle-resolved laser photoemission investigations of the laser excited GaAs(110) surface have revealed a previously unobserved valley of the C3 unoccupied surface band whose minimum is at X¯ in the surface Brillouin zone. Electron population in this valley increases only as a result of scattering from the directly photoexcited valley at Γ¯. With high momentum resolution, we have isolated the dynamic electron population changes at both Γ¯ and X¯ and deduced the scattering time between the two valleys.

  8. A Study on Ultraviolet Protection of 100% Cotton Knitted Fabric: Effect of Fabric Parameters

    PubMed Central

    Kan, C. W.

    2014-01-01

    The effect of fabric parameters such as weight, thickness, and stitch density on the ultraviolet (UV) protection of knitted fabrics was studied. Different knitting structures such as plain, pineapple, lacoste, and other combinations of different knitting stitches of knit, tuck, and miss as well as half milano, full milano, half cardigan, full cardigan, 1 × 1 rib, and interlock were prepared. Experimental results revealed that weight was the most important factor that affected UV protection while thickness and stitch density were not the leading factor in determining UV protection. PMID:24955409

  9. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaefer, Michael; Schlaf, Rudy

    2015-08-01

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru0) and its oxide (RuO2) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru0 and RuO2 films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO2 and 0.04 Å/cycle for Ru.0 An interface dipole of up to -0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO2/OH compound whose surface is saturated with hydroxyl groups.

  10. Investigation of the poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene]/indium tin oxide interface using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Lägel, B.; Beerbom, M. M.; Doran, B. V.; Lägel, M.; Cascio, A.; Schlaf, R.

    2005-07-01

    The interface between the luminescent polymer poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and sputter-cleaned indium tin oxide (ITO) was investigated using photoemission spectroscopy in combination with in situ thin film deposition. MEH-PPV was deposited in high vacuum directly from toluene solution on the ITO substrate using a home-built electrospray thin-film deposition system. The deposition was carried out in multiple steps without breaking the vacuum. In between deposition steps the sample was characterized with x-ray and ultraviolet photoemission spectroscopy. The evaluation of the spectra sequence allowed the determination of the orbital lineup (charge injection barriers) at the interface, as well as the MEH-PPV growth mode at the interface.

  11. An ultrafast angle-resolved photoemission apparatus for measuring complex materials

    NASA Astrophysics Data System (ADS)

    Smallwood, Christopher L.; Jozwiak, Christopher; Zhang, Wentao; Lanzara, Alessandra

    2012-12-01

    We present technical specifications for a high resolution time- and angle-resolved photoemission spectroscopy setup based on a hemispherical electron analyzer and cavity-dumped solid state Ti:sapphire laser used to generate pump and probe beams, respectively, at 1.48 and 5.93 eV. The pulse repetition rate can be tuned from 209 Hz to 54.3 MHz. Under typical operating settings the system has an overall energy resolution of 23 meV, an overall momentum resolution of 0.003 Å-1, and an overall time resolution of 310 fs. We illustrate the system capabilities with representative data on the cuprate superconductor Bi2Sr2CaCu2O8+δ. The descriptions and analyses presented here will inform new developments in ultrafast electron spectroscopy.

  12. Widespread spin polarization effects in photoemission from topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations ofmore » photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.« less

  13. Nano-interconnection for microelectronics and polymers with benzo-triazole

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Choi, Sang H.; Noh, Hyunpil; Kuk, Young

    2006-01-01

    Benzo-Triazole (BTA) is considered as an important bridging material that can connect an organic polymer to the metal electrode on silicon wafers as a part of the microelectronics fabrication technology. We report a detailed process of surface induced 3-D polymerization of BTA on the Cu electrode material which was measured with the Ultraviolet Photoemission Spectroscopy (UPS), X-ray Photoemission Spectroscopy (XPS), and Scanning Tunneling Microscope (STM). The electric utilization of shield and chain polymerization of BTA on Cu surface is contemplated in this study.

  14. Photoemission spectrum and effect of inhomogeneous pairing fluctuations in the BCS-BEC crossover regime of an ultracold Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Ohashi, Yoji; CREST

    2010-09-15

    We investigate the photoemission-type spectrum in a cold Fermi gas which was recently measured by the JILA group [Stewart et al., Nature (London) 454, 744 (2008)]. This quantity gives us very useful information about single-particle properties in the BCS-BEC crossover. In this paper, including pairing fluctuations within a T-matrix theory, as well as effects of a harmonic trap within the local density approximation, we show that spatially inhomogeneous pairing fluctuations due to the trap potential are an important key to understanding the observed spectrum. In the crossover region, while strong pairing fluctuations lead to the so-called pseudogap phenomenon in themore » trap center, such strong-coupling effects are found to be weak around the edge of the gas. Our results including this effect are shown to agree well with the recent photoemission data of the JILA group.« less

  15. Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum dot solids.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; Mitoraj, Dariusz; Eichberger, Rainer; Hannappel, Thomas; Vanmaekelbergh, Daniel

    2013-04-10

    Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface.

  16. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGES

    Dell'Angela, M.; Anniyev, T.; Beye, M.; ...

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  17. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    PubMed

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  18. Three-dimensional nature of the band structure of ZrTe 5 measured by high-momentum-resolution photoemission spectroscopy [3D nature ZrTe 5 band structure measured by high-momentum-resolution photoemission spectroscopy

    DOE PAGES

    Xiong, H.; Sobota, J. A.; Yang, S. -L.; ...

    2017-05-10

    Here, we have performed a systematic high-momentum-resolution photoemission study on ZrTe 5 using 6-eV photon energy. We have measured the band structure near the Γ point, and quantified the gap between the conduction and valence band as 18 ≤ Δ ≤ 29 meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the three-dimensional (3D) nature of the material's band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe 5 is not a 3D strong topologicalmore » insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe 5 being a 3D weak topological insulator.« less

  19. Three-dimensional nature of the band structure of ZrTe 5 measured by high-momentum-resolution photoemission spectroscopy [3D nature ZrTe 5 band structure measured by high-momentum-resolution photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, H.; Sobota, J. A.; Yang, S. -L.

    Here, we have performed a systematic high-momentum-resolution photoemission study on ZrTe 5 using 6-eV photon energy. We have measured the band structure near the Γ point, and quantified the gap between the conduction and valence band as 18 ≤ Δ ≤ 29 meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the three-dimensional (3D) nature of the material's band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe 5 is not a 3D strong topologicalmore » insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe 5 being a 3D weak topological insulator.« less

  20. Electronic structure of charge-density-wave state in quasi-2D KMo6O17 purple bronze characterized by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-01-01

    We report on an angle-resolved-photoemission spectroscopy (ARPES) investigation of layered quasi-two dimensional (2D) Molybdenum purple bronze KMo6O17 in order to study and characterizes the transition to a charge-density-wave (CDW) state. We have performed photoemission temperature dependent measurements cooling down from room temperature (RT) to 32 K, well below the Peierls transition for this material, with CDW transition temperature Tc =110 K. The spectra have been taken at a selected kF point of the Fermi surface (FS) that satisfies the nesting condition of the FS, looking for the characteristic pseudo-gap opening in this kind of materials. The pseudogap has been estimated and it result to be in agreement with our previous works. The shift to lower binding energy of crossing Fermi level ARPES feature have been also confirmed and studied as a function of temperature, showing a rough like BCS behaviour. Finally we have also focused on ARPES measurements along ΓM¯ high symmetry direction for both room and low temperature states finding some insight for ‘shadow’ or back folded bands indicating the new periodicity of real lattice after the CDW lattice distortion.

  1. Revisiting the origin of satellites in core-level photoemission of transparent conducting oxides: The case of n -doped SnO2

    NASA Astrophysics Data System (ADS)

    Borgatti, Francesco; Berger, J. A.; Céolin, Denis; Zhou, Jianqiang Sky; Kas, Joshua J.; Guzzo, Matteo; McConville, C. F.; Offi, Francesco; Panaccione, Giancarlo; Regoutz, Anna; Payne, David J.; Rueff, Jean-Pascal; Bierwagen, Oliver; White, Mark E.; Speck, James S.; Gatti, Matteo; Egdell, Russell G.

    2018-04-01

    The longstanding problem of interpretation of satellite structures in core-level photoemission spectra of metallic systems with a low density of conduction electrons is addressed using the specific example of Sb-doped SnO2. Comparison of ab initio many-body calculations with experimental hard x-ray photoemission spectra of the Sn 4 d states shows that strong satellites are produced by coupling of the Sn core hole to the plasma oscillations of the free electrons introduced by doping. Within the same theoretical framework, spectral changes of the valence band spectra are also related to dynamical screening effects. These results demonstrate that, for the interpretation of electron correlation features in the core-level photoelectron spectra of such narrow-band materials, going beyond the homogeneous electron gas electron-plasmon coupling model is essential.

  2. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha, E-mail: schaefer@ph4.physik.uni-goettingen.de

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.

  3. Shift in Chemical Potential of Superconducting Bi2212 Measured by Ultrafast Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Tristan; Smallwood, Chris; Zhang, Wentao; Eisaki, Hiroshi; Lee, Dung-Hai; Lanzara, Alessandra

    2015-03-01

    Time- and Angle-resolved photoemission spectroscopy (tr-ARPES) has been used to directly measure the dynamics of many different properties of high-temperature superconductors, including the quasiparticle relaxation, cooper pair recombination, and many-body interactions. There have also been several intriguing results on several materials showing how laser pulses can manipulate their chemical potential on ultrafast timescales, and it's been suggested that these effects could find applications in optoelectronic devices. Studies on GaAs have also found that laser pulses may induce a surface voltage effect. Here, we extend these studies for the first time to a Bi2212 sample in the superconducting state, and disentangle the shift in chemical potential from surface voltage effects. This work was supported by Berkeley Lab's program on Quantum Materials, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.

  4. A study of different fabrics to increase radar cross section of humans.

    PubMed

    Ödman, Torbjörn; Welinder, Jan; Andersson, Nils; Otterskog, Magnus; Lindén, Maria; Ödman, Natalia; Larsson, Christer

    2015-01-01

    This purpose of the study was to increase the visibility on radar for unprotected pedestrians with the aid of conducting fabric. The experiment comprised measurements of four types of fabric to determine the radio frequency properties, such as radar cross section (RCS) for the vehicle radar frequency 77 GHz and transmission (shielding) in the frequency range 3-18 GHz. Two different thicknesses of polypyrrole (PPy) nonvowen fabric were tested and one thickness for 30 % and 40 % stainless steel fabrics respectively. A jacket with the thinner nonvowen material and one with 40 % steel were tested and compared to an unmodified jacket in the RCS measurement. The measurement showed an increase in RCS of 4 dB for the jacket with the 40 % steel lining compared to the unmodified jacket. The transmission measurement was aimed at determining the fabric with the highest transmission of an incoming radio wave. The 30 % steel fabric and the two thicknesses of the nonvowen fabrics were tested. One practical application is for example the use of radar reflective material in search and rescue (SAR) clothes. The study showed that the 30 % steel fabric was the best candidate for further RCS measurements.

  5. New type of in-gap states at a spinel/perovskite interface: combined resonant soft x-ray photoemission spectroscopy and first-principles study.

    NASA Astrophysics Data System (ADS)

    Borisov, Vladislav; Schuetz, Philipp; Pfaff, Florian; Scheiderer, Philipp; Dudy, Lenart; Zapf, Michael; Gabel, Judith; Christensen, Dennis Valbjorn; Chen, Yunzhong; Pryds, Nini; Strocov, Vladimir; Rogalev, Victor; Schlueter, Christoph; Lee, Tien-Lin; Jeschke, Harald O.; Valenti, Roser; Sing, Michael; Claessen, Ralph

    Oxygen vacancies in oxide heterostructures create a plethora of electronic phenomena not observed in the stoichiometric systems. In this talk we will discuss the presence of a new type of in-gap states at the spinel/perovskite γ-Al2O3/SrTiO3 interface, as observed in soft x-ray resonant photoemission spectroscopy. Based on ab initio calculations and crystal-field analysis of different atomic environments, we identify the origin of this behavior and we argue on the possible origin of the extraordinarily high electron mobility measured in this heterostructure. This work was financially supported by the Deutsche Forschungsgemeinschaft SFB/TR 49 and SFB 1170.

  6. Effects of strain on the electronic structure, superconductivity, and nematicity in FeSe studied by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Phan, G. N.; Nakayama, K.; Sugawara, K.; Sato, T.; Urata, T.; Tanabe, Y.; Tanigaki, K.; Nabeshima, F.; Imai, Y.; Maeda, A.; Takahashi, T.

    2017-06-01

    One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (Tc). It was found in FeSe that the lattice strain leads to a drastic increase in Tc, accompanied by suppression of nematic order. By angle-resolved photoemission spectroscopy on tensile- or compressive-strained and strain-free FeSe, we experimentally show that the in-plane strain causes a marked change in the energy overlap (Δ Eh -e ) between the hole and electron pockets in the normal state. The change in Δ Eh -e modifies the Fermi-surface volume, leading to a change in Tc. Furthermore, the strength of nematicity is also found to be characterized by Δ Eh -e . These results suggest that the key to understanding the phase diagram is the fermiology and interactions linked to the semimetallic band overlap.

  7. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    NASA Astrophysics Data System (ADS)

    Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao

    2012-02-01

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  8. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU.

    PubMed

    Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao

    2012-02-01

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  9. High-order above-threshold photoemission from nanotips controlled with two-color laser fields

    NASA Astrophysics Data System (ADS)

    Seiffert, Lennart; Paschen, Timo; Hommelhoff, Peter; Fennel, Thomas

    2018-07-01

    We investigate the process of phase-controlled high-order above-threshold photoemission from metallic nanotips under bichromatic laser fields. Experimental photoelectron spectra resulting from two-color excitation with a moderately intense near-infrared fundamental field (1560 nm) and its weak second harmonic show a strong sensitivity on the relative phase and clear indications for a plateau-like structure that is attributed to elastic backscattering. To explore the relevant control mechanisms, characteristic features, and particular signatures from the near-field inhomogeneity, we performed systematic quantum simulations employing a one-dimensional nanotip model. Besides rich phase-dependent structures in the simulated above-threshold ionization photoelectron spectra we find ponderomotive shifts as well as substantial modifications of the rescattering cutoff as function of the decay length of the near-field. To explore the quantum or classical nature of the observed features and to discriminate the two-color effects stemming from electron propagation and from the ionization rate we compare the quantum results to classical trajectory simulations. We show that signatures from direct electrons as well as the modulations in the plateau region mainly stem from control of the ionization probability, while the modulation in the cutoff region can only be explained by the impact of the two-color field on the electron trajectory. Despite the complexity of the phase-dependent features that render two-color strong-field photoemission from nanotips intriguing for sub-cycle strong-field control, our findings support that the recollision features in the cutoff region provide a robust and reliable method to calibrate the relative two-color phase.

  10. High resolution photoemission investigation: The oxidation of W

    NASA Astrophysics Data System (ADS)

    Morar, J. F.; Himpsel, F. J.; Hughes, G. J.; Jordan, J. L.; McFeely, F. R.; Hollinge, G.

    High resolution photoemission measurements of surface oxide layers on tungsten has revealed a set of well resolved core level shifts characteristic of individual metal oxidation states. Measurement and analysis of this type of data can provide specific and quantitative chemical information about surface oxides. The formation of bonds between transition metals and strongly electronegative elements such as oxygen and fluorine results in charge transfer with the effect of shifting the metal core electron binding energies. The magnitude of such shifts depends primarily on two factors; the amount of charge transfer and the screening ability of the metals electrons. The size of core-level shifts tend to increase with additional charge transfer and be decreased by screening. In the case of tungsten the amount of screening should be a function of oxygen content since the oxygen ties up free electrons which are effective at screening. A continuous change in the tungsten core level shifts is observed with increasing oxygen content, i.e., as the screening changes from that characteristic of a metal screened to that characteristic of an insulator unscreened.

  11. Angle-resolved photoemission with circularly polarized light in the nodal mirror plane of underdoped Bi 2Sr 2CaCu 2O 8+ δ superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Junfeng; Mion, Thomas R.; Gao, Shang

    2016-10-31

    Unraveling the nature of pseudogap phase in high-temperature superconductors holds the key to understanding their superconducting mechanisms and potentially broadening their applications via enhancement of their superconducting transition temperatures. Angle-resolved photoemission spectroscopy (ARPES) experiments using circularly polarized light have been proposed to detect possible symmetry breaking state in the pseudogap phase of cuprates. Here, the presence (absence) of an electronic order which breaks mirror symmetry of the crystal would in principle induce a finite (zero) circular dichroism in photoemission. Different orders breaking reflection symmetries about different mirror planes can also be distinguished by the momentum dependence of the measured circularmore » dichroism.« less

  12. Study of microstructure and electroluminescence of zinc sulfide thin film

    NASA Astrophysics Data System (ADS)

    Zhao-hong, Liu; Yu-jiang, Wang; Mou-zhi, Chen; Zhen-xiang, Chen; Shu-nong, Sun; Mei-chun, Huang

    1998-03-01

    The electroluminscent zinc sulfide thin film doped with erbium, fabricated by thermal evaporation with two boats, are examined. The surface and internal electronic states of ZnS thin film are measured by means of x-ray diffraction and x-ray photoemission spectroscopy. The information on the relations between electroluminescent characteristics and internal electronic states of the film is obtained. And the effects of the microstructure of thin film doped with rare earth erbium on electroluminescence are discussed as well.

  13. Photoemission experiments of a large area scandate dispenser cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Huang; Liu, Xing-guang; Chen, Yi; Chen, De-biao; Jiang, Xiao-guo; Yang, An-min; Xia, Lian-sheng; Zhang, Kai-zhi; Shi, Jin-shui; Zhang, Lin-wen

    2010-09-01

    A 100-mm-diameter scandate dispenser cathode was tested as a photocathode with a 10 ns Nd:YAG laser (266 nm) on an injector test stand for linear induction accelerators. This thermionic dispenser cathode worked at temperatures ranging from room temperature to 930 °C (below or near the thermionic emission threshold) while the vacuum was better than 4×10 -7 Torr. The laser pulse was synchronized with a 120 ns diode voltage pulse stably and they were in single pulse mode. Emission currents were measured by a Faraday cup. The maximum peak current collected at the anode was about 100 A. The maximum quantum efficiency measured at low laser power was 2.4×10 -4. Poisoning effect due to residual gas was obvious and uninterrupted heating was needed to keep cathode's emission capability. The cathode was exposed to air one time between experiments and recovered after being reconditioned. Photoemission uniformity of the cathode was also explored by changing the laser spot's position.

  14. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    NASA Astrophysics Data System (ADS)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  15. Tuning across the BCS-BEC crossover in superconducting Fe1+ySexTe1-x : An angle-resolved photoemission study

    NASA Astrophysics Data System (ADS)

    Rinott, Shahar; Ribak, Amit; Chashka, Khanan; Randeria, Mohit; Kanigel, Amit

    The crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation (BEC) was never realized in quantum materials. It is difficult to realize because, unlike in ultra cold atoms, one cannot tune the pairing interaction. We realize the BCS-BEC crossover in a nearly compensated semimetal Fe1+ySexTe1-x by tuning the Fermi energy ɛF via chemical doping, which permits us to systematically change Δ /ɛF from 0 . 16 to 0 . 50 , where Δ is the superconducting (SC) gap. We use angle-resolved photoemission spectroscopy to measure the Fermi energy, the SC gap and characteristic changes in the SC state electronic dispersion as the system evolves from a BCS to a BEC regime. Our results raise important questions about the crossover in multi-band superconductors which go beyond those addressed in the context of cold atoms.

  16. Image potential states at transition metal oxide surfaces: A time-resolved two-photon photoemission study on ultrathin NiO films

    NASA Astrophysics Data System (ADS)

    Gillmeister, K.; Kiel, M.; Widdra, W.

    2018-02-01

    For well-ordered ultrathin films of NiO(001) on Ag(001), a series of unoccupied states below the vacuum level has been found. The states show a nearly free electron dispersion and binding energies which are typical for image potential states. By time-resolved two-photon photoemission (2PPE), the lifetimes of the first three states and their dependence on oxide film thickness are determined. For NiO film thicknesses between 2 and 4 monolayers (ML), the lifetime of the first state is in the range of 28-42 fs and shows an oscillatory behavior with increasing thickness. The values for the second state decrease monotonically from 88 fs for 2 ML to 33 fs for 4 ML. These differences are discussed in terms of coupling of the unoccupied states to the layer-dependent electronic structure of the growing NiO film.

  17. A study for development of aerothermodynamic test model materials and fabrication technique

    NASA Technical Reports Server (NTRS)

    Dean, W. G.; Connor, L. E.

    1972-01-01

    A literature survey, materials reformulation and tailoring, fabrication problems, and materials selection and evaluation for fabricating models to be used with the phase-change technique for obtaining quantitative aerodynamic heat transfer data are presented. The study resulted in the selection of two best materials, stycast 2762 FT, and an alumina ceramic. Characteristics of these materials and detailed fabrication methods are presented.

  18. Strong-field plasmonic photoemission in the mid-IR at <1 GW/cm² intensity.

    PubMed

    Teichmann, S M; Rácz, P; Ciappina, M F; Pérez-Hernández, J A; Thai, A; Fekete, J; Elezzabi, A Y; Veisz, L; Biegert, J; Dombi, P

    2015-01-12

    We investigated nonlinear photoemission from plasmonic films with femtosecond, mid-infrared pulses at 3.1 μm wavelength. Transition between regimes of multi-photon-induced and tunneling emission is demonstrated at an unprecedentedly low intensity of <1 GW/cm(2). Thereby, strong-field nanophysics can be accessed at extremely low intensities by exploiting nanoscale plasmonic field confinement, enhancement and ponderomotive wavelength scaling at the same time. Results agree well with quantum mechanical modelling. Our scheme demonstrates an alternative paradigm and regime in strong-field physics.

  19. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data ofmore » linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.« less

  20. Electronic structure of the dilute magnetic semiconductor G a1 -xM nxP from hard x-ray photoelectron spectroscopy and angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Keqi, A.; Gehlmann, M.; Conti, G.; Nemšák, S.; Rattanachata, A.; Minár, J.; Plucinski, L.; Rault, J. E.; Rueff, J. P.; Scarpulla, M.; Hategan, M.; Pálsson, G. K.; Conlon, C.; Eiteneer, D.; Saw, A. Y.; Gray, A. X.; Kobayashi, K.; Ueda, S.; Dubon, O. D.; Schneider, C. M.; Fadley, C. S.

    2018-04-01

    We have investigated the electronic structure of the dilute magnetic semiconductor (DMS) G a0.98M n0.02P and compared it to that of an undoped GaP reference sample, using hard x-ray photoelectron spectroscopy (HXPS) and hard x-ray angle-resolved photoemission spectroscopy (HARPES) at energies of about 3 keV. We present experimental data, as well as theoretical calculations, to understand the role of the Mn dopant in the emergence of ferromagnetism in this material. Both core-level spectra and angle-resolved or angle-integrated valence spectra are discussed. In particular, the HARPES experimental data are compared to free-electron final-state model calculations and to more accurate one-step photoemission theory. The experimental results show differences between G a0.98M n0.02P and GaP in both angle-resolved and angle-integrated valence spectra. The G a0.98M n0.02P bands are broadened due to the presence of Mn impurities that disturb the long-range translational order of the host GaP crystal. Mn-induced changes of the electronic structure are observed over the entire valence band range, including the presence of a distinct impurity band close to the valence-band maximum of the DMS. These experimental results are in good agreement with the one-step photoemission calculations and a prior HARPES study of G a0.97M n0.03As and GaAs [Gray et al., Nat. Mater. 11, 957 (2012), 10.1038/nmat3450], demonstrating the strong similarity between these two materials. The Mn 2 p and 3 s core-level spectra also reveal an essentially identical state in doping both GaAs and GaP.

  1. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    NASA Astrophysics Data System (ADS)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  2. Fracture toughness study on LIGA fabricated microstructures

    NASA Astrophysics Data System (ADS)

    Oropeza, Catherine; Lian, Kun; Wang, Wanjun

    2003-01-01

    One of the major difficulties faced by MEMS researchers today is the lack of data regarding properties of electroplated metals or alloys at micro-levels as those produced by the LIGA and the LIGA related process. These mechanical properties are not well known and they cannot be extrapolated from macro-scale data without experimental verification. This lack of technical information about physical properties at microscale has affected the consistency and reliability of batch-fabricated components and leads to very low rates of successful fabrication. Therefore, this material issue is of vital importance to the development of LIGA technology and to its industrial applications. The research work reported in this paper focuses on the development of a new capability based on design, fabrication, and testing of groups of UV-LIGA fabricated nickel microspecimens for the evaluation of fracture strength. The devised testing mechanism demonstrated compatibility with the fabricated samples and capability of performing the desired experimentation by generating resistance-to-fracture values of the nickel specimens. The average fracture strength value obtained, expressed with a 95% confidence interval, was 315 +/- 54 Mpa. Further data acquisition, especially involving tensile specimen testing, and material analysis is needed to fully understand the implications of the information obtained.

  3. Study on micro fabricated stainless steel surface to anti-biofouling using electrochemical fabrication

    NASA Astrophysics Data System (ADS)

    Hwang, Byeong Jun; Lee, Sung Ho

    2017-12-01

    Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.

  4. Temperature-induced band shift in bulk γ-InSe by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Huanfeng; Wang, Wei; Zhao, Yafei; Zhang, Xiaoqian; Feng, Yue; Tu, Jian; Gu, Chenyi; Sun, Yizhe; Liu, Chang; Nie, Yuefeng; Edmond Turcu, Ion C.; Xu, Yongbing; He, Liang

    2018-05-01

    Indium selenide (InSe) has recently become popular research topics because of its unique layered crystal structure, direct band gap and high electron mobilities. In this work, we have acquired the electronic structure of bulk γ-InSe at various temperatures using angle-resolved photoemission spectroscopy (ARPES). We have also found that as the temperature decreases, the valence bands of γ-InSe exhibit a monotonic shift to lower binding energies. This band shift is attributed to the change of lattice parameters and has been validated by variable temperature X-ray diffraction measurements and theoretical calculations.

  5. a Photoemission Study of the Electronic Structure Induced by Potassium Adsorption on TiO2(110)

    NASA Astrophysics Data System (ADS)

    Heise, Rainer; Courths, Ralf

    Electronic structure effects induced by potassium adsorption up to one monolayer (ML) on a nearly stoichiometric TiO2(110) surface has been studied by means of angle-resolved photoemission spectroscopy (ARUPS and ARXPS) from valence states and core levels. In agreement with the observations on K/TiO2(100) [P.J. Hardman et al., Surf. Sci. 269/270, 677 (1992)], potassium adsorption at room temperature leads—due to K-to-substrate charge transfer—to the reduction of surface Ti ions (to nominally Ti3+ ions), evidenced by lowered Ti 2p core-level binding energy (ΔBE=-1.6 eV) and occupation of Ti 3d-like band-gap states centered at 0.9 eV BE. The gap-state intensity exhibits a pronounced maximum at 0.37 ML coverage, where the work function has a weak minimum. This behavior is in agreement with a ionic-to-neutral transition of the K-substrate bonding with increasing K coverage, as suggested recently [Souda et al., Surf. Sci. 285, 265 (1993)]. Annealing of a surface precovered with 0.27 ML potassium up to 1000 K results in metallization of the surface, evidenced by (i) the occupation of a second gap-state centered at 0.4 BE and with a considerable state-density at the Fermi energy, and (ii) Ti 2p core-levels lowered by 3.2 eV in BE (nominally “Ti2+” ions). This dramatic reduction of the surface is healed out with complete desorption of potassium. A discussion in terms of desorption of KOx species and oxygen diffusion from the bulk to the surface is given.

  6. Angle-resolved photoemission spectroscopy studies of the Mott insulator to superconductor evolution in calcium-sodium-copper-chloride

    NASA Astrophysics Data System (ADS)

    Shen, Kyle Michael

    The parent compounds of the high-temperature cuprate superconductors are antiferromagnetic Mott insulators. To explain the microscopic mechanism behind high-temperature superconductivity, it is first necessary to understand how the electronic states evolve from the parent Mott insulator into the superconducting compounds. This dissertation presents angle-resolved photoemission spectroscopy (ARPES) studies of one particular family of the cuprate superconductors, Ca 2-xNaxCuO 2Cl2, to investigate how the single-electron excitations develop throughout momentum space as the system is hole doped from the Mott insulator into a superconductor with a transition temperature of 22 K. These measurements indicate that, due to very strong electron-boson interactions, the quasiparticle residue, Z, approaches zero in the parent Mott insulator due to the formation of small lattice polarons. As a result, many fundamental quantities such as the chemical potential, quasiparticle excitations, and the Fermi surface evolve in manners wholly unexpected from conventional weakly-interacting theories. In addition, highly anisotropic interactions have been observed in momentum space where quasiparticle-like excitations persist to low doping levels along the nodal direction of the d-wave super-conducting gap, in contrast to the unusual excitations near the d-wave antinode. This anisotropy may reflect the propensity of the lightly doped cuprates towards forming a competing, charge-ordered state. These results provide a novel and logically consistent explanation of the hole doping evolution of the lineshape, spectral weight, chemical potential, quasiparticle dispersion, and Fermi surface as Ca2- xNaxCuO2Cl2 evolves from the parent Mott insulator into a high-temperature superconductor.

  7. Polarization-dependent X-ray photoemission spectroscopy for High-Tc cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Yamagami, Kohei; Kanai, Yuina; Naimen, Sho; Fujiwara, Hidenori; Kiss, Takayuki; Tanaka, Arata; Higashiya, Atsushi; Imada, Shin; Kadono, Toshiharu; Tamasaku, Kenji; Muro, Takayuki; Yabashi, Makina; Ishikawa, Tetsuya; Eisaki, Hiroshi; Miyasaka, Shigeki; Tajima, Setsuko; Sekiyama, Akira

    2018-05-01

    We have performed photon energy (hν) and linear polarization dependent X-ray photoemission for optimal doped Pb-Bi2Sr2CaCu2O8+δ (Bi2212) to investigate the ground Cu 3d orbital symmetry. We identified that the bulk Cu 3d components in valence-band spectra develop with decreasing hν from 7900 eV to 460 eV. Moreover, the photoelectron intensity ratio of the valence-band spectra measured at hν = 460 eV has shown that the Cu 3dx2-y2 orbital contributions are dominant near the Fermi level (EF). Meanwhile, we revealed that the bulk Cu 2p3/2 core-level spectra without the Bi 4s component is detected at hν = 1550 eV compared with hν and linear-polarization-dependent spectra.

  8. Characterizing the effects of regolith surface roughness on photoemission from surfaces in space

    NASA Astrophysics Data System (ADS)

    Dove, A.; Horanyi, M.; Wang, X.

    2017-12-01

    Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.

  9. Bolt-on source of spin-polarized electrons for inverse photoemission

    NASA Astrophysics Data System (ADS)

    Schedin, Fredrik; Warburton, Ranald; Thornton, Geoff

    1998-06-01

    We have developed a portable spin-polarized electron gun which can be bolted on to an ultrahigh vacuum chamber. The gun has been successfully operated with an electron gun to target distance of about 150 mm. This allows accommodation of other surface science equipment in the same vacuum system. The spin-polarized electrons are obtained via photoemission from a negative electron affinity GaAs(001) surface with circularly polarized light. A transversely polarized beam is achieved with a 90° electrostatic deflector. A set of two three-element electrostatic tube lenses are employed to transport and to focus the electrons onto a target. The measured transmission through the electron optics is >70% for electron energies in the range 7-20 eV. This is achieved by using large diameter electron transport lenses. The energy resolution of the electron beam is measured to be better than 0.27 eV and the polarization is determined to be 25±5%.

  10. Photoemission study of CaF2- and SrF2-GaAs(110) interfaces formed at room temperature

    NASA Astrophysics Data System (ADS)

    Mao, D.; Young, K.; Kahn, A.; Zanoni, R.; McKinley, J.; Margaritondo, G.

    1989-06-01

    Interfaces formed by evaporating CaF2 or SrF2 on room-temperature GaAs(110) are studied with synchrotron-radiation photoemission spectroscopy. The fluoride films grow uniformly on the GaAs surface. The deposition of CaF2 and SrF2 induces a large initial band bending on p-type GaAs (~0.9 eV) and a small initial band bending on n-type GaAs (~0.25 eV). The valence band is dominated by the F 2p peak which shifts toward high binding energies by ~1.5 eV after the deposition of >=16 Å fluoride. This shift reflects an increase in the valence-band offset between the two materials as the film forms. The final band offsets are estimated at 7.7 and 8.0 eV for CaF2 and SrF2, respectively, and are in qualitative agreement with those expected from the fluoride-Si data. Core-level measurements indicate that no reaction or decomposition of the MF2 molecule takes place at the interface. The F 2s core-level line shape and the increase in the binding-energy separation of F 2s and Ca 3p with increasing coverage suggest the presence of an interface F component. Contrary to the CaF2/Si case, no measurable Ca-substrate bonding effect is observed. The dissociative effect of uv irradiation on the CaF2 film is also investigated.

  11. Study on Single-yarn Pullout Test of Ballistic Resistant Fabric under Different Preloads

    NASA Astrophysics Data System (ADS)

    Fang, Q. C.; Lei, Z. K.; Y Qin, F.; Li, W. K.; Bai, R. X.

    2017-12-01

    During bullet penetrating fabric, the pull-out force of yarn in fabric is related to the impact resistance of fabric when the yarn is pulled out from the fabric. The complex uncrimping and friction slip behavior occur during the yarn pullout process, which is critical to learn the impact resistance of fabric. Based on digital image correlation technique, the deformation behavior of Kevlar 49 fabric subjected to preload during the single-yarn pullout process was studied in this paper. The pullout force and displacement curve shows a straight rise and an oscillated decrease. In the linear rise stage, the yarn uncrimping causes a static friction effect. The maximum of the pullout force is not linearly increased with the preload. In the oscillating descending stage, the local descent of the pullout force indicates that the yarn end is gradually withdrawn from the fabric, and the local rise indicates that the yarn end moves to the next weft/warp interaction until the yarn is completely pulled out. The shear deformation of fabric corresponds to the single-yarn pullout process.

  12. Photoemission study of the electronic structure (Pr 0.2La 0.8)(Ba 1.875La 0.125)Cu 3O 7- gd

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-11-01

    Photoemission results from the Pr and La doped 1 2 3 system (Pr 0.2La 0.8) (Ba 1.875La 0.125)Cu 3O 7-gd are reported. The core level spectra show strong resemblance to those of other compounds of the 1 2 3 and 2 1 4 systems. The Cu 2 p satellite intensity is found to be ˜ 35% of the main Cu 2 p line, and the O 1 s core level spectra, exhibiting a clear doublet, show evidence of extrinsic oxygen. The clear correlation between the intensities of certain features in the valence band and the amount of extrinsic oxygen, as monitored by the O 1 s core level spectra, is explicitly addressed.

  13. Lunar sample analysis. [X-ray photoemission and Auger spectroscopy of lunar glass

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.; Cirlin, E. H.

    1979-01-01

    The surface composition of two samples from the highly shocked, glass-coated lunar basalt (12054) and from four glass-coated fragments from the 1-2 mm (14161) fines were examined by X-ray photoemission spectroscopy to determine whether the agglutination process itself is responsible for the difference between their surface and bulk compositions. Auger electron spectroscopy of glass balls from the 15425 and 74001 fines were analyzed to understand the nature, extent, and behavior of volatile phases associated with lunar volcanism. Initial results indicate that (1) volatiles, in the outer few atomic layers sampled, vary considerably from ball to ball; (2) variability over the surface of individual balls is smaller; (3) the dominant volatiles on the balls are S and Zn; and (4) other volatiles commonly observed are P, Cl, and K.

  14. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis.

    PubMed

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-26

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  15. Anomalous metallic state with strong charge fluctuations in BaxTi8O16 +δ revealed by hard x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dash, S.; Kajita, T.; Okawa, M.; Saitoh, T.; Ikenaga, E.; Saini, N. L.; Katsufuji, T.; Mizokawa, T.

    2018-04-01

    We have studied a charge-orbital driven metal-insulator transition (MIT) in hollandite-type BaxTi8O16 +δ by means of hard x-ray photoemission spectroscopy (HAXPES). The Ti 2 p HAXPES indicates strong Ti3 +/Ti4 + charge fluctuation in the metallic phase above the MIT temperature. The metallic phase is characterized by a power-law spectral function near the Fermi level which would be a signature of bad metal with non-Drude polaronic behavior. The power-law spectral shape is associated with the large Seebeck coefficient of the metallic phase in BaxTi8O16 +δ .

  16. Fabrication of Superconducting Detectors for Studying the Universe

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David

    2012-01-01

    Superconducting detectors offer unparalleled means of making astronomical/cosmological observations. Fabrication of these detectors is somewhat unconventional; however, a lot of novel condensed matter physics/materials scientific discoveries and semiconductor fabrication processes can be generated in making these devices.

  17. Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.A.; Liu, P.; Gomes, J.

    2005-08-15

    High-resolution photoemission and first-principles density-functional calculations were used to study the interaction of oxygen with ZrC(001) and VC(001) surfaces. Atomic oxygen is present on the carbide substrates after small doses of O{sub 2} at room temperature. At 500 K, the oxidation of the surfaces is fast and clear features for ZrO{sub x} or VO{sub x} are seen in the O(1s), Zr(3d), and V(2p{sub 3/2}) core levels spectra, with an increase in the metal/carbon ratio of the samples. A big positive shift (1.3-1.6 eV) was detected for the C 1s core level in O/ZrC(001), indicating the existence of strong O{r_reversible}C ormore » C{r_reversible}C interactions. A phenomenon corroborated by the results of first-principles calculations, which show a CZrZr hollow as the most stable site for the adsorption of O. Furthermore, the calculations also show that a C{r_reversible}O exchange is exothermic on ZrC(001), and the displaced C atoms bond to CZrZr sites. In the O/ZrC(001) interface, the surface C atoms play a major role in determining the behavior of the system. In contrast, the adsorption of oxygen induces very minor changes in the C(1s) spectrum of VC(001). The O{r_reversible}V interactions are stronger than the O{r_reversible}Zr interactions, and O{r_reversible}C interactions do not play a dominant role in the O/VC(001) interface. In this system, C{r_reversible}O exchange is endothermic. VC(001) has a larger density of metal d states near the Fermi level than ZrC(001), but the rate of oxidation of VC(001) is slower. Therefore the O/ZrC(001) and O/VC(001) systems illustrate two different types of pathways for the oxidation of carbide surfaces.« less

  18. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    NASA Astrophysics Data System (ADS)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  19. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    PubMed

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  20. Femtosecond to picosecond transient effects in WSe 2 observed by pump-probe angle-resolved photoemission spectroscopy.

    PubMed

    Liu, Ro-Ya; Ogawa, Yu; Chen, Peng; Ozawa, Kenichi; Suzuki, Takeshi; Okada, Masaru; Someya, Takashi; Ishida, Yukiaki; Okazaki, Kozo; Shin, Shik; Chiang, Tai-Chang; Matsuda, Iwao

    2017-11-22

    Time-dependent responses of materials to an ultrashort optical pulse carry valuable information about the electronic and lattice dynamics; this research area has been widely studied on novel two-dimensional materials such as graphene, transition metal dichalcogenides (TMDs) and topological insulators (TIs). We report herein a time-resolved and angle-resolved photoemission spectroscopy (TRARPES) study of WSe 2 , a layered semiconductor of interest for valley electronics. The results for below-gap optical pumping reveal energy-gain and -loss Floquet replica valence bands that appear instantaneously in concert with the pump pulse. Energy shift, broadening, and complex intensity variation and oscillation at twice the phonon frequency for the valence bands are observed at time scales ranging from the femtosecond to the picosecond and beyond. The underlying physics is rich, including ponderomotive interaction, dressing of the electronic states, creation of coherent phonon pairs, and diffusion of charge carriers - effects operating at vastly different time domains.

  1. Study of the Physics of Insulating Films as Related to the Reliability of Metal-Oxide-Semiconductor (MOS) Devices

    DTIC Science & Technology

    1982-09-01

    the critical reading of this manuscript by D.R. Young and M.H. Brodsky, the technical assistance of F.L. Pesavento , and the device fabrication by the...of F. L. Pesavento and J. A. Tornello IBM - Thomas J. Watson Research Center Yorktown Heights, New York ABSTRACT Both photon-assisted-tunneling and...to acknowledge J. A. Tornello for help with the sample preparation, and S. K. Lai and F. L. Pesavento for help with the internal photoemission

  2. Electron–vibration coupling induced renormalization in the photoemission spectrum of diamondoids

    DOE PAGES

    Gali, Adam; Demján, Tamás; Vörös, Márton; ...

    2016-04-22

    The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born–Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron–vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron–vibration coupling is essential tomore » properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born–Oppenheimer approximation. Furthermore, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn–Teller effect.« less

  3. Electron–vibration coupling induced renormalization in the photoemission spectrum of diamondoids

    PubMed Central

    Gali, Adam; Demján, Tamás; Vörös, Márton; Thiering, Gergő; Cannuccia, Elena; Marini, Andrea

    2016-01-01

    The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born–Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron–vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron–vibration coupling is essential to properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born–Oppenheimer approximation. Moreover, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn–Teller effect. PMID:27103340

  4. Electron scattering, charge order, and pseudogap physics in La 1.6–xNd 0.4Sr xCuO 4: An angle-resolved photoemission spectroscopy study

    DOE PAGES

    Matt, C. E.; Fatuzzo, C. G.; Sassa, Y.; ...

    2015-10-27

    We report an angle-resolved photoemission study of the charge stripe ordered La 1.6–xNd 0.4Sr xCuO 4 (Nd-LSCO) system. A comparative and quantitative line-shape analysis is presented as the system evolves from the overdoped regime into the charge ordered phase. On the overdoped side (x = 0.20), a normal-state antinodal spectral gap opens upon cooling below 80 K. In this process, spectral weight is preserved but redistributed to larger energies. A correlation between this spectral gap and electron scattering is found. A different line shape is observed in the antinodal region of charge ordered Nd-LSCO x = 1/8. Significant low-energy spectralmore » weight appears to be lost. As a result, these observations are discussed in terms of spectral-weight redistribution and gapping originating from charge stripe ordering.« less

  5. Study of Wrinkle Resistant, Breathable, Anti-Uv Nanocoated Woven Polyester Fabric

    NASA Astrophysics Data System (ADS)

    Memon, Hafeezullah; Yasin, Sohail; Khoso, Nazakat Ali; Memon, Samiulah

    2016-02-01

    The multifunctional textiles are interesting areas to be researched on. In this paper, the effect of the fiber nanocoating on the wrinkle recovery, air permeability and anti-Ultraviolet (UV) property of different woven fabrics using sol-gel method has been studied. The sol-gel method has various advantages over other methods. Along with these properties, no change in visual appearance has also been discussed in this paper. The dispersion of nanoparticles of titanium was obtained into silica sol. The characterization of nanocoating was done using Field emission scanning electron micrograph (FESEM) and Fourier transform infrared spectroscopy (FTIR) studies. The fabric wrinkle recovery properties, air permeability and anti-UV performance were analyzed using three different immersion timings into the nanosol. The results revealed that both wrinkle recovery properties and anti-UV performance have increased with respect to immersing time of the nanocoating although a slight decrease in air permeability and whiteness index of the fabric was also observed.

  6. Mechanical behaviour study on SBR/EVA composite for FDM feedstock fabrication

    NASA Astrophysics Data System (ADS)

    Raveverma, P.; Ibrahim, M.; Sa'ude, N.; Yarwindran, M.; Nasharuddin, M.

    2017-04-01

    This paper presents the research development of a new SBR/EVA composite flexible feedstock material by the injection moulding machine. The material consists of poly (ethylene-co-vinyl acetate) in styrene butadiene rubber cross-linked by Dicumyl Peroxide. In this study, the mechanical behaviour of injection moulded SBR/EVA composite with different blend ratio investigated experimentally. The formulations of blend ratio with several combinations of a new SBR/EVA flexible feedstock was done by volume percentage (vol. %). Based on the result obtained from the mechanical testing done which is tensile and hardness the composite of SBR/EVA has the high potency to be fabricated as the flexible filament feedstock. The ratio of 80:20 which as an average hardness and tensile strength proved to be the suitable choice to be fabricated as the flexible filament feedstock. The study has reached its goals on the fabricating and testing a new PMC which is flexible.

  7. Photoemission Spectroscopy Studies of Methylammonium Lead Iodide Perovskite Thin Films and Interfaces

    NASA Astrophysics Data System (ADS)

    Thibau, Emmanuel S.

    Organometal halide perovskites have recently emerged as promising materials for fundamentally low-cost, high-performance optoelectronics. In this thesis, we utilize thermal co-evaporation of PbI2 and CH3NH 3 I to fabricate thin films of CH3NH3PbI 3. We first investigate the effect of stoichiometry on some of its structural, optical and electronic properties. Then, we study the energy level alignment of CH3NH3PbI3 with 6 organic semiconductors, revealing good agreement between the data and the theory of vacuum level alignment. Finally, the interface formed between CH3NH 3PbI3 and MoO3 is examined. The findings suggest migration of iodide species into the oxide layer, resulting in deterioration of its chemical and electronic properties. Insertion of an organic interlayer is shown to mitigate these undesirable effects. The results of this work could be of use in device engineering, where knowledge of such interfacial phenomena is of utmost importance in achieving optimized device structures.

  8. Progress on PEEM3 -- An Aberration Corrected X-Ray Photoemission Electron Microscope at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDowell, A. A.; Feng, J.; DeMello, A.

    2007-01-19

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less

  9. Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDowell, Alastair A.; Feng, J.; DeMello, A.

    2006-05-20

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment ofmore » a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.« less

  10. Finding the hidden valence band of N  =  7 armchair graphene nanoribbons with angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Senkovskiy, Boris V.; Usachov, Dmitry Yu; Fedorov, Alexander V.; Haberer, Danny; Ehlen, Niels; Fischer, Felix R.; Grüneis, Alexander

    2018-07-01

    To understand the optical and transport properties of graphene nanoribbons, an unambiguous determination of their electronic band structure is needed. In this work we demonstrate that the photoemission intensity of each valence sub-band, formed due to the quantum confinement in quasi-one-dimensional (1D) graphene nanoribbons, is a peaked function of the two-dimensional (2D) momentum. We resolve the long-standing discrepancy regarding the valence band effective mass () of armchair graphene nanoribbons with a width of N  =  7 carbon atoms (7-AGNRs). In particular, angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy report   ≈0.2 and  ≈0.4 of the free electron mass (m e ), respectively. ARPES mapping in the full 2D momentum space identifies the experimental conditions for obtaining a large intensity for each of the three highest valence 1D sub-bands. Our detail map reveals that previous ARPES experiments have incorrectly assigned the second sub-band as the frontier one. The correct frontier valence sub-band for 7-AGNRs is only visible in a narrow range of emission angles. For this band we obtain an ARPES derived effective mass of 0.4 m e , a charge carrier velocity in the linear part of the band of 0.63  ×  106 m s‑1 and an energy separation of only  ≈60 meV to the second sub-band. Our results are of importance not only for the growing research field of graphene nanoribbons but also for the community, which studies quantum confined systems.

  11. Photoemission perspective on pseudogap, superconducting fluctuations, and charge order in cuprates: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Vishik, I. M.

    2018-06-01

    In the course of seeking the microscopic mechanism of superconductivity in cuprate high temperature superconductors, the pseudogap phase— the very abnormal ‘normal’ state on the hole-doped side— has proven to be as big of a quandary as superconductivity itself. Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for assessing the momentum-dependent phenomenology of the pseudogap, and recent technological developments have permitted a more detailed understanding. This report reviews recent progress in understanding the relationship between superconductivity and the pseudogap, the Fermi arc phenomena, and the relationship between charge order and pseudogap from the perspective of ARPES measurements.

  12. CO adsorption on ion bombarded Ni(111): characterization by photoemission from adsorbed xenon

    NASA Astrophysics Data System (ADS)

    Fu, Sabrina S.; Malafsky, Geoffrey P.; Hsu, David S. Y.

    1993-11-01

    The adsorption of CO on Ni(111), ion bombarded with various fluences of 1.0 keV Ar + ions, has been investigated using photoemission from adsorbed xenon (PAX). After ion bombardment of the Ni(111) surface, various amounts of CO were adsorbed, followed by adsorption of xenon at 85 K. Two pressures of xenon were used in examining the 3d {5}/{2} peak of xenon: 5 × 10 -6 and 7 × 10 -10 Torr. PAX data taken at both pressures show that CO selectively adsorbs onto the defect (step) sites created by ion bombardment. In addition, it was found that the amount of CO which could occupy a defect site previously occupied by one Xe atom varied from 10 to 2.5, depending on the ion fluence.

  13. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    DOE PAGES

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; ...

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. Lastly, the gun utilizes a quarter-wave resonator (QWR) geometrymore » for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.« less

  14. Site-specific intermolecular valence-band dispersion in α-phase crystalline films of cobalt phthalocyanine studied by angle-resolved photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, Hiroyuki; Kosugi, Nobuhiro; The Graduate University for Advanced Studies, Okazaki 444-8585

    2014-12-14

    The valence band structure of α-phase crystalline films of cobalt phthalocyanine (CoPc) grown on Au(111) is investigated by using angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. The photo-induced change in the ARPES peaks is noticed in shape and energy of the highest occupied molecular orbital (HOMO, C 2p) and HOMO-1 (Co 3d) of CoPc, and is misleading the interpretation of the electronic properties of CoPc films. From the damage-free normal-emission ARPES measurement, the clear valence-band dispersion has been first observed, showing that orbital-specific behaviors are attributable to the interplay of the intermolecular π-π and π-d interactions. The HOMO band dispersionmore » of 0.1 eV gives the lower limit of the hole mobility for α-CoPc of 28.9 cm{sup 2} V{sup −1} s{sup −1} at 15 K. The non-dispersive character of the split HOMO-1 bands indicates that the localization of the spin state is a possible origin of the antiferromagnetism.« less

  15. A review of electron-phonon coupling seen in the high-Tc superconductors by angle-resolved photoemission studies (ARPES)

    NASA Astrophysics Data System (ADS)

    Cuk, T.; Lu, D. H.; Zhou, X. J.; Shen, Z.-X.; Devereaux, T. P.; Nagaosa, N.

    2005-01-01

    This issue of pss (b) - basic solid state physics contains a collection of Review Articles on the rather controversially discussed topic of Electron-Phonon Interaction in High-Temperature Superconductors, guest-edited by Miodrag Kuli, Johann Wolfgang Goethe-Universität Frankfurt/Main, Germany, with a Preface written by V. L. Ginzburg and E. G. Maksimov [1].The cover picture, taken from the review [2] by T. Cuk et al., shows plots of the electron-phonon coupling vertex, g2(k, k), where k, k are the initial and final electron momentum for electrons scattered by the bond-buckling phonon B1g (the out-of-phase vibration of the in-plane oxygen) in a tight-binding model of the copper-oxygen plane. The momentum dependence of this vertex, along with the d-wave superconducting gap and the van Hove singularity at the anti-node, accounts for the momentum dependence of the collective mode coupling seen in angle-resolved photoemission data on Bi2212.The present issue also sees the start of our rapid research letters, the fastest peer-reviewed publication medium in solid state physics. For more information see www.pss-rapid.com and the Editorial by the Editor-in-Chief Martin Stutzmann on page 7 [3].

  16. Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiang; Jin, Wencan; Yang, Hao

    Here, we report measurements and numerical simulations of ultrafast laser-excited carrier flow across a scanning tunneling microscope (STM) junction. The current from a nanoscopic tungsten tip across a ~1 nm vacuum gap to a silver surface is driven by a two-color excitation scheme that uses an optical delay-modulation technique to extract the two-color signal from background contributions. The role of optical field enhancements in driving the current is investigated using density functional theory and full three-dimensional finite-difference time-domain computations. We find that simulated field-enhanced two-photon photoemission (2PPE) currents are in excellent agreement with the observed exponential decay of the two-colormore » photoexcited current with increasing tip–surface separation, as well as its optical-delay dependence. The results suggest an approach to 2PPE with simultaneous subpicosecond temporal and nanometer spatial resolution.« less

  17. Two-color field enhancement at an STM junction for spatiotemporally resolved photoemission

    DOE PAGES

    Meng, Xiang; Jin, Wencan; Yang, Hao; ...

    2017-06-30

    Here, we report measurements and numerical simulations of ultrafast laser-excited carrier flow across a scanning tunneling microscope (STM) junction. The current from a nanoscopic tungsten tip across a ~1 nm vacuum gap to a silver surface is driven by a two-color excitation scheme that uses an optical delay-modulation technique to extract the two-color signal from background contributions. The role of optical field enhancements in driving the current is investigated using density functional theory and full three-dimensional finite-difference time-domain computations. We find that simulated field-enhanced two-photon photoemission (2PPE) currents are in excellent agreement with the observed exponential decay of the two-colormore » photoexcited current with increasing tip–surface separation, as well as its optical-delay dependence. The results suggest an approach to 2PPE with simultaneous subpicosecond temporal and nanometer spatial resolution.« less

  18. Substrate interactions with suspended and supported monolayer MoS 2: Angle-resolved photoemission spectroscopy

    DOE PAGES

    Jin, Wencan; Yeh, Po -Chun; Zaki, Nader; ...

    2015-03-17

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide (MoS₂) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer MoS₂ elucidate the effects of interaction with a substrate. Thus, a suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer MoS₂ crystals. For suspended MoS₂, a careful investigation of the measured uppermost valence band gives an effective mass at Γ¯ and Κ¯ of 2.00m₀ and 0.43m₀, respectively. We also measure an increase in the band linewidth from the midpoint of Γ¯Κ¯ to the vicinity of Κ¯ and briefly discussmore » its possible origin.« less

  19. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

    PubMed Central

    2013-01-01

    Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419

  20. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime.

    PubMed

    Goykhman, Ilya; Desiatov, Boris; Khurgin, Jacob; Shappir, Joseph; Levy, Uriel

    2011-06-08

    We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip.

  1. Calculation of density of states for modeling photoemission using method of moments

    NASA Astrophysics Data System (ADS)

    Finkenstadt, Daniel; Lambrakos, Samuel G.; Jensen, Kevin L.; Shabaev, Andrew; Moody, Nathan A.

    2017-09-01

    Modeling photoemission using the Moments Approach (akin to Spicer's "Three Step Model") is often presumed to follow simple models for the prediction of two critical properties of photocathodes: the yield or "Quantum Efficiency" (QE), and the intrinsic spreading of the beam or "emittance" ɛnrms. The simple models, however, tend to obscure properties of electrons in materials, the understanding of which is necessary for a proper prediction of a semiconductor or metal's QE and ɛnrms. This structure is characterized by localized resonance features as well as a universal trend at high energy. Presented in this study is a prototype analysis concerning the density of states (DOS) factor D(E) for Copper in bulk to replace the simple three-dimensional form of D(E) = (m/π2 h3)p2mE currently used in the Moments approach. This analysis demonstrates that excited state spectra of atoms, molecules and solids based on density-functional theory can be adapted as useful information for practical applications, as well as providing theoretical interpretation of density-of-states structure, e.g., qualitatively good descriptions of optical transitions in matter, in addition to DFT's utility in providing the optical constants and material parameters also required in the Moments Approach.

  2. Electronic structure of R Sb ( R = Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    DOE PAGES

    Wu, Yun; Lee, Yongbin; Kong, Tai; ...

    2017-07-15

    Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less

  3. Electronic structure of R Sb ( R = Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Lee, Yongbin; Kong, Tai

    Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less

  4. Blunt Trauma Performance of Fabric Systems Utilizing Natural Rubber Coated High Strength Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, M. R.; Ahmad, W. Y. W.; Samsuri, A.

    2010-03-11

    The blunt trauma performance of fabric systems against 9 mm bullets is reported. Three shots were fired at each fabric system with impact velocity of 367+-9 m/s and the depth of indentation on the modeling clay backing was measured. The results showed that 18-layer and 21-layer all-neat fabric systems failed the blunt trauma test. However, fabric systems with natural rubber (NR) latex coated fabric layers gave lower blunt trauma of between 25-32 mm indentation depths. Deformations on the neat fabrics upon impact were identified as broken yarns, yarn stretching and yarn pull-out. Deflections of the neat fabrics were more localised.more » For the NR latex coated fabric layers, no significant deformation can be observed except for peeled-off regions of the NR latex film at the back surface of the last layer. From the study, it can be said that the NR latex coated fabric layers were effective in reducing the blunt trauma of fabric systems.« less

  5. H2S adsorption on chromium, chromia, and gold/chromia surfaces: Photoemission studies

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Chaturvedi, S.; Kuhn, M.; van Ek, J.; Diebold, U.; Robbert, P. S.; Geisler, H.; Ventrice, C. A., Jr.

    1997-12-01

    The reaction of H2S with chromium, chromia, and Au/chromia films grown on a Pt(111) crystal has been investigated using synchrotron-based high-resolution photoemission spectroscopy. At 300 K, H2S completely decomposes on polycrystalline chromium producing a chemisorbed layer of S that attenuates the Cr 3d valence features. No evidence was found for the formation of CrSx species. The dissociation of H2S on Cr3O4 and Cr2O3 films at room temperature produces a decrease of 0.3-0.8 eV in the work function of the surface and significant binding-energy shifts (0.2-0.6 eV) in the Cr 3p core levels and Cr 3d features in the valence region. The rate of dissociation of H2S increases following the sequence: Cr2O3

  6. Ferroelectric and multiferroic domain imaging by Laser-induced photoemission microscopy

    NASA Astrophysics Data System (ADS)

    Hoefer, Anke; Fechner, Michael; Duncker, Klaus; Mertig, Ingrid; Widdra, Wolf

    2013-03-01

    The ferroelectric as well as multiferroic surface domain structures of BaTiO3(001) and BiFeO3(001) are imaged based on photoemission electron microscopy (PEEM) by femtosecond laser threshold excitation under UHV conditions. For well-prepared BaTiO3(001), three ferroelectric domain types are clearly discriminable due to work function differences. At room temperature, the surface domains resemble the known ferroelectric domain structure of the bulk. Upon heating above the Curie point of 400 K, the specific surface domain pattern remains up to 500 K. Ab-initio calculations explain this observation by a remaining tetragonal distortion of the topmost unit cells stabilized by a surface relaxation. The (001) surface of the single-phase multiferroic BiFeO3 which is ferroelectric and antiferromagnetic, shows clear ferroelectric work function contrast in PEEM. Additionally, the multiferroic domains show significant linear dichroism. The observation of a varying dichroism for different ferroelectric domains can be explained based on the coupled ferroelectric-antiferromagnetic order in BiFeO3. It demonstrates multiferroic imaging of different domain types within a single, lab-based experiment.

  7. Study of Dual Band Wearable Antennas Using Commonly Worn Fabric Materials

    NASA Astrophysics Data System (ADS)

    Das, Dipen Kumar

    In recent years, body-centric communication has become one of the most attractive fields of study. The versatile applications of body-centric communication not only being used for health monitoring, but also for real-time communication purposes in special occupations. They are important for supporting a population with increasing life expectancy and increase the probability of survival for the people suffering from chronic illness. For both wearable and implantable form of body-centric communication, characterizing the system electromagnetically is very important. Given the constraints in power, size, weight and conformity, one of the most challenging parts become the designing antenna for such communication systems. Wearable antennas are the most popular option regarding these issues. Wearable antennas are easier and simpler to mount on clothing when they are made of textile materials. In the process of designing a textile antenna, the availability of the fabrics is pivotal to mount on regularly worn clothes. In this report, several designs of a co-planar waveguide microstrip patch antenna are presented. Instead of felt fabric, the antenna was modified using 100% polyester and cotton fabric for the substrate material. A parasitic patch slot was created on the co-planar ground plane to achieve the dual band resonance frequencies at 2.4 GHz and 5.15 GHz. The geometrical modifications of the antennas were described and their performances were analyzed. The antenna achieved resonating frequency with a thinner substrate as the dielectric constant went higher for the fabrics. The design with different fabric materials was first simulated in CST Microwave Studio, then fabricated and measured in a regular environment. They were also mounted on a 3-D printed human body model to analyze the bending effect. The design of the antennas shows satisfactory performance with a good -10dB bandwidth for both the lower and higher desired resonating frequency band.

  8. Investigating the Effect of Nanoscale Changes on the Chemistry and Energetics of Nanocrystals with a Novel Photoemission Spectroscopy Methodology

    NASA Astrophysics Data System (ADS)

    Liao, Michael W.

    This dissertation explores the effect of nanometer-scale changes in structure on the energetics of photocatalytic and photovoltaic materials. Of particular interest are semiconductor nanocrystals (NCs), which have interesting chemical properties that lead to novel structures and applications. Chief among these properties are quantum confinement and the high surface area-to-volume ratio, which allow for chemical tuning of the energetics and structure of NCs. This tunable energetic landscape has led to increasing application of NCs in various areas of research, including solar energy conversion, light-emitting diode technologies, and photocatalysis. However, spectroscopic methods to determine the energetics of NCs have not been well developed, due to chemical complexities of relevant NCs such as polydispersity, capping ligand effects, core-shell structures, and other chemical modifications. In this work, we demonstrate and expand the utility of photoelectron spectroscopy (PES) to probe the energetics of NCs by considering the physical processes that lead to background and secondary photoemission to enhance photoemission from the sample of interest. A new methodology for the interpretation of UP spectra was devised in order to emphasize the minute changes to the UP spectra line shape that arise from nanoscopic changes to the NCs. We applied various established subtractions that correct for photon source satellites, secondary photoelectrons, and substrate photoemission. We then investigated the effect of ligand surface coverage on the surface chemistry and density of states at the top of valence band (VB). We systematically removed ligands by increasing numbers of purification steps for two diameters of NCs and found that doing so increased photoemission density at the top of the VB, which is due to undercoordinated surface atoms. Deeper VB structure was also altered, possibly due to reorganization of the atoms in the NC. Using the new UPS interpretation methodology

  9. Orientation independence of heterojunction-band offsets at GaAs-AlAs heterointerfaces characterized by x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirakawa, K.; Hashimoto, Y.; Ikoma, T.

    1990-12-01

    We systematically studied the orientation and the growth sequence dependence of the valence-band offset ΔEv at the lattice-matched common anion GaAs-AlAs interfaces. High quality GaAs-AlAs heterojunctions were carefully grown on GaAs substrates with three major orientations, namely, (100), (110), and (111)B. The core level energy distance ΔECL between Ga 3d and Al 2p levels was measured by in situ x-ray photoemission spectroscopy. ΔECL is found to be independent of the substrate orientation and the growth sequence, which clearly indicates the face independence of ΔEv. This result suggests that the band lineup at lattice-matched isovalent semiconductor heterojunctions is determined by the bulk properties of the constituent materials. ΔEv is determined to be 0.44 ± 0.05 eV.

  10. Fabrication of a highly oriented line structure on an aluminum surface and the nanoscale patterning on the nanoscale structure using highly functional molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Y.; Kato, H.; Takemura, S.

    2009-07-15

    The surface of an Al plate was treated with a combination of chemical and electrochemical processes for fabrication of surface nanoscale structures on Al plates. Chemical treatments by using acetone and pure water under supersonic waves were conducted on an Al surface. Additional electrochemical process in H{sub 2}SO{sub 4} solution created a finer and oriented nanoscale structure on the Al surface. Dynamic force microscopy (DFM) measurement clarified that the nanoscale highly oriented line structure was successfully created on the Al surface. The line distance was estimated approximately 30-40 nm. At the next stage, molecular patterning on the highly oriented linemore » structure by functional molecules such as copper phthalocyanine (CuPc) and fullerene C{sub 60} was also conducted. CuPc or C{sub 60} molecules were deposited on the highly oriented line structure on Al. A toluene droplet containing CuPc molecules was cast on the nanostructured Al plate and was extended on the surface. CuPc or C{sub 60} deposition on the nanostructured Al surface proceeded by evaporation of toluene. DFM and x-ray photoemission spectroscopy measurements demonstrated that a unique molecular pattern was fabricated so that the highly oriented groove channels were filled with the functional molecules.« less

  11. Combined Photoemission Spectroscopy and Electrochemical Study of a Mixture of (Oxy)carbides as Potential Innovative Supports and Electrocatalysts.

    PubMed

    Calvillo, Laura; Valero-Vidal, Carlos; Agnoli, Stefano; Sezen, Hikmet; Rüdiger, Celine; Kunze-Liebhäuser, Julia; Granozzi, Gaetano

    2016-08-03

    Active and stable non-noble metal materials, able to substitute Pt as catalyst or to reduce the Pt amount, are vitally important for the extended commercialization of energy conversion technologies, such as fuel cells and electrolyzers. Here, we report a fundamental study of nonstoichiometric tungsten carbide (WxC) and its interaction with titanium oxycarbide (TiOxCy) under electrochemical working conditions. In particular, the electrochemical activity and stability of the WxC/TiOxCy system toward the ethanol electrooxidation reaction (EOR) and hydrogen evolution reaction (HER) are investigated. The chemical changes caused by the applied potential are established by combining photoemission spectroscopy and electrochemistry. WxC is not active toward the ethanol electrooxidation reaction at room temperature but it is highly stable under these conditions thanks to the formation of a passive thin film on the surface, consisting mainly of WO2 and W2O5, which prevents the full oxidation of WxC. In addition, WxC is able to adsorb ethanol, forming ethoxy groups on the surface, which constitutes the first step for the ethanol oxidation. The interaction between WxC and TiOxCy plays an important role in the electrochemical stability of WxC since specific orientations of the substrate are able to stabilize WxC and prevent its corrosion. The beneficial interaction with the substrate and the specific surface chemistry makes tungsten carbide a good electrocatalyst support or cocatalyst for direct ethanol fuel cells. However, WxC is active toward the HER and chemically stable under hydrogen reduction conditions, since no changes in the chemical composition or dissolution of the film are observed. This makes tungsten carbide a good candidate as electrocatalyst support or cocatalyst for the electrochemical production of hydrogen.

  12. The acetone bandpass detector for inverse photoemission: operation in proportional and Geiger–Müller modes

    NASA Astrophysics Data System (ADS)

    Thiede, Christian; Niehues, Iris; Schmidt, Anke B.; Donath, Markus

    2018-06-01

    Inverse photoemission is the most versatile experimental tool to study the unoccupied electronic structure at surfaces of solids. Typically, the experiments are performed in the isochromat mode with bandpass photon detectors. For gas-filled counters, the bandpass behavior is realized by the combination of the photoionization threshold of the counting gas as the high-pass filter and the ultraviolet transmission cutoff of an alkaline earth fluoride entrance window as the low-pass filter. The transmission characteristics of the entrance window determine the optical bandpass. The performance of the counter depends on the composition of the detection gas and the fill-gas pressure, the readout electronics and the counter geometry. For the well-known combination of acetone and CaF2, the detector can be operated in proportional and Geiger–Müller modes. In this work, we review aspects concerning the working principles, the counter construction and the read-out electronics. We identify optimum working parameters and provide a step-by-step recipe how to build, install and operate the device.

  13. Tungsten wire/FeCrAlY matrix turbine blade fabrication study

    NASA Technical Reports Server (NTRS)

    Melnyk, P.; Fleck, J. N.

    1979-01-01

    The objective was to establish a viable FRS monotape technology base to fabricate a complex, advanced turbine blade. All elements of monotape fabrication were addressed. A new process for incorporation of the matrix, including bi-alloy matrices, was developed. Bonding, cleaning, cutting, sizing, and forming parameters were established. These monotapes were then used to fabricate a 48 ply solid JT9D-7F 1st stage turbine blade. Core technology was then developed and first a 12 ply and then a 7 ply shell hollow airfoil was fabricated. As the fabrication technology advanced, additional airfoils incorporated further elements of sophistication, by introducing in sequence bonded root blocks, cross-plying, bi-metallic matrix, tip cap, trailing edge slots, and impingement inserts.

  14. Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.

    2007-02-01

    Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.

  15. Properties of honeycomb polyester knitted fabrics

    NASA Astrophysics Data System (ADS)

    Feng, A. F.

    2016-07-01

    The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.

  16. Electronic structure and magnetic anisotropy of L1{sub 0}-FePt thin film studied by hard x-ray photoemission spectroscopy and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, S.; Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Mizuguchi, M.

    2016-07-25

    We have studied the electronic structure of the L1{sub 0} ordered FePt thin film by hard x-ray photoemission spectroscopy (HAXPES), cluster model, and first-principles calculations to investigate the relationship between the electronic structure and perpendicular magneto-crystalline anisotropy (MCA). The Fe 2p core-level HAXPES spectrum of the ordered film revealed the strong electron correlation in the Fe 3d states and the hybridization between the Fe 3d and Pt 5d states. By comparing the experimental valence band structure with the theoretical density of states, the strong electron correlation in the Fe 3d states modifies the valence band electronic structure of the L1{submore » 0} ordered FePt thin film through the Fe 3d-Pt 5d hybridization. These results strongly suggest that the strong electron correlation effect in the Fe 3d states and the Fe 3d-Pt 5d hybridization as well as the spin-orbit interaction in the Pt 5d states play important roles in the perpendicular MCA for L1{sub 0}-FePt.« less

  17. Defect observations of Ni/AlGaN/GaN Schottky contacts on Si substrates using scanning internal photoemission microscopy

    NASA Astrophysics Data System (ADS)

    Shiojima, Kenji; Konishi, Hiroaki; Imadate, Hiroyoshi; Yamaoka, Yuya; Matsumoto, Kou; Egawa, Takashi

    2018-04-01

    We have demonstrated the use of scanning internal photoemission microscopy (SIPM) to characterize crystal defects in an AlGaN/GaN heterostructure grown on Si substrates. SIPM enabled the visualization of unusually grown regions owing to cracking of the Si substrates. In these regions, photocurrent was large, which was consistent with leaky current-voltage characteristics. We also found smaller photoyield regions, which may originate from the Al-rich AlGaN regions on hillocks. We confirmed the usefulness of SIPM for investigating the inhomogeneity of crystal quality and electrical characteristics from macroscopic viewpoints.

  18. Analysis of space charge fields using the Lienard-Wiechert potential and the method of images during the photoemission of the electron beam from the cathode

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el

    2017-01-01

    We present a numerical analysis of the space charge effect and the effect of image charge force on the cathode surface for a laser-driven RF-photocathode gun. In this numerical analysis, in the vicinity of the cathode surface, we used an analytical method based on Lienard-Weichert retarded potentials. The analytical method allows us to calculate longitudinal and radial electric fields, and the azimuth magnetic field due to both space charge effect and the effect of the image charge force. We calculate the electro-magnetic fields in the following two conditions for the "ELSA" photoinjector. The first condition is in the progress of photoemission, which corresponds to the inside of the emitted beam, and the second condition is at the end of the photoemission. The electromagnetic fields due to the space charge effect and the effect of the image charge force, and the sum of them, which corresponds to the global electro-magnetic fields, are shown. Based on these numerical results, we discussed the effects of the space charge and the image charge in the immediate vicinity of the cathode.

  19. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics were measured at a temperature range of 23C to 1200C. The fabrics evaluated were silica, high and low-boria content aluminoborosilicate, and silicon carbide. Properties studied included fabric break strengths from room temperature to 1200C, and bending durability after temperature conditioning at 1200C and 1400C. The interaction of the fabric and ceramic insulation was also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retained more strength and fabric durability than the other fabrics studied at high temperature.

  20. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.

  1. Electronic properties of Mn-phthalocyanine–C{sub 60} bulk heterojunctions: Combining photoemission and electron energy-loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Friedrich; Herzig, Melanie; Knupfer, Martin

    2015-11-14

    The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that ofmore » the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.« less

  2. Studies on Application of Aroma Finish on Silk Fabric

    NASA Astrophysics Data System (ADS)

    Hipparagi, Sanganna Aminappa; Srinivasa, Thirumalappa; Das, Brojeswari; Naik, Subhas Venkatappa; Purushotham, Serampur Parappa

    2016-10-01

    Aromatic treatments on textiles have gained importance in the recent years. In the present article work has been done on fragrance finish application on silk material. Silk is an expensive natural fibre used for apparel purpose and known for its feel and appeal. Incorporation of fragrance material in silk product, will add more value to it. Present work focuses to impart durable aroma finish for silk products to be home washed or subjected to dry cleaning. Microencapsulated aroma chemical has been used for the treatment. Impregnation method, Exhaust method, Dip-Pad-Dry method and Spray method have been used to see the influence of application method on the uptake and performance. Evaluation of the aroma treated material has been done through subjective evaluation as per Odor Intensity Reference Scaling (OIRS). Effect of the aroma finishing on the physical properties of the fabric has also been studied. No adverse effect has been observed on the stiffness of the fabric after the aroma treatment.

  3. Studies of geometrical profiling in fabricated tapered optical fibers using whispering gallery modes spectroscopy

    NASA Astrophysics Data System (ADS)

    Kavungal, Vishnu; Farrell, Gerald; Wu, Qiang; Kumar Mallik, Arun; Semenova, Yuliya

    2018-03-01

    This paper experimentally demonstrates a method for geometrical profiling of asymmetries in fabricated thin microfiber tapers with waist diameters ranging from ∼10 to ∼50 μm with submicron accuracy. The method is based on the analysis of whispering gallery mode resonances excited in cylindrical fiber resonators as a result of evanescent coupling of light propagating through the fiber taper. The submicron accuracy of the proposed method has been verified by SEM studies. The method can be applied as a quality control tool in fabrication of microfiber based devices and sensors or for fine-tuning of microfiber fabrication set-ups.

  4. Characterization of CuHal-intercalated carbon nanotubes with x-ray absorption spectroscopy combined with x-ray photoelectron and resonant photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M.; Generalov, A.; Vinogdradov, A.; Eliseev, A.

    2013-04-01

    Encapsulated single-walled carbon nanotubes (SWCNTs) with inner channels filled by different compounds present the new class of composite materials. Such CNTs give opportunity to form 1D nanocrystals as well as quantum nanowires with new physical and chemical properties inside the tubes. The present study is aimed to characterize the possible chemical interaction between CuHal (Hal=I, Cl, Br) and SWCNTs in CuHal@SWCNTs and electronic structure of the latter using high-resolution near edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with high-resolution X-ray photoelectron spectroscopy and resonant photoemission spectroscopy. The present study has shown that there is a chemical interaction between the filler and π-electron subsystem of CNTs which is accompanied by changes of the atomic and electronic structure of the filler during the encapsulating it inside CNTs.

  5. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy

    PubMed Central

    Wen, C. H. P.; Xu, H. C.; Chen, C.; Huang, Z. C.; Lou, X.; Pu, Y. J.; Song, Q.; Xie, B. P.; Abdel-Hafiez, Mahmoud; Chareev, D. A.; Vasiliev, A. N.; Peng, R.; Feng, D. L.

    2016-01-01

    FeSe layer-based superconductors exhibit exotic and distinctive properties. The undoped FeSe shows nematicity and superconductivity, while the heavily electron-doped KxFe2−ySe2 and single-layer FeSe/SrTiO3 possess high superconducting transition temperatures that pose theoretical challenges. However, a comprehensive study on the doping dependence of an FeSe layer-based superconductor is still lacking due to the lack of a clean means of doping control. Through angle-resolved photoemission spectroscopy studies on K-dosed thick FeSe films and FeSe0.93S0.07 bulk crystals, here we reveal the internal connections between these two types of FeSe-based superconductors, and obtain superconductivity below ∼46 K in an FeSe layer under electron doping without interfacial effects. Moreover, we discover an exotic phase diagram of FeSe with electron doping, including a nematic phase, a superconducting dome, a correlation-driven insulating phase and a metallic phase. Such an anomalous phase diagram unveils the remarkable complexity, and highlights the importance of correlations in FeSe layer-based superconductors. PMID:26952215

  6. First-principles photoemission spectroscopy in DNA and RNA nucleobases from Koopmans-compliant functionals

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola

    The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.

  7. A study on the antimicrobial efficacy of RF oxygen plasma and neem extract treated cotton fabrics

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Thilagavathi, G.; Rajendran, R.

    2007-06-01

    The paper deals with a thorough investigation on the antimicrobial activity of RF oxygen plasma and Azadirachtin (neem extract) treated cotton fabric. The hydrophilicity of cotton fabric was found to improve when treated with RF oxygen plasma. The process parameters such as electrode gap, time of exposure and oxygen pressure have been varied to study their effect on improving the hydrophilicity of the cotton fabric. The static immersion test has been carried out to assess the hydrophilicity of the oxygen plasma treated samples and the process parameters were optimized based on these test results. The formation of carbonyl group during surface modification in the plasma treated sample was analysed using FTIR studies. The surface morphology has been studied using SEM micrographs. The antimicrobial activity was imparted to the RF oxygen plasma treated samples using methanolic extract of neem leaves containing Azadirachtin. The antimicrobial activity of these samples has been analysed and compared with the activity of the cotton fabric treated with neem extract alone. The investigation reveals that the surface modification due to RF oxygen plasma was found to increase the hydrophilicity and hence the antimicrobial activity of the cotton fabric when treated with Azadirachtin.

  8. Direct detection of density of gap states in C60 single crystals by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Janpeng; Hiramoto, Masahiro; Kaji, Toshihiko; Kera, Satoshi; Ueno, Nobuo

    2015-09-01

    We report on the direct and quantitative evaluation of density of gap states (DOGS) in large-size C60 single crystals by using ultralow-background, high-sensitivity ultraviolet photoemission spectroscopy. The charging of the crystals during photoionization was overcome using photoconduction induced by simultaneous laser irradiation. By comparison with the spectra of as-deposited and gas exposed C60 thin films the following results were found: (i) The DOGS near the highest occupied molecular orbital edge in the C60 single crystals (1019-1021states e V-1c m-3) mainly originates from the exposure to inert and ambient gas atmosphere during the sample preparation, storage, and transfer; (ii) the contribution of other sources of gap states such as structural imperfections at grain boundaries is negligible (<1018states e V-1c m-3) .

  9. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    NASA Astrophysics Data System (ADS)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  10. Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies

    NASA Astrophysics Data System (ADS)

    A, K. MANDAL; R, K. DISHWAR; O, P. SINHA

    2018-03-01

    The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace (TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K (200 °C) melt temperature and noise levels decreased by ∼10 dB compared to a normal arc. Hydrogen plasma offered 100 K (100 °C) higher melt temperature with ∼5 dB higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.

  11. Time-dependent many-body treatment of electron-boson dynamics: Application to plasmon-accompanied photoemission

    NASA Astrophysics Data System (ADS)

    Schüler, M.; Berakdar, J.; Pavlyukh, Y.

    2016-02-01

    Recent experiments access the time-resolved photoelectron signal originating from plasmon satellites in correlated materials and address their buildup and decay in real time. Motivated by these developments, we present the Kadanoff-Baym formalism for the nonequilibrium time evolution of interacting fermions and bosons. In contrast to the fermionic case, the bosons are described by second-order differential equations. Solution of the bosonic Kadanoff-Baym equations—which is the central ingredient of this work—requires substantial modification of the usual two-times electronic propagation scheme. The solution is quite general and can be applied to a number of problems, such as the interaction of electrons with quantized photons, phonons, and other bosonic excitations. Here the formalism is applied to the photoemission from a deep core hole accompanied by plasmon excitation. We compute the time-resolved photoelectron spectra and discuss the effects of intrinsic and extrinsic electron energy losses and their interference.

  12. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Nakamura, A.; Kunii, A.; Kusano, K.; Futagawa, M.

    2015-12-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture.

  13. Spin polarization and magnetic dichroism in photoemission from core and valence states in localized magnetic systems. IV. Core-hole polarization in resonant photoemission

    NASA Astrophysics Data System (ADS)

    van der Laan, Gerrit; Thole, B. T.

    1995-12-01

    A simple theory is presented for core-hole polarization probed by resonant photoemission in a two-steps approximation. After excitation from a core level to the valence shell, the core hole decays into two shallower core holes under emission of an electron. The nonspherical core hole and the final state selected cause a specific angle and spin distribution of the emitted electron. The experiment is characterized by the ground-state moments, the polarization of the light, and the spin and angular distribution of the emitted electron. The intensity is a sum over ground-state expectation values of tensor operators times the probability to create a polarized core hole using polarized light, times the probability for decay of such a core hole into the final state. We give general expressions for the angle- and spin-dependent intensities in various regimes of Coulomb and spin-orbit interaction: LS, LSJ, and jjJ coupling. The core-polarization analysis, which generalizes the use of sum rules in x-ray absorption spectroscopy where the integrated peak intensities give ground-state expectation values of the spin and orbital moment operators, makes it possible to measure different linear combinations of these operators. As an application the 2p3/23p3p decay in ferromagnetic nickel is calculated using Hartree-Fock values for the radial matrix elements and phase factors, and compared with experiment, the dichroism is smaller in the 3P final state but stronger in the 1D, 1S peak.

  14. Monodispersed fabrication and dielectric studies on ethylenediamine passivated α-manganese dioxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, A. Martin; Kumar, R. Thilak, E-mail: manojthilak@yahoo.com

    2016-09-15

    Highlights: • Monodispersed ethylenediamine (EDA) passivated α-MnO{sub 2} nanorods were fabricated by inexpensive wet chemical method. • FTIR analysis indicated that surface passivation is strongly influenced by the introduction of the organic ligand. • XRD and HR-SEM revealed the structure and morphology of the fabricated α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. • Dielectric studies pointed out that the fabricated α-MnO{sub 2} is semiconducting in nature with resistivity, ρ = 1.46 to 5.76 × 10{sup 3} Ωcm. • The optical energy gap for the fabricated α-MnO{sub 2} nanorods is found to be around 1.37more » eV. - Abstract: In this present work, pure α-MnO{sub 2} nanorods were fabricated by the reduction of 0.2 m/L of KMnO{sub 4} with 0.2 m/L of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O and by passivating with the organic ligand Ethylenediamine (EDA). The structural, functional, morphological and chemical composition of the nanorods were investigated by X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometer (FTIR), High Resolution Scanning Electron Microscope (HR-SEM) and Energy Dispersive X-Ray Spectrometry (EDX). The XRD analysis indicated high crystalline nature of the product and FTIR confirmed the contribution of the organic ligand in surface passivation. HR-SEM image revealed the morphology of the α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. EDX confirmed the presence of Mn and O in the material. UV–visible spectrophotometery was used to determine the absorption behavior of the nanorods and an indirect band gap of 1.37 eV was acquired by Taucplot. Dielectric studies were carried out using Broadband Dielectric Spectrometer(BDS) and the resistivity was found to be around the semiconductor range (ρ = 1.46 to 5.76 × 10{sup 3} Ωcm).« less

  15. Transition from the adiabatic to the sudden limit in core-level photoemission: A model study of a localized system

    NASA Astrophysics Data System (ADS)

    Lee, J. D.; Gunnarsson, O.; Hedin, L.

    1999-09-01

    We consider core electron photoemission in a localized system, where there is a charge transfer excitation. Examples are transition metal and rare earth compounds, chemisorption systems, and high-Tc compounds. The system is modeled by three electron levels, one core level, and two outer levels. In the initital state the core level and one outer level is filled (a spinless two-electron problem). This model system is embedded in a solid state environment, and the implications of our model system results for solid state photoemission are discussed. When the core hole is created, the more localized outer level (d) is pulled below the less localized level (L). The spectrum has a leading peak corresponding to a charge transfer between L and d (``shakedown''), and a satellite corresponding to no charge transfer. The model has a Coulomb interaction between these levels and the continuum states into which the core electron is emitted. The model is simple enough to allow an exact numerical solution, and with a separable potential an analytic solution. Analytic results are also obtained in lowest order perturbation theory, and in the high-energy limit of the semiclassical approximation. We calculate the ratio r(ω) between the weights of the satellite and the main peak as a function of the photon energy ω. The transition from the adiabatic to the sudden limit is found to take place for quite small kinetic energies of the photoelectron. For such small energies, the variation of the dipole matrix elements is substantial and described by the energy scale E~d. Without the coupling to the photoelectron, the corresponding ratio r0(ω) shows a smooth turn-on of the satellite intensity, due to the turn on of the dipole matrix element. The characteristic energy scales are E~d and the satellite excitation energy δE. When the interaction potential with the continuum states is introduced an energy scale E~s=1/(2R~2s) enters, where R~s is a length scale of the interaction (scattering

  16. Nuclear Fabrication Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectivelymore » engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication

  17. Study for fabrication, evaluation, and testing of monolayer woven type materials for space suit insulation

    NASA Technical Reports Server (NTRS)

    Merrick, E. B.

    1979-01-01

    An alternative space suit insulation concept using a monolayer woven pile material is discussed. The material reduces cost and improves the durability of the overgarment, while providing protection similar to that provided by multilayer insulation (MLI). Twelve samples of different configurations were fabricated and tested for compressibility and thermal conductivity as a function of compression loading. Two samples which showed good results in the initial tests were further tested for thermal conductivity with respect to ambient pressure and temperature. Results of these tests were similar to results of the MLI tests, indicating the potential of the monolayer fabric to replace the present MLI. A seaming study illustrated that the fabric can be sewn in a structurally sound seam with minimal heat loss. It is recommended that a prototype thermal meteroid garment be fabricated.

  18. Study the relation between the yarn pulling force and the bursting strength of single jersey knitted fabric

    NASA Astrophysics Data System (ADS)

    El-Tarfawy, S. Y.

    2017-10-01

    There are various methods to evaluate knitted fabric’s properties; the yarn pulling force is a suitable experimental method to investigate the properties of single jersey knitted fabric.In this study, a frame is attached to the electronic tensile strength tester to fix different single jersey knitted fabrics with different dimensional properties. A hook is connected to the upper load cell in the tensile tester to ravel the first upper course then records the values of the yarn pulling force. In addition to that, the effect of the loop length, yarn count, and raw material on yarn pulling force and specific fabric bursting strength are studied. It is concluded that yarn pulling force has a significant relation with specific fabric bursting strength.

  19. Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, C.; Richter, M.; Tallarida, M.; Schmeisser, D.

    2016-07-01

    The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2 ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs.

  20. ELECTROSTATIC EFFECTS IN FABRIC FILTRATION: VOLUME I. FIELDS, FABRICS, AND PARTICLES. (ANNOTATED DATA)

    EPA Science Inventory

    The report examines the effect of particle charge and electric fields on the filtration of dust by fabrics. Both frictional charging and charging by corona are studied. Charged particles and an electric field driving particles toward the fabric can greatly reduce the initial pres...

  1. Resonant inelastic x-ray scattering and photoemission measurement of O2: Direct evidence for dependence of Rydberg-valence mixing on vibrational states in O 1s → Rydberg states

    NASA Astrophysics Data System (ADS)

    Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.

    2017-07-01

    High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.

  2. Characterization of surface modified polyester fabric.

    PubMed

    Joseph, Roy; Shelma, R; Rajeev, A; Muraleedharan, C V

    2009-12-01

    Woven polyethylene terephthalate (PET) fabric has been used in the construction of vascular grafts and sewing ring of prosthetic heart valves. In an effort to improve haemocompatibility and tissue response to PET fabric, a fluoropolymer, polyvinylidine fluoride (PVDF), was coated on PET fabric by dip coating technique. The coating was found to be uniform and no significant changes occurred on physical properties such as water permeability and burst strength. Cell culture cytotoxicity studies showed that coated PET was non-cytotoxic to L929 fibroblast cell lines. In vitro studies revealed that coating improved haemocompatibility of PET fabric material. Coating reduced platelet consumption of PET fabric by 50%. Upon surface modification leukocyte consumption of PET was reduced by 24%. About 60% reduction in partial thromboplastin time (PTT) observed when PET was coated with PVDF. Results of endothelial cell proliferation studies showed that surface coating did not have any substantial impact on cell proliferation. Overall results indicate that coating has potential to improve haemocompatibility of PET fabric without affecting its mechanical performance.

  3. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  4. Fabric opto-electronics enabling healthcare applications; a case study.

    PubMed

    van Pieterson, L; van Abeelen, F A; van Os, K; Hornix, E; Zhou, G; Oversluizen, G

    2011-01-01

    Textiles are a ubiquitous part of human life. By combining them with electronics to create electronic textile systems, new application fields emerge. In this paper, technology and applications of light-emitting textile systems are presented, with emphasis on the healthcare domain: A fabric substrate is described for electronic textile with robust interwoven connections between the conductive yarns in it. This fabric enables the creation of different forms of comfortable light therapy systems. Specific challenges to enable this use in medical applications are discussed.

  5. Angle-resolved photoemission observation of Mn-pnictide hybridization and negligible band structure renormalization in BaMn 2 As 2 and BaMn 2 Sb 2

    DOE PAGES

    Zhang, W. -L.; Richard, P.; van Roekeghem, A.; ...

    2016-10-31

    We performed an angle-resolved photoemission spectroscopy study of BaMn 2As 2 and BaMn 2Sb 2, which are isostructural to the parent compound BaFe 2As 2 of the 122 family of ferropnictide superconductors. We show the existence of a strongly k z-dependent band gap with a minimum at the Brillouin zone center, in agreement with their semiconducting properties. Despite the half filling of the electronic 3d shell, we show that the band structure in these materials is almost not renormalized from the Kohn-Sham bands of density functional theory. Finally, our photon-energy-dependent study provides evidence for Mn-pnictide hybridization, which may play amore » role in tuning the electronic correlations in these compounds.« less

  6. Comparison of marginal and internal adaptation of copings fabricated from three different fabrication techniques: An in vitro study.

    PubMed

    Arora, Aman; Yadav, Avneet; Upadhyaya, Viram; Jain, Prachi; Verma, Mrinalini

    2018-01-01

    The purpose of this study was to compare the marginal and internal adaptation of cobalt-chromium (Co-Cr) copings fabricated from conventional wax pattern, three-dimensional (3D)-printed resin pattern, and laser sintering technique. A total of thirty copings were made, out of which ten copings were made from 3D-printed resin pattern (Group A), ten from inlay wax pattern (Group B), and ten copings were obtained from direct metal laser sintering (DMLS) technique (Group C). All the thirty samples were seated on their respective dies and sectioned carefully using a laser jet cutter and were evaluated for marginal and internal gaps at the predetermined areas using a stereomicroscope. The values were then analyzed using one-way ANOVA test and post hoc Bonferroni test. One-way ANOVA showed lowest mean marginal discrepancy for DMLS and highest value for copings fabricated from inlay wax. The values for internal discrepancy were highest for DMLS (169.38) and lowest for 3D-printed resin pattern fabricated copings (133.87). Post hoc Bonferroni test for both marginal and internal discrepancies showed nonsignificant difference when Group A was compared to Group B ( P > 0.05) and significant when Group A was compared with Group C ( P < 0.05). Group B showed significant difference ( P < 0.05) when compared with Group C. Marginal and internal discrepancies of all the three casting techniques were within clinically acceptable values. Marginal fit of DMLS was superior as compared to other two techniques, whereas when internal fit was evaluated, conventional technique showed the best internal fit.

  7. Application of Statistical Quality Control Techniques to Detonator Fabrication: Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J. Frank

    1971-05-20

    A feasibility study was performed on the use of process control techniques which might reduce the need for a duplicate inspection by production inspection and quality control inspection. Two active detonator fabrication programs were selected for the study. Inspection areas accounting for the greatest percentage of total inspection costs were selected by applying "Pareto's Principle of Maldistribution." Data from these areas were then gathered and analyzed by a process capabiltiy study.

  8. Experimental band structure of potassium as measured by angle-resolved photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itchkawitz, B.S.; Lyo, I.; Plummer, E.W.

    1990-04-15

    The bulk band structure of potassium along the (110) direction was measured using angle-resolved photoemission from an epitaxial potassium film several thousand angstroms thick grown on a Ni(100) substrate. We find the occupied bandwidth to be 1.60{plus minus}0.05 eV, which is narrower than the free-electron bandwidth of 2.12 eV and agrees with recent calculations of the quasiparticle self-energy. A narrow peak near the Fermi level which did not disperse with photon energy was observed for photon energies which, according to the nearly-free-electron model, should yield no direct transitions. A comparison of the binding energy and intensity of the anomalous peakmore » as functions of photon energy is made to the calculations of Shung and Mahan (Phys. Rev. B 38, 3856 (1988)). The discrepancies found are discussed in terms of an enhanced surface photoeffect in the photon energy range 20{le}{h bar}{omega}{le}30 eV. For low photon energies, a bulk peak was also observed due to a surface umklapp process with an intensity comparable to the standard bulk (110) peak. The possible contributions to this strong surface umklapp process from a shear instability at the first few (110) atomic planes is discussed.« less

  9. The characterization of Cr secondary oxide phases in ZnO films studied by X-ray spectroscopy and photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiou, J. W.; Chang, S. Y.; Huang, W. H.; Chen, Y. T.; Hsu, C. W.; Hu, Y. M.; Chen, J. M.; Chen, C.-H.; Kumar, K.; Guo, J.-H.

    2011-03-01

    X-ray absorption near-edge structure (XANES), X-ray emission spectroscopy (XES), and X-ray photoemission spectroscopy (XPS) were used to characterize the Cr secondary oxide phases in ZnO films that had been prepared using a co-sputtering method. Analysis of the Cr L3,2-edge XANES spectra reveals that the intensity of white-line features decreases subtly as the sputtering power increases, indicating that the occupation of Cr 3 d orbitals increases with Cr concentration in (Zn, Cr)O films. The O K-edge spectra show that the intensity of XANES features of (Zn, Cr)O films is lower than those of ZnO film, suggesting enhanced occupation of O 2 p-derived states through O 2 p-Cr 3 d hybridization. The XES and XPS spectra indicate that the line shapes in the valence band of (Zn, Cr)O films are quite different from those of ZnO and that the Cr 2O 3 phase dominates the spinel structure of (Zn, Cr)O films increasingly as the Cr sputtering power is increased. Over all results suggest that the non-ferromagnetic behavior of (Zn, Cr)O films can be attributed to the dominant presence of Cr 2O 3, whereas the bulk comprise phase segregations of Cr 2O 3 and/or ZnCr 2O 4, which results them the most stable TM-doped ZnO material against etching.

  10. Suspended sub-50 nm vanadium dioxide membrane transistors: fabrication and ionic liquid gating studies

    NASA Astrophysics Data System (ADS)

    Sim, Jai S.; Zhou, You; Ramanathan, Shriram

    2012-10-01

    We demonstrate a robust lithographic patterning method to fabricate self-supported sub-50 nm VO2 membranes that undergo a phase transition. Utilizing such self-supported membranes, we directly observed a shift in the metal-insulator transition temperature arising from stress relaxation and consistent opening of the hysteresis. Electric double layer transistors were then fabricated with the membranes and compared to thin film devices. The ionic liquid allowed reversible modulation of channel resistance and distinguishing bulk processes from the surface effects. From the shift in the metal-insulator transition temperature, the carrier density doped through electrolyte gating is estimated to be 1 × 1020 cm-3. Hydrogen annealing studies showed little difference in resistivity between the film and the membrane indicating rapid diffusion of hydrogen in the vanadium oxide rutile lattice consistent with previous observations. The ability to fabricate electrically-wired, suspended VO2 ultra-thin membranes creates new opportunities to study mesoscopic size effects on phase transitions and may also be of interest in sensor devices.

  11. Electronic anisotropies revealed by detwinned angle-resolved photo-emission spectroscopy measurements of FeSe

    NASA Astrophysics Data System (ADS)

    Watson, Matthew D.; Haghighirad, Amir A.; Rhodes, Luke C.; Hoesch, Moritz; Kim, Timur K.

    2017-10-01

    We report high resolution angle-resolved photo-emission spectroscopy (ARPES) measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80 % detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90 K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer a axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along b being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.

  12. Photoemission from buried interfaces in SrTiO3/LaTiO3 superlattices.

    PubMed

    Takizawa, M; Wadati, H; Tanaka, K; Hashimoto, M; Yoshida, T; Fujimori, A; Chikamatsu, A; Kumigashira, H; Oshima, M; Shibuya, K; Mihara, T; Ohnishi, T; Lippmaa, M; Kawasaki, M; Koinuma, H; Okamoto, S; Millis, A J

    2006-08-04

    We have measured photoemission spectra of SrTiO3/LaTiO3 superlattices with a topmost SrTiO3 layer of variable thickness. A finite coherent spectral weight with a clear Fermi cutoff was observed at chemically abrupt SrTiO3/LaTiO3 interfaces, indicating that an "electronic reconstruction" occurs at the interface between the Mott insulator LaTiO3 and the band insulator SrTiO3. For SrTiO3/LaTiO3 interfaces annealed at high temperatures (approximately 1000 degrees C), which leads to Sr/La atomic interdiffusion and hence to the formation of La(1-x)Sr(x)TiO3-like material, the intensity of the incoherent part was found to be dramatically reduced whereas the coherent part with a sharp Fermi cutoff was enhanced due to the spread of charge. These important experimental features are well reproduced by layer dynamical-mean-field-theory calculation.

  13. Hidden relationship between the electrical conductivity and the Mn 2p core-level photoemission spectra in La{sub 1-x}Sr{sub x}MnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hishida, T.; Ohbayashi, K.; Saitoh, T.

    2013-01-28

    Core-level electronic structure of La{sub 1-x}Sr{sub x}MnO{sub 3} has been studied by x-ray photoemission spectroscopy (XPS). We first report, by the conventional XPS, the well-screened shoulder structure in Mn 2p{sub 3/2} peak, which had been observed only by hard x-ray photoemission spectroscopy so far. Multiple-peak analysis revealed that the Mn{sup 4+} spectral weight was not proportional to the nominal hole concentration x, indicating that a simple Mn{sup 3+}/Mn{sup 4+} intensity ratio analysis may result in a wrong quantitative elemental analysis. Considerable weight of the shoulder at x = 0.0 and the fact that the shoulder weight was even slightly goingmore » down from x = 0.2 to 0.4 were not compatible with the idea that this weight simply represents the metallic behavior. Further analysis found that the whole Mn 2p{sub 3/2} peak can be decomposed into four portions, the Mn{sup 4+}, the (nominal) Mn{sup 3+}, the shoulder, and the other spectral weight located almost at the Mn{sup 3+} location. We concluded that this weight represents the well-screened final state at Mn{sup 4+} sites, whereas the shoulder is known as that of the Mn{sup 3+} states. We found that the sum of these two spectral weight has an empirical relationship to the conductivity evolution with x.« less

  14. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  15. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  16. Extracting the temperature of hot carriers in time- and angle-resolved photoemission.

    PubMed

    Ulstrup, Søren; Johannsen, Jens Christian; Grioni, Marco; Hofmann, Philip

    2014-01-01

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.

  17. Review of the Theoretical Description of Time-Resolved Angle-Resolved Photoemission Spectroscopy in Electron-Phonon Mediated Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemper, A. F.; Sentef, M. A.; Moritz, B.

    Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less

  18. Scanning-tunneling-microscopy-active empty states on the (benzene + CO)/Rh(111) surface investigated by inverse photoemission

    NASA Astrophysics Data System (ADS)

    Netzer, Falko P.; Frank, Karl-Heinz

    1989-09-01

    The unoccupied electronic states of the benzene + CO coadsorption system on Rh(111) have been investigated by inverse photoemission spectroscopy. The benzene and CO derived lowest unoccupied molecular orbitals (e2u and b2g for benzene and 2π* for CO) have been identified in the region 2.3-6.5 eV above the Fermi level. For the ordered (3×3) benzene + CO surface indications of enhanced density of states (DOS) within 0.5 eV of the Fermi level are found. This enhancement of the DOS may be associated with hybridized metal-benzene states, which have been invoked to be involved in the imaging process of the molecular entities in a recent scanning-tunneling-microscopy investigation of this system.

  19. Review of the Theoretical Description of Time-Resolved Angle-Resolved Photoemission Spectroscopy in Electron-Phonon Mediated Superconductors

    DOE PAGES

    Kemper, A. F.; Sentef, M. A.; Moritz, B.; ...

    2017-07-13

    Here. we review recent work on the theory for pump/probe photoemission spectroscopy of electron-phonon mediated superconductors in both the normal and the superconducting states. We describe the formal developments that allow one to solve the Migdal-Eliashberg theory in nonequilibrium for an ultrashort laser pumping field, and explore the solutions which illustrate the relaxation as energy is transferred from electrons to phonons. We also focus on exact results emanating from sum rules and approximate numerical results which describe rules of thumb for relaxation processes. Additionally, in the superconducting state, we describe how Anderson-Higgs oscillations can be excited due to the nonlinearmore » coupling with the electric field and describe mechanisms where pumping the system enhances superconductivity.« less

  20. Electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7 - delta interfaces as studied by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dessau, D. S.; Shen, Z.-X.; Wells, B. O.; Spicer, W. E.; List, R. S.; Arko, A. J.; Bartlett, R. J.; Fisk, Z.; Cheong, S.-W.; Mitzi, D. B.; Kapitulnik, A.; Schirber, J. E.

    1990-07-01

    High-resolution photoemission has been used to probe the electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7-δ interface formed by a low-temperature (20 K) gold evaporation on cleaved high quality single crystals. We find that the metallicity of the EuBa2Cu3O7-δ substrate in the near surface region (˜5 Å) is essentially destroyed by the gold deposition, while the near surface region of Bi2Sr2CaCu2O8 remains metallic. This has potentially wide ranging consequences for the applicability of the different types of superconductors in real devices.

  1. Fermi Surface of Metallic V_{2}O_{3} from Angle-Resolved Photoemission: Mid-level Filling of e_{g}^{π} Bands.

    PubMed

    Lo Vecchio, I; Denlinger, J D; Krupin, O; Kim, B J; Metcalf, P A; Lupi, S; Allen, J W; Lanzara, A

    2016-10-14

    Using angle resolved photoemission spectroscopy, we report the first band dispersions and distinct features of the bulk Fermi surface (FS) in the paramagnetic metallic phase of the prototypical metal-insulator transition material V_{2}O_{3}. Along the c axis we observe both an electron pocket and a triangular holelike FS topology, showing that both V 3d a_{1g} and e_{g}^{π} states contribute to the FS. These results challenge the existing correlation-enhanced crystal field splitting theoretical explanation for the transition mechanism and pave the way for the solution of this mystery.

  2. Fabrication of thermo-responsive cotton fabrics using poly(vinyl caprolactam-co-hydroxyethyl acrylamide) copolymer.

    PubMed

    Xiao, Min; González, Edurne; Monterroza, Alexis Martell; Frey, Margaret

    2017-10-15

    A thermo-responsive polymer with hydrophilic to hydrophobic transition behavior, poly(vinyl caprolactam-co-hydroxyethyl acrylamide) P(VCL-co-HEAA), was prepared by copolymerization of vinyl caprolactam and N-hydroxyethyl acrylamide via free radical solution polymerization. The resulting copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The lower critical solution temperature (LCST) of P(VCL-co-HEAA) was determined at 34.5°C. This thermo-responsive polymer was then grafted onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker and sodium hypophosphite (SHP) as catalyst. FTIR and energy dispersive X-ray spectroscopy (EDS) studies confirmed the successful grafting reaction. The modified cotton fabric exhibited thermo-responsive behavior as evidenced by water vapor permeability measurement confirming decreased permeability at elevated temperature. This is the first demonstration that a PVCL based copolymer is grafted to cotton fabrics. This study provides a new thermo-responsive polymer for fabrication of smart cotton fabrics with thermally switchable hydrophilicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.

    PubMed

    Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C

    2010-02-26

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  4. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    PubMed

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content

  5. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  6. Laser angle-resolved photoemission as a probe of initial state k z dispersion, final-state band gaps, and spin texture of Dirac states in the Bi 2Te 3 topological insulator

    DOE PAGES

    Ärrälä, Minna; Hafiz, Hasnain; Mou, Daixiang; ...

    2016-10-27

    Here, we have obtained angle-resolved photoemission (ARPES) spectra from single crystals of the topological insulator material Bi 2Te 3 using tunable laser spectrometer. The spectra were collected for eleven different photon energies ranging from 5.57 to 6.70 eV for incident light polarized linearly along two different in-plane directions. Parallel first-principles, fully relativistic computations of photo-intensities were carried out using the experimental geometry within the framework of the one-step model of photoemission. Good overall accord between theory and experiment is used to gain insight into how properties of the initial and final state band structures as well as those of themore » topological surface states and their spin-textures are reflected in the laser-ARPES spectra. In conclusion, our analysis reveals that laser-ARPES is sensitive to both the initial state k z dispersion and the presence of delicate gaps in the final state electronic spectrum.« less

  7. Study of properties and development of sensors based on graphene films grown on SiC (0001) by thermal destruction method

    NASA Astrophysics Data System (ADS)

    Lebedev, A. A.; Davydov, V. Y.; Usachov, D. Y.; Lebedev, S. P.; Smirnov, A. N.; Levitskii, V. S.; Eliseyev, I. A.; Alekseev, P. A.; Dunaevskiy, M. S.; Rybkin, A. G.; Novikov, S. N.; Makarov, Yu N.

    2018-01-01

    The structural, chemical, and electronic properties of epitaxial graphene films grown by thermal decomposition of the Si-face of a semi-insulating 6H-SiC substrate in an argon environment are studied by Raman spectroscopy, X-ray photoelectron spectroscopy and angle-resolved photoemission. It was demonstrated the possibility of fabrication of the gas and biosensors that is based on grown graphene films. The gas sensors are sufficiently sensitive to NO2 at low concentrations. The biosensor operation was checked using an immunochemical system comprising fluorescein dye and monoclonal anti fluorescein antibodies. The sensor detects fluorescein concentration on a level of 1-10 ng/mL and bovine serum albumin- fluorescein conjugate on a level of 1-5 ng/mL. The proposed device has good prospects for use for early diagnostics of various diseases.

  8. Studies on Thermal Behaviour of Cotton and Eri/Cotton Blended Fabrics Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Choudhuri, Prabir Kumar

    2018-06-01

    Eri silk fibre, the lone domesticated non-mulberry variety of silk is reported to possess excellent thermal insulation property and the fabrics made of eri silk yarn is popularly used as warmth giving apparels by the people of north-eastern states of India in particular. On the other side, cotton fibre which is comparatively cheaper than eri silk has wide application in making apparel fabrics. This paper deals with the manufacturing of plain woven fabrics made of eri/cotton blended yarn as weft over cotton warp yarn and to conduct an in-depth study on the effect of blend composition and yarn parameters like count (Ne) and amount of twist on its thermal behaviour. The Box and Behnken model of Design of Experiment for three variables and three levels, a popular statistical tool, has been used to study the influence of chosen factors. The fitted regression equation has been found to be linear in nature confirming the presence of independent effect of yarn fineness, twist and eri content in the blended yarn over thermal insulation value of the fabric with strong degree of association. The effects of yarn count, twist and proportion of eri in blends have been well explained using response surface methodology.

  9. Studies on Thermal Behaviour of Cotton and Eri/Cotton Blended Fabrics Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Choudhuri, Prabir Kumar

    2018-04-01

    Eri silk fibre, the lone domesticated non-mulberry variety of silk is reported to possess excellent thermal insulation property and the fabrics made of eri silk yarn is popularly used as warmth giving apparels by the people of north-eastern states of India in particular. On the other side, cotton fibre which is comparatively cheaper than eri silk has wide application in making apparel fabrics. This paper deals with the manufacturing of plain woven fabrics made of eri/cotton blended yarn as weft over cotton warp yarn and to conduct an in-depth study on the effect of blend composition and yarn parameters like count (Ne) and amount of twist on its thermal behaviour. The Box and Behnken model of Design of Experiment for three variables and three levels, a popular statistical tool, has been used to study the influence of chosen factors. The fitted regression equation has been found to be linear in nature confirming the presence of independent effect of yarn fineness, twist and eri content in the blended yarn over thermal insulation value of the fabric with strong degree of association. The effects of yarn count, twist and proportion of eri in blends have been well explained using response surface methodology.

  10. Hard X-ray photoemission study of the Fabre salts (TMTTF)2X (X = SbF6 and PF6)

    NASA Astrophysics Data System (ADS)

    Medjanik, Katerina; de Souza, Mariano; Kutnyakhov, Dmytro; Gloskovskii, Andrei; Müller, Jens; Lang, Michael; Pouget, Jean-Paul; Foury-Leylekian, Pascale; Moradpour, Alec; Elmers, Hans-Joachim; Schönhense, Gerd

    2014-11-01

    Core-level photoemission spectra of the Fabre salts with X = SbF6 and PF6 were taken using hard X-rays from PETRA III, Hamburg. In these salts TMTTF layers show a significant stack dimerization with a charge transfer of 1 e per dimer to the anion SbF6 or PF6. At room temperature and slightly below the core-level spectra exhibit single lines, characteristic for a well-screened metallic state. At reduced temperatures progressive charge localization sets in, followed by a 2nd order phase transition into a charge-ordered ground state. In both salts groups of new core-level signals occur, shifted towards lower kinetic energies. This is indicative of a reduced transverse-conductivity across the anion layers, visible as layer-dependent charge depletion for both samples. The surface potential was traced via shifts of core-level signals of an adsorbate. A well-defined potential could be established by a conducting cap layer of 5 nm aluminum which appears "transparent" due to the large probing depth of HAXPES (8-10 nm). At the transition into the charge-ordered phase the fluorine 1 s line of (TMTTF)2SbF6 shifts by 2.8 eV to higher binding energy. This is a spectroscopic fingerprint of the loss of inversion symmetry accompanied by a cooperative shift of the SbF6 anions towards the more positively charged TMTTF donors. This shift does not occur for the X = PF6 compound, most likely due to smaller charge disproportion or due to the presence of charge disorder.

  11. Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules.

    PubMed

    Umari, P; Fabris, S

    2012-05-07

    The quasi-particle energy levels of the Zn-Phthalocyanine (ZnPc) molecule calculated with the GW approximation are shown to depend sensitively on the explicit description of the metal-center semicore states. We find that the calculated GW energy levels are in good agreement with the measured experimental photoemission spectra only when explicitly including the Zn 3s and 3p semicore states in the valence. The main origin of this effect is traced back to the exchange term in the self-energy GW approximation. Based on this finding, we propose a simplified approach for correcting GW calculations of metal phthalocyanine molecules that avoids the time-consuming explicit treatment of the metal semicore states. Our method allows for speeding up the calculations without compromising the accuracy of the computed spectra.

  12. Some studies to prevent the production of some types of moire effects in fabrics

    NASA Astrophysics Data System (ADS)

    Serrano, Alfonso; Ponce, Rodrigo; Serroukh, Ibrahim

    2004-09-01

    The symmetry concerning the fabric pattern is not always suitable for the quality that we expected from fabric textile. The moire effects produced by a periodic structure may be caused by various and diverse factors as folds, lines, etc. The defect that we are concern is bright and dark fringes appearing in the Nylon Fabric are viewed with necked eye, from a particular angle using white light. To prevent these annoying effects, one should be focusing the research basically on geometrical fabric structure, physical, optical and dyeing. We start this work by an exhaustive study made to obtain enough information in order to identify and analyze the problem in order to identify, explain and prevent it appearance. To realize that we may define the factors that causes the phenomena. Concerning the experimental results, we begin with a conventional experiment called "Flat table examination" using Fluorescent white light bulb as types of illumination. We have used as well a microscope examination. It is useful to inspect the fiber and yarns which may have different characteristics of size and form. The light interaction with the fiber will produce especially kind of reflection and absorption. We finish the work by designing and developing an optical system able not only for detecting those kinds of fringes. As well to allow some defects inspection. We believe that some measurements are necessary during some process of fabrication (dyeing, spinning and knitting), at least to reduce this types of defects.

  13. Evidence for Itinerant Carriers in an Anisotropic Narrow-Gap Semiconductor by Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi

    2018-01-01

    The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fabrication Method Study of ZnO Nanocoated Cellulose Film and Its Piezoelectric Property

    PubMed Central

    Ko, Hyun-U; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Kim, Jaehwan

    2017-01-01

    Recently, a cellulose-based composite material with a thin ZnO nanolayer—namely, ZnO nanocoated cellulose film (ZONCE)—was fabricated to increase its piezoelectric charge constant. However, the fabrication method has limitations to its application in mass production. In this paper, a hydrothermal synthesis method suitable for the mass production of ZONCE (HZONCE) is proposed. A simple hydrothermal synthesis which includes a hydrothermal reaction is used for the production, and the reaction time is controlled. To improve the piezoelectric charge constant, the hydrothermal reaction is conducted twice. HZONCE fabricated by twice-hydrothermal reaction shows approximately 1.6-times improved piezoelectric charge constant compared to HZONCE fabricated by single hydrothermal reaction. Since the fabricated HZONCE has high transparency, dielectric constant, and piezoelectric constant, the proposed method can be applied for continuous mass production. PMID:28772971

  15. Double arch mirror study. Part 3: Fabrication and test report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, glass mirror was developed for infrared, astronomical telescopes such as the Space Infrared Telescope Facility (SIRTF). A 50 cm, fused silica mirror which was previously fabricated was modified for use with a new mount configuration. This mount concept was developed. The modification of the mirror, the fabrication of the mirror mount, and the room temperature testing of the mounted mirror are reported. A design for a SIRTF class primary mirror is suggested.

  16. FabricS: A user-friendly, complete and robust software for particle shape-fabric analysis

    NASA Astrophysics Data System (ADS)

    Moreno Chávez, G.; Castillo Rivera, F.; Sarocchi, D.; Borselli, L.; Rodríguez-Sedano, L. A.

    2018-06-01

    Shape-fabric is a textural parameter related to the spatial arrangement of elongated particles in geological samples. Its usefulness spans a range from sedimentary petrology to igneous and metamorphic petrology. Independently of the process being studied, when a material flows, the elongated particles are oriented with the major axis in the direction of flow. In sedimentary petrology this information has been used for studies of paleo-flow direction of turbidites, the origin of quartz sediments, and locating ignimbrite vents, among others. In addition to flow direction and its polarity, the method enables flow rheology to be inferred. The use of shape-fabric has been limited due to the difficulties of automatically measuring particles and analyzing them with reliable circular statistics programs. This has dampened interest in the method for a long time. Shape-fabric measurement has increased in popularity since the 1980s thanks to the development of new image analysis techniques and circular statistics software. However, the programs currently available are unreliable, old and are incompatible with newer operating systems, or require programming skills. The goal of our work is to develop a user-friendly program, in the MATLAB environment, with a graphical user interface, that can process images and includes editing functions, and thresholds (elongation and size) for selecting a particle population and analyzing it with reliable circular statistics algorithms. Moreover, the method also has to produce rose diagrams, orientation vectors, and a complete series of statistical parameters. All these requirements are met by our new software. In this paper, we briefly explain the methodology from collection of oriented samples in the field to the minimum number of particles needed to obtain reliable fabric data. We obtained the data using specific statistical tests and taking into account the degree of iso-orientation of the samples and the required degree of reliability

  17. Study of properties of modified silicones at solid-liquid interface: fabric-silicone interactions.

    PubMed

    Purohit, P; Somasundaran, P; Kulkarni, R

    2006-06-15

    Silicones are special reagents that impart desired surface properties such as softness, bounciness and antiwrinkle properties to fabrics and related materials. Although these finishing processes have been practiced routinely, very little is known about the mechanisms involved in modification so that they could be improved. The current study was undertaken to develop basic understanding of the mechanisms responsible for surface modification of fibers using silicones. PDMS based amino silicone emulsions, quaternized to various degrees using dimethyl sulphate, were used in the present study. The electrokinetic properties of the modified silicones were studied as a function of pH. It was expected that the silicone emulsions would show a steady positive zeta potential throughout the pH range due to the quaternization by dimethyl sulphate. Surprisingly, a sudden drop in the zeta potential was observed around pH 8 with the samples turning hazy in the pH range of 8-10. Turbidimetric studies also showed a sudden increase in the turbidity in the pH range 8-10 where commercial processes also encounter problems. It was concluded that the emulsions were destabilized at pH 8-10 thus rendering them ineffective for surface treatment. In order to identify reason for the improvement in fabric properties, fiber structure was monitored using atomic force microscopy. It was observed that the treated fibers were far smoother, relaxed and uniform as compared to the untreated fibers. Thus the morphology of the fabric is modified in a specific way by treatment with specialty silicones.

  18. Phonon-assisted indirect transitions in angle-resolved photoemission spectra of graphite and graphene

    NASA Astrophysics Data System (ADS)

    Ayria, Pourya; Tanaka, Shin-ichiro; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Indirect transitions of electrons in graphene and graphite are investigated by means of angle-resolved photoemission spectroscopy (ARPES) with several different incident photon energies and light polarizations. The theoretical calculations of the indirect transition for graphene and for a single crystal of graphite are compared with the experimental measurements for highly-oriented pyrolytic graphite and a single crystal of graphite. The dispersion relations for the transverse optical (TO) and the out-of-plane longitudinal acoustic (ZA) phonon modes of graphite and the TO phonon mode of graphene can be extracted from the inelastic ARPES intensity. We find that the TO phonon mode for k points along the Γ -K and K -M -K' directions in the Brillouin zone can be observed in the ARPES spectra of graphite and graphene by using a photon energy ≈11.1 eV. The relevant mechanism in the ARPES process for this case is the resonant indirect transition. On the other hand, the ZA phonon mode of graphite can be observed by using a photon energy ≈6.3 eV through a nonresonant indirect transition, while the ZA phonon mode of graphene within the same mechanism should not be observed.

  19. High energy dispersion relations for the high temperature Bi2Sr2CaCu2O8 superconductor from laser-based angle-resolved photoemission spectroscopy.

    PubMed

    Zhang, Wentao; Liu, Guodong; Meng, Jianqiao; Zhao, Lin; Liu, Haiyun; Dong, Xiaoli; Lu, Wei; Wen, J S; Xu, Z J; Gu, G D; Sasagawa, T; Wang, Guiling; Zhu, Yong; Zhang, Hongbo; Zhou, Yong; Wang, Xiaoyang; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2008-07-04

    Laser-based angle-resolved photoemission spectroscopy measurements have been carried out on the high energy electron dynamics in Bi2Sr2CaCu2O8 high temperature superconductor. Our superhigh resolution data, momentum-dependent measurements, and complete analysis provide important information to judge the nature of the high energy dispersion and kink. Our results rule out the possibility that the high energy dispersion from the momentum distribution curve (MDC) may represent the true bare band as believed in previous studies. We also rule out the possibility that the high energy kink represents electron coupling with some high energy modes as proposed before. Through detailed MDC and energy distribution curve analyses, we propose that the high energy MDC dispersion may not represent intrinsic band structure.

  20. Fabric circuits and method of manufacturing fabric circuits

    NASA Technical Reports Server (NTRS)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  1. Impact of Fe doping on the electronic structure of SrTiO3 thin films determined by resonant photoemission

    NASA Astrophysics Data System (ADS)

    Kubacki, J.; Kajewski, D.; Goraus, J.; Szot, K.; Koehl, A.; Lenser, Ch.; Dittmann, R.; Szade, J.

    2018-04-01

    Epitaxial thin films of Fe doped SrTiO3 have been studied by the use of resonant photoemission. This technique allowed us to identify contributions of the Fe and Ti originating electronic states to the valence band. Two valence states of iron Fe2+ and Fe3+, detected on the base of x-ray absorption studies spectra, appeared to form quite different contributions to the valence band of SrTiO3. The electronic states within the in-gap region can be attributed to Fe and Ti ions. The Fe2+ originating states which can be connected to the presence of oxygen vacancies form a broad band reaching binding energies of about 0.5 eV below the conduction band, while Fe3+ states form in the gap a sharp feature localized just above the top of the valence band. These structures were also confirmed by calculations performed with the use of the FP-LAPW/APW+lo method including Coulomb correlations within the d shell. It has been shown that Fe doping induced Ti originating states in the energy gap which can be related to the hybridization of Ti and Fe 3d orbitals.

  2. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiede, Christian, E-mail: christian.thiede@uni-muenster.de; Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination,more » temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.« less

  3. Graphene oxide nanostructures modified multifunctional cotton fabrics

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Karthikeyan; Navaneethaiyer, Umasuthan; Mohan, Rajneesh; Lee, Jehee; Kim, Sang-Jae

    2012-06-01

    Surface modification of cotton fabrics using graphene oxide (GO) nanostructures was reported. Scanning electron microscopic (SEM) investigations revealed that the GO nanostructure was coated onto the cotton fabric. The molecular level interaction between the graphene oxide and the cotton fabric is studied in detail using the Fourier transform infra-red (FTIR) spectra. Thermogravimetric analysis (TGA) showed that GO loaded cotton fabrics have enhanced thermal stability compared to the bare cotton fabrics. The photocatalytic activity of the GO-coated cotton fabrics was investigated by measuring the photoreduction of resazurin (RZ) into resorufin (RF) under UV light irradiation. The antibacterial activity was evaluated against both Gram-negative and Gram-positive bacteria and the results indicated that the GO-coated cotton fabrics are more toxic towards the Gram-positive ones. Our results provide a way to develop graphene oxide-based devices for the biomedical applications for improving health care.

  4. Studying and controlling order within nanoparticle monolayers fabricated through electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Krejci, Alexander J.

    Langmuir Blodgett films can be used to create very thin NP films. Templated substrates in combination with spin coating have been used to order blockcopolymers; this could be adapted for NP arrays as well. Some of these techniques can be applied for forming ordered arrays of NPs in two-dimensions, creating nanoparticle monolayers (NPMs), the focus of this work. NPMs are attractive for many applications in devices such as magnetic storage, solar cells, and biosensors. One particularly attractive feature of NPMs is the high surface area to volume ratio of the films. For example, through collaboration, we are investigating PL properties of two monolayers, composed of two different types of NPs, stacked on top of one another. Although challenging, there now are a variety of techniques for the fabrication of NPMs. This dissertation introduces a new process by which one can fabricate monolayers, electrophoretic deposition (EPD). Literature exists on using EPD to fabricate NPMs, but this literature is very limited. One such study deposited films of Au NPs on carbon films and another Pt NPs on carbon films. To the best of our knowledge, only NPMs of metallic NPs on carbon have been fabricated. Of the EPD studies in which NPMs have been fabricated, the technique has not been investigated in depth or has not been generalized for deposition of many types of materials. If NPM formation via EPD could be generalized, the NPMs could be industrially attractive as EPD has many industrially advantageous properties. For instance, EPD is highly versatile in multiple ways: many types of particles can be deposited, the size of the electrodes can be varied over many orders of magnitude, and a large variety of solvents can be used to suspend NPs. For example, our group has deposited materials of different shapes including tubes, sheets, and spheres; different materials such as polymers, metals, semiconductors, and magnetic materials; and on a variety of substrates including steel, silicon

  5. Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver.

    PubMed

    Velmurugan, Palanivel; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Bae, Sunyoung; Oh, Byung-Taek

    2014-06-15

    This study aims to investigate the green synthesis of silver nanoparticles (AgNPs) by Erigeron annuus (L.) pers flower extract as reducing and capping agent, and evaluation of their antibacterial activities for the first time. The obtained product was confirmed by UV-Vis spectrum, high resolution-transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. The optimum AgNPs production was achieved at pH 7, metal silver (Ag(+) ion) concentration of 2.0mM, flower extract concentration 4%, and time 335 min. In addition, the antibacterial activity of cotton fabrics and tanned leather loaded with AgNPs, commercial AgNPs, flower extract, Ag(+) ion and blend of flower extract with AgNPs were evaluated against Gram-positive odor causing bacteria Brevibacterium linens and Staphylococcus epidermidis. The results showed maximum zone of inhibition (ZOI) by the cotton fabrics embedded with blend of flower extract and AgNPs against B. linens. The structure and morphology of cotton fabric and leather samples embedded with AgNPs, Ag(+) ion and blend of flower extract with AgNPs were examined under field emission scanning electron microscope. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A study of secondary fabrics in rocks from the lizard Peninsula and adjacent areas in southwest cornwall, england

    NASA Astrophysics Data System (ADS)

    Rathore, Jaswant Singh

    1980-09-01

    Magnetic susceptibility anisotropy techniques were applied to samples taken in selected areas of the Lizard Peninsula in order to study secondary fabrics due to: (1) the intrusion of granites into sediments; (2) the compression in the sediments to the north of the Lizard thrust boundary; and (3) the intrusion of serpentine into hornblende schists of the Lizard metamorphic block. The magnetic fabric around the Carnmenellis and Godolphin granite masses shows a strong compressional fabric, tending to suggest that the Devonian sediments were compressed radially as the granites intruded them. The high degree of anisotropy observed at the Lizard boundary falls, with increasing distance from the thrust, systematically down to low values in the Devonian sediments. The distinct changes in the fabric parameters at the north end of Church Cove-Landewednack and the southern end of Cadgwith Cove appear to be the remnant secondary fabrics due to the intrusion of serpentine into hornblende schists.

  7. Alkali-metal induced band structure deformation investigated by angle-resolved photoemission spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ito, S.; Feng, B.; Arita, M.; Someya, T.; Chen, W.-C.; Takayama, A.; Iimori, T.; Namatame, H.; Taniguchi, M.; Cheng, C.-M.; Tang, S.-J.; Komori, F.; Matsuda, I.

    2018-04-01

    Alkali-metal adsorption on the surface of materials is widely used for in situ surface electron doping, particularly for observing unoccupied band structures by angle-resolved photoemission spectroscopy (ARPES). However, the effects of alkali-metal atoms on the resulting band structures have yet to be fully investigated, owing to difficulties in both experiments and calculations. Here, we combine ARPES measurements on cesium-adsorbed ultrathin bismuth films with first-principles calculations of the electronic charge densities and demonstrate a simple method to evaluate alkali-metal induced band deformation. We reveal that deformation of bismuth surface bands is directly correlated with vertical charge-density profiles at each electronic state of bismuth. In contrast, a change in the quantized bulk bands is well described by a conventional rigid-band-shift picture. We discuss these two aspects of the band deformation holistically, considering spatial distributions of the electronic states and cesium-bismuth hybridization, and provide a prescription for applying alkali-metal adsorption to a wide range of materials.

  8. Electronic structure of heavy fermion system CePt 2In 7 from angle-resolved photoemission spectroscopy

    DOE PAGES

    Shen, Bing; Yu, Li; Liu, Kai; ...

    2017-06-01

    We have carried out high-resolution angle-resolved photoemission measurements on the Cebased heavy fermion compound CePt 2In 7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn 5. Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt 2In 7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt 2In 7. A comparison of the common features of the electronic structure of CePt 2In 7 and CeCoIn5 indicates that CeCoIn 5 shows a muchmore » stronger band renormalization effect than CePt 2In 7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.« less

  9. Electroencephalographic study showing that tactile stimulation by fabrics of different qualities elicit graded event-related potentials.

    PubMed

    Hoefer, D; Handel, M; Müller, K-M; Hammer, T R

    2016-11-01

    Neurophysiologic data on reactions of the human brain towards tactile stimuli evoked by fabrics moved on the skin are scarce. Furthermore, evaluation of fabrics' pleasantness using questionnaires suffers subjective biases. That is why we used a 64-channel electroencephalography (EEG) to objectively evaluate real-time brain reactions to fabric-skin interactions. Tactile stimuli were triggered by selected fabrics of different qualities, i.e. modal/polyamide single jersey, cotton double rib and a jute fabric, applied hidden to either the palm or forearm of 24 subjects via a custom-made fabric-to-skin applicator called SOFIA. One-way anova analysis was carried out to verify the EEG data. The modal/polyamide fabric applied to the forearm and palm led to slightly stronger emotional valence scores in the brain than the conventional or baseline fabric. Furthermore, the single jersey elicits significant higher event-related potential (ERP) signals in all subjects when applied to the forearm, suggesting less distraction and better cognitive resources during the fabric/skin interaction. The brain thus reacts with instantaneous ERP to tactile stimulation of fabrics and is able to discriminate different qualities via implicit preferences. The test procedure described here may be a tool to evaluate the fabric feel with the exclusion of subjective biases. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials

    DTIC Science & Technology

    2013-06-17

    of the films without having to fabricate capacitors. In addition, the use of X - ray diffraction (XRD) analysis enabled Chikyow et al.40 to identify an...effects of Al doping and annealing on the thermal stabil- ity of the Y2O3/Si gate stack were studied by X - ray photoemission spectroscopy (XPS) and X - ray ...the major diffraction features in the phase distribution. For a given structural phase, the X - ray peak intensity allows one to track the compositional

  11. Microstructure study of direct laser fabricated Ti alloys using powder and wire

    NASA Astrophysics Data System (ADS)

    Wang, Fude; Mei, J.; Wu, Xinhua

    2006-11-01

    A compositionally graded material has been fabricated using direct laser fabrication (DFL). Two types of feedstock were fed simultaneously into the laser focal point, a burn resistant (BurTi) alloy Ti-25V-15Cr-2Al-0.2C powder and a Ti-6Al-4V wire. The local composition of the alloy was changed by altering the ratio of powder to wire by varying the feed rate of the powder whilst maintaining a fixed feed rate of wire-feed. For the range of compositions between about 20% and 100% BurTi only the beta phase was observed and the composition and lattice parameter varied monotonically. The grain size was found to be much finer in these functionally graded samples than in laser fabricated Ti64. Some samples were made using the wire-feed alone, where it was found that the microstructure is different from that found when using powder feed alone. The results are discussed in terms of the power requirements for laser fabrication of powder and wire samples.

  12. Metal-organic semiconductor interfacial barrier height determination from internal photoemission signal in spectral response measurements

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Iyer, S. Sundar Kumar

    2017-04-01

    Accurate and convenient evaluation methods of the interfacial barrier ϕb for charge carriers in metal semiconductor (MS) junctions are important for designing and building better opto-electronic devices. This becomes more critical for organic semiconductor devices where a plethora of molecules are in use and standardised models applicable to myriads of material combinations for the different devices may have limited applicability. In this paper, internal photoemission (IPE) from spectral response (SR) in the ultra-violet to near infra-red range of different MS junctions of metal-organic semiconductor-metal (MSM) test structures is used to determine more realistic MS ϕb values. The representative organic semiconductor considered is [6, 6]-phenyl C61 butyric acid methyl ester, and the metals considered are Al and Au. The IPE signals in the SR measurement of the MSM device are identified and separated before it is analysed to estimate ϕb for the MS junction. The analysis of IPE signals under different bias conditions allows the evaluation of ϕb for both the front and back junctions, as well as for symmetric MSM devices.

  13. Study of Automated Module Fabrication for Lightweight Solar Blanket Utilization

    NASA Technical Reports Server (NTRS)

    Gibson, C. E.

    1979-01-01

    Cost-effective automated techniques for accomplishing the titled purpose; based on existing in-house capability are described. As a measure of the considered automation, the production of a 50 kilowatt solar array blanket, exclusive of support and deployment structure, within an eight-month fabrication period was used. Solar cells considered for this blanket were 2 x 4 x .02 cm wrap-around cells, 2 x 2 x .005 cm and 3 x 3 x .005 cm standard bar contact thin cells, all welded contacts. Existing fabrication processes are described, the rationale for each process is discussed, and the capability for further automation is discussed.

  14. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  15. The study about the improvement of the quality for the fabrics made of chenille yarn

    NASA Astrophysics Data System (ADS)

    Hristian, L.; Ostafe, M. M.; Manea, L. R.; Leon, A. L.

    2016-08-01

    The work is a study about the decrease of the serious defects from the fabrics such as: the deviations from quality or the high costs, discovered and seized by customers. The analyzed fabrics have in their structures three types of different chenille yarns, such as: the Article A1 (viscose fiber with cotton, Nm 3500 dyed coil), the Article A2 (textured polyester, Nm 8000 dyed coil), the Article A3 (Trevira CS polyester, Nm 3000 the pre-dyed raw materials). The technology of chenille yarn, regardless of composition and properties is the same and is performed on the twisting machines. This study has found that the most of the flaws in the fabric, noticed by customers, are caused by the production technology of the chenille yarns. In any organization which makes goods, there are concerns about the improvement of the quality through the elimination of the nonquality. It is extremely difficult to get to “zero defects” but the first step is a systematic action plan to reduce drastically the nonconformities and the defects. The continuous improvement of the effectiveness of the integrated quality and environmental management is achieved by applying the PDCA methodology: planning, development, control, action.

  16. Optical communication with two-photon coherent states. II - Photoemissive detection and structured receiver performance

    NASA Technical Reports Server (NTRS)

    Shapiro, J. H.; Yuen, H. P.; Machado Mata, J. A.

    1979-01-01

    In a previous paper (1978), the authors developed a method of analyzing the performance of two-photon coherent state (TCS) systems for free-space optical communications. General theorems permitting application of classical point process results to detection and estimation of signals in arbitrary quantum states were derived. The present paper examines the general problem of photoemissive detection statistics. On the basis of the photocounting theory of Kelley and Kleiner (1964) it is shown that for arbitrary pure state illumination, the resulting photocurrent is in general a self-exciting point process. The photocount statistics for first-order coherent fields reduce to those of a special class of Markov birth processes, which the authors term single-mode birth processes. These general results are applied to the structure of TCS radiation, and it is shown that the use of TCS radiation with direct or heterodyne detection results in minimal performance increments over comparable coherent-state systems. However, significant performance advantages are offered by use of TCS radiation with homodyne detection. The abstract quantum descriptions of homodyne and heterodyne detection are derived and a synthesis procedure for obtaining quantum measurements described by arbitrary TCS is given.

  17. A pilot study of silver-loaded cellulose fabric with incorporated seaweed for the treatment of atopic dermatitis.

    PubMed

    Park, K Y; Jang, W S; Yang, G W; Rho, Y H; Kim, B J; Mun, S K; Kim, C W; Kim, M N

    2012-07-01

    Because clothing has the longest and most direct contact with human skin, it is important to carefully choose suitable fabrics for atopic patients who have disrupted skin. To evaluate the clinical effectiveness and biophysical properties of a newly developed silver-loaded cellulose fabric with incorporated seaweed, we enrolled 12 subjects with mild to moderate atopic dermatitis into a clinical control study. The subjects wore a two-piece garment (top and leggings), each piece of which was divided into two parts: one side was made of SkinDoctor(®) fabric, and the other of 100% cotton. Treatment efficacy was measured with the modified SCORing Atopic Dermatitis (mSCORAD) index, transepidermal water loss (TEWL) and the patients' subjective impressions. All three of these measures had significantly better scores on the side covered with SkinDoctor. These results suggest that SkinDoctor is a beneficial fabric that can improve the comfort of patients with AD. © The Author(s). CED © 2012 British Association of Dermatologists.

  18. Development Of Methodologies Using PhabrOmeter For Fabric Drape Evaluation

    NASA Astrophysics Data System (ADS)

    Lin, Chengwei

    Evaluation of fabric drape is important for textile industry as it reveals the aesthetic and functionality of the cloth and apparel. Although many fabric drape measuring methods have been developed for several decades, they are falling behind the need for fast product development by the industry. To meet the requirement of industries, it is necessary to develop an effective and reliable method to evaluate fabric drape. The purpose of the present study is to determine if PhabrOmeter can be applied to fabric drape evaluation. PhabrOmeter is a fabric sensory performance evaluating instrument which is developed to provide fast and reliable quality testing results. This study was sought to determine the relationship between fabric drape and other fabric attributes. In addition, a series of conventional methods including AATCC standards, ASTM standards and ISO standards were used to characterize the fabric samples. All the data were compared and analyzed with linear correlation method. The results indicate that PhabrOmeter is reliable and effective instrument for fabric drape evaluation. Besides, some effects including fabric structure, testing directions were considered to examine their impact on fabric drape.

  19. Ultrafast Spin Crossover in [FeII (bpy)3 ]2+ : Revealing Two Competing Mechanisms by Extreme Ultraviolet Photoemission Spectroscopy.

    PubMed

    Moguilevski, Alexandre; Wilke, Martin; Grell, Gilbert; Bokarev, Sergey I; Aziz, Saadullah G; Engel, Nicholas; Raheem, Azhr A; Kühn, Oliver; Kiyan, Igor Yu; Aziz, Emad F

    2017-03-03

    Photoinduced spin-flip in Fe II complexes is an ultrafast phenomenon that has the potential to become an alternative to conventional processing and magnetic storage of information. Following the initial excitation by visible light into the singlet metal-to-ligand charge-transfer state, the electronic transition to the high-spin quintet state may undergo different pathways. Here we apply ultrafast XUV (extreme ultraviolet) photoemission spectroscopy to track the low-to-high spin dynamics in the aqueous iron tris-bipyridine complex, [Fe(bpy) 3 ] 2+ , by monitoring the transient electron density distribution among excited states with femtosecond time resolution. Aided by first-principles calculations, this approach enables us to reveal unambiguously both the sequential and direct de-excitation pathways from singlet to quintet state, with a branching ratio of 4.5:1. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interpreting inverse magnetic fabric in dikes from Eastern Iceland

    NASA Astrophysics Data System (ADS)

    Trippanera, Daniele; Urbani, Stefano; Porreca, Massimiliano; Acocella, Valerio; Kissel, Catherine; Sagnotti, Leonardo; Winkler, Aldo

    2017-04-01

    Since the 70's magnetic fabric analysis has been used to infer magma emplacement in dikes. However, the interpretation of magmatic flow orientation in dikes is often complicated by the occurrence of anomalous (i.e. inverse) magnetic fabric. This latter may either reflect the presence of single-domain (SD) grains or result from peculiar orientation mechanisms of magnetic minerals in magmas of different viscosities. Tertiary dike swarms of extinct volcanic systems in Eastern Iceland represent the ideal case study to clarify the origin of anomalous magnetic fabric. Here we present the results of a multidisciplinary study on dikes belonging to the Alftafjordur volcanic system (Eastern Iceland), including a: (1) structural field study in order to identify kinematic and thermal indicators of dikes; (2) anisotropy of low-field magnetic susceptibility (AMS) analysis, to investigate the magnetic fabric and reconstruct the flow direction of 25 dikes; (3) first order reversal curve (FORC) diagrams and thermomagnetic properties of selected dikes to define the magnetic mineralogy; (4) petrofabric and image analyses at different microscopic scales to investigate the origin of the magnetic fabric and compare the AMS results with mineral texture. Our results show that half of the dikes show a well defined inverse magnetic fabrics (k max orthogonal to the dike margins) and anomalous high anisotropy degrees. Only 7 dikes have a normal magnetic fabric and other 6 dikes have an intermediate magnetic fabric. No clear prevalence of SD grains, which could explain the inverse magnetic fabric, was observed. On the contrary, petrofabric and thermomagnetic analysis reveal the presence of low Ti-content coarse magnetite and high Ti-content elongated magnetite grains as the main contributors to most of the observed magnetic fabrics. In particular, the orientation of the elongated high Ti-content magnetite grains, though usually scattered, is partly comparable with that of the maximum and

  1. DEM study of fabric features governing undrained post-liquefaction shear deformation of sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Rui; Fu, Pengcheng; Zhang, Jian-Min

    In an effort to study undrained post-liquefaction shear deformation of sand, the discrete element method (DEM) is adopted to conduct undrained cyclic biaxial compression simulations on granular assemblies consisting of 2D circular particles. The simulations are able to successfully reproduce the generation and eventual saturation of shear strain through the series of liquefaction states that the material experiences during cyclic loading after the initial liquefaction. Also, DEM simulations with different deviatoric stress amplitudes and initial mean effective stresses on samples with different void ratios and loading histories are carried out to investigate the relationship between various mechanics- or fabric-related variablesmore » and post-liquefaction shear strain development. It is found that well-known metrics such as deviatoric stress amplitude, initial mean effective stress, void ratio, contact normal fabric anisotropy intensity, and coordination number, are not adequately correlated to the observed shear strain development and, therefore, could not possibly be used for its prediction. A new fabric entity, namely the Mean Neighboring Particle Distance (MNPD), is introduced to reflect the space arrangement of particles. It is found that the MNPD has an extremely strong and definitive relationship with the post-liquefaction shear strain development, showing MNPD’s potential role as a parameter governing post-liquefaction behavior of sand.« less

  2. DEM study of fabric features governing undrained post-liquefaction shear deformation of sand

    DOE PAGES

    Wang, Rui; Fu, Pengcheng; Zhang, Jian-Min; ...

    2016-10-05

    In an effort to study undrained post-liquefaction shear deformation of sand, the discrete element method (DEM) is adopted to conduct undrained cyclic biaxial compression simulations on granular assemblies consisting of 2D circular particles. The simulations are able to successfully reproduce the generation and eventual saturation of shear strain through the series of liquefaction states that the material experiences during cyclic loading after the initial liquefaction. Also, DEM simulations with different deviatoric stress amplitudes and initial mean effective stresses on samples with different void ratios and loading histories are carried out to investigate the relationship between various mechanics- or fabric-related variablesmore » and post-liquefaction shear strain development. It is found that well-known metrics such as deviatoric stress amplitude, initial mean effective stress, void ratio, contact normal fabric anisotropy intensity, and coordination number, are not adequately correlated to the observed shear strain development and, therefore, could not possibly be used for its prediction. A new fabric entity, namely the Mean Neighboring Particle Distance (MNPD), is introduced to reflect the space arrangement of particles. It is found that the MNPD has an extremely strong and definitive relationship with the post-liquefaction shear strain development, showing MNPD’s potential role as a parameter governing post-liquefaction behavior of sand.« less

  3. Fabrication of PDMS architecture

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    The study report novel, yet simple and flexible fabrication method for micro channel patterning PDMS thin mold on glass surfaces, the method allows microstructures with critical dimensions to be formed using PDMS. Micro channel production is a two-step process. First, soft photolithography methods are implemented to fabricate a reusable mold. The mold is then used to create the micro channel, which consists of SU8, PDMS and glass. The micro channel design was performed using AutoCAD and the fabrication begins by creating a replicable mold. The mold is created on a glass slide. by spin-coating speed between 500 to 1250rpm with an acceleration of 100 rpm/s for 100 and 15 second ramp up and down speed respectively. Channel flow rate based on concentration were measured by analyzing the recorded flow profiles which was collected from the high powered microscope at. 80µ, 70µm, 50µm for inlet channel 1, 2, 3 respectively the channel flow were compared for flow efficiency at different concentrations and Re. Thus, the simplicity of device structure and fabrication makes it feasible to miniaturize it for the development of point-of-care kits, facilitating its use in both clinical and non-clinical environments. With its simple geometric structure and potential for mass commercial fabrication, the device can be developed to become a portable photo detection sensor that can be use for both environmental and diagnostic application.

  4. Hydrophobic Surface Modification of Silk Fabric Using Plasma-Polymerized Hmdso

    NASA Astrophysics Data System (ADS)

    Rani, K. Vinisha; Chandwani, Nisha; Kikani, Purvi; Nema, S. K.; Sarma, Arun Kumar; Sarma, Bornali

    In this work, we study the hydrophobic properties of silk fabrics by deposition of plasma-polymerized (pp) hexamethyldisiloxane (HMDSO) using low-pressure plasma-enhanced chemical vapor deposition. Recently, hydrophobic properties are under active research in textile industry. The effects of coating time and power on the HMDSO-coated silk fabrics are investigated. Water contact angle of pp-HMDSO-coated silk fabric surface is measured as a function of power and coating time. Fabric surface shows an enhancement in hydrophobicity after coating. Attenuated total reflectance-Fourier transform infrared spectroscopy reveals the surface chemistry, and scanning electron microscopy shows the surface morphology of the uncoated and HMDSO-coated fabrics, respectively. In the case of uncoated fabric, water droplet absorbs swiftly, whereas in the case of HMDSO-coated fabric, water droplet remains on the fabric surface with a maximum contact angle of 140∘. The HMDSO-deposited silk surface is found to be durable after detergent washing. Common stains such as ink, tea, milk, turmeric and orange juice are tested on the surface of both fabrics. In HMDSO-coated fabrics, all the stains are bedded like ball droplet. In order to study the self-cleaning property, the fabric is tilted to 45∘ angle; stain droplets easily roll off from the fabric.

  5. An innovative method of ocular prosthesis fabrication by bio-CAD and rapid 3-D printing technology: A pilot study.

    PubMed

    Alam, Md Shahid; Sugavaneswaran, M; Arumaikkannu, G; Mukherjee, Bipasha

    2017-08-01

    Ocular prosthesis is either a readymade stock shell or custom made prosthesis (CMP). Presently, there is no other technology available, which is either superior or even comparable to the conventional CMP. The present study was designed to fabricate ocular prosthesis using computer aided design (CAD) and rapid manufacturing (RM) technology and to compare it with custom made prosthesis (CMP). The ocular prosthesis prepared by CAD was compared with conventional CMP in terms of time taken for fabrication, weight, cosmesis, comfort, and motility. Two eyes of two patients were included. Computerized tomography scan of wax model of socket was converted into three dimensional format using Materialize Interactive Medical Image Control System (MIMICS)software and further refined. This was given as an input to rapid manufacturing machine (Polyjet 3-D printer). The final painting on prototype was done by an ocularist. The average effective time required for fabrication of CAD prosthesis was 2.5 hours; and weight 2.9 grams. The same for CMP were 10 hours; and 4.4 grams. CAD prosthesis was more comfortable for both the patients. The study demonstrates the first ever attempt of fabricating a complete ocular prosthesis using CAD and rapid manufacturing and comparing it with conventional CMP. This prosthesis takes lesser time for fabrication, and is more comfortable. Studies with larger sample size will be required to further validate this technique.

  6. Study of natural organic dyes as active material for fabrication of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sánchez Juárez, A.; Castillo, D.; Guaman, A.; Espinosa, S.; Obregón, D.

    2016-09-01

    The scientific community and some sectors of industry have been working with organic dyes for successful applications in OLED's, OSC's, however, most of the used dyes and pigments are synthetic. In this work is investigated the use of natural dyes for its application in organic light emitting diodes, some of the studied species are chili, blackberry, guayacan flower, cochinilla, tree tomato, capuli, etc. In this study the dyes are deposited by direct deposition and SOL-GEL process doped with the natural organic dye, both methods show good performance and lower fabrication costs for dye extraction, this represents a new alternative for the fabrication of OLED devices with low requirements in technology. Most representative results are presented for Dactylopius Coccus Costa (cochinilla) and raphanus sativus' skin.

  7. Transition from the adiabatic to the sudden limit in core-electron photoemission

    NASA Astrophysics Data System (ADS)

    Hedin, Lars; Michiels, John; Inglesfield, John

    1998-12-01

    Experimental results for core-electron photoemission Jk(ω) are often compared with the one-electron spectral function Ac(ɛk-ω), where ω is the photon energy, ɛk is the photoelectron energy, and the optical transition matrix elements are taken as constant. Since Jk(ω) is nonzero only for ɛk>0, we must actually compare it with Ac(ɛk-ω)θ(ɛk). For metals Ac(ω) is known to have a quasiparticle (QP) peak with an asymmetric power-law [theories of Mahan, Nozières, de Dominicis, Langreth, and others (MND)] singularity due to low-energy particle-hole excitations. The QP peak starts at the core-electron energy ɛc, and is followed by an extended satellite (shakeup) structure at smaller ω. For photon energies ω just above threshold, ωth=-ɛc, Ac(ɛk-ω)θ(ɛk) as a function of ɛk (ω constant) is cut just behind the quasiparticle peak, and neither the tail of the MND line nor the plasmon satellites are present. The sudden (high-energy) limit is given by a convolution of Ac(ω) and a loss function, i.e., by the Berglund-Spicer two-step expression. Thus Ac(ω) alone does not give the correct photoelectron spectrum, neither at low nor at high energies. We present an extension of the quantum-mechanical (QM) models developed earlier by Inglesfield, and by Bardyszewski and Hedin to calculate Jk(ω). It includes recoil and damping, as well as shakeup effects and extrinsic losses, is exact in the high-energy limit, and allows calculations of Jk(ω) including the MND line and multiple plasmon losses. The model, which involves electrons coupled to quasibosons, is motivated by detailed arguments. As an illustration we have made quantitative calculations for a semi-infinite jellium with the density of aluminum metal and an embedded atom. The coupling functions (fluctuation potentials) between the electron and the quasibosons are related to the random-phase-approximation dielectric function, and different levels of approximations are evaluated numerically. The differences

  8. Studies on fabrication of glass fiber reinforced composites using polymer blends

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Kachhia, P. H.; Patel, S. N.; Rathod, S. T.; Valand, J. K.

    2018-05-01

    Glass fiber reinforced PVC/NBR composites have been fabricated via hot compression moulding process. PVC is brittle in nature and thus lower thermal stability. Therefore, to improve the toughness of PVC, NBR was incorporated in certain proportions. As both are polar and thus they are compatible. To improve the strength property further, these blends were used to fabricate glass fiber reinforced composites. SEM micrograph shows good wettability of the blend with glass fibers resulting in proper bonding which increase the strength of the composites.

  9. Study on the fabrication of composite photonic crystals with high structural stability by co-sedimentation self-assembly on fabric substrates

    NASA Astrophysics Data System (ADS)

    Li, Yichen; Zhou, Lan; Liu, Guojin; Chai, Liqin; Fan, Qinguo; Shao, Jianzhong

    2018-06-01

    The Silica/Poly(methylmethacrylate-butylacrylate)[SiO2/P(MMA-BA)] photonic crystals(PCs) with brilliant structural colors were fabricated on fabric substrates by co-sedimentation self-assembly, in which the relatively smaller P(MMA-BA) copolymer particles filled in the interstices among the larger SiO2 microspheres. The fabricated composite PCs were mechanically robust and strongly bonded to the substrate because of the cementing effect caused by the soft P(MMA-BA) copolymer particles filling in the interstices of the SiO2 microspheres like cement filling in the gap and tightly holding stones in a sturdy cement wall. The volume fraction and the size ratios of the two components significantly influenced the structural colors of the composite PCs, and the larger volume fraction could improve the structural stability of the composite PCs, while the smaller size ratios could enhance the brightness of the structural colors of the composite PCs. The composite PCs with both high structural stability and brilliant structural colors have great application prospect for structural coloration of textiles.

  10. Preparation and dyeing of super hydrophilic polyethylene terephthalate fabric

    NASA Astrophysics Data System (ADS)

    Zheng, D. D.; Zhou, J. F.; Xu, F.; Zhang, F. X.; Zhang, G. X.

    2016-07-01

    In this study, the dyeing properties of PET fabrics modified with sulfuric acid was investigated using disperse red E-4B and disperse blue 2BLNG-L at high temperature and high pressure. The results revealed that the sulfuric acid modification improved the K/S value of dyeing PET fabrics, and the modified PET fabric could be dyed uniformly. The a, b, C, L and H of modified PET fabric were almost the same as that of original PET fabric. The water contact angles were still 0o after 10s, indicating that the hydrophilic property of modified PET fabrics still kept excellent. The wash fastness of dyed PET fabrics after modification was generally good.

  11. orbital selective correlation reduce in collapse tetragonal phase of CaFe2(As0.935P0.065)2 and electronic structure reconstruction studied by angel resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Lingkun

    We performed an angle-resolved photoemission spectroscopy (ARPES) study of the CaFe2(As0.935P0.065)2 in the collapse tetragonal(CT) phase and uncollapse tetragonal(UCT) phase. We find in the CT phase the electronic correlation dramatically reduces respective to UCT phase. Meanwhile, the reduction of correlation in CT phase show an orbital selective effect: correlation in dxy reduces the most, and then dxz/yz, while the one in dz2-r2 almost keeps the same. In CT phase, almost all bands sink downwards to higher binding energy, leading to the hole like bands around Brillouin zone(BZ) center sink below EF compared with UCT phase. However, the electron pocket around Brillouin Zone(BZ) corner(M) in UCT phase, forms a hole pocket around BZ center(Z point) in CT phase. Moreover, the dxy exhibits larger movement down to higher binding energy, resulting in farther away from dyz/xz and closer to dxy.We propose the electron filling ,namely high spin state in UCT phase to low spin state in CT phase(due to competing between crystal structure field and Hund's coupling), other than the Fermi surface nesting might be responsible for the absent of magnetic ordering.

  12. Silk fabric dyed with extract of sophora flower bud.

    PubMed

    Yan, Su; Pan, Shanshan; Ji, Junling

    2018-02-01

    This study analysed the use of sophora flower bud extract for dyeing and the resulting colour character and fastness of dyed silk fabric. The pigment composition on the silk fabric and recycling of this extract were also studied. The results indicated that the dyed silk fabric possessed good washing, rubbing and perspiration fastness, and the pigment composition on the silk fabric was mainly rutin and quercetin. The average recovery rate of the dye was 55.00%. These results demonstrate that the sophora flower bud extract is an effective natural dye.

  13. Study on the Fabrication and Characterization of Piezoelectric Paper Made With Cellulose

    DTIC Science & Technology

    2008-10-07

    alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21:2034-2037. Bordel D, Putaux JL, Heux L (2006) Orientation of...Final Report: AOARD-07-4073 Study on the Fabrication and Characterization of Piezoelectric Paper made with Cellulose •Prof. Jaehwan Kim...jaehwan@inha.ac.kr, webpage: www.EAPap.com ABSTRACT This report deals piezoelectric paper made with cellulose by mechanically and electrically

  14. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    PubMed

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  15. Continuous unidirectional fiber reinforced composites: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Weber, M. D.; Spiegel, F. X.; West, Harvey A.

    1994-01-01

    The study of the anisotropic mechanical properties of an inexpensively fabricated composite with continuous unidirectional fibers and a clear matrix was investigated. A method has been developed to fabricate these composites with aluminum fibers and a polymer matrix. These composites clearly demonstrate the properties of unidirectional composites and cost less than five dollars each to fabricate.

  16. Evidence for topologically protected surface states and a superconducting phase in [Tl4](Tl(1-x)Sn(x))Te3 using photoemission, specific heat, and magnetization measurements, and density functional theory.

    PubMed

    Arpino, K E; Wallace, D C; Nie, Y F; Birol, T; King, P D C; Chatterjee, S; Uchida, M; Koohpayeh, S M; Wen, J-J; Page, K; Fennie, C J; Shen, K M; McQueen, T M

    2014-01-10

    We report the discovery of surface states in the perovskite superconductor [Tl4]TlTe3 (Tl5Te3) and its nonsuperconducting tin-doped derivative [Tl4](Tl0.4Sn0.6)Te3 as observed by angle-resolved photoemission spectroscopy. Density functional theory calculations predict that the surface states are protected by a Z2 topology of the bulk band structure. Specific heat and magnetization measurements show that Tl5Te3 has a superconducting volume fraction in excess of 95%. Thus Tl5Te3 is an ideal material in which to study the interplay of bulk band topology and superconductivity.

  17. Nano-aquarium fabrication with cut-off filter for mechanism study of Phormidium assemblage

    NASA Astrophysics Data System (ADS)

    Hanada, Y.; Sugioka, K.; Ishikawa, I.; Kawano, H.; Miyawaki, A.; Midorikawa, K.

    2010-02-01

    We demonstrate fabrication of microfluidic chips integrated with different functional elements such as optical filters and optical waveguide for mechanism study of gliding movement of Phormidium to a seedling root using a femtosecond (fs) laser. Fs laser direct writing followed by annealing and successive wet etching in dilute hydrofluoric (HF) acid solution resulted in formation of three dimensional (3D) hollow microstructures embedded in a photostructurable glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the seedling. In addition, fabrication of optical filter and optical waveguide integrated with the microfluidic structures in the microchip clarified the mechanism of the gliding movement. Such microchips, referred to as a nano-aquarium, realize the efficient and highly functional observation and analysis of the gliding movement of Phormidium.

  18. Fabrication of self-aligned, nanoscale, complex oxide varactors

    NASA Astrophysics Data System (ADS)

    Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.

    2015-01-01

    Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.

  19. Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study

    NASA Astrophysics Data System (ADS)

    Amouzad Mahdiraji, G.; Chow, Desmond M.; Sandoghchi, S. R.; Amirkhan, F.; Dermosesian, E.; Shien Yeo, Kwok; Kakaei, Z.; Ghomeishi, M.; Poh, Soo Yong; Gang, Shee Yu; Mahamd Adikan, F. R.

    2014-01-01

    The fabrication process of photonic crystal fibers based on a stack-and-draw method is presented in full detail in this article. In addition, improved techniques of photonic crystal fiber preform preparation and fabrication are highlighted. A new method of connecting a handle to a preform using only a fiber drawing tower is demonstrated, which eliminates the need for a high-temperature glass working lathe. Also, a new technique of modifying the photonic crystal fiber structural pattern by sealing air holes of the photonic crystal fiber cane is presented. Using the proposed methods, several types of photonic crystal fibers are fabricated, which suggests potential for rapid photonic crystal fibers fabrication in laboratories equipped with and limited to only a fiber drawing tower.

  20. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  1. Characterization of 12CaO x 7Al2O3 doped indium tin oxide films for transparent cathode in top-emission organic light-emitting diodes.

    PubMed

    Jung, Chul Ho; Hwang, In Rok; Park, Bae Ho; Yoon, Dae Ho

    2013-11-01

    12CaO x 7Al2O3, insulator (C12A7) doped indium tin oxide (ITO) (ITO:C12A7) films were fabricated using a radio frequency magnetron co-sputtering system with ITO and C12A7 targets. The qualitative and quantitative properties of ITO:C12A7 films, as a function of C12A7 concentration, were examined via X-ray photoemission spectroscopy and synchrotron X-ray scattering as well as by conducting atomic force microscopy. The work function of ITO:C12A7 (1.3%) films of approximately 2.8 eV obtained by high resolution photoemission spectroscopy measurements make them a reasonable cathode for top-emission organic light-emitting diodes.

  2. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    NASA Astrophysics Data System (ADS)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  3. Study of the filtration performance of a plain wave fabric filter using response surface methodology.

    PubMed

    Qian, Fuping; Wang, Haigang

    2010-04-15

    The gas-solid two-phase flows in the plain wave fabric filter were simulated by computational fluid dynamics (CFD) technology, and the warps and wefts of the fabric filter were made of filaments with different dimensions. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. The filtration performances of the plain wave fabric filter with different geometry parameters and operating condition, including the horizontal distance, the vertical distance and the face velocity were calculated. The effects of geometry parameters and operating condition on filtration efficiency and pressure drop were studied using response surface methodology (RSM) by means of the statistical software (Minitab V14), and two second-order polynomial models were obtained with regard to the effect of the three factors as stated above. Moreover, the models were modified by dismissing the insignificant terms. The results show that the horizontal distance, vertical distance and the face velocity all play an important role in influencing the filtration efficiency and pressure drop of the plane wave fabric filters. The horizontal distance of 3.8 times the fiber diameter, the vertical distance of 4.0 times the fiber diameter and Reynolds number of 0.98 are found to be the optimal conditions to achieve the highest filtration efficiency at the same face velocity, while maintaining an acceptable pressure drop. 2009 Elsevier B.V. All rights reserved.

  4. Fabricating customized hydrogel contact lens

    NASA Astrophysics Data System (ADS)

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-10-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies.

  5. Fabricating customized hydrogel contact lens

    PubMed Central

    Childs, Andre; Li, Hao; Lewittes, Daniella M.; Dong, Biqin; Liu, Wenzhong; Shu, Xiao; Sun, Cheng; Zhang, Hao F.

    2016-01-01

    Contact lenses are increasingly used in laboratories for in vivo animal retinal imaging and pre-clinical studies. The lens shapes often need modification to optimally fit corneas of individual test subjects. However, the choices from commercially available contact lenses are rather limited. Here, we report a flexible method to fabricate customized hydrogel contact lenses. We showed that the fabricated hydrogel is highly transparent, with refractive indices ranging from 1.42 to 1.45 in the spectra range from 400 nm to 800 nm. The Young’s modulus (1.47 MPa) and hydrophobicity (with a sessile drop contact angle of 40.5°) have also been characterized experimentally. Retinal imaging using optical coherence tomography in rats wearing our customized contact lenses has the quality comparable to the control case without the contact lens. Our method could significantly reduce the cost and the lead time for fabricating soft contact lenses with customized shapes, and benefit the laboratorial-used contact lenses in pre-clinical studies. PMID:27748361

  6. Parametric models of reflectance spectra for dyed fabrics

    NASA Astrophysics Data System (ADS)

    Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph

    2016-05-01

    This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.

  7. Visualizing the chiral anomaly in Dirac and Weyl semimetals with photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Behrends, Jan; Grushin, Adolfo G.; Ojanen, Teemu; Bardarson, Jens H.

    2016-02-01

    Quantum anomalies are the breaking of a classical symmetry by quantum fluctuations. They dictate how physical systems of diverse nature, ranging from fundamental particles to crystalline materials, respond topologically to external perturbations, insensitive to local details. The anomaly paradigm was triggered by the discovery of the chiral anomaly that contributes to the decay of pions into photons and influences the motion of superfluid vortices in 3He-A. In the solid state, it also fundamentally affects the properties of topological Weyl and Dirac semimetals, recently realized experimentally. In this work we propose that the most identifying consequence of the chiral anomaly, the charge density imbalance between fermions of different chirality induced by nonorthogonal electric and magnetic fields, can be directly observed in these materials with the existing technology of photoemission spectroscopy. With angle resolution, the chiral anomaly is identified by a characteristic note-shaped pattern of the emission spectra, originating from the imbalanced occupation of the bulk states and a previously unreported momentum dependent energy shift of the surface state Fermi arcs. We further demonstrate that the chiral anomaly likewise leaves an imprint in angle averaged emission spectra, facilitating its experimental detection. Thereby, our work provides essential theoretical input to foster the direct visualization of the chiral anomaly in condensed matter, in contrast to transport properties, such as negative magnetoresistance, which can also be obtained in the absence of a chiral anomaly.

  8. Digital fabrication of multi-material biomedical objects.

    PubMed

    Cheung, H H; Choi, S H

    2009-12-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  9. Studies on unsaturated flow in dual-scale fiber fabrics

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Yan, Shilin; Li, Yongjing

    2018-03-01

    Fiber fabrics in liquid composite molding (LCM) can be recognized as a dual-scale structure. As sink theory developed, this unsaturated flow behavior has already been simulated successfully; however, most of simulated results based on a unit cell under ideal status, thus making results were not agreement with experiment. In this study, an experimental method to establish sink function was proposed. After compared the simulation results by this sink function, it shows high accuracy with the experimental data. Subsequently, the key influencing factors for unsaturated flow have been further investigated; results show that the filling time for unsaturated flow was much longer than saturated flow. In addition, the injection pressure and permeability were the key factors lead to unsaturated flow.

  10. Integration of textile fabric and coconut shell in particleboard

    NASA Astrophysics Data System (ADS)

    Misnon, M. I.; Bahari, S. A.; Islam, M. M.; Epaarachchi, J. A.

    2013-08-01

    In this study, cotton fabric and coconut shell were integrated in particleboard to reduce the use of wood. Particleboards containing mixed rubberwood and coconut shell with an equal weight ratio have been integrated with various layers of cotton fabric. These materials were bonded by urea formaldehyde with a content level of 12% by weight. Flexural and water absorption tests were conducted to analyze its mechanical properties and dimensional stability. Results of flexural test showed an increment at least double strength values in fabricated materials as compared to control sample. The existence of fabric in the particleboard system also improved the dimensional stability of the produced material. Enhancement of at least 39% of water absorption could help the dimensional stability of the produced material. Overall, these new particleboards showed better results with the incorporation of cotton fabric layers and this study provided better understanding on mechanical and physical properties of the fabricated particleboard.

  11. Thermal Skin fabrication technology

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1972-01-01

    Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.

  12. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.

    2011-11-14

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may bemore » constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.« less

  13. High-Energy Anomaly in the Angle-Resolved Photoemission Spectra of Nd2-xCexCuO4: Evidence for a Matrix Element Effect

    NASA Astrophysics Data System (ADS)

    Rienks, E. D. L.; ńrrälä, M.; Lindroos, M.; Roth, F.; Tabis, W.; Yu, G.; Greven, M.; Fink, J.

    2014-09-01

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, x =0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  14. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect.

    PubMed

    Rienks, E D L; Ärrälä, M; Lindroos, M; Roth, F; Tabis, W; Yu, G; Greven, M; Fink, J

    2014-09-26

    We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.

  15. Separation of Diamagnetic and Paramagnetic Fabrics Reveals Strain Directions in Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Issachar, R.; Levi, T.; Marco, S.; Weinberger, R.

    2018-03-01

    We present a new procedure for separating magnetic fabrics in coccolith-bearing chalk samples, demonstrated in the case studies of three sites located within the Dead Sea Fault (DSF) plate boundary. The separation is achieved by combining measurements of room temperature and low-temperature anisotropy of magnetic susceptibility (RT-AMS and LT-AMS, respectively) with anisotropy of anhysteretic remanence magnetization (AARM). The LT-AMS, measured at 77 K, enhances the fabric of paramagnetic clay minerals. The AARM represents the fabric of ferromagnetic Fe oxides. By subtracting the paramagnetic and ferromagnetic fabrics from the RT-AMS, the diamagnetic fabric is separated. In the studied samples, we found that the ferromagnetic contribution to the bulk magnetic fabric is negligible and could be excluded from the subtraction procedure. Our analysis indicates that in chalks with a negligible ferromagnetic contribution, diamagnetic fabric predominates the rock bulk magnetic fabric, if the mean susceptibility is <-6 × 10-6 SI, whereas with a mean susceptibility >11 × 10-6 SI, paramagnetic fabric predominates. In the studied rocks, the paramagnetic clay minerals preserve the original depositional fabric, whereas the diamagnetic minerals show a tectonic fabric. We propose a mechanism by which coccolith rotation under tectonic strain contributes to the development of the diamagnetic fabric parallel to the shortening direction. We infer that the diamagnetic fabrics of the studied rocks indicate strain regime of approximately N-S horizontal shortening near strands of the DSF system. This suggests a deflection of the regional principal strain axes near the DSF. The diamagnetic fabric is more sensitive to tectonic strain than paramagnetic fabric in chalks and provides a valuable strain indicator near major faults.

  16. Fabrication technology

    NASA Astrophysics Data System (ADS)

    1988-05-01

    Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.

  17. Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method.

    PubMed

    Lu, Lin; Zhang, Qingwei; Wootton, David; Chiou, Richard; Li, Dichen; Lu, Bingheng; Lelkes, Peter; Zhou, Jack

    2012-09-01

    Three-dimensional printer (3DP) (Z-Corp) is a solid freeform fabrication system capable of generating sub-millimeter physical features required for tissue engineering scaffolds. By using plaster composite materials, 3DP can fabricate a universal porogen which can be injected with a wide range of high melting temperature biomaterials. Here we report results toward the manufacture of either pure polycaprolactone (PCL) or homogeneous composites of 90/10 or 80/20 (w/w) PCL/beta-tricalcium phosphate (β-TCP) by injection molding into plaster composite porogens fabricated by 3DP. The resolution of printed plaster porogens and produced scaffolds was studied by scanning electron microscopy. Cytotoxicity test on scaffold extracts and biocompatibility test on the scaffolds as a matrix supporting murine osteoblast (7F2) and endothelial hybridoma (EAhy 926) cells growth for up to 4 days showed that the porogens removal process had only negligible effects on cell proliferation. The biodegradation tests of pure PCL and PCL/β-TCP composites were performed in DMEM with 10 % (v/v) FBS for up to 6 weeks. The PCL/β-TCP composites show faster degradation rate than that of pure PCL due to the addition of β-TCP, and the strength of 80/20 PCL/β-TCP composite is still suitable for human cancellous bone healing support after 6 weeks degradation. Combining precisely controlled porogen fabrication structure, good biocompatibility, and suitable mechanical properties after biodegradation, PCL/β-TCP scaffolds fabricated by 3DP porogen method provide essential capability for bone tissue engineering.

  18. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  19. Micro/nano-fabrication technologies for cell biology

    PubMed Central

    Qian, Tongcheng

    2012-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938

  20. On the influence of recrystallization on snow fabric and microstructure: study of a snow profile in Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Calonne, Neige; Schneebeli, Martin; Montagnat, Maurine; Matzl, Margret

    2016-04-01

    Temperature gradient metamorphism affects the Antarctic snowpack up to 5 meters depth, which lead to a recrystallization of the ice grains by sublimation of ice and deposition of water vapor. By this way, it is well known that the snow microstructure evolves (geometrical changes). Also, a recent study shows an evolution of the snow fabric, based on a cold laboratory experiment. Both fabric and microstructure are required to better understand mechanical behavior and densification of snow, firn and ice, given polar climatology. The fabric of firn and ice has been extensively investigated, but the publications by Stephenson (1967, 1968) are to our knowledge the only ones describing the snow fabric in Antarctica. In this context, our work focuses on snow microstructure and fabric in the first meters depth of the Antarctic ice sheet, where temperature gradients driven recrystallization occurs. Accurate details of the snow microstructure are observed using micro-computed tomography. Snow fabrics were measured at various depths from thin sections of impregnated snow with an Automatic Ice Texture Analyzer (AITA). A definite relationship between microstructure and fabric is found and highlights the influence of metamorphism on both properties. Our results also show that the metamorphism enhances the differences between the snow layers properties. Our work stresses the significant and complex evolution of snow properties in the upper meters of the ice sheet and opens the question of how these layer properties will evolve at depth and may influence the densification.

  1. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Bromberger, H.; Ermolov, A.; Belli, F.; Liu, H.; Calegari, F.; Chávez-Cervantes, M.; Li, M. T.; Lin, C. T.; Abdolvand, A.; Russell, P. St. J.; Cavalleri, A.; Travers, J. C.; Gierz, I.

    2015-08-01

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz, with photon energies that cover the first Brillouin zone of most materials.

  2. Linear Dichroism in Angle-Resolved Core-Level Photoemission Spectra Reflecting 4f Ground-State Symmetry of Strongly Correlated Cubic Pr Compounds

    NASA Astrophysics Data System (ADS)

    Hamamoto, Satoru; Fujioka, Shuhei; Kanai, Yuina; Yamagami, Kohei; Nakatani, Yasuhiro; Nakagawa, Koya; Fujiwara, Hidenori; Kiss, Takayuki; Higashiya, Atsushi; Yamasaki, Atsushi; Kadono, Toshiharu; Imada, Shin; Tanaka, Arata; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Matsumoto, Keisuke T.; Onimaru, Takahiro; Takabatake, Toshiro; Sekiyama, Akira

    2017-12-01

    We report experimentally observed linear dichroism in angle-resolved core-level photoemission spectra of PrIr2Zn20 and PrB6 with cubic symmetry. The different anisotropic 4f charge distributions between the compounds due to the crystalline-electric-field splitting are responsible for the difference in the linear dichroism, which has been verified by spectral simulations with the full multiplet theory for a single-site Pr3+ ion with cubic symmetry. The observed linear dichroism and polarization-dependent spectra in two different photoelectron directions for PrIr2Zn20 are reproduced by theoretical analysis for the Γ3 ground state, whereas those of the Pr 3d and 4d core levels indicate the Γ5 ground state for PrB6.

  3. Interpreting the formation of bloodstains on selected apparel fabrics.

    PubMed

    de Castro, Therese; Nickson, Tania; Carr, Debra; Knock, Clare

    2013-01-01

    Bloodstain pattern analysis (BPA) is the investigation and interpretation of blood deposited at crime scenes. However, the interaction of blood and apparel fabrics has not been widely studied. In this work, the development of bloodstains (passive, absorbed and transferred) dropped from three different heights (500, 1,000, 1,500 mm) on two cotton apparel fabrics (1 × 1 rib knit, drill) was investigated. High-speed video was used to investigate the interaction of the blood and fabric at impact. The effect of drop height on the development of passive, absorbed and transferred bloodstains was investigated using image analysis and statistical tools. Visually, the passive bloodstain patterns produced on the technical face of fabrics from the different drop heights were similar. The blood soaked unequally through to the technical rear of both fabrics. Very little blood was transferred between a bloody fabric and a second piece of fabric. Statistically, drop height did not affect the size of the parent bloodstain (wet or dry), but did affect the number of satellite bloodstains formed. Some differences between the two fabrics were noted, therefore fabric structure and properties must be considered when conducting BPA on apparel fabrics.

  4. Evidence of Electron-Hole Imbalance in WTe2 from High-Resolution Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang

    2017-08-01

    WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.

  5. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  6. High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system.

    PubMed

    Ishida, Y; Otsu, T; Ozawa, A; Yaji, K; Tani, S; Shin, S; Kobayashi, Y

    2016-12-01

    The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ∼310 fs, respectively, the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm 2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm 2 .

  7. Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin-film Electronics

    NASA Astrophysics Data System (ADS)

    Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M.; Nemeth, William; Wang, Qi; van Duin, Adri C. T.; Kim, Taek-Soo; Zheng, Xiaolin

    2013-10-01

    Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.

  8. Peel-and-stick: mechanism study for efficient fabrication of flexible/transparent thin-film electronics.

    PubMed

    Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M; Nemeth, William; Wang, Qi; van Duin, Adri C T; Kim, Taek-Soo; Zheng, Xiaolin

    2013-10-10

    Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.

  9. Fabrication and ab initio study of downscaled graphene nanoelectronic devices

    NASA Astrophysics Data System (ADS)

    Mizuta, Hiroshi; Moktadir, Zakaria; Boden, Stuart A.; Kalhor, Nima; Hang, Shuojin; Schmidt, Marek E.; Cuong, Nguyen Tien; Chi, Dam Hieu; Otsuka, Nobuo; Muruganathan, Manoharan; Tsuchiya, Yoshishige; Chong, Harold; Rutt, Harvey N.; Bagnall, Darren M.

    2012-09-01

    In this paper we first present a new fabrication process of downscaled graphene nanodevices based on direct milling of graphene using an atomic-size helium ion beam. We address the issue of contamination caused by the electron-beam lithography process to pattern the contact metals prior to the ultrafine milling process in the helium ion microscope (HIM). We then present our recent experimental study of the effects of the helium ion exposure on the carrier transport properties. By varying the time of helium ion bombardment onto a bilayer graphene nanoribbon transistor, the change in the transfer characteristics is investigated along with underlying carrier scattering mechanisms. Finally we study the effects of various single defects introduced into extremely-scaled armchair graphene nanoribbons on the carrier transport properties using ab initio simulation.

  10. Fabrication and electrochemical properties of activated CNF/Cu x Mn1- x Fe2O4 composite nanostructures

    NASA Astrophysics Data System (ADS)

    Nilmoung, Sukanya; Sonsupap, Somchai; Sawangphruk, Montree; Maensiri, Santi

    2018-06-01

    This work reports the fabrication and electrochemical properties of activated carbon nanofibers composited with copper manganese ferrite (ACNF/Cu x Mn1- x Fe2O4: x = 0.0, 0.2, 0.4, 0.6, 0.8) nanostructures. The obtained samples were characterized by means of X-ray diffraction, field emission scanning electron microscopy, Brunauer-Emmett-Teller analyzer, thermal gravimetric analysis, X-ray photoemission spectroscopy, and X-ray absorption spectroscopy. The supercapacitive behavior of the electrodes is tested using cyclic voltammetery, galvanostatic charge-discharge and electrochemical impedance spectroscopy. By varying ` x', the highest specific capacitance of 384 F/g at 2 mV/s using CV and 314 F/g at 2 A/g using GCD are obtained for the x = 0.2 electrode. The second one of 235 F/g at 2 mV/s using CV and 172 F/g at 2 A/g using GCD are observed for x = 0.8 electrode. The corresponding energy densities are 74 and 41 Wh/kg, respectively. It is observed that the cyclic stability of the prepared samples strongly depend on the amount of carbon, while the specific capacitance was enhanced by the sample with nearly proportional amount between carbon and CuMnFe2O4. Such results may arise from the synergetic effect between CuMnFe2O4 and ACNF.

  11. Study of skin model and geometry effects on thermal performance of thermal protective fabrics

    NASA Astrophysics Data System (ADS)

    Zhu, Fanglong; Ma, Suqin; Zhang, Weiyuan

    2008-05-01

    Thermal protective clothing has steadily improved over the years as new materials and improved designs have reached the market. A significant method that has brought these improvements to the fire service is the NFPA 1971 standard on structural fire fighters’ protective clothing. However, this testing often neglects the effects of cylindrical geometry on heat transmission in flame resistant fabrics. This paper deals with methods to develop cylindrical geometry testing apparatus incorporating novel skin bioheat transfer model to test flame resistant fabrics used in firefighting. Results show that fabrics which shrink during the test can have reduced thermal protective performance compared with the qualities measured with a planar geometry tester. Results of temperature differences between skin simulant sensors of planar and cylindrical tester are also compared. This test method provides a new technique to accurately and precisely characterize the thermal performance of thermal protective fabrics.

  12. Study on the Filament Yarns Spreading Techniques and Assessment Methods of the Electronic Fiberglass Fabric

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Chen, Shouhui; Zheng, Tianyong; Ning, Xiangchun; Dai, Yifei

    2018-03-01

    The filament yarns spreading techniques of electronic fiberglass fabric were developed in the past few years in order to meet the requirements of the development of electronic industry. Copper clad laminate (CCL) requires that the warp and weft yarns of the fabric could be spread out of apart and formed flat. The penetration performance of resin could be improved due to the filament yarns spreading techniques of electronic fiberglass fabric, the same as peeling strength of CCL and drilling performance of printed circuit board (PCB). This paper shows the filament yarns spreading techniques of electronic fiberglass fabric from several aspects, such as methods and functions, also with the assessment methods of their effects.

  13. Fabric-based alkaline direct formate microfluidic fuel cells.

    PubMed

    Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2017-04-01

    Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm 2 ) and power (4.40 mW/cm 2 ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fabrics for fire resistant passenger seats in aircraft

    NASA Technical Reports Server (NTRS)

    Tesoro, G. C.

    1978-01-01

    The essential elements of the problem and of approaches to improved fire resistance in aircraft seats are reviewed. The performance requirements and availability of materials, delay in the ignition of upholstery fabric by a small source are considered a realistic objective. Results of experimental studies on the thermal response of fabrics and fabric/foam combinations suggest significant conclusions regarding: (1) the ignition behavior of a commercial 90/10 wool/nylon upholstery fabric relative to fabrics made from thermally stable polymers; (2) the role of the foam backing; (3) the behavior of seams. These results, coupled with data from other sources, also confirm the importance of materials' interactions in multicomponent assemblies, and the need for system testing prior to materials' selection. The use of an interlinear or thermal barrier between upholstery fabric and foam is a promising and viable approach to improved fire resistance of the seat assembly, but experimental evaluation of specific combinations of materials or systems is an essential part of the selection process.

  15. Systematic investigation of drip stains on apparel fabrics: The effects of prior-laundering, fibre content and fabric structure on final stain appearance.

    PubMed

    de Castro, Therese C; Taylor, Michael C; Kieser, Jules A; Carr, Debra J; Duncan, W

    2015-05-01

    Bloodstain pattern analysis is the investigation of blood deposited at crime scenes and the interpretation of that pattern. The surface that the blood gets deposited onto could distort the appearance of the bloodstain. The interaction of blood and apparel fabrics is in its infancy, but the interaction of liquids and apparel fabrics has been well documented and investigated in the field of textile science (e.g. the processes of wetting and wicking of fluids on fibres, yarns and fabrics). A systematic study on the final appearance of drip stains on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated in the paper. The relationship between drop velocity (1.66±0.50m/s, 4.07±0.03m/s, 5.34±0.18m/s) and the stain characteristics (parent stain area, axes 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The experimental design and effect of storing blood were investigated on a reference sample, which indicated that the day (up to five days) at which the drops were generated did not affect the bloodstain. The effect of prior-laundering (six, 26 and 52 laundering cycles), fibre content (cotton vs. polyester vs. blend) and fabric structure (plain woven vs. single jersey knit) on the final appearance of the bloodstain were investigated. Distortion in the bloodstains produced on non-laundered fabrics indicated the importance of laundering fabrics to remove finishing treatments before conducting bloodstain experiments. For laundered fabrics, both the cotton fabrics and the blend had a circular to oval stain appearance, while the polyester fabric had a circular appearance with evidence of spread along the warp and weft yarns, which resulted in square-like stains at the lowest drop velocity. A significant (p<0.001) increase in the stain size on

  16. Engineering fabrics in transportation construction

    NASA Astrophysics Data System (ADS)

    Herman, S. C.

    1983-11-01

    The following areas are discussed: treatments for reduction of reflective cracking of asphalt overlays on jointed-concrete pavements in Georgia; laboratory testing of fabric interlayers for asphalt concrete paving: interim report; reflection cracking models: review and laboratory evaluation of engineering fabrics; optimum-depth method for design of fabric-reinforced unsurfaced roads; dynamic test to predict field behavior of filter fabrics used in pavement subdrains; mechanism of geotextile performance in soil-fabric systems for drainage and erosion control; permeability tests of selected filter fabrics for use with a loess-derived alluvium; geotextile filter criteria; use of fabrics for improving the placement of till on peat foundation; geotextile earth-reinforced retaining wall tests: Glenwood Canyon, Colorado; New York State Department of Transportation's experience and guidelines for use of geotextiles; evaluation of two geotextile installations in excess of a decade old; and, long-term in situ properties of geotextiles.

  17. Processing, Fabrication and Characterization of Advanced Target Sensors Using Mercury Cadmium Telluride (MCT)

    DTIC Science & Technology

    2010-09-01

    doped with Au, Hg, Cd, Be, or Ga); or (3) photoemissive such as metal silicides and negative electron affinity materials. Photoconductive and...plasma (ICP) etching and metallization as required by the design of the sensors at different levels of processing were carried out using either AZ...Second, after all the processing and metallization is completed, the sensor material (Hg1–xCdxTe) and the substrate (silicon) must be dry etched

  18. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper

    PubMed Central

    2011-01-01

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria. PMID:22085594

  19. Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Y. F.; Perera, A. G. U., E-mail: uperera@gsu.edu; Center for Nano-Optics

    2016-03-14

    Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in infrared. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave infrared (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3–5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ{sub 0}, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μmmore » in the spectral response of p-type GaAs/AlGaAs detectors. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ{sub 0} is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ{sub 0}. This implies the promise of using GaMnAs to develop MWIR IPE detectors. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.« less

  20. Watching adsorption and electron beam induced decomposition on the model system Mo(CO)6/Cu(1 1 1) by X-ray absorption and photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Paufert, Pierre; Fonda, Emiliano; Li, Zheshen; Domenichini, Bruno; Bourgeois, Sylvie

    2013-11-01

    An in-depth study of the first steps of electron beam assisted growth of Mo from molybdenum hexacarbonyl on Cu(1 1 1) has been carried out exploiting the complementarity of X-ray photoemission and X-ray absorption spectroscopies. Frank van der Merwe (2D) growth mode has been observed for the completion of the two first monolayers of adsorbed molecules through a simple physisorption process. Irradiation of the Mo(CO)6 deposit by 1 keV electron beam induces a modification of molybdenum coordination, the average number of C-neighbors decreasing from 6 to 3. Decomposed molecules remain on the surface after annealing at 520 K and organize themselves, the molybdenum atoms moving in Cu(1 1 1) surface fcc hollow sites. After annealing at 670 K, metallic molybdenum growth begins, if the total amount of adsorbed Mo atoms exceeds 1.2 monolayers.

  1. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in space using the space shuttle as a launch vehicle and construction base were investigated. Additional construction/systems/operational techniques, processes, and equipment which can be developed/demonstrated in the same program to provide further risk reduction benefits to future large space systems were included. Results in the areas of structure/materials, fabrication systems (beam builder, assembly jig, and avionics/controls), mission integration, and programmatics are summarized. Conclusions and recommendations are given.

  2. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy.

    PubMed

    Jin, Wencan; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Sadowski, Jerzy T; Al-Mahboob, Abdullah; van der Zande, Arend M; Chenet, Daniel A; Dadap, Jerry I; Herman, Irving P; Sutter, Peter; Hone, James; Osgood, Richard M

    2013-09-06

    We report on the evolution of the thickness-dependent electronic band structure of the two-dimensional layered-dichalcogenide molybdenum disulfide (MoS2). Micrometer-scale angle-resolved photoemission spectroscopy of mechanically exfoliated and chemical-vapor-deposition-grown crystals provides direct evidence for the shifting of the valence band maximum from Γ to K, for the case of MoS2 having more than one layer, to the case of single-layer MoS2, as predicted by density functional theory. This evolution of the electronic structure from bulk to few-layer to monolayer MoS2 had earlier been predicted to arise from quantum confinement. Furthermore, one of the consequences of this progression in the electronic structure is the dramatic increase in the hole effective mass, in going from bulk to monolayer MoS2 at its Brillouin zone center, which is known as the cause for the decreased carrier mobility of the monolayer form compared to that of bulk MoS2.

  3. Effects of the electron-hole pair in Auger and X-ray photoemission spectroscopy from surfaces of Fe-Si

    NASA Astrophysics Data System (ADS)

    Gervasoni, J. L.; Jenko, M.; Poniku, B.; Belič, I.; Juan, A.

    2015-07-01

    In this work, we investigate in detail the effects due to the interaction between an electron and a stationary positive ion (or atomic hole) in the neighborhood of a surface of Fe-Si, having a strong plasmon peak in their electron energy loss spectra, when it is excited with synchrotron radiation. We take into account the effects due to the sudden creation of an electron and the residual holes, one in the case of X-ray photoemission spectroscopy (XPS) and two in the case of Auger electron spectroscopy (AES). We use a semi classical dielectric formulation for the photoelectron trajectory, and we estimated the parameter rs, the radius of the sphere occupied by one electron in the solid, which is critical in order to define the electron density of the alloy. With the cited formulation, we have obtained a detailed behavior of the different contributions of the collective excitations in both processes.

  4. OpenSoC Fabric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-21

    Recent advancements in technology scaling have shown a trend towards greater integration with large-scale chips containing thousands of processors connected to memories and other I/O devices using non-trivial network topologies. Software simulation proves insufficient to study the tradeoffs in such complex systems due to slow execution time, whereas hardware RTL development is too time-consuming. We present OpenSoC Fabric, an on-chip network generation infrastructure which aims to provide a parameterizable and powerful on-chip network generator for evaluating future high performance computing architectures based on SoC technology. OpenSoC Fabric leverages a new hardware DSL, Chisel, which contains powerful abstractions provided by itsmore » base language, Scala, and generates both software (C++) and hardware (Verilog) models from a single code base. The OpenSoC Fabric2 infrastructure is modeled after existing state-of-the-art simulators, offers large and powerful collections of configuration options, and follows object-oriented design and functional programming to make functionality extension as easy as possible.« less

  5. An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants

    PubMed Central

    Sarkar, Ajoy K

    2004-01-01

    Background The ultraviolet properties of textiles dyed with synthetic dyes have been widely reported in literature. However, no study has investigated the ultraviolet properties of natural fabrics dyed with natural colorants. This study reports the Ultraviolet Protection Factor (UPF) of cotton fabrics dyed with colorants of plant and insect origins. Methods Three cotton fabrics were dyed with three natural colorants. Fabrics were characterized with respect to fabric construction, weight, thickness and thread count. Influence of fabric characteristics on Ultraviolet Protection Factor was studied. Role of colorant concentration on the ultraviolet protection factor was examined via color strength analysis. Results A positive correlation was observed between the weight of the fabric and their UPF values. Similarly, thicker fabrics offered more protection from ultraviolet rays. Thread count appears to negatively correlate with UPF. Dyeing with natural colorants dramatically increased the protective abilities of all three fabric constructions. Additionally, within the same fabric type UPF values increased with higher depths of shade. Conclusion Dyeing cotton fabrics with natural colorants increases the ultraviolet protective abilities of the fabrics and can be considered as an effective protection against ultraviolet rays. The UPF is further enhanced with colorant of dark hues and with high concentration of the colorant in the fabric. PMID:15509304

  6. An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants.

    PubMed

    Sarkar, Ajoy K

    2004-10-27

    The ultraviolet properties of textiles dyed with synthetic dyes have been widely reported in literature. However, no study has investigated the ultraviolet properties of natural fabrics dyed with natural colorants. This study reports the Ultraviolet Protection Factor (UPF) of cotton fabrics dyed with colorants of plant and insect origins. Three cotton fabrics were dyed with three natural colorants. Fabrics were characterized with respect to fabric construction, weight, thickness and thread count. Influence of fabric characteristics on Ultraviolet Protection Factor was studied. Role of colorant concentration on the ultraviolet protection factor was examined via color strength analysis. A positive correlation was observed between the weight of the fabric and their UPF values. Similarly, thicker fabrics offered more protection from ultraviolet rays. Thread count appears to negatively correlate with UPF. Dyeing with natural colorants dramatically increased the protective abilities of all three fabric constructions. Additionally, within the same fabric type UPF values increased with higher depths of shade. Dyeing cotton fabrics with natural colorants increases the ultraviolet protective abilities of the fabrics and can be considered as an effective protection against ultraviolet rays. The UPF is further enhanced with colorant of dark hues and with high concentration of the colorant in the fabric.

  7. Surface studies of anatase and rutile single crystals as model solar cell materials

    NASA Astrophysics Data System (ADS)

    Mallick, Asim K.

    The adsorption of ionic and molecular species on anatase and rutile TiO[2] single crystals has been investigated using synchrotron radiation photoemission spectroscopy. For clean single crystal anatase (101) and (001), and rutile (110) surfaces, a resonant enhancement of the O 2p valence band photoemission intensity is observed as the photon energy is swept through the Ti 3p→3d and 3p→4s optical transition energy, which indicates strong hybridization between Ti and O ions. A small defect peak is observed around 1.1 eV binding energy (B.E.) with respect to the Fermi energy on both anatase (101) and (001) surfaces and at 0.9 eV B.E. on the rutile (110) surface following annealing to 650 °C in UHV. This indicates the surfaces are reduced giving rise to surface Ti[3+]. The adsorption of Cul on single crystal TiO[2] surfaces has been studied using resonant photoemission spectroscopy. The thickness of the Cul overlayer was estimated using core level photoemission via a simple two-layer model and through simulated Auger spectra using the Simulation of Electron Spectra for Surface Analysis (SESSA) database. Photoemission spectra taken at the Ti 3p→3d/4s and Cu 3p→3d/4s optical energies show evidence of strong resonances. In case of the Cu resonances, a particularly strong resonance of a satellite structure at 16 eV B.E. at a photon energy of 77 eV is observed. At the same photon energy an antiresonance is found for valence band features associated with the CuI overlayer indicating a strong ligand-hole screening effect. Band bending effects are observed at both CuI anatase and CuI rutile interfaces, consistent with the formation of a p - n junction. Water adsorption on the single crystal anatase TiO[2] (101) surface has been investigated using ultraviolet photoemission spectroscopy (UPS) at room temperature in order to understand the fundamental interaction of water with anatase surfaces. Following water adsorption the spectra contain features at 6.04 and 10.2 eV B

  8. Studies of the Si/SiO2 interface using synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Grunthaner, F. J.

    1985-01-01

    Synchrotron radiation photoemission spectroscopy (SRPS) in the 1-4 KeV photon energy range is a useful tool for interface characterization. Results are presented of a series of studies of the near-interface region of Si/SiO2 which confirm that a bond strain gradient exists in the oxide as a result of lattice mismatch. These experiments include measurement of photoemission lineshape changes as a function of photon energy, corresponding changes in the electron escape depth near the interface, and surface extended X-ray absorption fine structure (SEXAFS) measurements directly indicating the shortening of the Si-Si second nearest neighbor distance in the near-interface region of the oxide.

  9. A study of process-related electrical defects in SOI lateral bipolar transistors fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.

    2018-04-01

    We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.

  10. Tactile Fabric Panel in an Eight Zones Structure

    PubMed Central

    Alsina, Maria; Escudero, Francesc; Margalef, Jordi; Luengo, Sonia

    2007-01-01

    By introducing a percentage of conductive material during the manufacture of sewing thread, it is possible to obtain a fabric which is able to detect variations in pressure in certain areas. In previous experiments the existence of resistance variations has been demonstrated, although some constrains of cause and effect were found in the fabric. The research has been concentrated in obtaining a fabric that allows electronic detection of its shape changes. Additionally, and because a causal behavior is needed, it is necessary that the fabric recovers its original shape when the external forces cease. The structure of the fabric varies with the type of deformation applied. Two kinds of deformation are described: those caused by stretching and those caused by pressure. This last type of deformation gives different responses depending on the conductivity of the object used to cause the pressure. This effect is related to the type of thread used to manufacture the fabric. So, if the pressure is caused by a finger the response is different compared to the response caused by a conductive object. Another fact that has to be mentioned is that a pressure in a specific point of the fabric can affect other detection points depending on the force applied. This effect is related to the fabric structure. The goals of this article are validating the structure of the fabric used, as well as the study of the two types of deformation mentioned before. PMID:28903272

  11. The EIGER detector for low-energy electron microscopy and photoemission electron microscopy.

    PubMed

    Tinti, G; Marchetto, H; Vaz, C A F; Kleibert, A; Andrä, M; Barten, R; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Franz, T; Fröjdh, E; Greiffenberg, D; Lopez-Cuenca, C; Mezza, D; Mozzanica, A; Nolting, F; Ramilli, M; Redford, S; Ruat, M; Ruder, Ch; Schädler, L; Schmidt, Th; Schmitt, B; Schütz, F; Shi, X; Thattil, D; Vetter, S; Zhang, J

    2017-09-01

    EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

  12. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS). Volume 3: Requirements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The performance, design, and verification requirements for the space construction automated fabrication experiment (SCAFE) are defined and the source of each imposed or derived requirement is identified.

  13. Fabrics for aeronautic construction

    NASA Technical Reports Server (NTRS)

    Walen, E D

    1918-01-01

    The Bureau of Standards undertook the investigation of airplane fabrics with the view of finding suitable substitutes for the linen fabrics, and it was decided that the fibers to be considered were cotton, ramie, silk, and hemp. Of these, the cotton fiber was the logical one to be given primary consideration. Report presents the suitability, tensibility and stretching properties of cotton fabric obtained by laboratory tests.

  14. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat

    PubMed Central

    2010-01-01

    Silver nanoparticles have been used in numerous commercial products, including textiles, to prevent bacterial growth. Meanwhile, there is increasing concern that exposure to these nanoparticles may cause potential adverse effects on humans as well as the environment. This study determined the quantity of silver released from commercially claimed nanosilver and laboratory-prepared silver coated fabrics into various formulations of artificial sweat, each made according to AATCC, ISO and EN standards. For each fabric sample, the initial amount of silver and the antibacterial properties against the model Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria on each fabric was investigated. The results showed that silver was not detected in some commercial fabrics. Furthermore, antibacterial properties of the fabrics varied, ranging from 0% to greater than 99%. After incubation of the fabrics in artificial sweat, silver was released from the different fabrics to varying extents, ranging from 0 mg/kg to about 322 mg/kg of fabric weight. The quantity of silver released from the different fabrics was likely to be dependent on the amount of silver coating, the fabric quality and the artificial sweat formulations including its pH. This study is the unprecedented report on the release of silver nanoparticles from antibacterial fabrics into artificial sweat. This information might be useful to evaluate the potential human risk associated with the use of textiles containing silver nanoparticles. PMID:20359338

  15. Plasma Enabled Fabrication of Silicon Carbide Nanostructures

    NASA Astrophysics Data System (ADS)

    Fang, Jinghua; Levchenko, Igor; Aramesh, Morteza; Rider, Amanda E.; Prawer, Steven; Ostrikov, Kostya (Ken)

    Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.

  16. Structure and yarn sensor for fabric

    DOEpatents

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  17. Electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx investigated by laser photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Malaeb, Walid; Awad, Ramadan; Hibino, Taku; Kamihara, Yoichi; Kondo, Takeshi; Shin, Shik

    2018-05-01

    We have implemented laser photoemission spectroscopy (PES) to investigate the electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx (LaEu1111) which is an interesting compound in the "1111" family showing a high value of the superconducting (SC) transition temperature (Tc) due to Eu doping. At least two energy scales were observed from the PES data in the SC compound: One at ∼14 meV closing around Tc and thus corresponding to the SC gap. Another energy scale appears at ∼35 meV and survives at temperatures above Tc which represents the pseudogap (PG). The non-SC sample (La,Eu)FeAsO shows a PG at ∼ 41 meV. These observations in this new superconductor are consistent with the general trend followed by other compounds in the "1111" family.

  18. Study of low-cost fabrication of ablative heat shields

    NASA Technical Reports Server (NTRS)

    Norwood, L. B.

    1972-01-01

    The major objectives were accomplished in three tasks: (1) modification of the ablative material composition for ease of fabrication as well as thermal and mechanical performance; (2) scaled-up, simplified, manufacturing techniques which resulted in cost reductions; and (3) the identification of a significant design problem caused by the differential pressure buildup imposed on mechanically attached ablative heat shield panels during launch.

  19. Bacterial contamination of fabric and metal-bead identity card lanyards: a cross-sectional study.

    PubMed

    Pepper, Thomas; Hicks, Georgina; Glass, Stephen; Philpott-Howard, John

    2014-01-01

    In healthcare, fabric or metal-bead lanyards are universally used for carrying identity cards. However there is little information on microbial contamination with potential pathogens that may readily re-contaminate disinfected hands. We examined 108 lanyards from hospital staff. Most grew skin flora but 7/108 (6%) had potentially pathogenic bacteria: four grew methicillin-susceptible Staphylococcus aureus, and four grew probable fecal flora: 3 Clostridium perfringens and 1 Clostridium bifermentans (one lanyard grew both S. aureus and C. bifermentans). Unused (control) lanyards had little or no such contamination. The median duration of lanyard wear was 12 months (interquartile range 3-36 months). 17/108 (16%) of the lanyards had reportedly undergone decontamination including wiping with alcohol, chlorhexidine or chlorine dioxide; and washing with soap and water or by washing machine. Metal-bead lanyards had significantly lower median bacterial counts than those from fabric lanyards (1 vs. 4 CFU/cm(2); Mann-Whitney U=300.5; P<0.001). 12/32 (38%) of the metal-bead lanyards grew no bacteria, compared with 2/76 (3%) of fabric lanyards. We recommend that an effective decontamination regimen be instituted by those who use fabric lanyards, or that fabric lanyards be discarded altogether in preference for metal-bead lanyards or clip-on identity cards. Copyright © 2014 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  20. Beneficial effects of softened fabrics on atopic skin.

    PubMed

    Hermanns, J F; Goffin, V; Arrese, J E; Rodriguez, C; Piérard, G E

    2001-01-01

    There is general concern about the possible cutaneous adverse effects of wearing garments treated with household laundry products, particularly on atopic skin. Our objective was to compare softened and non- softened fabrics in a forearm wet and dry test, under conditions simulating real-life conditions. Twenty atopic volunteers entered a single-blind 12-day (3 sessions per day) forearm wetting and drying test. Cotton fabrics were machine washed and liquid fabric conditioner was added or not to the final rinse. To simulate conditions of skin damage, a dilute solution of sodium lauryl sulphate was applied under occlusion to the forearm of each volunteer before the start of the study. Skin effects were evaluated by visual grading (redness, dryness and smoothness), squamometry and in vivo instrumental measurements (capacitance, transepidermal water loss and colorimetry). Rubbing of atopic skin with fabrics generally resulted in discrete to moderate alterations of the structure of the stratum corneum. Both for control and pre-irritated skin, all measured parameters indicated that softened fabric was less aggressive to the skin than unsoftened fabric. In the case of pre-irritated skin, the recovery of the skin was significantly faster when rubbed with softened than with unsoftened fabrics. In conclusion, softened fabrics help mitigate the skin condition in atopic patients. Copyright 2001 S. Karger AG, Basel.

  1. Low cost damage tolerant composite fabrication

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.; Freeman, W. T.

    1988-01-01

    The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.

  2. Photoemission and muon spin relaxation spectroscopy of the iron-based Rb0.77Fe1.61Se2 superconductor: Crucial role of the cigar-shaped Fermi surface

    NASA Astrophysics Data System (ADS)

    Maletz, J.; Zabolotnyy, V. B.; Evtushinsky, D. V.; Yaresko, A. N.; Kordyuk, A. A.; Shermadini, Z.; Luetkens, H.; Sedlak, K.; Khasanov, R.; Amato, A.; Krzton-Maziopa, A.; Conder, K.; Pomjakushina, E.; Klauss, H.-H.; Rienks, E. D. L.; Büchner, B.; Borisenko, S. V.

    2013-10-01

    In this study, we investigate the electronic and magnetic properties of Rb0.77Fe1.61Se2 (Tc = 32.6 K) in normal and superconducting states by means of photoemission and μSR spectroscopies as well as band-structure calculations. We demonstrate that the unusual behavior of these materials is the result of separation into metallic (˜12%) and insulating (˜88%) phases. Only the former becomes superconducting and has a usual electronic structure of electron-doped FeSe slabs. Our results thus imply that the antiferromagnetic insulating phase is just a by-product of Rb intercalation and its magnetic properties have no direct relation to the superconductivity. Instead, we find that also in this class of iron-based compounds, the key ingredient for superconductivity is a certain proximity of a Van Hove singularity to the Fermi level.

  3. Photoemission and energy gap of MgWO4 particles connecting as nanofibers synthesized by electrospinning-calcination combinations

    NASA Astrophysics Data System (ADS)

    Wannapop, Surangkana; Thongtem, Titipun; Thongtem, Somchai

    2012-03-01

    Mixtures of magnesium acetate tetrahydrate ((CH3COO)2Mg·4H2O), ammonium tungstate tetrahydrate ((NH4)6W7O24·4H2O), and poly(vinyl alcohol) with the molecular weight of 72,000 were electrospun through a +15 kV direct voltage to form fibers on ground flat aluminum foils. The electrospun fibers of 1.5, 3.0, and 4.5 mmol of each starting material containing 1.3 g poly(vinyl alcohol) were further calcined at 500-700 °C for 3 h constant length of time. At 500 and 600 °C calcination, both monoclinic and anorthic phases of MgWO4 particles with different sizes connecting as fibrous assemblies were detected. Upon increasing the calcination temperature to 700 °C, only monoclinic phase of facet nanoparticles interconnecting along the fibrous axes with 4.19 eV indirect band gap and 461 nm photoemission was synthesized. In the present research, formation of MgWO4 molecules as well as nucleation and growth of nanoparticles was also proposed.

  4. The feasibility study on fabrication customized orthotic insole using fused deposition modelling (FDM)

    NASA Astrophysics Data System (ADS)

    Yarwindran, M.; Ibrahim, M.; Raveverma, P.

    2017-04-01

    There are many important roles of the orthotic insoles, such as for the convenience purpose of diabetic patient's foot problem, and also to enhance athlete's performance in sports. Therefore, highly customised insoles were in demand, where it has to be fabricated by moulding plaster of Paris on the person's leg to customise the insole. The main purpose of the paper is to study the ability to implement additive manufacturing technology in the fabrication process of customised orthotics insole. The recent invention of flexible material (Filaflex) in Fused Deposition Modelling is the most significant reason that makes this fabrication process possible. By implementing a new approach to the 3D scanning of the foot, we produced the computer-aided drafting (CAD) drawing which was able to modify to desired shape and dimension. After the editing has been completed, the file was converted to Stereolithography format file (STL) as to enable it to be printed using Makerware or any other related software by sending command (G-code) to Flashforge 3D printer. The printed insole was tested its fit, form and function (also known as 3F). In the end, printed insole performs the function test which measures the plantar pressure of the foot compared with bare foot. The results show that the insole distributes pressure well throughout the foot surface, in which it reduced the peak pressure to half from 218KPa to 109KPa. Hence, it is concluded that the method proposed in this paper can produce a functional insole so that it can be the alternative way to make customised orthotic insoles.

  5. Structure and yarn sensor for fabric

    DOEpatents

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  6. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS), part 3. Volume 3: Requirements

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The performance, design and verification requirements for the space Construction Automated Fabrication Experiment (SCAFE) are defined. The SCAFE program defines, develops, and demonstrates the techniques, processes, and equipment required for the automatic fabrication of structural elements in space and for the assembly of such elements into a large, lightweight structure. The program defines a large structural platform to be constructed in orbit using the space shuttle as a launch vehicle and construction base.

  7. Factors Affecting the Persistence of Staphylococcus aureus on Fabrics

    PubMed Central

    Wilkoff, Lee J.; Westbrook, Louise; Dixon, Glen J.

    1969-01-01

    The persistence of Staphylococcus aureus (Smith) on wool blanket, wool gabardine, cotton sheeting, cotton knit jersey, cotton terry cloth, and cotton wash-and-wear fabrics was studied. The fabrics were exposed to bacterial populations by three methods: direct contact, aerosol, and a lyophilized mixture of bacteria and dust having a high content of textile fibers. The contaminated fabrics were held in 35 or 78% relative humidities at 25 C. In general, the persistence time of S. aureus populations on fabrics held in 35% relative humidity was substantially longer when the fabrics were contaminated by exposure to aerosolized cultures or to dust containing bacteria than when contaminated by direct contact. In a 78% relative humidity, bacterial populations on the fabrics persisted for substantially shorter periods of time regardless of the mode of contamination or fabric type. Cotton wash-and-wear fabric (treated with a modified triazone resin) was the material on which populations of S. aureus persisted for the shortest time. This organism retained its virulence for Swiss mice after being recovered from wool gabardine swatches held 4 weeks in 35% relative humidity and 6 weeks in 78% relative humidity. Images PMID:5775911

  8. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  9. Morphological Study on Porous Silicon Carbide Membrane Fabricated by Double-Step Electrochemical Etching

    NASA Astrophysics Data System (ADS)

    Omiya, Takuma; Tanaka, Akira; Shimomura, Masaru

    2012-07-01

    The structure of porous silicon carbide membranes that peeled off spontaneously during electrochemical etching was studied. They were fabricated from n-type 6H SiC(0001) wafers by a double-step electrochemical etching process in a hydrofluoric electrolyte. Nanoporous membranes were obtained after double-step etching with current densities of 10-20 and 60-100 mA/cm2 in the first and second steps, respectively. Microporous membranes were also fabricated after double-step etching with current densities of 100 and 200 mA/cm2. It was found that the pore diameter is influenced by the etching current in step 1, and that a higher current is required in step 2 when the current in step 1 is increased. During the etching processes in steps 1 and 2, vertical nanopore and lateral crack formations proceed, respectively. The influx pathway of hydrofluoric solution, expansion of generated gases, and transfer limitation of positive holes to the pore surface are the key factors in the peeling-off mechanism of the membrane.

  10. Entrapment of Bacteriocin 105B onto Fabric with Titania

    DTIC Science & Technology

    2017-02-09

    to fabricate a multifunctional textile exhibiting an alternative range of antimicrobial activity from that of nisin, by titania encapsulation of...105b onto fabric. The results of these initial studies suggest that both pure preparations and semi-pure preparations of 105b are active when...encapsulated in titania in solution. However, when the pure preparation of 105b is titania encapsulated on fabric, antimicrobial activity is not observed

  11. Transfer of bacteria from fabrics to hands and other fabrics: development and application of a quantitative method using Staphylococcus aureus as a model.

    PubMed

    Sattar, S A; Springthorpe, S; Mani, S; Gallant, M; Nair, R C; Scott, E; Kain, J

    2001-06-01

    To develop and apply a quantitative protocol for assessing the transfer of bacteria from bleached and undyed fabrics of 100% cotton and 50% cotton + 50% polyester (poly cotton) to fingerpads or other pieces of fabric. Test pieces of the fabrics were mounted on custom-made stainless steel carriers to give a surface area of 1 cm in diameter, and each piece seeded with about 10(5) cfu of Staphylococcus aureus from an overnight broth culture; the inoculum contained 5% fetal bovine serum as the soil load. Transfer from fabric to fabric was performed by direct contact using moist and dry fabrics. Transfers from fabrics to fingerpads of adult volunteers were tested using moist, dry and re-moistened pieces of the fabrics, with or without friction during the contact. Bacterial transfer from fabrics to moistened fingerpads was also studied. All the transfers were conducted under ambient conditions at an applied pressure of 0.2 kg cm(-2). After the transfer, the recipient fingerpads or fabric pieces were eluted, the eluates spread-plated, along with appropriate controls, on tryptic soy agar and the percentage transfer calculated after the incubation of the plates for 24 h at 37 degrees C. Bacterial transfer from moist donor fabrics using recipients with moisture was always higher than that to and from dry ones. Friction increased the level of transfer from fabrics to fingerpads by as much as fivefold. Bacterial transfer from poly cotton was consistently higher when compared with that from all-cotton material. The data generated should help in the development of better models to assess the role fabrics may play as vehicles for infectious agents. Also, the basic design of the reported methodology lends itself to work with other types of human pathogens.

  12. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  13. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  14. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  15. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  16. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  17. Effect of Orientation on Tensile Properties of Inconel 718 Block Fabricated with Electron Beam Freeform Fabrication (EBF3)

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Atherton, Todd S.

    2010-01-01

    Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate an Inconel 718 bulk block deposit. Room temperature tensile properties were measured as a function of orientation and location within the block build. This study is a follow-on activity to previous work on Inconel 718 EBF3 deposits that were too narrow to allow properties to be measured in more than one orientation

  18. Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.

    PubMed

    Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko

    2015-09-01

    Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C.

  19. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  20. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  1. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  2. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  3. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  4. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  5. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  6. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  7. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  8. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  9. High passive CEP stability from a few-cycle, tunable NOPA-DFG system for observation of CEP-effects in photoemission.

    PubMed

    Vogelsang, Jan; Robin, Jörg; Piglosiewicz, Björn; Manzoni, Cristian; Farinello, Paolo; Melzer, Stefan; Feru, Philippe; Cerullo, Giulio; Lienau, Christoph; Groß, Petra

    2014-10-20

    The investigation of fundamental mechanisms taking place on a femtosecond time scale is enabled by ultrafast pulsed laser sources. Here, the control of pulse duration, center wavelength, and especially the carrier-envelope phase has been shown to be of essential importance for coherent control of high harmonic generation and attosecond physics and, more recently, also for electron photoemission from metallic nanostructures. In this paper we demonstrate the realization of a source of 2-cycle laser pulses tunable between 1.2 and 2.1 μm, and with intrinsic CEP stability. The latter is guaranteed by difference frequency generation between the output pulse trains of two noncollinear optical parametric amplifier stages that share the same CEP variations. The CEP stability is better than 50 mrad over 20 minutes, when averaging over 100 pulses. We demonstrate the good CEP stability by measuring kinetic energy spectra of photoemitted electrons from a single metal nanostructure and by observing a clear variation of the electron yield with the CEP.

  10. Optical properties (bidirectional reflectance distribution function) of shot fabric.

    PubMed

    Lu, R; Koenderink, J J; Kappers, A M

    2000-11-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.

  11. Antibacterial property of fabrics coated by magnesium-based brucites

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Sha, Lin; Zhao, Jiao; Li, Qian; Zhu, Yimin; Wang, Ninghui

    2017-04-01

    A kind of environmental-friendly magnesium-based antibacterial agent was reported for the first time, which was composited by brucites with different particle sizes. The antibacterial fabrics were produced by coating the magnesium-based antibacterial agents on the 260T polyester pongee fabrics with waterborne polyurethane. The coating process was simple, low-cost, and harmless to human health and environment. Characteristics of the antibacterial agents and fabrics were studied by particulate size distribution analyzer (PSDA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results demonstrated that the coating layer was covered tightly on the fabrics and compositing of different particles by a certain proportion made full filling of the coating layer. Meanwhile, compositing did not change the structure of brucites. The antibacterial fabrics presented strong antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with the reduction percentage of 96.6% and 100%, respectively, and the antibacterial fabrics attained excellent washing durability.

  12. Fabrication and Characterization of SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  13. Tapered microelectrode array system for dielectrophoretically filtration: fabrication, characterization, and simulation study

    NASA Astrophysics Data System (ADS)

    Buyong, Muhamad Ramdzan; Larki, Farhad; Takamura, Yuzuru; Majlis, Burhanuddin Yeop

    2017-10-01

    This paper presents the fabrication, characterization, and simulation of microelectrode arrays system with tapered profile having an aluminum surface for dielectrophoresis (DEP)-based manipulation of particles. The proposed structure demonstrates more effective electric field gradient compared with its counterpart with untapered profile. Therefore, according to the asymmetric distribution of the electric field in the active region of microelectrode, it produces more effective particle manipulation. The tapered aluminum microelectrode array (TAMA) fabrication process uses a state-of-the-art technique in the formation of the resist's taper profile. The performance of TAMA with various sidewall profile angles (5 deg to 90 deg) was analyzed through finite-element method numerical simulations to offer a better understanding of the origin of the sidewall profile effect. The ability of capturing and manipulating of the device was examined through modification of the Clausius-Mossotti factor and cross-over frequency (f). The fabricated system has been particularly implemented for filtration of particles with a desired diameter from a mixture of particles with three different diameters in an aqueous medium. The microelectrode system with tapered side wall profile offers a more efficient platform for particle manipulation and sensing applications compared with the conventional microelectrode systems.

  14. Studies of flammability and thermal degradation for flame retardant cotton fabric with P-N containing derivatives

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of a phosphoramidate Tetraethyl piperazine-1,4- diyldiphosphoramidate (TEPP) as a flame retardant (FR) on cotton twill fabrics was compared with that of a previously studied Diethyl 4- methylpiperazin-1-ylphosphoramidate (DEPP). TEPP was formed in a reaction between two phosphonat...

  15. Unidirectional Fabric Drape Testing Method

    PubMed Central

    Mei, Zaihuan; Yang, Jingzhi; Zhou, Ting; Zhou, Hua

    2015-01-01

    In most cases, fabrics such as curtains, skirts, suit pants and so on are draped under their own gravity parallel to fabric plane while the gravity is perpendicular to fabric plane in traditional drape testing method. As a result, it does not conform to actual situation and the test data is not convincing enough. To overcome this problem, this paper presents a novel method which simulates the real mechanical conditions and ensures the gravity is parallel to the fabric plane. This method applied a low-cost Kinect Sensor device to capture the 3-dimensional (3D) drape profile, thus we obtained the drape degree parameters and aesthetic parameters by 3D reconstruction and image processing and analysis techniques. The experiment was conducted on our self-devised drape-testing instrument by choosing different kinds of weave structure fabrics as our testing samples and the results were compared with those of traditional method and subjective evaluation. Through regression and correlation analysis we found that this novel testing method was significantly correlated with the traditional and subjective evaluation method. We achieved a new, non-contact 3D measurement method for drape testing, namely unidirectional fabric drape testing method. This method is more suitable for evaluating drape behavior because it is more in line with actual mechanical conditions of draped fabrics and has a well consistency with the requirements of visual and aesthetic style of fabrics. PMID:26600387

  16. Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities

    PubMed Central

    Jung, Han Sae; Tsai, Hsin-Zon; Wong, Dillon; Germany, Chad; Kahn, Salman; Kim, Youngkyou; Aikawa, Andrew S.; Desai, Dhruv K.; Rodgers, Griffin F.; Bradley, Aaron J.; Velasco, Jairo; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Zettl, Alex; Crommie, Michael F.

    2015-01-01

    Owing to its relativistic low-energy charge carriers, the interaction between graphene and various impurities leads to a wealth of new physics and degrees of freedom to control electronic devices. In particular, the behavior of graphene’s charge carriers in response to potentials from charged Coulomb impurities is predicted to differ significantly from that of most materials. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) can provide detailed information on both the spatial and energy dependence of graphene's electronic structure in the presence of a charged impurity. The design of a hybrid impurity-graphene device, fabricated using controlled deposition of impurities onto a back-gated graphene surface, has enabled several novel methods for controllably tuning graphene’s electronic properties.1-8 Electrostatic gating enables control of the charge carrier density in graphene and the ability to reversibly tune the charge2 and/or molecular5 states of an impurity. This paper outlines the process of fabricating a gate-tunable graphene device decorated with individual Coulomb impurities for combined STM/STS studies.2-5 These studies provide valuable insights into the underlying physics, as well as signposts for designing hybrid graphene devices. PMID:26273961

  17. Exploring the Electronic Structure and Chemical Homogeneity of Individual Bi2Te3 Nanowires by Nano-Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Krieg, Janina; Chen, Chaoyu; Avila, José; Zhang, Zeying; Sigle, Wilfried; Zhang, Hongbin; Trautmann, Christina; Asensio, Maria Carmen; Toimil-Molares, Maria Eugenia

    2016-07-13

    Due to their high surface-to-volume ratio, cylindrical Bi2Te3 nanowires are employed as model systems to investigate the chemistry and the unique conductive surface states of topological insulator nanomaterials. We report on nanoangle-resolved photoemission spectroscopy (nano-ARPES) characterization of individual cylindrical Bi2Te3 nanowires with a diameter of 100 nm. The nanowires are synthesized by electrochemical deposition inside channels of ion-track etched polymer membranes. Core level spectra recorded with submicron resolution indicate a homogeneous chemical composition along individual nanowires, while nano-ARPES intensity maps reveal the valence band structure at the single nanowire level. First-principles electronic structure calculations for chosen crystallographic orientations are in good agreement with those revealed by nano-ARPES. The successful application of nano-ARPES on single one-dimensional nanostructures constitutes a new avenue to achieve a better understanding of the electronic structure of topological insulator nanomaterials.

  18. Evaluation of filter fabrics for use in silt fences.

    DOT National Transportation Integrated Search

    1980-01-01

    The study reported was initiated to develop tests simulating field conditions that could be used to develop information for the formulation of specifications for use in purchasing filter fabrics to be used to construct silt fences. Fifteen fabrics we...

  19. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  20. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  1. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  2. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  3. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  4. X-ray photoemission studies of Zn doped Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors

    NASA Astrophysics Data System (ADS)

    Khan, Nawazish A.; Mumtaz, M.; Ahadian, M. M.; Iraji-zad, Azam

    2007-03-01

    The X-ray photoemission (XPS) measurements of Cu 1- xTl xBa 2Ca 2Cu 3- yZn yO 10- δ ( y = 0, 2.65) superconductors have been performed and compared. These studies revealed that the charge state of thallium in the Cu 0.5Tl 0.5Ba 2O 4- δ charge reservoir layer in Zn doped samples is Tl 1+, while it is a mix of Tl 1+ and Tl 2+ in Zn free samples. The binding energy of Ba atoms in the Zn doped samples is shifted to higher energy, which when considered along with the presence of Tl 1+ suggested that it more efficiently directed the carriers to ZnO 2 and CuO 2 planes. The evidence of improved inter-plane coupling witnessed in X-ray diffraction is also confirmed by XPS measurements of Ca atoms in the Zn doped samples. The shift of the valance band spectrum in these Zn doped samples to higher energies suggested that the electrons at the top edge of the valance band were tied to a higher binding energy (relative to samples without Zn doping), which most likely resulted in a much lower energy state of the system in the superconducting state. The stronger superconducting state arising out of these effects is witnessed in the form of increased Tc( R = 0), Jc and the extent of diamagnetism in the final compound.

  5. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberger, H., E-mail: Hubertus.Bromberger@mpsd.mpg.de; Liu, H.; Chávez-Cervantes, M.

    2015-08-31

    A recently developed source of ultraviolet radiation, based on optical soliton propagation in a gas-filled hollow-core photonic crystal fiber, is applied here to angle-resolved photoemission spectroscopy (ARPES). Near-infrared femtosecond pulses of only few μJ energy generate vacuum ultraviolet radiation between 5.5 and 9 eV inside the gas-filled fiber. These pulses are used to measure the band structure of the topological insulator Bi{sub 2}Se{sub 3} with a signal to noise ratio comparable to that obtained with high order harmonics from a gas jet. The two-order-of-magnitude gain in efficiency promises time-resolved ARPES measurements at repetition rates of hundreds of kHz or even MHz,more » with photon energies that cover the first Brillouin zone of most materials.« less

  6. Comparison of Quantitative Antifungal Testing Methods for Textile Fabrics.

    PubMed

    Imoto, Yasuo; Seino, Satoshi; Nakagawa, Takashi; Yamamoto, Takao A

    2017-01-01

     Quantitative antifungal testing methods for textile fabrics under growth-supportive conditions were studied. Fungal growth activities on unfinished textile fabrics and textile fabrics modified with Ag nanoparticles were investigated using the colony counting method and the luminescence method. Morphological changes of the fungi during incubation were investigated by microscopic observation. Comparison of the results indicated that the fungal growth activity values obtained with the colony counting method depended on the morphological state of the fungi on textile fabrics, whereas those obtained with the luminescence method did not. Our findings indicated that unique characteristics of each testing method must be taken into account for the proper evaluation of antifungal activity.

  7. Characterizing the fabric of the urban environment: A case study of Greater Houston, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Leanna Shea; Akbari, Hashem; Taha, Haider

    2003-01-15

    In this report, the materials and various surface types that comprise a city are referred to as the ''urban fabric.'' Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective urban environmental implementation programs. We discuss the results of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Houston covered a total of about 52more » km2 (20 mi2). At 0.30-m resolution, there were approximately 5.8 x 108 pixels of data. Four major land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the regions studied, vegetation covers about 39 percent of the area, roofs cover about 21 percent, and paved surfaces cover about 29 percent. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the vegetation canopies, paved surfaces cover about 32 percent of the study area. GLOBEIS model data from University of Texas and land-use/land-cover (LULC) information from the United States Geological Survey (USGS) were used to extrapolate these results from neighborhood scales to Greater Houston. It was found that in an area of roughly 3,430 km2, defining most of Greater Houston, over 56 percent is residential. The total roof area is about 740 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 1000 km2. Vegetation covers about 1,320 km2.« less

  8. Review article: Fabrication of nanofluidic devices

    PubMed Central

    Duan, Chuanhua; Wang, Wei; Xie, Quan

    2013-01-01

    Thanks to its unique features at the nanoscale, nanofluidics, the study and application of fluid flow in nanochannels/nanopores with at least one characteristic size smaller than 100 nm, has enabled the occurrence of many interesting transport phenomena and has shown great potential in both bio- and energy-related fields. The unprecedented growth of this research field is apparently attributed to the rapid development of micro/nanofabrication techniques. In this review, we summarize recent activities and achievements of nanofabrication for nanofluidic devices, especially those reported in the past four years. Three major nanofabrication strategies, including nanolithography, microelectromechanical system based techniques, and methods using various nanomaterials, are introduced with specific fabrication approaches. Other unconventional fabrication attempts which utilize special polymer properties, various microfabrication failure mechanisms, and macro/microscale machining techniques are also presented. Based on these fabrication techniques, an inclusive guideline for materials and processes selection in the preparation of nanofluidic devices is provided. Finally, technical challenges along with possible opportunities in the present nanofabrication for nanofluidic study are discussed. PMID:23573176

  9. The effects of cracks on the quantification of the cancellous bone fabric tensor in fossil and archaeological specimens: a simulation study.

    PubMed

    Bishop, Peter J; Clemente, Christofer J; Hocknull, Scott A; Barrett, Rod S; Lloyd, David G

    2017-03-01

    Cancellous bone is very sensitive to its prevailing mechanical environment, and study of its architecture has previously aided interpretations of locomotor biomechanics in extinct animals or archaeological populations. However, quantification of architectural features may be compromised by poor preservation in fossil and archaeological specimens, such as post mortem cracking or fracturing. In this study, the effects of post mortem cracks on the quantification of cancellous bone fabric were investigated through the simulation of cracks in otherwise undamaged modern bone samples. The effect on both scalar (degree of fabric anisotropy, fabric elongation index) and vector (principal fabric directions) variables was assessed through comparing the results of architectural analyses of cracked vs. non-cracked samples. Error was found to decrease as the relative size of the crack decreased, and as the orientation of the crack approached the orientation of the primary fabric direction. However, even in the best-case scenario simulated, error remained substantial, with at least 18% of simulations showing a > 10% error when scalar variables were considered, and at least 6.7% of simulations showing a > 10° error when vector variables were considered. As a 10% (scalar) or 10° (vector) difference is probably too large for reliable interpretation of a fossil or archaeological specimen, these results suggest that cracks should be avoided if possible when analysing cancellous bone architecture in such specimens. © 2016 Anatomical Society.

  10. Cylindrical fabric-confined soil structures

    NASA Astrophysics Data System (ADS)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  11. In vivo testing of a biodegradable woven fabric made of bioactive glass fibers and PLGA80--a pilot study in the rabbit.

    PubMed

    Alm, Jessica J; Frantzén, Janek P A; Moritz, Niko; Lankinen, Petteri; Tukiainen, Mikko; Kellomäki, Minna; Aro, Hannu T

    2010-05-01

    The purpose of this study was to perform an intra-animal comparison of biodegradable woven fabrics made of bioactive glass (BG) fibers and poly(L-lactide-co-glycolide) 80/20 copolymer (PLGA(80)) fibers or PLGA(80) fibers alone, in surgical stabilization of bone graft. The BG fibers (BG 1-98) were aimed to enhance bone growth at site of bone grafting, whereas the PLGA component was intended to provide structural strength and flexibility to the fabric. Bone formation was analyzed qualitatively by histology and quantitatively by peripheral quantitative computed tomography (pQCT) at 12 weeks. The surgical handling properties of the control PLGA(80) fabric were more favorable. Both fabrics were integrated with the cortical bone surfaces, but BG fibers showed almost complete resorption. There were no signs of adverse local tissue reactions. As a proof of material integration and induced new bone formation, there was a significant increase in bone volume of the operated femurs compared with the contralateral intact bone (25% with BG/PLGA(80) fabric, p < 0.001 and 28% with the control PLGA(80) fabric, p = 0.006). This study failed to demonstrate the previously seen positive effect of BG 1-98 on osteogenesis, probably due to the changed resorption properties of BG in the form of fibers. Therefore, the feasibility and safety of BG as fibers needs to be reevaluated before use in clinical applications. (c) 2010 Wiley Periodicals, Inc.

  12. Ignition characteristics of some aircraft interior fabrics

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brandt, D. L.

    1978-01-01

    Six samples of aircraft interior fabrics were evaluated with regard to resistance to ignition by radiant heat. Five samples were aircraft seat upholstery fabrics and one sample was an aircraft curtain fabric. The aircraft seat fabrics were 100% wool (2 samples), 83% wool/17% nylon, 49% wool/51% polyvinyl chloride, and 100% rayon. The aircraft curtain fabric was 92% modacrylic/8% polyester. The five samples of aircraft seat upholstery fabrics were also evaluated with regard to resistance to ignition by a smoldering cigarette. The four samples of wool-containing aircraft seat fabrics appeared to be superior to the sample of rayon seat fabric in resistance to ignition, both by radiant heat and by a smoldering cigarette.

  13. Potassium-argon (argon-argon), structural fabrics

    USGS Publications Warehouse

    Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon

    2014-01-01

    Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...

  14. EIT-Based Fabric Pressure Sensing

    PubMed Central

    Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M.

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results. PMID:23533538

  15. EIT-based fabric pressure sensing.

    PubMed

    Yao, A; Yang, C L; Seo, J K; Soleimani, M

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  16. Shuttle Spacesuit: Fabric/LCVG Model Validation

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tweed, J.; Zeitlin, C.; Kim, M.-H. Y.; Anderson, B. M.; Cucinotta, F. A.; Ware, J.; Persans, A. E.

    2001-01-01

    A detailed spacesuit computational model is being developed at the Langley Research Center for radiation exposure evaluation studies. The details of the construction of the spacesuit are critical to estimation of exposures and assessing the risk to the astronaut on EVA. Past evaluations of spacesuit shielding properties assumed the basic fabric lay-up (Thermal Micrometeroid Garment, fabric restraints, and pressure envelope) and Liquid Cooling and Ventilation Garment (LCVG) could be homogenized as a single layer overestimating the protective properties over 60 percent of the fabric area. The present spacesuit model represents the inhomogeneous distributions of LCVG materials (mainly the water filled cooling tubes). An experimental test is performed using a 34-MeV proton beam and highresolution detectors to compare with model-predicted transmission factors. Some suggestions are made on possible improved construction methods to improve the spacesuit's protection properties.

  17. Fabrication of angleply carbon-aluminum composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1974-01-01

    A study was conducted to fabricate and test angleply composite consisting of NASA-Hough carbon base monofilament in a matrix of 2024 aluminum. The effect of fabrication variables on the tensile properties was determined, and an optimum set of conditions was established. The size of the composite panels was successfully scaled up, and the material was tested to measure tensile behavior as a function of temperature, stress-rupture and creep characteristics at two elevated temperatures, bending fatigue behavior, resistance to thermal cycling, and Izod impact response.

  18. Studies on photonic crystal composites: Fabrication and applications

    NASA Astrophysics Data System (ADS)

    Ying, Yurong

    There is considerable interest in developing three-dimensional ordered dielectric structures because of their unique optical property, the photonic band gap. A material containing this photonic band gap can be used to control the propagation of electromagnetic waves. This characteristic can be utilized in fabricating a number of diffractive optical devices. A crystalline colloidal array (CCA) is one such three-dimensional ordered dielectric structure, formed through the self-assembly of monodispersed, surface-charged colloidal particles when they are dispersed in a polar liquid medium. Previous work has demonstrated that monodispersed, negatively charged polystyrene spheres can self-assemble into a face-centered cubic (fcc) structure when they are dispersed in a polar medium. This fee lattice can be locked in a hydrogel-based polymeric network and then encapsulated into a water-free elastomer network. These photonic crystal hydrogel films exhibit a solvatochromic effect. A method has been developed for creating patterns in photonic crystal hydrogel films based on this solvatochromic effect via a direct photopolymerization process. The multicolor pattern generation induced by this method resulted in macro- and micropatterns with a large color contrast, i.e. the difference between the patterned area and the background is greater than 150 nm. Unfortunately, CCA systems often exhibit intrinsic and extrinsic defects. To reduce the extrinsic defects incurred during the film fabrication process, a modified lithographic technique was developed to fabricate a high quality, large area, ca. 1 cm2 and a robust, water-free photonic band gap composite film having a thickness of 35 mum. The optical properties of these composite films change in response to their mechanical deformation. These robust films can change shape and recover after stretching or compression without destroying the order of the crystal. These thin films have a high sensitivity to a pressure variation when

  19. Fabric Organic Electrochemical Transistors for Biosensors.

    PubMed

    Yang, Anneng; Li, Yuanzhe; Yang, Chenxiao; Fu, Ying; Wang, Naixiang; Li, Li; Yan, Feng

    2018-06-01

    Flexible fabric biosensors can find promising applications in wearable electronics. However, high-performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber-based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sensory interaction and descriptions of fabric hand.

    PubMed

    Burns, L D; Chandler, J; Brown, D M; Cameron, B; Dallas, M J

    1995-08-01

    82 subjects who viewed and felt fabrics (sensory interaction group) used different categories of terms to describe fabric hand than did 38 subjects who only felt the fabrics. Therefore, the methods used to measure fabric hand that isolate the senses may not accurately assess the way in which subjects describe fabric hand in nonlaboratory settings.

  1. Fabrication of Pd and Pt Nanotubes and Their Catalytic Study on p-Nitrophenol Reduction

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Wang, Jiankang; Chen, JingYi

    2018-03-01

    Pd and Pt nanotubes were fabricated using self-assembled DC8,9PC lipid tubules under mild conditions at room temperature. Scan electron microscope (SEM) show the hollow and open-ended structures of prepared Pd and Pt nanotubes. The Pd and Pt nanotubes demonstrate both high catalytic activity toward p-nitrophenol reduction and excellent stability. This work has indicated the application potentials of lipid tubules in fabricating hollow metal nanomaterials.

  2. Study on textile comfort properties of polypropylene blended stainless steel woven fabric for the application of electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Palanisamy, S.; Tunakova, V.; Karthik, D.; Ali, A.; Militky, J.

    2017-10-01

    In this study, the different proportion of conductive component blended with polypropylene yarn were taken for making conductive textile samples for analysis of electromagnetic shielding effectiveness, fabric bending moment and air permeability. The ASTM D4935 coaxial transmission line method was used to study the electromagnetic shielding. Electromagnetic shielding effectiveness of textile structures containing different percentage of metal content ranges from 1 to 50 dB at high frequency range. Breathability of structures, more precisely air permeability was considered as one of important parameters for designing of electromagnetic radiation protective fabrics for certain applications. The bending moment of samples is decreases with increasing metal component percent.

  3. Photoemission and x-ray absorption studies of the isostructural to Fe-based superconductors diluted magnetic semiconductor Ba1 -xKx(Zn1 -yMny)2As2

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Zhao, K.; Shibata, G.; Takahashi, Y.; Sakamoto, S.; Yoshimatsu, K.; Chen, B. J.; Kumigashira, H.; Chang, F.-H.; Lin, H.-J.; Huang, D. J.; Chen, C. T.; Gu, Bo; Maekawa, S.; Uemura, Y. J.; Jin, C. Q.; Fujimori, A.

    2015-04-01

    The electronic and magnetic properties of a new diluted magnetic semiconductor (DMS) Ba1 -xKx (Zn1 -yMny )2As2 , which is isostructural to so-called 122-type Fe-based superconductors, are investigated by x-ray absorption spectroscopy (XAS) and resonance photoemission spectroscopy (RPES). Mn L2 ,3-edge XAS indicates that the doped Mn atoms have a valence 2+ and strongly hybridize with the 4 p orbitals of the tetrahedrally coordinating As ligands. The Mn 3 d partial density of states obtained by RPES shows a peak around 4 eV and is relatively high between 0 and 2 eV below the Fermi level (EF) with little contribution at EF, similar to that of the archetypal DMS Ga1 -xMnxAs . This energy level creates a d5 electron configuration with S =5 /2 local magnetic moments at the Mn atoms. Hole carriers induced by K substitution for Ba atoms go into the top of the As 4 p valence band and are weakly bound to the Mn local spins. The ferromagnetic correlation between the local spins mediated by the hole carriers induces ferromagnetism in Ba1 -xKx (Zn1 -yMny )2As2 .

  4. Magnetic fabric constraints of the emplacement of igneous intrusions

    NASA Astrophysics Data System (ADS)

    Maes, Stephanie M.

    Fabric analysis is critical to evaluating the history, kinematics, and dynamics of geological deformation. This is particularly true of igneous intrusions, where the development of fabric is used to constrain magmatic flow and emplacement mechanisms. Fabric analysis was applied to three mafic intrusions, with different tectonic and petrogenetic histories, to study emplacement and magma flow: the Insizwa sill (Mesozoic Karoo Large Igneous Province, South Africa), Sonju Lake intrusion (Proterozoic Midcontinent Rift, Minnesota, USA), and Palisades sill (Mesozoic rift basin, New Jersey, USA). Multiple fabric analysis techniques were used to define the fabric in each intrusive body. Using digital image analysis techniques on multiple thin sections, the three-dimensional shape-preferred orientation (SPO) of populations of mineral phases were calculated. Low-field anisotropy of magnetic susceptibility (AMS) measurements were used as a proxy for the mineral fabric of the ferromagnetic phases (e.g., magnetite). In addition, a new technique---high-field AMS---was used to isolate the paramagnetic component of the fabric (e.g., silicate fabric). Each fabric analysis technique was then compared to observable field fabrics as a framework for interpretation. In the Insizwa sill, magnetic properties were used to corroborate vertical petrologic zonation and distinguish sub-units within lithologically defined units. Abrupt variation in magnetic properties provides evidence supporting the formation of the Insizwa sill by separate magma intrusions. Low-field AMS fabrics in the Sonju Lake intrusion exhibit consistent SW-plunging lineations and SW-dipping foliations. These fabric orientations provide evidence that the cumulate layers in the intrusion were deposited in a dynamic environment, and indicate magma flowed from southwest to northeast, parallel to the pre-existing rift structures. In the Palisades sill, the magnetite SPO and low-field AMS lineation have developed orthogonal to

  5. Fabrication of microchannels in polycrystalline diamond using pre-fabricated Si substrates

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Elfimchev, Sergey; Michaelson, Shaul; Akhvlediani, Rozalia; Ternyak, Orna; Hoffman, Alon

    2017-10-01

    In this paper, we report on a simple, feasible method to fabricate microchannels in diamond. Polycrystalline diamond microchannels were produced by fabricating trenches in a Si wafer and subsequently depositing a thin layer of diamond onto this substrate using the hot filament vapor deposition technique. Fabrication of trenches in the Si substrate at different depths was carried out by standard photolithography, and the subsequent deposition of the diamond layer was performed by the hot filament chemical vapor deposition technique. The growth mechanism of diamond that leads to the formation of closed diamond microchannels is discussed in detail based on the Knudsen number and growth chemistry of diamond. Variations in the crystallite size, crystalline quality, and thickness of the diamond layer along the trench depths were systematically analyzed using cross-sectional scanning electron microscopy and Raman spectroscopy. Defect density and formation of non-diamond forms of carbon in the diamond layer were found to increase with the trench depth, which sets a limit of 5-45 μm trench depth (or an aspect ratio of 1-9) for the fabrication of diamond microchannels using this method under the present conditions.

  6. Space Construction Automated Fabrication Experiment Definition Study (SCAFEDS), part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The techniques, processes, and equipment required for automatic fabrication and assembly of structural elements in using Shuttle as a launch vehicle, and construction were defined. Additional construction systems operational techniques, processes, and equipment which can be developed and demonstrated in the same program to provide further risk reduction benefits to future large space systems were identified and examined.

  7. Composite nuclear fuel fabrication methodology for gas fast reactors

    NASA Astrophysics Data System (ADS)

    Vasudevamurthy, Gokul

    An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were

  8. Superhydrophobic Superoleophobic Woven Fabrics (Preprint)

    DTIC Science & Technology

    2011-06-01

    AFRL-RX-TY-TP-2011-0050 SUPERHYDROPHOBIC SUPEROLEOPHOBIC WOVEN FABRICS (PREPRINT) Hoonjoo Lee Department of Textile and Apparel...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) JUN 2011 Book Chapter 20-JUN-2008 -- 30-APR-2011 Superhydrophobic Superoleophobic Woven Fabrics...roll-off angles are analyzed, and finally superhydrophobic , superoleophobic, woven fabric is designed and developed using chemical and geometrical

  9. Optimizing The DSSC Fabrication Process Using Lean Six Sigma

    NASA Astrophysics Data System (ADS)

    Fauss, Brian

    Alternative energy technologies must become more cost effective to achieve grid parity with fossil fuels. Dye sensitized solar cells (DSSCs) are an innovative third generation photovoltaic technology, which is demonstrating tremendous potential to become a revolutionary technology due to recent breakthroughs in cost of fabrication. The study here focused on quality improvement measures undertaken to improve fabrication of DSSCs and enhance process efficiency and effectiveness. Several quality improvement methods were implemented to optimize the seven step individual DSSC fabrication processes. Lean Manufacturing's 5S method successfully increased efficiency in all of the processes. Six Sigma's DMAIC methodology was used to identify and eliminate each of the root causes of defects in the critical titanium dioxide deposition process. These optimizations resulted with the following significant improvements in the production process: 1. fabrication time of the DSSCs was reduced by 54 %; 2. fabrication procedures were improved to the extent that all critical defects in the process were eliminated; 3. the quantity of functioning DSSCs fabricated was increased from 17 % to 90 %.

  10. Fragrance allergy: assessing the safety of washed fabrics.

    PubMed

    Basketter, David A; Pons-Guiraud, Annick; van Asten, Arian; Laverdet, Catherine; Marty, Jean-Paul; Martin, Ludovic; Berthod, Daniel; Siest, Sylvie; Giordano-Labadie, Françoise; Tennstedt, Dominique; Baeck, Marie; Vigan, Martine; Lainé, Gérard; Le Coz, Christophe J; Jacobs, Marie-Claude; Bayrou, Olivier; Germaux, Marie-Anne

    2010-06-01

    Previously, a quantitative risk assessment suggested there was no risk of induction of fragrance allergy from minor residues of fragrance chemicals on washed fabrics. To investigate whether there was any risk of the elicitation of contact allergy from fragrance chemical residues on fabric in individuals who were already sensitized. Thirty-six subjects with a positive patch test to isoeugenol (n = 19) or hydroxyisohexyl 3-cyclohexene carboxaldehyde (n = 17) were recruited. Dose-response and fabric patch tests were performed, respectively, with filter paper and a cotton sample loaded with fragrance in ethanol-diethylphthalate (DEP) and applied in a Finn Chamber or a Hill Top Chamber. Only two subjects reacted to an isoeugenol patch test concentration of 0.01% (>20x the estimated likely skin exposure level), none reacted to lower concentrations. Of 36 subjects, 18 reacted to the fabric patch treated with ethanol-DEP vehicle alone and 20 to the fragrance-chemical-treated fabric patch. These were only minor non-specific skin reactions. They were also quite evenly distributed between the two fragrance chemical allergic groups. On the basis of the examples studied, fragrance chemical residues present on fabric do not appear to present a risk of the elicitation of immediate or delayed allergic skin reactions on individuals already sensitized.

  11. Study to investigate design, fabrication and test of low cost concepts for large hybrid composite helicopter fuselage, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, K. M.; Lucas, J. J.

    1975-01-01

    The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacture of large helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D helicopter was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR-49/epoxy skin and graphite/epoxy frames and stringers. To support the selection of this specific design concept a materials study was conducted to develop and select a cure compatible graphite and KEVLAR-49/epoxy resin system, and a foam system capable of maintaining shape and integrity under the processing conditions established. The materials selected were, Narmco 5209/Thornel T-300 graphite, Narmco 5209/KEVLAR-49 woven fabric, and Stathane 8747 polyurethane foam. Eight specimens were fabricated, representative of the frame, stringer, and splice joint attachments. Evaluation of the results of analysis and test indicate that design predictions are good to excellent except for some conservatism of the complex frame splice.

  12. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    NASA Astrophysics Data System (ADS)

    Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.

    2016-07-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  13. ITER Central Solenoid Module Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of

  14. Fabrication for Nanotechnology

    DTIC Science & Technology

    2007-03-01

    could be divided into four groups as pictured in the following figure. Figure 1 : Nanotechnology fabrication methods Top-down nanofabrication...cooled) substrate on which a layer is formed. RTO-EN-AVT-129bis 2 - 1 van Heeren, H. (2007) Fabrication for Nanotechnology. In Nanotechnology...Aerospace Applications – 2006 (pp. 2- 1 – 2-4). Educational Notes RTO-EN-AVT-129bis, Paper 2. Neuilly-sur-Seine, France: RTO. Available from: http

  15. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  16. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric

    NASA Astrophysics Data System (ADS)

    Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil

    2017-10-01

    In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.

  17. Engineering Non-Wetting Antimicrobial Fabrics

    NASA Astrophysics Data System (ADS)

    van den Berg, Desmond

    This research presents novel techniques and a review of commercially available fabrics for their antimicrobial potential. Based on previous research into the advantages of superhydrophobic self-cleaning surfaces against bacterial contamination, insights into what can make a superhydrophobic fabric inherently antimicrobial were analyzed. Through comparing the characterization results of scanning electron microscopy (SEM) and optical profilometry to microbiology experiments, hypotheses into the relationship between the contact area of a bacterial solution and the extent of contamination is developed. Contact scenario experiments, involving the use of fluorescence microscopy and calculating colony forming units, proved that the contamination potential of any fabric is due to the wetting state exhibited by the fabric, as well as the extent of surface texturing. Transmission experiments, utilizing a novel technique of stamping a contaminated fabric, outlined the importance of retention of solutions or bacteria during interactions within the hospital environment on the extent of contamination.

  18. DRAPING SIMULATION OF WOVEN FABRICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, William; Jin, Xiaoshi; Zhu, Jiang

    2016-09-07

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process, where the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the yarns may change significantly compared to the initial orientations. Accurate prediction of the yarn orientations after molding is important for evaluating the structural performance of the final part. This paper presents a systematic investigation of the angle changes during the preform operation for carbon fiber twill andmore » satin weave fabrics. Preforming experiments were conducted using a truncated pyramid mold geometry designed and fabricated at the General Motors Research Laboratories. Predicted results for the yarn orientations were compared with experimental results and good agreement was observed« less

  19. Dynamical correlation effects in a weakly correlated material: Inelastic x-ray scattering and photoemission spectra of beryllium

    NASA Astrophysics Data System (ADS)

    Seidu, Azimatu; Marini, Andrea; Gatti, Matteo

    2018-03-01

    Beryllium is a weakly correlated simple metal. Still we find that dynamical correlation effects, beyond the independent-particle picture, are necessary to successfully interpret the electronic spectra measured by inelastic x-ray scattering (IXS) and photoemission spectroscopies (PES). By combining ab initio time-dependent density-functional theory (TDDFT) and many-body Green's function theory in the G W approximation (G W A ), we calculate the dynamic structure factor, the quasiparticle (QP) properties and PES spectra of bulk Be. We show that band-structure effects (i.e., due to interaction with the crystal potential) and QP lifetimes (LT) are both needed in order to explain the origin of the measured double-peak features in the IXS spectra. A quantitative agreement with experiment is obtained only when LT are supplemented to the adiabatic local-density approximation (ALDA) of TDDFT. Besides the valence band, PES spectra display a satellite, a signature of dynamical correlation due to the coupling of QPs and plasmons, which we are able to reproduce thanks to the combination of the G W A for the self-energy with the cumulant expansion of the Green's function.

  20. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics

    PubMed Central

    El-Shishtawy, Reda M.; El-Zawahry, Manal M.; Abdelghaffar, Fatma; Ahmed, Nahed S. E.

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics. PMID:25258720