Sample records for fabrication specification nuclear

  1. Nuclear Fabrication Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectivelymore » engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication

  2. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.

    2011-11-14

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may bemore » constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.« less

  3. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes these overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  4. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes thses overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  5. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  6. FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS

    DOEpatents

    Loeb, E.; Nicklas, J.H.

    1959-02-01

    A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

  7. Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar

    2012-01-01

    A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).

  8. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  9. Fabrication and characterization of joined silicon carbide cylindrical components for nuclear applications

    NASA Astrophysics Data System (ADS)

    Khalifa, H. E.; Deck, C. P.; Gutierrez, O.; Jacobsen, G. M.; Back, C. A.

    2015-02-01

    The use of silicon carbide (SiC) composites as structural materials in nuclear applications necessitates the development of a viable joining method. One critical application for nuclear-grade joining is the sealing of fuel within a cylindrical cladding. This paper demonstrates cylindrical joint feasibility using a low activation nuclear-grade joint material comprised entirely of β-SiC. While many papers have considered joining material, this paper takes into consideration the joint geometry and component form factor, as well as the material performance. Work focused specifically on characterizing the strength and permeability performance of joints between cylindrical SiC-SiC composites and monolithic SiC endplugs. The effects of environment and neutron irradiation were not evaluated in this study. Joint test specimens of different geometries were evaluated in their as-fabricated state, as well as after being subjected to thermal cycling and partial mechanical loading. A butted scarf geometry supplied the best combination of high strength and low permeability. A leak rate performance of 2 × 10-9 mbar l s-1 was maintained after thermal cycling and partial mechanical loading and sustained applied force of 3.4 kN, or an apparent strength of 77 MPa. This work shows that a cylindrical SiC-SiC composite tube sealed with a butted scarf endplug provides out-of-pile strength and permeability performance that meets light water reactor design requirements.

  10. Novel fabrication of silicon carbide based ceramics for nuclear applications

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek Kumar

    Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These materials include refractory alloys based on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as SiC--SiCf; carbon--carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor components is necessary for improved efficiency. Improving thermal conductivity of the fuel can lower the center-line temperature and, thereby, enhance power production capabilities and reduce the risk of premature fuel pellet failure. Crystalline silicon carbide has superior characteristics as a structural material from the viewpoint of its thermal and mechanical properties, thermal shock resistance, chemical stability, and low radioactivation. Therefore, there have been many efforts to develop SiC based composites in various forms for use in advanced energy systems. In recent years, with the development of high yield preceramic precursors, the polymer infiltration and pyrolysis (PIP) method has aroused interest for the fabrication of ceramic based materials, for various applications ranging from disc brakes to nuclear reactor fuels. The pyrolysis of preceramic polymers allow new types of ceramic materials to be processed at relatively low temperatures. The raw materials are element-organic polymers whose composition and architecture can be tailored and varied. The primary focus of this study is to use a pyrolysis based process to fabricate a host of novel silicon carbide-metal carbide or oxide composites, and to synthesize new materials based on mixed-metal silicocarbides that cannot be processed using conventional techniques. Allylhydridopolycarbosilane (AHPCS), which is an organometal polymer, was used as the precursor for silicon carbide. Inert gas pyrolysis of AHPCS produces near-stoichiometric amorphous

  11. Documentation and Analysis of IAEA (International Atomic Energy Agency) Safeguards Implementation at the Exxon Nuclear Fuel Fabrication Plant.

    DTIC Science & Technology

    1984-10-01

    SAFEGUARDS AT SIMILAR FACILTTIES ASEA -ATOM LEU FUEL FABRICATION PLANT IN VASTERAS, SWEDEN..................B-1 APPENDIX C - EFFECTS OF NONMEASUREMENT ERRORS...second visit was to the ASEA -ATOM’s fuel fabrication plant in Vasteras, Sweden. The safeguards specialists for those plants were interviewed by R...Facilities, ASEA -ATOM LEU Fuel Fabrication Plant in Vasteras, Sweden, by V. Andersson of ASEA -ATOM, Vasteras, Sweden and R. Nilson of Exxon Nuclear

  12. Direct characterization of cotton fabrics treated with di-epoxide by nuclear magnetic resonance.

    PubMed

    Xiao, Min; Chéry, Joronia; Keresztes, Ivan; Zax, David B; Frey, Margaret W

    2017-10-15

    A non-acid-based, di-functional epoxide, neopentyl glycol diglycidyl ether (NPGDGE), was used to modify cotton fabrics. Direct characterization of the modified cotton was conducted by Nuclear Magnetic Resonance (NMR) without grinding the fabric into a fine powder. NaOH and MgBr 2 were compared in catalyzing the reaction between the epoxide groups of NPGDGE and the hydroxyl groups of cellulose. Possible reaction routes were discussed. Scanning electron microscopy (SEM) images showed that while the MgBr 2 -catalyzed reaction resulted in self-polymerization of NPGDGE, the NaOH-catalyzed reaction did not. Fourier transform infrared spectroscopy (FTIR) showed that at high NaOH concentration cellulose restructures from allomorph I to II. NMR studies verified the incorporation of NPGDGE into cotton fabrics with a clear NMR signal, and confirmed that at higher NaOH concentration the efficiency of grafting of NPGDGE was increased. This demonstrates that use of solid state NMR directly on woven fabric samples can simultaneously characterize chemical modification and crystalline polymorph of cotton. No loss of tensile strength was observed for cotton fabrics modified with NPGDGE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    NASA Astrophysics Data System (ADS)

    Berg, Thomas A.; Disney, Richard K.

    2004-02-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  14. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Thomas A.; Disney, Richard K.

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  15. Fabrication of light water reactor tritium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilger, J.P.

    1991-11-01

    The mission of the Fabrication Development Task of the Tritium Target Development Project is: to produce a documented technology basis, including specifications and procedures for target rod fabrication; to demonstrate that light water tritium targets can be manufactured at a rate consistent with tritium production requirements; and to develop quality control methods to evaluate target rod components and assemblies, and establish correlations between evaluated characteristics and target rod performance. Many of the target rod components: cladding tubes, end caps, plenum springs, etc., have similar counterparts in LWR fuel rods. High production rate manufacture and inspection of these components has beenmore » adequately demonstrated by nuclear fuel rod manufacturers. This summary describes the more non-conventional manufacturing processes and inspection techniques developed to fabricate target rod components whose manufacturability at required production rates had not been previously demonstrated.« less

  16. An evaluation of UO2-CNT composites made by SPS as an accident tolerant nuclear fuel pellet and the feasibility of SPS as an economical fabrication process for the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Cartas, Andrew R.

    The innovative and advanced purpose of this study is to understand and establish proper sintering procedures for Spark Plasma Sintering process in order to fabricate high density, high thermal conductivity UO2 -CNT pellets. Mixing quality and chemical reactions have been investigated by field emission scanning electron microscopy (FESEM), wavelength dispersive spectroscopy (WDS), and X-ray diffraction (XRD). The effect of various types of CNTs on the mixing and sintering quality of UO2-CNT pellets with SPS processing have been examined. The Archimedes Immersion Method, laser flash method, and FE-SEM will be used to investigate the density, thermal conductivity, grain size, pinning effects, and CNT dispersion of fabricated UO2-CNT pellets. Pre-fabricated CNT's were added to UO 2 powder and dispersed via sonication and/or ball milling and then made into composite nuclear pellets. An investigation of the economic impact of SPS on the nuclear fuel cycle for producing pure and composite UO2 fuels was conducted.

  17. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Technical specifications on effluents from nuclear power reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors...

  18. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Technical specifications on effluents from nuclear power reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors...

  19. Toward identifying specification requirements for digital bone-anchored prosthesis design incorporating substructure fabrication: a pilot study.

    PubMed

    Eggbeer, Dominic; Bibb, Richard; Evans, Peter

    2006-01-01

    This paper is the first in a series that aims to identify the specification requirements for advanced digital technologies that may be used to design and fabricate complex, soft tissue facial prostheses. Following a review of previously reported techniques, appropriate and currently available technologies were selected and applied in a pilot study. This study uses a range of optical surface scanning, computerized tomography, computer-aided design, and rapid prototyping technologies to capture, design, and fabricate a bone-anchored auricular prosthesis, including the retentive components. The techniques are assessed in terms of their effectiveness, and the results are used to identify future research and specification requirements to direct developments. The case study identifies that while digital technologies may be used to design implant-retained facial prostheses, many limitations need to be addressed to make the techniques clinically viable. It also identifies the need to develop a more robust specification that covers areas such as resolution, accuracy, materials, and design, against which potential technologies may be assessed. There is a need to develop a specification against which potential technologies may be assessed for their suitability in soft tissue facial prosthetics. The specification will be developed using further experimental research studies.

  20. Development and fabrication of patient-specific knee implant using additive manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Zammit, Robert; Rochman, Arif

    2017-10-01

    Total knee replacement is the most effective treatment to relief pain and restore normal function in a diseased knee joint. The aim of this research was to develop a patient-specific knee implant which can be fabricated using additive manufacturing techniques and has reduced wear rates using a highly wear resistant materials. The proposed design was chosen based on implant requirements, such as reduction in wear rates as well as strong fixation. The patient-specific knee implant improves on conventional knee implants by modifying the articulating surfaces and bone-implant interfaces. Moreover, tribological tests of different polymeric wear couples were carried out to determine the optimal materials to use for the articulating surfaces. Finite element analysis was utilized to evaluate the stresses sustained by the proposed design. Finally, the patient-specific knee implant was successfully built using additive manufacturing techniques.

  1. Electrical Ground Support Equipment Fabrication, Specification for

    NASA Technical Reports Server (NTRS)

    Denson, Erik C.

    2014-01-01

    This document specifies parts, materials, and processes used in the fabrication, maintenance, repair, and procurement of electrical and electronic control and monitoring equipment associated with ground support equipment (GSE) at the Kennedy Space Center (KSC).

  2. Fabrication of Extracellular Matrix-derived Foams and Microcarriers as Tissue-specific Cell Culture and Delivery Platforms.

    PubMed

    Kornmuller, Anna; Brown, Cody F C; Yu, Claire; Flynn, Lauren E

    2017-04-11

    Cell function is mediated by interactions with the extracellular matrix (ECM), which has complex tissue-specific composition and architecture. The focus of this article is on the methods for fabricating ECM-derived porous foams and microcarriers for use as biologically-relevant substrates in advanced 3D in vitro cell culture models or as pro-regenerative scaffolds and cell delivery systems for tissue engineering and regenerative medicine. Using decellularized tissues or purified insoluble collagen as a starting material, the techniques can be applied to synthesize a broad array of tissue-specific bioscaffolds with customizable geometries. The approach involves mechanical processing and mild enzymatic digestion to yield an ECM suspension that is used to fabricate the three-dimensional foams or microcarriers through controlled freezing and lyophilization procedures. These pure ECM-derived scaffolds are highly porous, yet stable without the need for chemical crosslinking agents or other additives that may negatively impact cell function. The scaffold properties can be tuned to some extent by varying factors such as the ECM suspension concentration, mechanical processing methods, or synthesis conditions. In general, the scaffolds are robust and easy to handle, and can be processed as tissues for most standard biological assays, providing a versatile and user-friendly 3D cell culture platform that mimics the native ECM composition. Overall, these straightforward methods for fabricating customized ECM-derived foams and microcarriers may be of interest to both biologists and biomedical engineers as tissue-specific cell-instructive platforms for in vitro and in vivo applications.

  3. Fabrication development for high-level nuclear waste containers for the tuff repository; Phase 1 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domian, H.A.; Holbrook, R.L.; LaCount, D.F.

    1990-09-01

    This final report completes Phase 1 of an engineering study of potential manufacturing processes for the fabrication of containers for the long-term storage of nuclear waste. An extensive literature and industry review was conducted to identify and characterize various processes. A technical specification was prepared using the American Society of Mechanical Engineers Boiler & Pressure Vessel Code (ASME BPVC) to develop the requirements. A complex weighting and evaluation system was devised as a preliminary method to assess the processes. The system takes into account the likelihood and severity of each possible failure mechanism in service and the effects of variousmore » processes on the microstructural features. It is concluded that an integral, seamless lower unit of the container made by back extrusion has potential performance advantages but is also very high in cost. A welded construction offers lower cost and may be adequate for the application. Recommendations are made for the processes to be further evaluated in the next phase when mock-up trials will be conducted to address key concerns with various processes and materials before selecting a primary manufacturing process. 43 refs., 26 figs., 34 tabs.« less

  4. Spectral X-ray Radiography for Safeguards at Nuclear Fuel Fabrication Facilities: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Andrew J.; McDonald, Benjamin S.; Smith, Leon E.

    The methods currently used by the International Atomic Energy Agency to account for nuclear materials at fuel fabrication facilities are time consuming and require in-field chemistry and operation by experts. Spectral X-ray radiography, along with advanced inverse algorithms, is an alternative inspection that could be completed noninvasively, without any in-field chemistry, with inspections of tens of seconds. The proposed inspection system and algorithms are presented here. The inverse algorithm uses total variation regularization and adaptive regularization parameter selection with the unbiased predictive risk estimator. Performance of the system is quantified with simulated X-ray inspection data and sensitivity of the outputmore » is tested against various inspection system instabilities. Material quantification from a fully-characterized inspection system is shown to be very accurate, with biases on nuclear material estimations of < 0.02%. It is shown that the results are sensitive to variations in the fuel powder sample density and detector pixel gain, which increase biases to 1%. Options to mitigate these inaccuracies are discussed.« less

  5. Composite nuclear fuel fabrication methodology for gas fast reactors

    NASA Astrophysics Data System (ADS)

    Vasudevamurthy, Gokul

    An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were

  6. Standard specification for nuclear grade hafnium oxide pellets. ASTM standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This specification is under the jurisdiction of ASTM Committee C-26 on Nuclear Fuel Cycle and is the direct responsibility of Subcommittee C26.03 on Neutron Absorber Materials Specifications. Current edition approved May 10, 1997. Published May 1998. Originally published as C 1076-87. Last previous edition C 1076-92.

  7. Results from a Field Trial of the Radio Frequency Based Cylinder Accountability and Tracking System at the Global Nuclear Fuel Americas Fuel Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, Peter; Laughter, Mark D; Martyn, Rose

    The Cylinder Accountability and Tracking System (CATS) is a tool designed for use by the International Atomic Energy Agency (IAEA) to improve overall inspector efficiency through real-time unattended monitoring of cylinder movements, site specific rules-based event detection, and the capability to integrate many types of monitoring technologies. The system is based on the tracking of cylinder movements using (radio frequency) RF tags, and the collection of data, such as accountability weights, that can be associated with the cylinders. This presentation will cover the installation and evaluation of the CATS at the Global Nuclear Fuels (GNF) fuel fabrication facility in Wilmington,more » NC. This system was installed to evaluate its safeguards applicability, operational durability under operating conditions, and overall performance. An overview of the system design and elements specific to the GNF deployment will be presented along with lessons learned from the installation process and results from the field trial.« less

  8. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Frank; Hwan Seo Park; Yung Zun Cho

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration betweenmore » US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.« less

  9. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    PubMed

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  10. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  11. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  12. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reactors. 50.36a Section 50.36a Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  13. Effect of specific surface area of MWCNTS on surface roughness and delamination in drilling Epoxy/Glass Fabric Composite

    NASA Astrophysics Data System (ADS)

    Ponnuvel, S.; Ananth, M. Prem

    2018-03-01

    In this study the effect of specific surface area of the MWCNTs on the drilled hole qualities was investigated. Epoxy araldite LY556 with hardener HY951 and E-glass coarse plain weave fabric are used for the fabrication of reference material (specimen A). Multi-WalledCarbon Nanotubes (MWCNTs) with diameters <8 nm and 20–30 nm are used for the fabrication of study materials, namely specimen B and specimen C respectively. In specimen B the epoxy resin was filled with MWCNTs having a specific surface area >500 m2 g‑1. MWCNTs in specimen C had a specific surface area >110 m2 g‑1. Drilling experiments were conducted on all the three specimens. Two dimensional delamination factor and the surface roughness of the inner wall of the drilled holes were investigated using Grey Relational Analysis (GRA) and Analysis of variance (ANOVA). Two dimensional delamination factor showed better performance from specimen B and specimen C in comparison with specimen A suggesting improvement in the bonding between epoxy and the glass fiber in the presence of MWCNTs. Similar observations were made for surface roughness of the inner wall of the drilled holes at 1250 rpm. Whereas the presence of MWCNTs (Specimen B and specimen C) produced poor surface finish at 500 rpm in comparison with specimen A. Variations in the hole quality characteristics between specimen B and specimen C was marginal with better observations in specimen C.

  14. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  15. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    NASA Astrophysics Data System (ADS)

    Krishna, Ramesh M.

    crystal homogeneity of other modern CZT growth techniques. However, information about crystals grown with this method has not been undertaken in a comprehensive way thus far. In this work, Cd0.9Zn0.1Te is grown using the solvent-growth method using zone-refined precursor materials loaded into carbon-coated quartz ampoules. Ampoules were sealed and crystal growth was performed using crystal growth furnaces built in-house at USC. Ingots 1-2" in diameter produced using the solvent-growth method were wafered, processed, and polished for characterization. Semiconductor characterization is performed on the CZT crystals to determine band gap, elemental stoichiometry, and electrical resistivity. Surface modification studies were undertaken to determine if surface leakage current can be reduced using sulfur passivation. XPS studies were used to confirm the effects of passivation on the surface states, and electrical characterization was performed to measure the effects of passivation on the CZT crystals. Deep-level and surface defect studies were conducted on the CZT samples to determine the type and intensity of defects present in the crystals which may affect detector performance. Finally, nuclear detectors were fabricated and characterized using analog and digital radiation detection systems to measure their performance and energy resolution.

  16. Readiness Review of BWXT for Fabrication of AGR 5/6/7 Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas William; Sharp, Michelle Tracy

    In support of preparations for fabricating compacts for the Advanced Gas Reactor (AGR) fuel qualification irradiation experiments (AGR-5/6/7), Idaho National Laboratory (INL) conducted a readiness review of the BWX Technology (BWXT) procedures, processes, and equipment associated with compact fabrication activities at the BWXT Nuclear Operations Group (BWXT-NOG) facility outside Lynchburg, VirginiaVA. The readiness review used quality assurance requirements taken from the American Society of Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008/1a-2009) as a basis to assess readiness to start compact fabrication.

  17. Edwin I. Hatch nuclear plant implementation of improved technical specifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahler, S.R.; Pendry, D.

    1994-12-31

    Edwin I. Hatch nuclear plant consists of two General Electric boiling water reactor/4 units, with a common control room and a common refueling floor. In March 1993, Hatch began conversion of both units` technical specifications utilizing NUREG 1433. The technical specifications amendment request was submitted February 25, 1994. Issuance is scheduled for October 21, 1994, with implementation on March 15, 1994. The current unit-1 technical specifications are in the {open_quotes}custom{close_quotes} format, and the unit-2 technical specifications are in the old standard format. Hatch previously relocated the fire protection and radiological technical specifications requirements. The Hatch conversion will provide consistency betweenmore » the two units, to the extent practicable.« less

  18. MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Caesar A; Onaran, Guclu; Avenson, Brad

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integrationmore » of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.« less

  19. Silencing by nuclear matrix attachment distinguishes cell-type specificity: association with increased proliferation capacity.

    PubMed

    Linnemann, Amelia K; Krawetz, Stephen A

    2009-05-01

    DNA loop organization by nuclear scaffold/matrix attachment is a key regulator of gene expression that may provide a means to modulate phenotype. We have previously shown that attachment of genes to the NaCl-isolated nuclear matrix correlates with their silencing in HeLa cells. In contrast, expressed genes were associated with the lithium 3,5-diiodosalicylate (LIS)-isolated nuclear scaffold. To define their role in determining phenotype matrix attached regions (MARs) on human chromosomes 14-18 were identified as a function of expression in a primary cell line. The locations of MARs in aortic adventitial fibroblast (AoAF) cells were very stable (r = 0.909) and 96% of genes attached at MARs are silent (P < 0.001). Approximately one-third of the genes uniquely expressed in AoAF cells were associated with the HeLa cell nuclear matrix and silenced. Comparatively, 81% were associated with the AoAF cell nuclear scaffold (P < 0.001) and expressed. This suggests that nuclear scaffold/matrix association mediates a portion of cell type-specific gene expression thereby modulating phenotype. Interestingly, nuclear matrix attachment and thus silencing of specific genes that regulate proliferation and maintain the integrity of the HeLa cell genome suggests that transformation may at least in part be achieved through aberrant nuclear matrix attachment.

  20. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOEpatents

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  1. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    PubMed

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor.

    PubMed

    Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J

    1997-10-01

    Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.

  3. Fabrication of thermo-responsive cotton fabrics using poly(vinyl caprolactam-co-hydroxyethyl acrylamide) copolymer.

    PubMed

    Xiao, Min; González, Edurne; Monterroza, Alexis Martell; Frey, Margaret

    2017-10-15

    A thermo-responsive polymer with hydrophilic to hydrophobic transition behavior, poly(vinyl caprolactam-co-hydroxyethyl acrylamide) P(VCL-co-HEAA), was prepared by copolymerization of vinyl caprolactam and N-hydroxyethyl acrylamide via free radical solution polymerization. The resulting copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), 1 H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The lower critical solution temperature (LCST) of P(VCL-co-HEAA) was determined at 34.5°C. This thermo-responsive polymer was then grafted onto cotton fabrics using 1,2,3,4-butanetetracarboxylic acid (BTCA) as crosslinker and sodium hypophosphite (SHP) as catalyst. FTIR and energy dispersive X-ray spectroscopy (EDS) studies confirmed the successful grafting reaction. The modified cotton fabric exhibited thermo-responsive behavior as evidenced by water vapor permeability measurement confirming decreased permeability at elevated temperature. This is the first demonstration that a PVCL based copolymer is grafted to cotton fabrics. This study provides a new thermo-responsive polymer for fabrication of smart cotton fabrics with thermally switchable hydrophilicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.

    2013-09-03

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  5. Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes.

    PubMed

    Zhao, Xinne; Zhang, Panpan; Chen, Yuting; Su, Zhiqiang; Wei, Gang

    2015-03-12

    The preparation and applications of graphene (G)-based materials are attracting increasing interests due to their unique electronic, optical, magnetic, thermal, and mechanical properties. Compared to G-based hybrid and composite materials, G-based inorganic hybrid membrane (GIHM) offers enormous advantages ascribed to their facile synthesis, planar two-dimensional multilayer structure, high specific surface area, and mechanical stability, as well as their unique optical and mechanical properties. In this review, we report the recent advances in the technical fabrication and structure-specific applications of GIHMs with desirable thickness and compositions. In addition, the advantages and disadvantages of the methods utilized for creating GIHMs are discussed in detail. Finally, the potential applications and key challenges of GIHMs for future technical applications are mentioned.

  6. Silencing by nuclear matrix attachment distinguishes cell-type specificity: association with increased proliferation capacity

    PubMed Central

    Linnemann, Amelia K.; Krawetz, Stephen A.

    2009-01-01

    DNA loop organization by nuclear scaffold/matrix attachment is a key regulator of gene expression that may provide a means to modulate phenotype. We have previously shown that attachment of genes to the NaCl-isolated nuclear matrix correlates with their silencing in HeLa cells. In contrast, expressed genes were associated with the lithium 3,5-diiodosalicylate (LIS)-isolated nuclear scaffold. To define their role in determining phenotype matrix attached regions (MARs) on human chromosomes 14–18 were identified as a function of expression in a primary cell line. The locations of MARs in aortic adventitial fibroblast (AoAF) cells were very stable (r = 0.909) and 96% of genes attached at MARs are silent (P < 0.001). Approximately one-third of the genes uniquely expressed in AoAF cells were associated with the HeLa cell nuclear matrix and silenced. Comparatively, 81% were associated with the AoAF cell nuclear scaffold (P < 0.001) and expressed. This suggests that nuclear scaffold/matrix association mediates a portion of cell type-specific gene expression thereby modulating phenotype. Interestingly, nuclear matrix attachment and thus silencing of specific genes that regulate proliferation and maintain the integrity of the HeLa cell genome suggests that transformation may at least in part be achieved through aberrant nuclear matrix attachment. PMID:19276204

  7. Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F.

    PubMed

    Loftus, Kyle M; Cui, Heying; Coutavas, Elias; King, David S; Ceravolo, Amanda; Pereiras, Dylan; Solmaz, Sozanne R

    2017-08-03

    Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the -1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.

  8. Analysis of RNA-Seq datasets reveals enrichment of tissue-specific splice variants for nuclear envelope proteins.

    PubMed

    Capitanchik, Charlotte; Dixon, Charles; Swanson, Selene K; Florens, Laurence; Kerr, Alastair R W; Schirmer, Eric C

    2018-06-18

    Nuclear envelopathies/laminopathies yield tissue-specific pathologies, yet arise from mutation of ubiquitously-expressed genes. One possible explanation of this tissue specificity is that tissue-specific partners become disrupted from larger complexes, but a little investigated alternate hypothesis is that the mutated proteins themselves have tissue-specific splice variants. Here, we analyze RNA-Seq datasets to identify muscle-specific splice variants of nuclear envelope genes that could be relevant to the study of laminopathies, particularly muscular dystrophies, that are not currently annotated in sequence databases. Notably, we found novel isoforms or tissue-specificity of isoforms for: Lap2, linked to cardiomyopathy; Nesprin 2, linked to Emery-Dreifuss muscular dystrophy and Lmo7, a regulator of the emerin gene that is linked to Emery-Dreifuss muscular dystrophy. Interestingly, the muscle-specific exon in Lmo7 is rich in serine phosphorylation motifs, suggesting an important regulatory function. Evidence for muscle-specific splice variants in non-nuclear envelope proteins linked to other muscular dystrophies was also found. Tissue-specific variants were also indicated for several nucleoporins including Nup54, Nup133, Nup153 and Nup358/RanBP2. We confirmed expression of novel Lmo7 and RanBP2 variants with RT-PCR and found that specific knockdown of the Lmo7 variant caused a reduction in myogenic index during mouse C2C12 myogenesis. Global analysis revealed an enrichment of tissue-specific splice variants for nuclear envelope proteins in general compared to the rest of the genome, suggesting that splice variants contribute to regulating its tissue-specific functions.

  9. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  10. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom.

    PubMed

    Craft, Daniel F; Howell, Rebecca M

    2017-09-01

    Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. The mechanical response of woven Kevlar fabric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, W.E.

    1991-01-01

    Woven Kevlar fabrics exhibit a number of beneficial mechanical properties which include strength, flexibility, and relatively low density. The desire to engineer or design Kevlar fabrics for specific applications has stimulated interest in the development of theoretical models which relate their effective mechanical properties to specific aspects of the fabric morphology and microstructure. In this work the author provides a theoretical investigation of the large deformation elastic response of a plane woven Kevlar fabric and compares these theoretical results with experimental data obtained from uniaxially loaded Kevlar fabrics. The theoretical analysis assumes the woven fabric to be a regular networkmore » of orthogonal interlaced yarns and the individual yarns are modeled as extensible elastica, thus coupling stretching and bending effects at the outset. This comparison of experiment with theory indicates that the deformation of woven fabric can be quite accurately predicted by modeling the individual yarns as extensible elastica. 2 refs., 1 fig.« less

  12. Effective specific impulse of external nuclear pulse propulsion systems

    NASA Technical Reports Server (NTRS)

    Reynolds, T. W.

    1972-01-01

    An investigation of a simple self-similar flow model for an external nuclear pulse propulsion system indicates that to achieve the high effective specific impulse of such a system three principal factors are required. The are (1) attaining pulses of optimum energy, (2) attaining good propellant collimation, and (3) using an ablative material for the pusher surface which has high absorptivity for radiant energy at the propellant stagnation temperature.

  13. Nuclear Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E G

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  14. Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP

    PubMed Central

    Wickramasinghe, Vihandha O.; Andrews, Robert; Ellis, Peter; Langford, Cordelia; Gurdon, John B.; Stewart, Murray; Venkitaraman, Ashok R.; Laskey, Ronald A.

    2014-01-01

    The nuclear phase of the gene expression pathway culminates in the export of mature messenger RNAs (mRNAs) to the cytoplasm through nuclear pore complexes. GANP (germinal- centre associated nuclear protein) promotes the transfer of mRNAs bound to the transport factor NXF1 to nuclear pore complexes. Here, we demonstrate that GANP, subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex, promotes selective nuclear export of a specific subset of mRNAs whose transport depends on NXF1. Genome-wide gene expression profiling showed that half of the transcripts whose nuclear export was impaired following NXF1 depletion also showed reduced export when GANP was depleted. GANP-dependent transcripts were highly expressed, yet short-lived, and were highly enriched in those encoding central components of the gene expression machinery such as RNA synthesis and processing factors. After injection into Xenopus oocyte nuclei, representative GANP-dependent transcripts showed faster nuclear export kinetics than representative transcripts that were not influenced by GANP depletion. We propose that GANP promotes the nuclear export of specific classes of mRNAs that may facilitate rapid changes in gene expression. PMID:24510098

  15. Facile fabrication of cobalt oxalate nanostructures with superior specific capacitance and super-long cycling stability

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhua; Si, Conghui; Zhang, Jie; Wang, Ying; Yang, Wanfeng; Dong, Chaoqun; Zhang, Zhonghua

    2016-04-01

    Transition metal oxalate materials have shown huge competitive advantages for applications in supercapacitors. Herein, nanostructured cobalt oxalate supported on cobalt foils has been facilely fabricated by anodization, and could directly serve as additive/binder-free electrodes for supercapacitors. The as-prepared cobalt oxalate electrodes present superior specific capacitance of 1269 F g-1 at the current density of 6 A g-1 in the galvanostatic charge/discharge test. Moreover, the retained capacitance is as high as 87.2% as the current density increases from 6 A g-1 to 30 A g-1. More importantly, the specific capacitance of cobalt oxalate retains 91.9% even after super-long cycling of 100,000 cycles. In addition, an asymmetric supercapacitor assembled with cobalt oxalate (positive electrode) and activated carbon (negative electrode) demonstrates excellent capacitive performance with high energy density and power density.

  16. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and roundmore » spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.« less

  17. Fuel Fabrication and Nuclear Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpius, Peter Joseph

    2017-02-02

    The uranium from the enrichment plant is still in the form of UF 6. UF 6 is not suitable for use in a reactor due to its highly corrosive chemistry as well as its phase diagram. UF 6 is converted into UO 2 fuel pellets, which are in turn placed in fuel rods and assemblies. Reactor designs are variable in moderators, coolants, fuel, performance etc.The dream of energy ‘too-cheap to meter’ is no more, and now the nuclear power industry is pushing ahead with advanced reactor designs.

  18. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  19. Fabrication, characterization, and irradiation of an austenitic oxide dispersion strengthened steel suited for next generation nuclear applications

    NASA Astrophysics Data System (ADS)

    Brooks, Adam J.

    As nuclear energy systems become more advanced, the materials encompassing them need to perform at higher temperatures for longer periods of time. In this Master's thesis we experiment with an oxide dispersion strengthened (ODS) austenitic steel that has been recently developed. ODS materials have a small concentration of nano oxide particles dispersed in their matrix, and typically have higher strength and better extreme temperature creep resistance characteristics than ordinary steels. However, no ODS materials have ever been installed in a commercial power reactor to date. Being a newer research material, there are many unanswered phenomena that need to be addressed regarding the performance under irradiation. Furthermore, due to the ODS material traditionally needing to follow a powder metallurgy fabrication route, there are many processing parameters that need to be optimized before achieving a nuclear grade material specification. In this Master's thesis we explore the development of a novel ODS processing technology conducted in Beijing, China, to produce solutionized bulk ODS samples with 97% theoretical density. This is done using relatively low temperatures and ultra high pressure (UHP) equipment, to compact the mechanically alloyed (MA) steel powder into bulk samples without any thermal phase change influence or oxide precipitation. By having solutionized bulk ODS samples, transmission electron microscopy (TEM) observation of nano oxide precipitation within the steel material can be studied by applying post heat treatments. These types of samples will be very useful to the science and engineering community, to answer questions regarding material powder compacting, oxide synthesis, and performance. Subsequent analysis performed at Queen's University included X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometry (ICP-OES). Additional TEM in-situ 1MeV Kr2+ irradiation experiments coupled with energy dispersive X-ray (EDX

  20. Vision-based in-line fabric defect detection using yarn-specific shape features

    NASA Astrophysics Data System (ADS)

    Schneider, Dorian; Aach, Til

    2012-01-01

    We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.

  1. Fabrication Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success ismore » changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.« less

  2. Fabrication technology

    NASA Astrophysics Data System (ADS)

    Blaedel, K. L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to do the following: (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the U.S. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  3. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  4. Pakistans Nuclear Weapons

    DTIC Science & Technology

    2016-02-12

    not be subject to International Atomic Energy Agency ( IAEA ) safeguards have the potential to produce 280...PNRA states that Pakistan follows IAEA physical protection standards. Proliferation A fundamental aspect of nuclear security is ensuring that...related to the design and fabrication of a nuclear explosive device,” according to the IAEA (Implementation of the NPT Safeguards Agreement in the

  5. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developedmore » to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.« less

  6. The elastic properties of woven polymeric fabric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, W.E.

    1989-01-01

    The in-plane linear elastic constants of woven fabric are determined in terms of the specific fabric microstructure. The fabric is assumed to be a spatially periodic interlaced network of orthogonal yarns and the individual yarns are modeled as extensible elastica. These results indicate that a significant coupling of bending and stretching effects occurs during deformation. Results of this theoretical analysis compare favorable with measured in-plane elastic constants for Vincel yarn fabrics. 17 refs., 2 figs., 1 tab.

  7. Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization.

    PubMed

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D

    2013-08-02

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes.

  8. Serotype-specific Differences in Dengue Virus Non-structural Protein 5 Nuclear Localization*

    PubMed Central

    Hannemann, Holger; Sung, Po-Yu; Chiu, Han-Chen; Yousuf, Amjad; Bird, Jim; Lim, Siew Pheng; Davidson, Andrew D.

    2013-01-01

    The four serotypes of dengue virus (DENV-1 to -4) cause the most important arthropod-borne viral disease of humans. DENV non-structural protein 5 (NS5) contains enzymatic activities required for capping and replication of the viral RNA genome that occurs in the host cytoplasm. However, previous studies have shown that DENV-2 NS5 accumulates in the nucleus during infection. In this study, we examined the nuclear localization of NS5 for all four DENV serotypes. We demonstrate for the first time that there are serotypic differences in NS5 nuclear localization. Whereas the DENV-2 and -3 proteins accumulate in the nucleus, DENV-1 and -4 NS5 are predominantly if not exclusively localized to the cytoplasm. Comparative studies on the DENV-2 and -4 NS5 proteins revealed that the difference in DENV-4 NS5 nuclear localization was not due to rapid nuclear export but rather the lack of a functional nuclear localization sequence. Interaction studies using DENV-2 and -4 NS5 and human importin-α isoforms failed to identify an interaction that supported the differential nuclear localization of NS5. siRNA knockdown of the human importin-α isoform KPNA2, corresponding to the murine importin-α isoform previously shown to bind to DENV-2 NS5, did not substantially affect DENV-2 NS5 nuclear localization, whereas knockdown of importin-β did. The serotypic differences in NS5 nuclear localization did not correlate with differences in IL-8 gene expression. The results show that NS5 nuclear localization is not strictly required for virus replication but is more likely to have an auxiliary function in the life cycle of specific DENV serotypes. PMID:23770669

  9. Nuclear-specific AR-V7 Protein Localization is Necessary to Guide Treatment Selection in Metastatic Castration-resistant Prostate Cancer.

    PubMed

    Scher, Howard I; Graf, Ryon P; Schreiber, Nicole A; McLaughlin, Brigit; Lu, David; Louw, Jessica; Danila, Daniel C; Dugan, Lyndsey; Johnson, Ann; Heller, Glenn; Fleisher, Martin; Dittamore, Ryan

    2017-06-01

    Circulating tumor cells (CTCs) expressing AR-V7 protein localized to the nucleus (nuclear-specific) identify metastatic castration-resistant prostate cancer (mCRPC) patients with improved overall survival (OS) on taxane therapy relative to the androgen receptor signaling inhibitors (ARSi) abiraterone acetate, enzalutamide, and apalutamide. To evaluate if expanding the positivity criteria to include both nuclear and cytoplasmic AR-V7 localization ("nuclear-agnostic") identifies more patients who would benefit from a taxane over an ARSi. The study used a cross-sectional cohort. Between December 2012 and March 2015, 193 pretherapy blood samples, 191 of which were evaluable, were collected and processed from 161 unique mCRPC patients before starting a new line of systemic therapy for disease progression at the Memorial Sloan Kettering Cancer Center. The association between two AR-V7 scoring criteria, post-therapy prostate-specific antigen (PSA) change (PTPC) and OS following ARSi or taxane treatment, was explored. One criterion required nuclear-specific AR-V7 localization, and the other required an AR-V7 signal but was agnostic to protein localization in CTCs. Correlation of AR-V7 status to PTPC and OS was investigated. Relationships with survival were analyzed using multivariable Cox regression and log-rank analyses. A total of 34 (18%) samples were AR-V7-positive using nuclear-specific criteria, and 56 (29%) were AR-V7-positive using nuclear-agnostic criteria. Following ARSi treatment, none of the 16 nuclear-specific AR-V7-positive samples and six of the 32 (19%) nuclear-agnostic AR-V7-positive samples had ≥50% PTPC at 12 weeks. The strongest baseline factor influencing OS was the interaction between the presence of nuclear-specific AR-V7-positive CTCs and treatment with a taxane (hazard ratio 0.24, 95% confidence interval 0.078-0.79; p=0.019). This interaction was not significant when nuclear-agnostic criteria were used. To reliably inform treatment selection

  10. Application of bioconjugation chemistry on biosensor fabrication for detection of TAR-DNA binding protein 43.

    PubMed

    Dai, Yifan; Wang, Chunlai; Chiu, Liang-Yuan; Abbasi, Kevin; Tolbert, Blanton S; Sauvé, Geneviève; Yen, Yun; Liu, Chung-Chiun

    2018-06-01

    A simple-prepare, single-use and cost-effective, in vitro biosensor for the detection of TAR DNA-binding protein 43 (TDP-43), a biomarker of neuro-degenerative disorders, was designed, manufactured and tested. This study reports the first biosensor application for the detection of TDP-43 using a novel biosensor fabrication methodology. Bioconjugation mechanism was applied by conjugating anti-TDP 43 with N-succinimidyl S-acetylthioacetate (SATA) producing a thiol-linked anti-TDP 43, which was used to directly link with gold electrode surface, minimizing the preparation steps for biosensor fabrication and simplifying the biosensor surface. The effectiveness of this bioconjugation mechanism was evaluated and confirmed by FqRRM12 protein, using nuclear magnetic resonance (NMR). The surface coverage of the electrode was analyzed by Time-of-Flight-Secondary Ion Mass Spectrometry (TOF-SIMS). Differential pulse voltammetry (DPV) was acted as the detection transduction mechanism with the use of [Fe(CN) 6 ] 3-/4- redox probe. Human TDP-43 peptide of 0.0005 µg/mL to 2 µg/mL in undiluted human serum was analyzed using this TDP-43 biosensor. Interference study of the TDP-43 biosensor using β-amyloid 42 protein and T-tau protein confirmed the specificity of this TDP-43 biosensor. This bioconjugation chemistry based approach for biosensor fabrication circumvents tedious gold surface modification and functionalization while enabling specific detection of TDP-43 in less than 1 h with a low fabrication cost of a single biosensor less than $3. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Fabricating Copper Nanotubes by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  12. Methods for making a porous nuclear fuel element

    DOEpatents

    Youchison, Dennis L; Williams, Brian E; Benander, Robert E

    2014-12-30

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  13. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    PubMed

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  14. Nucleus-specific expression in the multinuclear mushroom-forming fungus Agaricus bisporus reveals different nuclear regulatory programs.

    PubMed

    Gehrmann, Thies; Pelkmans, Jordi F; Ohm, Robin A; Vos, Aurin M; Sonnenberg, Anton S M; Baars, Johan J P; Wösten, Han A B; Reinders, Marcel J T; Abeel, Thomas

    2018-04-24

    Many fungi are polykaryotic, containing multiple nuclei per cell. In the case of heterokaryons, there are different nuclear types within a single cell. It is unknown what the different nuclear types contribute in terms of mRNA expression levels in fungal heterokaryons. Each cell of the mushroom Agaricus bisporus contains two to 25 nuclei of two nuclear types originating from two parental strains. Using RNA-sequencing data, we assess the differential mRNA contribution of individual nuclear types and its functional impact. We studied differential expression between genes of the two nuclear types, P1 and P2, throughout mushroom development in various tissue types. P1 and P2 produced specific mRNA profiles that changed through mushroom development. Differential regulation occurred at the gene level, rather than at the locus, chromosomal, or nuclear level. P1 dominated mRNA production throughout development, and P2 showed more differentially up-regulated genes in important functional groups. In the vegetative mycelium, P2 up-regulated almost threefold more metabolism genes and carbohydrate active enzymes (cazymes) than P1, suggesting phenotypic differences in growth. We identified widespread transcriptomic variation between the nuclear types of A. bisporus Our method enables studying nucleus-specific expression, which likely influences the phenotype of a fungus in a polykaryotic stage. Our findings have a wider impact to better understand gene regulation in fungi in a heterokaryotic state. This work provides insight into the transcriptomic variation introduced by genomic nuclear separation. Copyright © 2018 the Author(s). Published by PNAS.

  15. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of

  16. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway

    PubMed Central

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O.

    2017-01-01

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans. This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12–dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans. This finding suggests the existence of a conserved CYP4V2-POR–nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage. PMID:28760992

  17. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    PubMed

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  18. The nuclear higher-order structure defined by the set of topological relationships between DNA and the nuclear matrix is species-specific in hepatocytes.

    PubMed

    Silva-Santiago, Evangelina; Pardo, Juan Pablo; Hernández-Muñoz, Rolando; Aranda-Anzaldo, Armando

    2017-01-15

    During the interphase the nuclear DNA of metazoan cells is organized in supercoiled loops anchored to constituents of a nuclear substructure or compartment known as the nuclear matrix. The stable interactions between DNA and the nuclear matrix (NM) correspond to a set of topological relationships that define a nuclear higher-order structure (NHOS). Current evidence suggests that the NHOS is cell-type-specific. Biophysical evidence and theoretical models suggest that thermodynamic and structural constraints drive the actualization of DNA-NM interactions. However, if the topological relationships between DNA and the NM were the subject of any biological constraint with functional significance then they must be adaptive and thus be positively selected by natural selection and they should be reasonably conserved, at least within closely related species. We carried out a coarse-grained, comparative evaluation of the DNA-NM topological relationships in primary hepatocytes from two closely related mammals: rat and mouse, by determining the relative position to the NM of a limited set of target sequences corresponding to highly-conserved genomic regions that also represent a sample of distinct chromosome territories within the interphase nucleus. Our results indicate that the pattern of topological relationships between DNA and the NM is not conserved between the hepatocytes of the two closely related species, suggesting that the NHOS, like the karyotype, is species-specific. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. 76 FR 65544 - Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ...The U.S. Nuclear Regulatory Commission (NRC or Commission) is issuing a revision to regulatory guide (RG) 3.39, ``Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This guide endorses the standard format and content for license applications and integrated safety analysis (ISA) summaries described in the current version of NUREG-1718, ``Standard Review Plan for the Review of an Application for a Mixed Oxide (MOX) Fuel Fabrication Facility,'' as a method that the NRC staff finds acceptable for meeting the regulatory requirements of Title 10 of the Code of Federal Regulations (10 CFR) part 70, ``Domestic Licensing of Special Nuclear Material'' for mixed oxide fuel fabrication facilities.

  20. Comparative assessment of out-of-core nuclear thermionic power systems

    NASA Technical Reports Server (NTRS)

    Estabrook, W. C.; Koenig, D. R.; Prickett, W. Z.

    1975-01-01

    The hardware selections available for fabrication of a nuclear electric propulsion stage for planetary exploration were explored. The investigation was centered around a heat-pipe-cooled, fast-spectrum nuclear reactor for an out-of-core power conversion system with sufficient detail for comparison with the in-core system studies completed previously. A survey of competing power conversion systems still indicated that the modular reliability of thermionic converters makes them the desirable choice to provide the 240-kWe end-of-life power for at least 20,000 full power hours. The electrical energy will be used to operate a number of mercury ion bombardment thrusters with a specific impulse in the range of about 4,000-5,000 seconds.

  1. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12.more » The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.« less

  2. Design Evolutuion of Hot Isotatic Press Cans for NTP Cermet Fuel Fabrication

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under consideration for potential use in deep space exploration missions due to desirable performance properties such as a high specific impulse (> 850 seconds). Tungsten (W)-60vol%UO2 cermet fuel elements are under development, with efforts emphasizing fabrication, performance testing and process optimization to meet NTP service life requirements [1]. Fuel elements incorporate design features that provide redundant protection from crack initiation, crack propagation potentially resulting in hot hydrogen (H2) reduction of UO2 kernels. Fuel erosion and fission product retention barriers include W coated UO2 fuel kernels, W clad internal flow channels and fuel element external W clad resulting in a fully encapsulated fuel element design as shown.

  3. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars

  4. Fabrication and testing of U-7Mo monolithic plate fuel with Zircaloy cladding

    NASA Astrophysics Data System (ADS)

    Pasqualini, E. E.; Robinson, A. B.; Porter, D. L.; Wachs, D. M.; Finlay, M. R.

    2016-10-01

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U-(7-10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry-4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry-4 clad U-7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry-4 and U-(7-10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction-either from fabrication or in-reactor testing-and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm3, 3.8E+21 (peak).

  5. Fabricated Elastin.

    PubMed

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabricated elastin

    PubMed Central

    Yeo, Giselle C.; Weiss, Anthony S.

    2015-01-01

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows for precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone and dental replacement. PMID:25771993

  7. Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering

    NASA Astrophysics Data System (ADS)

    Knight, Travis W.; Anghaie, Samim

    2002-11-01

    Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.

  8. Additives in fibers and fabrics.

    PubMed

    Barker, R H

    1975-06-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  9. Additives in fibers and fabrics.

    PubMed Central

    Barker, R H

    1975-01-01

    The additives and contaminants which occur in textile fibers vary widely, depending on the type of fiber and the pretreatment which it has received. Synthetic fibers such as nylon and polyester contain trace amounts of contaminants such as catalysts and catalyst deactivators which remain after the synthesis of the basic polymers. In addition, there are frequently a number of materials which are added to perform specific functions in almost all man-made fibers. Examples of these would include traces of metals or metal salts used as tracers for identification of specific lots of fiber, TiO2 or similar materials added as delustrants, and a host of organic species added for such special purposes as antistatic agents or flame retardants. There may also be considerable quantities of residual monomer or small oligomers dissolved in the polymer matrix. The situation becomes even more complex after the fibers are converted into fabric form. Numerous materials are applied at various stages of fabric preparation to act as lubricants, sizing agents, antistats, bleaches, and wetting agents to facilitate the processing, but these are normally removed before the fabric reaches the cutters of the ultimate consumers and therefore usually do not constitute potential hazards. However, there are many other chemical agents which are frequently added during the later stages of fabric preparation and which are not designed to be removed. Aside from dyes and printing pigments, the most common additive for apparel fabrics is a durable press treatment. This generally involves the use of materials capable of crosslinking cellulosics by reacting through such functions as N-methylolated amides or related compounds such as ureas and carbamates. These materials pose some potential hazards due to both the nitrogenous bases and the formaldehyde which they usually release. There is usually also some residual catalyst in fabrics which have received such treatments. Other types of chemical treatments

  10. Fabrication of fuel pin assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1972-01-01

    Five full size and eight reduced length fuel pins were fabricated for irradiation testing to evaluate design concepts for a fast spectrum lithium cooled compact space power reactor. These assemblies consisted of uranium mononitride fuel pellets encased in a T-111 (Ta-8W-2Hf) clad with a tungsten barrier separating fuel and clad. Fabrication procedures were fully qualified by process development and assembly qualification tests. Detailed specifications and procedures were written for the fabrication and assembly of prototype fuel pins.

  11. Specific repression of β-globin promoter activity by nuclear ferritin

    PubMed Central

    Broyles, Robert H.; Belegu, Visar; DeWitt, Christina R.; Shah, Sandeep N.; Stewart, Charles A.; Pye, Quentin N.; Floyd, Robert A.

    2001-01-01

    Developmental hemoglobin switching involves sequential globin gene activations and repressions that are incompletely understood. Earlier observations, described herein, led us to hypothesize that nuclear ferritin is a repressor of the adult β-globin gene in embryonic erythroid cells. Our data show that a ferritin-family protein in K562 cell nuclear extracts binds specifically to a highly conserved CAGTGC motif in the β-globin promoter at −153 to −148 bp from the cap site, and mutation of the CAGTGC motif reduces binding 20-fold in competition gel-shift assays. Purified human ferritin that is enriched in ferritin-H chains also binds the CAGTGC promoter segment. Expression clones of ferritin-H markedly repress β-globin promoter-driven reporter gene expression in cotransfected CV-1 cells in which the β-promoter has been stimulated with the transcription activator erythroid Krüppel-like factor (EKLF). We have constructed chloramphenicol acetyltransferase reporter plasmids containing either a wild-type or mutant β-globin promoter for the −150 CAGTGC motif and have compared the constructs for susceptibility to repression by ferritin-H in cotransfection assays. We find that stimulation by cotransfected EKLF is retained with the mutant promoter, whereas repression by ferritin-H is lost. Thus, mutation of the −150 CAGTGC motif not only markedly reduces in vitro binding of nuclear ferritin but also abrogates the ability of expressed ferritin-H to repress this promoter in our cell transfection assay, providing a strong link between DNA binding and function, and strong support for our proposal that nuclear ferritin-H is a repressor of the human β-globin gene. Such a repressor could be helpful in treating sickle cell and other genetic diseases. PMID:11481480

  12. NUCLEAR SCIENCE CURRICULUM PROJECT, PROJECT I, INSTRUCTIONAL SPECIFICATIONS.

    ERIC Educational Resources Information Center

    CAMAREN, JAMES

    ON THE PREMISE THAT A KNOWLEDGE OF NUCLEAR SCIENCE IS ESSENTIAL FOR INTELLIGENT DECISION-MAKING REGARDING ITS USES, THE NUCLEAR SCIENCE CURRICULUM PROJECT WAS DEVELOPED. ITS OBJECTIVE IS TO PROVIDE A PROGRAM THAT CAN BE EFFECTIVELY USED IN SCIENCE CLASSES TO PROVIDE AN UNDERSTANDING OF NUCLEAR SCIENCE AND ITS IMPACT ON SOCIETY. THOUGH TEACHER…

  13. A Specific Long-Term Plan for Management of U.S. Nuclear Spent Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Salomon

    2006-07-01

    A specific plan consisting of six different steps is proposed to accelerate and improve the long-term management of U.S. Light Water Reactor (LWR) spent nuclear fuel. The first step is to construct additional, centralized, engineered (dry cask) spent fuel facilities to have a backup solution to Yucca Mountain (YM) delays or lack of capacity. The second step is to restart the development of the Integral Fast Reactor (IFR), in a burner mode, because of its inherent safety characteristics and its extensive past development in contrast to Acceleration Driven Systems (ADS). The IFR and an improved non-proliferation version of its pyro-processingmore » technology can burn the plutonium (Pu) and minor actinides (MA) obtained by reprocessing LWR spent fuel. The remaining IFR and LWR fission products will be treated for storage at YM. The radiotoxicity of that high level waste (HLW) will fall below that of natural uranium in less than one thousand years. Due to anticipated increased capital, maintenance, and research costs for IFR, the third step is to reduce the required number of IFRs and their potential delays by implementing multiple recycles of Pu and Neptunium (Np) MA in LWR. That strategy is to use an advanced separation process, UREX+, and the MIX Pu option where the role and degradation of Pu is limited by uranium enrichment. UREX+ will decrease proliferation risks by avoiding Pu separation while the MIX fuel will lead to an equilibrium fuel recycle mode in LWR which will reduce U. S. Pu inventory and deliver much smaller volumes of less radioactive HLW to YM. In both steps two and three, Research and Development (R and D) is to emphasize the demonstration of multiple fuel reprocessing and fabrication, while improving HLW treatment, increasing proliferation resistance, and reducing losses of fissile material. The fourth step is to license and construct YM because it is needed for the disposal of defense wastes and the HLW to be generated under the proposed plan

  14. Characterization of Large Volume CLYC Scintillators for Nuclear Security Applications

    NASA Astrophysics Data System (ADS)

    Soundara-Pandian, Lakshmi; Tower, J.; Hines, C.; O'Dougherty, P.; Glodo, J.; Shah, K.

    2017-07-01

    We report on our development of large volume Cs2LiYCl6 (CLYC) detectors for nuclear security applications. Three-inch diameter boules have been grown and 3-in right cylinders have been fabricated. Crystals containing either >95% 6Li or >99% 7Li have been grown for applications specific to thermal or fast neutron detection, respectively. We evaluated their gamma and neutron detection properties and the performance is as good as small size crystals. Gamma and neutron efficiencies were measured for large crystals and compared with smaller size crystals. With their excellent performance characteristics, and the ability to detect fast neutrons, CLYC detectors are excellent triple-mode scintillators for use in handheld and backpack instruments for nuclear security applications.

  15. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    PubMed

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    and fabric structure for both impact angles investigated. It is therefore necessary to consider the age of the fabric (which is fabric specific), the fibre type (including blends) and the fabric structure, before interpreting bloodstain patterns. An understanding of this simplified inclined drip stain interaction has been investigated to generate a basis for more complex interactions, such as spatter bloodstains. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner.

    PubMed

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

  17. Simultaneous live imaging of the transcription and nuclear position of specific genes

    PubMed Central

    Ochiai, Hiroshi; Sugawara, Takeshi; Yamamoto, Takashi

    2015-01-01

    The relationship between genome organization and gene expression has recently been established. However, the relationships between spatial organization, dynamics, and transcriptional regulation of the genome remain unknown. In this study, we developed a live-imaging method for simultaneous measurements of the transcriptional activity and nuclear position of endogenous genes, which we termed the ‘Real-time Observation of Localization and EXpression (ROLEX)’ system. We demonstrated that ROLEX is highly specific and does not affect the expression level of the target gene. ROLEX enabled detection of sub-genome-wide mobility changes that depended on the state of Nanog transactivation in embryonic stem cells. We believe that the ROLEX system will become a powerful tool for exploring the relationship between transcription and nuclear dynamics in living cells. PMID:26092696

  18. Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Mitchell, Sonny; Houts, Michael G.; Kim, Tony

    2015-01-01

    Development efforts in the United States for nuclear thermal propulsion (NTP) systems began with Project Rover (1955-1973) which completed 22 high-power rocket reactor tests. Results indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. John F. Kennedy, in his historic special address to Congress on the importance of Space on May 25, 1961, said, "First, I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth..." This was accomplished. He also said, "Secondly ... accelerate development of the Rover nuclear rocket. This gives promise of someday providing a means for even more exciting and ambitious exploration of space... to the very end of the solar system itself." The current NTP project focuses on demonstrating the affordability and viability of a fully integrated NTP system with emphasis on fuel fabrication and testing and an affordable development and qualification strategy. The goal is to enable NTP to be considered a mainstream option for supporting human Mars and other missions beyond Earth orbit.

  19. Optical Fabrication and Measurement AXAF and CIRS

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell

    1997-01-01

    This paper presents a final report on Optical Fabrication and Measurement AXAF (Advanced X-Ray Astrophysics Facility) and CIRS (Composite Infrared Spectrometer) from July 12, 1994 to August 16, 1996.. This paper includes specific tasks to be performed. The tasks are as follows: 1) Preparation and Characterization of Zerodur Glass Samples; 2) Develop and Fabricate AXAF and CIRS Metrology Tooling; 3) Update AXAF Technical Data Base; and 4) Perform Fabrication Related Metrology Tasks for CIRS. This paper also includes final activities from the July, 1996 report to August 1996.

  20. 630A MARITIME NUCLEAR STEAM GENERATOR. Progress Report No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-07-31

    Work on the 630A Maritime Nuclear Steam Generator Scoping Study is summarized. The objective of the program is to establish a specific 630A configuration and to develop specifications for components and test equipment. During the period, work was initiated in critical experiment design and fabrication, additional fuel and materials investigations, boiler-test design and fabrication; blower studies; design of component tests; nuclear, thermodynamic, mechanical and safety analysis, and test facility and equipment studies. Design of the critical experiment mockup and test equipment was completed and fabrication of the parts is approximately 50% complete. A rough draft of the critical experiment hazardsmore » report was completed. A fuel test in the ORR completed 876.5 hr of testing out of a planned 2200-hr test without indication of failure. The burnup was equivalent to about 6000 hr of 630A operation. Damage to the capsule during refueling of the ORR caused termination of the test. The design of an MTR fuel-burnup test was completed and fabrication of the sample initiated. Ni-Cr fuel sheet and cladding stock are being tested for creep and oxidation properties at temperatures up to 1750 deg F and have accumulated times up to 5000 hr; no failures have occurred. These tests are continuing. Specimens of Ni-Cr were fabricated and will be tested to determine the effect of neutron irradiation. Cycle operating conditions with 120O deg F reactor-discharge-air temperature were studied and found to be acceptable for the proposed maritime application. Increases in cycle efficiency above 30.2% appear to be possible and practical. Studies during the period indicate that an acceptable power distribution can be maintained through the life of the reactor and the maximum hot spot temperature and maximum burnup location would not coincide. Specifications for the fuel loading of the critical experiment are being prepared. Study of the pressure vessel resulted in selection of 304 SS

  1. Evaluation of filter fabrics for use in silt fences.

    DOT National Transportation Integrated Search

    1980-01-01

    The study reported was initiated to develop tests simulating field conditions that could be used to develop information for the formulation of specifications for use in purchasing filter fabrics to be used to construct silt fences. Fifteen fabrics we...

  2. Fabrication of 3D-culture platform with sandwich architecture for preserving liver-specific functions of hepatocytes using 3D bioprinter.

    PubMed

    Arai, Kenichi; Yoshida, Toshiko; Okabe, Motonori; Goto, Mitsuaki; Mir, Tanveer Ahmad; Soko, Chika; Tsukamoto, Yoshinari; Akaike, Toshihiro; Nikaido, Toshio; Zhou, Kaixuan; Nakamura, Makoto

    2017-06-01

    The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation, and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D bioprinter as a new strategy for studying liver-specific functions of hepatocytes. We built a 3D culture platform for hepatocytes-attachment and formation of cell monolayer by interacting the galactose chain of galactosylated alginate gel (GA-gel) with asialoglycoprotein receptor (ASGPR) of hepatocytes. The 3D geometrical arrangement of cells was controlled by using 3D bioprinter, and cell polarity was controlled with the galactosylated hydrogels. The fabricated GA-gel was able to successfully promote adhesion of hepatocytes. To observe liver-specific functions and to mimic hepatic cord, an additional parallel layer of hepatocytes was generated using two gel sheets. These results indicated that GA-gel biomimetic matrices can be used as a 3D culture system that could be effective for the engineering of liver tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1583-1592, 2017. © 2017 Wiley Periodicals, Inc.

  3. 16. VIEW OF PLANT FABRICATED EQUIPMENT IN THE COATINGS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF PLANT FABRICATED EQUIPMENT IN THE COATINGS LABORATORY. A MASS SPECTROMETER IS TO THE LEFT OF THE PHOTO. (6/23/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  4. Specific Nuclear Localizing Sequence Directs Two Myosin Isoforms to the Cell Nucleus in Calmodulin-Sensitive Manner

    PubMed Central

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Background Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the “cytoplasmic” myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. Methodology/Principal Findings We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. Conclusions/Significance We have shown that the novel specific NLS brings to the cell nucleus not only the “nuclear” isoform of myosin I (NM1 protein) but also its “cytoplasmic” isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus. PMID:22295092

  5. Science based integrated approach to advanced nuclear fuel development - integrated multi-scale multi-physics hierarchical modeling and simulation framework Part III: cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tome, Carlos N; Caro, J A; Lebensohn, R A

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less

  6. Lung cancer mortality among workers at a nuclear materials fabrication plant.

    PubMed

    Richardson, David B; Wing, Steve

    2006-02-01

    The Oak Ridge, Tennessee Y-12 plant has operated as a nuclear materials fabrication plant since the 1940s. Given the work environment, and prior findings that lung cancer mortality was elevated among white male Y-12 workers relative to US white males, we investigated whether lung cancer mortality was associated with occupational radiation exposures. A cohort of 3,864 workers hired between 1947 and 1974 who had been monitored for internal radiation exposure was identified. Vital status was ascertained through 1990. Over the study period 111 lung cancer deaths were observed. Cumulative external radiation dose under a 5-year lag assumption was positively associated with lung cancer mortality (0.54% increase in lung cancer mortality per 10 mSv, se=0.16, likelihood ratio test (LRT)=5.84, 1 degree of freedom [df]); cumulative internal radiation dose exhibited a highly-imprecise negative association with lung cancer mortality. The positive association between external radiation dose and lung cancer mortality was primarily due to exposure occurring in the period 5-14 years after exposure (0.97% increase in lung cancer mortality rate per 10 mSv, se=0.28, LRT=6.35, 1 df). The association between external radiation dose and lung cancer mortality was negative for exposures occurring at ages<35 years and positive for exposures occurring at ages 35-50 and 50+years. There is evidence of a positive association between cumulative external radiation dose and lung cancer mortality in this population. However, a causal interpretation of this association is constrained by the uncertainties in external and internal radiation dose estimates, the lack of information about exposures to other lung carcinogens, and the limited statistical power of the study. Copyright (c) 2005 Wiley-Liss, Inc.

  7. Permeability of Two Parachute Fabrics: Measurements, Modeling, and Application

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; O'Farrell, Clara; Hennings, Elsa; Runnells, Paul

    2017-01-01

    Two parachute fabrics, described by Parachute Industry Specifications PIA-C-7020D Type I and PIA-C-44378D Type I, were tested to obtain their permeabilities in air (i.e., flow-through volume of air per area per time) over the range of differential pressures from 0.146 psf (7 Pa) to 25 psf (1197 Pa). Both fabrics met their specification permeabilities at the standard differential pressure of 0.5 inch of water (2.60 psf, 124 Pa). The permeability results were transformed into an effective porosity for use in calculations related to parachutes. Models were created that related the effective porosity to the unit Reynolds number for each of the fabrics. As an application example, these models were used to calculate the total porosities for two geometrically-equivalent subscale Disk-Gap-Band (DGB) parachutes fabricated from each of the two fabrics, and tested at the same operating conditions in a wind tunnel. Using the calculated total porosities and the results of the wind tunnel tests, the drag coefficient of a geometrically-equivalent full-scale DGB operating on Mars was estimated.

  8. Permeability of Two Parachute Fabrics - Measurements, Modeling, and Application

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; O'Farrell, Clara; Hennings, Elsa; Runnells, Paul

    2016-01-01

    Two parachute fabrics, described by Parachute Industry Specifications PIA-C-7020D Type I and PIA-C-44378D Type I, were tested to obtain their permeabilities in air (i.e., flow-through volume of air per area per time) over the range of differential pressures from 0.146 psf (7 Pa) to 25 psf (1197 Pa). Both fabrics met their specification permeabilities at the standard differential pressure of 0.5 inch of water (2.60 psf, 124 Pa). The permeability results were transformed into an effective porosity for use in calculations related to parachutes. Models were created that related the effective porosity to the unit Reynolds number for each of the fabrics. As an application example, these models were used to calculate the total porosities for two geometrically-equivalent subscale Disk-Gap-Band (DGB) parachutes fabricated from each of the two fabrics, and tested at the same operating conditions in a wind tunnel. Using the calculated total porosities and the results of the wind tunnel tests, the drag coefficient of a geometrically-equivalent full-scale DGB operating on Mars was estimated.

  9. Multifunctional non-woven fabrics of interfused graphene fibres

    PubMed Central

    Li, Zheng; Xu, Zhen; Liu, Yingjun; Wang, Ran; Gao, Chao

    2016-01-01

    Carbon-based fibres hold promise for preparing multifunctional fabrics with electrical conductivity, thermal conductivity, permeability, flexibility and lightweight. However, these fabrics are of limited performance mainly because of the weak interaction between fibres. Here we report non-woven graphene fibre fabrics composed of randomly oriented and interfused graphene fibres with strong interfibre bonding. The all-graphene fabrics obtained through a wet-fusing assembly approach are porous and lightweight, showing high in-plane electrical conductivity up to ∼2.8 × 104 S m−1 and prominent thermal conductivity of ∼301.5 W m−1 K−1. Given the low density (0.22 g cm−3), their specific electrical and thermal conductivities set new records for carbon-based papers/fabrics and even surpass those of individual graphene fibres. The as-prepared fabrics are further used as ultrafast responding electrothermal heaters and durable oil-adsorbing felts, demonstrating their great potential as high-performance and multifunctional fabrics in real-world applications. PMID:27901022

  10. Nuclear fuel particles and method of making nuclear fuel compacts therefrom

    DOEpatents

    DeVelasco, Rubin I.; Adams, Charles C.

    1991-01-01

    Methods for making nuclear fuel compacts exhibiting low heavy metal contamination and fewer defective coatings following compact fabrication from a mixture of hardenable binder, such as petroleum pitch, and nuclear fuel particles having multiple layer fission-product-retentive coatings, with the dense outermost layer of the fission-product-retentive coating being surrounded by a protective overcoating, e.g., pyrocarbon having a density between about 1 and 1.3 g/cm.sup.3. Such particles can be pre-compacted in molds under relatively high pressures and then combined with a fluid binder which is ultimately carbonized to produce carbonaceous nuclear fuel compacts having relatively high fuel loadings.

  11. Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.

    2011-01-01

    Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.

  12. Fabrication of diamond shells

    DOEpatents

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  13. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.

    2007-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.

  14. Fabrics for fire resistant passenger seats in aircraft

    NASA Technical Reports Server (NTRS)

    Tesoro, G. C.

    1978-01-01

    The essential elements of the problem and of approaches to improved fire resistance in aircraft seats are reviewed. The performance requirements and availability of materials, delay in the ignition of upholstery fabric by a small source are considered a realistic objective. Results of experimental studies on the thermal response of fabrics and fabric/foam combinations suggest significant conclusions regarding: (1) the ignition behavior of a commercial 90/10 wool/nylon upholstery fabric relative to fabrics made from thermally stable polymers; (2) the role of the foam backing; (3) the behavior of seams. These results, coupled with data from other sources, also confirm the importance of materials' interactions in multicomponent assemblies, and the need for system testing prior to materials' selection. The use of an interlinear or thermal barrier between upholstery fabric and foam is a promising and viable approach to improved fire resistance of the seat assembly, but experimental evaluation of specific combinations of materials or systems is an essential part of the selection process.

  15. Nuclear Technology Series. Course 16: Mechanical Component Characteristics and Specifications.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  16. Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors

    DOEpatents

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA

    2010-02-23

    Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

  17. Advanced research workshop: nuclear materials safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L J; Moshkov, M M

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on themore » storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds

  18. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safetymore » requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.« less

  19. The Selenocysteine-Specific Elongation Factor Contains Unique Sequences That Are Required for Both Nuclear Export and Selenocysteine Incorporation.

    PubMed

    Dubey, Aditi; Copeland, Paul R

    2016-01-01

    Selenocysteine (Sec) is a critical residue in at least 25 human proteins that are essential for antioxidant defense and redox signaling in cells. Sec is inserted into proteins cotranslationally by the recoding of an in-frame UGA termination codon to a Sec codon. In eukaryotes, this recoding event requires several specialized factors, including a dedicated, Sec-specific elongation factor called eEFSec, which binds Sec-tRNASec with high specificity and delivers it to the ribosome for selenoprotein production. Unlike most translation factors, including the canonical elongation factor eEF1A, eEFSec readily localizes to the nucleus of mammalian cells and shuttles between the cytoplasmic and nuclear compartments. The functional significance of eEFSec's nuclear localization has remained unclear. In this study, we have examined the subcellular localization of eEFSec in the context of altered Sec incorporation to demonstrate that reduced selenoprotein production does not correlate with changes in the nuclear localization of eEFSec. In addition, we identify several novel sequences of the protein that are essential for localization as well as Sec insertion activity, and show that eEFSec utilizes CRM1-mediated nuclear export pathway. Our findings argue for two distinct pools of eEFSec in the cell, where the cytoplasmic pool participates in Sec incorporation and the nuclear pool may be involved in an as yet unknown function.

  20. Easy-to-Fabricate and High-Sensitivity LSPR Type Specific Protein Detection Sensor Using AAO Nano-Pore Size Control

    PubMed Central

    Kim, Sae-Wan; Lee, Jae-Sung; Lee, Sang-Won; Kang, Byoung-Ho; Kwon, Jin-Beom; Kim, Ok-Sik; Kim, Ju-Seong; Kim, Eung-Soo; Kwon, Dae-Hyuk; Kang, Shin-Won

    2017-01-01

    In this study, we developed a pore size/pore area-controlled optical biosensor-based anodic aluminum oxide (AAO) nanostructure. As the pore size of AAO increases, the unit cell of AAO increases, which also increases the non-pore area to which the antibody binds. The increase in the number of antibodies immobilized on the surface of the AAO enables effective detection of trace amounts of antigen, because increased antigen-antibody bonding results in a larger surface refractive index change. High sensitivity was thus achieved through amplification of the interference wave of two vertically-incident reflected waves through the localized surface plasmon resonance phenomenon. The sensitivity of the fabricated sensor was evaluated by measuring the change in wavelength with the change in the refractive index of the device surface, and sensitivity was increased with increasing pore-size and non-pore area. The sensitivity of the fabricated sensor was improved and up to 11.8 ag/mL serum amyloid A1 antigen was detected. In addition, the selectivity of the fabricated sensor was confirmed through a reaction with a heterogeneous substance, C-reactive protein antigen. By using hard anodization during fabrication of the AAO, the fabrication time of the device was reduced and the AAO chip was fabricated quickly and easily. PMID:28406469

  1. FabricS: A user-friendly, complete and robust software for particle shape-fabric analysis

    NASA Astrophysics Data System (ADS)

    Moreno Chávez, G.; Castillo Rivera, F.; Sarocchi, D.; Borselli, L.; Rodríguez-Sedano, L. A.

    2018-06-01

    Shape-fabric is a textural parameter related to the spatial arrangement of elongated particles in geological samples. Its usefulness spans a range from sedimentary petrology to igneous and metamorphic petrology. Independently of the process being studied, when a material flows, the elongated particles are oriented with the major axis in the direction of flow. In sedimentary petrology this information has been used for studies of paleo-flow direction of turbidites, the origin of quartz sediments, and locating ignimbrite vents, among others. In addition to flow direction and its polarity, the method enables flow rheology to be inferred. The use of shape-fabric has been limited due to the difficulties of automatically measuring particles and analyzing them with reliable circular statistics programs. This has dampened interest in the method for a long time. Shape-fabric measurement has increased in popularity since the 1980s thanks to the development of new image analysis techniques and circular statistics software. However, the programs currently available are unreliable, old and are incompatible with newer operating systems, or require programming skills. The goal of our work is to develop a user-friendly program, in the MATLAB environment, with a graphical user interface, that can process images and includes editing functions, and thresholds (elongation and size) for selecting a particle population and analyzing it with reliable circular statistics algorithms. Moreover, the method also has to produce rose diagrams, orientation vectors, and a complete series of statistical parameters. All these requirements are met by our new software. In this paper, we briefly explain the methodology from collection of oriented samples in the field to the minimum number of particles needed to obtain reliable fabric data. We obtained the data using specific statistical tests and taking into account the degree of iso-orientation of the samples and the required degree of reliability

  2. Off-plane x-ray reflection grating fabrication

    NASA Astrophysics Data System (ADS)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  3. Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped ? powders studied using spectral hole burning

    NASA Astrophysics Data System (ADS)

    Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Woodburn, Philip J. T.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang

    2016-01-01

    High-quality rare-earth-ion (REI) doped materials are a prerequisite for many applications such as quantum memories, ultra-high-resolution optical spectrum analyzers and information processing. Compared to bulk materials, REI doped powders offer low-cost fabrication and a greater range of accessible material systems. Here we show that crystal properties, such as nuclear spin lifetime, are strongly affected by mechanical treatment, and that spectral hole burning can serve as a sensitive method to characterize the quality of REI doped powders. We focus on the specific case of thulium doped ? (Tm:YAG). Different methods for obtaining the powders are compared and the influence of annealing on the spectroscopic quality of powders is investigated on a few examples. We conclude that annealing can reverse some detrimental effects of powder fabrication and, in certain cases, the properties of the bulk material can be reached. Our results may be applicable to other impurities and other crystals, including color centers in nano-structured diamond.

  4. The hydroentanglement system of producing nonwoven fabrics of certain specific attributes and functionalities

    USDA-ARS?s Scientific Manuscript database

    Although the traditional technologies and processes of producing fabric structures, via yarn spinning, weaving, knitting, lacing, tufting, or the like, continue to be the ‘major league’ players in textile manufacturing today, the modern hydroentanglement system, commonly known as “spunlacing,” has a...

  5. Adenylyl cyclase A expression is tip-specific in Dictyostelium slugs and directs StatA nuclear translocation and CudA gene expression.

    PubMed

    Verkerke-van Wijk, I; Fukuzawa, M; Devreotes, P N; Schaap, P

    2001-06-01

    cAMP oscillations, generated by adenylyl cyclase A (ACA), coordinate cell aggregation in Dictyostelium and have also been implicated in organizer function during multicellular development. We used a gene fusion of the ACA promoter with a labile lacZ derivative to study the expression pattern of ACA. During aggregation, most cells expressed ACA, but thereafter expression was lost in all cells except those of the anterior tip. Before aggregation, ACA transcription was strongly upregulated by nanomolar cAMP pulses. Postaggregative transcription was sustained by nanomolar cAMP pulses, but downregulated by a continuous micromolar cAMP stimulus and by the stalk-cell-inducing factor DIF. Earlier work showed that the transcription factor StatA displays tip-specific nuclear translocation and directs tip-specific expression of the nuclear protein CudA, which is essential for culmination. Both StatA and CudA were present in nuclei throughout the entire slug in an aca null mutant that expresses ACA from the constitutive actin15 promoter. This suggests that the tip-specific expression of ACA directs tip-specific nuclear translocation of StatA and tip-specific expression of CudA. Copyright 2001 Academic Press.

  6. Advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  7. Remote fabrication and irradiation test of recycled nuclear fuel prepared by the oxidation and reduction of spent oxide fuel

    NASA Astrophysics Data System (ADS)

    Jin Ryu, Ho; Chan Song, Kee; Il Park, Geun; Won Lee, Jung; Seung Yang, Myung

    2005-02-01

    A direct dry recycling process was developed in order to reuse spent pressurized light water reactor (LWR) nuclear fuel in CANDU reactors without the separation of sensitive nuclear materials such as plutonium. The benefits of the dry recycling process are the saving of uranium resources and the reduction of spent fuel accumulation as well as a higher proliferation resistance. In the process of direct dry recycling, fuel pellets separated from spent LWR fuel rods are oxidized from UO2 to U3O8 at 500 °C in an air atmosphere and reduced into UO2 at 700 °C in a hydrogen atmosphere, which is called OREOX (oxidation and reduction of oxide fuel). The pellets are pulverized during the oxidation and reduction processes due to the phase transformation between cubic UO2 and orthorhombic U3O8. Using the oxide powder prepared from the OREOX process, the compaction and sintering processes are performed in a remote manner in a shielded hot cell due to the high radioactivity of the spent fuel. Most of the fission gas and volatile fission products are removed during the OREOX and sintering processes. The mini-elements fabricated by the direct dry recycling process are irradiated in the HANARO research reactor for the performance evaluation of the recycled fuel pellets. Post-irradiation examination of the irradiated fuel showed that microstructural evolution and fission gas release behavior of the dry-recycled fuel were similar to high burnup UO2 fuel.

  8. Fabrication of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian

    1993-01-01

    This report outlines the procedures that were employed in fabricating prototype graphite-epoxy composite prop fan blades. These blades were used in wind tunnel tests that investigated prop fan propulsion system interactions with a missile airframe in order to study the feasibility of an advanced-technology-propfan-propelled missile. Major phases of the blade fabrication presented include machining of the master blade, mold fabrication, ply cutting and assembly, blade curing, and quality assurance. Specifically, four separate designs were fabricated, 18 blades of each geometry, using the same fabrication technique for each design.

  9. Fabricating niobium test loops for the SP-100 space reactor

    NASA Technical Reports Server (NTRS)

    Bryhan, Anthony J.; Chan, Ricky C.

    1993-01-01

    This article describes the successful fabrication, operation, and evaluation of a series of niobium-alloy (Nb-1 Zr and PWC-11) thermal convection loops designed to contain and circulate molten lithium at 1,350 K. These loops were used to establish the fabrication variables of significance for a nuclear power supply for space. Approximately 200 weldments were evaluated for their tendency to be attacked by lithium as a function of varying atmospheric contamination. No attack occurred for any weldment free of contamination, with or without heat treatment, and no welds accidentally deviated from purity. The threshold oxygen content for weldment attack was determined to be 170-200 ppm. Attack varied directly with weldment oxygen and nitrogen contents.

  10. 16 CFR 300.26 - Pile fabrics and products composed thereof.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Pile fabrics and products composed thereof. 300.26 Section 300.26 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE WOOL PRODUCTS LABELING ACT OF 1939 Labeling § 300.26 Pile fabrics...

  11. Tactile Fabric Panel in an Eight Zones Structure

    PubMed Central

    Alsina, Maria; Escudero, Francesc; Margalef, Jordi; Luengo, Sonia

    2007-01-01

    By introducing a percentage of conductive material during the manufacture of sewing thread, it is possible to obtain a fabric which is able to detect variations in pressure in certain areas. In previous experiments the existence of resistance variations has been demonstrated, although some constrains of cause and effect were found in the fabric. The research has been concentrated in obtaining a fabric that allows electronic detection of its shape changes. Additionally, and because a causal behavior is needed, it is necessary that the fabric recovers its original shape when the external forces cease. The structure of the fabric varies with the type of deformation applied. Two kinds of deformation are described: those caused by stretching and those caused by pressure. This last type of deformation gives different responses depending on the conductivity of the object used to cause the pressure. This effect is related to the type of thread used to manufacture the fabric. So, if the pressure is caused by a finger the response is different compared to the response caused by a conductive object. Another fact that has to be mentioned is that a pressure in a specific point of the fabric can affect other detection points depending on the force applied. This effect is related to the fabric structure. The goals of this article are validating the structure of the fabric used, as well as the study of the two types of deformation mentioned before. PMID:28903272

  12. Simplified Fabrication of Helical Copper Antennas

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    2006-01-01

    A simplified technique has been devised for fabricating helical antennas for use in experiments on radio-frequency generation and acceleration of plasmas. These antennas are typically made of copper (for electrical conductivity) and must have a specific helical shape and precise diameter.

  13. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee

    2014-11-01

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the Highmore » Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.« less

  14. Controlling nuclear JAKs and STATs for specific gene activation by IFNγ.

    PubMed

    Noon-Song, Ezra N; Ahmed, Chulbul M; Dabelic, Rea; Canton, Johnathan; Johnson, Howard M

    2011-07-08

    We previously showed that gamma interferon (IFNγ) and its receptor subunit, IFNGR1, interacted with the promoter region of IFNγ-activated genes along with transcription factor STAT1α. Recent studies have suggested that activated Janus kinases pJAK2 and pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFNγ. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFNγ treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The β-actin gene, which is not activated by IFNγ, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFNγ treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFNγ treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFNγ treatment resulted in its disassociation and then re-association as pSTAT1. The results suggest a novel role for activated JAKs in epigenetic events for specific gene activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes.

    PubMed

    Le Berre, Maël; Aubertin, Johannes; Piel, Matthieu

    2012-11-01

    The quest to understand how the mechanical and geometrical environment of cells impacts their behavior and fate has been a major force driving the recent development of new technologies in cell biology research. Despite rapid advances in this field, many challenges remain in order to bridge the gap between the classical and simple cell culture plate and the biological reality of actual tissue. In tissues, cells have their physical space constrained by neighboring cells and the extracellular matrix. Here, we propose a simple and versatile device to precisely and dynamically control this confinement parameter in cultured cells. We show that there is a precise threshold deformation above which the nuclear lamina breaks and reconstructs, whereas nuclear volume changes. We also show that different nuclear deformations correlate with the expression of specific sets of genes, including nuclear factors and classical mechanotransduction pathways. This versatile device thus enables the precise control of cell and nuclear deformation by confinement and the correlative study of the associated molecular events.

  16. Design and fabrication of 55-gallon drum shuffler standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, S.M.; Hsue, F.; Hoth, C.

    1994-08-01

    To analyze waste with varying levels of nuclear material, suitable standards are needed to calibrate analytical instrumentation. At the Los Alamos Plutonium Facility, the authors have designed and fabricated a single drum standard for a passive-active neutron counter (shuffler). The standard is modified simply by adding or subtracting plutonium of uranium cylinders to adapt to a range of nuclear material. The plutonium or uranium oxide was placed into small cylindrical containers (1-in. diameter by 5-in. long) and diluted with diatomaceous earth. The cylinders were welded closed and removed from the glove box environment without any external contamination. The containers weremore » leak tested and then placed on a segmented gamma scanner to assure homogeneous distribution of the nuclear material. The cylinders are now placed into the drum to achieve the needed ranges for calibration of the instruments.« less

  17. Testing of qubit materials and fabrication using superconducting resonators

    NASA Astrophysics Data System (ADS)

    Kumar, Shwetank; Steffen, Matthias; Divincenzo, David; Keefe, George; Rothwell, Mary Beth; Farinelli, Matthew; Rozen, Jim; Milliken, Frank; Ketchen, Mark

    2009-03-01

    We will present the results of measurements made on superconducting resonators fabricated using different substrates and superconducting metals. Specifically, the quality factor of these resonators will be shown to be closely related to not only the purity of the substrates and metals used in the process but also to the details of the fabrication. We will demonstrate the change in quality factor of a bare resonator when subjected to the qubit process. Based on our measurements we propose that superconducting resonators may form a test bed for troubleshooting the fabrication process for minimizing the materials related dissipation in the qubits.

  18. Alkali semi-metal films and method and apparatus for fabricating them

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Harish B.; Nagarkar, Vivek V.; Ovechkina, Olena E.

    Methods and systems for fabricating a film, such as, for example, a photocathode, having a tailored band structure and thin-film components that can be tailored for specific applications, such as, for example photocathode having a high quantum efficiency, and simple components fabricated by those methods.

  19. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  20. Nuclear anomalies in the buccal cells of calcite factory workers

    PubMed Central

    2010-01-01

    The micronucleus (MN) assay on exfoliated buccal cells is a useful and minimally invasive method for monitoring genetic damage in humans. To determine the genotoxic effects of calcite dust that forms during processing, MN assay was carried out in exfoliated buccal cells of 50 (25 smokers and 25 non-smokers) calcite factory workers and 50 (25 smokers and 25 non-smokers) age- and sex-matched control subjects. Frequencies of nuclear abnormalities (NA) other than micronuclei, such as binucleates, karyorrhexis, karyolysis and ‘broken eggs', were also evaluated. Micronuclei and the other aforementioned anomalies were analysed by two way analysis of covariance. The linear correlations between the types of micronucleus and nuclear abnormalities were determined by Spearman's Rho. There was a positive correlation between micronuclei and other types of nuclear abnormalities in accordance with the Spearman's Rho test. Results showed statistically significant difference between calcite fabric workers and control groups. MN and NA frequencies in calcite fabric workers were significantly higher than those in control groups (p < 0.05). The results of this study indicate that calcite fabric workers are under risk of significant cytogenetic damage. PMID:21637497

  1. IE1 and hr facilitate the localization of Bombyx mori nucleopolyhedrovirus ORF8 to specific nuclear sites.

    PubMed

    Kang, WonKyung; Imai, Noriko; Kawasaki, Yu; Nagamine, Toshihiro; Matsumoto, Shogo

    2005-11-01

    The Bombyx mori nucleopolyhedrovirus (BmNPV) ORF8 protein has previously been reported to colocalize with IE1 to specific nuclear sites during infection. Transient expression of green fluorescent protein (GFP)-fused ORF8 showed the protein to have cytoplasmic localization, but following BmNPV infection the protein formed foci, suggesting that ORF8 requires some other viral factor(s) for this. Therefore, interacting factors were looked for using the yeast two-hybrid system and IE1 was identified. We mapped the interacting region of ORF8 using a yeast two-hybrid assay. An N-terminal region (residues 1-110) containing a predicted coiled-coil domain interacted with IE1, while a truncated N-terminal region (residues 1-78) that lacks this domain did not. In addition, a protein with a complete deletion of the N-terminal region failed to interact with IE1. These results suggest that the ORF8 N-terminal region containing the coiled-coil domain is required for the interaction with IE1. Next, whether IE1 plays a role in ORF8 localization was investigated. In the presence of IE1, GFP-ORF8 localized to the nucleus. In addition, cotransfection with a plasmid expressing IE1 and a plasmid containing the hr3 element resulted in nuclear foci formation. A GFP-fused ORF8 mutant protein containing the coiled-coil domain, previously shown to interact with IE1, also formed nuclear foci in the presence of IE1 and hr3. However, ORF8 mutant proteins that did not interact with IE1 failed to form nuclear foci. In contrast to wild-type IE1, focus formation was not observed for an IE1 mutant protein that was deficient in hr binding. These results suggest that IE1 and hr facilitate the localization of BmNPV ORF8 to specific nuclear sites.

  2. Console for a nuclear control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  3. Advanced nuclear plant control room complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  4. 2D all-solid state fabric supercapacitor fabricated via an all solution process for use in smart textiles

    NASA Astrophysics Data System (ADS)

    Jang, Yunseok; Jo, Jeongdai; Woo, Kyoohee; Lee, Seung-Hyun; Kwon, Sin; Kim, Kwang-Young; Kang, Dongwoo

    2017-05-01

    We propose a method to fabricate a supercapacitor for smart textiles using silver (Ag) nanoparticle (NP) ink, simple spray patterning systems, and intense pulsed light (IPL) sintering systems. The Ag NP current collectors provided as high conductivity as the metal current collectors. The spray patterning technique is useful for fabricating supercapacitors because it is simple, fast, and cheap. IPL systems reduced the sintering temperature of Ag NPs and prevented thermal damage to the textiles during the Ag NP sintering process. The two-dimensional (2D) all-solid state fabric supercapacitor with an interdigitated configuration, developed here, exhibited a specific capacitance of 25.7 F/g and an energy density of 1.5 Wh/kg at a power density of 64.3 W/kg. These results support the utility of our proposed method in the development of energy textiles.

  5. Architecture for distributed design and fabrication

    NASA Astrophysics Data System (ADS)

    McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.

    1997-01-01

    We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.

  6. Fast and selective cell isolation from blood sample by microfiber fabric system with vacuum aspiration

    NASA Astrophysics Data System (ADS)

    Ueki, Takayuki; Yoshihara, Akifumi; Teramura, Yuji; Takai, Madoka

    2016-01-01

    Since circulating tumor cells (CTCs) are tumor cells which are found in the blood of cancer patients, CTCs are potential tumor markers, so a rapid isolation of CTCs is desirable for clinical applications. In this paper, a three-dimensional polystyrene (PS) microfiber fabric with vacuum aspiration system was developed for capturing CTCs within a short time. Various microfiber fabrics with different diameters were prepared by the electrospinning method and optimized for contact frequency with cells. Vacuum aspiration utilizing these microfiber fabrics could filter all cells within seconds without mechanical damage. The microfiber fabric with immobilized anti-EpCAM antibodies was able to specifically capture MCF-7 cells that express EpCAM on their surfaces. The specificity of the system was confirmed by monitoring the ability to isolate MCF-7 cells from a mixture containing CCRF-CEM cells that do not express EpCAM. Furthermore, the selective capture ability of the microfiber was retained even when the microfiber was exposed to the whole blood of pigs spiked with MCF-7 cells. The specific cell capture ratio of the vacuum aspiration system utilizing microfiber fabric could be improved by increasing the thickness of the microfiber fabric through electrospinning time.

  7. Radiation Hardened Electronics Destined For Severe Nuclear Reactor Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holbert, Keith E.; Clark, Lawrence T.

    Post nuclear accident conditions represent a harsh environment for electronics. The full station blackout experience at Fukushima shows the necessity for emergency sensing capabilities in a radiation-enhanced environment. This NEET (Nuclear Energy Enabling Technologies) research project developed radiation hardened by design (RHBD) electronics using commercially available technology that employs commercial off-the-shelf (COTS) devices and present generation circuit fabrication techniques to improve the total ionizing dose (TID) hardness of electronics. Such technology not only has applicability to severe accident conditions but also to facilities throughout the nuclear fuel cycle in which radiation tolerance is required. For example, with TID tolerance tomore » megarads of dose, electronics could be deployed for long-term monitoring, inspection and decontamination missions. The present work has taken a two-pronged approach, specifically, development of both board and application-specific integrated circuit (ASIC) level RHBD techniques. The former path has focused on TID testing of representative microcontroller ICs with embedded flash (eFlash) memory, as well as standalone flash devices that utilize the same fabrication technologies. The standalone flash devices are less complicated, allowing better understanding of the TID response of the crucial circuits. Our TID experiments utilize biased components that are in-situ tested, and in full operation during irradiation. A potential pitfall in the qualification of memory circuits is the lack of rigorous testing of the possible memory states. For this reason, we employ test patterns that include all ones, all zeros, a checkerboard of zeros and ones, an inverse checkerboard, and random data. With experimental evidence of improved radiation response for unbiased versus biased conditions, a demonstration-level board using the COTS devices was constructed. Through a combination of redundancy and power gating, the

  8. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; SR Morrell; AE Wright

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less

  9. Layerless fabrication with continuous liquid interface production.

    PubMed

    Janusziewicz, Rima; Tumbleston, John R; Quintanilla, Adam L; Mecham, Sue J; DeSimone, Joseph M

    2016-10-18

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology.

  10. Layerless fabrication with continuous liquid interface production

    PubMed Central

    Janusziewicz, Rima; Tumbleston, John R.; Quintanilla, Adam L.; Mecham, Sue J.; DeSimone, Joseph M.

    2016-01-01

    Despite the increasing popularity of 3D printing, also known as additive manufacturing (AM), the technique has not developed beyond the realm of rapid prototyping. This confinement of the field can be attributed to the inherent flaws of layer-by-layer printing and, in particular, anisotropic mechanical properties that depend on print direction, visible by the staircasing surface finish effect. Continuous liquid interface production (CLIP) is an alternative approach to AM that capitalizes on the fundamental principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between the growing part and the exposure window. This interface eliminates the necessity of an iterative layer-by-layer process, allowing for continuous production. Herein we report the advantages of continuous production, specifically the fabrication of layerless parts. These advantages enable the fabrication of large overhangs without the use of supports, reduction of the staircasing effect without compromising fabrication time, and isotropic mechanical properties. Combined, these advantages result in multiple indicators of layerless and monolithic fabrication using CLIP technology. PMID:27671641

  11. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  12. Fragrance allergy: assessing the safety of washed fabrics.

    PubMed

    Basketter, David A; Pons-Guiraud, Annick; van Asten, Arian; Laverdet, Catherine; Marty, Jean-Paul; Martin, Ludovic; Berthod, Daniel; Siest, Sylvie; Giordano-Labadie, Françoise; Tennstedt, Dominique; Baeck, Marie; Vigan, Martine; Lainé, Gérard; Le Coz, Christophe J; Jacobs, Marie-Claude; Bayrou, Olivier; Germaux, Marie-Anne

    2010-06-01

    Previously, a quantitative risk assessment suggested there was no risk of induction of fragrance allergy from minor residues of fragrance chemicals on washed fabrics. To investigate whether there was any risk of the elicitation of contact allergy from fragrance chemical residues on fabric in individuals who were already sensitized. Thirty-six subjects with a positive patch test to isoeugenol (n = 19) or hydroxyisohexyl 3-cyclohexene carboxaldehyde (n = 17) were recruited. Dose-response and fabric patch tests were performed, respectively, with filter paper and a cotton sample loaded with fragrance in ethanol-diethylphthalate (DEP) and applied in a Finn Chamber or a Hill Top Chamber. Only two subjects reacted to an isoeugenol patch test concentration of 0.01% (>20x the estimated likely skin exposure level), none reacted to lower concentrations. Of 36 subjects, 18 reacted to the fabric patch treated with ethanol-DEP vehicle alone and 20 to the fragrance-chemical-treated fabric patch. These were only minor non-specific skin reactions. They were also quite evenly distributed between the two fragrance chemical allergic groups. On the basis of the examples studied, fragrance chemical residues present on fabric do not appear to present a risk of the elicitation of immediate or delayed allergic skin reactions on individuals already sensitized.

  13. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  14. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  15. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  16. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  17. 10 CFR 140.91 - Appendix A-Form of nuclear energy liability policy for facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... designed or used for (a) separating the isotopes of uranium or plutonium, (b) processing or utilizing spent... processing, fabricating or alloying of special nuclear material if at any time the total amount of such... operations conducted thereat; Nuclear reactor means any apparatus designed or used to sustain nuclear fission...

  18. Three dimensional fabrication at small size scales

    PubMed Central

    Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.

    2010-01-01

    Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446

  19. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, William J.; Zhang, Yanwen

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effectsmore » of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.« less

  20. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  1. End-of-fabrication CMOS process monitor

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hannaman, D. J.; Lieneweg, U.; Lin, Y.-S.; Sayah, H. R.

    1990-01-01

    A set of test 'modules' for verifying the quality of a complementary metal oxide semiconductor (CMOS) process at the end of the wafer fabrication is documented. By electrical testing of specific structures, over thirty parameters are collected characterizing interconnects, dielectrics, contacts, transistors, and inverters. Each test module contains a specification of its purpose, the layout of the test structure, the test procedures, the data reduction algorithms, and exemplary results obtained from 3-, 2-, or 1.6-micrometer CMOS/bulk processes. The document is intended to establish standard process qualification procedures for Application Specific Integrated Circuits (ASIC's).

  2. Fabrication of cermet bearings for the control system of a high temperature lithium cooled nuclear reactor

    NASA Technical Reports Server (NTRS)

    Yacobucci, H. G.; Heestand, R. L.; Kizer, D. E.

    1973-01-01

    The techniques used to fabricate cermet bearings for the fueled control drums of a liquid metal cooled reference-design reactor concept are presented. The bearings were designed for operation in lithium for as long as 5 years at temperatures to 1205 C. Two sets of bearings were fabricated from a hafnium carbide - 8-wt. % molybdenum - 2-wt. % niobium carbide cermet, and two sets were fabricated from a hafnium nitride - 10-wt. % tungsten cermet. Procedures were developed for synthesizing the material in high purity inert-atmosphere glove boxes to minimize oxygen content in order to enhance corrosion resistance. Techniques were developed for pressing cylindrical billets to conserve materials and to reduce machining requirements. Finishing was accomplished by a combination of diamond grinding, electrodischarge machining, and diamond lapping. Samples were characterized in respect to composition, impurity level, lattice parameter, microstructure and density.

  3. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  4. Actinide targets for fundamental research in nuclear physics

    NASA Astrophysics Data System (ADS)

    Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.

    2018-05-01

    Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.

  5. Development of a patient-specific dosimetry estimation system in nuclear medicine examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, H. H.; Dong, S. L.; Yang, H. J.

    2011-07-01

    The purpose of this study is to develop a patient-specific dosimetry estimation system in nuclear medicine examination using a SimSET-based Monte Carlo code. We added a dose deposition routine to store the deposited energy of the photons during their flights in SimSET and developed a user-friendly interface for reading PET and CT images. Dose calculated on ORNL phantom was used to validate the accuracy of this system. The S values for {sup 99m}Tc, {sup 18}F and {sup 131}I obtained by the system were compared to those from the MCNP4C code and OLINDA. The ratios of S values computed by thismore » system to those obtained with OLINDA for various organs were ranged from 0.93 to 1.18, which are comparable to that obtained from MCNP4C code (0.94 to 1.20). The average ratios of S value were 0.99{+-}0.04, 1.03{+-}0.05, and 1.00{+-}0.07 for isotopes {sup 131}I, {sup 18}F, and {sup 99m}Tc, respectively. The simulation time of SimSET was two times faster than MCNP4C's for various isotopes. A 3D dose calculation was also performed on a patient data set with PET/CT examination using this system. Results from the patient data showed that the estimated S values using this system differed slightly from those of OLINDA for ORNL phantom. In conclusion, this system can generate patient-specific dose distribution and display the isodose curves on top of the anatomic structure through a friendly graphic user interface. It may also provide a useful tool to establish an appropriate dose-reduction strategy to patients in nuclear medicine environments. (authors)« less

  6. Alarm system for a nuclear control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  7. Microwave-specific heating of crystalline species in nuclear waste glass

    DOE PAGES

    Christian, Jonathan H.; Fox, Kevin M.; Washington, Aaron L.

    2016-08-03

    Here, the microwave heating of a crystal-free and a partially trevorite-crystallized nuclear waste glass simulant was evaluated. Our results show that a 500-mg monolith of partially crystallized waste glass can be heated from room temperature to above 1600°C within 2 min using a single-mode, highly focused, 2.45 GHz microwave, operating at 300 W. Using X-ray diffraction measurements, we show that trevorite is no longer detectable after irradiation and thermal quenching. When a crystal-free analog of the same waste glass simulant composition was exposed to the same microwave radiation, it could not be heated above 450°C regardless of the heating time.more » The reduction in crystalline content achieved by selectively heating spinels in the presence of glass suggests that microwave-specific heating should be further explored as a technique for remediating crystal accumulation in a glass melt.« less

  8. Controlling nuclear JAKs and STATs for specific gene activation by IFN{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noon-Song, Ezra N.; Ahmed, Chulbul M.; Dabelic, Rea

    2011-07-08

    Highlights: {yields} Gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interact with the promoter region of IFN{gamma}-associated genes along with transcription factor STAT1{alpha}. {yields} We show that activated Janus kinases pJAK2 and pJAK1 also associate with IFNGR1 in the nucleus. {yields} The activated Janus kinases are responsible for phosphorylation of tyrosine 41 on histone H3, an important epigenetic event for specific gene activation. -- Abstract: We previously showed that gamma interferon (IFN{gamma}) and its receptor subunit, IFNGR1, interacted with the promoter region of IFN{gamma}-activated genes along with transcription factor STAT1{alpha}. Recent studies have suggested that activated Janus kinases pJAK2 andmore » pJAK1 also played a role in gene activation by phosphorylation of histone H3 on tyrosine 41. This study addresses the question of the role of activated JAKs in specific gene activation by IFN{gamma}. We carried out chromatin immunoprecipitation (ChIP) followed by PCR in IFN{gamma} treated WISH cells and showed association of pJAK1, pJAK2, IFNGR1, and STAT1 on the same DNA sequence of the IRF-1 gene promoter. The {beta}-actin gene, which is not activated by IFN{gamma}, did not show this association. The movement of activated JAK to the nucleus and the IRF-1 promoter was confirmed by the combination of nuclear fractionation, confocal microscopy and DNA precipitation analysis using the biotinylated GAS promoter. Activated JAKs in the nucleus was associated with phosphorylated tyrosine 41 on histone H3 in the region of the GAS promoter. Unphosphorylated JAK2 was found to be constitutively present in the nucleus and was capable of undergoing activation in IFN{gamma} treated cells, most likely via nuclear IFNGR1. Association of pJAK2 and IFNGR1 with histone H3 in IFN{gamma} treated cells was demonstrated by histone H3 immunoprecipitation. Unphosphorylated STAT1 protein was associated with histone H3 of untreated cells. IFN

  9. Fabrication of high exposure nuclear fuel pellets

    DOEpatents

    Frederickson, James R.

    1987-01-01

    A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

  10. Controlling Nuclear Jaks and Stats for Specific Gene Activation by Ifn γ and Other Cytokines: A Possible Steroid-like Connection

    PubMed Central

    Johnson, Howard M.; Noon-Song, Ezra; Ahmed, Chulbul M.

    2011-01-01

    The mechanism of specific gene activation by cytokines that use JAK/STAT signalling pathway is unknown. There are four different types of JAKs and seven different types of STATs. In the classical model of signaling, ligand interacts solely with the receptor extracellular domain, which triggers JAK activation at the receptor cytoplasmic domain. Activated STATs are then said to carry out nuclear events of specific gene activation, including associated epigenetic changes that cause heterochromatin destabilization. Ligand, receptor, and JAKs play no further role in the classical model. Given the limited number of STATs and the activation of the same STATs by cytokines with different functions, the mechanism of the specificity of their signalling is not obvious. Focusing on gamma interferon (IFNγ), we have shown that ligand, receptor, and activated JAKs are involved in nuclear events that are associated with specific gene activation. In this model, receptor subunit IFNGR1 functions as a transcription/cotranscription factor and the JAKs are involved in key epigenetic events that are required for specific gene activation. The model has implications for gene activation in cancer as well as stem cell differentiation. PMID:22924155

  11. Controlling Nuclear Jaks and Stats for Specific Gene Activation by Ifn γ and Other Cytokines: A Possible Steroid-like Connection.

    PubMed

    Johnson, Howard M; Noon-Song, Ezra; Ahmed, Chulbul M

    2011-09-03

    The mechanism of specific gene activation by cytokines that use JAK/STAT signalling pathway is unknown. There are four different types of JAKs and seven different types of STATs. In the classical model of signaling, ligand interacts solely with the receptor extracellular domain, which triggers JAK activation at the receptor cytoplasmic domain. Activated STATs are then said to carry out nuclear events of specific gene activation, including associated epigenetic changes that cause heterochromatin destabilization. Ligand, receptor, and JAKs play no further role in the classical model. Given the limited number of STATs and the activation of the same STATs by cytokines with different functions, the mechanism of the specificity of their signalling is not obvious. Focusing on gamma interferon (IFNγ), we have shown that ligand, receptor, and activated JAKs are involved in nuclear events that are associated with specific gene activation. In this model, receptor subunit IFNGR1 functions as a transcription/cotranscription factor and the JAKs are involved in key epigenetic events that are required for specific gene activation. The model has implications for gene activation in cancer as well as stem cell differentiation.

  12. Fabrication of injection molded sintered alpha SiC turbine components

    NASA Technical Reports Server (NTRS)

    Storm, R. S.; Ohnsorg, R. W.; Frechette, F. J.

    1981-01-01

    Fabrication of a sintered alpha silicon carbide turbine blade by injection molding is described. An extensive process variation matrix was carried out to define the optimum fabrication conditions. Variation of molding parameters had a significant impact on yield. Turbine blades were produced in a reasonable yield which met a rigid quality and dimensional specification. Application of injection molding technology to more complex components such as integral rotors is also described.

  13. Nuclear Safety. Technical progress journal, April--June 1996: Volume 37, No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlheim, M D

    1996-01-01

    This journal covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.

  14. Fabrication of elliptical SRF cavities

    NASA Astrophysics Data System (ADS)

    Singer, W.

    2017-03-01

    The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good

  15. SuperCDMS Underground Detector Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less

  16. Review article: Fabrication of nanofluidic devices

    PubMed Central

    Duan, Chuanhua; Wang, Wei; Xie, Quan

    2013-01-01

    Thanks to its unique features at the nanoscale, nanofluidics, the study and application of fluid flow in nanochannels/nanopores with at least one characteristic size smaller than 100 nm, has enabled the occurrence of many interesting transport phenomena and has shown great potential in both bio- and energy-related fields. The unprecedented growth of this research field is apparently attributed to the rapid development of micro/nanofabrication techniques. In this review, we summarize recent activities and achievements of nanofabrication for nanofluidic devices, especially those reported in the past four years. Three major nanofabrication strategies, including nanolithography, microelectromechanical system based techniques, and methods using various nanomaterials, are introduced with specific fabrication approaches. Other unconventional fabrication attempts which utilize special polymer properties, various microfabrication failure mechanisms, and macro/microscale machining techniques are also presented. Based on these fabrication techniques, an inclusive guideline for materials and processes selection in the preparation of nanofluidic devices is provided. Finally, technical challenges along with possible opportunities in the present nanofabrication for nanofluidic study are discussed. PMID:23573176

  17. Design and fabrication of solar cell modules

    NASA Technical Reports Server (NTRS)

    Shaughnessy, T. P.

    1978-01-01

    A program conducted for design, fabrication and evaluation of twelve silicon solar cell modules is described. The purpose of the program was to develop a module design consistent with the requirements and objectives of JPL specification and to also incorporate elements of new technologies under development to meet LSSA Project goals. Module development emphasized preparation of a technically and economically competitive design based upon utilization of ion implanted solar cells and a glass encapsulation system. The modules fabricated, tested and delivered were of nominal 2 X 2 foot dimensions and 20 watt minimum rating. Basic design, design rationale, performance and results of environmental testing are described.

  18. Fabric opto-electronics enabling healthcare applications; a case study.

    PubMed

    van Pieterson, L; van Abeelen, F A; van Os, K; Hornix, E; Zhou, G; Oversluizen, G

    2011-01-01

    Textiles are a ubiquitous part of human life. By combining them with electronics to create electronic textile systems, new application fields emerge. In this paper, technology and applications of light-emitting textile systems are presented, with emphasis on the healthcare domain: A fabric substrate is described for electronic textile with robust interwoven connections between the conductive yarns in it. This fabric enables the creation of different forms of comfortable light therapy systems. Specific challenges to enable this use in medical applications are discussed.

  19. Overexpression of the lamina proteins Lamin and Kugelkern induces specific ultrastructural alterations in the morphology of the nuclear envelope of intestinal stem cells and enterocytes.

    PubMed

    Petrovsky, Roman; Krohne, Georg; Großhans, Jörg

    2018-03-01

    The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Globalization of ASME Nuclear Codes and Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swayne, Rick; Erler, Bryan A.

    2006-07-01

    With the globalization of the nuclear industry, it is clear that the reactor suppliers are based in many countries around the world (such as United States, France, Japan, Canada, South Korea, South Africa) and they will be marketing their reactors to many countries around the world (such as US, China, South Korea, France, Canada, Finland, Taiwan). They will also be fabricating their components in many different countries around the world. With this situation, it is clear that the requirements of ASME Nuclear Codes and Standards need to be adjusted to accommodate the regulations, fabricating processes, and technology of various countriesmore » around the world. It is also very important for the American Society of Mechanical Engineers (ASME) to be able to assure that products meeting the applicable ASME Code requirements will provide the same level of safety and quality assurance as those products currently fabricated under the ASME accreditation process. To do this, many countries are in the process of establishing or changing their regulations, and it is important for ASME to interface with the appropriate organizations in those countries, in order to ensure there is effective use of ASME Codes and standards around the world. (authors)« less

  1. Nano-Scale Fabrication Using Optical-Near-Field

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Ohtsu, Motoichi

    This paper reviews the specific nature of nanophotonics, i.e., a novel optical nano-technology, utilizing dressed photon excited in the nano-material. As examples of nanophotnic fabrication, optical near-field etching and increased spatial homogeneity of contents in compound semiconductors is demonstrated with a self-organized manner.

  2. Fabrication and experimentation of FRP helical spring

    NASA Astrophysics Data System (ADS)

    Ekanthappa, J.; Shiva Shankar, G. S.; Amith, B. M.; Gagan, M.

    2016-09-01

    In present scenario, the automobile industry sector is showing increased interest in reducing the unsprung weight of the automobile & hence increasing the fuel Efficiency. One of the feasible sub systems of a vehicle where weight reduction may be attempted is vehicle- suspension system. Usage of composite material is a proven way to lower the component weight without any compromise in strength. The composite materials are having high specific strength, more elastic strain energy storage capacity in comparison with those of steel. Therefore, helical coil spring made of steel is replaceable by composite cylindrical helical coil spring. This research aims at preparing a re-usable mandrel (mould) of Mild steel, developing a setup for fabrication, fabrication of FRP helical spring using continuous glass fibers and Epoxy Resin (Polymer). Experimentation has been conducted on fabricated FRP helical spring to determine its strength parameters & for failure analysis. It is found that spring stiffness (K) of Glass/Epoxy helical-spring is greater than steel-coil spring with reduced weight.

  3. Nuclear Safety. Technical progress journal, January--March 1994: Volume 35, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E G

    1994-01-01

    This is a journal that covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, and nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.

  4. Fabric circuits and method of manufacturing fabric circuits

    NASA Technical Reports Server (NTRS)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  5. Nanocarbon materials fabricated using plasmas

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Rikizo

    2017-12-01

    Since the discovery of fullerenes more than three decades ago, new kinds of nanoscale materials of carbon allotropes called "nanocarbons" have so far been discovered or synthesized at successive intervals as cases such as carbon nanotubes, carbon nanohorns, graphene, carbon nanowalls, and a carbon nanobelt, while nanodiamonds were actually discovered before then. Their attractively excellent mechanical, physical, and chemical properties have driven researchers to continuously create one of the hottest frontiers in materials science and technology. While plasma states have often been involved in their discovery, on the other hand, plasma-based approaches to this exciting field originally hold promising and enormous potentials for advancing and expanding industrial/biomedical applications of nanocarbons of great diversity. This article provides an extensive overview on plasma-fabricated nanocarbon materials, where the term "fabrication" is defined as synthesis, functionalization, and assembly of devices to cover a wide range of issues associated with the step-by-step plasma processes. Specific attention has been paid to the comparative examination between plasma-based and non-plasma methods for fabricating the nanocarobons with an emphasis on the advantages of plasma processing, such as low-temperature/large-scale fabrication and diversity-carrying structure controllability. The review ends with current challenges and prospects including a ripple effect of the nanocarbon studies on the development of related novel nanomaterials such as transition metal dichalcogenides. It contains not only the latest progress in the field for cutting-edge scientists and engineers, but also the introductory guidance to non-specialists such as lower-class graduate students.

  6. Method and device for fabricating dispersion fuel comprising fission product collection spaces

    DOEpatents

    Shaber, Eric L; Fielding, Randall S

    2015-05-05

    A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.

  7. ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahlmeister, J E; Haberer, W V; Casey, D F

    1960-12-15

    The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less

  8. Going nuclear: The spread of nuclear weapons 1986-1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spector, L.S.

    1987-01-01

    In the third annual report of the Carnegie Endowment for International Peace on the spread of nuclear weapons, Spector provides a critical survey of the status of nuclear proliferation throughout the world and examines the nuclear potential of nations in the Middle East, Asia, Africa, and Latin America. Drawing on both historical documents and up-to-date reports, the author addresses such specific topics as Israel's nuclear arsenal, nuclear terrorism and its global security implications, arms control and nuclear safeguards, international treaties, weapons buildup, and political radicalism and unrest in nuclear-threshold nations.

  9. Indicator system for advanced nuclear plant control complex

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1993-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  10. Blunt Trauma Performance of Fabric Systems Utilizing Natural Rubber Coated High Strength Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, M. R.; Ahmad, W. Y. W.; Samsuri, A.

    2010-03-11

    The blunt trauma performance of fabric systems against 9 mm bullets is reported. Three shots were fired at each fabric system with impact velocity of 367+-9 m/s and the depth of indentation on the modeling clay backing was measured. The results showed that 18-layer and 21-layer all-neat fabric systems failed the blunt trauma test. However, fabric systems with natural rubber (NR) latex coated fabric layers gave lower blunt trauma of between 25-32 mm indentation depths. Deformations on the neat fabrics upon impact were identified as broken yarns, yarn stretching and yarn pull-out. Deflections of the neat fabrics were more localised.more » For the NR latex coated fabric layers, no significant deformation can be observed except for peeled-off regions of the NR latex film at the back surface of the last layer. From the study, it can be said that the NR latex coated fabric layers were effective in reducing the blunt trauma of fabric systems.« less

  11. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design

  12. Safety considerations for fabricating lithium battery packs

    NASA Technical Reports Server (NTRS)

    Ciesla, J. J.

    1986-01-01

    Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery packs to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface area) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery pack, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery pack might vary with cell size.

  13. High-Thermal-Conductivity Fabrics

    NASA Technical Reports Server (NTRS)

    Chibante, L. P. Felipe

    2012-01-01

    Heat management with common textiles such as nylon and spandex is hindered by the poor thermal conductivity from the skin surface to cooling surfaces. This innovation showed marked improvement in thermal conductivity of the individual fibers and tubing, as well as components assembled from them. The problem is centered on improving the heat removal of the liquid-cooled ventilation garments (LCVGs) used by astronauts. The current design uses an extensive network of water-cooling tubes that introduces bulkiness and discomfort, and increases fatigue. Range of motion and ease of movement are affected as well. The current technology is the same as developed during the Apollo program of the 1960s. Tubing material is hand-threaded through a spandex/nylon mesh layer, in a series of loops throughout the torso and limbs such that there is close, form-fitting contact with the user. Usually, there is a nylon liner layer to improve comfort. Circulating water is chilled by an external heat exchanger (sublimator). The purpose of this innovation is to produce new LCVG components with improved thermal conductivity. This was addressed using nanocomposite engineering incorporating high-thermalconductivity nanoscale fillers in the fabric and tubing components. Specifically, carbon nanotubes were added using normal processing methods such as thermoplastic melt mixing (compounding twin screw extruder) and downstream processing (fiber spinning, tubing extrusion). Fibers were produced as yarns and woven into fabric cloths. The application of isotropic nanofillers can be modeled using a modified Nielsen Model for conductive fillers in a matrix based on Einstein s viscosity model. This is a drop-in technology with no additional equipment needed. The loading is limited by the ability to maintain adequate dispersion. Undispersed materials will plug filtering screens in processing equipment. Generally, the viscosity increases were acceptable, and allowed the filled polymers to still be

  14. Fundamentals of nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alazraki, N.P.; Mishkin, F.S.

    1988-01-01

    The book begins with basic science and statistics relevant to nuclear medicine, and specific organ systems are addressed in separate chapters. A section of the text also covers imaging of groups of disease processes (eg, trauma, cancer). The authors present a comparison between nuclear medicine techniques and other diagnostic imaging studies. A table is given which comments on sensitivities and specificities of common nuclear medicine studies. The sensitivities and specificities are categorized as very high, high, moderate, and so forth.

  15. An Overview of the Nuclear Electric Xenon Ion System (NEXIS) Activity

    NASA Technical Reports Server (NTRS)

    Randolph, Thomas M.; Polk, James E., Jr.

    2004-01-01

    The Nuclear Electric Xenon Ion System (NEXIS) research and development activity within NASA's Project Prometheus, was one of three proposals selected by NASA to develop thruster technologies for long life, high power, high specific impulse nuclear electric propulsion systems that would enable more robust and ambitious science exploration missions to the outer solar system. NEXIS technology represents a dramatic improvement in the state-of-the-art for ion propulsion and is designed to achieve propellant throughput capabilities >= 2000 kg and efficiencies >= 78% while increasing the thruster power to >= 20 kW and specific impulse to >= 6000 s. The NEXIS technology uses erosion resistant carbon-carbon grids, a graphite keeper, a new reservoir hollow cathode, a 65-cm diameter chamber masked to produce a 57-cm diameter ion beam, and a shared neutralizer architecture to achieve these goals. The accomplishments of the NEXIS activity so far include performance testing of a laboratory model thruster, successful completion of a proof of concept reservoir cathode 2000 hour wear test, structural and thermal analysis of a completed development model thruster design, fabrication of most of the development model piece parts, and the nearly complete vacuum facility modifications to allow long duration wear testing of high power ion thrusters.

  16. A flexible piezoelectric force sensor based on PVDF fabrics

    NASA Astrophysics Data System (ADS)

    Wang, Y. R.; Zheng, J. M.; Ren, G. Y.; Zhang, P. H.; Xu, C.

    2011-04-01

    Polyvinylidene fluoride (PVDF) film has been widely investigated as a sensor and transducer material due to its high piezo-, pyro- and ferroelectric properties. To activate these properties, PVDF films require a mechanical treatment, stretching or poling. In this paper, we report on a force sensor based on PVDF fabrics with excellent flexibility and breathability, to be used as a specific human-related sensor. PVDF nanofibrous fabrics were prepared by using an electrospinning unit and characterized by means of scanning electron microscopy (SEM), FTIR spectroscopy and x-ray diffraction. Preliminary force sensors have been fabricated and demonstrated excellent sensitivity and response to external mechanical forces. This implies that promising applications can be made for sensing garment pressure, blood pressure, heartbeat rate, respiration rate and accidental impact on the human body.

  17. Fabrication of scaffolds in tissue engineering: A review

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Gu, Haibing; Mi, Haoyang; Rao, Chengchen; Fu, Jianzhong; Turng, Lih-sheng

    2018-03-01

    Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.

  18. Quantum Dot Solar Cell Fabrication Protocols

    DOE PAGES

    Chernomordik, Boris D.; Marshall, Ashley R.; Pach, Gregory F.; ...

    2016-09-26

    Colloidally synthesized quantum-confined semiconducting spherical nanocrystals, often referred to as quantum dots (QDs), offer a high degree of chemical, optical, and electronic tunability. As a result, there is an increasing interest in employing colloidal QDs for electronic and optical applications that is reflected in a growing number of publications. In this protocol we provide detailed procedures for the fabrication of QD solar cells specifically employing PbSe and PbS QDs. Here we include details that are learned through experience, beyond those in typical methodology sections, and include example pictures and videos to aid in fabricating QD solar cells. Although successful solarmore » cell fabrication is ultimately learned through experience, this protocol is intended to accelerate that process. The protocol developed here is intended to be a general starting point for developing PbS and PbSe QD test bed solar cells. We include steps for forming conductive QD films via dip coating as well as spin coating. Finally, we provide protocols that detail the synthesis of PbS and PbSe QDs through a unique cation exchange reaction and discuss how different QD synthetic routes could impact the resulting solar cell performance.« less

  19. Quantum Dot Solar Cell Fabrication Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernomordik, Boris D.; Marshall, Ashley R.; Pach, Gregory F.

    Colloidally synthesized quantum-confined semiconducting spherical nanocrystals, often referred to as quantum dots (QDs), offer a high degree of chemical, optical, and electronic tunability. As a result, there is an increasing interest in employing colloidal QDs for electronic and optical applications that is reflected in a growing number of publications. In this protocol we provide detailed procedures for the fabrication of QD solar cells specifically employing PbSe and PbS QDs. Here we include details that are learned through experience, beyond those in typical methodology sections, and include example pictures and videos to aid in fabricating QD solar cells. Although successful solarmore » cell fabrication is ultimately learned through experience, this protocol is intended to accelerate that process. The protocol developed here is intended to be a general starting point for developing PbS and PbSe QD test bed solar cells. We include steps for forming conductive QD films via dip coating as well as spin coating. Finally, we provide protocols that detail the synthesis of PbS and PbSe QDs through a unique cation exchange reaction and discuss how different QD synthetic routes could impact the resulting solar cell performance.« less

  20. Diagnostic utility of hepatocyte nuclear factor 1-beta immunoreactivity in endometrial carcinomas: lack of specificity for endometrial clear cell carcinoma.

    PubMed

    Fadare, Oluwole; Liang, Sharon X

    2012-12-01

    Hepatocyte nuclear factor 1-beta (HNF1β) has recently emerged as a relatively sensitive and specific marker for ovarian clear cell carcinoma. The purpose of this study is to assess the diagnostic utility of this marker for endometrial clear cell carcinoma. Immunohistochemical analysis was performed on 75 endometrial tissues using a goat polyclonal antibody raised against a peptide mapping at the C-terminus of human HNF1β protein. The 75 cases included 15 clear cell carcinomas, 20 endometrioid carcinomas, 15 endometrial serous carcinomas/uterine papillary serous carcinomas, 20 cases of normal endometrium, 2 cases of clear cell metaplasia, and 3 cases of Arias Stella reaction. Staining interpretations were based on a semiquantitative scoring system, a 0 to 12+ continuous numerical scale that was derived by multiplying the extent of staining (0 to 4+ scale) by the intensity of staining (0 to 3+ scale) for each case. HNF1β expression was found to be present in a wide spectrum of tissues. Twenty-seven (54%) of the 50 carcinomas displayed at least focal nuclear HNF1β expression, including 11 (73%) of 15, 9 (60%) of 15, and 7 (35%) of 20 clear cell, serous, and endometrioid carcinomas, respectively. The average nuclear staining scores for clear cell carcinomas, endometrioid carcinomas, and serous carcinomas were 5.2, 1.4, and 4.1, respectively. Clear cell carcinomas and endometrioid carcinomas displayed statistically significant differences regarding their nuclear staining scores (P = 0.0027), but clear cell carcinomas and endometrial serous carcinomas did not (P = 0.45). The calculated sensitivity of any nuclear HNF1β expression in classifying a carcinoma as being of the clear cell histotype was 73%, whereas the specificity was 54%. Nineteen of 20 normal endometrium samples displayed at least focal nuclear expression of HNF1β, and this expression was often diffuse. The 5 cases of benign histologic mimics of clear cell carcinomas (Arias Stella reaction and clear

  1. Fabrication of High-Resolution Gamma-Ray Metallic Magnetic Calorimeters with Ag:Er Sensor and Thick Electroplated Absorbers

    NASA Astrophysics Data System (ADS)

    Hummatov, Ruslan; Hall, John A.; Kim, Geon-Bo; Friedrich, Stephan; Cantor, Robin; Boyd, S. T. P.

    2018-05-01

    We are developing metallic magnetic calorimeters for high-resolution gamma-ray spectroscopy for non-destructive assay of nuclear materials. Absorbers for these higher-energy photons can require substantial thickness to achieve adequate stopping power. We developed a new absorber fabrication process using dry-film photoresists to electroform cantilevered, thick absorbers. Gamma detectors with these absorbers have an energy resolution of 38 eV FWHM at 60 keV. In this report, we summarize modifications to STARCryo's "Delta 1000" process for our devices and describe the new absorber fabrication process.

  2. Patient specific ankle-foot orthoses using rapid prototyping

    PubMed Central

    2011-01-01

    Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD) software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait). The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required. PMID:21226898

  3. Designed porosity materials in nuclear reactor components

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  4. Readiness Review of BWXT for Fabrication of AGR-5/6/7 TRISO Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas William; Sharp, Michelle Tracy

    2016-02-01

    INL readiness review assessment of BWXT readiness to commence fabrication of low-enriched TRISO coated fuel particles for the AGR-5/6/7 irradiation experiments. BWXT self-identified equipment issues preventing operation. INL identified two findings. The first was that disposition codes had not been assigned and documented on BWXT forms to ensure that off-specification materials could not be used in the fabrication of TRISO particles. The second was that chemical purity specifications were not reliably passed on to chemical suppliers, which resulted in the receipt of one acetylene cylinder with suspect impurity levels.

  5. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes.

    PubMed Central

    German, M S; Moss, L G; Wang, J; Rutter, W J

    1992-01-01

    The pancreatic beta cell makes several unique gene products, including insulin, islet amyloid polypeptide (IAPP), and beta-cell-specific glucokinase (beta GK). The functions of isolated portions of the insulin, IAPP, and beta GK promoters were studied by using transient expression and DNA binding assays. A short portion (-247 to -197 bp) of the rat insulin I gene, the FF minienhancer, contains three interacting transcriptional regulatory elements. The FF minienhancer binds at least two nuclear complexes with limited tissue distribution. Sequences similar to that of the FF minienhancer are present in the 5' flanking DNA of the human IAPP and rat beta GK genes and also the rat insulin II and mouse insulin I and II genes. Similar minienhancer constructs from the insulin and IAPP genes function as cell-specific transcriptional regulatory elements and compete for binding of the same nuclear factors, while the beta GK construct competes for protein binding but functions poorly as a minienhancer. These observations suggest that the patterns of expression of the beta-cell-specific genes result in part from sharing the same transcriptional regulators. Images PMID:1549125

  6. Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters

    NASA Astrophysics Data System (ADS)

    Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James

    3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.

  7. Study the relation between the yarn pulling force and the bursting strength of single jersey knitted fabric

    NASA Astrophysics Data System (ADS)

    El-Tarfawy, S. Y.

    2017-10-01

    There are various methods to evaluate knitted fabric’s properties; the yarn pulling force is a suitable experimental method to investigate the properties of single jersey knitted fabric.In this study, a frame is attached to the electronic tensile strength tester to fix different single jersey knitted fabrics with different dimensional properties. A hook is connected to the upper load cell in the tensile tester to ravel the first upper course then records the values of the yarn pulling force. In addition to that, the effect of the loop length, yarn count, and raw material on yarn pulling force and specific fabric bursting strength are studied. It is concluded that yarn pulling force has a significant relation with specific fabric bursting strength.

  8. Gas Atomization Equipment Statement of Work and Specification for Engineering design, Fabrication, Testing, and Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutaleb, T.; Pluschkell, T. P.

    The Gas Atomization Equipment will be used to fabricate metallic powder suitable for Powder Bed Fusion additive Manufacturing material to support Lawrence Livermore National Laboratory (LLNL) research and development. The project will modernize our capabilities to develop spherical reactive, refractory, and radioactive powders in the 10-75 μm diameter size range at LLNL.

  9. The Design, Fabrication, and Testing of Composite Heat Exchange Coupons

    NASA Technical Reports Server (NTRS)

    Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.

    2011-01-01

    Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.

  10. In-space fabrication of thin-film structures

    NASA Technical Reports Server (NTRS)

    Lippman, M. E.

    1972-01-01

    A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.

  11. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  12. METHOD AND APPARATUS FOR FABRICATING TUBULAR UNITS

    DOEpatents

    Haldeman, G.W.

    1959-02-24

    A method and apparatus are described for fabricating tubular assemblies such as clad fuel elements for nuclear reactors. According to this method, a plurality of relatively short cylindrical slug-shaped members are inserted in an outer protective tubular jacket, and the assembly is passed through a reducing die to draw the outer tubular member into tight contact with the slug members, the slugs being automatically spaced with respect to each other and helium being inserted during the drawing operation to fill the spaces. The apparatus includes a pusher rod which functions to space the slugelements equidistantly by pushing on them in the direction of drawing but traveling at a slower rate than that of the tubular member.

  13. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-12-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.

  14. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    NASA Astrophysics Data System (ADS)

    Myers, Astasia

    2011-06-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  15. Methods for fabrication of positional and compositionally controlled nanostructures on substrate

    DOEpatents

    Zhu, Ji; Grunes, Jeff; Choi, Yang-Kyu; Bokor, Jeffrey; Somorjai, Gabor

    2013-07-16

    Fabrication methods disclosed herein provide for a nanoscale structure or a pattern comprising a plurality of nanostructures of specific predetermined position, shape and composition, including nanostructure arrays having large area at high throughput necessary for industrial production. The resultant nanostracture patterns are useful for nanostructure arrays, specifically sensor and catalytic arrays.

  16. DUCTILE URANIUM FUEL FOR NUCLEAR REACTORS AND METHOD OF MAKING

    DOEpatents

    Zegler, S.T.

    1963-11-01

    The fabrication process for a ductile nuclear fuel alloy consisting of uranium, fissium, and from 0.25 to 1.0 wt% of silicon or aluminum or from 0.25 to 2 wt% of titanium or yttrium is presented. (AEC)

  17. Investigation on mechanical properties of basalt composite fabrics (experiment study)

    NASA Astrophysics Data System (ADS)

    Talebi Mazraehshahi, H.; Zamani, H.

    2010-06-01

    To fully appreciate the role and application of composite materials to structures, correct understanding of mechanical behaviors required for selection of optimum material. Fabric reinforced composites are composed of a matrix that is reinforced with pliable fabric, glass fabric is most popular reinforcement for different application specially in aircraft structure, although other fabric material are also used. At this study new fabric material called basalt with epoxy resin introduced and mechanical behaviors of this material investigated from view point of testing. For this study two type of fabric with different thickness used. Comparison between this composite reinforcement with popular reinforcement as carbon, glass, kevlar performed. To determine mechanical properties of epoxy based basalt fabric following test procedure performed : 1). Tensile testing according to ASTM D3039 in 0° and 90° direction to find ultimate strength in tension and shear, modulus of elasticity, elangation and ultimate strain. 2). Compression testing according to EN 2850 ultimate compression strength and maximum deformation under compression loading. 3). Shear testing according to ASTM D3518-94 to find in plane shear response of polymer matrix composites materials. 4). Predict flexural properties of sandwich construction which manufactured from basalt facing with PVC foam core according to ASTM C393-94. Material strength properties must be based on enough tests of material to meet the test procedure specifications [1]. For this reason six specimens were manufactured for testing and the tests were performed on them using an INSTRON machine model 5582. In the study, the effect of percent of resin in basalt reinforced composite was investigated. Also the weights of the ballast based composites with different percent of resin were measured with conventional composites. As the weight is an important parameter in aerospace industry when the designer wants to replace one material with

  18. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1.

    PubMed

    Galson, D L; Tsuchiya, T; Tendler, D S; Huang, L E; Ren, Y; Ogura, T; Bunn, H F

    1995-04-01

    The erythropoietin (Epo) gene is regulated by hypoxia-inducible cis-acting elements in the promoter and in a 3' enhancer, both of which contain consensus hexanucleotide hormone receptor response elements which are important for function. A group of 11 orphan nuclear receptors, transcribed and translated in vitro, were screened by the electrophoretic mobility shift assay. Of these, hepatic nuclear factor 4 (HNF-4), TR2-11, ROR alpha 1, and EAR3/COUP-TF1 bound specifically to the response elements in the Epo promoter and enhancer and, except for ROR alpha 1, formed DNA-protein complexes that had mobilities similar to those observed in nuclear extracts of the Epo-producing cell line Hep3B. Moreover, both anti-HNF-4 and anti-COUP antibodies were able to supershift complexes in Hep3B nuclear extracts. Like Epo, HNF-4 is expressed in kidney, liver, and Hep3B cells but not in HeLa cells. Transfection of a plasmid expressing HNF-4 into HeLa cells enabled an eightfold increase in the hypoxic induction of a luciferase reporter construct which contains the minimal Epo enhancer and Epo promoter, provided that the nuclear hormone receptor consensus DNA elements in both the promoter and the enhancer were intact. The augmentation by HNF-4 in HeLa cells could be abrogated by cotransfection with HNF-4 delta C, which retains the DNA binding domain of HNF-4 but lacks the C-terminal activation domain. Moreover, the hypoxia-induced expression of the endogenous Epo gene was significantly inhibited in Hep3B cells stably transfected with HNF-4 delta C. On the other hand, cotransfection of EAR3/COUP-TF1 and the Epo reporter either with HNF-4 into HeLa cells or alone into Hep3B cells suppressed the hypoxia induction of the Epo reporter. These electrophoretic mobility shift assay and functional experiments indicate that HNF-4 plays a critical positive role in the tissue-specific and hypoxia-inducible expression of the Epo gene, whereas the COUP family has a negative modulatory role.

  19. Fabrication of multi-functional silicon surface by direct laser writing

    NASA Astrophysics Data System (ADS)

    Verma, Ashwani Kumar; Soni, R. K.

    2018-05-01

    We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.

  20. 10 CFR 54.15 - Specific exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Specific exemptions. 54.15 Section 54.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) REQUIREMENTS FOR RENEWAL OF OPERATING LICENSES FOR NUCLEAR POWER PLANTS General Provisions § 54.15 Specific exemptions. Exemptions from the requirements of this part may be...

  1. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    PubMed

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  2. Continuous and scalable polymer capsule processing for inertial fusion energy target shell fabrication using droplet microfluidics.

    PubMed

    Li, Jin; Lindley-Start, Jack; Porch, Adrian; Barrow, David

    2017-07-24

    High specification, polymer capsules, to produce inertial fusion energy targets, were continuously fabricated using surfactant-free, inertial centralisation, and ultrafast polymerisation, in a scalable flow reactor. Laser-driven, inertial confinement fusion depends upon the interaction of high-energy lasers and hydrogen isotopes, contained within small, spherical and concentric target shells, causing a nuclear fusion reaction at ~150 M°C. Potentially, targets will be consumed at ~1 M per day per reactor, demanding a 5000x unit cost reduction to ~$0.20, and is a critical, key challenge. Experimentally, double emulsions were used as templates for capsule-shells, and were formed at 20 Hz, on a fluidic chip. Droplets were centralised in a dynamic flow, and their shapes both evaluated, and mathematically modeled, before subsequent shell solidification. The shells were photo-cured individually, on-the-fly, with precisely-actuated, millisecond-length (70 ms), uniform-intensity UV pulses, delivered through eight, radially orchestrated light-pipes. The near 100% yield rate of uniform shells had a minimum 99.0% concentricity and sphericity, and the solidification processing period was significantly reduced, over conventional batch methods. The data suggest the new possibility of a continuous, on-the-fly, IFE target fabrication process, employing sequential processing operations within a continuous enclosed duct system, which may include cryogenic fuel-filling, and shell curing, to produce ready-to-use IFE targets.

  3. NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY

    DOEpatents

    Stengel, F.G.

    1963-12-24

    A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)

  4. MEMS-Based Force-Detected Nuclear Magnetic Resonance (FDNMR) Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Butler, Mark C.; Elgammal, Ramez A.; George, Thomas; Hunt, Brian; Weitekamp, Daniel P.

    2006-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy allows assignment of molecular structure by acquiring the energy spectrum of nuclear spins in a molecule, and by interpreting the symmetry and positions of resonance lines in the spectrum. As such, NMR has become one of the most versatile and ubiquitous spectroscopic methods. Despite these tremendous successes, NMR experiments suffer from inherent low sensitivity due to the relatively low energy of photons in the radio frequency (rt) region of the electromagnetic spectrum. Here, we describe a high-resolution spectroscopy in samples with diameters in the micron range and below. We have reported design and fabrication of force-detected nuclear magnetic resonance (FDNMR).

  5. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  6. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  7. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  8. Development of an Indirect Stereolithography Technology for Scaffold Fabrication with a Wide Range of Biomaterial Selectivity

    PubMed Central

    Kang, Hyun-Wook

    2012-01-01

    Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications. PMID:22443315

  9. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    NASA Astrophysics Data System (ADS)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  10. Stitch modeling of non crimp fabric in forming simulations

    NASA Astrophysics Data System (ADS)

    Steer, Q.; Colmars, J.; Boisse, P.

    2018-05-01

    The use of Non Crimp Fabric composite has increased during the last years due to cheaper cost of manufacturing and high mechanicals properties suitable for applications such as aeronautic, automotive and wind turbines. The main difference between Non Crimp Fabric (NCF) and textile reinforcement is the mean of manufacturing: where in textile fibers are woven, in NCF layers of unidirectional oriented fibers are assembled with a stitch. As a consequence, the stitch especially its geometry (stitch pattern) will have a major influence on the deformation of this type of reinforcement during forming process. Experimental campaigns on NCF samples compared to textile with the same fibers orientation have showed that the stitch affects the shear behavior of the reinforcement which is the main mode of deformation in the forming process. A description of the stitch has been implemented in a shell element for macro scale forming simulation as a first approach based on simple hypothesis. Further works are focus on the specific behavior of the stitch along the fabric and interaction with the fibers layers during shear deformation of the reinforcement and a method to implement the stitch in a more refined model of the fabric.

  11. Fabrication of strain gauge based sensors for tactile skins

    NASA Astrophysics Data System (ADS)

    Baptist, Joshua R.; Zhang, Ruoshi; Wei, Danming; Saadatzi, Mohammad Nasser; Popa, Dan O.

    2017-05-01

    Fabricating cost effective, reliable and functional sensors for electronic skins has been a challenging undertaking for the last several decades. Application of such skins include haptic interfaces, robotic manipulation, and physical human-robot interaction. Much of our recent work has focused on producing compliant sensors that can be easily formed around objects to sense normal, tension, or shear forces. Our past designs have involved the use of flexible sensors and interconnects fabricated on Kapton substrates, and piezoresistive inks that are 3D printed using Electro Hydro Dynamic (EHD) jetting onto interdigitated electrode (IDE) structures. However, EHD print heads require a specialized nozzle and the application of a high-voltage electric field; for which, tuning process parameters can be difficult based on the choice of inks and substrates. Therefore, in this paper we explore sensor fabrication techniques using a novel wet lift-off photolithographic technique for patterning the base polymer piezoresistive material, specifically Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) or PEDOT:PSS. Fabricated sensors are electrically and thermally characterized, and temperaturecompensated designs are proposed and validated. Packaging techniques for sensors in polymer encapsulants are proposed and demonstrated to produce a tactile interface device for a robot.

  12. Nuclear fuels for very high temperature applications

    NASA Astrophysics Data System (ADS)

    Lundberg, L. B.; Hobbins, R. R.

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  13. Nuclear weapons modernizations

    NASA Astrophysics Data System (ADS)

    Kristensen, Hans M.

    2014-05-01

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  14. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering.

    PubMed

    Mondrinos, Mark J; Dembzynski, Robert; Lu, Lin; Byrapogu, Venkata K C; Wootton, David M; Lelkes, Peter I; Zhou, Jack

    2006-09-01

    Drop on demand printing (DDP) is a solid freeform fabrication (SFF) technique capable of generating microscale physical features required for tissue engineering scaffolds. Here, we report results toward the development of a reproducible manufacturing process for tissue engineering scaffolds based on injectable porogens fabricated by DDP. Thermoplastic porogens were designed using Pro/Engineer and fabricated with a commercially available DDP machine. Scaffolds composed of either pure polycaprolactone (PCL) or homogeneous composites of PCL and calcium phosphate (CaP, 10% or 20% w/w) were subsequently fabricated by injection molding of molten polymer-ceramic composites, followed by porogen dissolution with ethanol. Scaffold pore sizes, as small as 200 microm, were attainable using the indirect (porogen-based) method. Scaffold structure and porosity were analyzed by scanning electron microscopy (SEM) and microcomputed tomography, respectively. We characterized the compressive strength of 90:10 and 80:20 PCL-CaP composite materials (19.5+/-1.4 and 24.8+/-1.3 Mpa, respectively) according to ASTM standards, as well as pure PCL scaffolds (2.77+/-0.26 MPa) fabricated using our process. Human embryonic palatal mesenchymal (HEPM) cells attached and proliferated on all scaffolds, as evidenced by fluorescent nuclear staining with Hoechst 33258 and the Alamar Blue assay, with increased proliferation observed on 80:20 PCL-CaP scaffolds. SEM revealed multilayer assembly of HEPM cells on 80:20 PCL-CaP composite, but not pure PCL, scaffolds. In summary, we have developed an SFF-based injection molding process for the fabrication of PCL and PCL-CaP scaffolds that display in vitro cytocompatibility and suitable mechanical properties for hard tissue repair.

  15. Polyester fabric sheet layers functionalized with graphene oxide for sensitive isolation of circulating tumor cells.

    PubMed

    Bu, Jiyoon; Kim, Young Jun; Kang, Yoon-Tae; Lee, Tae Hee; Kim, Jeongsuk; Cho, Young-Ho; Han, Sae-Won

    2017-05-01

    The metastasis of cancer is strongly associated with the spread of circulating tumor cells (CTCs). Based on the microfluidic devices, which offer rapid recovery of CTCs, a number of studies have demonstrated the potential of CTCs as a diagnostic tool. However, not only the insufficient specificity and sensitivity derived from the rarity and heterogeneity of CTCs, but also the high-cost fabrication processes limit the use of CTC-based medical devices in commercial. Here, we present a low-cost fabric sheet layers for CTC isolation, which are composed of polyester monofilament yarns. Fabric sheet layers are easily functionalized with graphene oxide (GO), which is beneficial for improving both sensitivity and specificity. The GO modification to the low-cost fabrics enhances the binding of anti-EpCAM antibodies, resulting in 10-25% increase of capture efficiency compared to the surface without GO (anti-EpCAM antibodies directly onto the fabric sheets), while achieving high purity by isolating only 50-300 leukocytes in 1 mL of human blood. We investigated CTCs in ten human blood samples and successfully isolated 4-42 CTCs/mL from cancer patients, while none of cancerous cells were found among healthy donors. This remarkable results show the feasibility of GO-functionalized fabric sheet layers to be used in various CTC-based clinical applications, with high sensitivity and selectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  17. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  18. Exposure assessment among US workers employed in semiconductor wafer fabrication.

    PubMed

    Marano, Donald E; Boice, John D; Munro, Heather M; Chadda, Bandana K; Williams, Michael E; McCarthy, Colleen M; Kivel, Peggy F; Blot, William J; McLaughlin, Joseph K

    2010-11-01

    To classify 100,081 semiconductor workers employed during 1983-2002, and some as early as 1968, regarding potential for chemical exposures in cleanrooms during silicon wafer fabrication. This study involved site visits to 10 cities with fabrication facilities, evaluation of 12,300 personal air samples for >60 chemicals, and examination of >37,000 departments and >8600 job codes to develop exposure groupings. Each worker was classified into one of five exposure groups on the basis of job-department combinations: 1) fabrication process equipment operators or process equipment service technicians working in cleanrooms (n = 28,583); 2) professionals such as supervisors working in fabrication areas (n = 8642); 3) professionals and office workers in nonfabrication areas (n = 53,512); 4) back-end workers (n = 5256); or 5) other nonfabrication workers (n = 4088). More than 98% of the personal air samples were below current occupational exposure limits. Although specific chemical exposures at the level of the individual could not be quantified, semiconductor workers were classified into broad exposure groups for assessment of cancer mortality in an epidemiologic study.

  19. Nuclear winter or nuclear fall?

    NASA Astrophysics Data System (ADS)

    Berger, André

    Climate is universal. If a major modern nuclear war (i.e., with a large number of small-yield weapons) were to happen, it is not even necessary to have a specific part of the world directly involved for there to be cause to worry about the consequences for its inhabitants and their future. Indeed, smoke from fires ignited by the nuclear explosions would be transported by winds all over the world, causing dark and cold. According to the first study, by Turco et al. [1983], air surface temperature over continental areas of the northern mid-latitudes (assumed to be the nuclear war theatre) would fall to winter levels even in summer (hence the term “nuclear winter”) and induce drastic climatic conditions for several months at least. The devastating effects of a nuclear war would thus last much longer than was assumed initially. Discussing to what extent these estimations of long-term impacts on climate are reliable is the purpose of this article.

  20. Development and demonstration of manufacturing processes for fabricating graphite/LARC 160 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.

    1981-01-01

    The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.

  1. Rapid fabrication of embossing tools for the production of polymeric microfluidic devices for bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Ford, Sean M.; McCandless, Andrew B.; Liu, Xuezhu; Soper, Steven A.

    2001-09-01

    In this paper we present embossing tools that were fabricated using both UV and X-ray lithography. The embossing tools created were used to emboss microfluidic channels for bioanalytical applications. Specifically, two tools were fabricated. One, using x-ray lithography, was fabricated for electrophoretic separations of DNA restriction fragment analysis. A second tool, fabricated using SU8, was designed for micro PCR applications. Depths of both tools were approximately 100 micrometers . Both tools were made by directly electroforming nickel on a stainless steel base. Fabrication time for the tool fabricated using x-ray lithography was less than 1 week, and largely depended on the availability of the x-ray source. The SU8 embossing tool was fabricated in less than 24 hours. The resulting nickel electroforms from both processes were extremely robust and did not fail under embossing conditions required for PMMA and/or polycarbonate. Some problems removing SU8 after electroforming were sen for smaller size gaps between nickel structures.

  2. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  3. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    PubMed

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  4. Design and fabrication of self-assembled thin films

    NASA Astrophysics Data System (ADS)

    Topasna, Daniela M.; Topasna, Gregory A.

    2015-10-01

    Students experience the entire process of designing, fabricating and testing thin films during their capstone course. The films are fabricated by the ionic-self assembled monolayer (ISAM) technique, which is suited to a short class and is relatively rapid, inexpensive and environmentally friendly. The materials used are polymers, nanoparticles, and small organic molecules that, in various combinations, can create films with nanometer thickness and with specific properties. These films have various potential applications such as pH optical sensors or antibacterial coatings. This type of project offers students an opportunity to go beyond the standard lecture and labs and to experience firsthand the design and fabrication processes. They learn new techniques and procedures, as well as familiarize themselves with new instruments and optical equipment. For example, students learn how to characterize the films by using UV-Vis-NIR spectrophotometry and in the process learn how the instruments operate. This work compliments a previous exercise that we introduced where students use MATHCAD to numerically model the transmission and reflection of light from thin films.

  5. Fabrication technology

    NASA Astrophysics Data System (ADS)

    1988-05-01

    Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.

  6. Nuclear weapons modernizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristensen, Hans M.

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludesmore » that new limits on nuclear modernizations are needed.« less

  7. Nuclear Security for Floating Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology aremore » proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states« less

  8. Specific binding of a HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region.

    PubMed Central

    Gaynor, R; Soultanakis, E; Kuwabara, M; Garcia, J; Sigman, D S

    1989-01-01

    The transactivator protein, tat, encoded by the human immunodeficiency virus is a key regulator of viral transcription. Activation by the tat protein requires sequences downstream of the transcription initiation site called the transactivating region (TAR). RNA derived from the TAR is capable of forming a stable stem-loop structure and the maintenance of both the stem structure and the loop sequences located between +19 and +44 is required for complete in vivo activation by tat. Gel retardation assays with RNA from both wild-type and mutant TAR constructs generated in vitro with SP6 polymerase indicated specific binding of HeLa nuclear proteins to the TAR. To characterize this RNA-protein interaction, a method of chemical "imprinting" has been developed using photoactivated uranyl acetate as the nucleolytic agent. This reagent nicks RNA under physiological conditions at all four nucleotides in a reaction that is independent of sequence and secondary structure. Specific interaction of cellular proteins with TAR RNA could be detected by enhanced cleavages or imprints surrounding the loop region. Mutations that either disrupted stem base-pairing or extensively changed the primary sequence resulted in alterations in the cleavage pattern of the TAR RNA. Structural features of the TAR RNA stem-loop essential for tat activation are also required for specific binding of the HeLa cell nuclear protein. Images PMID:2544877

  9. Processing and Characterization of Peti Composites Fabricated by High Temperature Vartm (Section)

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G., Jr.; Loos, Alfred C.; Heider, Dirk

    2011-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade, but so have the production costs associated with their fabrication. For certain composites, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA Langley Research Center (LaRC). In the current study, three PETI resins have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents of 3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. Fabric permeability characterizations and limited process modeling efforts were carried out to determine infusion times and composite panel size limitations. In addition, new PETI based resins were synthesized specifically for HT-VARTM.

  10. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs

    PubMed Central

    Shu, Yi; Haque, Farzin; Shu, Dan; Li, Wei; Zhu, Zhenqi; Kotb, Malak; Lyubchenko, Yuri; Guo, Peixuan

    2013-01-01

    Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed “toolkits” utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field. PMID:23604636

  11. Proposed GTA welding specification and acceptance criteria for the MC4163

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowski, J.J.

    1991-04-12

    This specification documents the gas tungsten arc (GTA) welding process and production weld acceptance criteria requirements for the MC4163. This document is written specifically to apply to the welds on the MC4163 and is not to be used as a general gas tungsten arc welding specification. All sections of this specification must be complied with unless specifically exempted in writing. There are a total of five welds with three different joint designs required to fabricate the MC4163. In the order of fabrication they are (1) initiator closure disc, (2) nozzle to case girth welds, two and, (3) nozzle closure discmore » welds, two. This specification will only address the nozzle to case girth welds and the nozzle closure disc welds.« less

  12. Nuclear Ribosomal DNA Variation and Pathogenic Specialization in Alternaria Fungi Known To Produce Host-Specific Toxins †

    PubMed Central

    Kusaba, Motoaki; Tsuge, Takashi

    1994-01-01

    A total of 99 strains of 11 Alternaria species, including 68 strains of seven fungi known to produce host-specific toxins, were subjected to analysis of restriction fragment length polymorphism (RFLP) in nuclear ribosomal DNA (rDNA). Total DNA was digested with XbaI, and the Southern blots were probed with a nuclear rDNA clone of Alternaria kikuchiana. The hybridization gave 17 different RFLPs from the 99 strains. On the basis of these RFLPs, populations of host-specific toxin-producing fungi could not be differentiated from one another nor from nonpathogenic A. alternata. Each population of the toxin-producing fungi carried rDNA variants. Nine different types, named A1 to A6 and B1 to B3, were detected among the toxin-producing fungi and nonpathogenic A. alternata. All of the populations contained the type A4 variant, and the other rDNA types were also shared by different toxin-producing fungi and A. alternata. In contrast, Alternaria species that are morphologically distinguishable from A. alternata could be differentiated from A. alternata on the basis of the rDNA RFLPs. Polymorphisms in rDNA digested with HaeIII and MspI were also evaluated in 61 Alternaria strains. These restriction enzymes produced 31 variations among all of the samples. The seven toxin-producing fungi and nonpathogenic A. alternata could not be resolved by phylogenetic analysis based on the RFLPs, although they could be differentiated from the other Alternaria species studied. These results provide support for the hypothesis that Alternaria fungi known to produce host-specific toxins are intraspecific variants of A. alternata specialized in pathogenicity. Images PMID:16349367

  13. Electrospinning Fabrication of SrTiO3 Nanofibers and Their Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhao, Yiping; Wang, Wei; Liu, Hao; Wang, Rui

    2018-06-01

    SrTiO3 nanofibers were fabricated by an electrospinning process. The phase, microstructure and photocatalytic activity of the obtained SrTiO3 nanofibers were investigated. The XRD patterns and the SEM images suggest that SrTiO3 nanofibers with perovskite phase and rough surface have been fabricated in the current work. The SrTiO3 nanofibers show a high efficiency decomposition of RhB under ultraviolet light irradiation. The high photocatalytic activity of SrTiO3 nanofibers results from the large specific surface area. The large specific surface area provides more surface active sits and makes an easier charge carrier transport. On the basis of the photocatalytic performance of SrTiO3 nanofibers, the possible photocatalysis mechanism was proposed.

  14. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric

    NASA Astrophysics Data System (ADS)

    Cheng, Xian-Wei; Liang, Cheng-Xi; Guan, Jin-Ping; Yang, Xu-Hong; Tang, Ren-Cheng

    2018-01-01

    In this work, a novel phosphorus-rich hybrid organic-inorganic silica coating for improving the flame retardancy of silk fabric was prepared using naturally occurring phytic acid as phosphorus precursor and catalyst for the hydrolysis of tetraethoxysilane. In addition, three silane coupling agents, namely 3-aminopropyldimethoxymethylsilane, 3-chloropropyltrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, were added in the hybrid sol as cross-linkers with the aim of developing hydrophobic coatings and improving the washing durability of the treated silk fabric. The condensation degree of the hybrid sol was characterized by solid-state 29Si nuclear magnetic resonance spectroscopy. The flammability and thermal degradation properties of the treated silk fabrics were determined in terms of limiting oxygen index, vertical burning, pyrolysis combustion flow calorimetry and thermogravimetric analyses. The surface morphology and hydrophobicity of the treated silk fabrics were evaluated by scanning electron microscopy, atomic force microscopy and water contact angle tests. The flammability tests revealed that the silicon sol could endow silk fabric with excellent flame retardancy when doped with phytic acid, and the treated silk fabrics self-extinguished immediately when the ignition source was removed. The silk fabrics treated with the modified hybrid sols exhibited hydrophobic surface and also better durability to washing.

  15. Developing a Nuclear Grade of Alloy 617 for Gen IV Nuclear Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Swindeman, Robert W; Santella, Michael L

    2010-01-01

    Alloy 617, an attractive material not particularly developed for nuclear use, is now being considered as a leading candidate alloy by several countries for applications in the Gen IV Nuclear Energy Systems. An extensive review of its existing data suggests that it would be beneficial to refine the alloy s specification to a nuclear grade for the intended Gen IV systems. In this paper, rationale for developing a nuclear grade of the alloy is first discussed through an analysis on existing data from various countries. Then initial experiments for refining the alloy specification are described. Preliminary results have suggested themore » feasibility of the refinement approach, as well as the possibility for achieving a desirable nuclear grade. Based on the results, further research activities are recommended.« less

  16. Engineering fabrics in transportation construction

    NASA Astrophysics Data System (ADS)

    Herman, S. C.

    1983-11-01

    The following areas are discussed: treatments for reduction of reflective cracking of asphalt overlays on jointed-concrete pavements in Georgia; laboratory testing of fabric interlayers for asphalt concrete paving: interim report; reflection cracking models: review and laboratory evaluation of engineering fabrics; optimum-depth method for design of fabric-reinforced unsurfaced roads; dynamic test to predict field behavior of filter fabrics used in pavement subdrains; mechanism of geotextile performance in soil-fabric systems for drainage and erosion control; permeability tests of selected filter fabrics for use with a loess-derived alluvium; geotextile filter criteria; use of fabrics for improving the placement of till on peat foundation; geotextile earth-reinforced retaining wall tests: Glenwood Canyon, Colorado; New York State Department of Transportation's experience and guidelines for use of geotextiles; evaluation of two geotextile installations in excess of a decade old; and, long-term in situ properties of geotextiles.

  17. Design, Fabrication and Integration of a NaK-Cooled Circuit

    NASA Technical Reports Server (NTRS)

    Garber, Anne; Godfroy, Thomas

    2006-01-01

    The Early Flight Fission Test Facilities (EFF-TF) team has been tasked by the NASA Marshall Space Flight Center Nuclear Systems Office to design, fabricate, and test an actively pumped alkali metal flow circuit. The system, which was originally designed for use with a eutectic mixture of sodium potassium (NaK), was redesigned to for use with lithium. Due to a shi$ in focus, it is once again being prepared for use with NaK. Changes made to the actively pumped, high temperature circuit include the replacement of the expansion reservoir, addition of remotely operated valves, and modification of the support table. Basic circuit components include: reactor segment, NaK to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and a spill reservoir. A 37-pin partial-array core (pin and flow path dimensions are the same as those in a fill design) was selected for fabrication and test. This paper summarizes the integration and preparations for the fill of the pumped liquid metal NaK flow circuit.

  18. Fabrication of lateral lattice-polarity-inverted GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Katayama, Ryuji; Kuge, Yoshihiro; Kondo, Takashi; Onabe, Kentaro

    2007-04-01

    Fabrication of the lateral polarity-inverted GaN heterostructure on sapphire (0 0 0 1) using a radio-frequency plasma enhanced molecular beam epitaxy is demonstrated. Its microscopic properties, which are closely related to the local polarity distribution, such as surface potentials, piezoelectric polarizations and residual carrier concentrations were investigated by Kelvin force microscopy and micro-Raman scattering. The successful inversion from Ga-polarity to N-polarity of GaN in a specific domain and its higher crystal perfection had been confirmed clearly by these microscopic analyses. The results were also fairly consistent with that of KOH etching experiments, which suggest the applicability of these processes to the fabrication of photonic nanostructures composed of nitride semiconductors.

  19. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  20. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  1. Design and technical support for development of a molded fabric space suit joint

    NASA Technical Reports Server (NTRS)

    Olson, L. Howard

    1994-01-01

    NASA Ames Research Center has under design a new joint or element for use in a space suit. The design concept involves molding a fabric to a geometry developed at Ames. Unusual characteristics of this design include the need to produce a fabric molding draw ratio on the order of thirty percent circumferentially on the surface. Previous work done at NASA on molded fabric joints has shown that standard, NASA qualified polyester fabrics as are currently available in the textile industry for use in suits have a maximum of about fifteen percent draw ratio. NASA has done the fundamental design for a prototype joint and of a mold which would impart the correct shape to the fabric support layer of the joint. NASA also has the capability to test a finished product for suitability and reliability. Responsibilities resting with Georgia Tech in the design effort for this project are textile related, namely fiber selection, fabric design to achieve the properties of the objective design, and determining production means and sources for the fabrics. The project goals are to produce a prototype joint using the NASA design for evaluation of effectiveness by NASA, and to establish the sources and specifications which would allow reliable and repeatable production of the joint.

  2. U.S.-Australia Civilian Nuclear Cooperation: Issues for Congress

    DTIC Science & Technology

    2010-07-07

    Mining and Milling ................................................................................................7 Uranium Sales to India...carried out at Lucas Heights (see below). The nuclear fuel cycle begins with mining uranium ore and upgrading it to yellowcake. Because naturally... mining and milling stage. Commercial enrichment services are available in the United States, Europe, Russia, and Japan. Fuel fabrication services are

  3. Fabrication of Monolithic RERTR Fuels by Hot Isostatic Pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan-Fong Jue; Blair H. Park; Curtis R. Clark

    2010-11-01

    The RERTR (Reduced Enrichment for Research and Test Reactors) Program is developing advanced nuclear fuels for high-power test reactors. Monolithic fuel design provides higher uranium loading than that of the traditional dispersion fuel design. Hot isostatic pressing is a promising process for low-cost batch fabrication of monolithic RERTR fuel plates for these high-power reactors. Bonding U Mo fuel foil and 6061 Al cladding by hot isostatic press bonding was successfully developed at Idaho National Laboratory. Due to the relatively high processing temperature, the interaction between fuel meat and aluminum cladding is a concern. Two different methods were employed to mitigatemore » this effect: (1) a diffusion barrier and (2) a doping addition to the interface. Both types of fuel plates have been fabricated by hot isostatic press bonding. Preliminary results show that the direct fuel/cladding interaction during the bonding process was eliminated by introducing a thin zirconium diffusion barrier layer between the fuel and the cladding. Fuel plates were also produced and characterized with a silicon-rich interlayer between fuel and cladding. This paper reports the recent progress of this developmental effort and identifies the areas that need further attention.« less

  4. Deploying Nuclear Detection Systems: A Proposed Strategy for Combating Nuclear Terrorism

    DTIC Science & Technology

    2007-07-01

    lower cost than other gamma radiation detectors (if increased count rate is all one is looking for). Low cost makes plastic scintillation detectors...material, particularly enriched uranium and plutonium, the basic fuel for nuclear bombs. • Measures to strengthen international institutions to... uranium to specifications required for a nuclear weapon.1 This illicit shipment of centrifuges was part of an international nuclear materials

  5. Design of Tailored Non-Crimp Fabrics Based on Stitching Geometry

    NASA Astrophysics Data System (ADS)

    Krieger, Helga; Gries, Thomas; Stapleton, Scott E.

    2018-02-01

    Automation of the preforming process brings up two opposing requirements for the used engineering fabric. On the one hand, the fabric requires a sufficient drapeability, or low shear stiffness, for forming into double-curved geometries; but on the other hand, the fabric requires a high form stability, or high shear stiffness, for automated handling. To meet both requirements tailored non-crimp fabrics (TNCFs) are proposed. While the stitching has little structural influence on the final part, it virtually dictates the TNCFs local capability to shear and drape over a mold during preforming. The shear stiffness of TNCFs is designed by defining the local stitching geometry. NCFs with chain stitch have a comparatively high shear stiffness and NCFs with a stitch angle close to the symmetry stitch angle have a very low shear stiffness. A method to design the component specific local stitching parameters of TNCFs is discussed. For validation of the method, NCFs with designed tailored stitching parameters were manufactured and compared to benchmark NCFs with uniform stitching parameters. The designed TNCFs showed both, generally a high form stability and in locally required zones a good drapeability, in drape experiments over an elongated hemisphere.

  6. Cancer mortality among US workers employed in semiconductor wafer fabrication.

    PubMed

    Boice, John D; Marano, Donald E; Munro, Heather M; Chadda, Bandana K; Signorello, Lisa B; Tarone, Robert E; Blot, William J; McLaughlin, Joseph K

    2010-11-01

    To evaluate potential cancer risks in the US semiconductor wafer fabrication industry. A cohort of 100,081 semiconductor workers employed between 1968 and 2002 was studied. Standardized mortality ratios and relative risks (RRs) were estimated. Standardized mortality ratios were similar and significantly low among fabrication and nonfabrication workers for all causes (0.54 and 0.54) and all cancers (0.74 and 0.72). Internal comparisons also showed similar overall cancer risks among fabrication workers (RR = 0.98), including process equipment operators and process equipment service technicians (OP/EST) employed in cleanrooms (RR = 0.97), compared with nonfabrication workers. Nonsignificantly elevated RRs were observed for a few cancer sites among OP/EST workers, but the numbers of deaths were small and there were no trends of increasing risk with duration of employment. Work in the US semiconductor industry, including semiconductor wafer fabrication in cleanrooms, was not associated with increased cancer mortality overall or mortality from any specific form of cancer. However, due to the young average age of this cohort and its associated relatively low numbers of deaths, regular mortality updates of this semiconductor worker cohort are warranted.

  7. Electron Beam Welding: study of process capability and limitations towards development of nuclear components

    NASA Astrophysics Data System (ADS)

    Vadolia, Gautam R.; Premjit Singh, K.

    2017-04-01

    Electron Beam Welding (EBW) technology is an established and widely adopted technique in nuclear research and development area. Electron beam welding was thought of as a candidate process for ITER Vacuum Vessel Fabrication. Dhruva Reactor at BARC, Mumbai and Niobium superconducting accelerator cavity at BARC has adopted the EB welding technique as a fabrication route. Study of process capability and limitations based on available literature is consolidated in this short review paper.

  8. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong -Hyun; Park, Sang -Il; Yu, Chang -Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2015-08-25

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  9. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2017-03-21

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  10. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred J; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2014-05-13

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  11. Optical systems fabricated by printing-based assembly

    DOEpatents

    Rogers, John [Champaign, IL; Nuzzo, Ralph [Champaign, IL; Meitl, Matthew [Durham, NC; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL; Motala, Michael [Champaign, IL; Ahn, Jong-Hyun [Suwon, KR; Park, Sang-II [Savoy, IL; Yu,; Chang-Jae, [Urbana, IL; Ko, Heung-Cho [Gwangju, KR; Stoykovich,; Mark, [Dover, NH; Yoon, Jongseung [Urbana, IL

    2011-07-05

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  12. Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization.

    PubMed

    Akala, Emmanuel O; Adesina, Simeon; Ogunwuyi, Oluwaseun

    2015-12-22

    Quality by design (QbD) in the pharmaceutical industry involves designing and developing drug formulations and manufacturing processes which ensure predefined drug product specifications. QbD helps to understand how process and formulation variables affect product characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical design of experiments (DoE) identifies important parameters in a pharmaceutical dosage form design followed by optimizing the parameters with respect to certain specifications. DoE establishes in mathematical form the relationships between critical process parameters together with critical material attributes and critical quality attributes. We focused on the fabrication of biodegradable nanoparticles by dispersion polymerization. Aided by a statistical software, d-optimal mixture design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers) to obtain twenty nanoparticle formulations (PLLA-based nanoparticles) and thirty formulations (poly-ɛ-caprolactone-based nanoparticles). Scheffe polynomial models were generated to predict particle size (nm), zeta potential, and yield (%) as functions of the composition of the formulations. Simultaneous optimizations were carried out on the response variables. Solutions were returned from simultaneous optimization of the response variables for component combinations to (1) minimize nanoparticle size; (2) maximize the surface negative zeta potential; and (3) maximize percent yield to make the nanoparticle fabrication an economic proposition.

  13. Fabrics for aeronautic construction

    NASA Technical Reports Server (NTRS)

    Walen, E D

    1918-01-01

    The Bureau of Standards undertook the investigation of airplane fabrics with the view of finding suitable substitutes for the linen fabrics, and it was decided that the fibers to be considered were cotton, ramie, silk, and hemp. Of these, the cotton fiber was the logical one to be given primary consideration. Report presents the suitability, tensibility and stretching properties of cotton fabric obtained by laboratory tests.

  14. Method of freeform fabrication by selective gelation of powder suspensions

    DOEpatents

    Baskaran, S.; Graff, G.L.

    1997-12-09

    The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of: (a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide; (b) making a layer by depositing an amount of said powder slurry in a confined region; (c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and (d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering. 2 figs.

  15. Method of freeform fabrication by selective gelation of powder suspensions

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.

    1997-01-01

    The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of: (a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide; (b) making a layer by depositing an amount of said powder slurry in a confined region; (c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and (d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering.

  16. Design, fabrication, and evaluation of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid

    Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs -1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm -2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and

  17. Structure and yarn sensor for fabric

    DOEpatents

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  18. Specifics of MS training in the area of nuclear materials safe management for new-comers in nuclear power

    NASA Astrophysics Data System (ADS)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The issues of specialists training in the field of nuclear materials safe management for the countries, who have taken a way of nuclear power development are analyzed. Arguments in justification of a need of these specialists training for the new-comers are adduced. The general characteristic of the reference MS program “Nuclear materials safe management” is considered. The peculiar features of the program, which is important for graduates from the new-comers have been analyzed. The best practices got as a result of implementation of the program in recent years for the students from Kazakhstan, Belarus, Azerbaijan, Tajikistan, Iran, Turkey and other countries are presented. Finally, the directions of international cooperation in further improvement and development of the program are considered.

  19. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  20. Development and demonstration of manufacturing processes for fabricating graphite/LARC-160 polyimide structural elements, part 4, paragraph B

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A quality assurance program was developed which included specifications for celion/LARC-160 polyimide materials and quality control of materials and processes. The effects of monomers and/or polymer variables and prepeg variables on the processibility of celion/LARC prepeg were included. Processes for fabricating laminates, honeycomb core panels, and chopped fiber moldings were developed. Specimens and conduct tests were fabricated to qualify the processes for fabrication of demonstration components.

  1. Low cost damage tolerant composite fabrication

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.; Freeman, W. T.

    1988-01-01

    The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.

  2. Supercapacitors based on carbon nanotube fuzzy fabric structural composites

    NASA Astrophysics Data System (ADS)

    Alresheedi, Bakheet Awad

    Supercapacitors used in conjunction with batteries offer a solution to energy storage and delivery problems in systems where high power output is required, such as in fully electric cars. This project aimed to enhance current supercapacitor technology by fabricating activated carbon on a substrate consisting of carbon nanotubes (CNTs) grown on a carbon fiber fabric (fuzzy fabric). The fuzzy surface of CNTs lowers electrical resistance and increases porosity, resulting in a flexible fabric with high specific capacitance. Experimental results confirm that the capacitance of activated carbon fabricated on the fuzzy fiber composite is significantly higher than when activated carbon is formed simply on a bare carbon fiber substrate, indicating the usefulness of CNTs in supercapacitor technology. The fabrication of the fuzzy fiber based carbon electrode was fairly complex. The processing steps included composite curing, stabilization, carbonization and activation. Ratios of the three basic ingredients for the supercapacitor (fiber, CNT and polymer matrix) were investigated through experimentation and Grey relational analysis. The aim of Grey relational analysis was to examine factors that affect the overall performance of the supercapacitor. It is based on finding relationships in both independent and interrelated data series (parameters). Using this approach, it was determined that the amount of CNTs on the fiber surface plays a major role in the capacitor properties. An increased amount of CNTs increases the surface area and electrical conductivity of the substrate, while also reducing the required time of activation. Technical advances in the field of Materials and Structures are usually focused on attaining superior performance while reducing weight and cost. To achieve such combinations, multi-functionality has become essential; namely, to reduce weight by imparting additional functions simultaneously to a single material. In this study, a structural composite with

  3. Structure and yarn sensor for fabric

    DOEpatents

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  4. Fabrication of precise aperiodic multichannel fibre Bragg grating filters for spectral line suppression in hydrogenated standard telecommunications fibre.

    PubMed

    Gbadebo, Adenowo A; Turitsyna, Elena G; Williams, John A R

    2018-01-22

    We demonstrate the design and fabrication of multichannel fibre Bragg gratings (FBGs) with aperiodic channel spacings. These will be suitable for the suppression of specific spectral lines such as OH emission lines in the near infrared (NIR) which degrade ground based astronomical imaging. We discuss the design process used to meet a given specification and the fabrication challenges that can give rise to errors in the final manufactured device. We propose and demonstrate solutions to meet these challenges.

  5. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  6. Fabricating specialised orthopaedic implants using additive manufacturing

    NASA Astrophysics Data System (ADS)

    Unwin, Paul

    2014-03-01

    It has been hypothesised that AM is ideal for patient specific orthopaedic implants such as those used in bone cancer treatment, that can rapidly build structures such as lattices for bone and tissues to in-grow, that would be impossible using current conventional subtractive manufacturing techniques. The aim of this study was to describe the adoption of AM (direct metal laser sintering and electron beam melting) into the design manufacturing and post-manufacturing processes and the early clinical use. Prior to the clinical use of AM implants, extensive metallurgical and mechanical testing of both laser and electron beam fabrications were undertaken. Concurrently, post-manufacturing processes evaluated included hipping, cleaning and coating treatments. The first clinical application of a titanium alloy mega-implant was undertaken in November 2010. A 3D model of the pelvic wing implant was designed from CT scans. Novel key features included extensive lattice structures at the bone interfaces and integral flanges to fix the implant to the bone. The pelvic device was implanted with the aid of navigation and to date the patient remains active. A further 18 patient specific mega-implants have now been implanted. The early use of this advanced manufacturing route for patient specific implants has been very encouraging enabling the engineer to produce more advanced and anatomical conforming implants. However, there are a new set of design, manufacturing and regulatory challenges that require addressing to permit this technique to be used more widely. This technology is changing the design and manufacturing paradigm for the fabrication of specialised orthopaedic implants.

  7. Carbide fuels for nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Matthews, R. B.; Blair, H. T.; Chidester, K. M.; Davidson, K. V.; Stark, W. E.; Storms, E. K.

    1991-09-01

    A renewed interest in manned exploration of space has revitalized interest in the potential for advancing nuclear rocket technology developed during the 1960's. Carbide fuel performance, melting point, stability, fabricability and compatibility are key technology issues for advanced Nuclear Thermal Propulsion reactors. The Rover fuels development ended with proven carbide fuel forms with demonstrated operating temperatures up to 2700 K for over 100 minutes. The next generation of nuclear rockets will start where the Rover technology ended, but with a more rigorous set of operating requirements including operating lifetime to 10 hours, operating temperatures greater that 3000 K, low fission product release, and compatibility. A brief overview of Rover/NERVA carbide fuel development is presented. A new fuel form with the highest potential combination of operating temperature and lifetime is proposed that consists of a coated uranium carbide fuel sphere with built-in porosity to contain fission products. The particles are dispersed in a fiber reinforced ZrC matrix to increase thermal shock resistance.

  8. Game Imaging Meets Nuclear Reality

    ScienceCinema

    Michel, Kelly; Watkins, Adam

    2018-01-16

    At Los Alamos National Laboratory, a team of artists and animators, nuclear engineers and computer scientists is teaming to provide 3-D models of nuclear facilities to train IAEA safeguards inspectors and others who need fast familiarity with specific nuclear sites.

  9. Research resource: Tissue-specific transcriptomics and cistromics of nuclear receptor signaling: a web research resource.

    PubMed

    Ochsner, Scott A; Watkins, Christopher M; LaGrone, Benjamin S; Steffen, David L; McKenna, Neil J

    2010-10-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that recruit coregulators and other transcription factors to gene promoters to effect regulation of tissue-specific transcriptomes. The prodigious rate at which the NR signaling field has generated high content gene expression and, more recently, genome-wide location analysis datasets has not been matched by a committed effort to archiving this information for routine access by bench and clinical scientists. As a first step towards this goal, we searched the MEDLINE database for studies, which referenced either expression microarray and/or genome-wide location analysis datasets in which a NR or NR ligand was an experimental variable. A total of 1122 studies encompassing 325 unique organs, tissues, primary cells, and cell lines, 35 NRs, and 91 NR ligands were retrieved and annotated. The data were incorporated into a new section of the Nuclear Receptor Signaling Atlas Molecule Pages, Transcriptomics and Cistromics, for which we designed an intuitive, freely accessible user interface to browse the studies. Each study links to an abstract, the MEDLINE record, and, where available, Gene Expression Omnibus and ArrayExpress records. The resource will be updated on a regular basis to provide a current and comprehensive entrez into the sum of transcriptomic and cistromic research in this field.

  10. Method of installing a control room console in a nuclear power plant

    DOEpatents

    Scarola, Kenneth; Jamison, David S.; Manazir, Richard M.; Rescorl, Robert L.; Harmon, Daryl L.

    1994-01-01

    An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

  11. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  12. Fabrication Capabilities Utilizing In Situ Materials

    NASA Technical Reports Server (NTRS)

    McLemore, Carole A.; Fikes, John C.; Darby, Charles A.; Good, James E.; Gilley, Scott D.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has a Space Exploration Policy that lays out a plan that far exceeds the earlier Apollo goals where landing on the moon and taking those first historic steps fulfilled the mission. The policy states that we will set roots on the moon by establishing an outpost. This outpost will be used as a test bed for residing in more distant locales, such as Mars. In order to become self-sufficient, the occupants must have the capability to fabricate component parts in situ. Additionally, in situ materials must be used to minimize valuable mission upmass and to be as efficient as possible. In situ materials can be found from various sources such as raw lunar regolith whereby specific constituents can be extracted from the regolith (such as aluminum, titanium, or iron), and existing hardware already residing on the moon from past Apollo missions. The Electron Beam Melting (EBM) process lends itself well to fabricating parts, tools, and other necessary items using in situ materials and will be discussed further in this paper.

  13. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igor Bolshinsky; Ken Allen; Lucian Biro

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities formore » shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.« less

  14. Experimental study of UC polycrystals in the prospect of improving the as-fabricated sample purity

    NASA Astrophysics Data System (ADS)

    Raveu, Gaëlle; Martin, Guillaume; Fiquet, Olivier; Garcia, Philippe; Carlot, Gaëlle; Palancher, Hervé; Bonnin, Anne; Khodja, Hicham; Raepsaet, Caroline; Sauvage, Thierry; Barthe, Marie-France

    2014-12-01

    Uranium and plutonium carbides are candidate fuels for Generation IV nuclear reactors. This study is focused on the characterization of uranium monocarbide samples. The successive fabrication steps were carried out under atmospheres containing low oxygen and moisture concentrations (typically less than 100 ppm) but sample transfers occurred in air. Six samples were sliced from four pellets elaborated by carbothermic reaction under vacuum. Little presence of UC2 is expected in these samples. The α-UC2 phase was indeed detected within one of these UC samples during an XRD experiment performed with synchrotron radiation. Moreover, oxygen content at the surface of these samples was depth profiled using a recently developed nuclear reaction analysis method. Large oxygen concentrations were measured in the first micron below the sample surface and particularly in the first 100-150 nm. UC2 inclusions were found to be more oxidized than the surrounding matrix. This work points out to the fact that more care must be given at each step of UC fabrication since the material readily reacts with oxygen and moisture. A new glovebox facility using a highly purified atmosphere is currently being built in order to obtain single phase UC samples of better purity.

  15. The World Data Fabric: A New Concept for Geophysical Data Collection and Dissemination

    NASA Astrophysics Data System (ADS)

    Papitashvili, V.; Papitashvili, N.

    2005-12-01

    Nowadays, a multitude of digital geophysical data have become available via the World Wide Web from a variety of sources, including the World Data Centers (WDC), their suppliers (discipline-specific observatories, research institutions, government agencies), and short-lived, sporadic datasets produced by individual investigators from their research grants. As a result, worldwide geophysical databases become diverse and distributed, urging for sophisticated search engines capable of identifying discipline-specific data on the Web and then retrieving requested intervals for scientific analyses or practical applications. Here we introduce a concept of the World Data Fabric (WDF) emerged from the essence of World Data Centers system that successfully served geophysical communities since the International Geophysical Year (1957-58). We propose to unify both components of the WDC System - data centers and data providers - into a worldwide data network (data fabric), where the WDC role would become more proactive through their direct interaction with the data producers. It suggested that the World Data Centers would become a backbone of the World Data Fabric, watching and copying newly ``Webbed'' geophysical data to the center archives - to preserve at least 2-3 copies (or as many as Centers exist) of the new datasets within the entire WDF. Thus, the WDF would become a self-organized system of the data nodes (providers) and data portals (the WDCs as``clearinghouse''). The WDF would be then developing similarly to the Web, but its focus would be on geophysical data rather than on the content of a specific geophysical discipline. Introducing the WDF concept, we face a number of challenges: (a) data providers should make their datasets available via the Internet using open (but secure) access protocols; (b) multiple copies of every dataset would spread across WDF; (c) every WDF dataset (original or copied) must be digitally signed by the data providers and then by the data

  16. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  17. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  18. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  19. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  20. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  1. Properties of honeycomb polyester knitted fabrics

    NASA Astrophysics Data System (ADS)

    Feng, A. F.

    2016-07-01

    The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.

  2. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  3. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  4. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  5. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  6. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  7. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  8. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  9. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  10. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  11. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  12. The nuclear lamina and heterochromatin: a complex relationship.

    PubMed

    Bank, Erin M; Gruenbaum, Yosef

    2011-12-01

    In metazoan cells, the heterochromatin is generally localized at the nuclear periphery, whereas active genes are preferentially found in the nuclear interior. In the present paper, we review current evidence showing that components of the nuclear lamina interact directly with heterochromatin, which implicates the nuclear lamina in a mechanism of specific gene retention at the nuclear periphery and release to the nuclear interior upon gene activation. We also discuss recent data showing that mutations in lamin proteins affect gene positioning and expression, providing a potential mechanism for how these mutations lead to tissue-specific diseases.

  13. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yapuncich, F.; Ross, A.; Clark, R.H.

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less

  14. Fabrication of amorphous IGZO thin film transistor using self-aligned imprint lithography with a sacrificial layer

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin; Kim, Hyung Tae; Choi, Jong Hoon; Chung, Ho Kyoon; Cho, Sung Min

    2018-04-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by a self-aligned imprint lithography (SAIL) method with a sacrificial photoresist layer. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The sacrificial layer was applied in the SAIL process for the purpose of removing the resin residues that were inevitably left when the etch mask was thinned by plasma etching. This work demonstrated that the a-IGZO TFT could be fabricated by the SAIL process with the sacrificial layer. Specifically, the simple fabrication process utilized in this study can be utilized for the TFT with a plasma-sensitive semiconductor such as the a-IGZO and further extended for the roll-to-roll TFT fabrication.

  15. Si nanowires/Cu nanowires bilayer fabric as a lithium ion capacitor anode with excellent performance

    NASA Astrophysics Data System (ADS)

    Lai, Chien-Ming; Kao, Tzu-Lun; Tuan, Hsing-Yu

    2018-03-01

    A light and binder-free bilayer fabric electrode composed of silicon nanowires and copper nanowires for lithium-ion capacitors (LICs) is reported. A lithium ion capacitor is proposed employing pre-lithiated silicon/copper nanowire fabric and activated carbon as the anode and the cathode, respectively. These LICs show remarkable performance with a specific capacitance of 156 F g-1 at 0.1 A g-1, which is approximately twice of that of activated carbon in electric double-layer capacitors (EDLCs), and still exhibit a fine specific capacitance of 68 F g-1 even at a high current density of 20 A g-1. At a low power density of 193 W kg-1, the Si/Cu fabric//AC LIC can achieve high energy density of 210 W h kg-1. As the power density is increased to 99 kW kg-1, the energy density still remains at 43 W h kg-1, showing the prominent rate performance.

  16. Fabrication and Characterization of Woodpile Structures for Direct Laser Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuinness, C.; Colby, E.; England, R.J.

    2010-08-26

    An eight and nine layer three dimensional photonic crystal with a defect designed specifically for accelerator applications has been fabricated. The structures were fabricated using a combination of nanofabrication techniques, including low pressure chemical vapor deposition, optical lithography, and chemical mechanical polishing. Limits imposed by the optical lithography set the minimum feature size to 400 nm, corresponding to a structure with a bandgap centered at 4.26 {micro}m. Reflection spectroscopy reveal a peak in reflectivity about the predicted region, and good agreement with simulation is shown. The eight and nine layer structures will be aligned and bonded together to form themore » complete seventeen layer woodpile accelerator structure.« less

  17. Cytological Evaluation of Thyroid Lesions by Nuclear Morphology and Nuclear Morphometry.

    PubMed

    Yashaswini, R; Suresh, T N; Sagayaraj, A

    2017-01-01

    Fine needle aspiration (FNA) of the thyroid gland is an effective diagnostic method. The Bethesda system for reporting thyroid cytopathology classifies them into six categories and gives implied risk for malignancy and management protocol in each category. Though the system gives specific criteria, diagnostic dilemma still exists. Using nuclear morphometry, we can quantify the number of parameters, such as those related to nuclear size and shape. The evaluation of nuclear morphometry is not well established in thyroid cytology. To classify thyroid lesions on fine needle aspiration cytology (FNAC) using Bethesda system and to evaluate the significance of nuclear parameters in improving the prediction of thyroid malignancy. In the present study, 120 FNAC cases of thyroid lesions with histological diagnosis were included. Computerized nuclear morphometry was done on 81 cases which had confirmed cytohistological correlation, using Aperio computer software. One hundred nuclei from each case were outlined and eight nuclear parameters were analyzed. In the present study, thyroid lesions were common in female with M: F ratio of 1:5 and most commonly in 40-60 yrs. Under Bethesda system, 73 (60.83%) were category II; 14 (11.6%) were category III, 3 (2.5%) were category IV, 8 (6.6%) were category V, and 22 (18.3%) were category VI, which were malignant on histopathological correlation. Sensitivity, specificity, and diagnostic accuracy of Bethesda reporting system are 62.5, 84.38, and 74.16%, respectively. Minimal nuclear diameter, maximal nuclear diameter, nuclear perimeter, and nuclear area were higher in malignant group compared to nonneoplastic and benign group. The Bethesda system is a useful standardized system of reporting thyroid cytopathology. It gives implied risk of malignancy. Nuclear morphometry by computerized image analysis can be utilized as an additional diagnostic tool.

  18. Perspective: Fabrication of integrated organ-on-a-chip via bioprinting.

    PubMed

    Yang, Qingzhen; Lian, Qin; Xu, Feng

    2017-05-01

    Organ-on-a-chip has emerged as a powerful platform with widespread applications in biomedical engineering, such as pathology studies and drug screening. However, the fabrication of organ-on-a-chip is still a challenging task due to its complexity. For an integrated organ-on-a-chip, it may contain four key elements, i.e., a microfluidic chip, live cells/microtissues that are cultured in this chip, components for stimulus loading to mature the microtissues, and sensors for results readout. Recently, bioprinting has been used for fabricating organ-on-a-chip as it enables the printing of multiple materials, including biocompatible materials and even live cells in a programmable manner with a high spatial resolution. Besides, all four elements for organ-on-a-chip could be printed in a single continuous procedure on one printer; in other words, the fabrication process is assembly free. In this paper, we discuss the recent advances of organ-on-a-chip fabrication by bioprinting. Light is shed on the printing strategies, materials, and biocompatibility. In addition, some specific bioprinted organs-on-chips are analyzed in detail. Because the bioprinted organ-on-a-chip is still in its early stage, significant efforts are still needed. Thus, the challenges presented together with possible solutions and future trends are also discussed.

  19. Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2018-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are discussed. The authors demonstrated success in reaching desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and define a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.

  20. Unidirectional Fabric Drape Testing Method

    PubMed Central

    Mei, Zaihuan; Yang, Jingzhi; Zhou, Ting; Zhou, Hua

    2015-01-01

    In most cases, fabrics such as curtains, skirts, suit pants and so on are draped under their own gravity parallel to fabric plane while the gravity is perpendicular to fabric plane in traditional drape testing method. As a result, it does not conform to actual situation and the test data is not convincing enough. To overcome this problem, this paper presents a novel method which simulates the real mechanical conditions and ensures the gravity is parallel to the fabric plane. This method applied a low-cost Kinect Sensor device to capture the 3-dimensional (3D) drape profile, thus we obtained the drape degree parameters and aesthetic parameters by 3D reconstruction and image processing and analysis techniques. The experiment was conducted on our self-devised drape-testing instrument by choosing different kinds of weave structure fabrics as our testing samples and the results were compared with those of traditional method and subjective evaluation. Through regression and correlation analysis we found that this novel testing method was significantly correlated with the traditional and subjective evaluation method. We achieved a new, non-contact 3D measurement method for drape testing, namely unidirectional fabric drape testing method. This method is more suitable for evaluating drape behavior because it is more in line with actual mechanical conditions of draped fabrics and has a well consistency with the requirements of visual and aesthetic style of fabrics. PMID:26600387

  1. A comparison of enhancement techniques for footwear impressions on dark and patterned fabrics.

    PubMed

    Farrugia, Kevin J; Bandey, Helen; Dawson, Lorna; Daéid, Niamh Nic

    2013-11-01

    The use of chemical enhancement techniques on porous substrates, such as fabrics, poses several challenges predominantly due to the occurrence of background staining and diffusion as well as visualization difficulties. A range of readily available chemical and lighting techniques were utilized to enhance footwear impressions made in blood, soil, and urine on dark and patterned fabrics. Footwear impressions were all prepared at a set force using a specifically built footwear rig. In most cases, results demonstrated that fluorescent chemical techniques were required for visualization as nonfluorescent techniques provided little or no contrast with the background. Occasionally, this contrast was improved by oblique lighting. Successful results were obtained for the enhancement of footwear impressions in blood; however, the enhancement of footwear impressions in urine and soil on dark and patterned fabrics was much more limited. The results demonstrate that visualization and fluorescent enhancement on porous substrates such as fabrics is possible. © 2013 American Academy of Forensic Sciences.

  2. 78 FR 3921 - Proposed Models for Plant-Specific Adoption of Technical Specifications Task Force Traveler TSTF...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... Specifications Combustion Engineering Plants.'' Specifically, the proposed change revises various TSs to add a... Technical Details TSTF-426, Revision 5, is applicable to all Combustion Engineering- designed nuclear power...

  3. The experimental basis for interpreting particle and magnetic fabrics of sheared till

    USGS Publications Warehouse

    Iverson, N.R.; Hooyer, T.S.; Thomason, J.F.; Graesch, M.; Shumway, J.R.

    2008-01-01

    Particle fabrics of basal tills may allow testing of the bed-deformation model of glacier flow, which requires high bed shear strains (>100). Field studies, however, have not yielded a systematic relationship between shear-strain magnitude and fabric development. To isolate this relationship four basal tills and viscous putty were sheared in a ring-shear device to strains as high as 714. Fabric was characterized within a zone of shear deformation using the long-axis orientations of fine-gravel and sand particles and the anisotropy of magnetic susceptibility (AMS) of small (???5-8 cm3) intact samples. Results indicate that till particles rotate toward the plane of shearing with long-axis orientations that become tightly clustered in the direction of shear (0??78 < S1 < 0??94 for three-dimensional data). These strong, steady-state fabrics are attained at shear strains of 7-30, with no evidence of fabric weakening with further strain, regardless of the specific till or particle-size fraction under consideration. These results do not support the Jeffery model of particle rotation, which correctly describes particle rotation in the viscous putty but not in the tills, owing to fluid-mechanical assumptions of the model that are violated in till. The sensitivity of fabric development to shear-strain magnitude indicates that, for most till units where shear-strain magnitude is poorly known, attributing fabric variations to spatial differences in other variables, such as till thickness or water content, will be inherently speculative. Attributing fabric characteristics to particular basal till facies is uncertain because shear-strain magnitude is unlikely to be closely correlated to till facies. Weak or spatially variable fabrics, in the absence of post-depositional disturbance or major deviations from unidirectional simple shear, indicate that till has not been pervasively sheared to the high strains required by the bed-deformation model. Strong flow-parallel fabrics are a

  4. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials

    PubMed Central

    Aduba, Donald C.; Yang, Hu

    2017-01-01

    Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development. PMID:28952482

  5. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  6. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  7. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  8. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  9. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  10. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  11. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  12. Stretchable V2O5/PEDOT supercapacitors: a modular fabrication process and charging with triboelectric nanogenerators.

    PubMed

    Qi, Ruijie; Nie, Jinhui; Liu, Mingyang; Xia, Mengyang; Lu, Xianmao

    2018-04-26

    Stretchable energy storage devices are of great importance for the viable applications of wearable/stretchable electronics. Studies on stretchable energy storage devices, especially supercapacitors (SCs), have shown encouraging progress. However, challenges still remain in the pursuit of high specific capacitances and facile fabrication methods. Herein, we report a modular materials fabrication and assembly process for stretchable SCs. With a V2O5/PEDOT composite as the active material, the resulting stretchable SCs exhibited high areal specific capacitances up to 240 mF cm-2 and good capacitance retention at a strain of 50%. To demonstrate the facile assembly process, a stretchable wristband was fabricated by simply assembling SC cells in series to deliver a voltage higher than 2 V. Charging the wristband with a triboelectric nanogenerator (TENG) to light an LED was further demonstrated, indicating the potential to integrate our SCs with environmental energy harvesters for self-powered stretchable devices.

  13. Nup100 regulates Saccharomyces cerevisiae replicative life span by mediating the nuclear export of specific tRNAs

    PubMed Central

    Lord, Christopher L.; Ospovat, Ophir; Wente, Susan R.

    2017-01-01

    Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae. We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100Δ and msn5Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span. PMID:27932586

  14. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    PubMed Central

    Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343

  15. Cylindrical fabric-confined soil structures

    NASA Astrophysics Data System (ADS)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  16. Microstructure and inclusion of Ti-6Al-4V fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Huang, Qianli; Hu, Ningmin; Yang, Xing; Zhang, Ranran; Feng, Qingling

    2016-12-01

    Selective laser melting (SLM) was used in fabricating the dense part from pre-alloyed Ti-6Al-4V powder. The microstructural evolution and inclusion formation of as-fabricated part were characterized in depth. The microstructure was characterized by features of columnar prior β grains and acicular martensite α'. High density defects such as dislocations and twins can be produced in SLM process. Investigations on the inclusions find out that hard alpha inclusion, amorphous CaO and microcrystalline Al2O3 are three main inclusions formed in SLM. The inclusions formed at some specific sites on melt pool surface. The microstructural evolution and inclusion formation of as-fabricated material are closely related to the SLM process.

  17. Ignition characteristics of some aircraft interior fabrics

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brandt, D. L.

    1978-01-01

    Six samples of aircraft interior fabrics were evaluated with regard to resistance to ignition by radiant heat. Five samples were aircraft seat upholstery fabrics and one sample was an aircraft curtain fabric. The aircraft seat fabrics were 100% wool (2 samples), 83% wool/17% nylon, 49% wool/51% polyvinyl chloride, and 100% rayon. The aircraft curtain fabric was 92% modacrylic/8% polyester. The five samples of aircraft seat upholstery fabrics were also evaluated with regard to resistance to ignition by a smoldering cigarette. The four samples of wool-containing aircraft seat fabrics appeared to be superior to the sample of rayon seat fabric in resistance to ignition, both by radiant heat and by a smoldering cigarette.

  18. Structural considerations for fabrication and mounting of the AXAF HRMA optics

    NASA Technical Reports Server (NTRS)

    Cohen, Lester M.; Cernoch, Larry; Mathews, Gary; Stallcup, Michael

    1990-01-01

    A methodology is described which minimizes optics distortion in the fabrication, metrology, and launch configuration phases. The significance of finite element modeling and breadboard testing is described with respect to performance analyses of support structures and material effects in NASA's AXAF X-ray optics. The paper outlines the requirements for AXAF performance, optical fabrication, metrology, and glass support fixtures, as well as the specifications for mirror sensitivity and the high-resolution mirror assembly. Analytical modeling of the tools is shown to coincide with grinding and polishing experiments, and is useful for designing large-area polishing and grinding tools. Metrological subcomponents that have undergone initial testing show evidence of meeting force requirements.

  19. The Race Against Nuclear Terror

    DTIC Science & Technology

    2005-09-01

    orientation (central planning vs . market economy); or (3) systemic or state-specific incentives, such as new norms, emerge that diminish the appeal of... franchised version of the nuclear “Wal-Mart” cannot be discounted. Yet, if we are 49 Christopher Clary. “Dr... independent capability. To do so would require specific enrichment technology developed indigenously or obtained illegally. Most exporters of nuclear

  20. Potassium-argon (argon-argon), structural fabrics

    USGS Publications Warehouse

    Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon

    2014-01-01

    Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...

  1. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    PubMed Central

    Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-01

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction. PMID:29342872

  2. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    PubMed

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  3. EIT-Based Fabric Pressure Sensing

    PubMed Central

    Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M.

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results. PMID:23533538

  4. EIT-based fabric pressure sensing.

    PubMed

    Yao, A; Yang, C L; Seo, J K; Soleimani, M

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  5. Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific.

    PubMed

    Jansen, Anne H P; van Hal, Maurik; Op den Kelder, Ilse C; Meier, Romy T; de Ruiter, Anna-Aster; Schut, Menno H; Smith, Donna L; Grit, Corien; Brouwer, Nieske; Kamphuis, Willem; Boddeke, H W G M; den Dunnen, Wilfred F A; van Roon, Willeke M C; Bates, Gillian P; Hol, Elly M; Reits, Eric A

    2017-01-01

    Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disorder that is caused by a CAG expansion in the Huntingtin (HTT) gene, leading to HTT inclusion formation in the brain. The mutant huntingtin protein (mHTT) is ubiquitously expressed and therefore nuclear inclusions could be present in all brain cells. The effects of nuclear inclusion formation have been mainly studied in neurons, while the effect on glia has been comparatively disregarded. Astrocytes, microglia, and oligodendrocytes are glial cells that are essential for normal brain function and are implicated in several neurological diseases. Here we examined the number of nuclear mHTT inclusions in both neurons and various types of glia in the two brain areas that are the most affected in HD, frontal cortex, and striatum. We compared nuclear mHTT inclusion body formation in three HD mouse models that express either full-length HTT or an N-terminal exon1 fragment of mHTT, and we observed nuclear inclusions in neurons, astrocytes, oligodendrocytes, and microglia. When studying the frequency of cells with nuclear inclusions in mice, we found that half of the population of neurons contained nuclear inclusions at the disease end stage, whereas the proportion of GFAP-positive astrocytes and oligodendrocytes having a nuclear inclusion was much lower, while microglia hardly showed any nuclear inclusions. Nuclear inclusions were also present in neurons and all studied glial cell types in human patient material. This is the first report to compare nuclear mHTT inclusions in glia and neurons in different HD mouse models and HD patient brains. GLIA 2016;65:50-61. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.

  6. Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa

    2018-01-01

    Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nu- clear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and de ne a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.

  7. Design, fabrication and testing of porous tungsten vaporizers for mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Zavesky, R.; Kroeger, E.; Kami, S.

    1983-01-01

    The dispersions in the characteristics, performance and reliability of vaporizers for early model 30-cm thrusters were investigated. The purpose of the paper is to explore the findings and to discuss the approaches that were taken to reduce the observed dispersion and present the results of a program which validated those approaches. The information that is presented includes porous tungsten materials specifications, a discussion of assembly procedures, and a description of a test program which screens both material and fabrication processes. There are five appendices providing additional detail in the areas of vaporizer contamination, nitrogen flow testing, bubble testing, porosimeter testing, and mercury purity. Four neutralizers, seven cathodes and five main vaporizers were successfully fabricated, tested, and operated on thrusters. Performance data from those devices is presented and indicates extremely repeatable results from using the design and fabrication procedures.

  8. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobotka, Lee G.; Blackmon, J.; Bertulani, C.

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early onmore » in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.« less

  9. Fabrication Security and Trust of Domain-Specific ASIC Processors

    DTIC Science & Technology

    2016-10-30

    embedded in the design. For example , an ASIC processor potentially has a 10-1,000X performance advantage over its FPGA and GPP counterparts, but...paper by summarizing our lessons learned from this project and suggests a few research directions. II. DOMAIN-SPECIFIC ASIC PROCESSORS As Figure 1 has...sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations

  10. Fabric Organic Electrochemical Transistors for Biosensors.

    PubMed

    Yang, Anneng; Li, Yuanzhe; Yang, Chenxiao; Fu, Ying; Wang, Naixiang; Li, Li; Yan, Feng

    2018-06-01

    Flexible fabric biosensors can find promising applications in wearable electronics. However, high-performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber-based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Kpna7 interacts with egg-specific nuclear factors in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Nuclear proteins are required for initiation of transcription in early embryos before embryonic genome activation. The regulation of transportation of nuclear proteins is mediated by transport factors known as importins (karyopherins). Kpna7 is a newly discovered member of the importin a family, whi...

  12. Fabricating biomedical origami: a state-of-the-art review

    PubMed Central

    Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho

    2018-01-01

    Purpose Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Methods Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. Results This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Conclusion Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency. PMID:28260164

  13. Combined fabrication technique for high-precision aspheric optical windows

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Song, Ci; Xie, Xuhui

    2016-07-01

    Specifications made on optical components are becoming more and more stringent with the performance improvement of modern optical systems. These strict requirements not only involve low spatial frequency surface accuracy, mid-and-high spatial frequency surface errors, but also surface smoothness and so on. This presentation mainly focuses on the fabrication process for square aspheric window which combines accurate grinding, magnetorheological finishing (MRF) and smoothing polishing (SP). In order to remove the low spatial frequency surface errors and subsurface defects after accurate grinding, the deterministic polishing method MRF with high convergence and stable material removal rate is applied. Then the SP technology with pseudo-random path is adopted to eliminate the mid-and-high spatial frequency surface ripples and high slope errors which is the defect for MRF. Additionally, the coordinate measurement method and interferometry are combined in different phase. Acid-etched method and ion beam figuring (IBF) are also investigated on observing and reducing the subsurface defects. Actual fabrication result indicates that the combined fabrication technique can lead to high machining efficiency on manufaturing the high-precision and high-quality optical aspheric windows.

  14. Fabricating biomedical origami: a state-of-the-art review.

    PubMed

    Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho

    2017-11-01

    Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency.

  15. Sensory interaction and descriptions of fabric hand.

    PubMed

    Burns, L D; Chandler, J; Brown, D M; Cameron, B; Dallas, M J

    1995-08-01

    82 subjects who viewed and felt fabrics (sensory interaction group) used different categories of terms to describe fabric hand than did 38 subjects who only felt the fabrics. Therefore, the methods used to measure fabric hand that isolate the senses may not accurately assess the way in which subjects describe fabric hand in nonlaboratory settings.

  16. Fabrication of microchannels in polycrystalline diamond using pre-fabricated Si substrates

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Elfimchev, Sergey; Michaelson, Shaul; Akhvlediani, Rozalia; Ternyak, Orna; Hoffman, Alon

    2017-10-01

    In this paper, we report on a simple, feasible method to fabricate microchannels in diamond. Polycrystalline diamond microchannels were produced by fabricating trenches in a Si wafer and subsequently depositing a thin layer of diamond onto this substrate using the hot filament vapor deposition technique. Fabrication of trenches in the Si substrate at different depths was carried out by standard photolithography, and the subsequent deposition of the diamond layer was performed by the hot filament chemical vapor deposition technique. The growth mechanism of diamond that leads to the formation of closed diamond microchannels is discussed in detail based on the Knudsen number and growth chemistry of diamond. Variations in the crystallite size, crystalline quality, and thickness of the diamond layer along the trench depths were systematically analyzed using cross-sectional scanning electron microscopy and Raman spectroscopy. Defect density and formation of non-diamond forms of carbon in the diamond layer were found to increase with the trench depth, which sets a limit of 5-45 μm trench depth (or an aspect ratio of 1-9) for the fabrication of diamond microchannels using this method under the present conditions.

  17. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.

    PubMed

    Li, Zheng; Huang, Tieqi; Gao, Weiwei; Xu, Zhen; Chang, Dan; Zhang, Chunxiao; Gao, Chao

    2017-11-28

    Carbon textiles are promising electrode materials for wearable energy storage devices owing to their conductive, flexible, and lightweight features. However, there still lacks a perfect choice for high-performance carbon textile electrodes with sufficient electrochemical activity. Graphene fiber fabrics (GFFs) are newly discovered carbon textiles, exhibiting various attractive properties, especially a large variability on the microstructure. Here we report the fabrication of hierarchical GFFs with significantly enlarged specific surface area using a hydrothermal activation strategy. By carefully optimize the activation process, the hydrothermally activated graphene fiber fabrics (HAGFFs) could achieve an areal capacitance of 1060 mF cm -2 in a very thin thickness (150 μm) and the capacitance is easily magnified by overlaying several layers of HAGFFs, even up to a record value of 7398 mF cm -2 . Meanwhile, a good rate capability and a long cycle life are also attained. As compared with other carbon textiles, including the commercial carbon fiber cloths, our HAGFFs present much better capacitive performance. Therefore, the mechanically stable, flexible, conductive, and highly active HAGFFs have provided an option for high-performance textile electrodes.

  18. The structure of bradyzoite-specific enolase from Toxoplasma gondii reveals insights into its dual cytoplasmic and nuclear functions

    DOE PAGES

    Ruan, Jiapeng; Mouveaux, Thomas; Light, Samuel H.; ...

    2015-03-01

    In addition to catalyzing a central step in glycolysis, enolase assumes a remarkably diverse set of secondary functions in different organisms, including transcription regulation as documented for the oncogene c-Myc promoter-binding protein 1. The apicomplexan parasite Toxoplasma gondii differentially expresses two nuclear-localized, plant-like enolases: enolase 1 (TgENO1) in the latent bradyzoite cyst stage and enolase 2 (TgENO2) in the rapidly replicative tachyzoite stage. A 2.75 Å resolution crystal structure of bradyzoite enolase 1, the second structure to be reported of a bradyzoite-specific protein inToxoplasma, captures an open conformational state and reveals that distinctive plant-like insertions are located on surface loops.more » The enolase 1 structure reveals that a unique residue, Glu164, in catalytic loop 2 may account for the lower activity of this cyst-stage isozyme. Recombinant TgENO1 specifically binds to a TTTTCT DNA motif present in the cyst matrix antigen 1 (TgMAG1) gene promoter as demonstrated by gel retardation. Furthermore, direct physical interactions of both nuclear TgENO1 and TgENO2 with the TgMAG1 gene promoter are demonstrated n vivo using chromatin immunoprecipitation (ChIP) assays. Structural and biochemical studies reveal that T. gondii enolase functions are multifaceted, including the coordination of gene regulation in parasitic stage development. Lastly, enolase 1 provides a potential lead in the design of drugs against Toxoplasma brain cysts.« less

  19. Superhydrophobic Superoleophobic Woven Fabrics (Preprint)

    DTIC Science & Technology

    2011-06-01

    AFRL-RX-TY-TP-2011-0050 SUPERHYDROPHOBIC SUPEROLEOPHOBIC WOVEN FABRICS (PREPRINT) Hoonjoo Lee Department of Textile and Apparel...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) JUN 2011 Book Chapter 20-JUN-2008 -- 30-APR-2011 Superhydrophobic Superoleophobic Woven Fabrics...roll-off angles are analyzed, and finally superhydrophobic , superoleophobic, woven fabric is designed and developed using chemical and geometrical

  20. Transportation and storage of MOX and LEU assemblies at the Balakovo Nuclear Power Plant

    DOT National Transportation Integrated Search

    2001-01-01

    The VVER-1000-type Balakovo Nuclear Power Plant has been chosen to dispose of the : plutonium created as part of Russian weapons program. The plutonium will be converted to mixed-oxide : (MOX), fabricated into assemblies and loaded into the reactor. ...

  1. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  2. ITER Central Solenoid Module Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of

  3. Fabrication for Nanotechnology

    DTIC Science & Technology

    2007-03-01

    could be divided into four groups as pictured in the following figure. Figure 1 : Nanotechnology fabrication methods Top-down nanofabrication...cooled) substrate on which a layer is formed. RTO-EN-AVT-129bis 2 - 1 van Heeren, H. (2007) Fabrication for Nanotechnology. In Nanotechnology...Aerospace Applications – 2006 (pp. 2- 1 – 2-4). Educational Notes RTO-EN-AVT-129bis, Paper 2. Neuilly-sur-Seine, France: RTO. Available from: http

  4. Fabricated torque shaft

    DOEpatents

    Mashey, Thomas Charles

    2002-01-01

    A fabricated torque shaft is provided that features a bolt-together design to allow vane schedule revisions with minimal hardware cost. The bolt-together design further facilitates on-site vane schedule revisions with parts that are comparatively small. The fabricated torque shaft also accommodates stage schedules that are different one from another in non-linear inter-relationships as well as non-linear schedules for a particular stage of vanes.

  5. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric

    NASA Astrophysics Data System (ADS)

    Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil

    2017-10-01

    In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.

  6. Engineering Non-Wetting Antimicrobial Fabrics

    NASA Astrophysics Data System (ADS)

    van den Berg, Desmond

    This research presents novel techniques and a review of commercially available fabrics for their antimicrobial potential. Based on previous research into the advantages of superhydrophobic self-cleaning surfaces against bacterial contamination, insights into what can make a superhydrophobic fabric inherently antimicrobial were analyzed. Through comparing the characterization results of scanning electron microscopy (SEM) and optical profilometry to microbiology experiments, hypotheses into the relationship between the contact area of a bacterial solution and the extent of contamination is developed. Contact scenario experiments, involving the use of fluorescence microscopy and calculating colony forming units, proved that the contamination potential of any fabric is due to the wetting state exhibited by the fabric, as well as the extent of surface texturing. Transmission experiments, utilizing a novel technique of stamping a contaminated fabric, outlined the importance of retention of solutions or bacteria during interactions within the hospital environment on the extent of contamination.

  7. DRAPING SIMULATION OF WOVEN FABRICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, William; Jin, Xiaoshi; Zhu, Jiang

    2016-09-07

    Woven fabric composites are extensively used in molding complex geometrical shapes due to their high conformability compared to other fabrics. Preforming is an important step in the overall process, where the two-dimensional fabric is draped to become the three-dimensional shape of the part prior to resin injection. During preforming, the orientation of the yarns may change significantly compared to the initial orientations. Accurate prediction of the yarn orientations after molding is important for evaluating the structural performance of the final part. This paper presents a systematic investigation of the angle changes during the preform operation for carbon fiber twill andmore » satin weave fabrics. Preforming experiments were conducted using a truncated pyramid mold geometry designed and fabricated at the General Motors Research Laboratories. Predicted results for the yarn orientations were compared with experimental results and good agreement was observed« less

  8. Method of fabricating a flow device

    DOEpatents

    Hale, Robert L.

    1978-01-01

    This invention is a novel method for fabricating leak-tight tubular articles which have an interior flow channel whose contour must conform very closely with design specifications but which are composed of metal which tends to warp if welded. The method comprises designing two longitudinal half-sections of the article, the half-sections being contoured internally to cooperatively form the desired flow passageway. Each half-section is designed with a pair of opposed side flanges extending between the end flanges and integral therewith. The half-sections are positioned with their various flanges in confronting relation and with elongated metal gaskets extending between the confronting flanges for the length of the array. The gaskets are a deformable metal which is fusion-weldable to the end flanges. The mating side flanges are joined mechanically to deform the gaskets and provide a longitudinally sealed assembly. The portions of the end flanges contiguous with the ends of the gaskets then are welded to provide localized end welds which incorporate ends of the gaskets, thus transversely sealing the assembly. This method of fabrication provides leak-tight articles having the desired precisely contoured flow channels, whereas various conventional methods have been found unsatisfactory.

  9. The Testing of Airplane Fabrics

    NASA Technical Reports Server (NTRS)

    Schraivogel, Karl

    1932-01-01

    This report considers the determining factors in the choice of airplane fabrics, describes the customary methods of testing and reports some of the experimental results. To sum up briefly the results obtained with the different fabrics, it may be said that increasing the strength of covering fabrics by using coarser yarns ordinarily offers no difficulty, because the weight increment from doping is relatively smaller.

  10. 77 FR 27814 - Model Safety Evaluation for Plant-Specific Adoption of Technical Specifications Task Force...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... NUCLEAR REGULATORY COMMISSION [Project No. 753; NRC-2012-0019] Model Safety Evaluation for Plant... Regulatory Commission (NRC) is announcing the availability of the model safety evaluation (SE) for plant... the Improved Standard Technical Specification (ISTS), NUREG-1431, ``Standard Technical Specifications...

  11. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device.

    PubMed

    Hamid, Q; Snyder, J; Wang, C; Timmer, M; Hammer, J; Guceri, S; Sun, W

    2011-09-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 °C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 °C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  12. Differential kinetics and specificity of EBV-specific CD4+ and CD8+ T cells during primary infection.

    PubMed

    Precopio, Melissa L; Sullivan, John L; Willard, Courtney; Somasundaran, Mohan; Luzuriaga, Katherine

    2003-03-01

    The generation and maintenance of virus-specific CD4(+) T cells in humans are not well understood. We used short in vitro stimulation assays followed by intracellular cytokine staining to characterize the timing, magnitude, and Ag specificity of CD4(+) T cells over the course of primary EBV infection. Lytic and latent protein-specific CD4(+) T cells were readily detected at presentation with acute infectious mononucleosis and declined rapidly thereafter. Responses to BZLF-1, BMLF-1, and Epstein-Barr nuclear Ag-3A were more commonly detected than responses to Epstein-Barr nuclear Ag-1. Concurrent analyses of BZLF-1-specific CD4(+) and CD8(+) T cells revealed differences in the expansion, specificity, and stability of CD4(+) and CD8(+) T cell-mediated responses over time. Peripheral blood EBV load directly correlated with the frequency of EBV-specific CD4(+) T cell responses at presentation and over time, suggesting that EBV-specific CD4(+) T cell responses are Ag-driven.

  13. Safety aspects of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  14. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  15. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  16. Nup100 regulates Saccharomyces cerevisiae replicative life span by mediating the nuclear export of specific tRNAs.

    PubMed

    Lord, Christopher L; Ospovat, Ophir; Wente, Susan R

    2017-03-01

    Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100 Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100 Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100 Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100 Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100 Δ and msn5 Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span. © 2017 Lord et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  17. Design, fabrication, testing and delivery of a solar collector

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.

    1976-01-01

    A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.

  18. Superabsorbent Multilayer Fabric

    NASA Technical Reports Server (NTRS)

    Coreale, J. V.; Dawn, F. S.

    1982-01-01

    Material contains gel-forming polymer and copolymer that absorb from 70 to 200 times their weight of liquid. Superabsorbent Polymer and Copolymer form gels to bind and retain liquid in multiply fabric. Until reaction between liquid and absorbent masses forms gel, backing layer retains liquids within fabric; also allows material to "breathe." Possible applications include baby diapers, female hygiene napkins, and hospital bedpads. Might also have uses in improvement of dry soil.

  19. ELECTROSTATIC EFFECTS IN FABRIC FILTRATION: VOLUME I. FIELDS, FABRICS, AND PARTICLES. (ANNOTATED DATA)

    EPA Science Inventory

    The report examines the effect of particle charge and electric fields on the filtration of dust by fabrics. Both frictional charging and charging by corona are studied. Charged particles and an electric field driving particles toward the fabric can greatly reduce the initial pres...

  20. Fabricating a hybrid imaging device

    NASA Technical Reports Server (NTRS)

    Wadsworth, Mark (Inventor); Atlas, Gene (Inventor)

    2003-01-01

    A hybrid detector or imager includes two substrates fabricated under incompatible processes. An array of detectors, such as charged-coupled devices, are formed on the first substrate using a CCD fabrication process, such as a buried channel or peristaltic process. One or more charge-converting amplifiers are formed on a second substrate using a CMOS fabrication process. The two substrates are then bonded together to form a hybrid detector.

  1. Analysis and Implementation of Accident Tolerant Nuclear Fuels

    NASA Astrophysics Data System (ADS)

    Prewitt, Benjamin Joseph

    To improve the reliability and robustness of LWR, accident tolerant nuclear fuels and cladding materials are being developed to possibly replace the current UO2/zirconium system. This research highlights UN and U3Si 2, two of the most favorable accident tolerant fuels being developed. To evaluate the commercial feasiblilty of these fuels, two areas of research were conducted. Chemical fabrication routes for both fuels were investigated in detail, considering UO2 and UF6 as potential starting materials. Potential pathways for industrial scale fabrication using these methods were discussed. Neutronic performance of 70%UN-30%U3Si2 composite was evaluated in MNCP using PWR assembly and core models. The results showed comparable performance to an identical UO2 fueled simulation with the same configuration. The parameters simulated for composite and oxide fuel include the following: fuel to moderator ratio curves; energy dependent flux spectra; temperature coefficients for fuel and moderator; delayed neutron fractions; power peaking factors; axial and radial flux profiles in 2D and 3D; burnup; critical boron concentration; and shutdown margin. Overall, the neutronic parameters suggest that the transition from UO2 to composite in existing nuclear systems will not require significant changes in operating procedures or modifications to standards and regulations.

  2. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the

  3. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Andrea Beth

    2004-07-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  4. High Resolution Fabrication of Interconnection Lines Using Picosecond Laser and Controlled Deposition of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahmoon, Asaf; Strauß, Johnnes; Zafri, Hadar; Schmidt, Michael; Zalevsky, Zeev

    In this paper we present the fabrication procedure as well as the preliminary experimental results of a novel method for construction of high resolution nanometric interconnection lines. The fabrication procedure relies on a self-assembly process of gold nanoparticles at specific predetermined nanostructures. The nanostructures for the self-assembly process are based on the focused ion beam (FIB) or scanning electron beam (SEM) technology. The assembled nanoparticles are being illuminated using a picosecond laser with a wavelength of 532 nm. Different pulse energies have been investigated. The paper aimed at developing a novel and reliable process for fabrication of interconnection lines encompass three different disciplines, self-assembly of nanometric particles, optics and microelectronic.

  5. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  6. Electrochemical Fabrication of Metallic Quantum Wires

    ERIC Educational Resources Information Center

    Tao, Nongjian

    2005-01-01

    The fabrication of metallic quantum wires using simple electrochemical techniques is described. The conductance of the system can be readily measured that allows one to constantly monitor the conductance during fabrication and use conductance quantization as a signature to guide the fabrication.

  7. Nuclear technologies for explosives detection

    NASA Astrophysics Data System (ADS)

    Bell, Curtis J.

    1992-12-01

    This paper presents an exploration of several techniques for detection of Improvised Explosive Devices (IED) using interactions of specific nuclei with gammarays or fast neutrons. Techniques considered use these interactions to identify the device by measuring the densities and/or relative concentrations of the elemental constituents of explosives. These techniques are to be compared with selected other nuclear and non-nuclear methods. Combining of nuclear and non-nuclear techniques will also be briefly discussed.

  8. Application of Pi Preform Composite Joints in Fabrication of NASA Composite Crew Module Demonstration Structure

    NASA Technical Reports Server (NTRS)

    Higgins, John E.; Pelham, Larry

    2008-01-01

    This paper will describe unique and extensive use of pre-woven and impregnated pi cross-sections in fabrication of a carbon composite demonstration structure for the Composite Crew Module (CCM) Program. The program is managed by the NASA Safety and Engineering Center with participants from ten NASA Centers and AFRL. Multiple aerospace contractors are participating in the design development, tooling and fabrication effort as well. The goal of the program is to develop an agency wide design team for composite habitable spacecraft. The specific goals for this development project are: a) To gain hands on experience in design, building and testing a composite crew module. b) To validate key assumptions by resolving composite spacecraft design details through fabrication and testing of hardware. This paper will focus on the design and fabrication issues supporting selection of the Lockheed Martin patented Pi pre-form to provide sound composite joints a numerous locations in the structure. This abstract is based on Preliminary Design data. The final design will continue to evolve through the fall of 2007 with fabrication mostly completed by conference date.

  9. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to bemore » considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.« less

  10. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  11. Nanopatterned polymer brushes: conformation, fabrication and applications.

    PubMed

    Yu, Qian; Ista, Linnea K; Gu, Renpeng; Zauscher, Stefan; López, Gabriel P

    2016-01-14

    Surfaces with end-grafted, nanopatterned polymer brushes that exhibit well-defined feature dimensions and controlled chemical and physical properties provide versatile platforms not only for investigation of nanoscale phenomena at biointerfaces, but also for the development of advanced devices relevant to biotechnology and electronics applications. In this review, we first give a brief introduction of scaling behavior of nanopatterned polymer brushes and then summarize recent progress in fabrication and application of nanopatterned polymer brushes. Specifically, we highlight applications of nanopatterned stimuli-responsive polymer brushes in the areas of biomedicine and biotechnology.

  12. Nanopatterned polymer brushes: conformation, fabrication and applications

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Ista, Linnea K.; Gu, Renpeng; Zauscher, Stefan; López, Gabriel P.

    2015-12-01

    Surfaces with end-grafted, nanopatterned polymer brushes that exhibit well-defined feature dimensions and controlled chemical and physical properties provide versatile platforms not only for investigation of nanoscale phenomena at biointerfaces, but also for the development of advanced devices relevant to biotechnology and electronics applications. In this review, we first give a brief introduction of scaling behavior of nanopatterned polymer brushes and then summarize recent progress in fabrication and application of nanopatterned polymer brushes. Specifically, we highlight applications of nanopatterned stimuli-responsive polymer brushes in the areas of biomedicine and biotechnology.

  13. 10 CFR 72.7 - Specific exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Specific exemptions. 72.7 Section 72.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.7...

  14. 10 CFR 72.7 - Specific exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Specific exemptions. 72.7 Section 72.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.7...

  15. 10 CFR 74.7 - Specific exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Specific exemptions. 74.7 Section 74.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General... determines are authorized by law and will not endanger life or property or the common defense and security...

  16. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics were measured at a temperature range of 23C to 1200C. The fabrics evaluated were silica, high and low-boria content aluminoborosilicate, and silicon carbide. Properties studied included fabric break strengths from room temperature to 1200C, and bending durability after temperature conditioning at 1200C and 1400C. The interaction of the fabric and ceramic insulation was also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retained more strength and fabric durability than the other fabrics studied at high temperature.

  17. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.

  18. Digital fabrication of textiles: an analysis of electrical networks in 3D knitted functional fabrics

    NASA Astrophysics Data System (ADS)

    Vallett, Richard; Knittel, Chelsea; Christe, Daniel; Castaneda, Nestor; Kara, Christina D.; Mazur, Krzysztof; Liu, Dani; Kontsos, Antonios; Kim, Youngmoo; Dion, Genevieve

    2017-05-01

    Digital fabrication methods are reshaping design and manufacturing processes through the adoption of pre-production visualization and analysis tools, which help minimize waste of materials and time. Despite the increasingly widespread use of digital fabrication techniques, comparatively few of these advances have benefited the design and fabrication of textiles. The development of functional fabrics such as knitted touch sensors, antennas, capacitors, and other electronic textiles could benefit from the same advances in electrical network modeling that revolutionized the design of integrated circuits. In this paper, the efficacy of using current state-of-the-art digital fabrication tools over the more common trialand- error methods currently used in textile design is demonstrated. Gaps are then identified in the current state-of-the-art tools that must be resolved to further develop and streamline the rapidly growing field of smart textiles and devices, bringing textile production into the realm of 21st century manufacturing.

  19. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  20. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  1. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  2. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  3. 14 CFR 31.35 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 31.35 Section 31.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.35 Fabrication methods. The methods of fabrication...

  4. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  5. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  6. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  7. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  8. 49 CFR 195.130 - Fabricated assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Fabricated assemblies. 195.130 Section 195.130 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Design Requirements § 195.130 Fabricated assemblies. Each fabricated assembly to be installed in a...

  9. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  10. Nuclear localization of the dystrophin-associated protein α-dystrobrevin through importin α2/β1 is critical for interaction with the nuclear lamina/maintenance of nuclear integrity.

    PubMed

    Aguilar, Areli; Wagstaff, Kylie M; Suárez-Sánchez, Rocío; Zinker, Samuel; Jans, David A; Cisneros, Bulmaro

    2015-05-01

    Although α-dystrobrevin (DB) is assembled into the dystrophin-associated protein complex, which is central to cytoskeletal organization, it has also been found in the nucleus. Here we delineate the nuclear import pathway responsible for nuclear targeting of α-DB for the first time, together with the importance of nuclear α-DB in determining nuclear morphology. We map key residues of the nuclear localization signal of α-DB within the zinc finger domain (ZZ) using various truncated versions of the protein, and site-directed mutagenesis. Pulldown, immunoprecipitation, and AlphaScreen assays showed that the importin (IMP) α2/β1 heterodimer interacts with high affinity with the ZZ domain of α-DB. In vitro nuclear import assays using antibodies to specific importins, as well as in vivo studies using siRNA or a dominant negative importin construct, confirmed the key role of IMPα2/β1 in α-DB nuclear translocation. Knockdown of α-DB expression perturbed cell cycle progression in C2C12 myoblasts, with decreased accumulation of cells in S phase and, significantly, altered localization of lamins A/C, B1, and B2 with accompanying gross nuclear morphology defects. Because α-DB interacts specifically with lamin B1 in vivo and in vitro, nuclear α-DB would appear to play a key role in nuclear shape maintenance through association with the nuclear lamina. © FASEB.

  11. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant: Preliminary summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishbone, L.G.; Moussalli, G.; Naegele, G.

    1994-04-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. This report details a six-month field test of the feasibility of such SNRIs which took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division. Westinghouse personnel made daily declarations aboutmore » both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ``mailbox``. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. Items from both strata were verified during the SNRIs by means of nondestructive assay equipment. The field test demonstrated the feasibility and practicality of key elements of the SNRI approach for a large LEU fuel fabrication plant.« less

  12. Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways.

    PubMed

    Bringaud, Frédéric; Biran, Marc; Millerioux, Yoann; Wargnies, Marion; Allmann, Stefan; Mazet, Muriel

    2015-06-01

    Numerous eukaryotes have developed specific metabolic traits that are not present in extensively studied model organisms. For instance, the procyclic insect form of Trypanosoma brucei, a parasite responsible for sleeping sickness in its mammalian-specific bloodstream form, metabolizes glucose into excreted succinate and acetate through pathways with unique features. Succinate is primarily produced from glucose-derived phosphoenolpyruvate in peroxisome-like organelles, also known as glycosomes, by a soluble NADH-dependent fumarate reductase only described in trypanosomes so far. Acetate is produced in the mitochondrion of the parasite from acetyl-CoA by a CoA-transferase, which forms an ATP-producing cycle with succinyl-CoA synthetase. The role of this cycle in ATP production was recently demonstrated in procyclic trypanosomes and has only been proposed so far for anaerobic organisms, in addition to trypanosomatids. We review how nuclear magnetic resonance spectrometry can be used to analyze the metabolic network perturbed by deletion (knockout) or downregulation (RNAi) of the candidate genes involved in these two particular metabolic pathways of procyclic trypanosomes. The role of succinate and acetate production in trypanosomes is discussed, as well as the connections between the succinate and acetate branches, which increase the metabolic flexibility probably required by the parasite to deal with environmental changes such as oxidative stress. © 2015 John Wiley & Sons Ltd.

  13. Recent progress in research on tungsten materials for nuclear fusion applications in Europe

    NASA Astrophysics Data System (ADS)

    Rieth, M.; Dudarev, S. L.; Gonzalez de Vicente, S. M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D. E. J.; Balden, M.; Baluc, N.; Barthe, M.-F.; Basuki, W. W.; Battabyal, M.; Becquart, C. S.; Blagoeva, D.; Boldyryeva, H.; Brinkmann, J.; Celino, M.; Ciupinski, L.; Correia, J. B.; De Backer, A.; Domain, C.; Gaganidze, E.; García-Rosales, C.; Gibson, J.; Gilbert, M. R.; Giusepponi, S.; Gludovatz, B.; Greuner, H.; Heinola, K.; Höschen, T.; Hoffmann, A.; Holstein, N.; Koch, F.; Krauss, W.; Li, H.; Lindig, S.; Linke, J.; Linsmeier, Ch.; López-Ruiz, P.; Maier, H.; Matejicek, J.; Mishra, T. P.; Muhammed, M.; Muñoz, A.; Muzyk, M.; Nordlund, K.; Nguyen-Manh, D.; Opschoor, J.; Ordás, N.; Palacios, T.; Pintsuk, G.; Pippan, R.; Reiser, J.; Riesch, J.; Roberts, S. G.; Romaner, L.; Rosiński, M.; Sanchez, M.; Schulmeyer, W.; Traxler, H.; Ureña, A.; van der Laan, J. G.; Veleva, L.; Wahlberg, S.; Walter, M.; Weber, T.; Weitkamp, T.; Wurster, S.; Yar, M. A.; You, J. H.; Zivelonghi, A.

    2013-01-01

    The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme's main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

  14. Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.

    PubMed

    Vanderburgh, Joseph P; Fernando, Shanik J; Merkel, Alyssa R; Sterling, Julie A; Guelcher, Scott A

    2017-11-01

    3D printing enables the creation of scaffolds with precisely controlled morphometric properties for multiple tissue types, including musculoskeletal tissues such as cartilage and bone. Computed tomography (CT) imaging has been combined with 3D printing to fabricate anatomically scaled patient-specific scaffolds for bone regeneration. However, anatomically scaled scaffolds typically lack sufficient resolution to recapitulate the <100 micrometer-scale trabecular architecture essential for investigating the cellular response to the morphometric properties of bone. In this study, it is hypothesized that the architecture of trabecular bone regulates osteoblast differentiation and mineralization. To test this hypothesis, human bone-templated 3D constructs are fabricated via a new micro-CT/3D inkjet printing process. It is shown that this process reproducibly fabricates bone-templated constructs that recapitulate the anatomic site-specific morphometric properties of trabecular bone. A significant correlation is observed between the structure model index (a morphometric parameter related to surface curvature) and the degree of mineralization of human mesenchymal stem cells, with more concave surfaces promoting more extensive osteoblast differentiation and mineralization compared to predominately convex surfaces. These findings highlight the significant effects of trabecular architecture on osteoblast function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nuclear Thermal Propulsion (NTP) Development Activities at the NASA Marshall Space Flight Center - 2006 Accomplishments

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2007-01-01

    In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments

  16. Nuclear Science References Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritychenko, B., E-mail: pritychenko@bnl.gov; Běták, E.; Singh, B.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energymore » Agency (http://www-nds.iaea.org/nsr)« less

  17. Design and specification of a centralized manufacturing data management and scheduling system

    NASA Technical Reports Server (NTRS)

    Farrington, Phillip A.

    1993-01-01

    As was revealed in a previous study, the Materials and Processes Laboratory's Productivity Enhancement Complex (PEC) has a number of automated production areas/cells that are not effectively integrated, limiting the ability of users to readily share data. The recent decision to utilize the PEC for the fabrication of flight hardware has focused new attention on the problem and brought to light the need for an integrated data management and scheduling system. This report addresses this need by developing preliminary designs specifications for a centralized manufacturing data management and scheduling system for managing flight hardware fabrication in the PEC. This prototype system will be developed under the auspices of the Integrated Engineering Environment (IEE) Oversight team and the IEE Committee. At their recommendation the system specifications were based on the fabrication requirements of the AXAF-S Optical Bench.

  18. Micromechanical Structures Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajic, S

    2001-05-08

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continuallymore » vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon micro-devices and the second impediment is communicating with these novel devices. We have implemented an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We also implemented a mechanical, electrical, and optical self-aligning hybridization technique for these alternate-material MEMS substrates.« less

  19. Film Fabrication Technologies at NREL

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert D.

    1993-01-01

    The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.

  20. Fabrication and characterization of biological tissue phantoms with embedded nanoparticles

    NASA Astrophysics Data System (ADS)

    Skaptsov, A. A.; Ustalkov, S. O.; Mohammed, A. H. M.; Savenko, O. A.; Novikova, A. S.; Kozlova, E. A.; Kochubey, V. I.

    2017-11-01

    Phantoms are imitations of biological tissue, which are used for modelling of the light propagation in biological tissues. Carrying out any biophysical experiments requires an indispensable constancy of the initial experiment conditions. The use of solid undegradable phantoms is the basis to obtain reliable reproducible experimental results. The fabrication of biological tissues phantoms containing high absorbance or fluorescence nanoparticles and corresponding to specific mechanical, optical properties is an actual task. This work describes development, fabrication and characterization of such solid tissue phantoms with embedded CdSe/ZnS quantum dots, gold and upconversion nanoparticles. Luminescence of samples with CdSe/ZnS quantum dots and upconversion nanoparticles were recorded. A sample of gold nanorods was analyzed using thermal gravimetric analysis. It can be concluded that the samples are well suited for experiments on laser thermolysis.

  1. Friction Stir Welding: Standards and Specifications in Today's U.S. Manufacturing and Fabrication

    NASA Technical Reports Server (NTRS)

    Ding, Robert Jeffrey

    2008-01-01

    New welding and technology advancements are reflected in the friction stir welding (FSW) specifications used in the manufacturing sector. A lack of publicly available specifications as one of the reasons that the FSW process has not propagate through the manufacturing sectors. FSW specifications are an integral supporting document to the legal agreement written between two entities for deliverable items. Understanding the process and supporting specifications is essential for a successful FSW manufacturing operation. This viewgraph presentation provides an overview of current FSW standards in the industry and discusses elements common to weld specifications.

  2. Nano-fabricated size exclusion chromatograph

    NASA Technical Reports Server (NTRS)

    Svehla, D.; Feldman, S.; Feldman, J.; Grunthaner, F.; Shakkottai, P.; Castillo, L. del; White, V.

    2002-01-01

    This paper describes the development of a nano-fabricated size exclusion chromatograph (nSEC) based on the principle that molecules traveling through amicrocolumn containing nano-fabricated features will have characteristic elution times that directly correlate to molecular weight. Compared to conventional size exclusion chromatography, the nSEC offers greater control over the size exclusion process; mass fabrication; integration of the separation column with associated valves, pumps, and detectors; and dramatic reductions in instrument mass and power requirements.

  3. Development of Self-Cleaning Denim Fabrics

    NASA Astrophysics Data System (ADS)

    Uğur, Ş. S.; Sarıışık, A. M.; Çavuşlar, E.; Ertek, M.

    2017-10-01

    Denim fabrics coated with TiO2 nanolayers for self-cleaning properties by using a continuous layer-by-layer method. Nanolayer coated denim fabrics washed with an enzyme process for aging affect. Fabrics were analyzed with SEM-EDX and XPS measurements. Self-cleaning properties of the nanolayer deposited denim fabrics were tested according to red wine stain against to Suntest visible light irradiation after 72 h. And also, some physical (air permeability, tensile strength) and color (color difference and rubbing fastness) properties were evaluated.

  4. 25 CFR 307.4 - Standards for fabrics.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Standards for fabrics. 307.4 Section 307.4 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO ALL-WOOL WOVEN FABRICS; USE OF GOVERNMENT CERTIFICATE OF GENUINENESS § 307.4 Standards for fabrics. No fabric may carry the Government certificate of...

  5. A simple method of fabricating mask-free microfluidic devices for biological analysis

    PubMed Central

    Yi, Xin; Kodzius, Rimantas; Gong, Xiuqing; Xiao, Kang; Wen, Weijia

    2010-01-01

    We report a simple, low-cost, rapid, and mask-free method to fabricate two-dimensional (2D) and three-dimensional (3D) microfluidic chip for biological analysis researches. In this fabrication process, a laser system is used to cut through paper to form intricate patterns and differently configured channels for specific purposes. Bonded with cyanoacrylate-based resin, the prepared paper sheet is sandwiched between glass slides (hydrophilic) or polymer-based plates (hydrophobic) to obtain a multilayer structure. In order to examine the chip’s biocompatibility and applicability, protein concentration was measured while DNA capillary electrophoresis was carried out, and both of them show positive results. With the utilization of direct laser cutting and one-step gas-sacrificing techniques, the whole fabrication processes for complicated 2D and 3D microfluidic devices are shorten into several minutes which make it a good alternative of poly(dimethylsiloxane) microfluidic chips used in biological analysis researches. PMID:20890452

  6. Design and fabrication of vertically-integrated CMOS image sensors.

    PubMed

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.

  7. Robust Polypropylene Fabrics Super-Repelling Various Liquids: A Simple, Rapid and Scalable Fabrication Method by Solvent Swelling.

    PubMed

    Zhu, Tang; Cai, Chao; Duan, Chunting; Zhai, Shuai; Liang, Songmiao; Jin, Yan; Zhao, Ning; Xu, Jian

    2015-07-01

    A simple, rapid (10 s) and scalable method to fabricate superhydrophobic polypropylene (PP) fabrics is developed by swelling the fabrics in cyclohexane/heptane mixture at 80 °C. The recrystallization of the swollen macromolecules on the fiber surface contributes to the formation of submicron protuberances, which increase the surface roughness dramatically and result in superhydrophobic behavior. The superhydrophobic PP fabrics possess excellent repellency to blood, urine, milk, coffee, and other common liquids, and show good durability and robustness, such as remarkable resistances to water penetration, abrasion, acidic/alkaline solution, and boiling water. The excellent comprehensive performance of the superhydrophobic PP fabrics indicates their potential applications as oil/water separation materials, protective garments, diaper pads, or other medical and health supplies. This simple, fast and low cost method operating at a relatively low temperature is superior to other reported techniques for fabricating superhydrophobic PP materials as far as large scale manufacturing is considered. Moreover, the proposed method is applicable for preparing superhydrophobic PP films and sheets as well.

  8. Demonstrating the Viability and Affordability of Nuclear Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Vandyke, Melissa K.

    2006-01-01

    A set of tasks have been identified to help demonstrate the viability, performance, and affordability of surface fission systems. Completion of these tasks will move surface fission systems closer to reality by demonstrating affordability and performance potential. Tasks include fabrication and test of a 19-pin section of a Surface Power Unit Demonstrator (SPUD); design, fabrication, and utilization of thermal simulators optimized for surface fission' applications; design, fabrication, and utilization of GPHS module thermal simulators; design, fabrication, and test of a fission surface power system shield; and work related to potential fission surface power fuel/clad systems. Work on the SPUD will feed directly into joint NASA MSFC/NASA GRC fabrication and test of a surface power plant Engineering Development Unit (EDU). The goal of the EDU will be to perform highly realistic thermal, structural, and electrical testing on an integrated fission surface power system. Fission thermal simulator work will help enable high fidelity non-nuclear testing of pumped NaK surface fission power systems. Radioisotope thermal simulator work will help enable design and development of higher power radioisotope systems (power ultimately limited by Pu-238 availability). Shield work is designed to assess the potential of using a water neutron shield on the surface of the moon. Fuels work is geared toward assessing the current potential of using fuels that have already flown in space.

  9. A nuclear gene for the iron-sulfur subunit of mitochondrial complex II is specifically expressed during Arabidopsis seed development and germination.

    PubMed

    Elorza, Alvaro; Roschzttardtz, Hannetz; Gómez, Isabel; Mouras, Armand; Holuigue, Loreto; Araya, Alejandro; Jordana, Xavier

    2006-01-01

    Three nuclear genes, SDH2-1, SDH2-2 and SDH2-3, encode the essential iron-sulfur subunit of mitochondrial complex II in Arabidopsis thaliana. SDH2-1 and SDH2-2 probably arose via a recent duplication event and we reported that both are expressed in all organs from adult plants. In contrast, transcripts from SDH2-3 were not detected. Here we present data demonstrating that SDH2-3 is specifically expressed during seed development. SDH2-3 transcripts appear during seed maturation, persist through desiccation, are abundant in dry seeds and markedly decline during germination. Analysis of transgenic Arabidopsis plants carrying the SDH2-3 promoter fused to the beta-glucuronidase reporter gene shows that the SDH2-3 promoter is activated in the embryo during maturation, from the bent-cotyledon stage. beta-Glucuronidase expression correlates with the appearance of endogenous SDH2-3 transcripts, suggesting that control of this nuclear gene is achieved through transcriptional regulation. Furthermore, progressive deletions of this promoter identified a 159 bp region (-223 to -65) important for SDH2-3 transcriptional activation in seeds. Interestingly, the SDH2-3 promoter remains active in embryonic tissues during germination and post-germinative growth, and is turned off in vegetative tissues (true leaves). In contrast to SDH2-3 transcripts, SDH2-1 and SDH2-2 transcripts are barely detected in dry seeds and increase during germination and post-germinative growth. The opposite expression patterns of SDH2 nuclear genes strongly suggest that during germination the embryo-specific SDH2-3 is replaced by SDH2-1 or SDH2-2 in mitochondrial complex II.

  10. Fabrication and optical characterization of imaging fiber-based nanoarrays.

    PubMed

    Tam, Jenny M; Song, Linan; Walt, David R

    2005-09-15

    In this paper, we present a technique for fabricating arrays containing a density at least 90 times higher than previously published. Specifically, we discuss the fabrication of two imaging fiber-based nanoarrays, one with 700nm features, another with 300nm features. With arrays containing up to 4.5x10(6) array elements/mm(2), these nanoarrays have an ultra-high packing density. A straightforward etching protocol is used to create nanowells into which beads can be deposited. These beads comprise the sensing elements of the nanoarray. Deposition of the nanobeads into the nanowells using two techniques is described. The surface characteristics of the etched arrays are examined with atomic force microscopy and scanning electron microscopy. Fluorescence microscopy was used to observe the arrays. The 300nm array features and the 500nm center-to-center distance approach the minimum feature sizes viewable using conventional light microscopy.

  11. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  12. Cracking-assisted fabrication of nanoscale patterns for micro/nanotechnological applications

    NASA Astrophysics Data System (ADS)

    Kim, Minseok; Kim, Dong-Joo; Ha, Dogyeong; Kim, Taesung

    2016-05-01

    Cracks are frequently observed in daily life, but they are rarely welcome and are considered as a material failure mode. Interestingly, cracks cause critical problems in various micro/nanofabrication processes such as colloidal assembly, thin film deposition, and even standard photolithography because they are hard to avoid or control. However, increasing attention has been given recently to control and use cracks as a facile, low-cost strategy for producing highly ordered nanopatterns. Specifically, cracking is the breakage of molecular bonds and occurs simultaneously over a large area, enabling fabrication of nanoscale patterns at both high resolution and high throughput, which are difficult to obtain simultaneously using conventional nanofabrication techniques. In this review, we discuss various cracking-assisted nanofabrication techniques, referred to as crack lithography, and summarize the fabrication principles, procedures, and characteristics of the crack patterns such as their position, direction, and dimensions. First, we categorize crack lithography techniques into three technical development levels according to the directional freedom of the crack patterns: randomly oriented, unidirectional, or multidirectional. Then, we describe a wide range of novel practical devices fabricated by crack lithography, including bioassay platforms, nanofluidic devices, nanowire sensors, and even biomimetic mechanosensors.

  13. Smart textile framework: Photochromic and fluorescent cellulosic fabric printed by strontium aluminate pigment.

    PubMed

    Khattab, Tawfik A; Rehan, Mohamed; Hamouda, Tamer

    2018-09-01

    Smart clothing can be defined as textiles that respond to a certain stimulus accompanied by a change in their properties. A specific class herein is the photochromic and fluorescent textiles that change color with light. A photochromic and fluorescent cotton fabric based on pigment printing is obtained. Such fabric is prepared by aqueous-based pigment-binder printing formulation containing inorganic pigment phosphor characterized by good photo- and thermal stability. It exhibits optimal excitation wavelength (365 nm) results in color and fluorescence change of the fabric surface. To prepare the transparent pigment-binder composite film, the phosphor pigment must be well-dispersed via physical immobilization without their aggregation. The pigment-binder paste is applied successfully onto cotton fabric using screen printing technique followed by thermal fixation. After screen-printing, a homogenous photochromic film is assembled on a cotton substrate surface, which represents substantial greenish-yellow color development as indicated by CIE Lab color space measurements under ultraviolet light, even at a pigment concentration of 0.08 wt% of the printing paste. The photochromic cotton fabric exhibit three excitation peaks at 272, 325 and 365 nm and three emission peaks at 418, 495 and 520 nm. The fluorescent optical microscope, scanning electron microscope, elemental mapping, energy dispersive X-ray spectroscopy, fluorescence emission and UV/Vis absorption spectroscopic data of the printed cotton fabric are described. The printed fabric showed a reversible and rapid photochromic response during ultra-violet excitation without fatigue. The fastness properties including washing, crocking, perspiration, sublimation/heat, and light are described. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Notch filtering the nuclear environment of a spin qubit.

    PubMed

    Malinowski, Filip K; Martins, Frederico; Nissen, Peter D; Barnes, Edwin; Cywiński, Łukasz; Rudner, Mark S; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand

    2017-01-01

    Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence. Low-frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing, can be removed by echo techniques. High-frequency nuclear noise, recently studied via echo revivals, occurs in narrow-frequency bands related to differences in Larmor precession of the three isotopes 69 Ga, 71 Ga and 75 As (refs 15,16,17). Here, we show that both low- and high-frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T 2 ) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots.

  15. Fabrication and characterization of active nanostructures

    NASA Astrophysics Data System (ADS)

    Opondo, Noah F.

    Three different nanostructure active devices have been designed, fabricated and characterized. Junctionless transistors based on highly-doped silicon nanowires fabricated using a bottom-up fabrication approach are first discussed. The fabrication avoids the ion implantation step since silicon nanowires are doped in-situ during growth. Germanium junctionless transistors fabricated with a top down approach starting from a germanium on insulator substrate and using a gate stack of high-k dielectrics and GeO2 are also presented. The levels and origin of low-frequency noise in junctionless transistor devices fabricated from silicon nanowires and also from GeOI devices are reported. Low-frequency noise is an indicator of the quality of the material, hence its characterization can reveal the quality and perhaps reliability of fabricated transistors. A novel method based on low-frequency noise measurement to envisage trap density in the semiconductor bandgap near the semiconductor/oxide interface of nanoscale silicon junctionless transistors (JLTs) is presented. Low-frequency noise characterization of JLTs biased in saturation is conducted at different gate biases. The noise spectrum indicates either a Lorentzian or 1/f. A simple analysis of the low-frequency noise data leads to the density of traps and their energy within the semiconductor bandgap. The level of noise in silicon JLT devices is lower than reported values on transistors fabricated using a top-down approach. This noise level can be significantly improved by improving the quality of dielectric and the channel interface. A micro-vacuum electron device based on silicon field emitters for cold cathode emission is also presented. The presented work utilizes vertical Si nanowires fabricated by means of self-assembly, standard lithography and etching techniques as field emitters in this dissertation. To obtain a high nanowire density, hence a high current density, a simple and inexpensive Langmuir Blodgett technique

  16. Integrating nuclear weapons stockpile management and nuclear arms control to enable significant stockpile reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, Lani Miyoshi; DeLand, Sharon M.; Pregenzer, Arian L.

    2010-11-01

    In his 2009 Prague speech and the 2010 Nuclear Posture Review, President Barack Obama committed the United States to take concrete steps toward nuclear disarmament while maintaining a safe, secure, and effective nuclear deterrent. There is an inherent tension between these two goals that is best addressed through improved integration of nuclear weapons objectives with nuclear arms control objectives. This article reviews historical examples of the interaction between the two sets of objectives, develops a framework for analyzing opportunities for future integration, and suggests specific ideas that could benefit the nuclear weapons enterprise as it undergoes transformation and that couldmore » make the future enterprise compatible with a variety of arms control futures.« less

  17. The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica

    NASA Astrophysics Data System (ADS)

    Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin

    2017-02-01

    Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally

  18. Graphene oxide nanostructures modified multifunctional cotton fabrics

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Karthikeyan; Navaneethaiyer, Umasuthan; Mohan, Rajneesh; Lee, Jehee; Kim, Sang-Jae

    2012-06-01

    Surface modification of cotton fabrics using graphene oxide (GO) nanostructures was reported. Scanning electron microscopic (SEM) investigations revealed that the GO nanostructure was coated onto the cotton fabric. The molecular level interaction between the graphene oxide and the cotton fabric is studied in detail using the Fourier transform infra-red (FTIR) spectra. Thermogravimetric analysis (TGA) showed that GO loaded cotton fabrics have enhanced thermal stability compared to the bare cotton fabrics. The photocatalytic activity of the GO-coated cotton fabrics was investigated by measuring the photoreduction of resazurin (RZ) into resorufin (RF) under UV light irradiation. The antibacterial activity was evaluated against both Gram-negative and Gram-positive bacteria and the results indicated that the GO-coated cotton fabrics are more toxic towards the Gram-positive ones. Our results provide a way to develop graphene oxide-based devices for the biomedical applications for improving health care.

  19. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-03-23

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  20. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOEpatents

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  1. Modular fabrication and characterization of complex silicon carbide composite structures Advanced Reactor Technologies (ART) Research Final Report (Feb 2015 – May 2017)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifa, Hesham

    Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less

  2. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    PubMed

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Fabrication of PDMS architecture

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    The study report novel, yet simple and flexible fabrication method for micro channel patterning PDMS thin mold on glass surfaces, the method allows microstructures with critical dimensions to be formed using PDMS. Micro channel production is a two-step process. First, soft photolithography methods are implemented to fabricate a reusable mold. The mold is then used to create the micro channel, which consists of SU8, PDMS and glass. The micro channel design was performed using AutoCAD and the fabrication begins by creating a replicable mold. The mold is created on a glass slide. by spin-coating speed between 500 to 1250rpm with an acceleration of 100 rpm/s for 100 and 15 second ramp up and down speed respectively. Channel flow rate based on concentration were measured by analyzing the recorded flow profiles which was collected from the high powered microscope at. 80µ, 70µm, 50µm for inlet channel 1, 2, 3 respectively the channel flow were compared for flow efficiency at different concentrations and Re. Thus, the simplicity of device structure and fabrication makes it feasible to miniaturize it for the development of point-of-care kits, facilitating its use in both clinical and non-clinical environments. With its simple geometric structure and potential for mass commercial fabrication, the device can be developed to become a portable photo detection sensor that can be use for both environmental and diagnostic application.

  4. Fabrication of Lightweight Radiation Shielding Composite Materials by Field Assisted Sintering Technique (FAST)

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha; Trivedi, Sudhir; Chen, Henry; Kutcher, Susan; Zhang, Dajie; Singh, Jogender

    2017-01-01

    Advances in radiation shielding technologies are needed to protect humans and electronic components from all threats of space radiation over long durations. In this paper, we report on the use of the innovative and novel fabrication technology known as Field Assisted Sintering Technology (FAST) to fabricate lightweight material with enhanced radiation shielding strength to safeguard humans and electronics suitable for next generation space exploration missions. The base materials we investigated were aluminum (Al), the current standard material for space hardware, and Ultra-High Molecular Weight Polyethylene (UHMWPE), which has high hydrogen content and resistance to nuclear reaction from neutrons, making it a good shielding material for both gamma radiation and particles. UHMWPE also has high resistance to corrosive chemicals, extremely low moisture sensitivity, very low coefficient of friction, and high resistance to abrasion. We reinforced the base materials by adding high density (ie, high atomic weight) metallic material into the composite. These filler materials included: boron carbide (B4C), tungsten (W), tungsten carbide (WC) and gadolinium (Gd).

  5. Characterization of surface modified polyester fabric.

    PubMed

    Joseph, Roy; Shelma, R; Rajeev, A; Muraleedharan, C V

    2009-12-01

    Woven polyethylene terephthalate (PET) fabric has been used in the construction of vascular grafts and sewing ring of prosthetic heart valves. In an effort to improve haemocompatibility and tissue response to PET fabric, a fluoropolymer, polyvinylidine fluoride (PVDF), was coated on PET fabric by dip coating technique. The coating was found to be uniform and no significant changes occurred on physical properties such as water permeability and burst strength. Cell culture cytotoxicity studies showed that coated PET was non-cytotoxic to L929 fibroblast cell lines. In vitro studies revealed that coating improved haemocompatibility of PET fabric material. Coating reduced platelet consumption of PET fabric by 50%. Upon surface modification leukocyte consumption of PET was reduced by 24%. About 60% reduction in partial thromboplastin time (PTT) observed when PET was coated with PVDF. Results of endothelial cell proliferation studies showed that surface coating did not have any substantial impact on cell proliferation. Overall results indicate that coating has potential to improve haemocompatibility of PET fabric without affecting its mechanical performance.

  6. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.

    PubMed

    Wang, Jintao; Wang, Hongfei

    2017-06-15

    The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fabrication of Titanium-Niobium-Zirconium-Tantalium Alloy (TNZT) Bioimplant Components with Controllable Porosity by Spark Plasma Sintering

    PubMed Central

    Rechtin, Jack; Torresani, Elisa; Ivanov, Eugene; Olevsky, Eugene

    2018-01-01

    Spark Plasma Sintering (SPS) is used to fabricate Titanium-Niobium-Zirconium-Tantalum alloy (TNZT) powder—based bioimplant components with controllable porosity. The developed densification maps show the effects of final SPS temperature, pressure, holding time, and initial particle size on final sample relative density. Correlations between the final sample density and mechanical properties of the fabricated TNZT components are also investigated and microstructural analysis of the processed material is conducted. A densification model is proposed and used to calculate the TNZT alloy creep activation energy. The obtained experimental data can be utilized for the optimized fabrication of TNZT components with specific microstructural and mechanical properties suitable for biomedical applications. PMID:29364165

  8. Facilely Fabricating Multifunctional N-Enriched Carbon.

    PubMed

    Wan, Mi Mi; Sun, Xiao Dan; Li, Yan Yan; Zhou, Jun; Wang, Ying; Zhu, Jian Hua

    2016-01-20

    A new synthetic strategy, named "carbonization in limited space" and based on the specific interaction between eutectic salt and dual-ionic liquids (dual-ILs), is reported in this article. N-Containing dual-ILs (1,4-diethyl-1,4-diazaniabicyclo[2,2,2]octane imidazolide-4,5-dicyanoiazolide, [2C2DABCO](2+)[Im](-)[CN-Im](-)) were synthesized as new carbon-nitrogen precursors, while eutectic salt was chosen as a reuseable template in order to facilely fabricate the N-doped porous carbon with sheetlike morphology. Nitrogen can be directly and efficiently incorporated into the porous carbon, resulting in the materials with suitable N content, tunable pore structure, and controllable thickness of sheet as well as high surface area. They exhibited good performance as electrodes for supercapacitors, photocatalysts in degradation of methyl orange (MO) under visible light, and the sorbent to capture tobacco-specific N-nitrosamines (TSNAs) in solution, offering a new simplified but effective method to prepare versatile carbon material.

  9. ZnO deposition on metal substrates: Relating fabrication, morphology, and wettability

    NASA Astrophysics Data System (ADS)

    Beaini, Sara S.; Kronawitter, Coleman X.; Carey, Van P.; Mao, Samuel S.

    2013-05-01

    It is not common practice to deposit thin films on metal substrates, especially copper, which is a common heat exchanger metal and practical engineering material known for its heat transfer properties. While single crystal substrates offer ideal surfaces with uniform structure for compatibility with oxide deposition, metallic surfaces needed for industrial applications exhibit non-idealities that complicate the fabrication of oxide nanostructure arrays. The following study explored different ZnO fabrication techniques to deposit a (super)hydrophobic thin film of ZnO on a metal substrate, specifically copper, in order to explore its feasibility as an enhanced condensing surface. ZnO was selected for its non-toxicity, ability to be made (super)hydrophobic with hierarchical roughness, and its photoinduced hydrophilicity characteristic, which could be utilized to pattern it to have both hydrophobic-hydrophilic regions. We investigated the variation of ZnO's morphology and wetting state, using SEMs and sessile drop contact angle measurements, as a function of different fabrication techniques: sputtering, pulsed laser deposition (PLD), electrodeposition and annealing Zn. We successfully fabricated (super)hydrophobic ZnO on a mirror finish, commercially available copper substrate using the scalable electrodeposition technique. PLD for ZnO deposition did not prove viable, as the ZnO samples on metal substrates were hydrophilic and the process does not lend itself to scalability. The annealed Zn sheets did not exhibit consistent wetting state results.

  10. Processing and Characterization of PETI Composites Fabricated by High Temperature VARTM

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G.; Loos, Alfred C.; Heider, Dirk

    2011-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade. As these advanced structures increase in size and complexity, their production costs have grown significantly. A major contributor to these manufacturing costs is the requirement of elevated processing pressures, during the thermal cure, to create fully consolidated composites. For certain composite parts, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA LaRC. In the current study, two PETI resins, LARC(TradeMark) PETI-330 and LARC(TradeMark) PETI-8 have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents <3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. These included open-hole compressive (OHC) and short beam shear (SBS) properties. Limited process modeling efforts were carried out including infusion times, composite panel size limitations and fabric permeability characterization. Work has also been carried out to develop new PETI based resins specifically geared towards HT-VARTM. The results of this work are presented herein.

  11. Hyper-reactive cloned mice generated by direct nuclear transfer of antigen-specific CD4+ T cells.

    PubMed

    Kaminuma, Osamu; Katayama, Kazufumi; Inoue, Kimiko; Saeki, Mayumi; Nishimura, Tomoe; Kitamura, Noriko; Shimo, Yusuke; Tofukuji, Soichi; Ishida, Satoru; Ogonuki, Narumi; Kamimura, Satoshi; Oikawa, Mami; Katoh, Shigeki; Mori, Akio; Shichijo, Michitaka; Hiroi, Takachika; Ogura, Atsuo

    2017-06-01

    T-cell receptor (TCR)-transgenic mice have been employed for evaluating antigen-response mechanisms, but their non-endogenous TCR might induce immune response differently than the physiologically expressed TCR Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen-specific CD4 + T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre-rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic-type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter-regulated antigen-specific TCR are a unique animal model with allergic predisposition for investigating CD4 + T-cell-mediated pathogenesis and cellular commitment in immune diseases. © 2017 The Authors.

  12. High sensitivity knitted fabric strain sensors

    NASA Astrophysics Data System (ADS)

    Xie, Juan; Long, Hairu; Miao, Menghe

    2016-10-01

    Wearable sensors are increasingly used in smart garments for detecting and transferring vital signals and body posture, movement and respiration. Existing fabric strain sensors made from metallized yarns have low sensitivity, poor comfort and low durability to washing. Here we report a knitted fabric strain sensor made from a cotton/stainless steel (SS) fibre blended yarn which shows much higher sensitivity than sensors knitted from metallized yarns. The fabric feels softer than pure cotton textiles owing to the ultrafine stainless steel fibres and does not lose its electrical property after washing. The reason for the high sensitivity of the cotton/SS knitted fabric sensor was explored by comparing its sensing mechanism with the knitted fabric sensor made from metallized yarns. The results show that the cotton/SS yarn-to-yarn contact resistance is highly sensitive to strain applied to hooked yarn loops.

  13. Other Fabric Structures

    NASA Technical Reports Server (NTRS)

    1985-01-01

    There are two kinds of fabric structures - tension, supported by cables and pylons, and those supported by air pressure within an enclosed fabric envelope. They are becoming increasingly popular with architects, engineers, etc., because of their aesthetic appeal, low cost and maintenance, energy efficiency and good space utilization. The Structo-Fab roof weighs only 1/30 as much as a conventional roof of that size. Giant fans are used to blow air into the envelope between the roof's outer membrane and its inner liner automatically maintaining the pressure differential necessary for roof rigidity.

  14. Mechanical and microstructural characterization of W–Cu FGM fabricated by one-step sintering method through PM route

    NASA Astrophysics Data System (ADS)

    Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.

    2018-03-01

    Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.

  15. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  16. Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS

    NASA Astrophysics Data System (ADS)

    Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.

    2015-11-01

    Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.

  17. Fabrication and characterization of resonant SOI micromechanical silicon sensors based on DRIE micromachining, freestanding release process and silicon direct bonding

    NASA Astrophysics Data System (ADS)

    Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic

    2002-11-01

    This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.

  18. Four nucleocytoplasmic-shuttling proteins and p53 interact specifically with the YB-NLS and are involved in anticancer reagent-induced nuclear localization of YB-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toru; Ohashi, Sachiyo; Kobayashi, Shunsuke

    In cancer cells, anticancer reagents often trigger nuclear accumulation of YB-1, which participates in the progression of cancer malignancy. YB-1 has a non-canonical nuclear localization signal (YB-NLS). Here we found that four nucleocytoplasmic-shuttling RNA-binding proteins and p53 interact specifically with the YB-NLS and co-accumulate with YB-1 in the nucleus of actinomycin D-treated cells. To elucidate the roles of these YB-NLS-binding proteins, we performed a dominant-negative experiment in which a large excess of YB-NLS interacts with the YB-NLS-binding proteins, and showed inhibitory effects on actinomycin D-induced nuclear transport of endogenous YB-1 and subsequent MDR1 gene expression. Furthermore, the YB-NLS-expressing cells weremore » also found to show increased drug sensitivity. Our results suggest that these YB-NLS-associating proteins are key factors for nuclear translocation/accumulation of YB-1 in cancer cells. - Highlights: • Four nucleocytoplasmic-shuttling proteins and p53 associate with YB-NLS. • They showed nuclear co-accumulation with YB-1 in actinomycin D-treated cells. • Overexpression of YB-NLS was carried out to take YB-NLS-binding proteins from YB-1. • YB-NLS inhibited actinomycin D-induced nuclear localization of endogenous YB-1. • YB-NLS suppressed actinomycin D-induced expression of MDR1.« less

  19. Air-Inflated Fabric Structures

    DTIC Science & Technology

    2006-11-05

    environmental exposure to ultraviolet rays, moisture, fire, chemicals, etc. Coating such as urethane, PVC (polyvinyl chloride), neoprene, EPDM (ethylene...tests on rubber -coated, plain-woven fabrics and established that the initial shear response was dominated by the coating and with increased shearing...Farboodmanesh, S., Chen, J., Mead, J. L., White, K., "Effect of Construction on Mechanical Behavior of Fabric Reinforced Rubber ," Rubber Division

  20. Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics.

    PubMed

    Rehan, Mohamed; Barhoum, Ahmed; Van Assche, Guy; Dufresne, Alain; Gätjen, Linda; Wilken, Ralph

    2017-05-01

    Herein, the highly multifunctional cotton fabric surfaces were designed with excellent coloration, UV-protection function, and antimicrobial activity. These multifunctional functions were developed by in-situ synthesis of silver nanoparticles (Ag NPs) into the cotton fabric surface using a simple green one-pot "UV-reduction" method. Cotton fabrics were pretreated with non-anionic detergent, immersed into alcoholic silver nitrate solution (concentration ranging from 100 to 500ppm), squeezed to remove excess solution and then exposed to UV-irradiation (range 320-400nm) for 1h. The influence UV-irradiation on the thermal, chemical, optical and biological properties of the cotton fabric surface was discussed in details. The UV-irradiation promotes reducing of Ag + ions and the cotton fabrics act as seed medium for Ag NPs formation by "heterogeneous nucleation". Increasing Ag + concentration (from 100 to 500ppm) results in Ag NPs of particle size (distribution) of 50-100nm. Interestingly, the Ag NPs exhibited different localized surface Plasmon resonance properties causing a coloration of the cotton fabrics with different color shades ranging from bright to dark brown with excellent color fastness properties. The treated cotton fabrics also show high protecting functions against UV-transmission (reduction of 65%) and Escherichia coli growth (99%). The side-effects of the UV-reduction process are further investigated. Published by Elsevier B.V.

  1. A probabilisitic based failure model for components fabricated from anisotropic graphite

    NASA Astrophysics Data System (ADS)

    Xiao, Chengfeng

    The nuclear moderator for high temperature nuclear reactors are fabricated from graphite. During reactor operations graphite components are subjected to complex stress states arising from structural loads, thermal gradients, neutron irradiation damage, and seismic events. Graphite is a quasi-brittle material. Two aspects of nuclear grade graphite, i.e., material anisotropy and different behavior in tension and compression, are explicitly accounted for in this effort. Fracture mechanic methods are useful for metal alloys, but they are problematic for anisotropic materials with a microstructure that makes it difficult to identify a "critical" flaw. In fact cracking in a graphite core component does not necessarily result in the loss of integrity of a nuclear graphite core assembly. A phenomenological failure criterion that does not rely on flaw detection has been derived that accounts for the material behaviors mentioned. The probability of failure of components fabricated from graphite is governed by the scatter in strength. The design protocols being proposed by international code agencies recognize that design and analysis of reactor core components must be based upon probabilistic principles. The reliability models proposed herein for isotropic graphite and graphite that can be characterized as being transversely isotropic are another set of design tools for the next generation very high temperature reactors (VHTR) as well as molten salt reactors. The work begins with a review of phenomenologically based deterministic failure criteria. A number of this genre of failure models are compared with recent multiaxial nuclear grade failure data. Aspects in each are shown to be lacking. The basic behavior of different failure strengths in tension and compression is exhibited by failure models derived for concrete, but attempts to extend these concrete models to anisotropy were unsuccessful. The phenomenological models are directly dependent on stress invariants. A set of

  2. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology.

    PubMed

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-03-13

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.

  3. Cartilage Tissue Engineering with Silk Fibroin Scaffolds Fabricated by Indirect Additive Manufacturing Technology

    PubMed Central

    Chen, Chih-Hao; Liu, Jolene Mei-Jun; Chua, Chee-Kai; Chou, Siaw-Meng; Shyu, Victor Bong-Hang; Chen, Jyh-Ping

    2014-01-01

    Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining. PMID:28788558

  4. The other fiber, the other fabric, the other way

    NASA Astrophysics Data System (ADS)

    Stephens, Gary R.

    1993-02-01

    Coaxial cable and distributed switches provide a way to configure high-speed Fiber Channel fabrics. This type of fabric provides a cost-effective alternative to a fabric of optical fibers and centralized cross-point switches. The fabric topology is a simple tree. Products using parallel busses require a significant change to migrate to a serial bus. Coaxial cables and distributed switches require a smaller technology shift for these device manufacturers. Each distributed switch permits both medium type and speed changes. The fabric can grow and bridge to optical fibers as the needs expand. A distributed fabric permits earlier entry into high-speed serial operations. For very low-cost fabrics, a distributed switch may permit a link configured as a loop. The loop eliminates half of the ports when compared to a switched point-to-point fabric. A fabric of distributed switches can interface to a cross-point switch fabric. The expected sequence of migration is: closed loops, small closed fabrics, and, finally, bridges, to connect optical cross-point switch fabrics. This paper presents the concept of distributed fabrics, including address assignment, frame routing, and general operation.

  5. Microarchitecture and Bone Quality in the Human Calcaneus; Local Variations of Fabric Anisotropy

    PubMed Central

    Souzanchi, M F; Palacio-Mancheno, P E; Borisov, Y; Cardoso, L; Cowin, SC

    2012-01-01

    The local variability of microarchitecture of human trabecular calcaneus bone is investigated using high resolution microCT scanning. The fabric tensor is employed as the measure of the microarchitecture of the pore structure of a porous medium. It is hypothesized that a fabric tensor-dependent poroelastic ultrasound approach will more effectively predict the data variance than will porosity alone. The specific aims of the present study are i) to quantify the morphology and local anisotropy of the calcaneus microarchitecture with respect to anatomical directions, ii) to determine the interdependence, or lack thereof, of microarchitecture parameters, fabric, and volumetric bone mineral density (vBMD), and iii) to determine the relative ability of vBMD and fabric measurements in evaluating the variance in ultrasound wave velocity measurements along orthogonal directions in the human calcaneus. Our results show that the microarchitecture in the analyzed regions of human calcanei is anisotropic, with a preferred alignment along the posterior-anterior direction. Strong correlation was found between most scalar architectural parameters and vBMD. However, no statistical correlation was found between vBMD and the fabric components, the measures of the pore microstructure orientation. Therefore, among the parameters usually considered for cancellous bone (i.e., classic histomorphometric parameters such as porosity, trabecular thickness, number and separation), only fabric components explain the data variance that cannot be explained by vBMD, a global mass measurement, which lacks the sensitivity and selectivity to distinguish osteoporotic from healthy subjects because it is insensitive to directional changes in bone architecture. This study demonstrates that a multi-directional, fabric-dependent poroelastic ultrasound approach has the capability of characterizing anisotropic bone properties (bone quality) beyond bone mass, and could help to better understand anisotropic

  6. Design and testing of RFID sensor tag fabricated using inkjet-printing and electrodeposition

    NASA Astrophysics Data System (ADS)

    Chien Dang, Mau; Son Nguyen, Dat; Dung Dang, Thi My; Tedjini, Smail; Fribourg-Blanc, Eric

    2014-06-01

    The passive RFID tag with an added sensing function is of interest to many applications. In particular, applications where RFID tagging is already considered to be the next step, such as food items, are a specific target. This paper demonstrates a flexible RFID tag sensor fabricated using a low cost technique with an added zero-cost sensing function. It is more specifically applied to the sensing of degradable food, in particular beef meat in our demonstrated example. To reach this, the antenna is designed in such a way to be sensitive to the variation of the dielectric permittivity of the meat over time. The design of the sensing tag as well as its fabrication process are described. The fabrication involves inkjet printing of a silver nanoparticle based ink on a commercial low cost PET film to create a seed layer. It is followed by a copper electrodeposition step on top of the silver pattern to complete the tag to obtain the desired thickness and conductivity of the tag antenna. The results of the electrical tests showed that with the inkjet printing-electrodeposition combination it is possible to produce flexible electrically conductive patterns for practical RFID applications. The tag was then tested in close-to-real-world conditions and it is demonstrated that it can provide a sensing function to detect the consumption limit of the packaged beef.

  7. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  8. Label-free immunosensor based on hyperbranched polyester for specific detection of α-fetoprotein.

    PubMed

    Niu, Yanlian; Yang, Tian; Ma, Shangshang; Peng, Fang; Yi, Meihui; Wan, Mimi; Mao, Chun; Shen, Jian

    2017-06-15

    A novel label-free immunosensor based on hyperbranched polyester nanoparticles with nitrite groups (HBPE-NO 2 ), which were synthesized through a simple one-step chemical reaction, was first developed for specific detection of α-fetoprotein (AFP), the tumor marker for liver cancer. The obtained HBPE-NO 2 nanoparticles (NPs) were characterized by the proton nuclear magnetic resonance spectroscopy ( 1 H NMR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). And the fabricated process of immunosensor was investigated by attenuated total reflection Fourier-transform infrared spectra (ATR-FTIR), static water contact angles, scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performances of the AFP immunosensor were studied. Results indicated the prepared HBPE-NO 2 -modified immunosensor showed excellent electrochemical properties and satisfactory accuracy for the detection of AFP of the real clinical samples that attributed to the properties of the HBPE-NO 2 NPs, which had nanosized structure to increase the specific surface area and unique chemical reactivity for loading capacity of protein molecules. Construction of biosensors using the structure and properties of hyperbranched molecules will offer ideal electrode substrates, which provided more possibilities for the design of biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tissue-specific expression of silkmoth chorion genes in vivo using Bombyx mori nuclear polyhedrosis virus as a transducing vector.

    PubMed Central

    Iatrou, K; Meidinger, R G

    1990-01-01

    A pair of silkmoth chorion chromosomal genes, HcA.12-HcB.12, was inserted into a baculovirus transfer vector, pBmp2, derived from the nuclear polyhedrosis virus of Bombyx mori. This vector, which permits the insertion of foreign genetic material in the vicinity of a mutationally inactivated polyhedrin gene, was used to acquire the corresponding recombinant virus. Injection of mutant silkmoth pupae that lack all Hc chorion genes with the recombinant virus resulted in the infection of all internal organs including follicular tissue. Analysis of RNA from infected tissues has demonstrated that the two chorion genes present in the viral genome are correctly transcribed under the control of their own promoter in follicular cells, the tissue in which chorion genes are normally expressed. The chorion primary transcripts are also correctly processed in the infected follicular cells and yield mature mRNAs indistinguishable from authentic chorion mRNAs present in wild-type follicles. These results demonstrate that recombinant nuclear polyhedrosis viruses can be used as transducing vectors for introducing genetic material of host origin into the cells of the organism and that the transduced genes are transiently expressed in a tissue-specific manner under the control of their resident regulatory sequences. Thus we show the in vivo expression of cloned genes under cellular promoter control in an insect other than Drosophila melanogaster. The approach should be applicable to all insect systems that are subject to nuclear polyhedrosis virus infection. Images PMID:2187186

  10. 10 CFR 51.6 - Specific exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Specific exemptions. 51.6 Section 51.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED REGULATORY FUNCTIONS § 51.6 Specific exemptions. The Commission may, upon application of any interested...

  11. 10 CFR 51.6 - Specific exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Specific exemptions. 51.6 Section 51.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED REGULATORY FUNCTIONS § 51.6 Specific exemptions. The Commission may, upon application of any interested...

  12. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  13. Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off

    NASA Astrophysics Data System (ADS)

    Chen, Yiqin; Li, Zhiqin; Xiang, Quan; Wang, Yasi; Zhang, Zhiqiang; Duan, Huigao

    2015-10-01

    Lift-off is the most commonly used pattern-transfer method to define lithographic plasmonic metal nanostructures. A typical lift-off process is realized by dissolving patterned resists in solutions, which has the limits of low yield when not using adhesion layers and incompatibility with the fabrication of some specific structures and devices. In this work, we report an alternative ‘dry’ lift-off process to obtain metallic nanostructures via mechanical stripping by using the advantage of poor adhesion between resists and noble metal films. We show that this dry stripping lift-off method is effective for both positive- and negative-tone resists to fabricate sparse and densely-packed plasmonic nanostructures, respectively. In particular, this method is achieved without using an adhesion layer, which enables the mitigation of plasmon damping to obtain larger field enhancement. Dark-field scattering, one-photon luminescence and surface-enhanced Raman scattering measurements were performed to demonstrate the improved quality factor of the plasmonic nanostructures fabricated by this dry lift-off process.

  14. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection.

    PubMed

    Das, Maumita; Dhand, Chetna; Sumana, Gajjala; Srivastava, A K; Nagarajan, R; Nain, Lata; Iwamoto, M; Manaka, Takaaki; Malhotra, B D

    2011-03-14

    The present work describes electrophoretic fabrication of nanostructured chitosan-zirconium-oxide composite (CHIT-NanoZrO(2)) film (180 nm) onto indium-tin-oxide (ITO)-coated glass plate. This nanobiocomposite film has been explored as immobilization platform for probe DNA specific to M. Tuberculosis as model biomolecule to investigate its sensing characteristics. It is revealed that pH-responsive behavior of CHIT and its cationic skeleton is responsible for the movement of CHIT-NanoZrO(2) colloids toward cathode during electrophoretic deposition. The FT-IR, SEM, TEM, and EDX techniques have been employed for the structural, morphological, and composition analysis of the fabricated electrodes. The morphological studies clearly reveal uniform inter-linking and dispersion of hexagonal nanograins of ZrO(2) (30-50 nm) into the chitosan matrix, resulting in homogeneous nanobiocomposite formation. Electrochemical response measurements of DNA/CHIT-NanoZrO(2)/ITO bioelectrode, carried out using cyclic voltammetry and differential pulse voltammetry, reveal that this bioelectrode can specifically detect complementary target DNA up to 0.00078 μM with sensitivity of 6.38 × 10(-6) AμM(-1).

  15. Fabrication of microtemplates for the control of bacterial immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyahara, Yasuhiro; Mitamura, Koji; Saito, Nagahiro

    2009-09-15

    The authors described a region-selective immobilization methods of bacteria by using superhydrophobic/superhydrophilic and superhydrophobic/poly(ethylene glycol) (PEG) micropatterns for culture scaffold templates. In the case of superhydrophobic/superhydrophilic micropatterns, the superhydrophobic surface was prepared first by microwave-plasma enhanced chemical vapor deposition (MPECVD) from trimethylmethoxysilane. Then the superhydrophilic regions were fabricated by irradiating the superhydrophobic surface with vuv light through a stencil mask. In the case of the superhydrophobic/PEG micropatterned surfaces, PEG surfaces were fabricated first by chemical reaction of ester groups of p-nitrophenyl PEG with NH{sub 2} group of NH{sub 2}-terminated self assembled monolayer from n-6-hexyl-3-aminopropyltrimethoxysilane. The superhydrophobic regions were fabricated bymore » MPECVD thorough a stencil mask. In this study four bacteria were selected from viewpoint of peptidoglycan cell wall (E. coli versus B. subtilis), extracellular polysaccharide (E.coli versus P. stutzeri, P. aeruginosa), and growth rate (P. stutzeri versus P. aeruginosa). The former micropattern brought discrete adhesions of E. coli and B. subtilis specifically on the hydrophobic regions, Furthermore, using the superhydrophobic/PEG micropattern, adhesion of bacteria expanded for E. coli, B. subtilis, P. stutzeri, and P. aeruginosa. They observed a high bacterial adhesion onto superhydrophobic surfaces and the inhibitive effect of bacterial adhesion on PEG surfaces.« less

  16. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  17. Fabrication Control Plan for ORNL RH-LOCA ATF Test Specimens to be Irradiated in the ATR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard; Teague, Michael

    2014-06-01

    The purpose of this fabrication plan is (1) to summarize the design of a set of rodlets that will be fabricated and then irradiated in the Advanced Test Reactor (ATR) and (2) provide requirements for fabrication and acceptance criteria for inspections of the Light Water Reactor (LWR) – Accident Tolerant Fuels (ATF) rodlet components. The functional and operational (F&OR) requirements for the ATF program are identified in the ATF Test Plan. The scope of this document only covers fabrication and inspections of rodlet components detailed in drawings 604496 and 604497. It does not cover the assembly of these items tomore » form a completed test irradiation assembly or the inspection of the final assembly, which will be included in a separate INL final test assembly specification/inspection document. The controls support the requirements that the test irradiations must be performed safely and that subsequent examinations must provide valid results.« less

  18. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Han, Mei; Li, Yubing; He, Jingjing; Wang, Bing; Wang, Kunjie; Feng, Huixia

    2017-12-01

    Herein, we report an ultra-facile fabrication method for a phosphorus doped egg-like hierarchic porous carbon by microwave irradiation combining with self-activation strategy under air atmosphere. Comparing with the traditional pyrolytic carbonization method, the reported method exhibits incomparable merits, such as high energy efficiency, ultra-fast and inert atmosphere protection absent fabrication process. Similar morphology and graphitization degree with the sample fabricated by the traditional pyrolytic carbonization method under inert atmosphere protection for 2 h can be easily achieved by the reported microwave irradiation method just for 3 min under ambient atmosphere. The samples fabricated by the reported method display a unique phosphorus doped egg-like hierarchic porous structure, high specific surface area (1642 m2 g-1) and large pore volume (2.04 cm3 g-1). Specific capacitance of the samples fabricated by the reported method reaches up to 209 F g-1, and over 96.2% of initial capacitance remains as current density increasing from 0.5 to 20 A g-1, indicating the superior capacitance performance of the fabricated samples. The hierarchic porous structure, opened microporosity, additional pseudocapacitance, high electrolyte-accessible surface area and good conductivity make essential contribution to its superior capacitance performance.

  19. Flame retardant treatments of PBI fabric.

    NASA Technical Reports Server (NTRS)

    Temin, S. C.

    1972-01-01

    Fabrics knitted or woven from polybenzimidazole (PBI) fibers were treated to reduce flammability in oxygen atmospheres, particularly that of 5 psia oxygen. Bromination to approximately 15% weight gain of such fabrics led to markedly lower burning rates; samples brominated to over 80% weight gain were self-extinguishing in 5 psia oxygen. The loss in tensile strength of fabrics due to bromination was negligible although shrinkage was observed. Free fibers showed negligible losses on bromination. Treatment of PBI fabric with organophosphorus compounds also achieved self-extinguishing character in 5 psia oxygen but the enhanced flameproofing was largely lost on leaching. Reaction with POCl3 in pyridine led to a permanent reduction in flammability.

  20. Laboratory experiments in integrated circuit fabrication

    NASA Technical Reports Server (NTRS)

    Jenkins, Thomas J.; Kolesar, Edward S.

    1993-01-01

    The objectives of the experiment are fourfold: to provide practical experience implementing the fundamental processes and technology associated with the science and art of integrated circuit (IC) fabrication; to afford the opportunity for the student to apply the theory associated with IC fabrication and semiconductor device operation; to motivate the student to exercise engineering decisions associated with fabricating integrated circuits; and to complement the theory of n-channel MOS and diffused devices that are presented in the classroom by actually fabricating and testing them. Therefore, a balance between theory and practice can be realized in the education of young engineers, whose education is often criticized as lacking sufficient design and practical content.

  1. Nuclear winter - Physics and physical mechanisms

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Pollack, J. B.; Ackerman, T. P.; Sagan, C.

    1991-01-01

    The basic physics of the environmental perturbations caused by multiple nuclear detonations is explored, summarizing current knowledge of the possible physical, chemical, and biological impacts of nuclear war. Emphasis is given to the impact of the bomb-generated smoke (soot) particles. General classes of models that have been used to simulate nuclear winter are examined, using specific models as examples.

  2. 10 CFR 76.23 - Specific exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Specific exemptions. 76.23 Section 76.23 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS General Provisions § 76.23 Specific exemptions. The Commission may, upon its own initiative or upon application of the Corporation...

  3. 10 CFR 76.23 - Specific exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Specific exemptions. 76.23 Section 76.23 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS General Provisions § 76.23 Specific exemptions. The Commission may, upon its own initiative or upon application of the Corporation...

  4. 10 CFR 76.23 - Specific exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Specific exemptions. 76.23 Section 76.23 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS General Provisions § 76.23 Specific exemptions. The Commission may, upon its own initiative or upon application of the Corporation...

  5. 10 CFR 76.23 - Specific exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Specific exemptions. 76.23 Section 76.23 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS General Provisions § 76.23 Specific exemptions. The Commission may, upon its own initiative or upon application of the Corporation...

  6. 10 CFR 76.23 - Specific exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Specific exemptions. 76.23 Section 76.23 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS General Provisions § 76.23 Specific exemptions. The Commission may, upon its own initiative or upon application of the Corporation...

  7. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  8. A repeatable and scalable fabrication method for sharp, hollow silicon microneedles

    NASA Astrophysics Data System (ADS)

    Kim, H.; Theogarajan, L. S.; Pennathur, S.

    2018-03-01

    Scalability and manufacturability are impeding the mass commercialization of microneedles in the medical field. Specifically, microneedle geometries need to be sharp, beveled, and completely controllable, difficult to achieve with microelectromechanical fabrication techniques. In this work, we performed a parametric study using silicon etch chemistries to optimize the fabrication of scalable and manufacturable beveled silicon hollow microneedles. We theoretically verified our parametric results with diffusion reaction equations and created a design guideline for a various set of miconeedles (80-160 µm needle base width, 100-1000 µm pitch, 40-50 µm inner bore diameter, and 150-350 µm height) to show the repeatability, scalability, and manufacturability of our process. As a result, hollow silicon microneedles with any dimensions can be fabricated with less than 2% non-uniformity across a wafer and 5% deviation between different processes. The key to achieving such high uniformity and consistency is a non-agitated HF-HNO3 bath, silicon nitride masks, and surrounding silicon filler materials with well-defined dimensions. Our proposed method is non-labor intensive, well defined by theory, and straightforward for wafer scale mass production, opening doors to a plethora of potential medical and biosensing applications.

  9. Strengthening materials specifications

    NASA Astrophysics Data System (ADS)

    Sampath, K.

    2005-10-01

    Continuing efforts to strengthen materials specifications readily recognize that a mere compliance with a materials specification only assures a material meeting or exceeding the minimum expectations explicitly detailed in the specification. Implicitly, such efforts also recognize that additional and specific client needs must be addressed as supplementary requirements and introduced during material procurement to reduce risks and assure enhanced performance. This article describes two U.S. Navy-related case studies that allowed further strengthening of the materials specification process, using newer methods and renewed understanding. The first case demonstrates the use of a constraints-based modeling approach to specify the chemical composition of high-performance welding electrodes for critical U.S. Navy applications. This approach helps to distinguish high-performance welding electrode chemical compositions from rich and lean welding electrode chemical compositions that might limit the operational envelope, reduce performance, or both, while increasing overall cost of fabrication but otherwise meet electrode specification requirements. The second case identifies that the size of an ingot could be an important factor while specifying the aluminum and sulfur contents of very large-size, heavy-gauge plates. Renewed understanding of melt fluidity issues associated with the solidification of very large-size ingots shows that deficiencies in through-thickness ductility of heavy-gauge plates are related to controlling aluminum and sulfur contents of the voluminous melt, notwithstanding explicit compliance with specification requirements.

  10. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel

  11. Fabrication of Transition Edge Sensor Microcalorimeters for X-Ray Focal Planes

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Adams, Joseph S.; Audley, Heather; Bandler, Simon R.; Betancourt-Martinez, Gabriele; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline; Lee, Sang Jun; hide

    2015-01-01

    Requirements for focal planes for x-ray astrophysics vary widely depending on the needs of the science application such as photon count rate, energy band, resolving power, and angular resolution. Transition edge sensor x-ray calorimeters can encounter limitations when optimized for these specific applications. Balancing specifications leads to choices in, for example, pixel size, thermal sinking arrangement, and absorber thickness and material. For the broadest specifications, instruments can benefit from multiple pixel types in the same array or focal plane. Here we describe a variety of focal plane architectures that anticipate science requirements of x-ray instruments for heliophysics and astrophysics. We describe the fabrication procedures that enable each array and explore limitations for the specifications of such arrays, including arrays with multiple pixel types on the same array.

  12. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    PubMed

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  13. Systematic Analysis of the Functional Relevance of Nuclear Structure and Mechanics in Breast Cancer Progression

    DTIC Science & Technology

    2014-07-01

    Device Fabrication The migration devices were fabricated at the Cornell NanoScale Science and Technology Facility (CNF) using standard lithography ...mutations interfere with tissue-specific genes: lamin mutations may inhibit binding to tissue-specific factors [27] or lead to abnormal gene activation...mutations associated with stri- ated muscle disease can interfere with coupling to SUN proteins [77,78], emerin [59,77], Klaroid (a Drosophila nesprin

  14. Linking magnetic fabric and cumulate texture in layered mafic-ultramafic intrusions (Invited)

    NASA Astrophysics Data System (ADS)

    O Driscoll, B.; Stevenson, C.; Magee, C.

    2013-12-01

    Research on the magnetic fabrics of igneous rocks, pioneered by Balsley and Buddington[1] and Khan[2], has greatly contributed to our understanding of magma dynamics in lava flows, sheet intrusions and plutons over the past five decades. However, considerably few magnetic fabric studies have focused on layered mafic-ultramafic intrusions, particularly ';lopolithic' intrusions, despite the fact that such rocks may preserve a large range of small-scale kinematic structures potentially related to important magma chamber processes. This may be partly due to the fact that mafic-ultramafic cumulates commonly exhibit visible planar fabrics (mineral lamination), as well as compositional layering, in contrast to the frequent absence of such features in granite bodies or fine-grained mafic lava flows. Indeed, debates in the 1970s and 1980s on the development of layering and mineral fabrics in mafic-ultramafic intrusions, focused around the crystal settling versus in situ crystallisation paradigms, are classic in the subject of igneous petrology. Central to these debates is the notion that a wide range of magma chamber processes occur in layered mafic-ultramafic intrusions that are not frequently considered to occur in their relatively viscous granitic counterparts; in essence, the latter have historically been viewed as much more likely to ';freeze-in' a primary magma flow fabric whilst mafic-ultramafic intrusions are subjected to a more protracted solidification history. This wide array of potential initial sources for layering and mineral fabrics in layered mafic-ultramafic intrusions, together with the possible modification of textures at the postcumulus stage, demands a cautious application of any fabric analysis and presents a problem well-suited to interrogation by the AMS technique. The purpose of this contribution is to provide specific context on the application of AMS to elucidating the formation of cumulates in layered mafic-ultramafic intrusions. Examples of AMS

  15. Stirling Microregenerators Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  16. Development of an Electron-capture Technique Specific for Explosives Detection

    DOT National Transportation Integrated Search

    1974-07-01

    This document contains information on the design, fabrication, and testing of a prototype detector specific for explosives which employs electron-capture sensors. The technique used exploits the observation that the electronegative vapors from explos...

  17. Accelerated development of Zr-containing new generation ferritic steels for advanced nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Yang, Ying; Sridharan, K.

    2015-12-01

    The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as the sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computationalmore » tools) is an important path to more efficient alloy development and process optimization. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of Zr-bearing ferritic alloys that can be fabricated using conventional steelmaking methods. The new alloys are expected to have superior high-temperature creep performance and excellent radiation resistance as compared to Grade 91. The designed alloys were fabricated using arc-melting and drop-casting, followed by hot rolling and conventional heat treatments. Comprehensive experimental studies have been conducted on the developed alloys to evaluate their hardness, tensile properties, creep resistance, Charpy impact toughness, and aging resistance, as well as resistance to proton and heavy ion (Fe 2+) irradiation.« less

  18. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Fabrication and Evaluation of Titanium and Zirconium based Wires for use during Extended, Deep Space, Missions

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Novel materials and designs are necessary for transport vessels and propulsion systems to fulfill NASA's vision of easier access to space and the expansion of human exploration beyond low-earth orbit. Spacecraft components must necessarily be lighter and stronger than their predecessors and will likely be required to serve new purposes. Furthermore, they must be resilient to the thermal, vacuum, and radiation environment of space for extended periods of time and may need to perform in the near proximity of a nuclear fuel source. To this end research has been initiated to fabricate novel, composite, wires based on titanium and zirconium pearlitic alloys. It is expected that the fabricated wire will well endure in the space environment with application as tethers, sail components, fasteners, and a myriad of other (including earth-based) uses. A background on pearlitic wire, novel alloy development, microstructural characterization, and initial mechanical testing results will be presented and discussed.

  20. 49 CFR 193.2703 - Design and fabrication.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Design and fabrication. 193.2703 Section 193.2703...: FEDERAL SAFETY STANDARDS Personnel Qualifications and Training § 193.2703 Design and fabrication. For the design and fabrication of components, each operator shall use— (a) With respect to design, persons who...