Complete Dentures Fabricated with CAD/CAM Technology and a Traditional Clinical Recording Method.
Janeva, Nadica; Kovacevska, Gordana; Janev, Edvard
2017-10-15
The introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) technology into complete denture (CD) fabrication ushered in a new era in removable prosthodontics. Commercially available CAD/CAM denture systems are expected to improve upon the disadvantages associated with conventional fabrication. The purpose of this report is to present the workflow involved in fabricating a CD with a traditional clinical recording method and CAD/CAM technology and to summarize the advantages to the dental practitioner and the patient.
Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob
2018-01-02
Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.
SSC San Diego Biennial Review 2003. Vol 2: Communication and Information Systems
2003-01-01
University, Department of Electrical and Computer Engineering) Michael Jablecki (Science and Technology Corporation) Stochastic Unified Multiple...wearable computers and cellular phones. The technology-transfer process involved a coalition of government and industrial partners, each providing...the design and fabrication of the coupler. SSC San Diego developed a computer -controlled fused fiber fabrication station to achieve the required
Vascular tissue engineering by computer-aided laser micromachining.
Doraiswamy, Anand; Narayan, Roger J
2010-04-28
Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.
(In)Forming: The Affordances of Digital Fabrication in Architectural Education
ERIC Educational Resources Information Center
Cabrinha, Mark Newell
2010-01-01
This research focuses on the effect of technology on the culture of architectural education through the lens of digital fabrication (CAD/CAM). As the computer was introduced into design education long before digital fabrication was accessible, design culture has prioritized image over material experience. Digital fabrication enables a material…
Liang, Weiqiang; Yao, Yuanyuan; Huang, Zixian; Chen, Yuhong; Ji, Chenyang; Zhang, Jinming
2016-07-01
The purpose of this study was to evaluate the clinical application of individual craniofacial bone fabrications using computer-assisted design (CAD)-computer-assisted manufacturing technology for the reconstruction of craniofacial bone defects. A total of 8 patients diagnosed with craniofacial bone defects were enrolled in this study between May 2007 and August 2010. After computed tomography scans were obtained, the patients were fitted with artificial bone that was created using CAD software, rapid prototyping technology, and epoxy-methyl acrylate resin and hydroxyapatite materials. The fabrication was fixed to the defect area with titanium screws, and soft tissue defects were repaired if necessary. The fabrications were precisely fixed to the defect areas, and all wounds healed well without any serious complications except for 1 case with intraoral incision dehiscence, which required further treatment. Postoperative curative effects were retrospectively observed after 6 to 48 months, acceptable anatomic and cosmetic outcomes were obtained, and no rejections or other complications occurred. The use of CAD-computer-assisted manufacturing technology-assisted epoxy-methyl acrylate resin and hydroxyapatite composite artificial bone to treat patients with craniofacial bone defects could enable the precise reconstruction of these defects and obtain good anatomic and cosmetic outcomes. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
3D Printing technology over a drug delivery for tissue engineering.
Lee, Jin Woo; Cho, Dong-Woo
2015-01-01
Many researchers have attempted to use computer-aided design (CAD) and computer-aided manufacturing (CAM) to realize a scaffold that provides a three-dimensional (3D) environment for regeneration of tissues and organs. As a result, several 3D printing technologies, including stereolithography, deposition modeling, inkjet-based printing and selective laser sintering have been developed. Because these 3D printing technologies use computers for design and fabrication, and they can fabricate 3D scaffolds as designed; as a consequence, they can be standardized. Growth of target tissues and organs requires the presence of appropriate growth factors, so fabrication of 3Dscaffold systems that release these biomolecules has been explored. A drug delivery system (DDS) that administrates a pharmaceutical compound to achieve a therapeutic effect in cells, animals and humans is a key technology that delivers biomolecules without side effects caused by excessive doses. 3D printing technologies and DDSs have been assembled successfully, so new possibilities for improved tissue regeneration have been suggested. If the interaction between cells and scaffold system with biomolecules can be understood and controlled, and if an optimal 3D tissue regenerating environment is realized, 3D printing technologies will become an important aspect of tissue engineering research in the near future.
CAD/CAM complete dentures: a review of two commercial fabrication systems.
Kattadiyil, Mathew T; Goodacre, Charles J; Baba, Nadim Z
2013-06-01
The use of computer-aided design and computer-aided manufacturing (CAD/CAM) has become available for complete dentures through the AvaDent and Dentca systems. AvaDent uses laser scanning and computer technology. Teeth are arranged and bases formed using proprietary software.The bases are milled from prepolymerized pucks of resin. Dentca uses computer software to produce virtual maxillary and mandibular edentulous ridges, arrange the teeth and form bases. The dentures are fabricated using a conventional processing technique.
The Implications of Pervasive Computing on Network Design
NASA Astrophysics Data System (ADS)
Briscoe, R.
Mark Weiser's late-1980s vision of an age of calm technology with pervasive computing disappearing into the fabric of the world [1] has been tempered by an industry-driven vision with more of a feel of conspicuous consumption. In the modified version, everyone carries around consumer electronics to provide natural, seamless interactions both with other people and with the information world, particularly for eCommerce, but still through a pervasive computing fabric.
Educational technology, reimagined.
Eisenberg, Michael
2010-01-01
"Educational technology" is often equated in the popular imagination with "computers in the schools." But technology is much more than merely computers, and education is much more than mere schooling. The landscape of child-accessible technologies is blossoming in all sorts of directions: tools for communication, for physical construction and fabrication, and for human-computer interaction. These new systems and artifacts allow educational designers to think much more creatively about when and where learning takes place in children's lives, both within and outside the classroom.
NASA Astrophysics Data System (ADS)
The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.
Al Mortadi, Noor; Jones, Quentin; Eggbeer, Dominic; Lewis, Jeffrey; Williams, Robert J
2015-11-01
The aim of this study was to fabricate a resin appliance incorporating "wire" components without the use of an analog impression and dental casts using an intraoral scanner and computer technology to build the appliance. This unique alignment of technology offers an enormous reduction in the number of fabrication steps when compared with more traditional methods of manufacture. The prototype incorporated 2 Adams clasps and a fitted labial bow. The alloy components were built from cobalt-chromium in an initial powdered form using established digital technology methods and then inserted into a build of a resin base plate. This article reports the first known use of computer-aided design and additive manufacture to fabricate a resin and alloy appliance, and constitutes proof of the concept for such manufacturing. The original workflow described could be seen as an example for many other similar appliances, perhaps with active components. The scan data were imported into an appropriate specialized computer-aided design software, which was used in conjunction with a force feedback (haptic) interface. The appliance designs were then exported as stereolithography files and transferred to an additive manufacturing machine for fabrication. The results showed that the applied techniques may provide new manufacturing and design opportunities in orthodontics and highlights the need for intraoral-specific additive manufacture materials to be produced and tested for biocompatibility compliance. In a trial, the retainer was fitted orally and judged acceptable by the clinician according to the typical criteria when placing such appliances in situ. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
NASA Tech Briefs, June 1993. Volume 17, No. 6
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Imaging Technology: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1993. Volume 17, No. 2
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Communication Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1993. Volume 17, No. 8
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Computer Graphics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, March 1993. Volume 17, No. 3
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Astrophysics Data System (ADS)
Shatford, R.; Karanassios, Vassili
2014-05-01
Microplasmas are receiving attention in recent conferences and current scientific literature. In our laboratory, microplasmas-on-chips proved to be particularly attractive. The 2D- and 3D-chips we developed became hybrid because they were fitted with a quartz plate (quartz was used due to its transparency to UV). Fabrication of 2D- and 3D-chips for microplasma research is described. The fabrication methods described ranged from semiconductor fabrication technology, to Computer Numerical Control (CNC) machining, to 3D-printing. These methods may prove to be useful for those contemplating in entering microplasma research but have no access to expensive semiconductor fabrication equipment.
New ultraportable display technology and applications
NASA Astrophysics Data System (ADS)
Alvelda, Phillip; Lewis, Nancy D.
1998-08-01
MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.
NASA Tech Briefs, January 1994. Volume 18, No. 1
NASA Technical Reports Server (NTRS)
1994-01-01
Topics include: Communications Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, August 1994. Volume 18, No. 8
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Computer Hardware; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
Revilla León, M; Klemm, I M; García-Arranz, J; Özcan, M
2017-09-01
An edentulous patient was rehabilitated with maxillary metal-ceramic and mandibular metal-resin implant-supported fixed dental prosthesis (FDP). Metal frameworks of the FDPs were fabricated using 3D additive manufacturing technologies utilizing selective laser melting (SLM) and electron beam melting (EBM) processes. Both SLM and EBM technologies were employed in combination with computer numerical control (CNC) post-machining at the implant interface. This report highlights the technical and clinical protocol for fabrication of FDPs using SLM and EBM additive technologies. Copyright© 2017 Dennis Barber Ltd.
Lee, Ju-Hyoung; Park, In-Sook; Sohn, Dong-Seok
2016-07-01
If a cement-retained implant prosthesis is placed on an abutment, excess cement should be minimized or removed to prevent periimplant inflammation. Various methods for fabricating an abutment replica have been introduced to maintain tissue health and reduce clean-up time. The purpose of this article is to present an alternative technique for fabricating an abutment replica with computer-aided design/computer-aided manufacturing (CAD/CAM) technology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Virtual Surgical Planning in Craniofacial Surgery
Chim, Harvey; Wetjen, Nicholas; Mardini, Samir
2014-01-01
The complex three-dimensional anatomy of the craniofacial skeleton creates a formidable challenge for surgical reconstruction. Advances in computer-aided design and computer-aided manufacturing technology have created increasing applications for virtual surgical planning in craniofacial surgery, such as preoperative planning, fabrication of cutting guides, and stereolithographic models and fabrication of custom implants. In this review, the authors describe current and evolving uses of virtual surgical planning in craniofacial surgery. PMID:25210509
Evaluation of direct and indirect additive manufacture of maxillofacial prostheses.
Eggbeer, Dominic; Bibb, Richard; Evans, Peter; Ji, Lu
2012-09-01
The efficacy of computer-aided technologies in the design and manufacture of maxillofacial prostheses has not been fully proven. This paper presents research into the evaluation of direct and indirect additive manufacture of a maxillofacial prosthesis against conventional laboratory-based techniques. An implant/magnet-retained nasal prosthesis case from a UK maxillofacial unit was selected as a case study. A benchmark prosthesis was fabricated using conventional laboratory-based techniques for comparison against additive manufactured prostheses. For the computer-aided workflow, photogrammetry, computer-aided design and additive manufacture (AM) methods were evaluated in direct prosthesis body fabrication and indirect production using an additively manufactured mould. Qualitative analysis of position, shape, colour and edge quality was undertaken. Mechanical testing to ISO standards was also used to compare the silicone rubber used in the conventional prosthesis with the AM material. Critical evaluation has shown that utilising a computer-aided work-flow can produce a prosthesis body that is comparable to that produced using existing best practice. Technical limitations currently prevent the direct fabrication method demonstrated in this paper from being clinically viable. This research helps prosthesis providers understand the application of a computer-aided approach and guides technology developers and researchers to address the limitations identified.
Three-Dimensional Nanobiocomputing Architectures With Neuronal Hypercells
2007-06-01
Neumann architectures, and CMOS fabrication. Novel solutions of massive parallel distributed computing and processing (pipelined due to systolic... and processing platforms utilizing molecular hardware within an enabling organization and architecture. The design technology is based on utilizing a...Microsystems and Nanotechnologies investigated a novel 3D3 (Hardware Software Nanotechnology) technology to design super-high performance computing
NASA Tech Briefs, August 1995. Volume 19, No. 8
NASA Technical Reports Server (NTRS)
1995-01-01
There is a special focus on computer graphics and simulation in this issue. Topics covered include : Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer programs, Mechanics; Machinery; Fabrication Technology; and Mathematics and Information Sciences. There is a section on for Laser Technology, which includes a feature on Moving closer to the suns power.
NASA Tech Briefs, October 1994. Volume 18, No. 10
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Data Acquisition and Analysis; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
Flexible European fabrication systems - User experiences
NASA Astrophysics Data System (ADS)
Shah, Raymond
1987-10-01
Technological and economic aspects of the planning, realization, and operation of European flexible fabrication systems are discussed. The characteristics of the various systems are listed. The control and computing structures of the various systems are considered, and the improvements that have been made in their operation are addressed.
The Democratization of Production
ERIC Educational Resources Information Center
Bull, Glen; Groves, James
2009-01-01
Just as the democratization of information through personal computers was a key advance of the 20th century, the democratization of production through improvements in fabrication technologies will be a pivotal development in the 21st century. Digital fabrication is the process of translating a digital design into a physical object. At one time,…
Radiation shielding properties of barite coated fabric by computer programme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akarslan, F.; Molla, T.; Üncü, I. S.
2015-03-30
With the development of technology radiation started to be used in variety of different fields. As the radiation is hazardous for human health, it is important to keep radiation dose as low as possible. This is done mainly using shielding materials. Barite is one of the important materials in this purpose. As the barite is not used directly it can be used in some other materials such as fabric. For this purposes barite has been coated on fabric in order to improve radiation shielding properties of fabric. Determination of radiation shielding properties of coated fabric has been done by usingmore » computer program written C# language. With this program the images obtained from digital Rontgen films is used to determine radiation shielding properties in terms of image processing numerical values. Those values define radiation shielding and in this way the coated barite effect on radiation shielding properties of fabric has been obtained.« less
Development of software for computing forming information using a component based approach
NASA Astrophysics Data System (ADS)
Ko, Kwang Hee; Park, Jiing Seo; Kim, Jung; Kim, Young Bum; Shin, Jong Gye
2009-12-01
In shipbuilding industry, the manufacturing technology> has advanced at an unprecedented pace for the last decade. As a result, many automatic systems for cutting, welding, etc. have been developed and employed in the manufacturing process and accordingly the productivity has been increased drastically. Despite such improvement in the manufacturing technology', however, development of an automatic system for fabricating a curved hull plate remains at the beginning stage since hardware and software for the automation of the curved hull fabrication process should be developed differently depending on the dimensions of plates, forming methods and manufacturing processes of each shipyard. To deal with this problem, it is necessary> to create a "plug-in ''framework, which can adopt various kinds of hardware and software to construct a full automatic fabrication system. In this paper, a frame-work for automatic fabrication of curved hull plates is proposed, which consists of four components and related software. In particular the software module for computing fabrication information is developed by using the ooCBD development methodology; which can interface with other hardware and software with minimum effort. Examples of the proposed framework applied to medium and large shipyards are presented.
Binary phase digital reflection holograms - Fabrication and potential applications
NASA Technical Reports Server (NTRS)
Gallagher, N. C., Jr.; Angus, J. C.; Coffield, F. E.; Edwards, R. V.; Mann, J. A., Jr.
1977-01-01
A novel technique for the fabrication of binary-phase computer-generated reflection holograms is described. By use of integrated circuit technology, the holographic pattern is etched into a silicon wafer and then aluminum coated to make a reflection hologram. Because these holograms reflect virtually all the incident radiation, they may find application in machining with high-power lasers. A number of possible modifications of the hologram fabrication procedure are discussed.
Review: Polymeric-Based 3D Printing for Tissue Engineering.
Wu, Geng-Hsi; Hsu, Shan-Hui
Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.
Fabricating High-Resolution X-Ray Collimators
NASA Technical Reports Server (NTRS)
Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill
2008-01-01
A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.
NASA Tech Briefs, December 1991. Volume 15, No. 12
NASA Technical Reports Server (NTRS)
1991-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences,
NASA Tech Briefs, December 2002
NASA Technical Reports Server (NTRS)
2002-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
Hott, Morgan E; Megerian, Cliff A; Beane, Rich; Bonassar, Lawrence J
2004-07-01
The goal of the current study was to use computer-aided design and injection molding technologies to tissue engineer precisely shaped cartilage in the shape of butterfly tympanic membrane patches out of chondrocyte-seeded calcium alginate gels. Molds were designed on SolidWorks 2000 and built out of acrylonitrile butadiene styrene (ABS) using fused deposition modeling (FDM). Tympanic membrane patches were fabricated using bovine articular chondrocytes seeded at 50 x 10 cells/mL in 2% calcium alginate gels. Molded patches were cultured in vitro for up to 10 weeks and assessed biochemically, morphologically, and histologically. Unmolded patches demonstrated outstanding dimensional fidelity, with a volumetric precision of at least 3 microL, and maintained their shape well for up to 10 weeks of in vitro culture. Glycosaminoglycan and collagen content increased steadily over 10 weeks in culture, demonstrating continual deposition of new extracellular matrix consistent with new tissue development. The use of computer-aided design and injection molding technologies allows for the fabrication of very small, precisely shaped chondrocyte-seeded calcium alginate structures that faithfully maintain their shape during in vitro culture. In vitro fabrication of tympanic membrane patches with a precisely controlled geometry may have the potential to provide a minimally invasive alternative to traditional methods for the repair of chronic tympanic membrane perforations.
Implementing a new curriculum for computer-assisted restorations in prosthetic dentistry.
Schweyen, R; Beuer, F; Bochskanl, M; Hey, J
2018-05-01
Computer-aided design/computer-aided manufacturing (CAD/CAM) of fixed prosthetic restorations has gained popularity in the last decade. However, this field of dentistry has not been integrated in the dental curriculum at most universities. According to the method of Kern, a curriculum was designed and established on a voluntary basis in the prosthetic education of a German dental school. The success of the implementation was measured by evaluation carried out by the participants on a visual analogue scale. Furthermore, the clinical performance of the fabricated restorations was evaluated. Ninety-four percent of all students participated in the CAD/CAM curriculum indicating considerable interest. Nearly half of all students used the acquired knowledge to design crowns for their patients. All restorations fabricated by participants of the new CAD/CAM programme showed good clinical performance. By phasing-in the CAD/CAM training programme, independent CAD/CAM-based fabrication of all-ceramic crowns increased student's self-confidence in tooth preparation. A tendency was found that students using CAD/CAM technology prepared more teeth than their fellow students who did not use CAD/CAM technology. Further studies are required to investigate the influence of independent CAD/CAM-based single-crown fabrication on the quality of the preparation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Tech Briefs, November 1991. Volume 15, No. 11
NASA Technical Reports Server (NTRS)
1991-01-01
Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences,
NASA Tech Briefs, April 1989. Volume 13, No. 4
NASA Technical Reports Server (NTRS)
1989-01-01
A special feature of this issue is an article about the evolution of high technology in Texas. Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
Arafa, Khalid A O
2018-01-01
To assess the level of evidence that supports the quality of fit for removable partial denture (RPD) fabricated by computer-aided designing/computer aided manufacturing (CAD/CAM) and rapid prototyping (RP) technology. Methods: An electronic search was performed in Google Scholar, PubMed, and Cochrane library search engines, using Boolean operators. All articles published in English and published in the period from 1950 until April 2017 were eligible to be included in this review. The total number of articles contained the search terms in any part of the article (including titles, abstracts, or article texts) were screened, which resulted in 214 articles. After exclusion of irrelevant and duplicated articles, 12 papers were included in this systematic review. Results: All the included studies were case reports, except one study, which was a case series that recruited 10 study participants. The visual and tactile examination in the cast or clinically in the patient's mouth was the most-used method for assessment of the fit of RPDs. From all included studies, only one has assessed the internal fit between RPDs and oral tissues using silicone registration material. The vast majority of included studies found that the fit of RPDs ranged from satisfactory to excellent fit. Conclusion: Despite the lack of clinical trials that provide strong evidence, the available evidence supported the claim of good fit of RPDs fabricated by new technologies using CAD/CAM.
NASA Tech Briefs, August 1992. Volume 16, No. 8
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1992. Volume 16, No.9
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1993. Volume 17, No. 1
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
ERIC Educational Resources Information Center
Liu, Yuan H.; And Others
1994-01-01
Includes "Integrating Coursework in Design with Industry Projects" (Liu); "A 'Perfect' Project--Computer Assisted Manufacturing, Fabrication, and Recycling All in One" (Anderson); and "Fluid Sensing and Control" (Hawkins, Hardy). (SK)
NASA Tech Briefs, November 1992. Volume 16, No. 11
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, December 1992. Volume 16, No. 12
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
Laser targets compensate for limitations in inertial confinement fusion drivers
NASA Astrophysics Data System (ADS)
Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.
2005-10-01
Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.
Finelle, Gary; Lee, Sang J
Digital technology has been widely used in the field of implant dentistry. From a surgical standpoint, computer-guided surgery can be utilized to enhance primary implant stability and to improve the precision of implant placement. From a prosthetic standpoint, computer-aided design/computer-assisted manufacture (CAD/CAM) technology has brought about various restorative options, including the fabrication of customized abutments through a virtual design based on computer-guided surgical planning. This case report describes a novel technique combining the use of a three-dimensional (3D) printed surgical template for the immediate placement of an implant, with CAD/CAM technology to optimize hard and soft tissue healing after bone grafting with the use of a socket sealing abutment.
Architecture for distributed design and fabrication
NASA Astrophysics Data System (ADS)
McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.
1997-01-01
We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.
NASA Tech Briefs, October 1989. Volume 13, No. 10
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, February 1990. Volume 14, No. 2
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, January 1990. Volume 14, No. 1
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, November 1989. Volume 13, No. 11
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, September 1989. Volume 13, No. 9
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, October 1992. Volume 16, No. 10
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, December 1989. Volume 13, No. 12
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, April 1993. Volume 17, No. 4
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Optoelectronics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences;
NASA Tech Briefs, March 1990. Volume 14, No. 3
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
Linear and passive silicon diodes, isolators, and logic gates
NASA Astrophysics Data System (ADS)
Li, Zhi-Yuan
2013-12-01
Silicon photonic integrated devices and circuits have offered a promising means to revolutionalize information processing and computing technologies. One important reason is that these devices are compatible with conventional complementary metal oxide semiconductor (CMOS) processing technology that overwhelms current microelectronics industry. Yet, the dream to build optical computers has yet to come without the breakthrough of several key elements including optical diodes, isolators, and logic gates with low power, high signal contrast, and large bandwidth. Photonic crystal has a great power to mold the flow of light in micrometer/nanometer scale and is a promising platform for optical integration. In this paper we present our recent efforts of design, fabrication, and characterization of ultracompact, linear, passive on-chip optical diodes, isolators and logic gates based on silicon two-dimensional photonic crystal slabs. Both simulation and experiment results show high performance of these novel designed devices. These linear and passive silicon devices have the unique properties of small fingerprint, low power request, large bandwidth, fast response speed, easy for fabrication, and being compatible with COMS technology. Further improving their performance would open up a road towards photonic logics and optical computing and help to construct nanophotonic on-chip processor architectures for future optical computers.
Bilgin, Mehmet Selim; Baytaroğlu, Ebru Nur; Erdem, Ali; Dilber, Erhan
2016-01-01
The aim of this review was to investigate usage of computer-aided design/computer-aided manufacture (CAD/CAM) such as milling and rapid prototyping (RP) technologies for removable denture fabrication. An electronic search was conducted in the PubMed/MEDLINE, ScienceDirect, Google Scholar, and Web of Science databases. Databases were searched from 1987 to 2014. The search was performed using a variety of keywords including CAD/CAM, complete/partial dentures, RP, rapid manufacturing, digitally designed, milled, computerized, and machined. The identified developments (in chronological order), techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication are summarized. Using a variety of keywords and aiming to find the topic, 78 publications were initially searched. For the main topic, the abstract of these 78 articles were scanned, and 52 publications were selected for reading in detail. Full-text of these articles was gained and searched in detail. Totally, 40 articles that discussed the techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication and the articles were incorporated in this review. Totally, 16 of the papers summarized in the table. Following review of all relevant publications, it can be concluded that current innovations and technological developments of CAD/CAM and RP allow the digitally planning and manufacturing of removable dentures from start to finish. As a result according to the literature review CAD/CAM techniques and supportive maxillomandibular relationship transfer devices are growing fast. In the close future, fabricating removable dentures will become medical informatics instead of needing a technical staff and procedures. However the methods have several limitations for now.
Bilgin, Mehmet Selim; Baytaroğlu, Ebru Nur; Erdem, Ali; Dilber, Erhan
2016-01-01
The aim of this review was to investigate usage of computer-aided design/computer-aided manufacture (CAD/CAM) such as milling and rapid prototyping (RP) technologies for removable denture fabrication. An electronic search was conducted in the PubMed/MEDLINE, ScienceDirect, Google Scholar, and Web of Science databases. Databases were searched from 1987 to 2014. The search was performed using a variety of keywords including CAD/CAM, complete/partial dentures, RP, rapid manufacturing, digitally designed, milled, computerized, and machined. The identified developments (in chronological order), techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication are summarized. Using a variety of keywords and aiming to find the topic, 78 publications were initially searched. For the main topic, the abstract of these 78 articles were scanned, and 52 publications were selected for reading in detail. Full-text of these articles was gained and searched in detail. Totally, 40 articles that discussed the techniques, advantages, and disadvantages of CAD/CAM and RP for removable denture fabrication and the articles were incorporated in this review. Totally, 16 of the papers summarized in the table. Following review of all relevant publications, it can be concluded that current innovations and technological developments of CAD/CAM and RP allow the digitally planning and manufacturing of removable dentures from start to finish. As a result according to the literature review CAD/CAM techniques and supportive maxillomandibular relationship transfer devices are growing fast. In the close future, fabricating removable dentures will become medical informatics instead of needing a technical staff and procedures. However the methods have several limitations for now. PMID:27095912
Yoo, Dongjin
2012-07-01
Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Tech Briefs, January 1989. Volume 13, No. 1
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: Electronic Components & and Circuits. Electronic Systems, A Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences.
NASA Tech Briefs, November 1993. Volume 17, No. 11
NASA Technical Reports Server (NTRS)
1993-01-01
Topics covered: Advanced Manufacturing; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, April 1992. Volume 16, No. 4
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Zhao, Linping; Patel, Pravin K; Cohen, Mimis
2012-07-01
Computer aided design and manufacturing (CAD/CAM) technology today is the standard in manufacturing industry. The application of the CAD/CAM technology, together with the emerging 3D medical images based virtual surgical planning (VSP) technology, to craniomaxillofacial reconstruction has been gaining increasing attention to reconstructive surgeons. This article illustrates the components, system and clinical management of the VSP and CAD/CAM technology including: data acquisition, virtual surgical and treatment planning, individual implant design and fabrication, and outcome assessment. It focuses primarily on the technical aspects of the VSP and CAD/CAM system to improve the predictability of the planning and outcome.
NASA Tech Briefs, May 1992. Volume 16, No. 5
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, May 1988. Volume 12, No. 5
NASA Technical Reports Server (NTRS)
1988-01-01
Topics : New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics ; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, July 1992. Volume 16, No. 7
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, November 1990. Volume 14, No. 11
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, March 1992. Volume 16, No. 3
NASA Technical Reports Server (NTRS)
1992-01-01
Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, April 1990. Volume 14, No. 4
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, September 1994. Volume 18, No. 9
NASA Technical Reports Server (NTRS)
1994-01-01
Topics: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor); Burnham, Calvin (Editor)
1995-01-01
The papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held at the Marriott Orlando World Center, Orlando, Florida, are contained in this document and encompass the research, technology, applications, funding, political, and social aspects of superconductivity. Specifically, the areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges, and power and energy applications.
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Editor); Burnham, Calvin (Editor)
1995-01-01
This document contains papers presented at the 4th International Conference Exhibition: World Congress on Superconductivity held June 27-July 1, 1994 in Orlando, Florida. These documents encompass research, technology, applications, funding, political, and social aspects of superconductivity. The areas covered included: high-temperature materials; thin films; C-60 based superconductors; persistent magnetic fields and shielding; fabrication methodology; space applications; physical applications; performance characterization; device applications; weak link effects and flux motion; accelerator technology; superconductivity energy; storage; future research and development directions; medical applications; granular superconductors; wire fabrication technology; computer applications; technical and commercial challenges; and power and energy applications.
COINS: A composites information database system
NASA Technical Reports Server (NTRS)
Siddiqi, Shahid; Vosteen, Louis F.; Edlow, Ralph; Kwa, Teck-Seng
1992-01-01
An automated data abstraction form (ADAF) was developed to collect information on advanced fabrication processes and their related costs. The information will be collected for all components being fabricated as part of the ACT program and include in a COmposites INformation System (COINS) database. The aim of the COINS development effort is to provide future airframe preliminary design and fabrication teams with a tool through which production cost can become a deterministic variable in the design optimization process. The effort was initiated by the Structures Technology Program Office (STPO) of the NASA LaRC to implement the recommendations of a working group comprised of representatives from the commercial airframe companies. The principal working group recommendation was to re-institute collection of composite part fabrication data in a format similar to the DOD/NASA Structural Composites Fabrication Guide. The fabrication information collection form was automated with current user friendly computer technology. This work in progress paper describes the new automated form and features that make the form easy to use by an aircraft structural design-manufacturing team.
Additive direct-write microfabrication for MEMS: A review
NASA Astrophysics Data System (ADS)
Teh, Kwok Siong
2017-12-01
Direct-write additive manufacturing refers to a rich and growing repertoire of well-established fabrication techniques that builds solid objects directly from computer- generated solid models without elaborate intermediate fabrication steps. At the macroscale, direct-write techniques such as stereolithography, selective laser sintering, fused deposition modeling ink-jet printing, and laminated object manufacturing have significantly reduced concept-to-product lead time, enabled complex geometries, and importantly, has led to the renaissance in fabrication known as the maker movement. The technological premises of all direct-write additive manufacturing are identical—converting computer generated three-dimensional models into layers of two-dimensional planes or slices, which are then reconstructed sequentially into threedimensional solid objects in a layer-by-layer format. The key differences between the various additive manufacturing techniques are the means of creating the finished layers and the ancillary processes that accompany them. While still at its infancy, direct-write additive manufacturing techniques at the microscale have the potential to significantly lower the barrier-of-entry—in terms of cost, time and training—for the prototyping and fabrication of MEMS parts that have larger dimensions, high aspect ratios, and complex shapes. In recent years, significant advancements in materials chemistry, laser technology, heat and fluid modeling, and control systems have enabled additive manufacturing to achieve higher resolutions at the micrometer and nanometer length scales to be a viable technology for MEMS fabrication. Compared to traditional MEMS processes that rely heavily on expensive equipment and time-consuming steps, direct-write additive manufacturing techniques allow for rapid design-to-prototype realization by limiting or circumventing the need for cleanrooms, photolithography and extensive training. With current direct-write additive manufacturing technologies, it is possible to fabricate unsophisticated micrometer scale structures at adequate resolutions and precisions using materials that range from polymers, metals, ceramics, to composites. In both academia and industry, direct-write additive manufacturing offers extraordinary promises to revolutionize research and development in microfabrication and MEMS technologies. Importantly, direct-write additive manufacturing could appreciably augment current MEMS fabrication technologies, enable faster design-to-product cycle, empower new paradigms in MEMS designs, and critically, encourage wider participation in MEMS research at institutions or for individuals with limited or no access to cleanroom facilities. This article aims to provide a limited review of the current landscape of direct-write additive manufacturing techniques that are potentially applicable for MEMS microfabrication.
Update of patient-specific maxillofacial implant.
Owusu, James A; Boahene, Kofi
2015-08-01
Patient-specific implant (PSI) is a personalized approach to reconstructive and esthetic surgery. This is particularly useful in maxillofacial surgery in which restoring the complex three-dimensional (3D) contour can be quite challenging. In certain situations, the best results can only be achieved with implants custom-made to fit a particular need. Significant progress has been made over the past decade in the design and manufacture of maxillofacial PSIs. Computer-aided design (CAD)/computer-aided manufacturing (CAM) technology is rapidly advancing and has provided new options for fabrication of PSIs with better precision. Maxillofacial PSIs can now be designed using preoperative imaging data as input into CAD software. The designed implant is then fabricated using a CAM technique such as 3D printing. This approach increases precision and decreases or completely eliminates the need for intraoperative modification of implants. The use of CAD/CAM-produced PSIs for maxillofacial reconstruction and augmentation can significantly improve contour outcomes and decrease operating time. CAD/CAM technology allows timely and precise fabrication of maxillofacial PSIs. This approach is gaining increasing popularity in maxillofacial reconstructive surgery. Continued advances in CAD technology and 3D printing are bound to improve the cost-effectiveness and decrease the production time of maxillofacial PSIs.
NASA Tech Briefs, June 1988. Volume 12, No. 6
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
LASER Tech Briefs, Winter 1994. Volume 2, No. 1
NASA Technical Reports Server (NTRS)
Schnirring, Bill (Editor)
1994-01-01
Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences, and Books and reports
NASA Tech Briefs, May 1993. Volume 17, No. 5
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Advanced Composites and Plastics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1992. Volume 16, No. 2
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: New Product Development; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1993. Volume 17, No. 7
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Data Acquisition and Analysis: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1992. Volume 16, No. 6
NASA Technical Reports Server (NTRS)
1992-01-01
Topics covered include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1995. Volume 19, No. 1
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, April 1988. Volume 12, No. 4
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
NASA Tech Briefs, July 1989. Volume 13, No. 7
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials;;Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences.
Restoration of the Donor Face After Facial Allotransplantation
Grant, Gerald T.; Liacouras, Peter; Santiago, Gabriel F.; Garcia, Juan R.; Al Rakan, Mohammed; Murphy, Ryan; Armand, Mehran; Gordon, Chad R.
2014-01-01
Introduction Current protocols for facial transplantation include the mandatory fabrication of an alloplastic “mask” to restore the congruency of the donor site in the setting of “open casket” burial. However, there is currently a paucity of literature describing the current state-of-the-art and available options. Methods During this study, we identified that most of donor masks are fabricated using conventional methods of impression, molds, silicone, and/or acrylic application by an experienced anaplastologist or maxillofacial prosthetics technician. However, with the recent introduction of several enhanced computer-assisted technologies, our facial transplant team hypothesized that there were areas for improvement with respect to cost and preparation time. Results The use of digital imaging for virtual surgical manipulation, computer-assisted planning, and prefabricated surgical cutting guides—in the setting of facial transplantation—provided us a novel opportunity for digital design and fabrication of a donor mask. The results shown here demonstrate an acceptable appearance for “open-casket” burial while maintaining donor identity after facial organ recovery. Conclusions Several newer techniques for fabrication of facial transplant donor masks exist currently and are described within the article. These encompass digital impression, digital design, and additive manufacturing technology. PMID:24835867
NASA Tech Briefs, May 1991. Volume 15, No. 5
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1991. Volume 15, No. 1
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences;Life Sciences.
NASA Tech Briefs, September 1991. Volume 15, No. 9
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1990. Volume 14, No. 6
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1991. Volume 15, No. 8
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1991. Volume 15, No. 2
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, March 1991. Volume 15, No. 3
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, December 1990. Volume 14, No. 12
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1991. Volume 15, No. 6
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, May 1990. Volume 14, No. 5
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, April 1991. Volume 15, No. 4
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1990. Volume 14, No. 10
NASA Technical Reports Server (NTRS)
1990-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical' Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1991. Volume 15, No. 10
NASA Technical Reports Server (NTRS)
1991-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1988. Volume 12, No. 8
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July/August 1988. Volume 12, No. 7
NASA Technical Reports Server (NTRS)
1988-01-01
Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
LASER Tech Briefs, Fall 1994. Volume 2, No. 4
NASA Technical Reports Server (NTRS)
1994-01-01
Topics in this issue of LASER Tech briefs include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
NASA Tech Briefs, October 1988. Volume 12, No. 9
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1991. Volume 15, No. 7
NASA Technical Reports Server (NTRS)
1991-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, March 1987. Volume 11, No. 3
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, May 1987. Volume 11, No. 5
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1987. Volume 11, No. 9
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1989. Volume 13, No. 6
NASA Technical Reports Server (NTRS)
1989-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1987. Volume 11, No. 2
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, January 1987. Volume 11, No. 2
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, July 1990. Volume 14, No. 7
NASA Technical Reports Server (NTRS)
1990-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1990. Volume 14, No. 8
NASA Technical Reports Server (NTRS)
1990-01-01
Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, April 1987. Volume 11, No. 4
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1987. Volume 11, No. 8
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, June 1987. Volume 11, No. 6
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, August 1989. Volume 13, No. 8
NASA Technical Reports Server (NTRS)
1989-01-01
Topics covered: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams
Bennamoun, Mohammed
2014-01-01
In prosthodontics, conventional methods of fabrication of oral and facial prostheses have been considered the gold standard for many years. The development of computer-aided manufacturing and the medical application of this industrial technology have provided an alternative way of fabricating oral and facial prostheses. This narrative review aims to evaluate the different streams of computer-aided manufacturing in prosthodontics. To date, there are two streams: the subtractive and the additive approaches. The differences reside in the processing protocols, materials used, and their respective accuracy. In general, there is a tendency for the subtractive method to provide more homogeneous objects with acceptable accuracy that may be more suitable for the production of intraoral prostheses where high occlusal forces are anticipated. Additive manufacturing methods have the ability to produce large workpieces with significant surface variation and competitive accuracy. Such advantages make them ideal for the fabrication of facial prostheses. PMID:24817888
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity.
NASA Tech Briefs, November 1988. Volume 12, No. 10
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September/October 1986. Volume 10, No. 5
NASA Technical Reports Server (NTRS)
1986-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, November/December 1986. Volume 10, No. 6
NASA Technical Reports Server (NTRS)
1986-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, October 1993. Volume 17, No. 10
NASA Technical Reports Server (NTRS)
1993-01-01
Topics include: Sensors; esign and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication technology; Mathematics and Information Sciences; Life Sciences; Books and Reports.
NASA Tech Briefs, May/June 1986. Volume 10, No. 3
NASA Technical Reports Server (NTRS)
1986-01-01
Topics discussed include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, September 1990. Volume 14, No. 9
NASA Technical Reports Server (NTRS)
1990-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, November/December 1987. Volume 11, No. 10
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1994. Volume 18, No. 2
NASA Technical Reports Server (NTRS)
1994-01-01
Topics covered include: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports
NASA Tech Briefs, March 1988. Volume 12, No. 3
NASA Technical Reports Server (NTRS)
1988-01-01
Topics include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
NASA Tech Briefs, July/August 1987. Volume 11, No. 7
NASA Technical Reports Server (NTRS)
1987-01-01
Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences.
Unit cell-based computer-aided manufacturing system for tissue engineering.
Kang, Hyun-Wook; Park, Jeong Hun; Kang, Tae-Yun; Seol, Young-Joon; Cho, Dong-Woo
2012-03-01
Scaffolds play an important role in the regeneration of artificial tissues or organs. A scaffold is a porous structure with a micro-scale inner architecture in the range of several to several hundreds of micrometers. Therefore, computer-aided construction of scaffolds should provide sophisticated functionality for porous structure design and a tool path generation strategy that can achieve micro-scale architecture. In this study, a new unit cell-based computer-aided manufacturing (CAM) system was developed for the automated design and fabrication of a porous structure with micro-scale inner architecture that can be applied to composite tissue regeneration. The CAM system was developed by first defining a data structure for the computing process of a unit cell representing a single pore structure. Next, an algorithm and software were developed and applied to construct porous structures with a single or multiple pore design using solid freeform fabrication technology and a 3D tooth/spine computer-aided design model. We showed that this system is quite feasible for the design and fabrication of a scaffold for tissue engineering.
Massively parallel information processing systems for space applications
NASA Technical Reports Server (NTRS)
Schaefer, D. H.
1979-01-01
NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.
NASA Tech Briefs, March/April 1986. Volume 10, No. 2
NASA Technical Reports Server (NTRS)
1986-01-01
Topics covered include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences.
NASA Tech Briefs, February 1988. Volume 12, No. 2
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Systems; and Life Sciences.
NASA Tech Briefs, January 1988. Volume 12, No. 1
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered include: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
Design and fabrication of complete dentures using CAD/CAM technology
Han, Weili; Li, Yanfeng; Zhang, Yue; lv, Yuan; Zhang, Ying; Hu, Ping; Liu, Huanyue; Ma, Zheng; Shen, Yi
2017-01-01
Abstract The aim of the study was to test the feasibility of using commercially available computer-aided design and computer-aided manufacturing (CAD/CAM) technology including 3Shape Dental System 2013 trial version, WIELAND V2.0.049 and WIELAND ZENOTEC T1 milling machine to design and fabricate complete dentures. The modeling process of full denture available in the trial version of 3Shape Dental System 2013 was used to design virtual complete dentures on the basis of 3-dimensional (3D) digital edentulous models generated from the physical models. The virtual complete dentures designed were exported to CAM software of WIELAND V2.0.049. A WIELAND ZENOTEC T1 milling machine controlled by the CAM software was used to fabricate physical dentitions and baseplates by milling acrylic resin composite plates. The physical dentitions were bonded to the corresponding baseplates to form the maxillary and mandibular complete dentures. Virtual complete dentures were successfully designed using the software through several steps including generation of 3D digital edentulous models, model analysis, arrangement of artificial teeth, trimming relief area, and occlusal adjustment. Physical dentitions and baseplates were successfully fabricated according to the designed virtual complete dentures using milling machine controlled by a CAM software. Bonding physical dentitions to the corresponding baseplates generated the final physical complete dentures. Our study demonstrated that complete dentures could be successfully designed and fabricated by using CAD/CAM. PMID:28072686
Rapid prototyping--when virtual meets reality.
Beguma, Zubeda; Chhedat, Pratik
2014-01-01
Rapid prototyping (RP) describes the customized production of solid models using 3D computer data. Over the past decade, advances in RP have continued to evolve, resulting in the development of new techniques that have been applied to the fabrication of various prostheses. RP fabrication technologies include stereolithography (SLA), fused deposition modeling (FDM), computer numerical controlled (CNC) milling, and, more recently, selective laser sintering (SLS). The applications of RP techniques for dentistry include wax pattern fabrication for dental prostheses, dental (facial) prostheses mold (shell) fabrication, and removable dental prostheses framework fabrication. In the past, a physical plastic shape of the removable partial denture (RPD) framework was produced using an RP machine, and then used as a sacrificial pattern. Yet with the advent of the selective laser melting (SLM) technique, RPD metal frameworks can be directly fabricated, thereby omitting the casting stage. This new approach can also generate the wax pattern for facial prostheses directly, thereby reducing labor-intensive laboratory procedures. Many people stand to benefit from these new RP techniques for producing various forms of dental prostheses, which in the near future could transform traditional prosthodontic practices.
NASA Tech Briefs, July/August 1986. Volume 10, No. 4
NASA Technical Reports Server (NTRS)
1986-01-01
Topic include: NASA TU Serv1ces; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Materials; Computer Programs; Mechanics; Physical Sciences; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences. 3
Custom-made, root-analogue direct laser metal forming implant: a case report.
Mangano, Francesco Guido; Cirotti, Bruno; Sammons, Rachel Lilian; Mangano, Carlo
2012-11-01
In the last few years, the application of digital technology in dentistry has become widespread with the introduction of cone beam computed tomography (CBCT) scan technology, and considerable progress has been made in the development of computer-aided design/ computer-aided manufacturing (CAD/CAM) techniques, including direct laser metal forming (DLMF). DLMF is a technology which allows solids with complex geometry to be produced by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model. For dental implants, the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer by layer, the desired object. At present, the combined use of CBCT 3D data and CAD/CAM technology makes it possible to manufacture custom-made, root-analogue implants (RAI) with sufficient precision. This report demonstrates the successful clinical use of a custom-made, root-analogue DLMF implant. CBCT images of a non-restorable right maxillary first premolar were acquired and transformed into a 3D model. From this model, a custom-made, root-analogue DLMF implant was fabricated. Immediately after tooth extraction, the RAI with a pre-operatively designed abutment was placed in the extraction socket and restored with a single crown. At the 1-year follow-up examination, the RAI showed a good functional and aesthetic integration. The introduction of DLMF technology signals the start of a new revolutionary era for implant dentistry as its immense potential for producing highly complex macro- and microstructures is receiving vast interest in different medical fields.
Scaling Properties of Algorithms in Nanotechnology
NASA Technical Reports Server (NTRS)
Saini, Subhash; Bailey, David H.; Chancellor, Marisa K. (Technical Monitor)
1996-01-01
At the present time, several technologies are pressing the limits of microminiature manufacturing. In semiconductor technology, for example, the Intel Pentium Pro (which is used in the Department of Energy's ASCI 'red' parallel supercomputer system) and the DEC Alpha 21164 (which is used in the CRAY T3E) both are fabricated using 0.35 micron process technology. Recently Texas Instruments (TI) announced the availability of 0.25 micron technology chips by the end of 1996 and plans to have 0.18 micron devices in production within two years. However, some significant challenges lie down the road. These include the skyrocketing cost of manufacturing plants, the 0.1 micron foreseeable limit of the photolithography process, quantum effects, data communication bandwidth limitations, heat dissipation, and others. Some related microminiature technologies include micro-electromechanical systems (MEMS), opto-electronic devices, quantum computing, biological computing, and others. All of these technologies require the fabrication of devices whose sizes are approaching the nanometer level. As such they are often collectively referred to with the name 'nanotechnology'. Clearly nanotechnology in this general sense is destined to be a very important technology of the 21st century. The ultimate dream in this arena is 'molecular nanotechnology', in other words the fabrication of devices and materials with most or all atoms and molecules in a pre-programmed position, possibly placed there by 'nano-robots'. This futuristic capability will probably not be achieved for at least two decades. However, it appears that somewhat less ambitious variations of molecular nanotechnology, such as devices and materials based on 'buckyballs' and 'nanotubes' may be realized significantly sooner, possibly within ten years or so. Even at the present time, semiconductor devices are approaching the regime where quantum chemical effects must be considered in design.
[An experimental research on the fabrication of the fused porcelain to CAD/CAM molar crown].
Dai, Ning; Zhou, Yongyao; Liao, Wenhe; Yu, Qing; An, Tao; Jiao, Yiqun
2007-02-01
This paper introduced the fabrication process of the fused porcelain to molar crown with CAD/CAM technology. Firstly, preparation teeth data was retrieved by the 3D-optical measuring system. Then, we have reconstructed the inner surface designed the outer surface shape with the computer aided design software. Finally, the mini high-speed NC milling machine was used to produce the fused porcelain to CAD/CAM molar crown. The result has proved that the fabrication process is reliable and efficient. The dental restoration quality is steady and precise.
Human-Computer Interaction and Virtual Environments
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
1995-01-01
The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.
Electromagnetic microforging apparatus for low-cost fabrication of molds for microlens arrays
NASA Astrophysics Data System (ADS)
Pribošek, Jaka; Diaci, Janez
2015-06-01
This study addresses the problem of low-cost microlens fabrication and outlines the development of a novel microforging apparatus for microlens mold fabrication. The apparatus consists of an electromagnetic impact tool which strikes a piston with a hardened steel ball into a workpiece. The impact creates a spherical indentation which serves as a lens cavity. The microforging apparatus is controlled by a microprocessor control unit communicating with a personal computer and enables on-the-fly variation of electromagnetic excitation to control the microforging process. We studied the effects of process parameters on the diameter of the fabricated lens cavities inspected by a custom automatic image processing algorithm. Different microforging regimes are analyzed and discussed. The surface quality of fabricated cavities has been inspected by confocal microscopy and the influence of fill factor on sphericity error has been studied. The proposed microforging method enables the fabrication of molds with 100% fill factor, surface roughness as low as Ra 0.15 µm and sphericity error lower than 0.5 µm. The fabricated microlens arrays exhibit nearly diffraction-limited performance, offering a wide range of possible applications. We believe this study provides access to microoptical technology for smaller optical and computer vision laboratories.
NASA Technical Reports Server (NTRS)
Savich, Gregory R.
2004-01-01
The time when computing power is limited by the copper wire inherent in the computer system and not the speed of the microprocessor is rapidly approaching. With constant advances in computer technology, many researchers believe that in only a few years, optical interconnects will begin to replace copper wires in your Central Processing Unit (CPU). On a more macroscopic scale, the telecommunications industry has already made the switch to optical data transmission as, to date, fiber optic technology is the only reasonable method of reliable, long range data transmission. Within the span of a decade, we will see optical technologies move from the macroscopic world of the telecommunications industry to the microscopic world of the computer chip. Already, the communications industry is marketing commercially available optical links to connect two personal computers, thereby eliminating the need for standard and comparatively slow wired and wireless Ethernet transfers and greatly increasing the distance the computers can be separated. As processing demands continue to increase, the realm of optical communications will continue to move closer to the microprocessor and quite possibly onto the microprocessor itself. A day may come when copper connections are used only to supply power, not transfer data. This summer s work marks some of the beginning stages of a 5 to 10 year, long-term research project to create and study a free-space, 1 Gigabit/sec optical interconnect. The research will result in a novel fabricated, chip-to-chip interconnect consisting of a Vertical Cavity Surface Emitting Laser (VCSEL) Diode linked through free space to a Metal- Semiconductor-Metal (MSM) Photodetector with the possible integration of microlenses for signal focusing and Micro-Electromechanical Systems (MEMS) devices for optical signal steering. The advantages, disadvantages, and practicality of incorporating flip-chip mounting technologies will also be addressed. My work began with the design and construction of a test setup for the experiment and then appropriate characterization of the test system. Specifically, I am involved in the characterization of a commercially available 1550nm wavelength, 5mW diode laser and a study of its modulation bandwidth. Commercially produced photodetectors as well as the incorporation of microwave technology, in the form of RF input and output, are used in the characterization procedure. The next stage involves the use of a probe station and network analyzer to characterize and test a series of photodetectors fabricated on a 2 inch, Indium Gallium Arsenide (InGaAs) wafer in the Branch s microlithography lab. Other project responsibilities include, but are not limited to the incorporation of a transimpedance amplifier to the photodetector circuit; a study of VCSEL technology; bit error rate analysis of an optical interconnect system; and analysis of free space divergence of the VCSEL, optical path length of the interconnect; and any other pertinent optical properties of the one gigabit per second interconnect for fabrication and testing.
Eggbeer, Dominic; Bibb, Richard; Evans, Peter
2006-01-01
This paper is the first in a series that aims to identify the specification requirements for advanced digital technologies that may be used to design and fabricate complex, soft tissue facial prostheses. Following a review of previously reported techniques, appropriate and currently available technologies were selected and applied in a pilot study. This study uses a range of optical surface scanning, computerized tomography, computer-aided design, and rapid prototyping technologies to capture, design, and fabricate a bone-anchored auricular prosthesis, including the retentive components. The techniques are assessed in terms of their effectiveness, and the results are used to identify future research and specification requirements to direct developments. The case study identifies that while digital technologies may be used to design implant-retained facial prostheses, many limitations need to be addressed to make the techniques clinically viable. It also identifies the need to develop a more robust specification that covers areas such as resolution, accuracy, materials, and design, against which potential technologies may be assessed. There is a need to develop a specification against which potential technologies may be assessed for their suitability in soft tissue facial prosthetics. The specification will be developed using further experimental research studies.
An investigation of the potential of rapid prototyping technology for image‐guided surgery
Rajon, Didier A.; Bova, Frank J.; Bhasin, R. Rick; Friedman, William A.
2006-01-01
Image‐guided surgery can be broken down into two broad categories: frame‐based guidance and frameless guidance. In order to reduce both the invasive nature of stereotactic guidance and the cost in equipment and time, we have developed a new guidance technique based on rapid prototyping (RP) technology. This new system first builds a computer model of the patient anatomy and then fabricates a physical reference frame that provides a precise and unique fit to the patient anatomy. This frame incorporates a means of guiding the surgeon along a preplanned surgical trajectory. This process involves (1) obtaining a high‐resolution CT or MR scan, (2) building a computer model of the region of interest, (3) developing a surgical plan and physical guide, (4) designing a frame with a unique fit to the patient's anatomy with a physical linkage to the surgical guide, and (5) fabricating the frame using an RP unit. Software was developed to support these processes. To test the accuracy of this process, we first scanned and reproduced a plastic phantom fabricated to validate the system's ability to build an accurate virtual model. A target on the phantom was then identified, a surgical approach planned, a surgical guide designed, and the accuracy and precision of guiding a probe to that target were determined. Steps 1 through 5 were also evaluated using a head phantom. The results show that the RP technology can replicate an object from CT scans with submillimeter resolution. The fabricated reference frames, when positioned on the surface of the phantom and used to guide a surgical probe, can position the probe tip with an accuracy of 1.7 mm at the probe tip. These results demonstrate that the RP technology can be used for the fabrication of customized positioning frames for use in image‐guided surgery. PACS number: 87.57.Gg PMID:17533357
NASA Tech Briefs, February 2002. Volume 26, No. 2
NASA Technical Reports Server (NTRS)
2002-01-01
Topics include:a technology focus on computers, electronic components and systems, software, materials, mechanics,physical sciences machinery, manufacturing/fabrication, mathematics, book and reports, motion control tech briefs and a special section on Photonics Tech Briefs.
NASA Tech Briefs, June 1995. Volume 19, No. 6
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: communications technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, life sciences, books and reports, a special section of laser Tech Briefs.
A Status Review of the Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) Project
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Funk, Christy; Keller, Donald F.; Ringertz, Ulf
2016-01-01
An overview of recent progress regarding the computational aeroelastic and aeroservoelastic (ASE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed to date with a focus on unstructured CFD grids, computational aeroelastic analyses, sonic boom propagation studies that include static aeroelastic effects, and gust loads analyses. In addition, flutter boundaries using aeroelastic Reduced-Order Models (ROMs) are presented at various Mach numbers of interest. Details regarding a collaboration with the Royal Institute of Technology (KTH, Stockholm, Sweden) to design, fabricate, and test a full-span aeroelastic wind-tunnel model are also presented.
NASA Astrophysics Data System (ADS)
Benini, Luca
2017-06-01
The "internet of everything" envisions trillions of connected objects loaded with high-bandwidth sensors requiring massive amounts of local signal processing, fusion, pattern extraction and classification. From the computational viewpoint, the challenge is formidable and can be addressed only by pushing computing fabrics toward massive parallelism and brain-like energy efficiency levels. CMOS technology can still take us a long way toward this goal, but technology scaling is losing steam. Energy efficiency improvement will increasingly hinge on architecture, circuits, design techniques such as heterogeneous 3D integration, mixed-signal preprocessing, event-based approximate computing and non-Von-Neumann architectures for scalable acceleration.
Papadiochou, Sofia; Pissiotis, Argirios L
2018-04-01
The comparative assessment of computer-aided design and computer-aided manufacturing (CAD-CAM) technology and other fabrication techniques pertaining to marginal adaptation should be documented. Limited evidence exists on the effect of restorative material on the performance of a CAD-CAM system relative to marginal adaptation. The purpose of this systematic review was to investigate whether the marginal adaptation of CAD-CAM single crowns, fixed dental prostheses, and implant-retained fixed dental prostheses or their infrastructures differs from that obtained by other fabrication techniques using a similar restorative material and whether it depends on the type of restorative material. An electronic search of English-language literature published between January 1, 2000, and June 30, 2016, was conducted of the Medline/PubMed database. Of the 55 included comparative studies, 28 compared CAD-CAM technology with conventional fabrication techniques, 12 contrasted CAD-CAM technology and copy milling, 4 compared CAD-CAM milling with direct metal laser sintering (DMLS), and 22 investigated the performance of a CAD-CAM system regarding marginal adaptation in restorations/infrastructures produced with different restorative materials. Most of the CAD-CAM restorations/infrastructures were within the clinically acceptable marginal discrepancy (MD) range. The performance of a CAD-CAM system relative to marginal adaptation is influenced by the restorative material. Compared with CAD-CAM, most of the heat-pressed lithium disilicate crowns displayed equal or smaller MD values. Slip-casting crowns exhibited similar or better marginal accuracy than those fabricated with CAD-CAM. Cobalt-chromium and titanium implant infrastructures produced using a CAD-CAM system elicited smaller MD values than zirconia. The majority of cobalt-chromium restorations/infrastructures produced by DMLS displayed better marginal accuracy than those fabricated with the casting technique. Compared with copy milling, the majority of zirconia restorations/infrastructures produced by CAD-CAM milling exhibited better marginal adaptation. No clear conclusions can be drawn about the superiority of CAD-CAM milling over the casting technique and DMLS regarding marginal adaptation. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Design, processing and testing of LSI arrays, hybrid microelectronics task
NASA Technical Reports Server (NTRS)
Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.; Rothrock, C. W.
1979-01-01
Mathematical cost models previously developed for hybrid microelectronic subsystems were refined and expanded. Rework terms related to substrate fabrication, nonrecurring developmental and manufacturing operations, and prototype production are included. Sample computer programs were written to demonstrate hybrid microelectric applications of these cost models. Computer programs were generated to calculate and analyze values for the total microelectronics costs. Large scale integrated (LST) chips utilizing tape chip carrier technology were studied. The feasibility of interconnecting arrays of LSU chips utilizing tape chip carrier and semiautomatic wire bonding technology was demonstrated.
Quantum engineering of transistors based on 2D materials heterostructures
NASA Astrophysics Data System (ADS)
Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca
2018-03-01
Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.
Quantum engineering of transistors based on 2D materials heterostructures.
Iannaccone, Giuseppe; Bonaccorso, Francesco; Colombo, Luigi; Fiori, Gianluca
2018-03-01
Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.
Probabilistic simulation of concurrent engineering of propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Technology readiness and the available infrastructure is assessed for timely computational simulation of concurrent engineering for propulsion systems. Results for initial coupled multidisciplinary, fabrication-process, and system simulators are presented including uncertainties inherent in various facets of engineering processes. An approach is outlined for computationally formalizing the concurrent engineering process from cradle-to-grave via discipline dedicated workstations linked with a common database.
NASA Tech Briefs, March 1998. Volume 22, No. 3
NASA Technical Reports Server (NTRS)
1998-01-01
Topics include: special coverage of computer aided design and engineering, electronic components and circuits, electronic systems, physical sciences, materials, computer software, special coverage on mechanical technology, machinery/automation, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section of Electronics Tech Briefs. Profiles of the exhibitors at the National Design Engineering show are also included in this issue.
Alam, Md Shahid; Sugavaneswaran, M; Arumaikkannu, G; Mukherjee, Bipasha
2017-08-01
Ocular prosthesis is either a readymade stock shell or custom made prosthesis (CMP). Presently, there is no other technology available, which is either superior or even comparable to the conventional CMP. The present study was designed to fabricate ocular prosthesis using computer aided design (CAD) and rapid manufacturing (RM) technology and to compare it with custom made prosthesis (CMP). The ocular prosthesis prepared by CAD was compared with conventional CMP in terms of time taken for fabrication, weight, cosmesis, comfort, and motility. Two eyes of two patients were included. Computerized tomography scan of wax model of socket was converted into three dimensional format using Materialize Interactive Medical Image Control System (MIMICS)software and further refined. This was given as an input to rapid manufacturing machine (Polyjet 3-D printer). The final painting on prototype was done by an ocularist. The average effective time required for fabrication of CAD prosthesis was 2.5 hours; and weight 2.9 grams. The same for CMP were 10 hours; and 4.4 grams. CAD prosthesis was more comfortable for both the patients. The study demonstrates the first ever attempt of fabricating a complete ocular prosthesis using CAD and rapid manufacturing and comparing it with conventional CMP. This prosthesis takes lesser time for fabrication, and is more comfortable. Studies with larger sample size will be required to further validate this technique.
NASA Tech Briefs, February 1989. Volume 13, No. 2
NASA Technical Reports Server (NTRS)
1989-01-01
This issue contains a special feature on shaping the future with Ceramics. Other topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences,
Suarez, Maria J; Paisal, Iria; Rodriguez-Alonso, Veronica; Lopez-Suarez, Carlos
This study compared the marginal gaps of computer-aided design/computer-aided manufacture (CAD/CAM)-fabricated all-ceramic crowns constructed from scanned impressions and models and with two different occlusal reduction designs. Two typodont mandibular first molars were prepared to receive CAD/CAM-fabricated all-ceramic crowns. Both molars were prepared to ideal crown reduction, the first with anatomical occlusal reduction (AOR) and the second with completely flat occlusal reduction (FOR). Nine polyvinyl siloxane impressions (PVS) were taken, and nine stone replicas fabricated for each preparation. All impressions and stone models were scanned using a laser scanner (Planmeca Planscan, E4D technologies), and 36 lithium disilicate (IPS e.max CAD) crowns were milled. The marginal gap was measured in four locations using a light stereomicroscope. Crowns constructed from preparations with both occlusal reduction designs demonstrated similar marginal gaps (FOR = 97.98; AOR = 89.12; P = .739). However, all crowns constructed from scanned impressions presented significantly larger marginal gaps than the crowns fabricated from scanned models (impressions = 109.26; models = 77.84; P = .002). Scanning stone models produced all-ceramic crowns with significantly smaller marginal gaps than scanning impressions, irrespective of the occlusal reduction design.
Three-dimensional integration of nanotechnologies for computing and data storage on a single chip
NASA Astrophysics Data System (ADS)
Shulaker, Max M.; Hills, Gage; Park, Rebecca S.; Howe, Roger T.; Saraswat, Krishna; Wong, H.-S. Philip; Mitra, Subhasish
2017-07-01
The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors—promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage—fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce ‘highly processed’ information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.
Three-dimensional integration of nanotechnologies for computing and data storage on a single chip.
Shulaker, Max M; Hills, Gage; Park, Rebecca S; Howe, Roger T; Saraswat, Krishna; Wong, H-S Philip; Mitra, Subhasish
2017-07-05
The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors-promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage-fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce 'highly processed' information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-08-21
Recent advancements in technology scaling have shown a trend towards greater integration with large-scale chips containing thousands of processors connected to memories and other I/O devices using non-trivial network topologies. Software simulation proves insufficient to study the tradeoffs in such complex systems due to slow execution time, whereas hardware RTL development is too time-consuming. We present OpenSoC Fabric, an on-chip network generation infrastructure which aims to provide a parameterizable and powerful on-chip network generator for evaluating future high performance computing architectures based on SoC technology. OpenSoC Fabric leverages a new hardware DSL, Chisel, which contains powerful abstractions provided by itsmore » base language, Scala, and generates both software (C++) and hardware (Verilog) models from a single code base. The OpenSoC Fabric2 infrastructure is modeled after existing state-of-the-art simulators, offers large and powerful collections of configuration options, and follows object-oriented design and functional programming to make functionality extension as easy as possible.« less
A synthetic design environment for ship design
NASA Technical Reports Server (NTRS)
Chipman, Richard R.
1995-01-01
Rapid advances in computer science and information system technology have made possible the creation of synthetic design environments (SDE) which use virtual prototypes to increase the efficiency and agility of the design process. This next generation of computer-based design tools will rely heavily on simulation and advanced visualization techniques to enable integrated product and process teams to concurrently conceptualize, design, and test a product and its fabrication processes. This paper summarizes a successful demonstration of the feasibility of using a simulation based design environment in the shipbuilding industry. As computer science and information science technologies have evolved, there have been many attempts to apply and integrate the new capabilities into systems for the improvement of the process of design. We see the benefits of those efforts in the abundance of highly reliable, technologically complex products and services in the modern marketplace. Furthermore, the computer-based technologies have been so cost effective that the improvements embodied in modern products have been accompanied by lowered costs. Today the state-of-the-art in computerized design has advanced so dramatically that the focus is no longer on merely improving design methodology; rather the goal is to revolutionize the entire process by which complex products are conceived, designed, fabricated, tested, deployed, operated, maintained, refurbished and eventually decommissioned. By concurrently addressing all life-cycle issues, the basic decision making process within an enterprise will be improved dramatically, leading to new levels of quality, innovation, efficiency, and customer responsiveness. By integrating functions and people with an enterprise, such systems will change the fundamental way American industries are organized, creating companies that are more competitive, creative, and productive.
LASER Tech Briefs, September 1993. Volume 1, No. 1
NASA Technical Reports Server (NTRS)
Schnirring, Bill (Editor)
1993-01-01
This edition of LASER Tech briefs contains a feature on photonics. The other topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, Life Sciences and books and reports.
NASA Tech Briefs, December 1995. Volume 19, No. 12
NASA Technical Reports Server (NTRS)
1995-01-01
Topics include: a special focus section on Bio/Medical technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, book and reports, and a special section on Laser Tech Briefs.
A unified approach for composite cost reporting and prediction in the ACT program
NASA Technical Reports Server (NTRS)
Freeman, W. Tom; Vosteen, Louis F.; Siddiqi, Shahid
1991-01-01
The Structures Technology Program Office (STPO) at NASA Langley Research Center has held two workshops with representatives from the commercial airframe companies to establish a plan for development of a standard cost reporting format and a cost prediction tool for conceptual and preliminary designers. This paper reviews the findings of the workshop representatives with a plan for implementation of their recommendations. The recommendations of the cost tracking and reporting committee will be implemented by reinstituting the collection of composite part fabrication data in a format similar to the DoD/NASA Structural Composites Fabrication Guide. The process of data collection will be automated by taking advantage of current technology with user friendly computer interfaces and electronic data transmission. Development of a conceptual and preliminary designers' cost prediction model will be initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design (CAD) programs is assessed.
Nozzles for Focusing Aerosol Particles
2009-10-01
Fabrication of the nozzle with the desired shape was accomplished using EDM technology. First, a copper tungsten electrode was turned on a CNC lathe . The...small (0.9-mm diameter). The external portions of the nozzles were machined in a more conventional manner using computer numerical control ( CNC ... lathes and milling machines running programs written by computer aided machining (CAM) software. The close tolerance of concentricity of the two
Deep sub-micron low-Tc Josephson technology - The opportunities and the challenges
NASA Astrophysics Data System (ADS)
Ketchen, M. B.
1993-03-01
It is suggested that the possibility now exists of highly leveraging existing semiconductor technology to explore submicrometer Josephson technology. Some of the opportunities and challenges of such an undertaking are discussed in the context of SQUIDs and digital applications. In the area of digital Josephson, a 50-100-ps cycle-time 64-b reduced instruction set computer (RISC) microprocessor is proposed as a long-term goal. While it is unlikely that one will see a sub-100-ps system like this in the near term, research results supporting its feasibility may ultimately help build the case for the resources needed to produce it. Fabrication has been and will probably continue to be an impediment to the exploration of sub- and deep sub-micrometer Josephson technology. Coupling to existing semiconductor fabrication capability should help considerably in this area and should help to lay the groundwork for eventual manufacturing of sub-micrometer Josephson products.
NASA Astrophysics Data System (ADS)
Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei
2011-03-01
We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.
Index to NASA Tech Briefs, 1974
NASA Technical Reports Server (NTRS)
1975-01-01
The following information was given for 1974: (1) abstracts of reports dealing with new technology derived from the research and development activities of NASA or the U.S. Atomic Energy Commission, arranged by subjects: electronics/electrical, electronics/electrical systems, physical sciences, materials/chemistry, life sciences, mechanics, machines, equipment and tools, fabrication technology, and computer programs, (2) indexes for the above documents: subject, personal author, originating center.
NASA Tech Briefs, May 1989. Volume 13, No. 5
NASA Technical Reports Server (NTRS)
1989-01-01
This issue contains a special feature on the flight station of the future, discussing future enhancements to Aircraft cockpits. Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, and Mathematics and Information Sciences.
Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM
2011-01-18
Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.
Yoon, Hyung-In; Han, Jung-Suk
2016-02-01
The fabrication of dental prostheses with computer-aided design and computer-aided manufacturing shows acceptable marginal fits and favorable treatment outcomes. This clinical report describes the management of a patient who had undergone a mandibulectomy and received an implant-supported fixed prosthesis by using additive manufacturing for the framework and subtractive manufacturing for the monolithic zirconia restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Bioprinting toward organ fabrication: challenges and future trends.
Ozbolat, Ibrahim T; Yu, Yin
2013-03-01
Tissue engineering has been a promising field of research, offering hope for bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3-D) vascularized organs remains the main technological barrier to be overcome. Organ printing, which is defined as computer-aided additive biofabrication of 3-D cellular tissue constructs, has shed light on advancing this field into a new era. Organ printing takes advantage of rapid prototyping (RP) technology to print cells, biomaterials, and cell-laden biomaterials individually or in tandem, layer by layer, directly creating 3-D tissue-like structures. Here, we overview RP-based bioprinting approaches and discuss the current challenges and trends toward fabricating living organs for transplant in the near future.
Ekstrand, Karl; Hirsch, Jan-M
2008-03-01
Oral cancer is a mutilating disease. Because of the expanding application of computer technology in medicine, new methods are constantly evolving. This project leads into a new technology in maxillofacial reconstructive therapy using a redesigned zygoma fixture. Previous development experiences showed that the procedure was time-consuming and painful for the patients. Frequent episodes of sedation or general anesthetics were required and the rehabilitation is costly. The aim of our new treatment goal was to allow the patients to wake up after tumor surgery with a functional rehabilitation in place. Stereolithographic models were introduced to produce a model from the three-dimensional computed tomography (CT). A guide with the proposed resection was fabricated, and the real-time maxillectomy was performed. From the postoperative CT, a second stereolithographic model was manufactured and in addition, a stent for the optimal position of the implants. Customized zygoma implants were installed (R-zygoma, Integration AB, Göteborg, Sweden). A fixed construction was fabricated by using a new material based on poly(methylacrylate) reinforced with carbon/graphite fibers and attached to the implants. On the same master cast, a separate obturator was fabricated in permanent soft silicon. The result of this project showed that it was possible to create a virtual plan preoperatively to apply during surgery in order for the patient to wake up functionally rehabilitated. From a quality-of-life perspective, it is an advantage to be rehabilitated fast. By using new computer technology, pain and discomfort are less and the total rehabilitation is faster, which in turn reduces days in hospital and thereby total costs.
Nelson, Neha; K S, Jyothi; Sunny, Kiran
2017-03-01
The margins of copings for crowns and retainers of fixed partial dentures affect the progress of microleakage and dental caries. Failures occur due to altered fit which is also influenced by the method of fabrication. An in-vitro study was conducted to determine among the cast base metal, copy milled zirconia, computer aided designing computer aided machining/manufacturing zirconia and direct metal laser sintered copings which showed best marginal accuracy and internal fit. Forty extracted maxillary premolars were mounted on an acrylic model and reduced occlusally using a milling machine up to a final tooth height of 4 mm from the cementoenamel junction. Axial reduction was accomplished on a surveyor and a chamfer finish line was given. The impressions and dies were made for fabrication of copings which were luted on the prepared teeth under standardized loading, embedded in self-cure acrylic resin, sectioned and observed using scanning electron microscope for internal gap and marginal accuracy. The copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Comparison of mean between the four groups by ANOVA and post-hoc Tukey HSD tests showed a statistically significant difference between all the groups (p⟨0.05). It was concluded that the copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Additive digital technologies such as direct metal laser sintering could be cost-effective for the clinician, minimize failures related to fit and increase longevity of teeth and prostheses. Copyright© 2017 Dennis Barber Ltd.
Solid Freeform Fabrication of Aesthetic Objects
Hart, George [SUNY Stony Brook, Stony Brook, New York, United States
2018-01-08
Solid Freeform Fabrication (aka. Rapid Prototyping) equipment can produce beautiful three-dimensional objects of exquisite intricacy. To use this technology to its full potential requires spatial visualization in the designer and new geometric algorithms as tools. As both a sculptor and a research professor in the Computer Science department at Stony Brook University, George Hart is exploring algorithms for the design of elaborate aesthetic objects. In this talk, he will describe this work, show many images, and bring many physical models to display.
NASA Tech Briefs, March 1989. Volume 13, No. 3
NASA Technical Reports Server (NTRS)
1989-01-01
This issue's special features cover the NASA inventor of the year, and the other nominees for the year. Other Topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences
Study of the Use of Time-Mean Vortices to Generate Lift for MAV Applications
2011-05-31
microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters (geometry, frequency, amplitude of oscillation, etc...issue involved. Towards this end, a suspended microplate was fabricated via MEMS technology and driven to in-plane resonance via Lorentz force...force to drive the suspended MEMS-based microplate to in-plane resonance. Computational effort centers around optimization of a range of parameters
Lalande, David; Hodd, Jeffrey A; Brousseau, John S; Ramos, Van; Dunham, Daniel; Rueggeberg, Frederick
2017-10-14
Because crowns with open margins are a well-known problem and can lead to complications, it is important to assess the accuracy of margins resulting from the use of a new technique. Currently, data regarding the marginal fit of computer-aided design and computer-aided manufacturing (CAD-CAM) technology to fabricate a complete gold crown (CGC) from a castable acrylate resin polymer block are lacking. The purpose of this in vitro study was to compare marginal discrepancy widths of CGCs fabricated by using either conventional hand waxing or acrylate resin polymer blocks generated by using CAD-CAM technology. A plastic model of a first mandibular molar was prepared by using a 1-mm, rounded chamfer margin on the entire circumference of the tooth. The master die was duplicated 30 times, and 15 wax patterns were fabricated by using a manual waxing technique, and 15 were fabricated by using CAD-CAM technology. All patterns were invested and cast, and resulting CGCs were cemented on their respective die by using resin-modified glass ionomer cement. The specimens were then embedded in acrylic resin and sectioned buccolingually. The buccal and lingual marginal discrepancies of each sectioned portion were measured by using microscopy at ×50 magnification. Data were subjected to repeated measures 2-way ANOVA, by using the Tukey post hoc pairwise comparison test (α=.05). The factor of "technique" had no significant influence on marginal discrepancy measurement (P=.431), but a significant effect of "margin location" (P=.019) was noted. The confounding combination of factors was found to be significantly lower marginal discrepancy dimensions of the lingual margin discrepancy than on the buccal side by using CAD-CAM technology. The marginal discrepancy of CAD-CAM acrylate resin crowns was not significantly different from those made with a conventional manual method; however, lingual margin discrepancies present from CAD-CAM-prepared crowns were significantly less than those measured on the respective buccal surface. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology
NASA Astrophysics Data System (ADS)
Riahi, Mohammadreza
2016-06-01
In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.
Self-aligned photolithography for the fabrication of fully transparent high-voltage devices
NASA Astrophysics Data System (ADS)
Zhang, Yonghui; Mei, Zengxia; Huo, Wenxing; Wang, Tao; Liang, Huili; Du, Xiaolong
2018-05-01
High-voltage devices, working in the range of hundreds of volts, are indispensable elements in the driving or readout circuits for various kinds of displays, integrated microelectromechanical systems and x-ray imaging sensors. However, the device performances are found hardly uniform or repeatable due to the misalignment issue, which are extremely common for offset drain high-voltage devices. To resolve this issue, this article reports a set of self-aligned photolithography technology for the fabrication of high-voltage devices. High-performance fully-transparent high-voltage thin film transistors, diodes and logic inverters are successfully fabricated with this technology. Unlike other self-aligned routes, opaque masks are introduced on the backside of the transparent substrate to facilitate proximity exposure method. The photolithography process is simulated and analyzed with technology computer aided design simulation to explain the working principle of the proximity exposure method. The substrate thickness is found to be vital for the implementation of this technology based on both simulation and experimental results. The electrical performance of high-voltage devices is dependent on the offset length, which can be delicately modulated by changing the exposure dose. The presented self-aligned photolithography technology is proved to be feasible in high-voltage circuits, demonstrating its huge potential in practical industrial applications.
Galarraga, Haize; Warren, Robert J.; Lados, Diana A.; ...
2017-01-06
Electron beam melting (EBM) is a metal powder bed fusion additive manufacturing (AM) technology that is used to fabricate three-dimensional near-net-shaped parts directly from computer models. Ti-6Al-4V is the most widely used and studied alloy for this technology and is the focus of this work in its ELI (Extra Low Interstitial) variation. The mechanisms of microstructure formation, evolution, and its subsequent influence on mechanical properties of the alloy in as-fabricated condition have been documented by various researchers. In the present work, the thermal history resulting in the formation of the as-fabricated microstructure was analyzed and studied by a thermal simulation.more » Subsequently different heat treatments were performed based on three approaches in order to study the effects of heat treatments on the singular and exclusive microstructure formed during the EBM fabrication process. In the first approach, the effect of cooling rate after the solutionizing process was studied. In the second approach, the variation of α lath thickness during annealing treatment and correlation with mechanical properties was established. In the last approach, several solutionizing and aging experiments were conducted.« less
Yu, Lili; El-Damak, Dina; Radhakrishna, Ujwal; Ling, Xi; Zubair, Ahmad; Lin, Yuxuan; Zhang, Yuhao; Chuang, Meng-Hsi; Lee, Yi-Hsien; Antoniadis, Dimitri; Kong, Jing; Chandrakasan, Anantha; Palacios, Tomas
2016-10-12
Two-dimensional electronics based on single-layer (SL) MoS 2 offers significant advantages for realizing large-scale flexible systems owing to its ultrathin nature, good transport properties, and stable crystalline structure. In this work, we utilize a gate first process technology for the fabrication of highly uniform enhancement mode FETs with large mobility and excellent subthreshold swing. To enable large-scale MoS 2 circuit, we also develop Verilog-A compact models that accurately predict the performance of the fabricated MoS 2 FETs as well as a parametrized layout cell for the FET to facilitate the design and layout process using computer-aided design (CAD) tools. Using this CAD flow, we designed combinational logic gates and sequential circuits (AND, OR, NAND, NOR, XNOR, latch, edge-triggered register) as well as switched capacitor dc-dc converter, which were then fabricated using the proposed flow showing excellent performance. The fabricated integrated circuits constitute the basis of a standard cell digital library that is crucial for electronic circuit design using hardware description languages. The proposed design flow provides a platform for the co-optimization of the device fabrication technology and circuits design for future ubiquitous flexible and transparent electronics using two-dimensional materials.
Kocaağaoğlu, Hasan; Albayrak, Haydar; Kilinc, Halil Ibrahim; Gümüs, Hasan Önder
2017-11-01
The use of computer-aided design and computer-aided manufacturing (CAD-CAM) for metal-ceramic restorations has increased with advances in the technology. However, little is known about the marginal and internal adaptation of restorations fabricated using laser sintering (LS) and soft milling (SM). Moreover, the effects of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic restorations fabricated with LS and SM is also unknown. The purpose of this in vitro study was to investigate the effects of repeated ceramic firings on the marginal and internal adaptation of metal-ceramic copings fabricated using the lost wax (LW), LS, and SM techniques. Ten LW, 10 LS, and 10 SM cobalt-chromium (Co-Cr) copings were fabricated for an artificial tooth (Frasaco GmbH). After the application of veneering ceramic (VITA VMK Master; VITA Zahnfabrik), the marginal and internal discrepancies of these copings were measured with a silicone indicator paste and a stereomicroscope at ×100 magnification after the first, second, and third clinical simulated ceramic firing cycles. Repeated measures 2-way ANOVA and the Fisher LSD post hoc test were used to evaluate differences in marginal and internal discrepancies (α=.05). Neither fabrication protocol nor repeated ceramic firings had any statistically significant effect on internal discrepancy values (P>.05). Marginal discrepancy values were also statistically unaffected by repeated ceramic firings (P>.05); however, the fabrication protocol had a significant effect on marginal discrepancy values (P<.001), with LW resulting in higher marginal discrepancy values than LS or SM (P<.05). Marginal discrepancy values did not vary between LS and SM (P>.05). All groups demonstrated clinically acceptable marginal adaptation after repeated ceramic firing cycles; however, the LS and SM groups demonstrated better marginal adaptation than that of LW group and may be appropriate clinical alternatives to LW. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
LaBarge, Mark A; Parvin, Bahram; Lorens, James B
2014-01-01
The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments has revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes, and in a number of cases has revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. PMID:24582543
Stereolithography: a potential new tool in forensic medicine.
Dolz, M S; Cina, S J; Smith, R
2000-06-01
Stereolithography is a computer-mediated method that can be used to quickly create anatomically correct three-dimensional epoxy and acrylic resin models from various types of medical data. Multiple imaging modalities can be exploited, including computed tomography and magnetic resonance imaging. The technology was first developed and used in 1986 to overcome limitations in previous computer-aided manufacturing/milling techniques. Stereolithography is presently used to accurately reproduce both the external and internal anatomy of body structures. Current medical uses of stereolithography include preoperative planning of orthopedic and maxillofacial surgeries, the fabrication of custom prosthetic devices; and the assessment of the degree of bony and soft-tissue injury caused by trauma. We propose that there is a useful, as yet untapped, potential for this technology in forensic medicine.
Optical sensor array platform based on polymer electronic devices
NASA Astrophysics Data System (ADS)
Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.
2007-10-01
Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galarraga, Haize; Warren, Robert J.; Lados, Diana A.
Electron beam melting (EBM) is a metal powder bed fusion additive manufacturing (AM) technology that is used to fabricate three-dimensional near-net-shaped parts directly from computer models. Ti-6Al-4V is the most widely used and studied alloy for this technology and is the focus of this work in its ELI (Extra Low Interstitial) variation. The mechanisms of microstructure formation, evolution, and its subsequent influence on mechanical properties of the alloy in as-fabricated condition have been documented by various researchers. In the present work, the thermal history resulting in the formation of the as-fabricated microstructure was analyzed and studied by a thermal simulation.more » Subsequently different heat treatments were performed based on three approaches in order to study the effects of heat treatments on the singular and exclusive microstructure formed during the EBM fabrication process. In the first approach, the effect of cooling rate after the solutionizing process was studied. In the second approach, the variation of α lath thickness during annealing treatment and correlation with mechanical properties was established. In the last approach, several solutionizing and aging experiments were conducted.« less
Modeling methods of MEMS micro-speaker with electrostatic working principle
NASA Astrophysics Data System (ADS)
Tumpold, D.; Kaltenbacher, M.; Glacer, C.; Nawaz, M.; Dehé, A.
2013-05-01
The market for mobile devices like tablets, laptops or mobile phones is increasing rapidly. Device housings get thinner and energy efficiency is more and more important. Micro-Electro-Mechanical-System (MEMS) loudspeakers, fabricated in complementary metal oxide semiconductor (CMOS) compatible technology merge energy efficient driving technology with cost economical fabrication processes. In most cases, the fabrication of such devices within the design process is a lengthy and costly task. Therefore, the need for computer modeling tools capable of precisely simulating the multi-field interactions is increasing. The accurate modeling of such MEMS devices results in a system of coupled partial differential equations (PDEs) describing the interaction between the electric, mechanical and acoustic field. For the efficient and accurate solution we apply the Finite Element (FE) method. Thereby, we fully take the nonlinear effects into account: electrostatic force, charged moving body (loaded membrane) in an electric field, geometric nonlinearities and mechanical contact during the snap-in case between loaded membrane and stator. To efficiently handle the coupling between the mechanical and acoustic fields, we apply Mortar FE techniques, which allow different grid sizes along the coupling interface. Furthermore, we present a recently developed PML (Perfectly Matched Layer) technique, which allows limiting the acoustic computational domain even in the near field without getting spurious reflections. For computations towards the acoustic far field we us a Kirchhoff Helmholtz integral (e.g, to compute the directivity pattern). We will present simulations of a MEMS speaker system based on a single sided driving mechanism as well as an outlook on MEMS speakers using double stator systems (pull-pull-system), and discuss their efficiency (SPL) and quality (THD) towards the generated acoustic sound.
Ventura Ferreira, Nuno; Leal, Nuno; Correia Sá, Inês; Reis, Ana; Marques, Marisa
2014-01-01
The fabrication of digital prostheses has acquired growing importance not only for the possibility for the patient to overcome psychosocial trauma but also to promote grip functionality. An application method of three dimensional-computer-aided design technologies for the production of passive prostheses is presented by means of a fifth finger amputee clinical case following bilateral hand replantation.Three-dimensional-computerized tomography was used for the collection of anthropometric images of the hands. Computer-aided design techniques were used to develop the digital file-based prosthesis from the reconstruction images by inversion and superimposing the contra-lateral finger images. The rapid prototyping manufacturing method was used for the production of a silicone bandage prosthesis prototype. This approach replaces the traditional manual method by a virtual method that is basis for the optimization of a high speed, accurate and innovative process.
Afify, Ahmed; Haney, Stephan
2016-08-01
Since it was first introduced into the dental world, computer-aided design/computer-aided manufacturing (CAD/CAM) technology has improved dramatically in regards to both data acquisition and fabrication abilities. CAD/CAM is capable of providing well-fitting intra- and extraoral prostheses when sound guidelines are followed. As CAD/CAM technology encompasses both surgical and prosthetic dental applications as well as fixed and removable aspects, it could improve the average quality of dental prostheses compared with the results obtained by conventional manufacturing methods. The purpose of this article is to provide an introduction into the methods in which this technology may be used to enhance the wear and fracture resistance of dentures and overdentures. This article will also showcase two clinical reports in which CAD/CAM technology has been implemented. © 2016 by the American College of Prosthodontists.
NASA Technical Reports Server (NTRS)
Kim, B. F.; Moorjani, K.; Phillips, T. E.; Adrian, F. J.; Bohandy, J.; Dolecek, Q. E.
1993-01-01
A method for characterization of granular superconducting thin films has been developed which encompasses both the morphological state of the sample and its fabrication process parameters. The broad scope of this technique is due to the synergism between experimental measurements and their interpretation using numerical simulation. Two novel technologies form the substance of this system: the magnetically modulated resistance method for characterizing superconductors; and a powerful new computer peripheral, the Parallel Information Processor card, which provides enhanced computing capability for PC computers. This enhancement allows PC computers to operate at speeds approaching that of supercomputers. This makes atomic scale simulations possible on low cost machines. The present development of this system involves the integration of these two technologies using mesoscale simulations of thin film growth. A future stage of development will incorporate atomic scale modeling.
Computational simulation of concurrent engineering for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1992-01-01
Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.
Computational simulation for concurrent engineering of aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.
Computational simulation for concurrent engineering of aerospace propulsion systems
NASA Astrophysics Data System (ADS)
Chamis, C. C.; Singhal, S. N.
1993-02-01
Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.
Applications of Computer Technology in Complex Craniofacial Reconstruction.
Day, Kristopher M; Gabrick, Kyle S; Sargent, Larry A
2018-03-01
To demonstrate our use of advanced 3-dimensional (3D) computer technology in the analysis, virtual surgical planning (VSP), 3D modeling (3DM), and treatment of complex congenital and acquired craniofacial deformities. We present a series of craniofacial defects treated at a tertiary craniofacial referral center utilizing state-of-the-art 3D computer technology. All patients treated at our center using computer-assisted VSP, prefabricated custom-designed 3DMs, and/or 3D printed custom implants (3DPCI) in the reconstruction of craniofacial defects were included in this analysis. We describe the use of 3D computer technology to precisely analyze, plan, and reconstruct 31 craniofacial deformities/syndromes caused by: Pierre-Robin (7), Treacher Collins (5), Apert's (2), Pfeiffer (2), Crouzon (1) Syndromes, craniosynostosis (6), hemifacial microsomia (2), micrognathia (2), multiple facial clefts (1), and trauma (3). In select cases where the available bone was insufficient for skeletal reconstruction, 3DPCIs were fabricated using 3D printing. We used VSP in 30, 3DMs in all 31, distraction osteogenesis in 16, and 3DPCIs in 13 cases. Utilizing these technologies, the above complex craniofacial defects were corrected without significant complications and with excellent aesthetic results. Modern 3D technology allows the surgeon to better analyze complex craniofacial deformities, precisely plan surgical correction with computer simulation of results, customize osteotomies, plan distractions, and print 3DPCI, as needed. The use of advanced 3D computer technology can be applied safely and potentially improve aesthetic and functional outcomes after complex craniofacial reconstruction. These techniques warrant further study and may be reproducible in various centers of care.
Fundamental device design considerations in the development of disruptive nanoelectronics.
Singh, R; Poole, J O; Poole, K F; Vaidya, S D
2002-01-01
In the last quarter of a century silicon-based integrated circuits (ICs) have played a major role in the growth of the economy throughout the world. A number of new technologies, such as quantum computing, molecular computing, DNA molecules for computing, etc., are currently being explored to create a product to replace semiconductor transistor technology. We have examined all of the currently explored options and found that none of these options are suitable as silicon IC's replacements. In this paper we provide fundamental device criteria that must be satisfied for the successful operation of a manufacturable, not yet invented, device. The two fundamental limits are the removal of heat and reliability. The switching speed of any practical man-made computing device will be in the range of 10(-15) to 10(-3) s. Heisenberg's uncertainty principle and the computer architecture set the heat generation limit. The thermal conductivity of the materials used in the fabrication of a nanodimensional device sets the heat removal limit. In current electronic products, redundancy plays a significant part in improving the reliability of parts with macroscopic defects. In the future, microscopic and even nanoscopic defects will play a critical role in the reliability of disruptive nanoelectronics. The lattice vibrations will set the intrinsic reliability of future computing systems. The two critical limits discussed in this paper provide criteria for the selection of materials used in the fabrication of future devices. Our work shows that diamond contains the clue to providing computing devices that will surpass the performance of silicon-based nanoelectronics.
Advancements in Binder Systems for Solid Freeform Fabrication
NASA Technical Reports Server (NTRS)
Cooper, Ken; Munafo, Paul (Technical Monitor)
2002-01-01
Paper will present recent developments in advanced material binder systems for solid freeform fabrication (SFF) technologies. The advantage of SFF is the capability to custom fabricate complex geometries directly from computer aided design data in layer- by-layer fashion, eliminated the need for traditional fixturing and tooling. Binders allow for the low temperature processing of 'green' structural materials, either metal, ceramic or composite, in traditional rapid prototyping machines. The greatest obstacle comes when green parts must then go through a sintering or burnout process to remove the binders and fully densify the parent material, without damaging or distorting the original part geometry. Critical issues and up-to-date assessments will be delivered on various material systems.
[Computer aided design and manufacture of the porcelain fused to metal crown].
Nie, Xin; Cheng, Xiaosheng; Dai, Ning; Yu, Qing; Hao, Guodong; Sun, Quanping
2009-04-01
In order to satisfy the current demand for fast and high-quality prosthodontics, we have carried out a research in the fabrication process of the porcelain fused to metal crown on molar with CAD/CAM technology. Firstly, we get the data of the surface mesh on preparation teeth through a 3D-optical grating measuring system. Then, we reconstruct the 3D-model crown with the computer-aided design software which was developed by ourselves. Finally, with the 3D-model data, we produce a metallic crown on a high-speed CNC carving machine. The result has proved that the metallic crown can match the preparation teeth ideally. The fabrication process is reliable and efficient, and the restoration is precise and steady in quality.
Computer-Aided Process Planning for the Layered Fabrication of Porous Scaffold Matrices
NASA Astrophysics Data System (ADS)
Starly, Binil
Rapid Prototyping (RP) technology promises to have a tremendous impact on the design and fabrication of porous tissue replacement structures for applications in tissue engineering and regenerative medicine. The layer-by-layer fabrication technology enables the design of patient-specific medical implants and complex structures for diseased tissue replacement strategies. Combined with advancements in imaging modalities and bio-modeling software, physicians can engage themselves in advanced solutions for craniofacial and mandibular reconstruction. For example, prior to the advancement of RP technologies, solid titanium parts used as implants for mandibular reconstruction were fashioned out of molding or CNC-based machining processes (Fig. 3.1). Titanium implants built using this process are often heavy, leading to increased patient discomfort. In addition, the Young's modulus of titanium is almost five times that of healthy cortical bone resulting in stress shielding effects [1,2]. With the advent of CAD/CAM-based tools, the virtual reconstruction of the implants has resulted in significant design improvements. The new generation of implants can be porous, enabling the in-growth of healthy bone tissue for additional implant fixation and stabilization. Newer implants would conform to the external shape of the defect site that is intended to be filled in. More importantly, the effective elastic modulus of the implant can be designed to match that of surrounding tissue. Ideally, the weight of the implant can be designed to equal the weight of the tissue that is being replaced resulting in increased patient comfort. Currently, such porous structures for reconstruction can only be fabricated using RP-based metal fabrication technologies such as Electron Beam Melting (EBM), Selective Laser Sintering (SLS®), and 3D™ Printing processes.
Computational Design of Animated Mechanical Characters
NASA Astrophysics Data System (ADS)
Coros, Stelian; Thomaszewski, Bernhard; DRZ Team Team
2014-03-01
A factor key to the appeal of modern CG movies and video-games is that the virtual worlds they portray place no bounds on what can be imagined. Rapid manufacturing devices hold the promise of bringing this type of freedom to our own world, by enabling the fabrication of physical objects whose appearance, deformation behaviors and motions can be precisely specified. In order to unleash the full potential of this technology however, computational design methods that create digital content suitable for fabrication need to be developed. In recent work, we presented a computational design system that allows casual users to create animated mechanical characters. Given an articulated character as input, the user designs the animated character by sketching motion curves indicating how they should move. For each motion curve, our framework creates an optimized mechanism that reproduces it as closely as possible. The resulting mechanisms are attached to the character and then connected to each other using gear trains, which are created in a semi-automated fashion. The mechanical assemblies generated with our system can be driven with a single input driver, such as a hand-operated crank or an electric motor, and they can be fabricated using rapid prototyping devices.
Automated array assembly task, phase 1
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1977-01-01
State-of-the-art technologies applicable to silicon solar cell and solar cell module fabrication were assessed. The assessment consisted of a technical feasibility evaluation and a cost projection for high volume production of solar cell modules. Design equations based on minimum power loss were used as a tool in the evaluation of metallization technologies. A solar cell process sensitivity study using models, computer calculations, and experimental data was used to identify process step variation and cell output variation correlations.
In-process fault detection for textile fabric production: onloom imaging
NASA Astrophysics Data System (ADS)
Neumann, Florian; Holtermann, Timm; Schneider, Dorian; Kulczycki, Ashley; Gries, Thomas; Aach, Til
2011-05-01
Constant and traceable high fabric quality is of high importance both for technical and for high-quality conventional fabrics. Usually, quality inspection is carried out by trained personal, whose detection rate and maximum period of concentration are limited. Low resolution automated fabric inspection machines using texture analysis were developed. Since 2003, systems for the in-process inspection on weaving machines ("onloom") are commercially available. With these defects can be detected, but not measured quantitative precisely. Most systems are also prone to inevitable machine vibrations. Feedback loops for fault prevention are not established. Technology has evolved since 2003: Camera and computer prices dropped, resolutions were enhanced, recording speeds increased. These are the preconditions for real-time processing of high-resolution images. So far, these new technological achievements are not used in textile fabric production. For efficient use, a measurement system must be integrated into the weaving process; new algorithms for defect detection and measurement must be developed. The goal of the joint project is the development of a modern machine vision system for nondestructive onloom fabric inspection. The system consists of a vibration-resistant machine integration, a high-resolution machine vision system, and new, reliable, and robust algorithms with quality database for defect documentation. The system is meant to detect, measure, and classify at least 80 % of economically relevant defects. Concepts for feedback loops into the weaving process will be pointed out.
Chip-scale integrated optical interconnects: a key enabler for future high-performance computing
NASA Astrophysics Data System (ADS)
Haney, Michael; Nair, Rohit; Gu, Tian
2012-01-01
High Performance Computing (HPC) systems are putting ever-increasing demands on the throughput efficiency of their interconnection fabrics. In this paper, the limits of conventional metal trace-based inter-chip interconnect fabrics are examined in the context of state-of-the-art HPC systems, which currently operate near the 1 GFLOPS/W level. The analysis suggests that conventional metal trace interconnects will limit performance to approximately 6 GFLOPS/W in larger HPC systems that require many computer chips to be interconnected in parallel processing architectures. As the HPC communications bottlenecks push closer to the processing chips, integrated Optical Interconnect (OI) technology may provide the ultra-high bandwidths needed at the inter- and intra-chip levels. With inter-chip photonic link energies projected to be less than 1 pJ/bit, integrated OI is projected to enable HPC architecture scaling to the 50 GFLOPS/W level and beyond - providing a path to Peta-FLOPS-level HPC within a single rack, and potentially even Exa-FLOPSlevel HPC for large systems. A new hybrid integrated chip-scale OI approach is described and evaluated. The concept integrates a high-density polymer waveguide fabric directly on top of a multiple quantum well (MQW) modulator array that is area-bonded to the Silicon computing chip. Grayscale lithography is used to fabricate 5 μm x 5 μm polymer waveguides and associated novel small-footprint total internal reflection-based vertical input/output couplers directly onto a layer containing an array of GaAs MQW devices configured to be either absorption modulators or photodetectors. An external continuous wave optical "power supply" is coupled into the waveguide links. Contrast ratios were measured using a test rider chip in place of a Silicon processing chip. The results suggest that sub-pJ/b chip-scale communication is achievable with this concept. When integrated into high-density integrated optical interconnect fabrics, it could provide a seamless interconnect fabric spanning the intra-
Unique CAD/CAM three-quarter crown restoration of a central incisor: a case report.
Goldberg, Marvin B; Siegel, Sharon C; Rezakani, Niloufar
2013-07-01
Computer-aided design and computer-aided manufacturing (CAD/CAM) dentistry has been in use for more than 2 decades. Recent improvements in this technology have made CAD/CAM restorations a viable alternative for routine dental care. This technology is being taught in dental schools to prepare students for contemporary dental practice and is particularly useful in unique restorative situations that allow conservation of tooth structure. This case report describes the restoration of a central incisor that was previously restored with an unesthetic three-quarter gold crown. The tooth exhibited recurrent caries and an unaffected labial wall of supported enamel. A CAD/CAM three-quarter crown was planned to conserve tooth structure. After preparation, the tooth was scanned for a CAD/CAM crown in order to fabricate a ceramic restoration, which was then milled and bonded, producing an esthetic result. Typically, in cases of esthetic enhancement, a labial laminate restoration is fabricated, but in this situation, a different approach was necessary to make a design for the lingual surface of an anterior tooth.
Fault-tolerance thresholds for the surface code with fabrication errors
NASA Astrophysics Data System (ADS)
Auger, James M.; Anwar, Hussain; Gimeno-Segovia, Mercedes; Stace, Thomas M.; Browne, Dan E.
2017-10-01
The construction of topological error correction codes requires the ability to fabricate a lattice of physical qubits embedded on a manifold with a nontrivial topology such that the quantum information is encoded in the global degrees of freedom (i.e., the topology) of the manifold. However, the manufacturing of large-scale topological devices will undoubtedly suffer from fabrication errors—permanent faulty components such as missing physical qubits or failed entangling gates—introducing permanent defects into the topology of the lattice and hence significantly reducing the distance of the code and the quality of the encoded logical qubits. In this work we investigate how fabrication errors affect the performance of topological codes, using the surface code as the test bed. A known approach to mitigate defective lattices involves the use of primitive swap gates in a long sequence of syndrome extraction circuits. Instead, we show that in the presence of fabrication errors the syndrome can be determined using the supercheck operator approach and the outcome of the defective gauge stabilizer generators without any additional computational overhead or use of swap gates. We report numerical fault-tolerance thresholds in the presence of both qubit fabrication and gate fabrication errors using a circuit-based noise model and the minimum-weight perfect-matching decoder. Our numerical analysis is most applicable to two-dimensional chip-based technologies, but the techniques presented here can be readily extended to other topological architectures. We find that in the presence of 8 % qubit fabrication errors, the surface code can still tolerate a computational error rate of up to 0.1 % .
Wen, Xiaopeng; Gao, Shan; Feng, Jinteng; Li, Shuo; Gao, Rui; Zhang, Guangjian
2018-01-08
As 3D printing technology emerge, there is increasing demand for a more customizable implant in the repair of chest-wall bony defects. This article aims to present a custom design and fabrication method for repairing bony defects of the chest wall following tumour resection, which utilizes three-dimensional (3D) printing and rapid-prototyping technology. A 3D model of the bony defect was generated after acquiring helical CT data. A customized prosthesis was then designed using computer-aided design (CAD) and mirroring technology, and fabricated using titanium-alloy powder. The mechanical properties of the printed prosthesis were investigated using ANSYS software. The yield strength of the titanium-alloy prosthesis was 950 ± 14 MPa (mean ± SD), and its ultimate strength was 1005 ± 26 MPa. The 3D finite element analyses revealed that the equivalent stress distribution of each prosthesis was unifrom. The symmetry and reconstruction quality contour of the repaired chest wall was satisfactory. No rejection or infection occurred during the 6-month follow-up period. Chest-wall reconstruction with a customized titanium-alloy prosthesis is a reliable technique for repairing bony defects.
A Comparison of Marginal Gaps of All-Ceramic Crowns Constructed from Scanned Impressions and Models.
Tabesh, Raena; Dudley, James
This study compared the marginal gaps of computer-aided design/computer-aided manufacture (CAD/CAM)-fabricated all-ceramic crowns constructed from scanned impressions and models and with two different occlusal reduction designs. Two typodont mandibular first molars were prepared to receive CAD/CAM-fabricated all-ceramic crowns. Both molars were prepared to ideal crown reduction, the first with anatomical occlusal reduction (AOR) and the second with completely flat occlusal reduction (FOR). Nine polyvinyl siloxane impressions (PVS) were taken, and nine stone replicas fabricated for each preparation. All impressions and stone models were scanned using a laser scanner (Planmeca Planscan, E4D technologies), and 36 lithium disilicate (IPS e.max CAD) crowns were milled. The marginal gap was measured in four locations using a light stereomicroscope. Crowns constructed from preparations with both occlusal reduction designs demonstrated similar marginal gaps (FOR = 97.98; AOR = 89.12; P = .739). However, all crowns constructed from scanned impressions presented significantly larger marginal gaps than the crowns fabricated from scanned models (impressions = 109.26; models = 77.84; P = .002). Scanning stone models produced all-ceramic crowns with significantly smaller marginal gaps than scanning impressions, irrespective of the occlusal reduction design.
Labarge, Mark A; Parvin, Bahram; Lorens, James B
2014-04-01
The field of bioengineering has pioneered the application of new precision fabrication technologies to model the different geometric, physical or molecular components of tissue microenvironments on solid-state substrata. Tissue engineering approaches building on these advances are used to assemble multicellular mimetic-tissues where cells reside within defined spatial contexts. The functional responses of cells in fabricated microenvironments have revealed a rich interplay between the genome and extracellular effectors in determining cellular phenotypes and in a number of cases have revealed the dominance of microenvironment over genotype. Precision bioengineered substrata are limited to a few aspects, whereas cell/tissue-derived microenvironments have many undefined components. Thus, introducing a computational module may serve to integrate these types of platforms to create reasonable models of drug responses in human tissues. This review discusses how combinatorial microenvironment microarrays and other biomimetic microenvironments have revealed emergent properties of cells in particular microenvironmental contexts, the platforms that can measure phenotypic changes within those contexts, and the computational tools that can unify the microenvironment-imposed functional phenotypes with underlying constellations of proteins and genes. Ultimately we propose that a merger of these technologies will enable more accurate pre-clinical drug discovery. Copyright © 2014 Elsevier B.V. All rights reserved.
How wearable technologies will impact the future of health care.
Barnard, Rick; Shea, J Timothy
2004-01-01
After four hundred years of delivering health care in hospitals, industrialized countries are now shifting towards treating patients at the "point of need". This trend will likely accelerate demand for, and adoption of, wearable computing and smart fabric and interactive textile (SFIT) solutions. These healthcare solutions will be designed to provide real-time vital and diagnostic information to health care providers, patients, and related stakeholders in such a manner as to improve quality of care, reduce the cost of care, and allow patients greater control over their own health. The current market size for wearable computing and SFIT solutions is modest; however, the future outlook is extremely strong. Venture Development Corporation, a technology market research and strategy firm, was founded in 1971. Over the years, VDC has developed and implemented a unique and highly successful methodology for forecasting and analyzing highly dynamic technology markets. VDC has extensive experience in providing multi-client and proprietary analysis in the electronic components, advanced materials, and mobile computing markets.
Electromagnetic Modelling of MMIC CPWs for High Frequency Applications
NASA Astrophysics Data System (ADS)
Sinulingga, E. P.; Kyabaggu, P. B. K.; Rezazadeh, A. A.
2018-02-01
Realising the theoretical electrical characteristics of components through modelling can be carried out using computer-aided design (CAD) simulation tools. If the simulation model provides the expected characteristics, the fabrication process of Monolithic Microwave Integrated Circuit (MMIC) can be performed for experimental verification purposes. Therefore improvements can be suggested before mass fabrication takes place. This research concentrates on development of MMIC technology by providing accurate predictions of the characteristics of MMIC components using an improved Electromagnetic (EM) modelling technique. The knowledge acquired from the modelling and characterisation process in this work can be adopted by circuit designers for various high frequency applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brust, Frederick W.; Punch, Edward F.; Twombly, Elizabeth Kurth
This report summarizes the final product developed for the US DOE Small Business Innovation Research (SBIR) Phase II grant made to Engineering Mechanics Corporation of Columbus (Emc 2) between April 16, 2014 and August 31, 2016 titled ‘Adoption of High Performance Computational (HPC) Modeling Software for Widespread Use in the Manufacture of Welded Structures’. Many US companies have moved fabrication and production facilities off shore because of cheaper labor costs. A key aspect in bringing these jobs back to the US is the use of technology to render US-made fabrications more cost-efficient overall with higher quality. One significant advantage thatmore » has emerged in the US over the last two decades is the use of virtual design for fabrication of small and large structures in weld fabrication industries. Industries that use virtual design and analysis tools have reduced material part size, developed environmentally-friendly fabrication processes, improved product quality and performance, and reduced manufacturing costs. Indeed, Caterpillar Inc. (CAT), one of the partners in this effort, continues to have a large fabrication presence in the US because of the use of weld fabrication modeling to optimize fabrications by controlling weld residual stresses and distortions and improving fatigue, corrosion, and fracture performance. This report describes Emc 2’s DOE SBIR Phase II final results to extend an existing, state-of-the-art software code, Virtual Fabrication Technology (VFT®), currently used to design and model large welded structures prior to fabrication - to a broader range of products with widespread applications for small and medium-sized enterprises (SMEs). VFT® helps control distortion, can minimize and/or control residual stresses, control welding microstructure, and pre-determine welding parameters such as weld-sequencing, pre-bending, thermal-tensioning, etc. VFT® uses material properties, consumable properties, etc. as inputs. Through VFT®, manufacturing companies can avoid costly design changes after fabrication. This leads to the concept of joint design/fabrication where these important disciplines are intimately linked to minimize fabrication costs. Finally service performance (such as fatigue, corrosion, and fracture/damage) can be improved using this product. Emc 2’s DOE SBIR Phase II effort successfully adapted VFT® to perform efficiently in an HPC environment independent of commercial software on a platform to permit easy and cost effective access to the code. This provides the key for SMEs to access this sophisticated and proven methodology that is quick, accurate, cost effective and available “on-demand” to address weld-simulation and fabrication problems prior to manufacture. In addition, other organizations, such as Government agencies and large companies, may have a need for spot use of such a tool. The open source code, WARP3D, a high performance finite element code used in fracture and damage assessment of structures, was significantly modified so computational weld problems can be solved efficiently on multiple processors and threads with VFT®. The thermal solver for VFT®, based on a series of closed form solution approximations, was extensively enhanced for solution on multiple processors greatly increasing overall speed. In addition, the graphical user interface (GUI) was re-written to permit SMEs access to an HPC environment at the Ohio Super Computer Center (OSC) to integrate these solutions with WARP3D. The GUI is used to define all weld pass descriptions, number of passes, material properties, consumable properties, weld speed, etc. for the structure to be modeled. The GUI was enhanced to make it more user-friendly so that non-experts can perform weld modeling. Finally, an extensive outreach program to market this capability to fabrication companies was performed. This access will permit SMEs to perform weld modeling to improve their competitiveness at a reasonable cost.« less
Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology
NASA Astrophysics Data System (ADS)
Goodwin, Bruce
2015-03-01
This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.
Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish
2013-09-26
The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.
Making the Best of It? Exploring the Realities of 3D Printing in School
ERIC Educational Resources Information Center
Nemorin, Selena; Selwyn, Neil
2017-01-01
Digital fabrication and "3D Making" are prominent recent additions to school curricula, hastened by the increased affordability of Computer Assisted Design software and devices such as 3D printers. It is increasingly argued that classroom use of these technologies can re-orientate schools towards forms of skills and knowledge appropriate…
Tongrod, Nattapong; Lokavee, Shongpun; Watthanawisuth, Natthapol; Tuantranont, Adisorn; Kerdcharoen, Teerakiat
2013-03-01
Current trends in Human-Computer Interface (HCI) have brought on a wave of new consumer devices that can track the motion of our hands. These devices have enabled more natural interfaces with computer applications. Data gloves are commonly used as input devices, equipped with sensors that detect the movements of hands and communication unit that interfaces those movements with a computer. Unfortunately, the high cost of sensor technology inevitably puts some burden to most general users. In this research, we have proposed a low-cost data glove concept based on printed polymeric sensor to make pressure and bending sensors fabricated by a consumer ink-jet printer. These sensors were realized using a conductive polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) [PEDOT:PSS]) thin film printed on glossy photo paper. Performance of these sensors can be enhanced by addition of dimethyl sulfoxide (DMSO) into the aqueous dispersion of PEDOT:PSS. The concept of surface resistance was successfully adopted for the design and fabrication of sensors. To demonstrate the printed sensors, we constructed a data glove using such sensors and developed software for real time hand tracking. Wireless networks based on low-cost Zigbee technology were used to transfer data from the glove to a computer. To our knowledge, this is the first report on low cost data glove based on paper pressure sensors. This low cost implementation of both sensors and communication network as proposed in this paper should pave the way toward a widespread implementation of data glove for real-time hand tracking applications.
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
Liu, Yushu; Ye, Hongqiang; Wang, Yong; Zhao, Yijao; Sun, Yuchun; Zhou, Yongsheng
2018-05-17
To evaluate the internal adaptations of cast crowns made from resin patterns produced using three different computer-aided design/computer-assisted manufacturing technologies. A full-crown abutment made of zirconia was digitized using an intraoral scanner, and the design of the crown was finished on the digital model. Resin patterns were fabricated using a fused deposition modeling (FDM) 3D printer (LT group), a digital light projection (DLP) 3D printer (EV group), or a five-axis milling machine (ZT group). All patterns were cast in cobalt-chromium alloy crowns. Crowns made from traditional handmade wax patterns (HM group) were used as controls. Each group contained 10 samples. The internal gaps of the patterns were analyzed using a 3D replica method and optical digitization. The results were compared using Kruskal-Wallis analysis of variance (ANOVA), a one-sample t test, and signed rank test (α = .05). For the LT group, the marginal and axial gaps were significantly larger than in the other three groups (P < .05), but the occlusal adaptation did not reveal a significant difference (P > .05). In the ZT group, the axial gap was slightly smaller than in the HM group (P < .0083). All the means of gaps in all areas in the four groups were less than 150 μm. Casting crowns using casting patterns made from all three CAD/CAM systems could not produce the prescribed parameters, but the crowns showed clinically acceptable internal adaptations.
Qian, Fuping; Wang, Haigang
2010-04-15
The gas-solid two-phase flows in the plain wave fabric filter were simulated by computational fluid dynamics (CFD) technology, and the warps and wefts of the fabric filter were made of filaments with different dimensions. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. The filtration performances of the plain wave fabric filter with different geometry parameters and operating condition, including the horizontal distance, the vertical distance and the face velocity were calculated. The effects of geometry parameters and operating condition on filtration efficiency and pressure drop were studied using response surface methodology (RSM) by means of the statistical software (Minitab V14), and two second-order polynomial models were obtained with regard to the effect of the three factors as stated above. Moreover, the models were modified by dismissing the insignificant terms. The results show that the horizontal distance, vertical distance and the face velocity all play an important role in influencing the filtration efficiency and pressure drop of the plane wave fabric filters. The horizontal distance of 3.8 times the fiber diameter, the vertical distance of 4.0 times the fiber diameter and Reynolds number of 0.98 are found to be the optimal conditions to achieve the highest filtration efficiency at the same face velocity, while maintaining an acceptable pressure drop. 2009 Elsevier B.V. All rights reserved.
Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu
2017-10-11
Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.
Liu, Y F; Yu, H; Wang, W N; Gao, B
2017-06-09
Objective: To evaluate the processing accuracy, internal quality and suitability of the titanium alloy frameworks of removable partial denture (RPD) fabricated by selective laser melting (SLM) technique, and to provide reference for clinical application. Methods: The plaster model of one clinical patient was used as the working model, and was scanned and reconstructed into a digital working model. A RPD framework was designed on it. Then, eight corresponding RPD frameworks were fabricated using SLM technique. Three-dimensional (3D) optical scanner was used to scan and obtain the 3D data of the frameworks and the data was compared with the original computer aided design (CAD) model to evaluate their processing precision. The traditional casting pure titanium frameworks was used as the control group, and the internal quality was analyzed by X-ray examination. Finally, the fitness of the frameworks was examined on the plaster model. Results: The overall average deviation of the titanium alloy RPD framework fabricated by SLM technology was (0.089±0.076) mm, the root mean square error was 0.103 mm. No visible pores, cracks and other internal defects was detected in the frameworks. The framework fits on the plaster model completely, and its tissue surface fitted on the plaster model well. There was no obvious movement. Conclusions: The titanium alloy RPD framework fabricated by SLM technology is of good quality.
NASA Astrophysics Data System (ADS)
Sanford, James L.; Schlig, Eugene S.; Prache, Olivier; Dove, Derek B.; Ali, Tariq A.; Howard, Webster E.
2002-02-01
The IBM Research Division and eMagin Corp. jointly have developed a low-power VGA direct view active matrix OLED display, fabricated on a crystalline silicon CMOS chip. The display is incorporated in IBM prototype wristwatch computers running the Linus operating system. IBM designed the silicon chip and eMagin developed the organic stack and performed the back-end-of line processing and packaging. Each pixel is driven by a constant current source controlled by a CMOS RAM cell, and the display receives its data from the processor memory bus. This paper describes the OLED technology and packaging, and outlines the design of the pixel and display electronics and the processor interface. Experimental results are presented.
3D Printing of Biomolecular Models for Research and Pedagogy
Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel
2017-01-01
The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology. PMID:28362403
Data Structures for Extreme Scale Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahan, Simon
As computing problems of national importance grow, the government meets the increased demand by funding the development of ever larger systems. The overarching goal of the work supported in part by this grant is to increase efficiency of programming and performing computations on these large computing systems. In past work, we have demonstrated that some of these computations once thought to require expensive hardware designs and/or complex, special-purpose programming may be executed efficiently on low-cost commodity cluster computing systems using a general-purpose “latency-tolerant” programming framework. One important developed application of the ideas underlying this framework is graph database technology supportingmore » social network pattern matching used by US intelligence agencies to more quickly identify potential terrorist threats. This database application has been spun out by the Pacific Northwest National Laboratory, a Department of Energy Laboratory, into a commercial start-up, Trovares Inc. We explore an alternative application of the same underlying ideas to a well-studied challenge arising in engineering: solving unstructured sparse linear equations. Solving these equations is key to predicting the behavior of large electronic circuits before they are fabricated. Predicting that behavior ahead of fabrication means that designs can optimized and errors corrected ahead of the expense of manufacture.« less
Galarraga, Haize; Lados, Diana A.; Dehoff, Ryan R.; ...
2016-01-01
Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology that makes possible the fabrication of three dimensional near-net-shaped parts directly from computer models. EBM technology has been in continuously updating, obtaining optimized properties of the processed alloys. Ti-6Al-4V titanium alloy is the most widely used and studied alloy for this technology and is the focus of this work. Several research works have been completed to study the mechanisms of microstructure formation as well as its influence on mechanical properties. However, the relationship is not completely understood, and more systematic research work is necessary in order tomore » attain a better understanding of these features. In this work, samples fabricated at different locations, orientations, and distances from the build platform have been characterized, studying the relationship of these variables with the resulting material intrinsic characteristics and properties (surface topography, microstructure, porosity, micro-hardness and static mechanical properties). This study has revealed that porosity is the main factor controlling mechanical properties relative to the other studied variables. Therefore, in future process developments, decreasing of the porosity should be considered as the primary goal in order to improve mechanical properties.« less
NASA Advanced Supercomputing Facility Expansion
NASA Technical Reports Server (NTRS)
Thigpen, William W.
2017-01-01
The NASA Advanced Supercomputing (NAS) Division enables advances in high-end computing technologies and in modeling and simulation methods to tackle some of the toughest science and engineering challenges facing NASA today. The name "NAS" has long been associated with leadership and innovation throughout the high-end computing (HEC) community. We play a significant role in shaping HEC standards and paradigms, and provide leadership in the areas of large-scale InfiniBand fabrics, Lustre open-source filesystems, and hyperwall technologies. We provide an integrated high-end computing environment to accelerate NASA missions and make revolutionary advances in science. Pleiades, a petaflop-scale supercomputer, is used by scientists throughout the U.S. to support NASA missions, and is ranked among the most powerful systems in the world. One of our key focus areas is in modeling and simulation to support NASA's real-world engineering applications and make fundamental advances in modeling and simulation methods.
2010-03-04
and their sensitivity to charge and flux fluctuations. The first type of superconducting qubit , the charge qubit , omits the inductance . There is no...nanostructured NbN superconducting nanowire detectors have achieved high efficiency and photon number resolution16,17. One approach to a high-efficiency single...resemble classical high- speed integrated circuits and can be readily fabricated using existing technologies. The basic physics behind superconducting qubits
Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping
Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.
2015-01-01
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215
Josephson 4 K-bit cache memory design for a prototype signal processor. I - General overview
NASA Astrophysics Data System (ADS)
Henkels, W. H.; Geppert, L. M.; Kadlec, J.; Epperlein, P. W.; Beha, H.
1985-09-01
In the early stages of thg Josephson computer project conducted at an American computer company, it was recognized that a very fast cache memory was needed to complement Josephson logic. A subnanosecond access time memory was implemented experimentally on the basis of a 2.5-micron Pb-alloy technology. It was then decided to switch over to a Nb-base-electrode technology with the objective to alleviate problems with the long-term reliability and aging of Pb-based junctions. The present paper provides a general overview of the status of a 4 x 1 K-bit Josephson cache design employing a 2.5-micron Nb-edge-junction technology. Attention is given to the fabrication process and its implications, aspects of circuit design methodology, an overview of system environment and chip components, design changes and status, and various difficulties and uncertainties.
A first experience with digital complete overdentures.
Bajunaid, Salwa Omar
2016-07-01
The development of computer-aided design/computer-aided manufacturing systems for dentistry in the 1980s resulted in the successful fabrication of crowns, fixed dental prostheses, and superstructures for both natural teeth and dental implants. Today, this technology is available for constructing digitally designed and milled, completely removable dental prostheses. The procedure uses clinical and laboratory protocols that allow fabrication of completely removable prostheses within two clinical appointments. The aim of this clinical report is to present the author's first experience with digital complete overdentures, the practicality of this technology, and patient feedback. Compared with conventional overdentures, the fit of the digital prostheses was improved because the cameo and flanges of the prostheses were nicely shaped and rolled, and this enhanced their stability and retention. Occlusion was also excellent. However, aesthetics in terms of the alignment, shape, and size of the maxillary overdenture teeth were inacceptable. Despite some of the drawbacks identified in our study, the use of removable digital dentures does provide excellent adaptation of the denture base and requires fewer clinic visits. We anticipate that the unsatisfactory aesthetic outcomes presented in this report can be corrected with more experience. We also believe that acquiring an in-house scanning machine would be beneficial. We highly recommend including this technique in dental school curriculums at both the undergraduate and graduate levels in order to keep students and residents up to date on the latest technology available.
Technology Evaluation for Paintable Computing and Paintable Displays RF Nixel Seedling
2006-04-15
0.32 mm2• 111-V LED’s may be fabricated on Si wafers using SiGe virtual substrates. The MIT Media Lab selected technologies for a 17" diagonal, 640 x...energy conversion, though betavoltaic devices, tends to have a very low efficiency, about 1%. [15] With 1% conversion efficiency on the lOmW released...200 J.!Cilyear of 63Ni, assuming that this was this person’s only exposure to man-made radiation. A prototype betavoltaic cell has been constructed
Fabrication of lingual orthodontic appliances: past, present and future.
Hutchinson, Ian; Lee, Jang Yeol
2013-09-01
Lingual orthodontics is increasing in popularity, with more adults receiving orthodontic treatment and opting for truly invisible appliances that do not have any limitations on the type of tooth movement they can achieve. In addition, there are a growing number of children receiving lingual appliances as they have been shown to significantly reduce the incidence of decalcification. Combining this growth in popularity with advances in computer technology, it is possible to treatment plan, design the appliance and have it custom made all with the click of a button. This article highlights the different methods that have been utilized in the fabrication of lingual appliances.
Emerging technologies in arthroplasty: additive manufacturing.
Banerjee, Samik; Kulesha, Gene; Kester, Mark; Mont, Michael A
2014-06-01
Additive manufacturing is an industrial technology whereby three-dimensional visual computer models are fabricated into physical components by selectively curing, depositing, or consolidating various materials in consecutive layers. Although initially developed for production of simulated models, the technology has undergone vast improvements and is currently increasingly being used for the production of end-use components in various aerospace, automotive, and biomedical specialties. The ability of this technology to be used for the manufacture of solid-mesh-foam monolithic and coated components of complex geometries previously considered unmanufacturable has attracted the attention of implant manufacturers, bioengineers, and orthopedic surgeons. Currently, there is a paucity of reports describing this fabrication method in the orthopedic literature. Therefore, we aimed to briefly describe this technology, some of the applications in other orthopedic subspecialties, its present use in hip and knee arthroplasty, and concerns with the present form of the technology. As there are few reports of clinical trials presently available, the true benefits of this technology can only be realized when studies evaluating the clinical and radiographic outcomes of cementless implants manufactured with additive manufacturing report durable fixation, less stress shielding, and better implant survivorship. Nevertheless, the authors believe that this technology holds great promise and may potentially change the conventional methods of casting, machining, and tooling for implant manufacturing in the future. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Noh, Kwantae; Pae, Ahran; Lee, Jung-Woo; Kwon, Yong-Dae
2016-05-01
An obturator prosthesis with insufficient retention and support may be improved with implant placement. However, implant surgery in patients after maxillary tumor resection can be complicated because of limited visibility and anatomic complexity. Therefore, computer-guided surgery can be advantageous even for experienced surgeons. In this clinical report, the use of computer-guided surgery is described for implant placement using a bone-supported surgical template for a patient with maxillary defects. The prosthetic procedure was facilitated and simplified by using computer-aided design/computer-aided manufacture (CAD/CAM) technology. Oral function and phonetics were restored using a tooth- and implant-supported obturator prosthesis. No clinical symptoms and no radiographic signs of significant bone loss around the implants were found at a 3-year follow-up. The treatment approach presented here can be a viable option for patients with insufficient remaining zygomatic bone after a hemimaxillectomy. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Huang, Yu-Hui; Seelaus, Rosemary; Zhao, Linping; Patel, Pravin K; Cohen, Mimis
2016-01-01
Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D) computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis. PMID:27843356
Huang, Yu-Hui; Seelaus, Rosemary; Zhao, Linping; Patel, Pravin K; Cohen, Mimis
2016-01-01
Osseointegrated titanium implants to the cranial skeleton for retention of facial prostheses have proven to be a reliable replacement for adhesive systems. However, improper placement of the implants can jeopardize prosthetic outcomes, and long-term success of an implant-retained prosthesis. Three-dimensional (3D) computer imaging, virtual planning, and 3D printing have become accepted components of the preoperative planning and design phase of treatment. Computer-aided design and computer-assisted manufacture that employ cone-beam computed tomography data offer benefits to patient treatment by contributing to greater predictability and improved treatment efficiencies with more reliable outcomes in surgical and prosthetic reconstruction. 3D printing enables transfer of the virtual surgical plan to the operating room by fabrication of surgical guides. Previous studies have shown that accuracy improves considerably with guided implantation when compared to conventional template or freehand implant placement. This clinical case report demonstrates the use of a 3D technological pathway for preoperative virtual planning through prosthesis fabrication, utilizing 3D printing, for a patient with an acquired orbital defect that was restored with an implant-retained silicone orbital prosthesis.
Hendrikson, Wim. J.; van Blitterswijk, Clemens. A.; Rouwkema, Jeroen; Moroni, Lorenzo
2017-01-01
Computational modeling has been increasingly applied to the field of tissue engineering and regenerative medicine. Where in early days computational models were used to better understand the biomechanical requirements of targeted tissues to be regenerated, recently, more and more models are formulated to combine such biomechanical requirements with cell fate predictions to aid in the design of functional three-dimensional scaffolds. In this review, we highlight how computational modeling has been used to understand the mechanisms behind tissue formation and can be used for more rational and biomimetic scaffold-based tissue regeneration strategies. With a particular focus on musculoskeletal tissues, we discuss recent models attempting to predict cell activity in relation to specific mechanical and physical stimuli that can be applied to them through porous three-dimensional scaffolds. In doing so, we review the most common scaffold fabrication methods, with a critical view on those technologies that offer better properties to be more easily combined with computational modeling. Finally, we discuss how modeling, and in particular finite element analysis, can be used to optimize the design of scaffolds for skeletal tissue regeneration. PMID:28567371
The Design and Implementation of NASA's Advanced Flight Computing Module
NASA Technical Reports Server (NTRS)
Alkakaj, Leon; Straedy, Richard; Jarvis, Bruce
1995-01-01
This paper describes a working flight computer Multichip Module developed jointly by JPL and TRW under their respective research programs in a collaborative fashion. The MCM is fabricated by nCHIP and is packaged within a 2 by 4 inch Al package from Coors. This flight computer module is one of three modules under development by NASA's Advanced Flight Computer (AFC) program. Further development of the Mass Memory and the programmable I/O MCM modules will follow. The three building block modules will then be stacked into a 3D MCM configuration. The mass and volume of the flight computer MCM achieved at 89 grams and 1.5 cubic inches respectively, represent a major enabling technology for future deep space as well as commercial remote sensing applications.
Fabrication Process for Large Size Mold and Alignment Method for Nanoimprint System
NASA Astrophysics Data System (ADS)
Ishibashi, Kentaro; Kokubo, Mitsunori; Goto, Hiroshi; Mizuno, Jun; Shoji, Shuichi
Nanoimprint technology is considered one of the mass production methods of the display for cellular phone or notebook computer, with Anti-Reflection Structures (ARS) pattern and so on. In this case, the large size mold with nanometer order pattern is very important. Then, we describe the fabrication process for large size mold, and the alignment method for UV nanoimprint system. We developed the original mold fabrication process using nanoimprint method and etching techniques. In 66 × 45 mm2 area, 200nm period seamless patterns were formed using this process. And, we constructed original alignment system that consists of the CCD-camera system, X-Y-θ table, method of moiré fringe, and image processing system, because the accuracy of pattern connection depends on the alignment method. This alignment system accuracy was within 20nm.
OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristie Cooper; Gary Pickrell; Anbo Wang
2003-04-01
This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibilitymore » of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).« less
Investigation of a Nanowire Electronic Nose by Computer Simulation
2009-04-14
R. D. Mileham, and D. W. Galipeau. Gas sensing based on inelastic electron tunneling spectroscopy. IEEE Sensors Journal, 8(6):983988, 2008. [6] J...explosives in the hold of passenger aircraft . More generally they can be used to detect the presence of molecules that could be a threat to human health...design suitable for subsequent fabrication and then characterization. 15. SUBJECT TERMS EOARD, Sensor Technology, electronic
Note: The full function test explosive generator.
Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B
2010-03-01
We have conducted three tests of a new pulsed power device called the full function test. These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new U.S. record for magnetic energy was obtained.
Scattering effects of machined optical surfaces
NASA Astrophysics Data System (ADS)
Thompson, Anita Kotha
1998-09-01
Optical fabrication is one of the most labor-intensive industries in existence. Lensmakers use pitch to affix glass blanks to metal chucks that hold the glass as they grind it with tools that have not changed much in fifty years. Recent demands placed on traditional optical fabrication processes in terms of surface accuracy, smoothnesses, and cost effectiveness has resulted in the exploitation of precision machining technology to develop a new generation of computer numerically controlled (CNC) optical fabrication equipment. This new kind of precision machining process is called deterministic microgrinding. The most conspicuous feature of optical surfaces manufactured by the precision machining processes (such as single-point diamond turning or deterministic microgrinding) is the presence of residual cutting tool marks. These residual tool marks exhibit a highly structured topography of periodic azimuthal or radial deterministic marks in addition to random microroughness. These distinct topographic features give rise to surface scattering effects that can significantly degrade optical performance. In this dissertation project we investigate the scattering behavior of machined optical surfaces and their imaging characteristics. In particular, we will characterize the residual optical fabrication errors and relate the resulting scattering behavior to the tool and machine parameters in order to evaluate and improve the deterministic microgrinding process. Other desired information derived from the investigation of scattering behavior is the optical fabrication tolerances necessary to satisfy specific image quality requirements. Optical fabrication tolerances are a major cost driver for any precision optical manufacturing technology. The derivation and control of the optical fabrication tolerances necessary for different applications and operating wavelength regimes will play a unique and central role in establishing deterministic microgrinding as a preferred and a cost-effective optical fabrication process. Other well understood optical fabrication processes will also be reviewed and a performance comparison with the conventional grinding and polishing technique will be made to determine any inherent advantages in the optical quality of surfaces produced by other techniques.
Spin Dependent Transport Properties of Metallic and Semiconducting Nanostructures
NASA Astrophysics Data System (ADS)
Sapkota, Keshab R.
Present computing and communication devices rely on two different classes of technologies; information processing devices are based on electrical charge transport in semiconducting materials while information storage devices are based on orientation of electron spins in magnetic materials. A realization of a hybrid-type device that is based on charge as well as spin properties of electrons would perform both of these actions thereby enhancing computation power to many folds and reducing power consumptions. This dissertation focuses on the fabrication of such spin-devices based on metallic and semiconducting nanostructures which can utilize spin as well as charge properties of electrons. A simplified design of the spin-device consists of a spin injector, a semiconducting or metallic channel, and a spin detector. The channel is the carrier of the spin signal from the injector to the detector and therefore plays a crucial role in the manipulation of spin properties in the device. In this work, nanostructures like nanowires and nanostripes are used to function the channel in the spin-device. Methods like electrospinning, hydrothermal, and wet chemical were used to synthesize nanowires while physical vapor deposition followed by heat treatment in controlled environment was used to synthesis nanostripes. Spin-devices fabrication of the synthesized nanostructures were carried out by electron beam lithography process. The details of synthesis of nanostructures, device fabrication procedures and measurement techniques will be discussed in the thesis. We have successfully fabricated the spin-devices of tellurium nanowire, indium nanostripe, and indium oxide nanostripe and studied their spin transport properties for the first time. These spin-devices show large spin relaxation length compared to normal metals like copper and offer potentials for the future technologies. Further, Heusler alloys nanowires like nanowires of Co 2FeAl were synthesized and studied for electrical transport properties since such systems are halfmetallic in nature and promise the possibilities of spin injection and detection. The study was extended to dilute magnetic semiconducting nanowire system of Cd1-xMnxTe which possess both magnetic and semiconducting properties. In summary, the studies made in this thesis will offer a new understanding of spin transport behavior for future technology.
Presotto, Anna Gabriella Camacho; Bhering, Cláudia Lopes Brilhante; Mesquita, Marcelo Ferraz; Barão, Valentim Adelino Ricardo
2017-03-01
Several studies have shown the superiority of computer-assisted design and computer-assisted manufacturing (CAD-CAM) technology compared with conventional casting. However, an advanced technology exists for casting procedures (the overcasting technique), which may serve as an acceptable and affordable alternative to CAD-CAM technology for fabricating 3-unit implant-supported fixed dental prostheses (FDPs). The purpose of this in vitro study was to evaluate, using quantitative photoelastic analysis, the effect of the prosthetic framework fabrication method (CAD-CAM and overcasting) on the marginal fit and stress transmitted to implants. The correlation between marginal fit and stress was also investigated. Three-unit implant-supported FDP frameworks were made using the CAD-CAM (n=10) and overcasting (n=10) methods. The frameworks were waxed to simulate a mandibular first premolar (PM region) to first molar (M region) FDP using overcast mini-abutment cylinders. The wax patterns were overcast (overcast experimental group) or scanned to obtain the frameworks (CAD-CAM control group). All frameworks were fabricated from cobalt-chromium (CoCr) alloy. The marginal fit was analyzed according to the single-screw test protocol, obtaining an average value for each region (M and PM) and each framework. The frameworks were tightened for the photoelastic model with standardized 10-Ncm torque. Stress was measured by quantitative photoelastic analysis. The results were submitted to the Student t test, 2-way ANOVA, and Pearson correlation test (α=.05). The framework fabrication method (FM) and evaluation site (ES; M and PM regions) did not affect the marginal fit values (P=.559 for FM and P=.065 for ES) and stress (P=.685 for FM and P=.468 for ES) in the implant-supported system. Positive correlations between marginal fit and stress were observed (CAD-CAM: r=0.922; P<.001; overcast: r=0.908; P<.001). CAD-CAM and overcasting methods present similar marginal fit and stress values for 3-unit FDP frameworks. The decreased marginal fit of frameworks induces greater stress in the implant-supported system. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schlam, E.
1983-01-01
Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.
A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies
NASA Astrophysics Data System (ADS)
Belokar, R. M.; Banga, H. K.; Kumar, R.
2017-12-01
This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.
High-power microwave LDMOS transistors for wireless data transmission technologies (Review)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, E. V., E-mail: E.Kouzntsov@tcen.ru; Shemyakin, A. V.
The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceiversmore » for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).« less
Digital impression and jaw relation record for the fabrication of CAD/CAM custom tray.
Kanazawa, Manabu; Iwaki, Maiko; Arakida, Toshio; Minakuchi, Shunsuke
2018-03-16
This article describes the protocol of a digital impression technique to make an impression and recording of the jaw relationship of edentulous patients for the fabrication of CAD/CAM custom tray using computer-aided design and manufacturing (CAD/CAM) technology. Scan the maxillary and mandibular edentulous jaws using an intraoral scanner. Scan the silicone jig with the maxillary and mandibular jaws while keeping the jig between the jaws. Import the standard tessellation language data of the maxillary and mandibular jaws and jig to make a jaw relation record and fabricate custom trays (CAD/CAM trays) using a rapid prototyping system. Make a definitive impression of the maxillary and mandibular jaws using the CAD/CAM trays. Digitalization of the complete denture fabrication process can simplify the complicated treatment and laboratory process of conventional methods In addition, the proposed method enables quality control regardless of the operator's experience and technique. Copyright © 2018. Published by Elsevier Ltd.
Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication.
Leberfinger, Ashley N; Ravnic, Dino J; Dhawan, Aman; Ozbolat, Ibrahim T
2017-10-01
Bioprinting is a quickly progressing technology, which holds the potential to generate replacement tissues and organs. Stem cells offer several advantages over differentiated cells for use as starting materials, including the potential for autologous tissue and differentiation into multiple cell lines. The three most commonly used stem cells are embryonic, induced pluripotent, and adult stem cells. Cells are combined with various natural and synthetic materials to form bioinks, which are used to fabricate scaffold-based or scaffold-free constructs. Computer aided design technology is combined with various bioprinting modalities including droplet-, extrusion-, or laser-based bioprinting to create tissue constructs. Each bioink and modality has its own advantages and disadvantages. Various materials and techniques are combined to maximize the benefits. Researchers have been successful in bioprinting cartilage, bone, cardiac, nervous, liver, and vascular tissues. However, a major limitation to clinical translation is building large-scale vascularized constructs. Many challenges must be overcome before this technology is used routinely in a clinical setting. Stem Cells Translational Medicine 2017;6:1940-1948. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Application of BIM Technology in Prefabricated Buildings
NASA Astrophysics Data System (ADS)
Zhanglin, Guo; Si, Gao; Jun-e, Liu
2017-08-01
The development of fabricated buildings has become the main trend of the developm ent of modern construction industry in China. As the main tool of building information, BIM (b uilding information modeling) has greatly promoted the development of construction industry. Based on the review of the papers about the fabricated buildings and BIM technology in recent years, this paper analyzes the advantages of fabricated buildings and BIM technology, then exp lores the application of BIM technology in fabricated buildings. It aims to realize the rationaliz ation and scientification of project lifecycle management in fabricated construction project, and finally form a coherent information platform in the fabricated building.
A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology.
Figliuzzi, M; Mangano, F; Mangano, C
2012-07-01
Direct laser metal forming (DLMF) is a new technique which allows solids with complex geometry to be produced by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model. For dental implants, the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer by layer, the desired object. Modern computed tomography (CT) acquisition and 3D image conversion, combined with the DLMF process, allows the fabrication of custom-made, root-analogue implants (RAI), perfect copies of the radicular units that need replacing. This report demonstrates the successful clinical use of a custom-made, root-analogue DLMF implant. CT images of the residual non-restorable root of a right maxillary premolar were acquired and modified with specific software into a 3D model. From this model, a custom-made, root-analogue, DLMF implant was fabricated. Immediately after tooth extraction, the root-analogue implant was placed in the extraction socket and restored with a single crown. At the 1-year follow-up examination, the custom-made implant showed almost perfect functional and aesthetic integration. The possibility of fabricating custom-made, root-analogue DLMF implants opens new interesting perspectives for immediate placement of dental implants. Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
X-ray generation using carbon nanotubes
NASA Astrophysics Data System (ADS)
Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.
2015-01-01
Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.
Saijo, Hideto; Igawa, Kazuyo; Kanno, Yuki; Mori, Yoshiyuki; Kondo, Kayoko; Shimizu, Koutaro; Suzuki, Shigeki; Chikazu, Daichi; Iino, Mitsuki; Anzai, Masahiro; Sasaki, Nobuo; Chung, Ung-il; Takato, Tsuyoshi
2009-01-01
Ideally, artificial bones should be dimensionally compatible with deformities, and be biodegradable and osteoconductive; however, there are no artificial bones developed to date that satisfy these requirements. We fabricated novel custom-made artificial bones from alpha-tricalcium phosphate powder using an inkjet printer and implanted them in ten patients with maxillofacial deformities. The artificial bones had dimensional compatibility in all the patients. The operation time was reduced due to minimal need for size adjustment and fixing manipulation. The postsurgical computed tomography analysis detected partial union between the artificial bones and host bone tissues. There were no serious adverse reactions. These findings provide support for further clinical studies of the inkjet-printed custom-made artificial bones.
NASA Technical Reports Server (NTRS)
Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.
2006-01-01
NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.
Two-layer Lab-on-a-chip (LOC) with passive capillary valves for mHealth medical diagnostics.
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2015-01-01
There is a new potential to address needs for medical diagnostics in Point-of-Care (PoC) applications using mHealth (Mobile computing, medical sensors, and communications technologies for health care), a mHealth based lab test will require a LOC to perform clinical analysis. In this work, we describe the design of a simple Lab-on-a-chip (LOC) platform for mHealth medical diagnostics. The LOC utilizes a passive capillary valve with no moving parts for fluid control using channels with very low aspect ratios cross sections (i.e., channel width ≫ height) achieved through transitions in the channel geometry via that arrest capillary flow. Using a CO2 laser in raster engraving mode, we have designed and fabricated an eight-channel LOC for fluorescence signal detection fabricated by engraving and combining just two polymer layers. Each of the LOC channels is capable of mixing two reagents (e.g., enzyme and substrate) for various assays. For mHealth detection, we used a mobile CCD detector equipped with LED multispectral illumination in the red, green, blue, and white range. This technology enables the development of low-cost LOC platforms for mHealth whose fabrication is compatible with standard industrial plastic fabrication processes to enable mass production of mHealth diagnostic devices, which may broaden the use of LOCs in PoC applications, especially in global health settings.
Probabilistic Analysis of a SiC/SiC Ceramic Matrix Composite Turbine Vane
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Nemeth, Noel N.; Brewer, David N.; Mital, Subodh
2004-01-01
To demonstrate the advanced composite materials technology under development within the Ultra-Efficient Engine Technology (UEET) Program, it was planned to fabricate, test, and analyze a turbine vane made entirely of silicon carbide-fiber-reinforced silicon carbide matrix composite (SiC/SiC CMC) material. The objective was to utilize a five-harness satin weave melt-infiltrated (MI) SiC/SiC composite material developed under this program to design and fabricate a stator vane that can endure 1000 hours of engine service conditions. The vane was designed such that the expected maximum stresses were kept within the proportional limit strength of the material. Any violation of this design requirement was considered as the failure. This report presents results of a probabilistic analysis and reliability assessment of the vane. Probability of failure to meet the design requirements was computed. In the analysis, material properties, strength, and pressure loading were considered as random variables. The pressure loads were considered normally distributed with a nominal variation. A temperature profile on the vane was obtained by performing a computational fluid dynamics (CFD) analysis and was assumed to be deterministic. The results suggest that for the current vane design, the chance of not meeting design requirements is about 1.6 percent.
A preliminary study of molecular dynamics on reconfigurable computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolinski, C.; Trouw, F. R.; Gokhale, M.
2003-01-01
In this paper we investigate the performance of platform FPGAs on a compute-intensive, floating-point-intensive supercomputing application, Molecular Dynamics (MD). MD is a popular simulation technique to track interacting particles through time by integrating their equations of motion. One part of the MD algorithm was implemented using the Fabric Generator (FG)[l I ] and mapped onto several reconfigurable logic arrays. FG is a Java-based toolset that greatly accelerates construction of the fabrics from an abstract technology independent representation. Our experiments used technology-independent IEEE 32-bit floating point operators so that the design could be easily re-targeted. Experiments were performed using both non-pipelinedmore » and pipelined floating point modules. We present results for the Altera Excalibur ARM System on a Programmable Chip (SoPC), the Altera Strath EPlS80, and the Xilinx Virtex-N Pro 2VP.50. The best results obtained were 5.69 GFlops at 8OMHz(Altera Strath EPlS80), and 4.47 GFlops at 82 MHz (Xilinx Virtex-II Pro 2VF50). Assuming a lOWpower budget, these results compare very favorably to a 4Gjlop/40Wprocessing/power rate for a modern Pentium, suggesting that reconfigurable logic can achieve high performance at low power on jloating-point-intensivea pplications.« less
Zirconia in dentistry: part 2. Evidence-based clinical breakthrough.
Koutayas, Spiridon Oumvertos; Vagkopoulou, Thaleia; Pelekanos, Stavros; Koidis, Petros; Strub, Jörg Rudolf
2009-01-01
An ideal all-ceramic restoration that conforms well and demonstrates enhanced biocompatibility, strength, fit, and esthetics has always been desirable in clinical dentistry. However, the inherent brittleness, low flexural strength, and fracture toughness of conventional glass and alumina ceramics have been the main obstacles for extensive use. The recent introduction of zirconia-based ceramics as a restorative dental material has generated considerable interest in the dental community, which has been expressed with extensive industrial, clinical, and research activity. Contemporary zirconia powder technology contributes to the fabrication of new biocompatible all-ceramic restorations with improved physical properties for a wide range of promising clinical applications. Especially with the development of computer-aided design (CAD)/computer-aided manufacturing (CAM) systems, high-strength zirconia frameworks can be viable for the fabrication of full and partial coverage crowns, fixed partial dentures, veneers, posts and/or cores, primary double crowns, implant abutments, and implants. Data from laboratory and clinical studies are promising regarding their performance and survival. However, clinical data are considered insufficient and the identified premature complications should guide future research. In addition, different zirconia-based dental auxiliary components (i.e., cutting burs and surgical drills, extra-coronal attachments and orthodontic brackets) can also be technologically feasible. This review aims to present and discuss zirconia manufacturing methods and their potential for successful clinical application in dentistry.
Breadboard linear array scan imager using LSI solid-state technology
NASA Technical Reports Server (NTRS)
Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.
1976-01-01
The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.
Fabrication and testing of 4.2m off-axis aspheric primary mirror of Daniel K. Inouye Solar Telescope
NASA Astrophysics Data System (ADS)
Oh, Chang Jin; Lowman, Andrew E.; Smith, Greg A.; Su, Peng; Huang, Run; Su, Tianquan; Kim, Daewook; Zhao, Chunyu; Zhou, Ping; Burge, James H.
2016-07-01
Daniel K. Inouye Solar Telescope (formerly known as Advanced Technology Solar Telescope) will be the largest optical solar telescope ever built to provide greatly improved image, spatial and spectral resolution and to collect sufficient light flux of Sun. To meet the requirements of the telescope the design adopted a 4m aperture off-axis parabolic primary mirror with challenging specifications of the surface quality including the surface figure, irregularity and BRDF. The mirror has been completed at the College of Optical Sciences in the University of Arizona and it meets every aspect of requirement with margin. In fact this mirror may be the smoothest large mirror ever made. This paper presents the detail fabrication process and metrology applied to the mirror from the grinding to finish, that include extremely stable hydraulic support, IR and Visible deflectometry, Interferometry and Computer Controlled fabrication process developed at the University of Arizona.
SKL algorithm based fabric image matching and retrieval
NASA Astrophysics Data System (ADS)
Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping
2017-07-01
Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.
Jo, Chanwoo; Bae, Doohwan; Choi, Byungho; Kim, Jihun
2017-05-01
Supernumerary teeth need to be removed because they can cause various complications. Caution is needed because their removal can cause damage to permanent teeth or tooth germs in the local vicinity. Surgical guides have recently been used in maxillofacial surgery. Because surgical guides are designed through preoperative analysis by computer-aided design software and fabricated using a 3-dimensional printer applying computer-aided manufacturing technology, they increase the accuracy and predictability of surgery. This report describes 2 cases of removal of a mesiodens-1 from a child and 1 from an adolescent-using a surgical guide; these would have been difficult to remove with conventional surgical methods. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC
NASA Technical Reports Server (NTRS)
Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.
2007-01-01
NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.
Lee, Wan-Sun; Kim, Woong-Chul
2015-01-01
PURPOSE To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. MATERIALS AND METHODS Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. RESULTS The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). CONCLUSION Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced. PMID:25932310
Park, Jong-Kyoung; Lee, Wan-Sun; Kim, Hae-Young; Kim, Woong-Chul; Kim, Ji-Hwan
2015-04-01
To assess the marginal and internal gaps of the copings fabricated by computer-aided milling and direct metal laser sintering (DMLS) systems in comparison to casting method. Ten metal copings were fabricated by casting, computer-aided milling, and DMLS. Seven mesiodistal and labiolingual positions were then measured, and each of these were divided into the categories; marginal gap (MG), cervical gap (CG), axial wall at internal gap (AG), and incisal edge at internal gap (IG). Evaluation was performed by a silicone replica technique. A digital microscope was used for measurement of silicone layer. Statistical analyses included one-way and repeated measure ANOVA to test the difference between the fabrication methods and categories of measured points (α=.05), respectively. The mean gap differed significantly with fabrication methods (P<.001). Casting produced the narrowest gap in each of the four measured positions, whereas CG, AG, and IG proved narrower in computer-aided milling than in DMLS. Thus, with the exception of MG, all positions exhibited a significant difference between computer-aided milling and DMLS (P<.05). Although the gap was found to vary with fabrication methods, the marginal and internal gaps of the copings fabricated by computer-aided milling and DMLS fell within the range of clinical acceptance (<120 µm). However, the statistically significant difference to conventional casting indicates that the gaps in computer-aided milling and DMLS fabricated restorations still need to be further reduced.
Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A
2015-12-01
3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.
Rationale for the Use of CAD/CAM Technology in Implant Prosthodontics
Abduo, Jaafar; Lyons, Karl
2013-01-01
Despite the predictable longevity of implant prosthesis, there is an ongoing interest to continue to improve implant prosthodontic treatment and outcomes. One of the developments is the application of computer-aided design and computer-aided manufacturing (CAD/CAM) to produce implant abutments and frameworks from metal or ceramic materials. The aim of this narrative review is to critically evaluate the rationale of CAD/CAM utilization for implant prosthodontics. To date, CAD/CAM allows simplified production of precise and durable implant components. The precision of fit has been proven in several laboratory experiments and has been attributed to the design of implants. Milling also facilitates component fabrication from durable and aesthetic materials. With further development, it is expected that the CAD/CAM protocol will be further simplified. Although compelling clinical evidence supporting the superiority of CAD/CAM implant restorations is still lacking, it is envisioned that CAD/CAM may become the main stream for implant component fabrication. PMID:23690778
Using additive manufacturing in accuracy evaluation of reconstructions from computed tomography.
Smith, Erin J; Anstey, Joseph A; Venne, Gabriel; Ellis, Randy E
2013-05-01
Bone models derived from patient imaging and fabricated using additive manufacturing technology have many potential uses including surgical planning, training, and research. This study evaluated the accuracy of bone surface reconstruction of two diarthrodial joints, the hip and shoulder, from computed tomography. Image segmentation of the tomographic series was used to develop a three-dimensional virtual model, which was fabricated using fused deposition modelling. Laser scanning was used to compare cadaver bones, printed models, and intermediate segmentations. The overall bone reconstruction process had a reproducibility of 0.3 ± 0.4 mm. Production of the model had an accuracy of 0.1 ± 0.1 mm, while the segmentation had an accuracy of 0.3 ± 0.4 mm, indicating that segmentation accuracy was the key factor in reconstruction. Generally, the shape of the articular surfaces was reproduced accurately, with poorer accuracy near the periphery of the articular surfaces, particularly in regions with periosteum covering and where osteophytes were apparent.
Micro-fabrication method of graphite mesa microdevices based on optical lithography technology
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Wen, Donghui; Zhu, Huamin; Zhang, Xiaorui; Yang, Xing; Shi, Yunsheng; Zheng, Tianxiang
2017-12-01
Graphite mesa microdevices have incommensurate contact nanometer interfaces, superlubricity, high-speed self-retraction, and other characteristics, which have potential applications in high-performance oscillators and micro-scale switches, memory devices, and gyroscopes. However, the current method of fabricating graphite mesa microdevices is mainly based on high-cost, low efficiency electron beam lithography technology. In this paper, the processing technologies of graphite mesa microdevices with various shapes and sizes were investigated by a low-cost micro-fabrication method, which was mainly based on optical lithography technology. The characterization results showed that the optical lithography technology could realize a large-area of patterning on the graphite surface, and the graphite mesa microdevices, which have a regular shape, neat arrangement, and high verticality could be fabricated in large batches through optical lithography technology. The experiments and analyses showed that the graphite mesa microdevices fabricated through optical lithography technology basically have the same self-retracting characteristics as those fabricated through electron beam lithography technology, and the maximum size of the graphite mesa microdevices with self-retracting phenomenon can reach 10 µm × 10 µm. Therefore, the proposed method of this paper can realize the high-efficiency and low-cost processing of graphite mesa microdevices, which is significant for batch fabrication and application of graphite mesa microdevices.
Alrejaye, Najla; Pober, Richard; Giordano Ii, Russell
2017-01-01
To fabricate orthodontic brackets from esthetic materials and determine their fracture resistance during archwire torsion. Computer-aided design/computer-aided manufacturing technology (Cerec inLab, Sirona) was used to mill brackets with a 0.018 × 0.025-inch slot. Materials used were Paradigm MZ100 and Lava Ultimate resin composite (3M ESPE), Mark II feldspathic porcelain (Vita Zahnfabrik), and In-Ceram YZ zirconia (Vita Zahnfabrik). Ten brackets of each material were subjected to torque by a 0.018 × 0.025-inch stainless steel archwire (G&H) using a specially designed apparatus. The average moments and degrees of torsion necessary to fracture the brackets were determined and compared with those of commercially available alumina brackets, Mystique MB (Dentsply GAC). The YZ brackets were statistically significantly stronger than any other tested material in their resistance to torsion (P < .05). The mean torques at failure ranged from 3467 g.mm for Mark II to 11,902 g.mm for YZ. The mean torsion angles at failure ranged from 15.3° to 40.9°. Zirconia had the highest torsional strength among the tested esthetic brackets. Resistance of MZ100 and Lava Ultimate composite resin brackets to archwire torsion was comparable to commercially available alumina ceramic brackets.
Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; ...
2015-03-28
Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect themore » final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.« less
A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit.
Chakrabarti, B; Lastras-Montaño, M A; Adam, G; Prezioso, M; Hoskins, B; Payvand, M; Madhavan, A; Ghofrani, A; Theogarajan, L; Cheng, K-T; Strukov, D B
2017-02-14
Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore's law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + "Molecular") architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.
A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit
Chakrabarti, B.; Lastras-Montaño, M. A.; Adam, G.; Prezioso, M.; Hoskins, B.; Cheng, K.-T.; Strukov, D. B.
2017-01-01
Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore’s law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + “Molecular”) architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit. PMID:28195239
Al Mortadi, Noor; Eggbeer, Dominic; Lewis, Jeffrey; Williams, Robert J
2013-04-01
The aim of this study was to analyze the latest innovations in additive manufacture techniques and uniquely apply them to dentistry, to build a sleep apnea device requiring rotating hinges. Laser scanning was used to capture the three-dimensional topography of an upper and lower dental cast. The data sets were imported into an appropriate computer-aided design software environment, which was used to design a sleep apnea device. This design was then exported as a stereolithography file and transferred for three-dimensional printing by an additive manufacture machine. The results not only revealed that the novel computer-based technique presented provides new design opportunities but also highlighted limitations that must be addressed before the techniques can become clinically viable.
Tunable Nitride Josephson Junctions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Missert, Nancy A.; Henry, Michael David; Lewis, Rupert M.
We have developed an ambient temperature, SiO 2/Si wafer - scale process for Josephson junctions based on Nb electrodes and Ta x N barriers with tunable electronic properties. The films are fabricated by magnetron sputtering. The electronic properties of the Ta xN barriers are controlled by adjusting the nitrogen flow during sputtering. This technology offers a scalable alternative to the more traditional junctions based on AlO x barriers for low - power, high - performance computing.
NASA Astrophysics Data System (ADS)
Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna
2018-02-01
Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL
High performance flight computer developed for deep space applications
NASA Technical Reports Server (NTRS)
Bunker, Robert L.
1993-01-01
The development of an advanced space flight computer for real time embedded deep space applications which embodies the lessons learned on Galileo and modern computer technology is described. The requirements are listed and the design implementation that meets those requirements is described. The development of SPACE-16 (Spaceborne Advanced Computing Engine) (where 16 designates the databus width) was initiated to support the MM2 (Marine Mark 2) project. The computer is based on a radiation hardened emulation of a modern 32 bit microprocessor and its family of support devices including a high performance floating point accelerator. Additional custom devices which include a coprocessor to improve input/output capabilities, a memory interface chip, and an additional support chip that provide management of all fault tolerant features, are described. Detailed supporting analyses and rationale which justifies specific design and architectural decisions are provided. The six chip types were designed and fabricated. Testing and evaluation of a brass/board was initiated.
Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon
2009-10-07
We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.
NASA Technical Reports Server (NTRS)
Hope, W. W.; Johnson, L. P.; Obl, W.; Stewart, A.; Harris, W. C.; Craig, R. D.
2000-01-01
Faculty in the Department of Physical, Environmental and Computer Sciences strongly believe in the concept that undergraduate research and research-related activities must be integrated into the fabric of our undergraduate Science and Technology curricula. High level skills, such as problem solving, reasoning, collaboration and the ability to engage in research, are learned for advanced study in graduate school or for competing for well paying positions in the scientific community. One goal of our academic programs is to have a pipeline of research activities from high school to four year college, to graduate school, based on the GISS Institute on Climate and Planets model.
Fracture load of implant-supported zirconia all-ceramic crowns luted with various cements.
Lim, Hyun-Pil; Yoo, Jeong-Min; Park, Sang-Won; Yang, Hong-So
2010-01-01
This study compared the fracture load and failure types of implant-supported zirconia all-ceramic crowns cemented with various luting agents. The ceramic frameworks were fabricated from a presintered yttria-stabilized zirconium dioxide block using computer-aided design/computer-assisted manufacturing technology, and were then veneered with feldspathic porcelain. Three luting agents were used. Composite resin cement (1,560.78 +/- 39.43 N) showed the highest mean fracture load, followed by acrylic/urethane cement (1,116.20 +/- 77.32 N) and zinc oxide eugenol cement (741.21 +/- 41.95 N) (P < .05). The types of failure varied between groups.
Fabricating biomedical origami: a state-of-the-art review
Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho
2018-01-01
Purpose Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Methods Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. Results This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Conclusion Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency. PMID:28260164
Strategy for Texture Management in Metals Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.
Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less
Fabricating biomedical origami: a state-of-the-art review.
Johnson, Meredith; Chen, Yue; Hovet, Sierra; Xu, Sheng; Wood, Bradford; Ren, Hongliang; Tokuda, Junichi; Tse, Zion Tsz Ho
2017-11-01
Origami-based biomedical device design is an emerging technology due to its ability to be deployed from a minimal foldable pattern to a larger volume. This paper aims to review state-of-the-art origami structures applied in the medical device field. Publications and reports of origami structure related to medical device design from the past 10 years are reviewed and categorized according to engineering specifications, including the application field, fabrication material, size/volume, deployment method, manufacturability, and advantages. This paper presents an overview of the biomedical applications of devices based on origami structures, including disposable sterilization covers, cardiac catheterization, stent grafts, encapsulation and microsurgery, gastrointestinal microsurgery, laparoscopic surgical grippers, microgrippers, microfluidic devices, and drug delivery. Challenges in terms of materials and fabrication, assembly, modeling and computation design, and clinical adoptability are discussed at the end of this paper to provide guidance for future origami-based design in the medical device field. Concepts from origami can be used to design and develop novel medical devices. Origami-based medical device design is currently progressing, with researchers improving design methods, materials, fabrication techniques, and folding efficiency.
Strategy for Texture Management in Metals Additive Manufacturing
Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.; ...
2017-01-31
Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less
Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong
2017-01-01
Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343
Kang, Hyun-Wook
2012-01-01
Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications. PMID:22443315
Wideband monolithically integrated front-end subsystems and components
NASA Astrophysics Data System (ADS)
Mruk, Joseph Rene
This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High quality performance of an 18 to 100 GHz front-end is realized by dividing the single instantaneous antenna into two apertures operating from 18 to 50 and 50 to 100 GHz. Each channel features an impedance transformer, low-pass (low-frequency) or band-pass (high-frequency) filter, and grounded CPW launch. This dual-aperture front-end demonstrates that micromachining technology is now capable of fabricating broadband millimeter-wave components with a high degree of integration.
Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell
NASA Astrophysics Data System (ADS)
Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.
2018-05-01
Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.
Fan-out Estimation in Spin-based Quantum Computer Scale-up.
Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R
2017-10-17
Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.
Yu, Jian-Hong; Lo, Lun-Jou; Hsu, Pin-Hsin
2017-01-01
This study integrates cone-beam computed tomography (CBCT)/laser scan image superposition, computer-aided design (CAD), and 3D printing (3DP) to develop a technology for producing customized dental (orthodontic) miniscrew surgical templates using polymer material. Maxillary bone solid models with the bone and teeth reconstructed using CBCT images and teeth and mucosa outer profile acquired using laser scanning were superimposed to allow miniscrew visual insertion planning and permit surgical template fabrication. The customized surgical template CAD model was fabricated offset based on the teeth/mucosa/bracket contour profiles in the superimposition model and exported to duplicate the plastic template using the 3DP technique and polymer material. An anterior retraction and intrusion clinical test for the maxillary canines/incisors showed that two miniscrews were placed safely and did not produce inflammation or other discomfort symptoms one week after surgery. The fitness between the mucosa and template indicated that the average gap sizes were found smaller than 0.5 mm and confirmed that the surgical template presented good holding power and well-fitting adaption. This study addressed integrating CBCT and laser scan image superposition; CAD and 3DP techniques can be applied to fabricate an accurate customized surgical template for dental orthodontic miniscrews. PMID:28280726
Lin, Hsiu-Hsia; Chang, Hsin-Wen; Lo, Lun-Jou
2015-12-01
The purpose of this study was to devise a method for producing customized positioning guides for translating virtual plans to actual orthognathic surgery, and evaluation of the feasibility and validity of the devised method. Patients requiring two-jaw orthognathic surgery were enrolled and consented before operation. Two types of positioning guides were designed and fabricated using computer-aided design and manufacturing technology: One of the guides was used for the LeFort I osteotomy, and the other guide was used for positioning the maxillomandibular complex. The guides were fixed to the medial side of maxilla. For validation, the simulation images and postoperative cone beam computed tomography images were superimposed using surface registration to quantify the difference between the images. The data were presented in root-mean-square difference (RMSD) values. Both sets of guides were experienced to provide ideal fit and maximal contact to the maxillary surface to facilitate their accurate management in clinical applications. The validation results indicated that RMSD values between the images ranged from 0.18 to 0.33 mm in the maxilla and from 0.99 to 1.56 mm in the mandible. The patients were followed up for 6 months or more, and all of them were satisfied with the results. The proposed customized positioning guides are practical and reliable for translation of virtual plans to actual surgery. Furthermore, these guides improved the efficiency and outcome of surgery. This approach is uncomplicated in design, cost-effective in fabrication, and particularly convenient to use.
Dental students' preferences and performance in crown design: conventional wax-added versus CAD.
Douglas, R Duane; Hopp, Christa D; Augustin, Marcus A
2014-12-01
The purpose of this study was to evaluate dental students' perceptions of traditional waxing vs. computer-aided crown design and to determine the effectiveness of either technique through comparative grading of the final products. On one of twoidentical tooth preparations, second-year students at one dental school fabricated a wax pattern for a full contour crown; on the second tooth preparation, the same students designed and fabricated an all-ceramic crown using computer-aided design (CAD) and computer-aided manufacturing (CAM) technology. Projects were graded for occlusion and anatomic form by three faculty members. On completion of the projects, 100 percent of the students (n=50) completed an eight-question, five-point Likert scalesurvey, designed to assess their perceptions of and learning associated with the two design techniques. The average grades for the crown design projects were 78.3 (CAD) and 79.1 (wax design). The mean numbers of occlusal contacts were 3.8 (CAD) and 2.9(wax design), which was significantly higher for CAD (p=0.02). The survey results indicated that students enjoyed designing afull contour crown using CAD as compared to using conventional wax techniques and spent less time designing the crown using CAD. From a learning perspective, students felt that they learned more about position and the size/strength of occlusal contacts using CAD. However, students recognized that CAD technology has limits in terms of representing anatomic contours and excursive occlusion compared to conventional wax techniques. The results suggest that crown design using CAD could be considered as an adjunct to conventional wax-added techniques in preclinical fixed prosthodontic curricula.
Fully-Coupled Thermo-Electrical Modeling and Simulation of Transition Metal Oxide Memristors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamaluy, Denis; Gao, Xujiao; Tierney, Brian David
2016-11-01
Transition metal oxide (TMO) memristors have recently attracted special attention from the semiconductor industry and academia. Memristors are one of the strongest candidates to replace flash memory, and possibly DRAM and SRAM in the near future. Moreover, memristors have a high potential to enable beyond-CMOS technology advances in novel architectures for high performance computing (HPC). The utility of memristors has been demonstrated in reprogrammable logic (cross-bar switches), brain-inspired computing and in non-CMOS complementary logic. Indeed, the potential use of memristors as logic devices is especially important considering the inevitable end of CMOS technology scaling that is anticipated by 2025. Inmore » order to aid the on-going Sandia memristor fabrication effort with a memristor design tool and establish a clear physical picture of resistance switching in TMO memristors, we have created and validated with experimental data a simulation tool we name the Memristor Charge Transport (MCT) Simulator.« less
The scientific data acquisition system of the GAMMA-400 space project
NASA Astrophysics Data System (ADS)
Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Arkhangelskiy, A. I.; Topchiev, N. P.
2016-02-01
The description of scientific data acquisition system (SDAS) designed by SRISA for the GAMMA-400 space project is presented. We consider the problem of different level electronics unification: the set of reliable fault-tolerant integrated circuits fabricated on Silicon-on-Insulator 0.25 mkm CMOS technology and the high-speed interfaces and reliable modules used in the space instruments. The characteristics of reliable fault-tolerant very large scale integration (VLSI) technology designed by SRISA for the developing of computation systems for space applications are considered. The scalable net structure of SDAS based on Serial RapidIO interface including real-time operating system BAGET is described too.
Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14
NASA Technical Reports Server (NTRS)
1992-01-01
Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences.
CMOS-compatible photonic devices for single-photon generation
NASA Astrophysics Data System (ADS)
Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.
2016-09-01
Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.
Making Together: An Interdisciplinary, Inter-institutional Assistive-Technology Project.
Reiser, Susan; Bruce, Rebecca; Martin, Jackson; Skidmore, Brent
2017-01-01
Faculty at the University of North Carolina Asheville partnered with local healthcare professionals and retirement home residents and administrators on an assistive-technology project. The Creative Fabrication introductory computer science course incorporated subject-matter experts from the healthcare community, older and differently abled "users," medical students, and sculpture faculty. Over the semester, the class students created assistive devices to meet the needs of the retirement home residents. They prototyped their designs in foam and 3D modeling software and cast parts of their design in bronze or aluminum. User-centered design, the design process, and the importance of form and function were emphasized throughout the project.
Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing.
Jardini, André Luiz; Larosa, Maria Aparecida; Maciel Filho, Rubens; Zavaglia, Cecília Amélia de Carvalho; Bernardes, Luis Fernando; Lambert, Carlos Salles; Calderoni, Davi Reis; Kharmandayan, Paulo
2014-12-01
Additive manufacturing (AM) technology from engineering has helped to achieve several advances in the medical field, particularly as far as fabrication of implants is concerned. The use of AM has made it possible to carry out surgical planning and simulation using a three-dimensional physical model which accurately represents the patient's anatomy. AM technology enables the production of models and implants directly from a 3D virtual model, facilitating surgical procedures and reducing risks. Furthermore, AM has been used to produce implants designed for individual patients in areas of medicine such as craniomaxillofacial surgery, with optimal size, shape and mechanical properties. This work presents AM technologies which were applied to design and fabricate a biomodel and customized implant for the surgical reconstruction of a large cranial defect. A series of computed tomography data was obtained and software was used to extract the cranial geometry. The protocol presented was used to create an anatomic biomodel of the bone defect for surgical planning and, finally, the design and manufacture of the patient-specific implant. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galarraga, Haize; Lados, Diana A.; Dehoff, Ryan R.
Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology that makes possible the fabrication of three dimensional near-net-shaped parts directly from computer models. EBM technology has been in continuously updating, obtaining optimized properties of the processed alloys. Ti-6Al-4V titanium alloy is the most widely used and studied alloy for this technology and is the focus of this work. Several research works have been completed to study the mechanisms of microstructure formation as well as its influence on mechanical properties. However, the relationship is not completely understood, and more systematic research work is necessary in order tomore » attain a better understanding of these features. In this work, samples fabricated at different locations, orientations, and distances from the build platform have been characterized, studying the relationship of these variables with the resulting material intrinsic characteristics and properties (surface topography, microstructure, porosity, micro-hardness and static mechanical properties). This study has revealed that porosity is the main factor controlling mechanical properties relative to the other studied variables. Therefore, in future process developments, decreasing of the porosity should be considered as the primary goal in order to improve mechanical properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Schiess, Adrian B.; Howell, Jamie
2013-10-01
The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we willmore » instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.« less
Smart fabric sensors and e-textile technologies: a review
NASA Astrophysics Data System (ADS)
Castano, Lina M.; Flatau, Alison B.
2014-05-01
This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.
Ovsianikov, Aleksandr; Schlie, Sabrina; Ngezahayo, Anaclet; Haverich, Axel; Chichkov, Boris N
2007-01-01
We report on recent advances in the fabrication of three-dimensional (3D) scaffolds for tissue engineering and regenerative medicine constructs using a two-photon polymerization technique (2PP). 2PP is a novel CAD/CAM technology allowing the fabrication of any computer-designed 3D structure from a photosensitive polymeric material. The flexibility of this technology and the ability to precisely define 3D construct geometry allows issues associated with vascularization and patient-specific tissue fabrication to be directly addressed. The fabrication of reproducible scaffold structures by 2PP is important for systematic studies of cellular processes and better understanding of in vitro tissue formation. In this study, 2PP was applied for the generation of 3D scaffold-like structures, using the photosensitive organic-inorganic hybrid polymer ORMOCER (ORganically MOdified CERamics) and epoxy-based SU8 materials. By comparing the proliferation rates of cells grown on flat material surfaces and under control conditions, it was demonstrated that ORMOCER and SU8 are not cytotoxic. Additional tests show that the DNA strand breaking of GFSHR-17 granulosa cells was not affected by the presence of ORMOCER. Furthermore, gap junction conductance measurements revealed that ORMOCER did not alter the formation of cell-cell junctions, critical for functional tissue growth. The possibilities of seeding 3D structures with cells were analysed. These studies demonstrate the great potential of 2PP technique for the manufacturing of scaffolds with controlled topology and properties.
Modified modular imaging system designed for a sounding rocket experiment
NASA Astrophysics Data System (ADS)
Veach, Todd J.; Scowen, Paul A.; Beasley, Matthew; Nikzad, Shouleh
2012-09-01
We present the design and system calibration results from the fabrication of a charge-coupled device (CCD) based imaging system designed using a modified modular imager cell (MIC) used in an ultraviolet sounding rocket mission. The heart of the imaging system is the MIC, which provides the video pre-amplifier circuitry and CCD clock level filtering. The MIC is designed with standard four-layer FR4 printed circuit board (PCB) with surface mount and through-hole components for ease of testing and lower fabrication cost. The imager is a 3.5k by 3.5k LBNL p-channel CCD with enhanced quantum efficiency response in the UV using delta-doping technology at JPL. The recently released PCIe/104 Small-Cam CCD controller from Astronomical Research Cameras, Inc (ARC) performs readout of the detector. The PCIe/104 Small-Cam system has the same capabilities as its larger PCI brethren, but in a smaller form factor, which makes it ideally suited for sub-orbital ballistic missions. The overall control is then accomplished using a PCIe/104 computer from RTD Embedded Technologies, Inc. The design, fabrication, and testing was done at the Laboratory for Astronomical and Space Instrumentation (LASI) at Arizona State University. Integration and flight calibration are to be completed at the University of Colorado Boulder before integration into CHESS.
Overview of NASA Langley's Piezoelectric Ceramic Packaging Technology and Applications
NASA Technical Reports Server (NTRS)
Bryant, Robert G.
2007-01-01
Over the past decade, NASA Langley Research Center (LaRC) has developed several actuator packaging concepts designed to enhance the performance of commercial electroactive ceramics. NASA LaRC focused on properly designed actuator and sensor packaging for the following reasons, increased durability, protect the working material from the environment, allow for proper mechanical and electrical contact, afford "ready to use" mechanisms that are scalable, and develop fabrication methodology applicable to any active material of the same physical class. It is more cost effective to enhance or tailor the performance of existing systems, through innovative packaging, than to develop, test and manufacture new materials. This approach led to the development of several solid state actuators that include THUNDER, the Macrofiber Composite or (MFC) and the Radial Field Diaphragm or (RFD). All these actuators are fabricated using standard materials and processes derived from earlier concepts. NASA s fabrication and packaging technology as yielded, piezoelectric actuators and sensors that are easy to implement, reliable, consistent in properties, and of lower cost to manufacture in quantity, than their predecessors (as evidenced by their continued commercial availability.) These piezoelectric actuators have helped foster new research and development in areas involving computational modeling, actuator specific refinements, and engineering system redesign which led to new applications for piezo-based devices that replace traditional systems currently in use.
Mangano, Francesco Guido; De Franco, Michele; Caprioglio, Alberto; Macchi, Aldo; Piattelli, Adriano; Mangano, Carlo
2014-07-01
This study evaluated the 1-year survival and success rate of root-analogue direct laser metal sintering (DLMS) implants, placed into the extraction sockets of 15 patients. DLMS is a technology which allows solids with complex geometry to be fabricated by annealing metal powder microparticles in a focused laser beam, according to a computer-generated three-dimensional (3D) model; the fabrication process involves the laser-induced fusion of titanium microparticles, in order to build, layer-by-layer, the desired object. Cone-beam computed tomography (CBCT) acquisition and 3D image conversion, combined with the DLMS process, allow the fabrication of custom-made, root-analogue implants (RAIs). CBCT images of 15 non-restorable premolars (eight maxilla; seven mandible) were acquired and transformed into 3D models: from these, custom-made, root-analogue DLMS implants with integral abutment were fabricated. Immediately after tooth extraction, the RAIs were placed in the sockets and restored with a single crown. One year after implant placement, clinical and radiographic parameters were assessed: success criteria included absence of pain, suppuration, and exudation; absence of implant mobility and absence of continuous peri-implant radiolucency; distance between the implant shoulder and the first visible bone-to-implant contact <1.5 mm from initial surgery; and absence of prosthetic complications. At the 1-year follow-up, no implants were lost, for a survival rate of 100 %. All implants were stable, with no signs of infection. The good conditions of the peri-implant tissues were confirmed by the radiographic examination, with a mean DIB of 0.7 mm (±0.2). The possibility of fabricating custom-made, RAI DLMS implants opens new interesting horizons for immediate placement of dental implants.
NASA Technical Reports Server (NTRS)
Bodiford, Melanie P.; Gilley, Scott D.; Howard, Richard W.; Kennedy, James P.; Ray, Julie A.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are evaluating current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements, as well as non-destructive evaluation. This paper will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Many ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.
Stapleton, Brandon M; Lin, Wei-Shao; Ntounis, Athanasios; Harris, Bryan T; Morton, Dean
2014-09-01
This clinical report demonstrated the use of an implant-supported fixed dental prosthesis fabricated with a contemporary digital approach. The digital diagnostic data acquisition was completed with a digital diagnostic impression with an intraoral scanner and cone-beam computed tomography with a prefabricated universal radiographic template to design a virtual prosthetically driven implant surgical plan. A surgical template fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM) was used to perform computer-guided implant surgery. The definitive digital data were then used to design the definitive CAD/CAM-fabricated fixed dental prosthesis. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bellini, Anna
Customer-driven product customization and continued demand for cost and time savings have generated a renewed interest in agile manufacturing based on improvements on Rapid Prototyping (RP) technologies. The advantages of RP technologies are: (1) ability to shorten the product design and development time, (2) suitability for automation and decrease in the level of human intervention, (3) ability to build many geometrically complex shapes. A shift from "prototyping" to "manufacturing" necessitates the following improvements: (1) Flexibility in choice of materials; (2) Part integrity and built-in characteristics to meet performance requirements; (3) Dimensional stability and tolerances; (4) Improved surface finish. A project funded by ONR has been undertaken to develop an agile manufacturing technology for fabrication of ceramic and multi-component parts to meet various needs of the Navy, such as transducers, etc. The project is based on adaptation of a layered manufacturing concept since the program required that the new technology be developed based on a commercially available RP technology. Among various RP technologies available today, Fused Deposition Modeling (FDM) has been identified as the focus of this research because of its potential versatility in the choice of materials and deposition configuration. This innovative approach allows for designing and implementing highly complex internal architectures into parts through deposition of different materials in a variety of configurations in such a way that the finished product exhibit characteristics to meet the performance requirements. This implies that, in principle, one can tailor-make the assemble of materials and structures as per specifications of an optimum design. The program objectives can be achieved only through accurate process modeling and modeling of material behavior. Oftentimes, process modeling is based on some type of computational approach where as modeling of material behavior is based on extensive experimental investigations. Studies are conducted in the following categories: (1) Flow modeling during extrusion and deposition; (2) Thermal modeling; (3) Flow control during deposition; (4) Product characterization and property determination for dimensional analysis; (5) Development of a novel technology based on a mini-extrusion system. Studies in each of these stages have involved experimental as well as analytical approaches to develop a comprehensive modeling.
Open Source Radiation Hardened by Design Technology
NASA Technical Reports Server (NTRS)
Shuler, Robert
2016-01-01
The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.
High surface area silicon materials: fundamentals and new technology.
Buriak, Jillian M
2006-01-15
Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.
Computer Aided Design of Computer Generated Holograms for electron beam fabrication
NASA Technical Reports Server (NTRS)
Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid
1989-01-01
Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.
Micro/nano-fabrication technologies for cell biology.
Qian, Tongcheng; Wang, Yingxiao
2010-10-01
Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.
Micro/nano-fabrication technologies for cell biology
Qian, Tongcheng
2012-01-01
Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938
Shankaran, Gayatri; Deogade, Suryakant Chhagan; Dhirawani, Rajesh
2016-01-01
Rapid prototyping (RP) is a technique of manufacturing parts by the additive layer manufacturing technology; where, a three-dimensional (3D) model created in a computer aided design (CAD) system is sectioned into 2D profiles, which are further constructed by RP layer by layer. Its use is not limited to industrial or engineering fields and has extended to the medical field for the manufacturing of custom implants and prostheses, the study of anatomy and surgical planning. Nowadays, dentists are more frequently encountered with the individuals affected with craniofacial defects due to trauma. In such cases, the craniomaxillofacial rehabilitation is a real challenge to bring the patients back to society and promote their well-being. The conventional impression technique for facial prosthesis fabrication has the disadvantage of deforming the soft tissue and causing discomfort for the patient. Herein, we describe the fabrication of a cranial prosthesis combined with an ocular prosthesis with RP and stereolithography.
Shankaran, Gayatri; Dhirawani, Rajesh
2016-01-01
Rapid prototyping (RP) is a technique of manufacturing parts by the additive layer manufacturing technology; where, a three-dimensional (3D) model created in a computer aided design (CAD) system is sectioned into 2D profiles, which are further constructed by RP layer by layer. Its use is not limited to industrial or engineering fields and has extended to the medical field for the manufacturing of custom implants and prostheses, the study of anatomy and surgical planning. Nowadays, dentists are more frequently encountered with the individuals affected with craniofacial defects due to trauma. In such cases, the craniomaxillofacial rehabilitation is a real challenge to bring the patients back to society and promote their well-being. The conventional impression technique for facial prosthesis fabrication has the disadvantage of deforming the soft tissue and causing discomfort for the patient. Herein, we describe the fabrication of a cranial prosthesis combined with an ocular prosthesis with RP and stereolithography. PMID:27536331
NASA Astrophysics Data System (ADS)
Takada, Yoshihiro; Fukui, Matoko; Sai, Tsunehiro
2008-11-01
Recent progresses in the photoresists and photolithography for LCD industry applications have been primarily driven by the following two factors: advancement in the material performances (high resolution, high contrast ratio, low dielectric constant) for higher display quality, and cost reduction in the fabrication process. Along with crucial demand for cost competitiveness by improving production efficiency, environmental consciousness has been a major priority at fabrication process design to minimize the amount of waste produced. Having said the above, integration of two or more fabrication processes into a single process by using multi-tone mask technology has been the interest of research, due to its obvious advantage of reducing fabrication processes and cost. For example, multi-tone mask technology application has been widely employed on the TFT side to reduce the different types of photomasks being used. Similar trend has been employed on the CF side as well, where application of multi-tone mask technology is being investigated to integrate fabrication of multiple CF micro-components into a single process. In this presentation, we demonstrate a new approach of fabricating photospacer and peripheral CF components (MVA protrusion, sub-photospacers) in a single integrated process through multi-tone mask technology.
Data encryption standard ASIC design and development report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Perry J.; Pierson, Lyndon George; Witzke, Edward L.
2003-10-01
This document describes the design, fabrication, and testing of the SNL Data Encryption Standard (DES) ASIC. This device was fabricated in Sandia's Microelectronics Development Laboratory using 0.6 {micro}m CMOS technology. The SNL DES ASIC was modeled using VHDL, then simulated, and synthesized using Synopsys, Inc. software and finally IC layout was performed using Compass Design Automation's CAE tools. IC testing was performed by Sandia's Microelectronic Validation Department using a HP 82000 computer aided test system. The device is a single integrated circuit, pipelined realization of DES encryption and decryption capable of throughputs greater than 6.5 Gb/s. Several enhancements accommodate ATMmore » or IP network operation and performance scaling. This design is the latest step in the evolution of DES modules.« less
Engineering Research and Development and Technology thrust area report FY92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R.T.; Minichino, C.
1993-03-01
The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, theymore » are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.« less
Tungsten wire/FeCrAlY matrix turbine blade fabrication study
NASA Technical Reports Server (NTRS)
Melnyk, P.; Fleck, J. N.
1979-01-01
The objective was to establish a viable FRS monotape technology base to fabricate a complex, advanced turbine blade. All elements of monotape fabrication were addressed. A new process for incorporation of the matrix, including bi-alloy matrices, was developed. Bonding, cleaning, cutting, sizing, and forming parameters were established. These monotapes were then used to fabricate a 48 ply solid JT9D-7F 1st stage turbine blade. Core technology was then developed and first a 12 ply and then a 7 ply shell hollow airfoil was fabricated. As the fabrication technology advanced, additional airfoils incorporated further elements of sophistication, by introducing in sequence bonded root blocks, cross-plying, bi-metallic matrix, tip cap, trailing edge slots, and impingement inserts.
Virtually fabricated guide for placement of the C-tube miniplate.
Paek, Janghyun; Jeong, Do-Min; Kim, Yong; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald
2014-05-01
This paper introduces a virtually planned and stereolithographically fabricated guiding system that will allow the clinician to plan carefully for the best location of the device and to achieve an accurate position without complications. The scanned data from preoperative dental casts were edited to obtain preoperative 3-dimensional (3D) virtual models of the dentition. After the 3D virtual models were repositioned, the 3D virtual surgical guide was fabricated. A surgical guide was created onscreen, and then these virtual guides were materialized into real ones using the stereolithographic technique. Whereas the previously described guide required laboratory work to be performed by the orthodontist, our technique is more convenient because the laboratory work is done remotely by computer-aided design/computer-aided manufacturing technology. Because the miniplate is firmly held in place as the patient holds his or her mandibular teeth against the occlusal pad of the surgical guide, there is no risk that the miniscrews can slide on the bone surface during placement. The software program (2.5-dimensional software) in this study combines 2-dimensional cephalograms with 3D virtual dental models. This software is an effective and efficient alternative to 3D software when 3D computed tomography data are not available. To confidently and safely place a miniplate with screw fixation, a simple customized guide for an orthodontic miniplate was introduced. The use of a custom-made, rigid guide when placing miniplates will minimize complications such as vertical mislocation or slippage of the miniplate during placement. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Lin, Wei-Shao; Metz, Michael J; Pollini, Adrien; Ntounis, Athanasios; Morton, Dean
2014-12-01
This dental technique report describes a digital workflow with digital data acquisition at the implant level, computer-aided design and computer-aided manufacturing fabricated, tissue-colored, anodized titanium framework, individually luted zirconium oxide restorations, and autopolymerizing injection-molded acrylic resin to fabricate an implant-supported, metal-ceramic-resin fixed complete dental prosthesis in an edentulous mandible. The 1-step computer-aided design and computer-aided manufacturing fabrication of titanium framework and zirconium oxide restorations can provide a cost-effective alternative to the conventional metal-resin fixed complete dental prosthesis. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Ahlfeld, Tilman; Akkineni, Ashwini Rahul; Förster, Yvonne; Köhler, Tino; Knaack, Sven; Gelinsky, Michael; Lode, Anja
2017-01-01
Additive manufacturing enables the fabrication of scaffolds with defined architecture. Versatile printing technologies such as extrusion-based 3D plotting allow in addition the incorporation of biological components increasing the capability to restore functional tissues. We have recently described the fabrication of calcium phosphate cement (CPC) scaffolds by 3D plotting of an oil-based CPC paste under mild conditions. In the present study, we have developed a strategy for growth factor loading based on multichannel plotting: a biphasic scaffold design was realised combining CPC with VEGF-laden, highly concentrated hydrogel strands. As hydrogel component, alginate and an alginate-gellan gum blend were evaluated; the blend exhibited a more favourable VEGF release profile and was chosen for biphasic scaffold fabrication. After plotting, two-step post-processing was performed for both, hydrogel crosslinking and CPC setting, which was shown to be compatible with both materials. Finally, a scaffold was designed and fabricated which can be applied for testing in a rat critical size femur defect. Optimization of CPC plotting enabled the fabrication of highly resolved structures with strand diameters of only 200 µm. Micro-computed tomography revealed a precise strand arrangement and an interconnected pore space within the biphasic scaffold even in swollen state of the hydrogel strands.
NASA Astrophysics Data System (ADS)
Abdullah, Abdul Manaf; Din, Tengku Noor Daimah Tengku; Mohamad, Dasmawati; Rahim, Tuan Noraihan Azila Tuan; Akil, Hazizan Md; Rajion, Zainul Ahmad
2016-12-01
Conventional prosthesis fabrication is highly depends on the hand creativity of laboratory technologist. The development in 3D printing technology offers a great help in fabricating affordable and fast yet esthetically acceptable prostheses. This study was conducted to discover the potential of 3D printed moulds for indirect silicone elastomer based nasal prosthesis fabrication. Moulds were designed using computer aided design (CAD) software (Solidworks, USA) and converted into the standard tessellation language (STL) file. Three moulds with layer thickness of 0.1, 0.2 and 0.3mm were printed utilizing polymer filament based 3D printer (Makerbot Replicator 2X, Makerbot, USA). Another one mould was printed utilizing liquid resin based 3D printer (Objet 30 Scholar, Stratasys, USA) as control. The printed moulds were then used to fabricate maxillofacial silicone specimens (n=10)/mould. Surface profilometer (Surfcom Flex, Accretech, Japan), digital microscope (KH77000, Hirox, USA) and scanning electron microscope (Quanta FEG 450, Fei, USA) were used to measure the surface roughness as well as the topological properties of fabricated silicone. Statistical analysis of One-Way ANOVA was employed to compare the surface roughness of the fabricated silicone elastomer. Result obtained demonstrated significant differences in surface roughness of the fabricated silicone (p<0.01). Further post hoc analysis also revealed significant differences in silicone fabricated using different 3D printed moulds (p<0.01). A 3D printed mould was successfully prepared and characterized. With surface topography that could be enhanced, inexpensive and rapid mould fabrication techniques, polymer filament based 3D printer is potential for indirect silicone elastomer based nasal prosthesis fabrication.
Zimmermann, Moritz; Koller, Christina; Hickel, Reinhard; Kühnisch, Jan
2016-09-01
Amelogenesis imperfecta is a hereditary disease affecting the structural development of tooth substance. This clinical report describes a 1-visit chairside treatment of an 8-year-old patient with amelogenesis imperfecta, using computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Intraoral scanning was performed using the Cerec Omnicam. Thirteen resin nanoceramic crowns (Lava Ultimate) were fabricated chairside by using a Cerec MCXL milling unit and seated adhesively. The patient's treatment included establishing a new occlusal vertical dimension and new centric relationship. Reevaluation after 6 months showed a stable situation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Computational Infrastructure for Engine Structural Performance Simulation
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1997-01-01
Select computer codes developed over the years to simulate specific aspects of engine structures are described. These codes include blade impact integrated multidisciplinary analysis and optimization, progressive structural fracture, quantification of uncertainties for structural reliability and risk, benefits estimation of new technology insertion and hierarchical simulation of engine structures made from metal matrix and ceramic matrix composites. Collectively these codes constitute a unique infrastructure readiness to credibly evaluate new and future engine structural concepts throughout the development cycle from initial concept, to design and fabrication, to service performance and maintenance and repairs, and to retirement for cause and even to possible recycling. Stated differently, they provide 'virtual' concurrent engineering for engine structures total-life-cycle-cost.
Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling
NASA Astrophysics Data System (ADS)
Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.
2017-04-01
Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.
NASA Astrophysics Data System (ADS)
Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał
2013-07-01
The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.
Throwing computing into reverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Michael P.
For more than 50 years, computers have made steady and dramatic improvements, all thanks to Moore’s Law—the exponential increase over time in the number of transistors that can be fabricated on an integrated circuit of a given size. Moore’s Law owed its success to the fact that as transistors were made smaller, they became simultaneously cheaper, faster, and more energy efficient. The payoff from this win-win-win scenario enabled reinvestment in semiconductor fabrication technology that could make even smaller, more densely-packed transistors. And so this virtuous cycle continued, decade after decade. Now though, experts in industry, academia, and government laboratories anticipatemore » that semiconductor miniaturization won’t continue much longer—maybe 10 years or so, at best. Making transistors smaller no longer yields the improvements it used to. The physical characteristics of small transistors forced clock speeds to cease getting faster more than a decade ago, which drove the industry to start building chips with multiple cores. But even multi-core architectures must contend with increasing amounts of “dark silicon,” areas of the chip that must be powered off to avoid overheating.« less
Overview of free-piston Stirling technology at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1985-01-01
An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (Lewis) free-piston Stirling engine activities is presented. These activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ONRL)), and (2) a free-piston Stirling space-power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kw free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.
Neutron Characterization for Additive Manufacturing
NASA Technical Reports Server (NTRS)
Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.
2013-01-01
Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL Manufacturing Demonstration Facility (MDF) sponsored by the DOE's Advanced Manufacturing Office. The MDF is focusing on R&D of both metal and polymer AM pertaining to in-situ process monitoring and closed-loop controls; implementation of advanced materials in AM technologies; and demonstration, characterization, and optimization of next-generation technologies. ORNL is working directly with industry partners to leverage world-leading facilities in fields such as high performance computing, advanced materials characterization, and neutron sciences to solve fundamental challenges in advanced manufacturing. Specifically, MDF is leveraging two of the world's most advanced neutron facilities, the HFIR and SNS, to characterize additive manufactured components.
Improving the strength of additively manufactured objects via modified interior structure
NASA Astrophysics Data System (ADS)
Al, Can Mert; Yaman, Ulas
2017-10-01
Additive manufacturing (AM), in other words 3D printing, is becoming more common because of its crucial advantages such as geometric complexity, functional interior structures, etc. over traditional manufacturing methods. Especially, Fused Filament Fabrication (FFF) 3D printing technology is frequently used because of the fact that desktop variants of these types of printers are highly appropriate for different fields and are improving rapidly. In spite of the fact that there are significant advantages of AM, the strength of the parts fabricated with AM is still a major problem especially when plastic materials, such as Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Nylon, etc., are utilized. In this study, an alternative method is proposed in which the strength of AM fabricated parts is improved employing direct slicing approach. Traditional Computer Aided Manufacturing (CAM) software of 3D printers takes only the geometry as an input in triangular mesh form (stereolithography, STL file) generated by Computer Aided Design software. This file format includes data only about the outer boundaries of the geometry. Interior of the artifacts are manufactured with homogeneous infill patterns, such as diagonal, honeycomb, linear, etc. according to the paths generated in CAM software. The developed method within this study provides a way to fabricate parts with heterogeneous infill patterns by utilizing the stress field data obtained from a Finite Element Analysis software, such as ABAQUS. According to the performed tensile tests, the strength of the test specimen is improved by about 45% compared to the conventional way of 3D printing.
Lightweight 3.66-meter-diameter conical mesh antenna reflector
NASA Technical Reports Server (NTRS)
Moore, D. M.
1974-01-01
A description is given of a 3.66 m diameter nonfurlable conical mesh antenna incorporating the line source feed principle recently developed. The weight of the mesh reflector and its support structure is 162 N. An area weighted RMS surface deviation of 0.28 mm was obtained. The RF performance measurements show a gain of 48.3 db at 8.448 GHz corresponding to an efficiency of 66%. During the design and development of this antenna, the technology for fabricating the large conical membranes of knitted mesh was developed. As part of this technology a FORTRAN computer program, COMESH, was developed which permits the user to predict the surface accuracy of a stretched conical membrane.
NASA Astrophysics Data System (ADS)
Hull, Tony; Hartmann, Peter; Clarkson, Andrew R.; Barentine, John M.; Jedamzik, Ralf; Westerhoff, Thomas
2010-07-01
Pending critical spaceborne requirements, including coronagraphic detection of exoplanets, require exceptionally smooth mirror surfaces, aggressive lightweighting, and low-risk cost-effective optical manufacturing methods. Simultaneous development at Schott for production of aggressively lightweighted (>90%) Zerodur® mirror blanks, and at L-3 Brashear for producing ultra-smooth surfaces on Zerodur®, will be described. New L-3 techniques for large-mirror optical fabrication include Computer Controlled Optical Surfacing (CCOS) pioneered at L-3 Tinsley, and the world's largest MRF machine in place at L-3 Brashear. We propose that exceptional mirrors for the most critical spaceborne applications can now be produced with the technologies described.
3D printed polymers toxicity profiling: a caution for biodevice applications
NASA Astrophysics Data System (ADS)
Zhu, Feng; Skommer, Joanna; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald
2015-12-01
A recent revolution in additive manufacturing technologies and access to 3D Computer Assisted Design (CAD) software has spurred an explosive growth of new technologies in biomedical engineering. This includes biomodels for diagnosis, surgical training, hard and soft tissue replacement, biodevices and tissue engineering. Moreover, recent developments in high-definition additive manufacturing systems such as Multi-Jet Modelling (MJM) and Stereolithography (SLA), capable of reproducing feature sizes close to 100 μm, promise brand new capabilities in fabrication of optical-grade biomicrofluidic Lab-on-a-Chip and MEMS devices. Compared with other rapid prototyping technologies such as soft lithography and infrared laser micromachining in PMMA, SLA and MJM systems can enable user-friendly production of prototypes, superior feature reproduction quality and comparable levels of optical transparency. Prospectively they can revolutionize fabrication of microfluidic devices with complex geometric features and eliminate the need to use clean room environment and conventional microfabrication techniques. In this work we demonstrate preliminary data on toxicity profiling of a panel of common polymers used in 3D printing applications. The main motivation of our work was to evaluate toxicity profiles of most commonly used polymers using standardized biotests according to OECD guidelines for testing of chemic risk assessment. Our work for the first time provides a multispecies view of potential dangers and limitation for building biocompatible devices using FDM, SLA and MJM additive manufacturing systems. Our work shows that additive manufacturing holds significant promise for fabricating LOC and MEMS but requires caution when selecting systems and polymers due to toxicity exhibited by some 3D printing polymers.
NASA Astrophysics Data System (ADS)
Hafsi, B.; Boubaker, A.; Guerin, D.; Lenfant, S.; Kalboussi, A.; Lmimouni, K.
2017-02-01
Organic field-effect transistors based on poly{[ N, N0- bis(2-octyldodecyl)- naphthalene-1,4,5,8- bis(dicarboximide)-2,6-diyl]-alt-5,50-(2,20-bithiophene)}, [P(NDI2OD-T2)n], were fabricated and characterized. The effect of octadecyltrichlorosilane (OTS) a self-assembled monolayer (SAM) grafted on to a SiO2 gate dielectric was investigated. A significant improvement of the charge mobility ( μ), up to 0.22 cm2/V s, was reached thanks to the OTS treatment. Modifying some technological parameters relating to fabrication, such as solvents, was also studied. We have analyzed the electrical properties of these thin-film transistors by using a two-dimensional drift-diffusion simulator, Integrated System Engineering-Technology Computer Aided Design (ISE-TCAD®). We studied the fixed surface charges at the organic semiconductor/oxide interface and the bulk traps effect. The dependence of the threshold voltage on the density and energy level of the trap states has also been considered. We finally found a good agreement between the output and transfer characteristics for experimental and simulated data.
Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns.
Kale, Ediz; Seker, Emre; Yilmaz, Burak; Özcelik, Tuncer Burak
2016-12-01
Monolithic zirconia crowns fabricated with computer-aided design and computer-aided manufacturing (CAD-CAM) have recently become a common practice for the restoration of posterior teeth. The marginal fit of monolithic zirconia crowns may be affected by different cement space parameters set in the CAD software. Information is scarce regarding the effect of cement space on the marginal fit of monolithic zirconia crowns fabricated with CAD-CAM technology. The purpose of this in vitro study was to evaluate the effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns before cementation. Fifteen right maxillary first molar typodont teeth with standardized anatomic preparations for complete-coverage ceramic crowns were scanned with a 3-dimensional laboratory scanner. Crowns were designed 3-dimensionally using software and then milled from presintered monolithic zirconia blocks in a computer numerical control dental milling machine. The cement space was set at 25 μm around the margins for all groups, and additional cement space starting 1 mm above the finish lines of the teeth was set at 30 μm for group 25-30, 40 μm for group 25-40, and 50 μm for group 25-50 in the CAD software. A total of 120 images (3 groups, 5 crowns per group, 8 sites per crown) were measured for vertical marginal discrepancy under a stereoscopic zoom microscope and the data were statistically analyzed with 1-way analysis of variance, followed by the Tukey honestly significant difference test (α=.05). The results showed that different cement space values had statistically significant effect on the mean vertical marginal discrepancy value of tested crowns (P<.001). The mean marginal discrepancy was 85 μm for group 25-30, 68 μm for group 25-40, and 53 μm for group 25-50. Within the limitations of this in vitro study, it was concluded that the cement space had a significant effect on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. The marginal fit improved as the cement space decreased. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
In Situ Fabrication and Repair (ISFR) Technologies; New Challenges for Exploration
NASA Technical Reports Server (NTRS)
Bassler, Julie A.; Bodiford, Melanie P.; Hammond, Monica S.; King, Ron; Mclemore, Carole A.; Hall, Nancy R.; Fiske, Michael R.; Ray, Julie A.
2006-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are continuing to evaluate current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, while many technologies offer promising applications, these technologies must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and non-destructive evaluation W E ) of common life support elements. As an overview of the ISFR Element, this paper will address rapid prototyping technologies, their applications, challenges, and near term advancements. This paper will also discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Overcoming the challenges of ISFR development will provide the Exploration initiative with state of the art technologies that reduce risk, and enhance supportability.
NASA Technical Reports Server (NTRS)
Bassler, Julie A.; Bodiford, Melanie P.; Fiske, Michael R.; Strong, Janet D.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center are evaluating current technologies for in situ exploration habitat and fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) program will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements. This paper will look at the current and future habitat technology applications such as the implementation of in situ environmental elements such as caves, rilles and lavatubes, the development of lunar regolith concrete and structure design and development, thin film and inflatable technologies. We will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. All ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.
Azuma, Masaki; Yanagawa, Toru; Ishibashi-Kanno, Naomi; Uchida, Fumihiko; Ito, Takaaki; Yamagata, Kenji; Hasegawa, Shogo; Sasaki, Kaoru; Adachi, Koji; Tabuchi, Katsuhiko; Sekido, Mitsuru; Bukawa, Hiroki
2014-10-23
Recently, medical rapid prototyping (MRP) models, fabricated with computer-aided design and computer-aided manufacture (CAD/CAM) techniques, have been applied to reconstructive surgery in the treatment of head and neck cancers. Here, we tested the use of preoperatively manufactured reconstruction plates, which were produced using MRP models. The clinical efficacy and esthetic outcome of using these products in mandibular reconstruction was evaluated. A series of 28 patients with malignant oral tumors underwent unilateral segmental resection of the mandible and simultaneous mandibular reconstruction. Twelve patients were treated with prebent reconstruction plates that were molded to MRP mandibular models designed with CAD/CAM techniques and fabricated on a combined powder bed and inkjet head three-dimensional printer. The remaining 16 patients were treated using conventional reconstruction methods. The surgical and esthetic outcomes of the two groups were compared by imaging analysis using post-operative panoramic tomography. The mandibular symmetry in patients receiving the MRP-model-based prebent plates was significantly better than that in patients receiving conventional reconstructive surgery. Patients with head and neck cancer undergoing reconstructive surgery using a prebent reconstruction plate fabricated according to an MRP mandibular model showed improved mandibular contour compared to patients undergoing conventional mandibular reconstruction. Thus, use of this new technology for mandibular reconstruction results in an improved esthetic outcome with the potential for improved quality of life for patients.
Su, Ting-Shu; Sun, Jian
2016-09-01
For 20 years, the intraoral digital impression technique has been applied to the fabrication of computer aided design and computer aided manufacturing (CAD-CAM) fixed dental prostheses (FDPs). Clinical fit is one of the main determinants of the success of an FDP. Studies of the clinical fit of 3-unit ceramic FDPs made by means of a conventional impression versus a digital impression technology are limited. The purpose of this in vitro study was to evaluate and compare the internal fit and marginal fit of CAD-CAM, 3-unit ceramic FDP frameworks fabricated from an intraoral digital impression and a conventional impression. A standard model was designed for a prepared maxillary left canine and second premolar and missing first premolar. The model was scanned with an intraoral digital scanner, exporting stereolithography (STL) files as the experimental group (digital group). The model was used to fabricate 10 stone casts that were scanned with an extraoral scanner, exporting STL files to a computer connected to the scanner as the control group (conventional group). The STL files were used to produce zirconia FDP frameworks with CAD-CAM. These frameworks were seated on the standard model and evaluated for marginal and internal fit. Each framework was segmented into 4 sections per abutment teeth, resulting in 8 sections per framework, and was observed using optical microscopy with ×50 magnification. Four measurement points were selected on each section as marginal discrepancy (P1), mid-axial wall (P2), axio-occusal edge (P3), and central-occlusal point (P4). Mean marginal fit values of the digital group (64 ±16 μm) were significantly smaller than those of the conventional group (76 ±18 μm) (P<.05). The mean internal fit values of the digital group (111 ±34 μm) were significantly smaller than those of the conventional group (132 ±44 μm) (P<.05). CAD-CAM 3-unit zirconia FDP frameworks fabricated from intraoral digital and conventional impressions showed clinically acceptable marginal and internal fit. The marginal and internal fit of frameworks fabricated from the intraoral digital impression system were better than those fabricated from conventional impressions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Chemical Gas Sensors for Aeronautic and Space Applications 2
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.
1998-01-01
Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.
Fabrication of custom-shaped grafts for cartilage regeneration.
Koo, Seungbum; Hargreaves, Brian A; Gold, Garry E; Dragoo, Jason L
2010-10-01
to create a custom-shaped graft through 3D tissue shape reconstruction and rapid-prototype molding methods using MRI data, and to test the accuracy of the custom-shaped graft against the original anatomical defect. An iatrogenic defect on the distal femur was identified with a 1.5 Tesla MRI and its shape was reconstructed into a three-dimensional (3D) computer model by processing the 3D MRI data. First, the accuracy of the MRI-derived 3D model was tested against a laser-scan based 3D model of the defect. A custom-shaped polyurethane graft was fabricated from the laser-scan based 3D model by creating custom molds through computer aided design and rapid-prototyping methods. The polyurethane tissue was laser-scanned again to calculate the accuracy of this process compared to the original defect. The volumes of the defect models from MRI and laser-scan were 537 mm3 and 405 mm3, respectively, implying that the MRI model was 33% larger than the laser-scan model. The average (±SD) distance deviation of the exterior surface of the MRI model from the laser-scan model was 0.4 ± 0.4 mm. The custom-shaped tissue created from the molds was qualitatively very similar to the original shape of the defect. The volume of the custom-shaped cartilage tissue was 463 mm3 which was 15% larger than the laser-scan model. The average (±SD) distance deviation between the two models was 0.04 ± 0.19 mm. This investigation proves the concept that custom-shaped engineered grafts can be fabricated from standard sequence 3-D MRI data with the use of CAD and rapid-prototyping technology. The accuracy of this technology may help solve the interfacial problem between native cartilage and graft, if the grafts are custom made for the specific defect. The major source of error in fabricating a 3D custom-shaped cartilage graft appears to be the accuracy of a MRI data itself; however, the precision of the model is expected to increase by the utilization of advanced MR sequences with higher magnet strengths.
Design of Complete Dentures by Adopting CAD Developed for Fixed Prostheses.
Li, Yanfeng; Han, Weili; Cao, Jing; Iv, Yuan; Zhang, Yue; Han, Yishi; Shen, Yi; Ma, Zheng; Liu, Huanyue
2018-02-01
The demand for complete dentures is expected to increase worldwide, but complete dentures are mainly designed and fabricated manually involving a broad series of clinical and laboratory procedures. Therefore, the quality of complete dentures largely depends on the skills of the dentist and technician, leading to difficulty in quality control. Computer-aided design and manufacturing (CAD/CAM) has been used to design and fabricate various dental restorations including dental inlays, veneers, crowns, partial crowns, and fixed partial dentures (FPDs). It has been envisioned that the application of CAD/CAM technology could reduce intensive clinical/laboratory work for the fabrication of complete dentures; however, CAD/CAM is seldom used to fabricate complete dentures due to the lack of suitable CAD software to design virtual complete dentures although the CAM techniques are in a much advanced stage. Here we report the successful design of virtual complete dentures using CAD software of 3Shape Dental System 2012, which was developed for designing fixed prostheses instead of complete dentures. Our results demonstrated that complete dentures could be successfully designed by the combination of two modeling processes, single coping and full anatomical FPD, available in the 3Shape Dental System 2012. © 2016 by the American College of Prosthodontists.
Film Fabrication Technologies at NREL
NASA Technical Reports Server (NTRS)
Mcconnell, Robert D.
1993-01-01
The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.
CMOS compatible thin-film ALD tungsten nanoelectromechanical devices
NASA Astrophysics Data System (ADS)
Davidson, Bradley Darren
This research focuses on the development of a novel, low-temperature, CMOS compatible, atomic-layer-deposition (ALD) enabled NEMS fabrication process for the development of ALD Tungsten (WALD) NEMS devices. The devices are intended for use in CMOS/NEMS hybrid systems, and NEMS based micro-processors/controllers capable of reliable operation in harsh environments not accessible to standard CMOS technologies. The majority of NEMS switches/devices to date have been based on carbon-nano-tube (CNT) designs. The devices consume little power during actuation, and as expected, have demonstrated actuation voltages much smaller than MEMS switches. Unfortunately, NEMS CNT switches are not typically CMOS integrable due to the high temperatures required for their growth, and their fabrication typically results in extremely low and unpredictable yields. Thin-film NEMS devices offer great advantages over reported CNT devices for several reasons, including: higher fabrication yields, low-temperature (CMOS compatible) deposition techniques like ALD, and increased control over design parameters/device performance metrics, i.e., device geometry. Furthermore, top-down, thin-film, nano-fabrication techniques are better capable of producing complicated device geometries than CNT based processes, enabling the design and development of multi-terminal switches well-suited for low-power hybrid NEMS/CMOS systems as well as electromechanical transistors and logic devices for use in temperature/radiation hard computing architectures. In this work several novel, low-temperature, CMOS compatible fabrication technologies, employing WALD as a structural layer for MEMS or NEMS devices, were developed. The technologies developed are top-down nano-scale fabrication processes based on traditional micro-machining techniques commonly used in the fabrication of MEMS devices. Using these processes a variety of novel WALD NEMS devices have been successfully fabricated and characterized. Using two different WALD fabrication technologies two generations of 2-terminal WALD NEMS switches have been developed. These devices have functional gap heights of 30-50 nm, and actuation voltages typically ranging from 3--5 Volts. Via the extension of a two terminal WALD technology novel 3-terminal WALD NEMS devices were developed. These devices have actuation voltages ranging from 1.5--3 Volts, reliabilities in excess of 2 million cycles, and have been designed to be the fundamental building blocks for WALD NEMS complementary inverters. Through the development of these devices several advancements in the modeling and design of thin-film NEMS devices were achieved. A new model was developed to better characterize pre-actuation currents commonly measured for NEMS switches with nano-scale gate-to-source gap heights. The developed model is an extension of the standard field-emission model and considers the electromechanical response, and electric field effects specific to thin-film NEMS switches. Finally, a multi-physics FEM/FD based model was developed to simulate the dynamic behavior of 2 or 3-terminal electrostatically actuated devices whose electrostatic domains have an aspect ratio on the order of 10-3. The model uses a faux-Lagrangian finite difference method to solve Laplaces equation in a quasi-statatically deforming domain. This model allows for the numerical characterization and design of thin-film NEMS devices not feasible using typical non-specialized BEM/FEM based software. Using this model several novel and feasible designs for fixed-fixed 3-terminal WALD NEMS switches capable for the construction of complementary inverters were discovered.
Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology
NASA Astrophysics Data System (ADS)
Towne, Silas; Viswanathan, Vish; Holbery, James; Rieke, Peter
Utilizing drop-on-demand technology, we have successfully fabricated hydrogen-air polymer electrolyte membrane fuel cells (PEMFC), demonstrated some of the processing advantages of this technology and have demonstrated that the performance is comparable to conventionally fabricated membrane electrode assemblies (MEAs). Commercial desktop inkjet printers were used to deposit the active catalyst electrode layer directly from print cartridges onto Nafion ® polymer membranes in the hydrogen form. The layers were well-adhered and withstood simple tape peel, bending and abrasion tests and did so without any post-deposition hot press step. The elimination of this processing step suggests that inkjet-based fabrication or similar processing technologies may provide a route to less expensive large-scale fabrication of PEMFCs. When tested in our experimental apparatus, open circuit voltages up to 0.87 V and power densities of up to 155 mW cm -2 were obtained with a catalyst loading of 0.20 mg Pt cm -2. A commercially available membrane under identical, albeit not optimized test conditions, showed about 7% greater power density. The objective of this work was to demonstrate some of the processing advantages of drop-on-demand technology for fabrication of MEAs. It remains to be determined if inkjet fabrication offers performance advantages or leads to more efficient utilization of expensive catalyst materials.
Additive Technology: Update on Current Materials and Applications in Dentistry.
Barazanchi, Abdullah; Li, Kai Chun; Al-Amleh, Basil; Lyons, Karl; Waddell, J Neil
2017-02-01
Additive manufacturing or 3D printing is becoming an alternative to subtractive manufacturing or milling in the area of computer-aided manufacturing. Research on material for use in additive manufacturing is ongoing, and a wide variety of materials are being used or developed for use in dentistry. Some materials, however, such as cobalt chromium, still lack sufficient research to allow definite conclusions about the suitability of their use in clinical dental practice. Despite this, due to the wide variety of machines that use additive manufacturing, there is much more flexibility in the build material and geometry when building structures compared with subtractive manufacturing. Overall additive manufacturing produces little material waste and is energy efficient when compared to subtractive manufacturing, due to passivity and the additive layering nature of the build process. Such features make the technique suitable to be used with fabricating structures out of hard to handle materials such as cobalt chromium. The main limitations of this technology include the appearance of steps due to layering of material and difficulty in fabricating certain material generally used in dentistry for use in 3D printing such as ceramics. The current pace of technological development, however, promises exciting possibilities. © 2016 by the American College of Prosthodontists.
Development of economic MeV-ion microbeam technology at Chiang Mai University
NASA Astrophysics Data System (ADS)
Singkarat, S.; Puttaraksa, N.; Unai, S.; Yu, L. D.; Singkarat, K.; Pussadee, N.; Whitlow, H. J.; Natyanum, S.; Tippawan, U.
2017-08-01
Developing high technologies but in economic manners is necessary and also feasible for developing countries. At Chiang Mai University, Thailand, we have developed MeV-ion microbeam technology based on a 1.7-MV Tandetron tandem accelerator with our limited resources in a cost-effective manner. Instead of using expensive and technically complex electrostatic or magnetic quadrupole focusing lens systems, we have developed cheap MeV-ion microbeams using programmed L-shaped blade aperture and capillary techniques for MeV ion beam lithography or writing and mapping. The programmed L-shaped blade micro-aperture system consists of a pair of L-shaped movable aperture pieces which are controlled by computer to cut off the ion beam for controlling the beam size down to the micrometer order. The capillary technique utilizes our home-fabricated tapered glass capillaries to realize microbeams. Either system can be installed inside the endstation of the MeV ion beam line of the accelerator. Both systems have been applied to MeV-ion beam lithography or writing of micro-patterns for microfluidics applications to fabricate lab-on-chip devices. The capillary technique is being developed for MeV-ion beam mapping of biological samples. The paper reports details of the techniques and introduces some applications.
Aung, S C; Tan, B K; Foo, C L; Lee, S T
1999-09-01
Advances in technology have benefited the medical world in many ways and a new generation of computed tomography (CT) scanners and three-dimensional (3-D) model making rapid prototyping systems (RPS) have taken craniofacial surgical planning and management to new heights. With the development of new rapid prototyping systems and the improvements in CT scan technology, such as the helical scanner, biomedical modelling has improved considerably and accurate 3-D models can now be fabricated to allow surgeons to visualise and physically handle a 3-D model on which simulation surgery can be performed. The principle behind this technology is to first acquire digital data (CT scan data) which is then imported to the RPS to fabricate fine layers or cuts of the model which are gradually built up to form the 3-D models. Either liquid resin or nylon powder or special paper may be used to make these models using the various RPS available today. Selective laser sintering (SLS), which employs a CO2 laser beam to solidify special nylon powder and build up the model in layers is described in this case report, where a 23-year old Chinese female with panfacial fracture and a skull defect benefited from SLS biomodelling in the preoperative workup.
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineer's perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for "graceful" rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; map a simplistic failure strength envelope of the material; develop a statistically based reliability computer algorithm, verify the reliability model and computer algorithm, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macroanalysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal, and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineers perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(sub x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; map a simplistic future strength envelope of the material; develop a statistically based reliability computer algorithm; verify the reliability model and computer algorithm-, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macro-analysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.
Smart Fabrics Technology Development
NASA Technical Reports Server (NTRS)
Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint
2010-01-01
Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.
Optical Interconnections for VLSI Computational Systems Using Computer-Generated Holography.
NASA Astrophysics Data System (ADS)
Feldman, Michael Robert
Optical interconnects for VLSI computational systems using computer generated holograms are evaluated in theory and experiment. It is shown that by replacing particular electronic connections with free-space optical communication paths, connection of devices on a single chip or wafer and between chips or modules can be improved. Optical and electrical interconnects are compared in terms of power dissipation, communication bandwidth, and connection density. Conditions are determined for which optical interconnects are advantageous. Based on this analysis, it is shown that by applying computer generated holographic optical interconnects to wafer scale fine grain parallel processing systems, dramatic increases in system performance can be expected. Some new interconnection networks, designed to take full advantage of optical interconnect technology, have been developed. Experimental Computer Generated Holograms (CGH's) have been designed, fabricated and subsequently tested in prototype optical interconnected computational systems. Several new CGH encoding methods have been developed to provide efficient high performance CGH's. One CGH was used to decrease the access time of a 1 kilobit CMOS RAM chip. Another was produced to implement the inter-processor communication paths in a shared memory SIMD parallel processor array.
Flexible MEMS: A novel technology to fabricate flexible sensors and electronics
NASA Astrophysics Data System (ADS)
Tu, Hongen
This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.
The community FabLab platform: applications and implications in biomedical engineering.
Stephenson, Makeda K; Dow, Douglas E
2014-01-01
Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.
Flexible inorganic light emitting diodes based on semiconductor nanowires
Guan, Nan; Dai, Xing; Babichev, Andrey V.; Julien, François H.
2017-01-01
The fabrication technologies and the performance of flexible nanowire light emitting diodes (LEDs) are reviewed. We first introduce the existing approaches for flexible LED fabrication, which are dominated by organic technologies, and we briefly discuss the increasing research effort on flexible inorganic LEDs achieved by micro-structuring and transfer of conventional thin films. Then, flexible nanowire-based LEDs are presented and two main fabrication technologies are discussed: direct growth on a flexible substrate and nanowire membrane formation and transfer. The performance of blue, green, white and bi-color flexible LEDs fabricated following the transfer approach is discussed in more detail. PMID:29568439
Nonlinear Optics and Applications
NASA Technical Reports Server (NTRS)
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Some problems in mechanics of growing solids with applications to AM technologies
NASA Astrophysics Data System (ADS)
Manzhirov, A. V.
2018-04-01
Additive Manufacturing (AM) technologies are an exciting area of the modern industrial revolution and have applications in engineering, medicine, electronics, aerospace industry, etc. AM enables cost-effective production of customized geometry and parts by direct fabrication from 3D data and mathematical models. Despite much progress in AM technologies, problems of mechanical analysis for AM fabricated parts yet remain to be solved. This paper deals with three main mechanical problems: the onset of residual stresses, which occur in the AM process and can lead to failure of the parts, the distortion of the final shape of AM fabricated parts, and the development of technological solutions aimed at improving existing AM technologies and creating new ones. An approach proposed deals with the construction of adequate analytical model and effective methods for the simulation of AM processes for fabricated solid parts.
Review of silicon photonics: history and recent advances
NASA Astrophysics Data System (ADS)
Ye, Winnie N.; Xiong, Yule
2013-09-01
Silicon photonics has attracted tremendous attention and research effort as a promising technology in optoelectronic integration for computing, communications, sensing, and solar harvesting. Mainly due to the combination of its excellent material properties and the complementary metal-oxide semiconductor (CMOS) fabrication processing technology, silicon has becoming the material choice for photonic and optoelectronic circuits with low cost, ultra-compact device footprint, and high-density integration. This review paper provides an overview on silicon photonics, by highlighting the early work from the mid-1980s on the fundamental building blocks such as silicon platforms and waveguides, and the main milestones that have been achieved so far in the field. A summary of reported work on functional elements in both passive and active devices, as well as the applications of the technology in interconnect, sensing, and solar cells, is identified.
DMD: a digital light processing application to projection displays
NASA Astrophysics Data System (ADS)
Feather, Gary A.
1989-01-01
Summary Revolutionary technologies achieve rapid product and subsequent business diffusion only when the in- ventors focus on technology application, maturation, and proliferation. A revolutionary technology is emerg- ing with micro-electromechanical systems (MEMS). MEMS are being developed by leveraging mature semi- conductor processing coupled with mechanical systems into complete, integrated, useful systems. The digital micromirror device (DMD), a Texas Instruments invented MEMS, has focused on its application to projec- tion displays. The DMD has demonstrated its application as a digital light processor, processing and produc- ing compelling computer and video projection displays. This tutorial discusses requirements in the projection display market and the potential solutions offered by this digital light processing system. The seminar in- cludes an evaluation of the market, system needs, design, fabrication, application, and performance results of a system using digital light processing solutions.
Carbon Nanotube Thin Film Transistors for Flat Panel Display Application.
Liang, Xuelei; Xia, Jiye; Dong, Guodong; Tian, Boyuan; Peng, Lianmao
2016-12-01
Carbon nanotubes (CNTs) are promising materials for both high performance transistors for high speed computing and thin film transistors for macroelectronics, which can provide more functions at low cost. Among macroelectronics applications, carbon nanotube thin film transistors (CNT-TFT) are expected to be used soon for backplanes in flat panel displays (FPDs) due to their superior performance. In this paper, we review the challenges of CNT-TFT technology for FPD applications. The device performance of state-of-the-art CNT-TFTs are compared with the requirements of TFTs for FPDs. Compatibility of the fabrication processes of CNT-TFTs and current TFT technologies are critically examined. Though CNT-TFT technology is not yet ready for backplane production line of FPDs, the challenges can be overcome by close collaboration between research institutes and FPD manufacturers in the short term.
NASA Astrophysics Data System (ADS)
Di, Si; Lin, Hui; Du, Ruxu
2011-05-01
Displacement measurement of moving objects is one of the most important issues in the field of computer vision. This paper introduces a new binocular vision system (BVS) based on micro-electro-mechanical system (MEMS) technology. The eyes of the system are two microlenses fabricated on a substrate by MEMS technology. The imaging results of two microlenses are collected by one complementary metal-oxide-semiconductor (CMOS) array. An algorithm is developed for computing the displacement. Experimental results show that as long as the object is moving in two-dimensional (2D) space, the system can effectively estimate the 2D displacement without camera calibration. It is also shown that the average error of the displacement measurement is about 3.5% at different object distances ranging from 10 cm to 35 cm. Because of its low cost, small size and simple setting, this new method is particularly suitable for 2D displacement measurement applications such as vision-based electronics assembly and biomedical cell culture.
Automatic design and manufacture of robotic lifeforms.
Lipson, H; Pollack, J B
2000-08-31
Biological life is in control of its own means of reproduction, which generally involves complex, autocatalysing chemical reactions. But this autonomy of design and manufacture has not yet been realized artificially. Robots are still laboriously designed and constructed by teams of human engineers, usually at considerable expense. Few robots are available because these costs must be absorbed through mass production, which is justified only for toys, weapons and industrial systems such as automatic teller machines. Here we report the results of a combined computational and experimental approach in which simple electromechanical systems are evolved through simulations from basic building blocks (bars, actuators and artificial neurons); the 'fittest' machines (defined by their locomotive ability) are then fabricated robotically using rapid manufacturing technology. We thus achieve autonomy of design and construction using evolution in a 'limited universe' physical simulation coupled to automatic fabrication.
FTDD973: A multimedia knowledge-based system and methodology for operator training and diagnostics
NASA Technical Reports Server (NTRS)
Hekmatpour, Amir; Brown, Gary; Brault, Randy; Bowen, Greg
1993-01-01
FTDD973 (973 Fabricator Training, Documentation, and Diagnostics) is an interactive multimedia knowledge based system and methodology for computer-aided training and certification of operators, as well as tool and process diagnostics in IBM's CMOS SGP fabrication line (building 973). FTDD973 is an example of what can be achieved with modern multimedia workstations. Knowledge-based systems, hypertext, hypergraphics, high resolution images, audio, motion video, and animation are technologies that in synergy can be far more useful than each by itself. FTDD973's modular and object-oriented architecture is also an example of how improvements in software engineering are finally making it possible to combine many software modules into one application. FTDD973 is developed in ExperMedia/2; and OS/2 multimedia expert system shell for domain experts.
Rapid prototyping and stereolithography in dentistry
Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor
2015-01-01
The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715
Rapid prototyping and stereolithography in dentistry.
Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor
2015-04-01
The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.
A personal computer-based nuclear magnetic resonance spectrometer
NASA Astrophysics Data System (ADS)
Job, Constantin; Pearson, Robert M.; Brown, Michael F.
1994-11-01
Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.
2015-01-01
With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. PMID:26161878
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Xing; Wang, Lei; Zhou, Hu
A novel PtCo alloy in situ etched and embedded in graphene nanopores (PtCo/NPG) as a high-performance catalyst for ORR was reported. Graphene nanopores were fabricated in situ while forming PtCo nanoparticles that were uniformly embedded in the graphene nanopores. Given the synergistic effect between PtCo alloy and nanopores, PtCo/NPG exhibited 11.5 times higher mass activity than that of the commercial Pt/C cathode electrocatalyst. DFT calculations indicated that the nanopores in NPG cannot only stabilize PtCo nanoparticles but can also definitely change the electronic structures, thereby change its adsorption abilities. This enhancement can lead to a favorable reaction pathway on PtCo/NPGmore » for ORR. This study showed that PtCo/NPG is a potential candidate for the next generation of Pt-based catalysts in fuel cells. This study also offered a promising alternative strategy and enabled the fabrication of various kinds of metal/graphene nanopore nanohybrids with potential applications in catalysts and potential use for other technological devices. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501), Zhejiang Provincial Education Department Research Program (Y201326554) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC).« less
Image-guided tissue engineering
Ballyns, Jeffrey J; Bonassar, Lawrence J
2009-01-01
Replication of anatomic shape is a significant challenge in developing implants for regenerative medicine. This has lead to significant interest in using medical imaging techniques such as magnetic resonance imaging and computed tomography to design tissue engineered constructs. Implementation of medical imaging and computer aided design in combination with technologies for rapid prototyping of living implants enables the generation of highly reproducible constructs with spatial resolution up to 25 μm. In this paper, we review the medical imaging modalities available and a paradigm for choosing a particular imaging technique. We also present fabrication techniques and methodologies for producing cellular engineered constructs. Finally, we comment on future challenges involved with image guided tissue engineering and efforts to generate engineered constructs ready for implantation. PMID:19583811
NASA Astrophysics Data System (ADS)
Moores, Brad A.; Sletten, Lucas R.; Viennot, Jeremie; Lehnert, K. W.
Man-made systems of interacting qubits are a promising and powerful way of exploring many-body spin physics beyond classical computation. Although transmon qubits are perhaps the most advanced quantum computing technology, building a system of such qubits designed to emulate a system of many interacting spins is hindered by the mismatch of scales between the transmons and the electromagnetic modes that couple them. We propose a strategy to overcome this mismatch by using surface acoustic waves, which couple to qubits piezoelectrically and have micron wavelengths at GHz frequencies. In this talk, we will present characterizations of transmon qubits fabricated on a piezoelectric material, and show that their coherence properties are sufficient to explore acoustically mediated qubit interactions.
Optimizing The DSSC Fabrication Process Using Lean Six Sigma
NASA Astrophysics Data System (ADS)
Fauss, Brian
Alternative energy technologies must become more cost effective to achieve grid parity with fossil fuels. Dye sensitized solar cells (DSSCs) are an innovative third generation photovoltaic technology, which is demonstrating tremendous potential to become a revolutionary technology due to recent breakthroughs in cost of fabrication. The study here focused on quality improvement measures undertaken to improve fabrication of DSSCs and enhance process efficiency and effectiveness. Several quality improvement methods were implemented to optimize the seven step individual DSSC fabrication processes. Lean Manufacturing's 5S method successfully increased efficiency in all of the processes. Six Sigma's DMAIC methodology was used to identify and eliminate each of the root causes of defects in the critical titanium dioxide deposition process. These optimizations resulted with the following significant improvements in the production process: 1. fabrication time of the DSSCs was reduced by 54 %; 2. fabrication procedures were improved to the extent that all critical defects in the process were eliminated; 3. the quantity of functioning DSSCs fabricated was increased from 17 % to 90 %.
ERIC Educational Resources Information Center
Smith, Shaunna
2013-01-01
Digital fabrication consists of manufacturing design technology that is used to facilitate the creation of physical objects. Existing research suggests digital fabrication technology can inspire student creativity and innovation in mathematics and science. However, there is a lack of research that informs teacher education by identifying practical…
NASA Astrophysics Data System (ADS)
Weatherwax Scott, Caroline; Tsareff, Christopher R.
1990-06-01
One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles played by the process engineering expert and the knowledge engineer are discussed. The features of the systems are shown, particularly the interactive quality of the consultations and the ease of system use.
Effect of dental technician disparities on the 3-dimensional accuracy of definitive casts.
Emir, Faruk; Piskin, Bulent; Sipahi, Cumhur
2017-03-01
Studies that evaluated the effect of dental technician disparities on the accuracy of presectioned and postsectioned definitive casts are lacking. The purpose of this in vitro study was to evaluate the accuracy of presectioned and postsectioned definitive casts fabricated by different dental technicians by using a 3-dimensional computer-aided measurement method. An arch-shaped metal master model consisting of 5 abutments resembling prepared mandibular incisors, canines, and first molars and with a 6-degree total angle of convergence was designed and fabricated by computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Complete arch impressions were made (N=110) from the master model, using polyvinyl siloxane (PVS) and delivered to 11 dental technicians. Each technician fabricated 10 definitive casts with dental stone, and the obtained casts were numbered. All casts were sectioned, and removable dies were obtained. The master model and the presectioned and postsectioned definitive casts were digitized with an extraoral scanner, and the virtual master model and virtual presectioned and postsectioned definitive casts were obtained. All definitive casts were compared with the master model by using computer-aided measurements, and the 3-dimensional accuracy of the definitive casts was determined with best fit alignment and represented in color-coded maps. Differences were analyzed using univariate analyses of variance, and the Tukey honest significant differences post hoc tests were used for multiple comparisons (α=.05). The accuracy of presectioned and postsectioned definitive casts was significantly affected by dental technician disparities (P<.001). The largest dimensional changes were detected in the anterior abutments of both of the definitive casts. The changes mostly occurred in the mesiodistal dimension (P<.001). Within the limitations of this in vitro study, the accuracy of presectioned and postsectioned definitive casts is susceptible to dental technician differences. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Q4 Titanium 6-4 Material Properties Development
NASA Technical Reports Server (NTRS)
Cooper, Kenneth; Nettles, Mindy
2015-01-01
This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.
Sensing of single electrons using micro and nano technologies: a review
NASA Astrophysics Data System (ADS)
Jalil, Jubayer; Zhu, Yong; Ekanayake, Chandima; Ruan, Yong
2017-04-01
During the last three decades, the remarkable dynamic features of microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), and advances in solid-state electronics hold much potential for the fabrication of extremely sensitive charge sensors. These sensors have a broad range of applications, such as those involving the measurement of ionization radiation, detection of bio-analyte and aerosol particles, mass spectrometry, scanning tunneling microscopy, and quantum computation. Designing charge sensors (also known as charge electrometers) for electrometry is deemed significant because of the sensitivity and resolution issues in the range of micro- and nano-scales. This article reviews the development of state-of-the-art micro- and nano-charge sensors, and discusses their technological challenges for practical implementation.
Ciobanu, O
2009-01-01
The objective of this study was to obtain three-dimensional (3D) images and to perform biomechanical simulations starting from DICOM images obtained by computed tomography (CT). Open source software were used to prepare digitized 2D images of tissue sections and to create 3D reconstruction from the segmented structures. Finally, 3D images were used in open source software in order to perform biomechanic simulations. This study demonstrates the applicability and feasibility of open source software developed in our days for the 3D reconstruction and biomechanic simulation. The use of open source software may improve the efficiency of investments in imaging technologies and in CAD/CAM technologies for implants and prosthesis fabrication which need expensive specialized software.
The role of HiPPI switches in mass storage systems: A five year prospective
NASA Technical Reports Server (NTRS)
Gilbert, T. A.
1992-01-01
New standards are evolving which provide the foundation for novel multi-gigabit per second data communication structures. The lowest layer protocols are so generalized that they encourage a wide range of application. Specifically, the ANSI High Performance Parallel Interface (HiPPI) is being applied to computer peripheral attachment as well as general data communication networks. This paper introduces the HiPPI standards suite and technology products which incorporate the standards. The use of simple HiPPI crosspoint switches to build potentially complex extended 'fabrics' is discussed in detail. Several near term applications of the HiPPI technology are briefly described with additional attention to storage systems. Finally, some related standards are mentioned which may further expand the concepts above.
The role of HiPPI switches in mass storage systems: A five year prospective
NASA Technical Reports Server (NTRS)
Gilbert, T. A.
1991-01-01
New standards are evolving which provide the foundation for multi-gigabit per second data communication structures. The lowest layer protocols are so generalized that they encourage a wide range of application. Specifically, the ANSI High Performance Parallel Interface (HiPPI) is being applied to computer peripheral attachment as well as general data communication networks. The HiPPI Standards suite and technology products which incorporate the standards are introduced. The use of simple HiPPI crosspoint switches to build potentially complex extended 'fabrics' is discussed in detail. Several near term applications of the HiPPI technology are briefly described with additional attention to storage systems. Finally, some related standards are mentioned which may further expand the concepts above.
Nuclear Fabrication Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levesque, Stephen
2013-04-05
This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectivelymore » engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.« less
Fayaz, Amir; Mazahery, Azita; Hosseinzadeh, Mohammad; Yazdanpanah, Samane
2015-03-01
Advances in computer science and technology allow the instructors to use instructional multimedia programs to enhance the process of learning for dental students. The purpose of this study was to determine the effect of a new educational modality by using videotapes on the performance of dental students in preclinical course of complete denture fabrication. This quasi-experimental study was performed on 54 junior dental students in Shahid Beheshti University of Medical Sciences (SBMU). Twenty-five and 29 students were evaluated in two consecutive semesters as controls and cases, respectively for the same course. The two groups were matched in terms of "knowledge about complete denture fabrication" and "basic dental skills" using a written test and a practical exam, respectively. After the intervention, performance and clinical skills of students were assessed in 8 steps. Eventually, a post-test was carried out to find changes in knowledge and skills of students in this regard. In the two groups with the same baseline level of knowledge and skills, independent T-test showed that students in the test group had a significantly superior performance in primary impression taking (p= 0.001) and primary cast fabrication (p= 0.001). In terms of anterior teeth set up, students in the control group had a significantly better performance (p= 0.001). Instructional videotapes can aid in teaching fabrication of complete denture and are as effective as the traditional teaching system.
In Situ Fabrication Technologies: Meeting the Challenge for Exploration
NASA Technical Reports Server (NTRS)
Howard, Richard W.
2005-01-01
A viewgraph presentation on Lunar and Martian in situ fabrication technologies meeting the challenges for exploration is shown. The topics include: 1) Exploration Vision; 2) Vision Requirements Early in the Program; 3) Vision Requirements Today; 4) Why is ISFR Technology Needed? 5) ISFR and In Situ Resource Utilization (ISRU); 6) Fabrication Feedstock Considerations; 7) Planetary Resource Primer; 8) Average Chemical Element Abundances in Lunar Soil; 9) Chemical Elements in Aerospace Engineering Materials; 10) Schematic of Raw Regolith Processing into Constituent Components; 11) Iron, Aluminum, and Basalt Processing from Separated Elements and Compounds; 12) Space Power Systems; 13) Power Source Applicability; 14) Fabrication Systems Technologies; 15) Repair and Nondestructive Evaluation (NDE); and 16) Habitat Structures. A development overview of Lunar and Martian repair and nondestructive evaluation is also presented.
Quantum Computation Using Optically Coupled Quantum Dot Arrays
NASA Technical Reports Server (NTRS)
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
Focused ion beam-assisted technology in sub-picolitre micro-dispenser fabrication
NASA Astrophysics Data System (ADS)
Lopez, M. J.; Caballero, D.; Campo, E. M.; Perez-Castillejos, R.; Errachid, A.; Esteve, J.; Plaza, J. A.
2008-07-01
Novel medical and biological applications are driving increased interest in the fabrication of micropipette or micro-dispensers. Reduced volume samples and drug dosages are prime motivators in this effort. We have combined microfabrication technology with ion beam milling techniques to successfully produce cantilever-type polysilicon micro-dispensers with 3D enclosed microchannels. The microfabrication technology described here allows for the designing of nozzles with multiple shapes. The contribution of ion beam milling has had a large impact on the fabrication process and on further customizing shapes of nozzles and inlet ports. Functionalization tests were conducted to prove the viability of ion beam-fabricated micro-dispensers. Self-assembled monolayers were successfully formed when a gold surface was patterned with a thiol solution dispensed by the fabricated micro-dispensers.
Advancements in CAD/CAM technology: Options for practical implementation.
Alghazzawi, Tariq F
2016-04-01
The purpose of this review is to present a comprehensive review of the current published literature investigating the various methods and techniques for scanning, designing, and fabrication of CAD/CAM generated restorations along with detailing the new classifications of CAD/CAM technology. I performed a review of a PubMed using the following search terms "CAD/CAM, 3D printing, scanner, digital impression, and zirconia". The articles were screened for further relevant investigations. The search was limited to articles written in English, published from 2001 to 2015. In addition, a manual search was also conducted through articles and reference lists retrieved from the electronic search and peer-reviewed journals. CAD/CAM technology has advantages including digital impressions and models, and use of virtual articulators. However, the implementation of this technology is still considered expensive and requires highly trained personnel. Currently, the design software has more applications including complete dentures and removable partial denture frameworks. The accuracy of restoration fabrication can be best attained with 5 axes milling units. The 3D printing technology has been incorporated into dentistry, but does not include ceramics and is limited to polymers. In the future, optical impressions will be replaced with ultrasound impressions using ultrasonic waves, which have the capability to penetrate the gingiva non-invasively without retraction cords and not be affected by fluids. The coming trend for most practitioners will be the use of an acquisition camera attached to a computer with the appropriate software and the capability of forwarding the image to the laboratory. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Chang, J. J.; Shyu, H. C.; Reed, I. S.
1986-01-01
A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-pw technology.
NASA Technical Reports Server (NTRS)
Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.
1987-01-01
A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.
Optical design and development of a snapshot light-field laryngoscope
NASA Astrophysics Data System (ADS)
Zhu, Shuaishuai; Jin, Peng; Liang, Rongguang; Gao, Liang
2018-02-01
The convergence of recent advances in optical fabrication and digital processing yields a generation of imaging technology-light-field (LF) cameras which bridge the realms of applied mathematics, optics, and high-performance computing. Herein for the first time, we introduce the paradigm of LF imaging into laryngoscopy. The resultant probe can image the three-dimensional shape of vocal folds within a single camera exposure. Furthermore, to improve the spatial resolution, we developed an image fusion algorithm, providing a simple solution to a long-standing problem in LF imaging.
Microfabrication of microchannels for fuel cell plates.
Jang, Ho Su; Park, Dong Sam
2010-01-01
Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.
Microfabrication of Microchannels for Fuel Cell Plates
Jang, Ho Su; Park, Dong Sam
2010-01-01
Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating. PMID:22315533
Boone, John M; Yang, Kai; Burkett, George W; Packard, Nathan J; Huang, Shih-ying; Bowen, Spencer; Badawi, Ramsey D; Lindfors, Karen K
2010-02-01
Mammography has served the population of women who are at-risk for breast cancer well over the past 30 years. While mammography has undergone a number of changes as digital detector technology has advanced, other modalities such as computed tomography have experienced technological sophistication over this same time frame as well. The advent of large field of view flat panel detector systems enable the development of breast CT and several other niche CT applications, which rely on cone beam geometry. The breast, it turns out, is well suited to cone beam CT imaging because the lack of bones reduces artifacts, and the natural tapering of the breast anteriorly reduces the x-ray path lengths through the breast at large cone angle, reducing cone beam artifacts as well. We are in the process of designing a third prototype system which will enable the use of breast CT for image guided interventional procedures. This system will have several copies fabricated so that several breast CT scanners can be used in a multi-institutional clinical trial to better understand the role that this technology can bring to breast imaging.
Subaperture metrology technologies extend capabilities in optics manufacturing
NASA Astrophysics Data System (ADS)
Tricard, Marc; Forbes, Greg; Murphy, Paul
2005-10-01
Subaperture polishing technologies have radically changed the landscape of precision optics manufacturing and enabled the production of higher precision optics with increasingly difficult figure requirements. However, metrology is a critical piece of the optics fabrication process, and the dependence on interferometry is especially acute for computer-controlled, deterministic finishing. Without accurate full-aperture metrology, figure correction using subaperture polishing technologies would not be possible. QED Technologies has developed the Subaperture Stitching Interferometer (SSI) that extends the effective aperture and dynamic range of a phase measuring interferometer. The SSI's novel developments in software and hardware improve the capacity and accuracy of traditional interferometers, overcoming many of the limitations previously faced. The SSI performs high-accuracy automated measurements of spheres, flats, and mild aspheres up to 200 mm in diameter by stitching subaperture data. The system combines a six-axis precision workstation, a commercial Fizeau interferometer of 4" or 6" aperture, and dedicated software. QED's software automates the measurement design, data acquisition, and mathematical reconstruction of the full-aperture phase map. The stitching algorithm incorporates a general framework for compensating several types of errors introduced by the interferometer and stage mechanics. These include positioning errors, viewing system distortion, the system reference wave error, etc. The SSI has been proven to deliver the accurate and flexible metrology that is vital to precision optics fabrication. This paper will briefly review the capabilities of the SSI as a production-ready, metrology system that enables costeffective manufacturing of precision optical surfaces.
NASA Technical Reports Server (NTRS)
2001-01-01
Howmet Research Corporation was the first to commercialize an innovative cast metal technology developed at Auburn University, Auburn, Alabama. With funding assistance from NASA's Marshall Space Flight Center, Auburn University's Solidification Design Center (a NASA Commercial Space Center), developed accurate nickel-based superalloy data for casting molten metals. Through a contract agreement, Howmet used the data to develop computer model predictions of molten metals and molding materials in cast metal manufacturing. Howmet Metal Mold (HMM), part of Howmet Corporation Specialty Products, of Whitehall, Michigan, utilizes metal molds to manufacture net shape castings in various alloys and amorphous metal (metallic glass). By implementing the thermophysical property data from by Auburn researchers, Howmet employs its newly developed computer model predictions to offer customers high-quality, low-cost, products with significantly improved mechanical properties. Components fabricated with this new process replace components originally made from forgings or billet. Compared with products manufactured through traditional casting methods, Howmet's computer-modeled castings come out on top.
VLSI circuits implementing computational models of neocortical circuits.
Wijekoon, Jayawan H B; Dudek, Piotr
2012-09-15
This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling. Copyright © 2012 Elsevier B.V. All rights reserved.
Ruffato, Gianluca; Rossi, Roberto; Massari, Michele; Mafakheri, Erfan; Capaldo, Pietro; Romanato, Filippo
2017-12-21
In this paper, we present the design, fabrication and optical characterization of computer-generated holograms (CGH) encoding information for light beams carrying orbital angular momentum (OAM). Through the use of a numerical code, based on an iterative Fourier transform algorithm, a phase-only diffractive optical element (PO-DOE) specifically designed for OAM illumination has been computed, fabricated and tested. In order to shape the incident beam into a helicoidal phase profile and generate light carrying phase singularities, a method based on transmission through high-order spiral phase plates (SPPs) has been used. The phase pattern of the designed holographic DOEs has been fabricated using high-resolution Electron-Beam Lithography (EBL) over glass substrates coated with a positive photoresist layer (polymethylmethacrylate). To the best of our knowledge, the present study is the first attempt, in a comprehensive work, to design, fabricate and characterize computer-generated holograms encoding information for structured light carrying OAM and phase singularities. These optical devices appear promising as high-security optical elements for anti-counterfeiting applications.
Effect of web formation on properties of hydroentangled nonwoven fabrics
USDA-ARS?s Scientific Manuscript database
A study was conducted to determine the effects of two popular web-forming technologies, viz., the Rando air-laid technology and the traditional carding technology, on properties of the hydroentangled nonwoven fabrics made therewith. The fibers used in the study were greige cotton, bleached cotton, ...
Parallel computation with molecular-motor-propelled agents in nanofabricated networks.
Nicolau, Dan V; Lard, Mercy; Korten, Till; van Delft, Falco C M J M; Persson, Malin; Bengtsson, Elina; Månsson, Alf; Diez, Stefan; Linke, Heiner; Nicolau, Dan V
2016-03-08
The combinatorial nature of many important mathematical problems, including nondeterministic-polynomial-time (NP)-complete problems, places a severe limitation on the problem size that can be solved with conventional, sequentially operating electronic computers. There have been significant efforts in conceiving parallel-computation approaches in the past, for example: DNA computation, quantum computation, and microfluidics-based computation. However, these approaches have not proven, so far, to be scalable and practical from a fabrication and operational perspective. Here, we report the foundations of an alternative parallel-computation system in which a given combinatorial problem is encoded into a graphical, modular network that is embedded in a nanofabricated planar device. Exploring the network in a parallel fashion using a large number of independent, molecular-motor-propelled agents then solves the mathematical problem. This approach uses orders of magnitude less energy than conventional computers, thus addressing issues related to power consumption and heat dissipation. We provide a proof-of-concept demonstration of such a device by solving, in a parallel fashion, the small instance {2, 5, 9} of the subset sum problem, which is a benchmark NP-complete problem. Finally, we discuss the technical advances necessary to make our system scalable with presently available technology.
Cantilever-type Thermal Microactuators Fabricated by SOI-MUMPs with U-type and I-type Configurations
NASA Astrophysics Data System (ADS)
Osada, Takahiro; Ochiai, Kuniyuki; Osada, Kazuki; Muro, Hideo
Recently, the micro fluid systems have been extensively studied, where microactuators such as micro valves fabricated by MEMS technology are essential for realizing these systems. In this paper thermal microactuators with U-type and I-type shapes fabricated by SOI-MUMPs technology have been investigated for optimizing their configurations.
ERIC Educational Resources Information Center
Tillman, Daniel
2012-01-01
The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics…
Biomanufacturing: a US-China National Science Foundation-sponsored workshop.
Sun, Wei; Yan, Yongnian; Lin, Feng; Spector, Myron
2006-05-01
A recent US-China National Science Foundation-sponsored workshop on biomanufacturing reviewed the state-of-the-art of an array of new technologies for producing scaffolds for tissue engineering, providing precision multi-scale control of material, architecture, and cells. One broad category of such techniques has been termed solid freeform fabrication. The techniques in this category include: stereolithography, selected laser sintering, single- and multiple-nozzle deposition and fused deposition modeling, and three-dimensional printing. The precise and repetitive placement of material and cells in a three-dimensional construct at the micrometer length scale demands computer control. These novel computer-controlled scaffold production techniques, when coupled with computer-based imaging and structural modeling methods for the production of the templates for the scaffolds, define an emerging field of computer-aided tissue engineering. In formulating the questions that remain to be answered and discussing the knowledge required to further advance the field, the Workshop provided a basis for recommendations for future work.
Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold Architectures.
Wunner, Felix M; Wille, Marie-Luise; Noonan, Thomas G; Bas, Onur; Dalton, Paul D; De-Juan-Pardo, Elena M; Hutmacher, Dietmar W
2018-05-01
The additive manufacturing of highly ordered, micrometer-scale scaffolds is at the forefront of tissue engineering and regenerative medicine research. The fabrication of scaffolds for the regeneration of larger tissue volumes, in particular, remains a major challenge. A technology at the convergence of additive manufacturing and electrospinning-melt electrospinning writing (MEW)-is also limited in thickness/volume due to the accumulation of excess charge from the deposited material repelling and hence, distorting scaffold architectures. The underlying physical principles are studied that constrain MEW of thick, large volume scaffolds. Through computational modeling, numerical values variable working distances are established respectively, which maintain the electrostatic force at a constant level during the printing process. Based on the computational simulations, three voltage profiles are applied to determine the maximum height (exceeding 7 mm) of a highly ordered large volume scaffold. These thick MEW scaffolds have fully interconnected pores and allow cells to migrate and proliferate. To the best of the authors knowledge, this is the first study to report that z-axis adjustment and increasing the voltage during the MEW process allows for the fabrication of high-volume scaffolds with uniform morphologies and fiber diameters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lansey, Eli
Optical or photonic metamaterials that operate in the infrared and visible frequency regimes show tremendous promise for solving problems in renewable energy, infrared imaging, and telecommunications. However, many of the theoretical and simulation techniques used at lower frequencies are not applicable to this higher-frequency regime. Furthermore, technological and financial limitations of photonic metamaterial fabrication increases the importance of reliable theoretical models and computational techniques for predicting the optical response of photonic metamaterials. This thesis focuses on aperture array metamaterials. That is, a rectangular, circular, or other shaped cavity or hole embedded in, or penetrating through a metal film. The research in the first portion of this dissertation reflects our interest in developing a fundamental, theoretical understanding of the behavior of light's interaction with these aperture arrays, specifically regarding enhanced optical transmission. We develop an approximate boundary condition for metals at optical frequencies, and a comprehensive, analytical explanation of the physics underlying this effect. These theoretical analyses are augmented by computational techniques in the second portion of this thesis, used both for verification of the theoretical work, and solving more complicated structures. Finally, the last portion of this thesis discusses the results from designing, fabricating and characterizing a light-splitting metamaterial.
High-speed quantum networking by ship
NASA Astrophysics Data System (ADS)
Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; van Meter, Rodney
2016-11-01
Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.
High-speed quantum networking by ship
Devitt, Simon J.; Greentree, Andrew D.; Stephens, Ashley M.; Van Meter, Rodney
2016-01-01
Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet. PMID:27805001
High-speed quantum networking by ship.
Devitt, Simon J; Greentree, Andrew D; Stephens, Ashley M; Van Meter, Rodney
2016-11-02
Networked entanglement is an essential component for a plethora of quantum computation and communication protocols. Direct transmission of quantum signals over long distances is prevented by fibre attenuation and the no-cloning theorem, motivating the development of quantum repeaters, designed to purify entanglement, extending its range. Quantum repeaters have been demonstrated over short distances, but error-corrected, global repeater networks with high bandwidth require new technology. Here we show that error corrected quantum memories installed in cargo containers and carried by ship can provide a exible connection between local networks, enabling low-latency, high-fidelity quantum communication across global distances at higher bandwidths than previously proposed. With demonstrations of technology with sufficient fidelity to enable topological error-correction, implementation of the quantum memories is within reach, and bandwidth increases with improvements in fabrication. Our approach to quantum networking avoids technological restrictions of repeater deployment, providing an alternate path to a worldwide Quantum Internet.
Solar energy concentrator system for crystal growth and zone refining in space
NASA Technical Reports Server (NTRS)
Mcdermit, J. H.
1975-01-01
The technological feasibility of using solar concentrators for crystal growth and zone refining in space has been performed. Previous studies of space-deployed solar concentrators were reviewed for their applicability to materials processing and a new state-of-the-art concentrator-receiver radiation analysis was developed. The radiation analysis is in the form of a general purpose computer program. It was concluded from this effort that the technology for fabricating, orbiting and deploying large solar concentrators has been developed. It was also concluded that the technological feasibility of space processing materials in the focal region of a solar concentrator depends primarily on two factors: (1) the ability of a solar concentrator to provide sufficient thermal energy for the process and (2) the ability of a solar concentrator to provide a thermal environment that is conductive to the processes of interest. The analysis indicate that solar concentrators can satisfactorily provide both of these factors.
Mously, Hisham A; Finkelman, Matthew; Zandparsa, Roya; Hirayama, Hiroshi
2014-08-01
The accuracy of chairside computer-aided design and computer-aided manufacturing (CAD/CAM) restorations is questionable, and the effect of the die spacer settings is not well stated in the literature. The purpose of the study was to evaluate the marginal and internal adaptation of E4D crowns fabricated with different spacer thicknesses and to compare these crowns with those fabricated with the heat-press technique. The E4D system was used to fabricate 30 crowns for the first 3 groups, with different spacer thickness settings: 30 μm, 60 μm, and 100 μm. In the fourth group, 10 lithium disilicate crowns were fabricated with the heat-press technique. The occlusal gap, axial gap, vertical marginal gap, and absolute marginal discrepancy were evaluated by x-ray microtomography. Statistical significance was assessed with the Kruskal-Wallis test (α=.05). For post hoc analyses, the Mann-Whitney U test was used alongside the Bonferroni correction for multiple comparisons (α=.008). Within the CAD/CAM groups, the 30-μm spacer thickness resulted in the lowest median axial gap (90.04 μm), whereas the 60-μm spacer thickness resulted in the lowest median occlusal gap (152.39 μm). The median marginal gap values of the CAD/CAM-60 group (49.35 μm) and CAD/CAM-100 group (46.65 μm) were lower than those of the CAD/CAM-30 group (55.18 μm). No significant differences among the CAD/CAM groups were observed for absolute marginal discrepancy. The heat-press group had significantly different values than those of the CAD/CAM groups. The spacer thickness and fabrication technique affected the adaptation of ceramic crowns. The heat-press group yielded the best marginal and internal crown adaptation results. The 30- or 60-μm spacer settings are recommended for the E4D CAD/CAM system. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Du, Dajiang; Asaoka, Teruo; Shinohara, Makoto; Kageyama, Tomonori; Ushida, Takashi; Furukawa, Katsuko Sakai
2015-01-01
Porous ceramic scaffolds with shapes matching the bone defects may result in more efficient grafting and healing than the ones with simple geometries. Using computer-assisted microstereolithography (MSTL), we have developed a novel gelcasting indirect MSTL technology and successfully fabricated two scaffolds according to CT images of rabbit femur. Negative resin molds with outer 3D dimensions conforming to the femur and an internal structure consisting of stacked meshes with uniform interconnecting struts, 0.5 mm in diameter, were fabricated by MSTL. The second mold type was designed for cortical bone formation. A ceramic slurry of beta-tricalcium phosphate (β-TCP) with room temperature vulcanization (RTV) silicone as binder was cast into the molds. After the RTV silicone was completely cured, the composite was sintered at 1500°C for 5 h. Both gross anatomical shape and the interpenetrating internal network were preserved after sintering. Even cortical structure could be introduced into the customized scaffolds, which resulted in enhanced strength. Biocompatibility was confirmed by vital staining of rabbit bone marrow mesenchymal stromal cells cultured on the customized scaffolds for 5 days. This fabrication method could be useful for constructing bone substitutes specifically designed according to local anatomical defects. PMID:26504839
Prompt and Precise Prototyping
NASA Technical Reports Server (NTRS)
2003-01-01
For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.
Actively addressed single pixel full-colour plasmonic display
NASA Astrophysics Data System (ADS)
Franklin, Daniel; Frank, Russell; Wu, Shin-Tson; Chanda, Debashis
2017-05-01
Dynamic, colour-changing surfaces have many applications including displays, wearables and active camouflage. Plasmonic nanostructures can fill this role by having the advantages of ultra-small pixels, high reflectivity and post-fabrication tuning through control of the surrounding media. However, previous reports of post-fabrication tuning have yet to cover a full red-green-blue (RGB) colour basis set with a single nanostructure of singular dimensions. Here, we report a method which greatly advances this tuning and demonstrates a liquid crystal-plasmonic system that covers the full RGB colour basis set, only as a function of voltage. This is accomplished through a surface morphology-induced, polarization-dependent plasmonic resonance and a combination of bulk and surface liquid crystal effects that manifest at different voltages. We further demonstrate the system's compatibility with existing LCD technology by integrating it with a commercially available thin-film-transistor array. The imprinted surface interfaces readily with computers to display images as well as video.
Fiber Orientation Effects in Fused Filament Fabrication of Air-Cooled Heat Exchangers
NASA Astrophysics Data System (ADS)
Mulholland, T.; Goris, S.; Boxleitner, J.; Osswald, T. A.; Rudolph, N.
2018-03-01
Fused filament fabrication (FFF) is a type of additive manufacturing based on material extrusion that has long been considered a prototyping technology. However, the right application of material, process, and product can be used for manufacturing of end-use products, such as air-cooled heat exchangers made by adding fillers to the base polymer, enhancing the thermal conductivity. Fiber fillers lead to anisotropic thermal conductivity, which is governed by the process-induced fiber orientation. This article presents an experimental study on the microstructure-property relationship for carbon fiber-filled polyamide used in FFF. The fiber orientation is measured by micro-computed tomography, and the thermal conductivity of manufactured samples is measured. Although the thermal conductivity is raised by more than three times in the fiber orientation direction at a load of only 12 vol.%, the enhancement is low in the other directions, and this anisotropy, along with certain manufacturing restrictions, influences the final part performance.
Micromachined chemical jet dispenser
Swierkowski, S.P.
1999-03-02
A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.
Micromachined chemical jet dispenser
Swierkowski, Steve P.
1999-03-02
A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.
MEMS: A new approach to micro-optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sniegowski, J.J.
1997-12-31
MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlightsmore » polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.« less
Energy efficient engine shroudless, hollow fan blade technology report
NASA Technical Reports Server (NTRS)
Michael, C. J.
1981-01-01
The Shroudless, Hollow Fan Blade Technology program was structured to support the design, fabrication, and subsequent evaluation of advanced hollow and shroudless blades for the Energy Efficient Engine fan component. Rockwell International was initially selected to produce hollow airfoil specimens employing the superplastic forming/diffusion bonding (SPF/DB) fabrication technique. Rockwell demonstrated that a titanium hollow structure could be fabricated utilizing SPF/DB manufacturing methods. However, some problems such as sharp internal cavity radii and unsatisfactory secondary bonding of the edge and root details prevented production of the required quantity of fatigue test specimens. Subsequently, TRW was selected to (1) produce hollow airfoil test specimens utilizing a laminate-core/hot isostatic press/diffusion bond approach, and (2) manufacture full-size hollow prototype fan blades utilizing the technology that evolved from the specimen fabrication effort. TRW established elements of blade design and defined laminate-core/hot isostatic press/diffusion bonding fabrication techniques to produce test specimens. This fabrication technology was utilized to produce full size hollow fan blades in which the HIP'ed parts were cambered/twisted/isothermally forged, finish machined, and delivered to Pratt & Whitney Aircraft and NASA for further evaluation.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.
Helu, Moneer; Hedberg, Thomas
2015-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.
Friction Stir Welding and Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanski, Yuri; Carsley, John; Clarke, Kester D.
2015-05-01
With nearly twenty years of international research and collaboration in friction stir welding (FSW) and processing industrial applications have spread into nearly every feasible market. Currently applications exist in aerospace, railway, automotive, personal computers, technology, marine, cutlery, construction, as well as several other markets. Implementation of FSW has demonstrated diverse opportunities ranging from enabling new materials to reducing the production costs of current welding technologies by enabling condensed packaging solutions for traditional fabrication and assembly. TMS has sponsored focused instruction and communication in this technology area for more than fifteen years, with leadership from the Shaping and Forming Committee, whichmore » organizes a biannual symposium each odd year at the annual meeting. A focused publication produced from each of these symposia now comprises eight volumes detailing the primary research and development activities in this area over the last two decades. The articles assembled herein focus on both recent developments and technology reviews of several key markets from international experts in this area.« less
Use of digital technologies for nasal prosthesis manufacturing.
Palousek, David; Rosicky, Jiri; Koutny, Daniel
2014-04-01
Digital technology is becoming more accessible for common use in medical applications; however, their expansion in prosthetic and orthotic laboratories is not large because of the persistent image of difficult applicability to real patients. This article aims to offer real example in the area of human facial prostheses. This article describes the utilization of optical digitization, computational modelling, rapid prototyping, mould fabrication and manufacturing of a nasal silicone prosthesis. This technical note defines the key points of the methodology and aspires to contribute to the introduction of a certified manufacturing procedure. The results show that the used technologies reduce the manufacturing time, reflect patient's requirements and allow the manufacture of high-quality prostheses for missing facial asymmetric parts. The methodology provides a good position for further development issues and is usable for clinical practice. Clinical relevance Utilization of digital technologies in facial prosthesis manufacturing process can be a good contribution for higher patient comfort and higher production efficiency but with higher initial investment and demands for experience with software tools.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed
Helu, Moneer; Hedberg, Thomas
2017-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167
A chiral-based magnetic memory device without a permanent magnet
Dor, Oren Ben; Yochelis, Shira; Mathew, Shinto P.; Naaman, Ron; Paltiel, Yossi
2013-01-01
Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices. PMID:23922081
A chiral-based magnetic memory device without a permanent magnet.
Ben Dor, Oren; Yochelis, Shira; Mathew, Shinto P; Naaman, Ron; Paltiel, Yossi
2013-01-01
Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices.
Overview of NASA Lewis Research Center free-piston Stirling engine activities
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1984-01-01
A generic free-piston Stirling technology project is being conducted to develop technologies generic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development of a free-piston Stirling performance computer code, design and fabrication under contract of a hydraulic output modification for RE-1000 engine tests, and a 1000-hour endurance test, under contract, of a 3 kWe free-piston Stirling/alternator engine. A newly initiated space power technology feasibility demonstration effort addresses the capability of scaling a free-piston Stirling/alternator system to about 25 kWe; developing thermodynamic cycle efficiency or equal to 70 percent of Carnot at temperature ratios in the order of 1.5 to 2.0; achieving a power conversion unit specific weight of 6 kg/kWe; operating with noncontacting gas bearings; and dynamically balancing the system. Planned engine and component design and test efforts are described.
Resin-composite blocks for dental CAD/CAM applications.
Ruse, N D; Sadoun, M J
2014-12-01
Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. © International & American Associations for Dental Research.
Gunsoy, S; Ulusoy, M
2016-01-01
The purpose of this study was to evaluate the internal and marginal fit of chrome cobalt (Co-Cr) crowns were fabricated with laser sintering, computer-aided design (CAD) and computer-aided manufacturing, and conventional methods. Polyamide master and working models were designed and fabricated. The models were initially designed with a software application for three-dimensional (3D) CAD (Maya, Autodesk Inc.). All models were fabricated models were produced by a 3D printer (EOSINT P380 SLS, EOS). 128 1-unit Co-Cr fixed dental prostheses were fabricated with four different techniques: Conventional lost wax method, milled wax with lost-wax method (MWLW), direct laser metal sintering (DLMS), and milled Co-Cr (MCo-Cr). The cement film thickness of the marginal and internal gaps was measured by an observer using a stereomicroscope after taking digital photos in ×24. Best fit rates according to mean and standard deviations of all measurements was in DLMS both in premolar (65.84) and molar (58.38) models in μm. A significant difference was found DLMS and the rest of fabrication techniques (P < 0.05). No significant difference was found between MCo-CR and MWLW in all fabrication techniques both in premolar and molar models (P > 0.05). DMLS was best fitting fabrication techniques for single crown based on the results.The best fit was found in marginal; the larger gap was found in occlusal.All groups were within the clinically acceptable misfit range.
Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping
2017-01-01
Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.
Okolo, Brando; Popp, Uwe
2018-01-01
Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a “biomimetic” design. PMID:29713642
Honigmann, Philipp; Sharma, Neha; Okolo, Brando; Popp, Uwe; Msallem, Bilal; Thieringer, Florian M
2018-01-01
Additive manufacturing (AM) is rapidly gaining acceptance in the healthcare sector. Three-dimensional (3D) virtual surgical planning, fabrication of anatomical models, and patient-specific implants (PSI) are well-established processes in the surgical fields. Polyetheretherketone (PEEK) has been used, mainly in the reconstructive surgeries as a reliable alternative to other alloplastic materials for the fabrication of PSI. Recently, it has become possible to fabricate PEEK PSI with Fused Filament Fabrication (FFF) technology. 3D printing of PEEK using FFF allows construction of almost any complex design geometry, which cannot be manufactured using other technologies. In this study, we fabricated various PEEK PSI by FFF 3D printer in an effort to check the feasibility of manufacturing PEEK with 3D printing. Based on these preliminary results, PEEK can be successfully used as an appropriate biomaterial to reconstruct the surgical defects in a "biomimetic" design.
Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic
NASA Astrophysics Data System (ADS)
Ayala, Christopher Lawrence
Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using RSFQ logic and prototype chips have been fabricated. As a joint work with HYPRES, a 20 GHz 8-bit Kogge-Stone ALU consisting of 7,950 JJs total has been fabricated using a 1.5 μm 4.5 kA/cm2 process and fully demonstrated. An 8-bit sparse-tree ALU (8,832 JJs total) and a 16-bit sparse-tree adder (12,785 JJs total) have also been fabricated using a 1.0 μm 10 kA/cm 2 process and demonstrated under collaboration with Yokohama National University and Nagoya University (Japan).
Headley, Drew B; DeLucca, Michael V; Haufler, Darrell; Paré, Denis
2015-04-01
Recent advances in recording and computing hardware have enabled laboratories to record the electrical activity of multiple brain regions simultaneously. Lagging behind these technical advances, however, are the methods needed to rapidly produce microdrives and head-caps that can flexibly accommodate different recording configurations. Indeed, most available designs target single or adjacent brain regions, and, if multiple sites are targeted, specially constructed head-caps are used. Here, we present a novel design style, for both microdrives and head-caps, which takes advantage of three-dimensional printing technology. This design facilitates targeting of multiple brain regions in various configurations. Moreover, the parts are easily fabricated in large quantities, with only minor hand-tooling and finishing required. Copyright © 2015 the American Physiological Society.
The development of enabling technologies for producing active interrogation beams.
Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A
2010-10-01
A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.
Ceramic automotive Stirling engine study
NASA Technical Reports Server (NTRS)
Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.
1985-01-01
A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.
DeLucca, Michael V.; Haufler, Darrell; Paré, Denis
2015-01-01
Recent advances in recording and computing hardware have enabled laboratories to record the electrical activity of multiple brain regions simultaneously. Lagging behind these technical advances, however, are the methods needed to rapidly produce microdrives and head-caps that can flexibly accommodate different recording configurations. Indeed, most available designs target single or adjacent brain regions, and, if multiple sites are targeted, specially constructed head-caps are used. Here, we present a novel design style, for both microdrives and head-caps, which takes advantage of three-dimensional printing technology. This design facilitates targeting of multiple brain regions in various configurations. Moreover, the parts are easily fabricated in large quantities, with only minor hand-tooling and finishing required. PMID:25652930
Fundamental Characteristics of Bioprint on Calcium Alginate Gel
NASA Astrophysics Data System (ADS)
Umezu, Shinjiro; Hatta, Tatsuru; Ohmori, Hitoshi
2013-05-01
The goal of this study is to fabricate precision three-dimensional (3D) biodevices those are micro fluidics and artificial organs utilizing digital fabrication. Digital fabrication is fabrication method utilizing inkjet technologies. Electrostatic inkjet is one of the inkjet technologies. The electrostatic inkjet method has following two merits; those are high resolution to print and ability to eject highly viscous liquid. These characteristics are suitable to print biomaterials precisely. We are now applying for bioprint. In this paper, the electrostatic inkjet method is applied for fabrication of 3D biodevices that has cave like blood vessel. When aqueous solution of sodium alginate is printed to aqueous solution of calcium chloride, calcium alginate is produced. 3D biodevices are fabricated in case that calcium alginate is piled.
Advanced BCD technology with vertical DMOS based on a semi-insulation structure
NASA Astrophysics Data System (ADS)
Kui, Ma; Xinghua, Fu; Jiexin, Lin; Fashun, Yang
2016-07-01
A new semi-insulation structure in which one isolated island is connected to the substrate was proposed. Based on this semi-insulation structure, an advanced BCD technology which can integrate a vertical device without extra internal interconnection structure was presented. The manufacturing of the new semi-insulation structure employed multi-epitaxy and selectively multi-doping. Isolated islands are insulated with the substrate by reverse-biased PN junctions. Adjacent isolated islands are insulated by isolation wall or deep dielectric trenches. The proposed semi-insulation structure and devices fixed in it were simulated through two-dimensional numerical computer simulators. Based on the new BCD technology, a smart power integrated circuit was designed and fabricated. The simulated and tested results of Vertical DMOS, MOSFETs, BJTs, resistors and diodes indicated that the proposed semi-insulation structure is reasonable and the advanced BCD technology is validated. Project supported by the National Natural Science Foundation of China (No. 61464002), the Science and Technology Fund of Guizhou Province (No. Qian Ke He J Zi [2014]2066), and the Dr. Fund of Guizhou University (No. Gui Da Ren Ji He Zi (2013)20Hao).
NASA Astrophysics Data System (ADS)
Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas
2005-05-01
The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics and Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.
NASA Astrophysics Data System (ADS)
Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas
2005-05-01
The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics & Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.
Fabric circuits and method of manufacturing fabric circuits
NASA Technical Reports Server (NTRS)
Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)
2011-01-01
A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.
Ultra-smooth finishing of aspheric surfaces using CAST technology
NASA Astrophysics Data System (ADS)
Kong, John; Young, Kevin
2014-06-01
Growing applications for astronomical ground-based adaptive systems and air-born telescope systems demand complex optical surface designs combined with ultra-smooth finishing. The use of more sophisticated and accurate optics, especially aspheric ones, allows for shorter optical trains with smaller sizes and a reduced number of components. This in turn reduces fabrication and alignment time and costs. These aspheric components include the following: steep surfaces with large aspheric departures; more complex surface feature designs like stand-alone off-axis-parabola (OAP) and free form optics that combine surface complexity with a requirement for ultra-high smoothness, as well as special optic materials such as lightweight silicon carbide (SiC) for air-born systems. Various fabrication technologies for finishing ultra-smooth aspheric surfaces are progressing to meet these growing and demanding challenges, especially Magnetorheological Finishing (MRF) and ion-milling. These methods have demonstrated some good success as well as a certain level of limitations. Amongst them, computer-controlled asphere surface-finishing technology (CAST), developed by Precision Asphere Inc. (PAI), plays an important role in a cost effective manufacturing environment and has successfully delivered numerous products for the applications mentioned above. One of the most recent successes is the Gemini Planet Imager (GPI), the world's most powerful planet-hunting instrument, with critical aspheric components (seven OAPs and free form optics) made using CAST technology. GPI showed off its first images in a press release on January 7, 2014 . This paper reviews features of today's technologies in handling the ultra-smooth aspheric optics, especially the capabilities of CAST on these challenging products. As examples, three groups of aspheres deployed in astronomical optics systems, both polished and finished using CAST, will be discussed in detail.
Development Of A Three-Dimensional Circuit Integration Technology And Computer Architecture
NASA Astrophysics Data System (ADS)
Etchells, R. D.; Grinberg, J.; Nudd, G. R.
1981-12-01
This paper is the first of a series 1,2,3 describing a range of efforts at Hughes Research Laboratories, which are collectively referred to as "Three-Dimensional Microelectronics." The technology being developed is a combination of a unique circuit fabrication/packaging technology and a novel processing architecture. The packaging technology greatly reduces the parasitic impedances associated with signal-routing in complex VLSI structures, while simultaneously allowing circuit densities orders of magnitude higher than the current state-of-the-art. When combined with the 3-D processor architecture, the resulting machine exhibits a one- to two-order of magnitude simultaneous improvement over current state-of-the-art machines in the three areas of processing speed, power consumption, and physical volume. The 3-D architecture is essentially that commonly referred to as a "cellular array", with the ultimate implementation having as many as 512 x 512 processors working in parallel. The three-dimensional nature of the assembled machine arises from the fact that the chips containing the active circuitry of the processor are stacked on top of each other. In this structure, electrical signals are passed vertically through the chips via thermomigrated aluminum feedthroughs. Signals are passed between adjacent chips by micro-interconnects. This discussion presents a broad view of the total effort, as well as a more detailed treatment of the fabrication and packaging technologies themselves. The results of performance simulations of the completed 3-D processor executing a variety of algorithms are also presented. Of particular pertinence to the interests of the focal-plane array community is the simulation of the UNICORNS nonuniformity correction algorithms as executed by the 3-D architecture.
Integrated modeling of advanced optical systems
NASA Astrophysics Data System (ADS)
Briggs, Hugh C.; Needels, Laura; Levine, B. Martin
1993-02-01
This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.
Data storage technology comparisons
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1990-01-01
The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels.
The iMoD display: considerations and challenges in fabricating MOEMS on large area glass substrates
NASA Astrophysics Data System (ADS)
Chui, Clarence; Floyd, Philip D.; Heald, David; Arbuckle, Brian; Lewis, Alan; Kothari, Manish; Cummings, Bill; Palmateer, Lauren; Bos, Jan; Chang, Daniel; Chiang, Jedi; Wang, Li-Ming; Pao, Edmon; Su, Fritz; Huang, Vincent; Lin, Wen-Jian; Tang, Wen-Chung; Yeh, Jia-Jiun; Chan, Chen-Chun; Shu, Fang-Ann; Ju, Yuh-Diing
2007-01-01
QUALCOMM has developed and transferred to manufacturing iMoD displays, a MEMS-based reflective display technology. The iMoD array architecture allows for development at wafer scale, yet easily scales up to enable fabrication on flat-panel display (FPD) lines. In this paper, we will describe the device operation, process flow and fabrication, technology transfer issues, and display performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaedel, K.L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success ismore » changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.« less
NASA Astrophysics Data System (ADS)
Blaedel, K. L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to do the following: (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the U.S. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.
Energy Efficient Engine: Control system component performance report
NASA Technical Reports Server (NTRS)
Beitler, R. S.; Bennett, G. W.
1984-01-01
An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.
1975-02-03
1400 Wilson Boulevard Arlington, VA 22209 12 . REPORT DATE 3 February 1975 IS. NUM.DER OF PAGES 58 I« MONITORING AGENCY NAME a...8217 "-’ ■—"■■■’ ! - • ■■■■...■■- —. -■- ■ - ■ ,^^^_^ k ^^__^__ DESCRIPTION FOKIiAT OF THE INVENTION This section is written in the style...And, while there is no limit on sub- strate material, we shall assume a conation two-sided, one ounce G-10, fiberglass epoxy, 0.032, 12 inches
Innovative Materials for Aircraft Morphing
NASA Technical Reports Server (NTRS)
Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.
1997-01-01
Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.
Design and Fabrication of Cherenkov Counters for the Detection of SNM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Anna S.; Lanza, Richard; Galaitsis, Anthony
2011-12-13
The need for large-size detectors for long-range active interrogation (AI) detection of SNM has generated interest in water-based detector technologies. Water Cherenkov Detectors (WCD) were selected for this research because of their transportability, scalability, and an inherent energy threshold. The detector design and analysis was completed using the Geant4 toolkit. It was demonstrated both computationally and experimentally that it is possible to use WCD to detect and characterize gamma rays. Absolute efficiency of the detector (with no energy cuts applied) was determined to be around 30% for a {sup 60}Co source.
CT-assisted agile manufacturing
NASA Astrophysics Data System (ADS)
Stanley, James H.; Yancey, Robert N.
1996-11-01
The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.
NASA Astrophysics Data System (ADS)
Ondogan, Ziynet; Pamuk, Oktay; Ondogan, Ece Nuket; Ozguney, Arif
2005-11-01
Denim trousers, commonly known as "blue jeans", have maintained their popularity for many years. For the purpose of supporting customers' purchasing behaviour and to address their aesthetic taste, companies have been trying in recent years to develop various techniques to improve the visual aspects of denim fabrics. These techniques mainly include printing on fabrics, embroidery and washing the final product. Especially, fraying certain areas of the fabric by sanding and stone washing to create designs is a popular technique. However, due to certain inconveniences caused by these procedures and in response to growing demands, research is underway to obtain a similar appearance by creating better quality and more advantageous manufacturing conditions. As is known, the laser is a source of energy which can be directed on desired objects and whose power and intensity can be easily controlled. Use of the laser enables us to cut a great variety of material from metal to fabric. Starting off from this point, we thought it would be possible to transfer certain designs onto the surface of textile material by changing the dye molecules in the fabric and creating alterations in its colour quality values by directing the laser to the material at reduced intensity. This study mainly deals with a machine specially designed for making use of laser beams to transfer pictures, figures as well as graphics of desired variety, size and intensity on all kinds of surfaces in textile manufacturing such as knitted—woven fabrics, leather, etc. at desired precision and without damaging the texture of the material. In the designed system, computer-controlled laser beams are used to change the colour of the dye material on the textile surface by directing the laser beams at a desired wavelength and intensity onto various textile surfaces selected for application. For this purpose, a laser beam source that can reach the initial level of power and that can be controlled by means of a computer interface; reflecting mirrors that can direct this beam at two axes; a galvanometer which comprised of an optical aperture; and a computer program that can transfer images obtained in standard formats to the galvanometer control card were used. Developing new designs by using the computer and transferring the designs that are obtained on textile surfaces will not only increase and facilitate the production in a more practical manner, but also help you to create identical designs. This means serial manufacturing of the products at a standard quality and increasing their added values. Moreover, creating textile designs using laser will also contribute to the value of the product as far as the consumer is concerned because it will not cause any wearing off and deformation in the texture of the fabric unlike the sanding and stoning processes. Another advantage of this system is that it gives a richer look to the product by causing the textile surfaces to get wrinkled and become three-dimensional by deformation as well as enabling you to create pictures and patterns on leather and synthetic fabrics by means of heat. As for the results of the study, the first step was to prepare 40 pairs of denim trousers, half of which were prepared manually and the other half by using laser beam. Time studies were made at every step of the production. So as to determine the abrasion degrees of the trousers in design applications, tensile strength as well as tensile extension tests were conducted for all the trousers.
Progress in catalytic ignition fabrication and modeling : fabrication part 1.
DOT National Transportation Integrated Search
2012-06-01
Previous engine testing with Catalytic Plasma Torch (CPT) technology at the University of Idaho has shown promising results in : the reduction of NOx and CO emissions. Because this technology is not yet well characterized, past research has indicated...
NASA Technical Reports Server (NTRS)
Kemeny, Sabrina E.
1994-01-01
Electronic and optoelectronic hardware implementations of highly parallel computing architectures address several ill-defined and/or computation-intensive problems not easily solved by conventional computing techniques. The concurrent processing architectures developed are derived from a variety of advanced computing paradigms including neural network models, fuzzy logic, and cellular automata. Hardware implementation technologies range from state-of-the-art digital/analog custom-VLSI to advanced optoelectronic devices such as computer-generated holograms and e-beam fabricated Dammann gratings. JPL's concurrent processing devices group has developed a broad technology base in hardware implementable parallel algorithms, low-power and high-speed VLSI designs and building block VLSI chips, leading to application-specific high-performance embeddable processors. Application areas include high throughput map-data classification using feedforward neural networks, terrain based tactical movement planner using cellular automata, resource optimization (weapon-target assignment) using a multidimensional feedback network with lateral inhibition, and classification of rocks using an inner-product scheme on thematic mapper data. In addition to addressing specific functional needs of DOD and NASA, the JPL-developed concurrent processing device technology is also being customized for a variety of commercial applications (in collaboration with industrial partners), and is being transferred to U.S. industries. This viewgraph p resentation focuses on two application-specific processors which solve the computation intensive tasks of resource allocation (weapon-target assignment) and terrain based tactical movement planning using two extremely different topologies. Resource allocation is implemented as an asynchronous analog competitive assignment architecture inspired by the Hopfield network. Hardware realization leads to a two to four order of magnitude speed-up over conventional techniques and enables multiple assignments, (many to many), not achievable with standard statistical approaches. Tactical movement planning (finding the best path from A to B) is accomplished with a digital two-dimensional concurrent processor array. By exploiting the natural parallel decomposition of the problem in silicon, a four order of magnitude speed-up over optimized software approaches has been demonstrated.
Integrating three-dimensional digital technologies for comprehensive implant dentistry.
Patel, Neal
2010-06-01
The increase in the popularity of and the demand for the use of dental implants to replace teeth has encouraged advancement in clinical technology and materials to improve patients' acceptance and clinical outcomes. Recent advances such as three-dimensional dental radiography with cone-beam computed tomography (CBCT), precision dental implant planning software and clinical execution with guided surgery all play a role in the success of implant dentistry. The author illustrates the technique of comprehensive implant dentistry planning through integration of computer-aided design/computer-aided manufacturing (CAD/CAM) and CBCT data. The technique includes clinical treatment with guided surgery, including the creation of a final restoration with a high-strength ceramic (IPS e.max CAD, Ivoclar Vivadent, Amherst, N.Y.). The author also introduces a technique involving CAD/CAM for fabricating custom implant abutments. The release of software integrating CEREC Acquisition Center with Bluecam (Sirona Dental Systems, Charlotte, N.C.) chairside CAD/CAM and Galileos CBCT imaging (Sirona Dental Systems) allows dentists to plan implant placement, perform implant dentistry with increased precision and provide predictable restorative results by using chairside IPS e.max CAD. The precision of clinical treatment provided by the integration of CAD/CAM and CBCT allows dentists to plan for ideal surgical placement and the appropriate thickness of restorative modalities before placing implants.
Wei, L; Chen, H; Zhou, Y S; Sun, Y C; Pan, S X
2017-02-18
To compare the technician fabrication time and clinical working time of custom trays fabricated using two different methods, the three-dimensional printing custom trays and the conventional custom trays, and to prove the feasibility of the computer-aided design/computer-aided manufacturing (CAD/CAM) custom trays in clinical use from the perspective of clinical time cost. Twenty edentulous patients were recruited into this study, which was prospective, single blind, randomized self-control clinical trials. Two custom trays were fabricated for each participant. One of the custom trays was fabricated using functional suitable denture (FSD) system through CAD/CAM process, and the other was manually fabricated using conventional methods. Then the final impressions were taken using both the custom trays, followed by utilizing the final impression to fabricate complete dentures respectively. The technician production time of the custom trays and the clinical working time of taking the final impression was recorded. The average time spent on fabricating the three-dimensional printing custom trays using FSD system and fabricating the conventional custom trays manually were (28.6±2.9) min and (31.1±5.7) min, respectively. The average time spent on making the final impression with the three-dimensional printing custom trays using FSD system and the conventional custom trays fabricated manually were (23.4±11.5) min and (25.4±13.0) min, respectively. There was significant difference in the technician fabrication time and the clinical working time between the three-dimensional printing custom trays using FSD system and the conventional custom trays fabricated manually (P<0.05). The average time spent on fabricating three-dimensional printing custom trays using FSD system and making the final impression with the trays are less than those of the conventional custom trays fabricated manually, which reveals that the FSD three-dimensional printing custom trays is less time-consuming both in the clinical and laboratory process than the conventional custom trays. In addition, when we manufacture custom trays by three-dimensional printing method, there is no need to pour preliminary cast after taking the primary impression, therefore, it can save the impression material and model material. As to completing denture restoration, manufacturing custom trays using FSD system is worth being popularized.
Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering
Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo
2010-01-01
The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546
NASA Astrophysics Data System (ADS)
Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho
2016-06-01
This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.
High Temperature Near-Field NanoThermoMechanical Rectification
Elzouka, Mahmoud; Ndao, Sidy
2017-01-01
Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures. PMID:28322324
High Temperature Near-Field NanoThermoMechanical Rectification
NASA Astrophysics Data System (ADS)
Elzouka, Mahmoud; Ndao, Sidy
2017-03-01
Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures.
Juntavee, Niwut; Sirisathit, Issarawas
2018-01-01
This study evaluated marginal accuracy of full-arch zirconia restoration fabricated from two digital computer-aided design and computer-aided manufacturing (CAD-CAM) systems (Trios-3 and CS3500) in comparison to conventional cast metal restoration. A stainless steel model comprising two canine and two molar abutments was used as a master model for full-arch reconstruction. The canine and molar abutments were machined in a cylindrical shape with 5° taper and chamfer margin. The CAD-CAM systems based on the digital approach were used to construct the full-arch zirconia restoration. The conventional cast metal restoration was fabricated according to a conventional lost-wax technique using nickel-chromium alloys. Ten restorations were fabricated from each system. The marginal accuracy of each restoration was determined at four locations for each abutment. An analysis of variance (ANOVA) and Tukey's honest significant difference (HSD) multiple comparisons were used to determine statistically significant difference at 95% confidence interval. The mean values of marginal accuracy of restorations fabricated from conventional casting, Trios-3, and CS3500 were 48.59±4.16 μm, 53.50±5.66 μm, and 56.47±5.52 μm, respectively. ANOVA indicated significant difference in marginal fit of restorations among various systems. The marginal discrepancy of zirconia restoration fabricated from the CS3500 system demonstrated significantly larger gap than that fabricated from the 3Shape system ( p <0.05). Tukey's HSD multiple comparisons indicated that the zirconia restoration fabricated from either CS3500 or Trios-3 demonstrated a significantly larger marginal gap than the conventional cast metal restoration ( p <0.05). Full-arch zirconia restoration fabricated from the Trios-3 illustrated better marginal fits than that from the CS3500, although, both were slightly less accurate than the conventional cast restoration. However, the marginal discrepancies of restoration produced by both CAD-CAM systems were within the clinically acceptable range and satisfactorily precise to be suggested for construction full-arch zirconia restoration.
Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi
2016-01-01
Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.
High-mobility ultrathin semiconducting films prepared by spin coating.
Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali
2004-03-18
The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).
High-mobility ultrathin semiconducting films prepared by spin coating
NASA Astrophysics Data System (ADS)
Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali
2004-03-01
The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).
NASA Astrophysics Data System (ADS)
Hoy, Carlton F. O.
The overall objective of this thesis was to control the fabrication technique and relevant material properties for phantom devices designated for computed tomography (CT) scanning. Fabrication techniques using polymeric composites and foams were detailed together with parametric studies outlining the fundamentals behind the changes in material properties which affect the characteristic CT number. The composites fabricated used polyvinylidene fluoride (PVDF), thermoplastic polyurethane (TPU) and polyethylene (PE) with hydroxylapatite (hA) as additive with different composites made by means of different weight percentages of additive. Polymeric foams were fabricated through a batch foaming technique with the heating time controlled to create different levels of foams. Finally, the effect of fabricated phantoms under varied scanning media was assessed to determine whether self-made phantoms can be scanned accurately under non-water or rigid environments allowing for the future development of complex shaped or fragile material types.
Li, Jia; Rossignol, Fabrice; Macdonald, Joanne
2015-06-21
Inkjet printing is emerging at the forefront of biosensor fabrication technologies. Parallel advances in both ink chemistry and printers have led to a biosensor manufacturing approach that is simple, rapid, flexible, high resolution, low cost, efficient for mass production, and extends the capabilities of devices beyond other manufacturing technologies. Here we review for the first time the factors behind successful inkjet biosensor fabrication, including printers, inks, patterning methods, and matrix types. We discuss technical considerations that are important when moving beyond theoretical knowledge to practical implementation. We also highlight significant advances in biosensor functionality that have been realised through inkjet printing. Finally, we consider future possibilities for biosensors enabled by this novel combination of chemistry and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Kai; Kim, Donghoe; Whitaker, James B
Rapid development of perovskite solar cells (PSCs) during the past several years has made this photovoltaic (PV) technology a serious contender for potential large-scale deployment on the terawatt scale in the PV market. To successfully transition PSC technology from the laboratory to industry scale, substantial efforts need to focus on scalable fabrication of high-performance perovskite modules with minimum negative environmental impact. Here, we provide an overview of the current research and our perspective regarding PSC technology toward future large-scale manufacturing and deployment. Several key challenges discussed are (1) a scalable process for large-area perovskite module fabrication; (2) less hazardous chemicalmore » routes for PSC fabrication; and (3) suitable perovskite module designs for different applications.« less
NASA Technical Reports Server (NTRS)
Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.
1981-01-01
The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.
Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho
2010-03-01
Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.
Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication and Characterization
NASA Astrophysics Data System (ADS)
Geels, Randall Scott
The theory, design, fabrication, and testing of vertical-cavity surface-emitting lasers (VCSELs) is explored in depth. The design of the distributed Bragg reflector (DBR) mirrors is thoroughly treated and both analytic and numerical approaches for computing the reflectivity are covered. The electrical properties of the DBR mirrors are also considered and graded interfaces are found to be critical in reducing the series voltage drop in the mirrors. Thickness variations due to growth rate uncertainties are considered and the permissible thickness inaccuracies are discussed. Layer thickness variations of several percent can be tolerated without large changes in the threshold current. The growth of VCSELs by molecular beam epitaxy (MBE) is described in detail as is the device processing technology for broad area as well as small area devices. Results from numerous devices are reported. Broad area in-plane lasers were used to characterize the material and determine the internal parameters. Broad area VCSELs were fabricated to determine the characteristics of the VCSEL cavity. Small area VCSELs were fabricated and extensively tested. Measured and derived parameters from small area devices include: threshold current (~0.7 mA), peak output power (>3 mW), maximum operation temperature (>110^ circC), output power at 100^ circC (~0.4 mW), and linewidth (85 MHz). The near field, far field, and polarization characteristics were also measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Judith C.
The purpose of this grant is to develop the multi-scale theoretical methods to describe the nanoscale oxidation of metal thin films, as the PI (Yang) extensive previous experience in the experimental elucidation of the initial stages of Cu oxidation by primarily in situ transmission electron microscopy methods. Through the use and development of computational tools at varying length (and time) scales, from atomistic quantum mechanical calculation, force field mesoscale simulations, to large scale Kinetic Monte Carlo (KMC) modeling, the fundamental underpinings of the initial stages of Cu oxidation have been elucidated. The development of computational modeling tools allows for acceleratedmore » materials discovery. The theoretical tools developed from this program impact a wide range of technologies that depend on surface reactions, including corrosion, catalysis, and nanomaterials fabrication.« less
Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.
2010-01-01
FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137
Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.
Atabaki, Amir H; Moazeni, Sajjad; Pavanello, Fabio; Gevorgyan, Hayk; Notaros, Jelena; Alloatti, Luca; Wade, Mark T; Sun, Chen; Kruger, Seth A; Meng, Huaiyu; Al Qubaisi, Kenaish; Wang, Imbert; Zhang, Bohan; Khilo, Anatol; Baiocco, Christopher V; Popović, Miloš A; Stojanović, Vladimir M; Ram, Rajeev J
2018-04-01
Electronic and photonic technologies have transformed our lives-from computing and mobile devices, to information technology and the internet. Our future demands in these fields require innovation in each technology separately, but also depend on our ability to harness their complementary physics through integrated solutions 1,2 . This goal is hindered by the fact that most silicon nanotechnologies-which enable our processors, computer memory, communications chips and image sensors-rely on bulk silicon substrates, a cost-effective solution with an abundant supply chain, but with substantial limitations for the integration of photonic functions. Here we introduce photonics into bulk silicon complementary metal-oxide-semiconductor (CMOS) chips using a layer of polycrystalline silicon deposited on silicon oxide (glass) islands fabricated alongside transistors. We use this single deposited layer to realize optical waveguides and resonators, high-speed optical modulators and sensitive avalanche photodetectors. We integrated this photonic platform with a 65-nanometre-transistor bulk CMOS process technology inside a 300-millimetre-diameter-wafer microelectronics foundry. We then implemented integrated high-speed optical transceivers in this platform that operate at ten gigabits per second, composed of millions of transistors, and arrayed on a single optical bus for wavelength division multiplexing, to address the demand for high-bandwidth optical interconnects in data centres and high-performance computing 3,4 . By decoupling the formation of photonic devices from that of transistors, this integration approach can achieve many of the goals of multi-chip solutions 5 , but with the performance, complexity and scalability of 'systems on a chip' 1,6-8 . As transistors smaller than ten nanometres across become commercially available 9 , and as new nanotechnologies emerge 10,11 , this approach could provide a way to integrate photonics with state-of-the-art nanoelectronics.
Bone tissue engineering scaffolding: computer-aided scaffolding techniques.
Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi
Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).
Fracture behaviors of ceramic tissue scaffolds for load bearing applications
NASA Astrophysics Data System (ADS)
Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing
2016-07-01
Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
Micro Machining Enhances Precision Fabrication
NASA Technical Reports Server (NTRS)
2007-01-01
Advanced thermal systems developed for the Space Station Freedom project are now in use on the International Space Station. These thermal systems employ evaporative ammonia as their coolant, and though they employ the same series of chemical reactions as terrestrial refrigerators, the space-bound coolers are significantly smaller. Two Small Business Innovation Research (SBIR) contracts between Creare Inc. of Hanover, NH and Johnson Space Center developed an ammonia evaporator for thermal management systems aboard Freedom. The principal investigator for Creare Inc., formed Mikros Technologies Inc. to commercialize the work. Mikros Technologies then developed an advanced form of micro-electrical discharge machining (micro-EDM) to make tiny holes in the ammonia evaporator. Mikros Technologies has had great success applying this method to the fabrication of micro-nozzle array systems for industrial ink jet printing systems. The company is currently the world leader in fabrication of stainless steel micro-nozzles for this market, and in 2001 the company was awarded two SBIR research contracts from Goddard Space Flight Center to advance micro-fabrication and high-performance thermal management technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia
Biorefineries convert biomass into many useful intermediates. For bio-based products to be used for fuel, energy, chemical, and many other applications, water needs to be removed from these aqueous products. Membrane separation technologies can significantly reduce separation energy consumption compared with conventional separation processes such as distillation. Nanoporous inorganic membranes have superior pervaporation performance with excellent organic fouling resistance. However, their commercial applications are limited due to high membrane costs and poor production reproducibility. A novel cost-effective inorganic membrane fabrication technology has been developed with low cost materials and using an advanced membrane fabrication technology. Low cost precursor material formulationmore » was successfully developed with desired material properties for membrane fabrication. An advanced membrane fabrication process was developed using the novel membrane materials to enable the fabrication of separation membranes of various geometries. The structural robustness and separation performance of the low cost inorganic membranes were evaluated. The novel inorganic membranes demonstrated high structural integrity and were effective in pervaporation removal of water.« less
NASA Astrophysics Data System (ADS)
Tillman, Daniel
The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital fabrication activities. Based upon analysis of the data collected, two main results were determined to have justifiable supporting empirical evidence: (1) After the instructional technology course featuring digital fabrication activities, the participants reported statistically significant overall gains in science teaching efficacy beliefs. (2) When asked to describe their future plans for using three instructional technologies in their teaching, the top five most mentioned instructional technologies were: interactive whiteboards, video, class website, interactive online timeline, and digital fabrication. Of the participants that mentioned digital fabrication, the specific content areas mentioned were: history (four out of eight students mentioned), social studies (two out of eight), and science, math, engineering, and technology were each mentioned once. Article three assessed the impact of a series of lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students who had been recognized as advanced in mathematics. The main dependent variables studied were the students' knowledge of science content from the Virginia Standards of Learning, attitude towards science, and student reported likes and dislikes about the project. Based upon analysis of the data collected, three main results were presented: (1) Students demonstrated significant positive gains in correct answers to questions on the topic of "Force, Matter, Energy, & Motion" from pretest to posttest. (2) There were nonsignificant gains reported by students on the attitude survey questions about attitude towards science, but this was chiefly because of one question that was significantly impacted in a negative direction. (3) Students articulated five main categories of likes and six main categories of dislikes of the experience, thereby providing insight into their own perception of some of the affordances and constraints of the educational activities. The five topics mentioned most often by students as self-reported likes about the experience included: hands-on activities including building, making, or designing (18 of 29 students mentioned; 62.1%), experimenting (9 of 29; 31.0%), presenting (9 of 29; 31.0%), drawing (6 of 29; 20.7%), and working in groups (6 of 29; 20.7%). The six topics most mentioned by students as self-reported dislikes about the experience included: taking tests (13 of 29 students mentioned; 44.8%), drawing (7 of 29; 24.1%), confusing / too fast (4 of 29; 13.8%), class discussions (4 of 29; 13.8%), reviewing (4 of 29; 13.8%), and attitude surveys (4 of 29; 13.8%). Cumulatively these three articles aim to contribute to the body of research studying the impact of digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education. This goal is described in greater detail in the "Manuscript Theme" section that begins on the next page. Keywords: STEM, digital fabrication, upper elementary science education, contextual mathematics, modeling-based science instruction, transmedia books, performance assessment, preservice elementary teacher education, science teaching efficacy beliefs
AlGaInN laser diode technology for systems applications
NASA Astrophysics Data System (ADS)
Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Bockowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.
2016-02-01
Gallium Nitride (GaN) laser diodes fabricated from the AlGaInN material system is an emerging technology that allows laser diodes to be fabricated over a very wide wavelength range from u.v. to the visible, and is a key enabler for the development of new system applications such as (underwater and terrestrial) telecommunications, quantum technologies, display sources and medical instrumentation.
3D Computer aided treatment planning in endodontics.
van der Meer, Wicher J; Vissink, Arjan; Ng, Yuan Ling; Gulabivala, Kishor
2016-02-01
Obliteration of the root canal system due to accelerated dentinogenesis and dystrophic calcification can challenge the achievement of root canal treatment goals. This paper describes the application of 3D digital mapping technology for predictable navigation of obliterated canal systems during root canal treatment to avoid iatrogenic damage of the root. Digital endodontic treatment planning for anterior teeth with severely obliterated root canal systems was accomplished with the aid of computer software, based on cone beam computer tomography (CBCT) scans and intra-oral scans of the dentition. On the basis of these scans, endodontic guides were created for the planned treatment through digital designing and rapid prototyping fabrication. The custom-made guides allowed for an uncomplicated and predictable canal location and management. The method of digital designing and rapid prototyping of endodontic guides allows for reliable and predictable location of root canals of teeth with calcifically metamorphosed root canal systems. The endodontic directional guide facilitates difficult endodontic treatments at little additional cost. Copyright © 2016. Published by Elsevier Ltd.
Computational analysis of unmanned aerial vehicle (UAV)
NASA Astrophysics Data System (ADS)
Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran
2017-01-01
A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.
Recent achievements using chemical vapor composite silicon carbide (CVC SiC)
NASA Astrophysics Data System (ADS)
Goodman, William A.; Tanaka, Clifford
2009-08-01
This annual review documents our progress towards inexpensive mass production of silicon carbide mirrors and optical structures. Results are provided for a NASA Small Business Technology Transfer (STTR) X-Ray Mirror project. Trex partnered with the University of Alabama-Huntsville Center for Advanced Optics (UAH-CAO) to develop fabrication methods for polished cylindrical and conical chemical vapor composite (CVCTM) SiC mandrels. These mandrels are envisioned as pre-forms for the replication of fused silica x-ray optics to be eventually used in the International X-Ray Observatory (IXO). CVC SiCTM offers superior high temperature stability, thermal and mechanical performance and polishability required for this precision replication process. In this program, Trex fabricated prototype mandrels with design diameters of 10.5cm, 20cm and 45cm. UAH-CAO was Trex's university partner in this effort and worked on polishing and metrology of the unusual x-ray mandrel geometries. UAH-CAO successfully developed an innovative interferometric method for measuring the CVC SiCTM x-ray mandrels based on a precision cylindrical lens system. UAH-CAO also developed finishing and polishing methods for CVC SiCTM that utilized a Zeeko IRP200 computer controlled polishing tool. The three technologies key technologies demonstrated in this program (near net shape forming of CVC SiCTM mandrels, the x-ray mandrel metrology and free-form polishing capability on CVC SiCTM) could enable cost-effective manufacture of the x-ray mandrels required for the International X-Ray Observatory (IXO).
BCB Bonding Technology of Back-Side Illuminated COMS Device
NASA Astrophysics Data System (ADS)
Wu, Y.; Jiang, G. Q.; Jia, S. X.; Shi, Y. M.
2018-03-01
Back-side illuminated CMOS(BSI) sensor is a key device in spaceborne hyperspectral imaging technology. Compared with traditional devices, the path of incident light is simplified and the spectral response is planarized by BSI sensors, which meets the requirements of quantitative hyperspectral imaging applications. Wafer bonding is the basic technology and key process of the fabrication of BSI sensors. 6 inch bonding of CMOS wafer and glass wafer was fabricated based on the low bonding temperature and high stability of BCB. The influence of different thickness of BCB on bonding strength was studied. Wafer bonding with high strength, high stability and no bubbles was fabricated by changing bonding conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Tyburska-Puschel, Beata
The mission of the Nuclear Energy Enabling Technologies (NEET) program is to develop crosscutting technologies for nuclear energy applications. Advanced structural materials with superior performance at elevated temperatures are always desired for nuclear reactors, which can improve reactor economics, safety margins, and design flexibility. They benefit not only new reactors, including advanced light water reactors (LWRs) and fast reactors such as sodium-cooled fast reactor (SFR) that is primarily designed for management of high-level wastes, but also life extension of the existing fleet when component exchange is needed. Developing and utilizing the modern materials science tools (experimental, theoretical, and computational tools)more » is an important path to more efficient alloy development and process optimization. Ferritic-martensitic (FM) steels are important structural materials for nuclear reactors due to their advantages over other applicable materials like austenitic stainless steels, notably their resistance to void swelling, low thermal expansion coefficients, and higher thermal conductivity. However, traditional FM steels exhibit a noticeable yield strength reduction at elevated temperatures above ~500°C, which limits their applications in advanced nuclear reactors which target operating temperatures at 650°C or higher. Although oxide-dispersion-strengthened (ODS) ferritic steels have shown excellent high-temperature performance, their extremely high cost, limited size and fabricability of products, as well as the great difficulty with welding and joining, have limited or precluded their commercial applications. Zirconium has shown many benefits to Fe-base alloys such as grain refinement, improved phase stability, and reduced radiation-induced segregation. The ultimate goal of this project is, with the aid of computational modeling tools, to accelerate the development of a new generation of Zr-bearing ferritic alloys to be fabricated using conventional steelmaking practices, which have excellent radiation resistance and enhanced high-temperature creep performance greater than Grade 91.« less
Fabrication of a First Article Lightweight Composite Technology Demonstrator - Exospine
2014-01-01
core, (b) 0/90, and (c) ± 45 ply cuts of ACG-MTM 45-1/CF0526 prepreg fabric...onboard diagnostics. 2. Experimental 2.1 Materials Plain woven carbon fiber/epoxy prepreg and a low-density foam core were provided to ARL for the...fabrication of the exospine technology demonstrator by UD-CCM. The prepreg was ACG - MTM∗ 45-1/CF0526 and has a cured ply thickness of 0.201 mm. It is
Automated Fabrication Technologies for High Performance Polymer Composites
NASA Technical Reports Server (NTRS)
Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.
1998-01-01
New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.
Grist : grid-based data mining for astronomy
NASA Technical Reports Server (NTRS)
Jacob, Joseph C.; Katz, Daniel S.; Miller, Craig D.; Walia, Harshpreet; Williams, Roy; Djorgovski, S. George; Graham, Matthew J.; Mahabal, Ashish; Babu, Jogesh; Berk, Daniel E. Vanden;
2004-01-01
The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the 'hyperatlas' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.
The museum of unnatural form: a visual and tactile experience of fractals.
Della-Bosca, D; Taylor, R P
2009-01-01
A remarkable computer technology is revolutionizing the world of design, allowing intricate patterns to be created with mathematical precision and then 'printed' as physical objects. Contour crafting is a fabrication process capable of assembling physical structures the sizes of houses, firing the imagination of a new generation of architects and artists (Khoshnevisat, 2008). Daniel Della-Bosca has jumped at this opportunity to create the 'Museum of Unnatural Form' at Griffith University. Della-Bosca's museum is populated with fractals sculptures - his own versions of nature's complex objects - that have been printed with the new technology. His sculptures bridge the historical divide in fractal studies between the abstract images of mathematics and the physical objects of Nature (Mandelbrot, 1982). Four of his fractal images will be featured on the cover of NDPLS in 2009.
Fbis report. Science and technology: China, October 18, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-10-18
;Partial Contents: Nanomaterials Fabrication, Applications Research Advances Noted; CAST Announces World`s First Space-Grown Large-Diameter GaAs Monocrystal; Assay of Antiviral Activity of Antisense Phosphorothioate Oligodeoxynucleotide Against Dengue Virus; Expression and Antigenicity of Chimeric Proteins of Cholera Toxin B Subunit With Hepatitis C Virus; CNCOFIEC Signs Agreement With IBM for New Intelligent Building; Latest Reports on Optical Computing, Memory; BIDC To Introduce S3 Company`s Multimedia Accelerator Chipset; Virtual Private PCN Ring Network Based on ATM VP Cross-Connection; Beijing Gets Nation`s First Frame Relay Network; Situation of Power Industry Development and International Cooperation; Diagrams of China`s Nuclear Waste Containment Vessels; Chinese-Developed Containment Vesselmore » Material Reaches World Standards; Second Fuel Elements for Qinshan Plant Passes Inspection; and Geothermal Deep-Well Electric Pump Technology Developed.« less
Grist: Grid-based Data Mining for Astronomy
NASA Astrophysics Data System (ADS)
Jacob, J. C.; Katz, D. S.; Miller, C. D.; Walia, H.; Williams, R. D.; Djorgovski, S. G.; Graham, M. J.; Mahabal, A. A.; Babu, G. J.; vanden Berk, D. E.; Nichol, R.
2005-12-01
The Grist project is developing a grid-technology based system as a research environment for astronomy with massive and complex datasets. This knowledge extraction system will consist of a library of distributed grid services controlled by a workflow system, compliant with standards emerging from the grid computing, web services, and virtual observatory communities. This new technology is being used to find high redshift quasars, study peculiar variable objects, search for transients in real time, and fit SDSS QSO spectra to measure black hole masses. Grist services are also a component of the ``hyperatlas'' project to serve high-resolution multi-wavelength imagery over the Internet. In support of these science and outreach objectives, the Grist framework will provide the enabling fabric to tie together distributed grid services in the areas of data access, federation, mining, subsetting, source extraction, image mosaicking, statistics, and visualization.
Low cost monocrystalline silicon sheet fabrication for solar cells by advanced ingot technology
NASA Technical Reports Server (NTRS)
Fiegl, G. F.; Bonora, A. C.
1980-01-01
The continuous liquid feed (CLF) Czochralski furnace and the enhanced I.D. slicing technology for the low-cost production of monocrystalline silicon sheets for solar cells are discussed. The incorporation of the CLF system is shown to improve ingot production rate significantly. As demonstrated in actual runs, higher than average solidification rates (75 to 100 mm/hr for 150 mm 1-0-0 crystals) can be achieved, when the system approaches steady-state conditions. The design characteristics of the CLF furnace are detailed, noting that it is capable of precise control of dopant impurity incorporation in the axial direction of the crystal. The crystal add-on cost is computed to be $11.88/sq m, considering a projected 1986 25-slice per cm conversion factor with an 86% crystal growth yield.
SVGA and XGA active matrix microdisplays for head-mounted applications
NASA Astrophysics Data System (ADS)
Alvelda, Phillip; Bolotski, Michael; Brown, Imani L.
2000-03-01
The MicroDisplay Corporation's liquid crystal on silicon (LCOS) display devices are based on the union of several technologies with the extreme integration capability of conventionally fabricated CMOS substrates. The fast liquid crystal operation modes and new scalable high-performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable applications. The entire suite of MicroDisplay's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASICs) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.
CNC water-jet machining and cutting center
NASA Astrophysics Data System (ADS)
Bartlett, D. C.
1991-09-01
Computer Numerical Control (CNC) water-jet machining was investigated to determine the potential applications and cost-effectiveness that would result by establishing this capability in the engineering shops of Allied-Signal Inc., Kansas City Division (KCD). Both conductive and nonconductive samples were machined at KCD on conventional machining equipment (a three-axis conversational programmed mill and a wire electrical discharge machine) and on two current-technology water-jet machines at outside vendors. These samples were then inspected, photographed, and evaluated. The current-technology water-jet machines were not as accurate as the conventional equipment. The resolution of the water-jet equipment was only +/- 0.005 inch, as compared to +/- 0.0002 inch for the conventional equipment. The principal use for CNC water-jet machining would be as follows: Contouring to near finished shape those items made from 300 and 400 series stainless steels, titanium, Inconel, aluminum, glass, or any material whose fabrication tolerance is less than the machine resolution of +/- 0.005 inch; and contouring to finished shape those items made from Kevlar, rubber, fiberglass, foam, aluminum, or any material whose fabrication specifications allow the use of a machine with +/- 0.005 inch tolerance. Additional applications are possible because there is minimal force generated on the material being cut and because the water-jet cuts without generating dust.
NASA Astrophysics Data System (ADS)
Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo
2018-06-01
In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.
NASA Astrophysics Data System (ADS)
Yoshida, Yasunori; Wada, Hikaru; Izumi, Konami; Tokito, Shizuo
2017-05-01
In this work, we demonstrate that highly conductive metal interconnects can be fabricated on the surface of three-dimensional objects using “omnidirectional ink jet” (OIJ) printing technology. OIJ printing technology makes it possible to perform ink jet printing in all directions by combining the motion of a 6-axis vertically articulated robot with precise positioning and a thermal drying process, which allows for the printing of stacked layers. By using OIJ technology, we were the first to successfully fabricate printed interconnect layers having a very low electrical resistance of 12 mΩ over a 10 mm length. Moreover, the results of the high-current test demonstrated that the printed interconnects can withstand high-current-flow of 5 A for 30 min or more.
Smartphone attachment for stethoscope recording.
Thompson, Jeff
2015-01-01
With the ubiquity of smartphones and the rising technology of 3D printing, novel devices can be developed that leverage the "computer in your pocket" and rapid prototyping technologies toward scientific, medical, engineering, and creative purposes. This paper describes such a device: a simple 3D-printed extension for Apple's iPhone that allows the sound from an off-the-shelf acoustic stethoscope to be recorded using the phone's built-in microphone. The attachment's digital 3D files can be easily shared, modified for similar phones and devices capable of recording audio, and in combination with 3D printing technology allow for fabrication of a durable device without need for an entire factory of expensive and specialized machining tools. It is hoped that by releasing this device as an open source set of printable files that can be downloaded and reproduced cheaply, others can make use of these developments where access to cost-prohibitive, specialized medical instruments are not available. Coupled with specialized smartphone software ("apps"), more sophisticated and automated diagnostics may also be possible on-site.
Raw materials and technology fuel U.S. economic growth
Kelly, T.D.
2002-01-01
In 1900, the average U.S. citizen's average life span was 47 years. He traveled about 1,900 km (1,200 miles) in a lifetime and resided in a home with an icebox for food storage and oil or gas for lighting. He communicated by mail, telegraph and crude telephones with limited availability and range. By 2000, the average citizen's life span was 77 years. He traveled an average of 19,000 km/a (12,000 miles/ year) by automobile alone. He resided in a home with many electrical appliances, including refrigerators and electric lights. And the communicated almost instantaneously with any other part of the globe by several widely available means, including portable phones and e-mail. Technology, the application of knowledge about the Earth's materials, their extraction and fabrication into products, helped create this change. Throughout the 20th century, the United States was a leader in technology. Automobiles, refrigerators, electric lighting, telephones and personal computers are only a few examples of the products invented and improved or further developed by American technology (National Academy of Engineering, 2000).