Science.gov

Sample records for fabrication technology development

  1. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  2. Fabrication issues and technology development for HELEOS

    SciTech Connect

    Susoeff, A.R.; Hawke, R.S. ); Balk, J.K.; Hall, C.A.; McDonald, M.J. )

    1989-01-01

    Starfire is a joint railgun of Lawrence Livermore National Laboratory and Sandia National Laboratory-Albuquerque. The goal of Starfire is to develop a Hypervelocity Electromagnetic Launcher for Equation of State (HELEOS) experiments. A two-stage light-gas gun is used as a pre-injector. Each round-bore HELEOS railgun module is 12.7 mm in diameter and 2.4 m long. The muzzle end of the railgun is connected to a vacuum tank. Common materials and fabrication technology are used in the manufacture of all components, and modular design allows for extending the length of the railgun as progress dictates. The launcher uses a vee block geometry, which is designed to: (1) provide compressive preload, (2) operate with a 300-MPa (3-kbar) internal bore pressure, and (3) easily accommodate interchangeable materials in the bore support structure and rail. The authors have performed full-scale material testing of the railgun and have developed a precision round-bore fabrication process. Air-gage inspection is used to determine bore diameter and straightness. They have also developed a surface mapping system to document the surface topography of the bore before and after an experiment. This paper presents fabrication details, results of tests conducted, and areas for potential improvement.

  3. Fabrication Technology

    SciTech Connect

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  4. Development of blanket box structure fabrication technology

    SciTech Connect

    Mohri, K.; Sata, S.; Kawaguchi, I.

    1994-12-31

    Fabrication studies have been performed for first wall and blanket box structure in the Fusion Experimental Reactor designed in Japan. The first wall must have internal cooling channels to remove volumetric heat loading by neutron wall load and surface heat loading from the plasma. The blanket which is higher than 10 m and 1 m wide withstands enormous electromagnetic load (about 10 MN/m). And a fabrication accuracy is required in the order of 10 mm from the machine configuration and remote assembling standpoints. To make cooling channels inside the first wall and to reduce the deformation during fabrication, the authors adopted advance techniques Hot Isostatic Pressing method (HIP) and Electron Beam Welding (EBW) respectively. Evaluation studies for the bondability of the HIP bonding joint have been performed. To evaluate the bondability, the mechanical properties such as tensile strength, impact value, low cycle fatigue strength and creep strength of the bonded part were investigated using HIP bonded test specimens. And the detectability of ultrasonic detection tests were also studied on them.

  5. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high-quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  6. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  7. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  8. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  9. NASA funding opportunities for optical fabrication and testing technology development

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  10. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs

  11. Electron Beam Freeform Fabrication Technology Development for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.

    2006-01-01

    NASA Langley has developed a the EBF(sup 3)process and currently has two EBF(sup 3) systems in house. EBF(sup 3) process offers potential cost reduction and fabrication of complex unitized structures out of metals. EBF(sup 3) has been successfully demonstrated on Al, Al-Li, Ti, and Ni alloys to date.

  12. Developing Fabrication Technologies to Provide On Demand Manufacturing for Exploration of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.

    2006-01-01

    NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.

  13. Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.

    2007-01-01

    NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.

  14. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity.

    PubMed

    Kang, Hyun-Wook; Cho, Dong-Woo

    2012-09-01

    Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications.

  15. Development of an Indirect Stereolithography Technology for Scaffold Fabrication with a Wide Range of Biomaterial Selectivity

    PubMed Central

    Kang, Hyun-Wook

    2012-01-01

    Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications. PMID:22443315

  16. Weaving the Fabric of Professional Development in the 21st Century Using Technology

    ERIC Educational Resources Information Center

    Chesbro, Patricia; Boxler, Nancy

    2010-01-01

    Network learning supported by 21-century technology is reweaving the fabric of how educators acquire and create new knowledge. At the Alaska Educational Innovations Network (AEIN), educators believe this has the potential to change how a profession looks at professional development. They have learned that using technology to support networks…

  17. From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt

    NASA Technical Reports Server (NTRS)

    McLemore, C. A.; Fikes, J. C.; McCarley, K. S.; Good, J. E.; Gilley, S. D.; Kennedy, J. P.

    2008-01-01

    The U.S. Space Exploration Policy has as a cornerstone the establishment of an outpost on the moon. This lunar outpost wil1 eventually provide the necessary planning, technology development, testbed, and training for manned missions in the future beyond the Moon. As part of the overall activity, the National Aeronautics and Space Administration (NASA) is investigating how the in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. Marshall Space Flight Center (MSFC), along with other NASA centers, is supporting this endeavor by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. An infrastructure capable of fabrication and nondestructive evaluation will be needed to support habitat structure development and maintenance, tools and mechanical parts fabrication, as well as repair and replacement of space-mission hardware such as life-support items, vehicle components, and crew systems, This infrastructure will utilize the technologies being developed under the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the technologies being developed under the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the Space Exploration Initiative by reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the need and plan for understanding the properties of the lunar regolith to determine the applicability of using this material in a fabrication process. This effort includes the development of high fidelity simulants that will be used in fabrication processes on the ground to

  18. FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT

    SciTech Connect

    G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

    2010-03-01

    Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

  19. Optmization and Fabrication Studies in the Development of Structurally Integrated Thermal Protection System Technology

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.

    2009-01-01

    NASA HYP M&S is pursuing the development of SITPS: 1) Working with HYP MDAO to formulate methodology to incorporate SITPS into hypersonic vehicle design trades. 2) SITPS-0 to SITPS-1 (FY10): a) Manufacturing development and weight reduction (5.8 to 3.1 lb(sub m)/sq ft); b) Structural testing to mature SITPS model. 3) SITPS-2 (FY11): a) Focus on panel closeout, panel-to-panel load transfer, and panel curvature. 4) Extend fabrication technology to include alternate cores and insulations (FY12).

  20. Development of cylindrical reactive ion etching technology for fabricating tubular microstructures

    NASA Astrophysics Data System (ADS)

    Matsui, Tomoki; Takeuchi, Yugo; Shirao, Akitoshi; Nakashima, Yuta; Sato, Katsuya; Minami, Kazuyuki

    2014-05-01

    This paper describes the development of a novel technology that can form a dense and complex pattern on a polymer tube without thermal damage. We have developed an etching mask and equipment capable of processing the tubular material. We named this technology cylindrical RIE (reactive ion etching). In order to evaluate the fundamental processing characteristics of this technology, etching rate, side etching ratio and etching uniformities along the tube axis and circumferential directions are evaluated. As a result, a vertical wall caused by anisotropic etching could be observed, and the average etching rate was 1.0 µm min-1 and the average side etching ratio was 0.027. The maximum differences between etching rate along the axis and circumferential directions were 0.25 and 0.12 µm min-1, respectively. The cross-section of the etched through-groove (slit) processed in a PP (polypropylene) tube having wall thickness of 200 µm was evaluated. By the bowing phenomenon, pattern width decreased most at the middle of the thickness of the tube wall, and average width errors at the middle of the thickness was 22.4 µm. To demonstrate the usefulness of the cylindrical RIE, a stent made of PP tube was fabricated. It was possible to fabricate a stent with an outer diameter of 4.4 mm, length of 19 mm, main strut width of 300 µm, and connecting strut width of 80 µm.

  1. Fabrication issues and technology development for HELEOS (Hypervelocity Electromagnetic Launcher for Equation of State)

    SciTech Connect

    Susoeff, A.R.; Hawke, R.S.; Balk, J.K.; Hall, C.A.; McDonald, M.J.

    1988-02-01

    Starfire is a joint railgun project of Lawrence Livermore National Laboratory and Sandia National Laboratory and Sandia National Laboratory-Albuquerque. The goal of Starfire is to develop a Hypervelocity Electromagnetic Launcher for Equation of State (HELEOS) experiments. A two-stage light-gas gun is used as pre-injector. Each round-bore HELEOS railgun module is 12.7 mm in diameter and 2.4 m long. The muzzle end of the railgun is connected to a vacuum tank. Common materials and fabrication technology are used in the manufacture of all components,a nd modular design allows for extending the length of the railgun as progress dictates. The launcher uses a ''vee block'' geometry, which is designed to: provide compressive preload; operate with a 300-MPa (3-kbar) internal bore pressure; and easily accommodate interchangeable materials in the bore support structure and rail. We have performed full-scale material testing of the railgun and have developed a precision round-bore fabrication process. Air-gage inspection is used to determine bore diameter and straightness. We have also developed a surface mapping system to document the surface topography of the bore before and after an experiment. This paper presents fabrication details, results of tests conducted, and areas for potential improvement. 12 refs., 6 figs., 1 tab.

  2. Film Fabrication Technologies at NREL

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert D.

    1993-01-01

    The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.

  3. Thermal Skin fabrication technology

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1972-01-01

    Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.

  4. Fabrication technology for ODS Alloy MA957

    SciTech Connect

    ML Hamilton; DS Gelles; RJ Lobsinger; MM Paxton; WF Brown

    2000-03-16

    A successful fabrication schedule has been developed at Carpenter Technology Corporation for the production of MA957 fuel and blanket cladding. Difficulties with gun drilling, plug drawing and recrystallization were overcome to produce a pilot lot of tubing. This report documents the fabrication efforts of two qualified vendors and the support studies performed at WHC to develop the fabrication-schedule.

  5. In Situ Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Rolin, Terry D.; Hammond, Monica

    2005-01-01

    A manufacturing system is described that is internal to controlled cabin environments which will produce functional parts to net shape with sufficient tolerance, strength and integrity to meet application specific needs such as CEV ECLS components, robotic arm or rover components, EVA suit items, unforeseen tools, conformal repair patches, and habitat fittings among others. Except for start-up and shut-down, fabrication will be automatic without crew intervention under nominal scenarios. Off-nominal scenarios may require crew and/or Earth control intervention. System will have the ability to fabricate using both provisioned feedstock materials and feedstock refined from in situ regolith.

  6. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support. Annual report, January 1, 1991--September 30, 1992

    SciTech Connect

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester`s Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  7. Ultrasound technologies for biomaterials fabrication and imaging.

    PubMed

    Dalecki, Diane; Hocking, Denise C

    2015-03-01

    Ultrasound is emerging as a powerful tool for developing biomaterials for regenerative medicine. Ultrasound technologies are finding wide-ranging, innovative applications for controlling the fabrication of bioengineered scaffolds, as well as for imaging and quantitatively monitoring the properties of engineered constructs both during fabrication processes and post-implantation. This review provides an overview of the biomedical applications of ultrasound for imaging and therapy, a tutorial of the physical mechanisms through which ultrasound can interact with biomaterials, and examples of how ultrasound technologies are being developed and applied for biomaterials fabrication processes, non-invasive imaging, and quantitative characterization of bioengineered scaffolds in vitro and in vivo.

  8. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    SciTech Connect

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-03-27

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9

  9. Development of Stacked Core Technology for the Fabrication of Deep Lightweight UV Quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Kirk, Charlie; Maffett, Steve; Abplanalp, Cal; Stahl, H. Philip

    2013-01-01

    Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and ITT Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at ITT Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.

  10. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1995--September 30, 1996

    SciTech Connect

    Hoppe, M.

    1997-02-01

    On December 30, 1990, the U.S. Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. In September 1995 this contract ended and a second contract was issued for us to continue this ICF target support work. This report documents the technical activities of the period October 1, 1995 through September 30, 1996. During this period, GA and our partners WJ Schafer Associates (WJSA) and Soane Technologies, Inc. (STI) were assigned 14 formal tasks in support of the Inertial Confinement Fusion program and its five laboratories. A portion of the effort on these tasks included providing direct {open_quotes}Onsite Support{close_quotes} at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). We fabricated and delivered over 800 gold-plated hohlraum mandrels to LLNL, LANL and SNLA. We produced nearly 1,200 glass and plastic target capsules for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). We also delivered over 100 flat foil targets for Naval Research Lab (NRL) and SNLA in FY96. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require capsules containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. We are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Substantial progress has been made on ways to both create and characterize viable layers. During FY96, significant progress was made in the design of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA.

  11. Are we There Yet? ... Developing In-Situ Fabrication and Repair (ISFR) Technologies to Explore and Live on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Bassler, Julie A.; Bodiford, Melanie P.; Fiske, Michael R.; Strong, Janet D.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center are evaluating current technologies for in situ exploration habitat and fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) program will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements. This paper will look at the current and future habitat technology applications such as the implementation of in situ environmental elements such as caves, rilles and lavatubes, the development of lunar regolith concrete and structure design and development, thin film and inflatable technologies. We will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. All ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.

  12. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    SciTech Connect

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  13. Development and Characterization of the Bonding and Integration Technologies Needed for Fabricating Silicon Carbide Based Injector Components

    NASA Technical Reports Server (NTRS)

    Halbig,Michael C.; Singh, Mrityunjay

    2008-01-01

    Advanced ceramic bonding and integration technologies play a critical role in the fabrication and application of silicon carbide based components for a number of aerospace and ground based applications. One such application is a lean direct injector for a turbine engine to achieve low NOx emissions. Ceramic to ceramic diffusion bonding and ceramic to metal brazing technologies are being developed for this injector application. For the diffusion bonding technology, titanium interlayers (coatings and foils) were used to aid in the joining of silicon carbide (SiC) substrates. The influence of such variables as surface finish, interlayer thickness, and processing time were investigated. Electron microprobe analysis was used to identify the reaction formed phases. In the diffusion bonds, an intermediate phase, Ti5Si3Cx, formed that is thermally incompatible in its thermal expansion and caused thermal stresses and cracking during the processing cool-down. Thinner interlayers of pure titanium and/or longer processing times resulted in an optimized microstructure. Tensile tests on the joined materials resulted in strengths of 13-28 MPa depending on the SiC substrate material. Nondestructive evaluation using ultrasonic immersion showed well formed bonds. For the joining technology of brazing Kovar fuel tubes to silicon carbide, preliminary development of the joining approach has begun. Various technical issues and requirements for the injector application are addressed.

  14. Inertial Confinement Fusion Target Component Fabrication and Technology Development report. Annual report, October 1, 1992--September 30, 1993

    SciTech Connect

    Steinman, D.

    1994-03-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities which took place under this contract during the period of October 1, 1992 through September 30, 1993. During this period, GA was assigned 18 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included ``Capabilities Activation`` and ``Capabilities Demonstration`` to enable us to begin production of glass and composite polymer capsules. Capsule delivery tasks included ``Small Glass Shell Deliveries`` and ``Composite Polymer Capsules`` for Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). We also were asked to provide direct ``Onsite Support`` at LLNL and LANL. We continued planning for the transfer of ``Micromachining Equipment from Rocky Flats`` and established ``Target Component Micromachining and Electroplating Facilities`` at GA. We fabricated over 1100 films and filters of 11 types for Sandia National Laboratory and provided full-time onsite engineering support for target fabrication and characterization. We initiated development of methods to make targets for the Naval Research Laboratory. We investigated spherical interferometry, built an automated capsule sorter, and developed an apparatus for calorimetric measurement of fuel fill for LLNL. We assisted LANL in the ``Characterization of Opaque b-Layered Targets.`` We developed deuterated and UV-opaque polymers for use by the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process.

  15. Development of technology for the fabrication of reliable laminar flow control panels on subsonic transports

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of using porous composite materials (Kevlar, Doweave, and Leno Weave) as lightweight, efficient laminar flow control (LFC) surface materials is compared to the metallic 319L stainless Dynapore surfaces and electron beam drilled composite surfaces. Areas investigated include: (1) selection of the LFC-suitable surface materials, structural materials, and fabrication techniques for the LFC aircraft skins; (2) aerodynamic static air flow test results in terms of pressure drop through the LFC panel and the corresponding effective porosity; (3) structural design definition and analyses of the panels, and (4) contamination effects on static drop and effective porosity. Conclusions are presented and discussed.

  16. Technology Development.

    ERIC Educational Resources Information Center

    Gomory, Ralph E.

    1983-01-01

    The evolutionary character and complexity of technological development is discussed, focusing on the steam engine and computer as examples. Additional topics include characteristics of science/technology, cultural factors in technological development, technology transfer, and problems in technological organization. (JN)

  17. Composite fabrication via resin transfer molding technology

    SciTech Connect

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  18. Are We There Yet? ... Developing In Situ Fabrication and Repair (ISFR) Technologies to Explore and Live on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Bodiford, Melanie P.; Gilley, Scott D.; Howard, Richard W.; Kennedy, James P.; Ray, Julie A.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Engineers and Scientists at the Marshall Space Flight Center (MSFC) are evaluating current technologies for in situ resource-based exploration fabrication and repair applications. Several technologies to be addressed in this paper have technology readiness levels (TRLs) that are currently mature enough to pursue for exploration purposes. However, many technologies offer promising applications but these must be pulled along by the demands and applications of this great initiative. The In Situ Fabrication and Repair (ISFR) Element will supply and push state of the art technologies for applications such as habitat structure development, in situ resource utilization for tool and part fabrication, and repair and replacement of common life support elements, as well as non-destructive evaluation. This paper will address current rapid prototyping technologies, their ISFR applications and near term advancements. We will discuss the anticipated need to utilize in situ resources to produce replacement parts and fabricate repairs to vehicles, habitats, life support and quality of life elements. Many ISFR technology developments will incorporate automated deployment and robotic construction and fabrication techniques. The current state of the art for these applications is fascinating, but the future is out of this world.

  19. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  20. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1993--September 30, 1994

    SciTech Connect

    Hoppe, M.

    1995-04-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. During the period, GA was assigned 17 tasks in support of the Inertial Confinement Fusion program and its laboratories. This year they achieved full production capabilities for the micromachining, dimensional characterization and gold plating of hohlraums. They fabricated and delivered 726 gold-plated mandrels of 27 different types to LLNL and 48 gold-plated mandrels of two different types to LANL. They achieved full production capabilities in composite capsule production ad delivered in excess of 240 composite capsules. They continuously work to improve performance and capabilities. They were also directed to dismantle, remove, and disposition all equipment at the previous contractor (KMSF) that had radioactive contamination levels low enough that they could be exposed to the general public without radiological constraints. GA was also directed to receive and store the tritium fill equipment. They assisted LANL in the development of techniques for characterization of opaque targets. They developed deuterated and UV-opaque polymers for use by the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) and devised a triple-orifice droplet generator to demonstrate the controlled-mass nature of the microencapsulation process. The ICF program is anticipating experiments at NIF and the Omega Upgrade. Both facilities will require capsules containing layered D{sub 2} or D-T fuel. They continued engineering and assembly of equipment for a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments.

  1. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Jayakumar, T.

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  2. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1994--September 30, 1995

    SciTech Connect

    Hoppe, M.

    1996-05-01

    On December 30, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period October 1, 1994 through September 30, 1995. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. A portion of the effort on these tasks included providing direct ``Onsite Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). The ICF program is anticipating experiments at the National Ignition Facility (NIF) and the OMEGA Upgrade. Both facilities will require capsules containing layered D{sub 2} or deuterium-tritium (D-T) fuel. The authors are part of the National Cryogenic Target Program to create and demonstrate viable ways to generate and characterize cryogenic layers. Progress has been made on ways to both create viable layers and to characterize them. They continued engineering, assembly and testing of equipment for a cryogenic target handling system for University of Rochester`s Laboratory for Laser Energetics (UR/LLE) that will fill, transport, layer, and characterize targets filled with cryogenic fuel, and insert these cryogenic targets into the OMEGA Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  3. Capacitive micromachined ultrasonic transducers: fabrication technology.

    PubMed

    Ergun, Arif Sanli; Huang, Yongli; Zhuang, Xuefeng; Oralkan, Omer; Yaralioglu, Goksen G; Khuri-Yakub, Butrus T

    2005-12-01

    Capacitive micromachined ultrasonic transducer (cMUT) technology is a prime candidate for next generation imaging systems. Medical and underwater imaging and the nondestructive evaluation (NDE) societies have expressed growing interest in cMUTs over the years. Capacitive micromachined ultrasonic transducer technology is expected to make a strong impact on imaging technologies, especially volumetric imaging, and to appear in commercial products in the near future. This paper focuses on fabrication technologies for cMUTs and reviews and compares variations in the production processes. We have developed two main approaches to the fabrication of cMUTs: the sacrificial release process and the recently introduced wafer-bonding method. This paper gives a thorough review of the sacrificial release processes, and it describes the new wafer-bonding method in detail. Process variations are compared qualitatively and quantitatively whenever possible. Through these comparisons, it was concluded that wafer-bonded cMUT technology was superior in terms of process control, yield, and uniformity. Because the number of steps and consequent process time were reduced (from six-mask process to four-mask process), turn-around time was improved significantly. PMID:16463490

  4. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1997--September 30, 1998

    SciTech Connect

    Gibson, J.

    1998-12-01

    During this period, General Atomics (GA) and their partner Schafer Corporation were assigned 17 formal tasks in support of the Inertial Confinement Fusion (ICF) program and its five laboratories. A portion of the effort on these tasks included providing direct ``On-site Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). They fabricated and delivered over 1,200 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNLA. They produced more than 1,300 glass and plastic target capsules for LLNL, LANL, SNLA, and the University of Rochester/Laboratory for Laser Energetics (UR/LLE). They also delivered nearly 2,000 various target foils and films for Naval Research Lab (NRL) and UR/LLE in FY98. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY98, great progress was made by the GA/Schafer-UR/LLE-LANL team in the design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA. The design phase was concluded for all components of the OCTS and all major components were procured and nearly all were fabricated. Many of the components were assembled and tested, and some have been shipped to UR/LLE. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. They are part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. They also contributed cryogenic support and developed concepts for NIF cryogenic targets. This report summarizes and documents the technical progress made on these tasks.

  5. Silicon Solar Cell Fabrication Technology

    NASA Technical Reports Server (NTRS)

    Stafsudd, O. M.

    1980-01-01

    Device fabrication and photoconductive lifetime decay measurements were used to characterize single and polycrystalline silicon substracts. The device characterization of the processed materials was done by spectral response measurements and absolute quantum efficiency at a single wavelength. The results were then reduced to yield the diffusion length of the various samples. The photoconductive lifetime decay method was implemented in order to determine the minority carrier lifetime in unprocessed wafers.

  6. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect

    Gibson, J.

    1998-03-01

    This report documents the technical activities of the period October 1, 1996 through September 30, 1997. During this period, GA and their partner Schafer Corporation were assigned 13 formal tasks in support of the ICF program and its five laboratories. A portion of the effort on these tasks included providing direct {open_quotes}Onsite Support{close_quotes} at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). Over 700 gold-plated hohlraum mandrels were fabricated and delivered to LLNL, LANL and SNLA. More than 1600 glass and plastic target capsules were produced for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). Nearly 2000 various target foils and films were delivered for Naval Research Lab (NRL) and UR/LLE in FY97. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. This project is part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. During FY97, significant progress was made in the design and component testing of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA. This included major design changes, reduction in equipment, and process simplifications. This report summarizes and documents the technical progress made on these tasks.

  7. The Development of Stacked Core Technology for the Fabrication of Deep Lightweight UV-quality Space Mirrors

    NASA Technical Reports Server (NTRS)

    Matthews, Gary W.; Kirk, Charles S.; Maffett, Steven P.; Abplanalp, Calvin E.; Stahl, H. Philip; Effinger, Michael R.

    2013-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. A proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. The parameters and test results of this concept mirror will be shown. The scale-up process will be discussed and the technology development path to a 4m mirror system by 2018 will also be outlined.

  8. Technology development.

    PubMed

    Gomory, R E

    1983-05-01

    In technology development significant advances are as often the result of a series of evolutionary steps as they are of breakthroughs. This is illustrated by the examples of the steam engine and the computer. Breakthroughs, such as the transistor, are relatively rare, and are often the result of the introduction of new knowledge coming from a quite different area. Technology development is often difficult to predict because of its complexity; practical considerations may far outweigh apparent scientific advantages, and cultural factors enter in at many levels. In a large technological organization problems exist in bringing scientific knowledge to bear on development, but much can be done to obviate these difficulties. PMID:17749515

  9. Technology development.

    PubMed

    Gomory, R E

    1983-05-01

    In technology development significant advances are as often the result of a series of evolutionary steps as they are of breakthroughs. This is illustrated by the examples of the steam engine and the computer. Breakthroughs, such as the transistor, are relatively rare, and are often the result of the introduction of new knowledge coming from a quite different area. Technology development is often difficult to predict because of its complexity; practical considerations may far outweigh apparent scientific advantages, and cultural factors enter in at many levels. In a large technological organization problems exist in bringing scientific knowledge to bear on development, but much can be done to obviate these difficulties.

  10. Innovative forming and fabrication technologies : new opportunities.

    SciTech Connect

    Davis, B.; Hryn, J.; Energy Systems; Kingston Process Metallurgy, Inc.

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metal alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest

  11. Smart fabric sensors and e-textile technologies: a review

    NASA Astrophysics Data System (ADS)

    Castano, Lina M.; Flatau, Alison B.

    2014-05-01

    This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods.

  12. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  13. Automated Fabrication Technologies for High Performance Polymer Composites

    NASA Technical Reports Server (NTRS)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  14. Cell patterning technologies for organotypic tissue fabrication.

    PubMed

    Guillotin, Bertrand; Guillemot, Fabien

    2011-04-01

    Bottom-up tissue engineering technologies address two of the main limitations of top-down tissue engineering approaches: the control of mass transfer and the fabrication of a controlled and functional histoarchitecture. These emerging technologies encompass mesoscale (e.g. cell sheets, cell-laden hydrogels and 3D printing) and microscale technologies (e.g. inkjet printing and laser-assisted bioprinting), which are used to manipulate and assemble cell-laden building blocks whose thicknesses correspond to the diffusion limit of metabolites, and present the capacity for cell patterning with microscale precision, respectively. Here, we review recent technological advances and further discuss how these technologies are complementary, and could therefore be combined for the biofabrication of organotypic tissues either in vitro, thus serving as realistic tissue models, or within a clinic setting.

  15. Light emitting fabric technologies for photodynamic therapy.

    PubMed

    Mordon, Serge; Cochrane, Cédric; Tylcz, Jean Baptiste; Betrouni, Nacim; Mortier, Laurent; Koncar, Vladan

    2015-03-01

    Photodynamic therapy (PDT) is considered to be a promising method for treating various types of cancer. A homogeneous and reproducible illumination during clinical PDT plays a determinant role in preventing under- or over-treatment. The development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of optical fiber into flexible structures could offer an interesting alternative. This paper aims to describe different methods proposed to develop Side Emitting Optical Fibers (SEOF), and how these SEOF can be integrated in a flexible structure to improve light illumination of the skin during PDT. Four main techniques can be described: (i) light blanket integrating side-glowing optical fibers, (ii) light emitting panel composed of SEOF obtained by micro-perforations of the cladding, (iii) embroidery-based light emitting fabric, and (iv) woven-based light emitting fabric. Woven-based light emitting fabrics give the best performances: higher fluence rate, best homogeneity of light delivery, good flexibility.

  16. Dissolvable microneedle fabrication using piezoelectric dispensing technology.

    PubMed

    Allen, Evin A; O'Mahony, Conor; Cronin, Michael; O'Mahony, Thomas; Moore, Anne C; Crean, Abina M

    2016-03-16

    Dissolvable microneedle (DMN) patches are novel dosage forms for the percutaneous delivery of vaccines. DMN are routinely fabricated by dispensing liquid formulations into microneedle-shaped moulds. The liquid formulation within the mould is then dried to create dissolvable vaccine-loaded microneedles. The precision of the dispensing process is critical to the control of formulation volume loaded into each dissolvable microneedle structure. The dispensing process employed must maintain vaccine integrity. Wetting of mould surfaces by the dispensed formulation is also an important consideration for the fabrication of sharp-tipped DMN. Sharp-tipped DMN are essential for ease of percutaneous administration. In this paper, we demonstrate the ability of a piezoelectric dispensing system to dispense picolitre formulation volumes into PDMS moulds enabling the fabrication of bilayer DMN. The influence of formulation components (trehalose and polyvinyl alcohol (PVA) content) and piezoelectric actuation parameters (voltage, frequency and back pressure) on drop formation is described. The biological integrity of a seasonal influenza vaccine following dispensing was investigated and maintained voltage settings of 30 V but undermined at higher settings, 50 and 80 V. The results demonstrate the capability of piezoelectric dispensing technology to precisely fabricate bilayer DMN. They also highlight the importance of identifying formulation and actuation parameters to ensure controlled droplet formulation and vaccine stabilisation.

  17. JPL antenna technology development

    NASA Astrophysics Data System (ADS)

    Freeland, R. E.

    1981-02-01

    Plans for evaluating, designing, fabricating, transporting and deploying cost effective and STS compatible offset wrap rib antennas up to 300 meters in diameter for mobile communications, Earth resources observation, and for the orbiting VLBI are reviewed. The JPL surface measurement system, intended for large mesh deployable antenna applications will be demonstrated and validated as part of the antenna ground based demonstration program. Results of the offset wrap rib deployable antenna technology development will include: (1) high confidence structural designs for antennas up to 100 meters in diameter; (2) high confidence estimates of functional performance and fabrication cost for a wide range of antenna sizes (up to 300 meters in diameter); (3) risk assessment for fabricating the large size antennas; and (4) 55 meter diameter flight quality hardware that can be cost effectively completed toto accommodate a flight experiment and/or application.

  18. New technologies for fabricating biological microarrays

    NASA Astrophysics Data System (ADS)

    Larson, Bradley James

    This dissertation contains the description of two technologies that we have developed to reduce the cost and improve the quality of spotted biological microarrays. The first is a device, called a fluid microplotter, that uses ultrasonics to deposit spots with diameters of less than 5 microns. It consists of a dispenser, composed of a micropipette fastened to a piece of PZT piezoelectric, attached to a precision positioning system. A gentle pumping of fluid to the surface occurs when the micropipette is driven at specific frequencies. Spots or continuous lines can be deposited in this manner. The small fluid features conserve expensive and limited-quantity biological reagents. We characterize the performance of the microplotter in depositing fluid and examine the theoretical underpinnings of its operation. We present an analytical expression for the diameter of a deposited spot as a function of droplet volume and wettability of a surface and compare it with experimental results. We also examine the resonant properties of the piezoelectric element used to drive the dispenser and relate that to the frequencies at which pumping occurs. Finally, we propose a mechanism to explain the pumping behavior within the microplotter dispenser. The second technology we present is a process that uses a cold plasma and a subsequent in vacuo vapor-phase reaction to terminate a variety of oxide surfaces with epoxide chemical groups. These epoxide groups can react with amine-containing biomolecules to form strong covalent linkages between the biomolecules and the treated surface. The use of a plasma activation step followed by an in vacuo vapor-phase reaction allows for the precise control of surface functional groups, rather than the mixture of functionalities normally produced. This process modifies a range of different oxide surfaces, is fast, consumes a minimal amount of reagents, and produces attachment densities for bound biomolecules that are comparable to or better than

  19. Advanced fabrication technologies for nano-electronics

    SciTech Connect

    Simmons, J.A.; Weckwerth, M.V.; Baca, W.E.

    1996-03-01

    Three novel fabrication technologies are presented which greatly increase the tools available for the realization of nano-electronic devices. First, a sub-micron area post structure descending from a metallic airbridge allows gating of regions as small as 0.1 {mu}m in diameter. This has enabled the study of such quantum phenomena as coupling of parallel quantum point contacts, and electron focusing around a tunable quantum antidot. We also describe two new techniques for backgating multiquantum well structures with submicron lateral resolution. These techniques enable separate ohmic contacts to individual quantum wells spaced as closely as 100 {Angstrom}, and thus allow the fabrication of novel quantum tunneling devices. The first technique uses regrowth over a patterned ion-implanted substrate. The second involves a novel epoxy-bond-and-stop-etch (EBASE) processing scheme, whereby the original substrate is etched away and the backside then patterned using conventional methods.

  20. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing

  1. Micro/nano-fabrication technologies for cell biology

    PubMed Central

    Qian, Tongcheng

    2012-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938

  2. Fabrication of Planar Gradiometers by Using Superconducting Integrated Circuit Technology

    NASA Astrophysics Data System (ADS)

    Maezawa, Masaaki; Ying, Liliang; Gorwadkar, Sucheta; Zhang, Guofeng; Wang, Hai; Kong, Xiangyan; Wang, Zhen; Xie, Xiaoming

    We present fabrication technology for planar-type superconducting quantum interference devices (SQUIDs) comprising trilayer Nb/AlOx/Nb Josephson junctions and thin-film pick-up coils integrated on a single chip. A well-established superconducting integrated circuit technology that was originally developed for digital applications has been modified for developing SQUID fabrication processes with high reliability and controllability. Combination of two photolithography techniques, a high-resolution stepper and a large-shot-area mask aligner, has been introduced to fabricate fine-scale patterns such as 2-μm-square junctions and large-scale patterns such as 10-mm-square pick-up coils with a 2.5- or 3.0-cm baseline on the same chip. We successfully fabricated planar gradiometers and confirmed the operation with typical modulation amplitude of 50 μV, achieving gradient field resolutions as small as 3.5 fT/Hz1/2cm.

  3. Self-Cleaning Technology in Fabric: A Review

    NASA Astrophysics Data System (ADS)

    Rohani Saad, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    This article gives an overview on photocatalytic self-cleaning technology on fabric resulting from titanium dioxide (TiO2) and zinc oxide (ZnO) as photocatalyst which decompose the organic stain into water and carbon dioxide (CO2) in presence of UV light source. The self-cleaning concept is useful in various application including the textiles materials which are normally used in daily life. This technology also can be developed in other application for instance medical textiles, athletic wear, and military uniform and also outdoor fabrics. Additionally, it is beneficial as it effectively conserves water and improves the appearance of the environment and in long term it will reduce energy, laundry cost and time as well.

  4. Update On Monolithic Fuel Fabrication Development

    SciTech Connect

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  5. APT target-blanket fabrication development

    SciTech Connect

    Fisher, D.L.

    1997-06-13

    Concepts for producing tritium in an accelerator were translated into hardware for engineering studies of tritium generation, heat transfer, and effects of proton-neutron flux on materials. Small-scale target- blanket assemblies were fabricated and material samples prepared for these performance tests. Blanket assemblies utilize composite aluminum-lead modules, the two primary materials of the blanket. Several approaches are being investigated to produce large-scale assemblies, developing fabrication and assembly methods for their commercial manufacture. Small-scale target-blanket assemblies, designed and fabricated at the Savannah River Site, were place in Los Alamos Neutron Science Center (LANSCE) for irradiation. They were subjected to neutron flux for nine months during 1996-97. Coincident with this test was the development of production methods for large- scale modules. Increasing module size presented challenges that required new methods to be developed for fabrication and assembly. After development, these methods were demonstrated by fabricating and assembling two production-scale modules.

  6. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect

    Senor, David J.; Burkes, Douglas

    2013-06-28

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  7. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  8. Occulter Starshade Technology Development

    NASA Astrophysics Data System (ADS)

    Lisman, P. D.; Thomson, M.; Kissil, A.; Walkemeyer, P.; Polanco, O.

    2010-10-01

    Imaging Earth-like exoplanets with a free flying occulter requires developing a large, lightweight, flower-shaped, deployable structure with precisely controlled edge position and profile. In-plane tolerance requirements are considerably tighter than heritage antenna systems, but the more difficult to control out-of-plane tolerances are actually much looser. This paper presents a novel occulter mechanical design that delivers the required performance with a highly reliable deployment scheme. A very compact stowed volume is an added benefit that enables launching the occulter together with a 1 to 2m class telescope, using a single, currently available launch vehicle. Demonstrating the petal deployment function and compliance with key tolerance specifications is the focus of current technology efforts. A series of prototype models of increasing fidelity are planned, starting with a proof of concept model that is currently in fabrication. The occulter design and current development status is presented herein.

  9. Study of orifice fabrication technologies for the liquid droplet radiator

    NASA Technical Reports Server (NTRS)

    Wallace, David B.; Hayes, Donald J.; Bush, J. Michael

    1991-01-01

    Eleven orifice fabrication technologies potentially applicable for a liquid droplet radiator are discussed. The evaluation is focused on technologies capable of yielding 25-150 microns diameter orifices with trajectory accuracies below 5 milliradians, ultimately in arrays of up to 4000 orifices. An initial analytical screening considering factors such as trajectory accuracy, manufacturability, and hydrodynamics of orifice flow is presented. Based on this screening, four technologies were selected for experimental evaluation. A jet straightness system used to test 50-orifice arrays made by electro-discharge machining (EDM), Fotoceram, and mechanical drilling is discussed. Measurements on orifice diameter control and jet trajectory accuracy are presented and discussed. Trajectory standard deviations are in the 4.6-10.0 milliradian range. Electroforming and EDM appear to have the greatest potential for Liquid Droplet Radiator applications. The direction of a future development effort is discussed.

  10. Hydrogen storage and delivery system development: Fabrication

    SciTech Connect

    Handrock, J.L.; Malinowski, M.E.; Wally, K.

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

  11. Technology Selections for Cylindrical Compact Fabrication

    SciTech Connect

    Jeffrey A. Phillips

    2010-10-01

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  12. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    PubMed Central

    Farahani, Hamid; Wagiran, Rahman; Hamidon, Mohd Nizar

    2014-01-01

    Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types. PMID:24784036

  13. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review.

    PubMed

    Farahani, Hamid; Wagiran, Rahman; Hamidon, Mohd Nizar

    2014-04-30

    Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types.

  14. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  15. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  16. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  17. Fabrication of porous silicon nitride ceramics using binder jetting technology

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.

    2016-07-01

    This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.

  18. Center of excellence for atomically controlled fabrication technology.

    PubMed

    Kuwahara, Yuji; Saito, Akira; Arima, Kenta; Ohmi, Hiromasa

    2011-04-01

    This short review aims to show the introduction of the educational and research program of "Center of excellence of atomically controlled fabrication technology" supported ministry of education, culture, sports, science and technology--Japan. We would like to introduce research activity and a unique trait of educational system.

  19. EHD as sensor fabrication technology for robotic skins

    NASA Astrophysics Data System (ADS)

    Shin, Jeongsik; Lee, Woo Ho; Nothnagle, Caleb; Wijesundara, Muthu B. J.

    2014-06-01

    Human-robot interaction can be made more sophisticated and intuitive if the entire body of a robot is covered with multimodal sensors embedded in artificial skin. In order to efficiently interact with humans in unstructured environments, robotic skin may require sensors such as touch, impact, and proximity. Integration of various types of sensors into robotic skin is challenging due to the topographical nature of skin. Printing is a promising technology that can be explored for sensor integration as it may allow both sensors and interconnects to be directly printed into the skin. We are developing Electrohydrodynamic (EHD) inkjet printing technology in order to co-fabricate various devices onto a single substrate. Using strong applied electrostatic forces, EHD allows the printing of microscale features from a wide array of materials with viscosities ranging from 100 to 1000cP, highly beneficial for multilateral integration. Thus far we have demonstrated EHD's capability at printing patterns of Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) for pressure sensor applications, generating patterns with modified commercial photoresist for mask-less lithography, and obtaining ZnO microstructures for direct device printing. Printed geometries range from a few tens of microns to millimeters. We have used inks with viscosities ranging from 230 to 520cp and from non-conductive to 135μS/cm. These results clearly show that the EHD is a promising multi-material printing platform and would be an enabling technology that can be used to co-fabricate various devices into robotic skin.

  20. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high

  1. Heterogeneous integration technology for hybrid optoelectronic and electronic device and module fabrication

    NASA Astrophysics Data System (ADS)

    Jin, Michael Sungchun

    Various forms of optical computing architectures have promised enhanced processing capabilities well beyond the limits of traditional VLSI technology during the past decade. However, the progress toward realizing this vision has been severely limited by the lack of mature technology to fabricate heterogeneously integrated optoelectronic transceiver arrays (consisting of VLSI electronics with optoelectronic devices) that are necessary to link the functionality of photonic input/output devices with electronic processors. This dissertation describes a research effort that addressed this need by exploring innovative, yet highly manufacturable integration approaches that can be utilized to fabricate hybrid optoelectronic transceivers by integrating thin silicon device layers on bulk electro-optic (e.g. lead lanthanum zirconate titanate- PLZT) and other host substrates. The two integration techniques developed are: (1) B& P (Bond and Processing) technology involving bonding of bulk-quality thin silicon layer to PLZT followed by low temperature NMOS processing and (2) DDB (Direct-Device Bonding) technology, where circuit layer fabricated in SOI-silicon is thinned and bonded directly to a PLZT substrate. Characteristics of electronic circuits and modulators in integrated Si/PLZT SLMs are measured to be comparable to that of reference devices fabricated in bulk silicon and PLZT substrates. The application of the developed integration technology specifically toward fabricating Si/PLZT spatial light modulator is examined in detail. The developed device layer grafting technology based on chemo-mechanical lapping and reactive ion etching processes can be applied to assemble miniature ``mixed technology'' systems consisting of devices fabricated by different manufacturing processes (e.g. CMOS, MEMS, VCSEL and GaAs processes) in a monolithic fashion. The latter half of the thesis details experimental

  2. Solar Cell Fabrication Studies Pertinent to Developing Countries.

    NASA Astrophysics Data System (ADS)

    Prah, Joseph Henry

    That there is a need in the world today, and in the Third World in particular, for developing renewable energy sources is a proposition without question. Toward that end, the harnessing of solar energy has attracted much attention recently. In this thesis, we have addressed the question of Photovoltaics among the many approaches to the problem as being of poignant relevance in the Third World. Based on our studies, which involved the physics of solar cells, various solar cell configurations, the materials for their fabrication and their fabrication sequences, we arrived at the conclusion that silicon homojunction solar cells are best suited to the present needs and environment of, and suitable for development in the Third World, though Cadmium Sulphide-Cuprous Sulphide solar cell could be considered as a viable future candidate. Attendant with the adoption of photovoltaics as electric energy supply, is the problem of technology transfer and development. Towards that goal, we carried out in the laboratory, the fabrication of solar cells using very simple fabrication sequences and materials to demonstrate that tolerable efficiencies are achievable by their use. The view is also presented that for a thriving and viable solar cell industry in the Third World, the sine qua non is an integrated national policies involving all facets of solar cell manufacture and application, namely, material processing and fabrication, basic research, and development and socio -economic acceptance of solar cell appliances. To demonstrate how basic research could benefit solar cell fabrication, we undertook a number of experiments, such as varying our fabrication sequences and materials, finding their radiation tolerance, and carrying out Deep Level Transient Spectroscopy (DLTS) studies, in an attempt to understand some of the fabrication and environmental factors which limit solar cell performance. We thus found that subjecting wafers to preheat treatments does not improve solar cell

  3. Exploration Technology Development & Demonstration

    NASA Video Gallery

    Chris Moore delivers a presentation from the Exploration Technology Development & Demonstration (ETDD) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX....

  4. NIF Optical Materials and Fabrication Technologies: An Overview

    SciTech Connect

    Campbell, J H; Hawley-Fedder, R; Stolz, C J; Menapace, J A; Borden, M R; Whitman, P; Yu, J; Runkel, M; Riley, M; Feit, M; Hackel, R

    2004-02-23

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 {micro}m to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  5. Flexible subterahertz metamaterial absorber fabrication using inkjet printing technology

    NASA Astrophysics Data System (ADS)

    Lee, Dongju; Sung, Hyuk-Kee; Lim, Sungjoon

    2016-07-01

    In this study, a flexible metamaterial (MM) absorber was designed at 0.1 THz and fabricated using inkjet printing technology. The unit cell of the MM absorber was designed using a finite element method-based full-wave simulation. The unit cell comprised square rings, and it was printed with silver nanoparticle ink on flexible Kapton polyimide film. The fabrication processes were performed using a material printer. The absorber's reflection coefficient was measured using a vector network analyzer and a WR-10 waveguide. The absorption ratio was 93.5 % at 0.102 THz. Therefore, we demonstrated the possibility of inkjet printing at a subterahertz band.

  6. Graphite technology development plan

    SciTech Connect

    1986-07-01

    This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  7. Advanced Mirror & Modelling Technology Development

    NASA Technical Reports Server (NTRS)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  8. Impact of fuel fabrication and fuel management technologies on uranium utilization

    SciTech Connect

    Arnsberger, P.L.; Stucker, D.L.

    1994-12-31

    Uranium utilization in commercial pressurized water reactors is a complex function of original NSSS design, utility energy requirements, fuel assembly design, fuel fabrication materials and fuel management optimization. Fuel design and fabrication technologies have reacted to the resulting market forcing functions with a combination of design and material changes. The technologies employed have included ever-increasing fuel discharge burnup, non-parasitic structural materials, burnable absorbers, and fissile material core zoning schemes (both in the axial and radial direction). The result of these technological advances has improved uranium utilization by roughly sixty percent from the infancy days of nuclear power to present fuel management. Fuel management optimization technologies have also been developed in recent years which provide fuel utilization improvements due to core loading pattern optimization. This paper describes the development and impact of technology advances upon uranium utilization in modem pressurized water reactors.

  9. Development and demonstration of manufacturing processes for fabricating graphite/LARC 160 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Frost, R. K.; Jones, J. S.; Dynes, P. J.; Wykes, D. H.

    1981-01-01

    The development and demonstration of manufacturing technologies for the structural application of Celion graphite/LARC-160 polyimide composite material is discussed. Process development and fabrication of demonstration components are discussed. Process development included establishing quality assurance of the basic composite material and processing, nondestructive inspection of fabricated components, developing processes for specific structural forms, and qualification of processes through mechanical testing. Demonstration components were fabricated. The demonstration components consisted of flat laminates, skin/stringer panels, honeycomb panels, chopped fiber compression moldings, and a technology demonstrator segment (TDS) representative of the space shuttle aft body flap.

  10. NASA Balloon Technology Developments

    NASA Technical Reports Server (NTRS)

    Fairbrother, D. A.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program s technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, balloon-craft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  11. NASA balloon technology developments

    NASA Astrophysics Data System (ADS)

    Fairbrother, D. A.

    The National Aeronautics and Space Administration (NASA) Balloon Program has been, and will continue to be, committed to improving the capabilities of balloons to support science missions. Fundamental to vehicle improvement is a program of technology development that will enable improved flight performance throughout the next decade. The program's technology thrust areas include: materials, vehicle design & development, structural analysis, operations & support systems, performance modeling and planetary balloons. Building on the foundations of the 18-year research and development program, a technology roadmap has been generated which identifies specific areas of interest to NASA and the vision of future developments. The major components of the roadmap are: vehicle systems, ballooncraft systems, operational and safety support systems, and planetary vehicles. Current technology activities include nanocomposite balloon films, a new balloon designed to lift 3600 kgs to 36 km, a balloon rotation rate study and Mars pumpkin balloon investigations. The technology roadmap, as well as specific projects and recent advancements, will be presented.

  12. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    SciTech Connect

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-06-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted ‘traditional’ fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of

  13. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology.

    PubMed

    Lee, Jin Woo; Lan, Phung Xuan; Kim, Byung; Lim, Geunbae; Cho, Dong-Woo

    2008-10-01

    Scaffold fabrication for regenerating functional human tissues has an important role in tissue engineering, and there has been much progress in research on scaffold fabrication. However, current methods are limited by the mechanical properties of existing biodegradable materials and the irregular structures that they produce. Recently, several promising biodegradable materials have been introduced, including poly(propylene fumarate) (PPF). The development of micro-stereolithography allows the fabrication of free-form 3D microstructures as designed. Since this technology requires a low-viscosity resin to fabricate fine structures, we reduced the viscosity of PPF by adding diethyl fumarate. Using our system, the curing characteristics and material properties of the resin were analyzed experimentally. Then, we fabricated waffle shape and 3D scaffolds containing several hundred regular micro pores. This method controlled the pore size, porosity, interconnectivity, and pore distribution. The results show that micro-stereolithography has big advantages over conventional fabrication methods. In addition, the ultimate strength and elastic modulus of the fabricated scaffolds were measured, and cell adhesion to the fabricated scaffold was observed by growing seeded cells on it. These results showed that the PPF/DEF scaffold is a potential bone scaffold for tissue engineering.

  14. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks

  15. Transfer bonding technology for batch fabrication of SMA microactuators

    NASA Astrophysics Data System (ADS)

    Grund, T.; Guerre, R.; Despont, M.; Kohl, M.

    2008-05-01

    Currently, the broad market introduction of shape memory alloy (SMA) microactuators and sensors is hampered by technological barriers, since batch fabrication methods common to electronics industry are not available. The present study intends to overcome these barriers by introducing a wafer scale transfer process that allows the selective transfer of heat-treated and micromachined shape memory alloy (SMA) film or foil microactuators to randomly selected receiving sites on a target substrate. The technology relies on a temporary adhesive bonding layer between SMA film/foil and an auxiliary substrate, which can be removed by laser ablation. The transfer technology was tested for microactuators of a cold-rolled NiTi foil of 20 μm thickness, which were heat-treated in free-standing condition, then micromachined on an auxiliary substrate of glass, and finally selectively transferred to different target substrates of a polymer. For demonstration, the new technology was used for batch-fabrication of SMA-actuated polymer microvalves.

  16. Solid Freeform Fabrication: An Enabling Technology for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Hafley, Robert A.; Dicus, Dennis L.

    2002-01-01

    The emerging class of direct manufacturing processes known as Solid Freeform Fabrication (SFF) employs a focused energy beam and metal feedstock to build structural parts directly from computer aided design (CAD) data. Some variations on existing SFF techniques have potential for application in space for a variety of different missions. This paper will focus on three different applications ranging from near to far term to demonstrate the widespread potential of this technology for space-based applications. One application is the on-orbit construction of large space structures, on the order of tens of meters to a kilometer in size. Such structures are too large to launch intact even in a deployable design; their extreme size necessitates assembly or erection of such structures in space. A low-earth orbiting satellite with a SFF system employing a high-energy beam for high deposition rates could be employed to construct large space structures using feedstock launched from Earth. A second potential application is a small, multifunctional system that could be used by astronauts on long-duration human exploration missions to manufacture spare parts. Supportability of human exploration missions is essential, and a SFF system would provide flexibility in the ability to repair or fabricate any part that may be damaged or broken during the mission. The system envisioned would also have machining and welding capabilities to increase its utility on a mission where mass and volume are extremely limited. A third example of an SFF application in space is a miniaturized automated system for structural health monitoring and repair. If damage is detected using a low power beam scan, the beam power can be increased to perform repairs within the spacecraft or satellite structure without the requirement of human interaction or commands. Due to low gravity environment for all of these applications, wire feedstock is preferred to powder from a containment, handling, and safety

  17. Solid Free-form Fabrication Technology and Its Application to Bone Tissue Engineering

    PubMed Central

    Lee, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2010-01-01

    The development of scaffolds for use in cell-based therapies to repair damaged bone tissue has become a critical component in the field of bone tissue engineering. However, design of scaffolds using conventional fabrication techniques has limited further advancement, due to a lack of the required precision and reproducibility. To overcome these constraints, bone tissue engineers have focused on solid free-form fabrication (SFF) techniques to generate porous, fully interconnected scaffolds for bone tissue engineering applications. This paper reviews the potential application of SFF fabrication technologies for bone tissue engineering with respect to scaffold fabrication. In the near future, bone scaffolds made using SFF apparatus should become effective therapies for bone defects. PMID:24855546

  18. Insider protection technology developments

    SciTech Connect

    Foesch, J.; Bortniak, P.; Waddoups, I.

    1994-08-01

    Sandia National Laboratories evaluates and develops new techniques and technologies to ensure the integrity of special nuclear material (SNM) against potential insider threats. We have evaluated several types of sensor technologies and subsystems to monitor and/or track materials and personnel. This past year`s effort has been directed at characterizing commercial developments that meet the Department of Energy`s (DOE) needs in some of these areas. Some of these evaluations are complete and some are still in progress. This paper discusses our work with infrared light (IR), radio frequency (RF), and RF proximity technologies. After these technologies are judged to be applicable to DOE`s needs, we incorporate them into the generic, real time, personnel tracking and material monitoring system.

  19. Development, principles, and applications of automated ice fabric analyzers.

    PubMed

    Wilen, L A; Diprinzio, C L; Alley, R B; Azuma, N

    2003-09-01

    We review the recent development of automated techniques to determine the fabric and texture of polycrystalline ice. The motivation for the study of ice fabric is first outlined. After a brief introduction to the relevant optical concepts, the classic manual technique for fabric measurement is described, along with early attempts at partial automation. Then, the general principles behind fully automated techniques are discussed. We describe in some detail the similarities and differences of the three modern instruments recently developed for ice fabric studies. Next, we discuss briefly X-ray, radar, and acoustic techniques for ice fabric characterization. We also discuss the principles behind automated optical techniques to measure fabric in quartz rock samples. Finally, examples of new applications that have been facilitated by the development of the ice fabric instruments are presented.

  20. Mobile Router Technology Development

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent

    2002-01-01

    Cisco Systems and NASA have been performing joint research on mobile routing technology under a NASA Space Act Agreement. Cisco developed mobile router technology and provided that technology to NASA for applications to aeronautic and space-based missions. NASA has performed stringent performance testing of the mobile router, including the interaction of routing and transport-level protocols. This paper describes mobile routing, the mobile router, and some key configuration parameters. In addition, the paper describes the mobile routing test network and test results documenting the performance of transport protocols in dynamic routing environments.

  1. A Magnetically Suspended Wheel for a Miniature Gyro Made Using Planar Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Dauwalter, Charles R.

    1996-01-01

    The technical feasibility of a magnetically suspended rotating wheel for miniature gyro applications was investigated under a NASA SBIR contract. A concept for a configuration for a system of compact, lightweight magnetic actuators capable of generating the necessary suspension forces and fabrication using millimachining planar fabrication technologies was developed. Both capacitive and electromagnetic position sensing concepts were developed for implementing a closed loop control system for supporting the wheel. A finite difference technique, implemented in a spreadsheet environment, for analyzing the force characteristics of the actuator was used and the results verified with Finite Element Analysis.

  2. Advanced fabrication technology for high speed aircraft structures

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Hoffman, E. K.; Bird, R. K.

    1990-01-01

    An overview of the development of the weld-brazing process for fabricating Ti-6Al-4V skin-stiffened panels, a brazing process for fabricating Bsc/Al titanium honeycomb core panels, and the enhanced diffusion bonding (EDB) process for fabricating Ti-14Al-21Nb titanium aluminide structural elements are presented. Data presented include the shear strengths of full-scale weldbrazed Ti-6Al-4V skin stiffened and Bsc/Al titanium honeycomb core sandwich panels designed to meet the requirements of an upper wing panel on the NASA YF-12. These results verified that the materials, fabrication processes, and structural concepts were qualified for Mach 3 flight. Shear strengths of each of the panel concepts following flight service evaluation are also reported. Comparisons made with the cost and weight of the original wing panel indicated that the weldbrazed titanium panels resulted in a 15-20 percent cost savings and the brazed Bsc/Al panel showed a 30 percent weight savings. It was also shown that the strengths of the EDB joints were sufficient to develop stresses in the Ti-14Al-21Nb face sheets of the sandwich structure which were above the yield strength of the material.

  3. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  4. Fusion development and technology

    SciTech Connect

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  5. Measuring DNA through a Nanopore Fabricated Using Plasma Processing Technology

    NASA Astrophysics Data System (ADS)

    Rossnagel, S. M.

    2009-10-01

    We have been developing a device based on a 2-3 nm diameter pore between two electrolyte volumes for the transit of DNA by means of a potential gradient. The nanopore is configured with 3 electrodes, each about 3 nm thick with 2-3nm dielectric spacers. The nanopore electrodes can be used to trap DNA in-transit, and ideally measure the impedance and hence the identity of each nucleotide as it passes through the nanopore, allowing real time sequencing of the DNA. The goal is to operate at megahertz, allowing sequencing of the entire genome within a few hours a fairly modest cost. This project has lead to numerous new developments in nanoscale fabrication, particularly for nanofluidics. The nanopore devices are fabricated using a number of critical plasma processing steps, both deposition and etch, in our 200mm pilot facility.

  6. Marine & hydrokinetic technology development.

    SciTech Connect

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power

  7. Remediation Technology Collaboration Development

    NASA Technical Reports Server (NTRS)

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  8. ABC Technology Development Program

    SciTech Connect

    1994-10-14

    The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: `Provide a weapon`s grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon`s grade plutonium to be disposed on in [20] years.` This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments.

  9. Microsystem technology development at Sandia National Laboratories

    SciTech Connect

    Smith, J.H.

    1995-11-01

    An overview of the major sensor and actuator projects using the micromachining capabilities of the Microelectronics Development Laboratory at Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has also been developed for integrating microelectronics with surface micromachined micromechanical devices.

  10. Update on US High Density Fuel Fabrication Development

    SciTech Connect

    C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

    2007-03-01

    Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

  11. Textile technology development

    NASA Technical Reports Server (NTRS)

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  12. Graphite Technology Development Plan

    SciTech Connect

    W. Windes; T. Burchell; R. Bratton

    2007-09-01

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  13. ECH Technology Development

    SciTech Connect

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  14. Technology Development Center at NICT

    NASA Technical Reports Server (NTRS)

    Takefuji, Kazuhiro; Ujihara, Hideki

    2013-01-01

    The National Institute of Information and Communications Technology (NICT) is developing and testing VLBI technologies and conducts observations with this new equipment. This report gives an overview of the Technology Development Center (TDC) at NICT and summarizes recent activities.

  15. Application of deep-trench LISA technology on optical switch fabrication

    NASA Astrophysics Data System (ADS)

    Zhang, Qingxin; Li, Jing; Miao, Yu Bo; Liu, Ai Q.

    2002-04-01

    This paper describes LISA (Lateral isolated Silicon Accelerometer) technology developed by IME< Singapore and its application on silicon vertical optical switch fabrication. Key processes in LISA technology for optical switch fabrication include deep trench etch and oxide refill to enable insulating anchors in silicon substrate, second deep trench etch to fabricate movable microstructures and metal layer covering for switch surface improvement. In this paper, deep trench (deeper than 35 um) oxide refill process is introduced, the dielectric characteristic of the isolation is evaluated, and more than 100V breakdown voltage is obtained, which is much higher that the requirement in optical switch driving voltage. Some process issues related to high aspect ratio trench etch and release such as notching on silicon beam top and sidewall are shown and discussed, a double spacer process is utilized accordingly to solve the issues. Besides, a mask free metal coating process is presented to improve the mirror surface and light reflectivity. The vertical optical mirrors fabricated by the LISA technology is 35um in height and um in width, the switch displacement is larger than 40um under 35V DC bias, the optical characteristics of the switch is under testing.

  16. Analysis and correction of defects within parts fabricated using powder bed fusion technology

    NASA Astrophysics Data System (ADS)

    Mireles, Jorge; Ridwan, Shakerur; Morton, Philip A.; Hinojos, Alejandro; Wicker, Ryan B.

    2015-09-01

    Quality assurance is an important topic for additive manufacturing (AM) and often seen as a requirement for the transition and adoption of the technology toward fabrication of end use applications. As AM technologies are used for production, it is necessary to ensure high quality, repeatable, and reproducible components are manufactured. Various nondestructive examination techniques have been used to evaluate AM-fabricated parts to determine part quality post-fabrication (e.g. scanning and/or microstructural characterization). In situ monitoring methods have been developed for AM technologies to enable defect detection and have potential to be used for in situ monitoring and correction of fabrication anomalies (e.g. undesired temperature gradients and porosity). In this research, defects (e.g. pores) were seeded into parts fabricated using the powder bed fusion AM process, electron beam melting, and monitored using in situ infrared (IR) thermography. Results from layerwise thermography were compared with results obtained using computer tomography (CT) scanning techniques. Although the measured geometry of the seeded defects between IR thermography and CT was substantially different (area difference of ∼60%), the thermographs did provide a good indication of defects present within a fabricated part. Furthermore, defect correction methods were evaluated including post-processing methods such as hot isostatic pressing as well as in situ correction methods such as layer re-melting. Re-melting a porous layer successfully corrected defects and demonstrates a potential method for in situ defect correction if implemented in future systems equipped with automatic feedback control of powder bed fusion processes.

  17. Fabricating binary optics: An overview of binary optics process technology

    NASA Technical Reports Server (NTRS)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  18. Medically relevant ElectroNeedle technology development.

    SciTech Connect

    Schmidt, Carrie Frances; Thomas, Michael Loren; McClain, Jaime L.; Harper, Jason C.; Achyuthan, Komandoor E.; Ten Eyck, Gregory A.

    2008-11-01

    ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.

  19. [A rapid prototype fabrication method of dental splint based on 3D simulation and technology].

    PubMed

    Lin, Yanping; Chen, Xiaojun; Zhang, Shilei; Wang, Chengtao

    2006-04-01

    The conventional design and fabrication of the dental splint (in orthognathic surgery) is based on the preoperative planning and model surgery so this process is of low precision and efficiency. In order to solve the problems and be up to the trend of computer-assisted surgery, we have developed a novel method to design and fabricate the dental splint--computer-generated dental splint, which is based on three-dimensional model simulation and rapid prototype technology. After the surgical planning and simulation of 3D model, we can modify the model to be superior in chewing action (functional) and overall facial appearance (aesthetic). Then, through the Boolean operation of the dental splint blank and the maxillofacial bone model the model of dental splint is formed. At last, the dental splint model is fabricated through rapid prototype machine and applied in clinic. The result indicates that, with the use of this method, the surgical precision and efficiency are improved.

  20. Multifunctional universal SPM nanoprobe fabrication with laser technology

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Golubok, A. O.; Levichev, V. V.; Zuong, Z.; Yakovlev, E. B.

    2009-05-01

    Scanning probe microscopy (SPM) is a high spatial resolution method of surface topography visualization and measurement of its local properties. The detecting of interaction arising between the sharp solid-state probe and the sample surface is the foundation of SPM. In dependence from nature of this interaction the scanning tunneling microscopy (STM), scanning force microscopy (SFM), scanning near field optical microscopy (SNOM), etc. are distinguished. The spatial resolution of all types of probe microscopy determines both sharpness of increasing of interaction between a probe and a sample at their approach, and shape and size of a top of a solid-state probe. So, the progress in SPM information capabilities is highly depends on probe properties and first of all on properly fabricated aperture size. Fabrication procedures are rather complicated because of nanometric scale size of aperture and hard requirements to reproducibility and need to be improved. The way how to do it by laser-assisted drawing-out is involving of feed-back in a processing procedure-results in two types of feedback for the process of drawing-out has been suggested, tested and installed into the technological set-up. Different probes have been fabricated by above mentioned laser-assisted stretching during this work: SNOM types from optical fibers, micropipettes from quartz glass capillaries, micropipettes with microwires inside and with metallic covers outside. Some examples of application of above mentioned combined probes for cell membrane technology are described. Most important from them are topographical studying of cells and bacteria in living condition (in liquid) and studying of the mechanical properties of cell (rigidity of cell membrane) using the nanopipette as a tip of a force sensor. Except for that using the model sample the measurement of ion current that runs through nanopipette which also carries out a role of a tip of a force sensor have been done. Thus it is shown, that using

  1. TECHNOLOGY DEVELOPMENT ON THE DUPIC SAFEGUARDS SYSTEM

    SciTech Connect

    H. KIM; H. CHA; ET AL

    2001-02-01

    A safeguards system has been developed since 1993 in the course of supporting a fuel cycle process to fabricate CANDU fuel with spent PWR fuel (known as Direct Use of PWR spent fuel In CANDU, DUPIC). The major safeguards technology involved here was to design and fabricate a neutron coincidence counting system for process accountability, and also an unattended continuous monitoring system in association with independent verification by the IAEA. This combined technology was to produce information of nuclear material content and to maintain knowledge of the continuity of nuclear material flow. In addition to hardware development, diagnosis software is being developed to assist data acquisition, data review, and data evaluation based on a neural network system on the IAEA C/S system.

  2. Development of metal-forming machine for fabricating micromechanical components

    NASA Astrophysics Data System (ADS)

    Aoki, Isamu; Takahsashi, Toshinori

    1996-09-01

    In this paper, we describe a die-forming machine for fabricating 3D microcomponents. Today, most micromachines or devices are fabricated by chemical etching of silicon. From a practical point of view, fabrication using metals as the raw materials should be studied. In this study, die-forming of medical forceps, as an example of a typical medical microtool, was investigated. The forceps currently used are fabricated by a combination of precision machining and hand finishing, thus requiring a considerably long period of time and high costs. We have developed a fabrication technique for metal medical components based on mould-forming. Use of this method results in excellent productivity but there are restriction on the shape of fabricated components. In order to overcome this problem, a micropress system that exclusively fits the fabrication of 3D microcomponents was designed and developed. This is based on the turret punch press, and material processing operations such as rotation of the material and other functions are incorporated. Also, round wire is used as the raw material. The results of practical forming experiments confirmed that the developed micropress reliable for fabricating microcomponents.

  3. SEDSAT-1 Technology Development

    NASA Technical Reports Server (NTRS)

    Maier, Mark W.; Wells, B. Earl

    1996-01-01

    The Students for the Exploration and Development of Space Satellite (SEDSAT-1) is an ambitious project to design, build, and fly a generally-accessible low-cost satellite which will 1) act as a technology demonstration to verify the suitability of novel optical, battery, microprocessor, and memory hardware for space flight environments, (2) to advance the understanding of tether dynamics and environmental science through the development of advanced imaging experiments, (3) to act as a communication link for radio amateurs, and (4) to provide graduate and undergraduate students with a unique multi-disciplinary experience in designing complex real-world hardware/software. This report highlights the progress made on this project during the time period from January 2, 1996 to June 1, 1996 at the end of which time the SEASIS 0.7 version software was completed and integrated on the SEASIS breadboard, a functional prototype of the Panoramic Annual Lenses (PAL) camera was developed, the preferred image compression technique was selected, the layout of the SEASIS board was begun, porting of the SCOS operating system to the command data system (CDS) board was begun, a new design for a tether release mechanism was developed, safety circuitry to inhibit tether cutting was developed and prototyped, material was prepared to support a comprehensive safety review of the project which was held at Johnson Space Center (JSC) (which was personally attended by one of the Principal Investigators), and prototype ground software was developed.

  4. Noncontact Microembossing Technology for Fabricating Thermoplastic Optical Polymer Microlens Array Sheets

    PubMed Central

    Chang, Xuefeng; Ge, Xiaohong; Li, Hui

    2014-01-01

    Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063

  5. DOE lost circulation technology development

    SciTech Connect

    Glowka, D.A.; Staller, G.E.; Sattler, A.R.

    1996-09-01

    Lost circulation is a problem common in both the geothermal and the solution mining industries. In both cases, drilling is on a relatively large scale (geothermal holes can be as large as 26 inches). Lost circulation technology development for geothermal drilling has been in progress at Sandia National Laboratories for more than 15 years. The initial work centered on lost circulation materials, but testing and modeling indicated that if the aperture of a loss zone is very large (larger than the drill bit nozzles) it cannot be plugged by simply adding materials to the drilling fluid. Thus, the lost circulation work evolved to include: (1) Development of metering techniques that accurately measure and characterize drilling fluid inflow and outflow for rapid diagnosis of los circulation and/or fluid balance while drilling. (2) Construction of a laboratory facility for testing drillable straddle packers (to improve the plugging efficiency of cementing operations) and the actual testing of components of the straddle packer. (3) Construction of a laboratory facility for the testing of candidate porous fabrics as a part of a program to develop a porous packer that places polyurethane foam into a loss zone. (4) Implementing (with Halliburton and CalEnergy Company), a program to test cementitious lost circulation material as an alternative to Portland cement.

  6. Ceramic inlay fabrication with three-dimensional copy milling technology--Celay.

    PubMed

    Trushkowsky, R D

    1998-11-01

    Efforts to improve the physical properties of ceramic materials have resulted in the development of restorations that are machined from preformed ceramic blocks. Celay is a system that uses micromilling technology to prepare these ceramic blocks for fabrication of inlays, onlays, veneers, and crown restorations. Celay restorations can be luted, using advances in composite adhesive techniques. These restorations are exceptionally esthetic because of a "chameleon effect," and they exhibit a high degree of marginal accuracy. A clinical case, included in this article, illustrates the technology and use of this innovative restorative system.

  7. RETRACTED: Auricular prosthesis fabrication using computer-aided design and rapid prototyping technologies.

    PubMed

    Shah, Mayank

    2016-06-01

    At the request of the editorMayank Shah 'Auricular prosthesis fabrication using computer-aided design and rapid prototyping technologies' Prosthetics and Orthotics International, published online before print on October 8, 2013 as doi:10.1177/0309364613504779has been retracted. This is because it contains unattributed overlap withK. Subburaj, C. Nair, S. Rajesh, S. M. Meshram, B. Ravi 'Rapid development of auricular prosthesis using CAD and rapid prototyping technologies' International Journal of Oral & Maxillofacial Surgery 2007; 36: 938-943 doi:10.1016/j.ijom.2007.07.013.

  8. Novel fabrication technology for three-dimensional high surface area pyrolized structures

    NASA Astrophysics Data System (ADS)

    Ho, Vinh; Shimada, Mark; Szeto, David; Mukherjee, Partha P.; Kang, Qinjun; Kulinsky, Lawrence; Madou, Marc J.

    2010-04-01

    High specific surface area structures are used in a variety of applications including production of highly sensitive biosensors, fabrication of separation membranes, manufacturing of high throughput catalytic microreactors, and development of efficient electrodes for batteries and fuel cells. In many electrochemical applications (i.e. sensors and batteries) it's also critical to have good conductive properties of the fabricated high surface area structures. For energy harvesting technologies such as batteries and fuel cells, careful design of surface-to-volume ratio of the electrode surface is important, because while high specific surface area facilitates electrochemical reaction rates, it also increases overall electrode resistance. Thus, it is desirable to construct electrodes with a range of hierarchical features (for example with fractal structures). We invented a novel fabrication technology for creating three-dimensional conductive high surface area structures based on the deposition and subsequent processing of the electroactive polymers (EAP). The proposed fabrication technique is capable of fast and inexpensive production of high surface area structures with the designed geometry, porosity, and conductivity.

  9. Fabrication of liquid crystal gratings based on photoalignment technology

    NASA Astrophysics Data System (ADS)

    Lu, Yan-Qing; Hu, Wei; Srivastava, Abhishek; Chigrinov, Vladimir G.

    2013-03-01

    A serial of LC gratings are fabricated mainly based on photoalignment, which include (1) Nematic LC grating with alternating 90° twisted nematic (TN) regions and homogeneous alignment (PA). Both 1D and 2D diffraction gratings are demonstrated by periodic photoalignment of sulfonic azo-dye (SD1) films with a linearly polarized light beam. (2) A polarization independent of 1D/2D LC gratings with alternate orthogonal homogeneously aligned regions. No polarizer is employed. (3) A polarizer-free submillisecond response grating employing dual-frequency LC (DFLC) together with patterned hybrid aligned nematic (HAN) structures. To obtain instantly controllable LC microstructures rather than simple gratings, a digital micro-mirror device (DMD) based a micro-lithography system is developed. It may generate arbitrary micro-images on photoalignment layers. Besides normal phase gratings, more complex 2D patterns including quasicrystal structure are demonstrated, which give us more freedom to develop microstructured LC based photonic devices.

  10. Payload software technology: Software technology development plan

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Programmatic requirements for the advancement of software technology are identified for meeting the space flight requirements in the 1980 to 1990 time period. The development items are described, and software technology item derivation worksheets are presented along with the cost/time/priority assessments.

  11. Development of High Temperature Gas Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  12. Aerocapture Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Munk, Michelle M.; Moon, Steven A.

    2008-01-01

    This paper will explain the investment strategy, the role of detailed systems analysis, and the hardware and modeling developments that have resulted from the past 5 years of work under NASA's In-Space Propulsion Program (ISPT) Aerocapture investment area. The organizations that have been funded by ISPT over that time period received awards from a 2002 NASA Research Announcement. They are: Lockheed Martin Space Systems, Applied Research Associates, Inc., Ball Aerospace, NASA s Ames Research Center, and NASA s Langley Research Center. Their accomplishments include improved understanding of entry aerothermal environments, particularly at Titan, demonstration of aerocapture guidance algorithm robustness at multiple bodies, manufacture and test of a 2-meter Carbon-Carbon "hot structure," development and test of evolutionary, high-temperature structural systems with efficient ablative materials, and development of aerothermal sensors that will fly on the Mars Science Laboratory in 2009. Due in large part to this sustained ISPT support for Aerocapture, the technology is ready to be validated in flight.

  13. New hybrid technology for planar fluxgate sensor fabrication

    SciTech Connect

    Dezuari, O.; Belloy, E.; Gilbert, S.E.; Gijs, M.A.M. . Inst. of Microsystems)

    1999-07-01

    The authors have adapted a new printed circuit board (PCB) technology to the fabrication of ultraflat and sensitive fluxgate magnetic field sensors. The two outer layers of the PCB stack compose the electrical windings of fluxgates, while the inner layer is made of a micro-patterned amorphous magnetic ribbon with extremely high relative magnetic permeability ([mu][sub r] [approx] 100,000). Two basic configurations were considered: one based on a toroidal magnetic core and the other on a rectangular core with and without an air gap. The field response and sensitivity of the fluxgate devices have been studied as a function of the gap length, the excitation current, and excitation frequency. Compared to fluxgate sensors of similar size, a relatively high sensitivity of 60 V/T was found at 30 kHz for a five-winding detection coil would around a rectangular E-shaped magnetic core. This high performance is primarily attributable to the high-permeability magnetic core. The results clearly show the potential of this fluxgate device for application as a magnetic sensor.

  14. Organic Binder Developments for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Mobasher, Amir A.

    2003-01-01

    A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.

  15. Using Powder Cored Tubular Wire Technology to Enhance Electron Beam Freeform Fabricated Structures

    NASA Technical Reports Server (NTRS)

    Gonzales, Devon; Liu, Stephen; Domack, Marcia; Hafley, Robert

    2016-01-01

    Electron Beam Freeform Fabrication (EBF3) is an additive manufacturing technique, developed at NASA Langley Research Center, capable of fabricating large scale aerospace parts. Advantages of using EBF3 as opposed to conventional manufacturing methods include, decreased design-to-product time, decreased wasted material, and the ability to adapt controls to produce geometrically complex parts with properties comparable to wrought products. However, to fully exploit the potential of the EBF3 process development of materials tailored for the process is required. Powder cored tubular wire (PCTW) technology was used to modify Ti-6Al-4V and Al 6061 feedstock to enhance alloy content, refine grain size, and create a metal matrix composite in the as-solidified structures, respectively.

  16. Mars Technology Program: Planetary Protection Technology Development

    NASA Technical Reports Server (NTRS)

    Lin, Ying

    2006-01-01

    This slide presentation reviews the development of Planetary Protection Technology in the Mars Technology Program. The goal of the program is to develop technologies that will enable NASA to build, launch, and operate a mission that has subsystems with different Planetary Protection (PP) classifications, specifically for operating a Category IVb-equivalent subsystem from a Category IVa platform. The IVa category of planetary protection requires bioburden reduction (i.e., no sterilization is required) The IVb category in addition to IVa requirements: (i.e., terminal sterilization of spacecraft is required). The differences between the categories are further reviewed.

  17. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.

    PubMed

    Nguyen, Nam-Trung; Shaegh, Seyed Ali Mousavi; Kashaninejad, Navid; Phan, Dinh-Tuan

    2013-11-01

    Lab-on-a-chip technology is an emerging field evolving from the recent advances of micro- and nanotechnologies. The technology allows the integration of various components into a single microdevice. Microfluidics, the science and engineering of fluid flow in microscale, is the enabling underlying concept for lab-on-a-chip technology. The present paper reviews the design, fabrication and characterization of drug delivery systems based on this amazing technology. The systems are categorized and discussed according to the scales at which the drug is administered. Starting with the fundamentals on scaling laws of mass transfer and basic fabrication techniques, the paper reviews and discusses drug delivery devices for cellular, tissue and organism levels. At the cellular level, a concentration gradient generator integrated with a cell culture platform is the main drug delivery scheme of interest. At the tissue level, the synthesis of smart particles as drug carriers using lab-on-a-chip technology is the main focus of recent developments. At the organism level, microneedles and implantable devices with fluid-handling components are the main drug delivery systems. For drug delivery to a small organism that can fit into a microchip, devices similar to those of cellular level can be used.

  18. Development and fabrication of an advanced liquid cooling garment

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    A tube/fin concept liquid cooling garment head cooler was developed, fabricated and delivered to NASA-ARC. The head cooler was fabricated from polyurethane film which sandwiches the transport fluid tubing and a thermally conductive fin material. The head cooler garment is sewn to form a skull cap and covered with a comfort liner. In addition, two Neonate heating garments were fabricated and supplied to NASA for further finishing and use in medical tests. The resulting garment is flexible, elastic and conforms to the head comfortably. Tests on a tube/fin element of identical construction as the head cooler demonstrated good thermal effectiveness. Use of commercially available materials and development of relatively simple fabrication techniques give the potential for a low garment cost.

  19. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  20. Planetary rover technology development requirements

    NASA Technical Reports Server (NTRS)

    Bedard, Roger J., Jr.; Muirhead, Brian K.; Montemerlo, Melvin D.; Hirschbein, Murray S.

    1989-01-01

    Planetary surface (including lunar) mobility and sampling capability is required to support proposed future National Aeronautics and Space Administration (NASA) solar system exploration missions. The NASA Office of Aeronautics and Space Technology (OAST) is addressing some of these technology needs in its base research and development program, the Civil Space Technology Initiative (CSTI) and a new technology initiative entitled Pathfinder. The Pathfinder Planetary Rover (PPR) and Sample Acquisition, Analysis and Preservation (SAAP) programs will develop and validate the technologies needed to enable both robotic and piloted rovers on various planetary surfaces. The technology requirements for a planetary roving vehicle and the development plans of the PPR and SAAP programs are discussed.

  1. Haystack Observatory Technology Development Center

    NASA Technical Reports Server (NTRS)

    Beaudoin, Chris; Corey, Brian; Niell, Arthur; Cappallo, Roger; Whitney, Alan

    2013-01-01

    Technology development at MIT Haystack Observatory were focused on four areas in 2012: VGOS developments at GGAO; Digital backend developments and workshop; RFI compatibility at VLBI stations; Mark 6 VLBI data system development.

  2. Potential of 3D printing technologies for fabrication of electron bolus and proton compensators.

    PubMed

    Zou, Wei; Fisher, Ted; Zhang, Miao; Kim, Leonard; Chen, Ting; Narra, Venkat; Swann, Beth; Singh, Rachana; Siderit, Richard; Yin, Lingshu; Teo, Boon-Keng Kevin; McKenna, Michael; McDonough, James; Ning, Yue J

    2015-05-08

    In electron and proton radiotherapy, applications of patient-specific electron bolus or proton compensators during radiation treatments are often necessary to accommodate patient body surface irregularities, tissue inhomogeneity, and variations in PTV depths to achieve desired dose distributions. Emerging 3D printing technologies provide alternative fabrication methods for these bolus and compensators. This study investigated the potential of utilizing 3D printing technologies for the fabrication of the electron bolus and proton compensators. Two printing technologies, fused deposition modeling (FDM) and selective laser sintering (SLS), and two printing materials, PLA and polyamide, were investigated. Samples were printed and characterized with CT scan and under electron and proton beams. In addition, a software package was developed to convert electron bolus and proton compensator designs to printable Standard Tessellation Language file format. A phantom scalp electron bolus was printed with FDM technology with PLA material. The HU of the printed electron bolus was 106.5 ± 15.2. A prostate patient proton compensator was printed with SLS technology and polyamide material with -70.1 ± 8.1 HU. The profiles of the electron bolus and proton compensator were compared with the original designs. The average over all the CT slices of the largest Euclidean distance between the design and the fabricated bolus on each CT slice was found to be 0.84 ± 0.45 mm and for the compensator to be 0.40 ± 0.42 mm. It is recommended that the properties of specific 3D printed objects are understood before being applied to radiotherapy treatments.

  3. Technology Education and Development

    ERIC Educational Resources Information Center

    Lazinica, Aleksandar, Ed.; Calafate, Carlos, Ed.

    2009-01-01

    The widespread deployment and use of Information Technologies (IT) has paved the way for change in many fields of our societies. The Internet, mobile computing, social networks and many other advances in human communications have become essential to promote and boost education, technology and industry. On the education side, the new challenges…

  4. Gender, Technology, and Leadership Development.

    ERIC Educational Resources Information Center

    Quilling, Joan I.

    1999-01-01

    Suggests that technology tends to be more attractive to males and that females who do not take leadership development in technological skills will have limited employment opportunities. Presents middle school and high school educational objectives and strategies for developing leadership and technology skills for more equitable work and home…

  5. Recent Developments in Microsystems Fabricated by the Liga-Technique

    NASA Technical Reports Server (NTRS)

    Schulz, J.; Bade, K.; El-Kholi, A.; Hein, H.; Mohr, J.

    1995-01-01

    As an example of microsystems fabricated by the LIGA-technique (x-ray lithography, electroplating and molding), three systems are described and characterized: a triaxial acceleration sensor system, a micro-optical switch, and a microsystem for the analysis of pollutants. The fabrication technologies are reviewed with respect to the key components of the three systems: an acceleration sensor, and electrostatic actuator, and a spectrometer made by the LIGA-technique. Aa micro-pump and micro-valve made by using micromachined tools for molding and optical fiber imaging are made possible by combining LIGA and anisotropic etching of silicon in a batch process. These examples show that the combination of technologies and components is the key to complex microsystems. The design of such microsystems will be facilitated is standardized interfaces are available.

  6. A fabrication technology for epitaxial Ni-Mn-Ga microactuators

    NASA Astrophysics Data System (ADS)

    Khelfaoui, F.; Kohl, M.; Buschbeck, J.; Heczko, O.; Fähler, S.; Schultz, L.

    2008-05-01

    This paper reports on the fabrication and characterization of epitaxial Ni-Mn-Ga microactuators. Ni-Mn-Ga films are grown on heated single-crystalline MgO substrates by DC magnetron sputtering. X-ray diffraction measurements demonstrate epitaxial growth of the films. At room temperature, the crystal structure is identified to be non-modulated (NM) tetragonal martensite. Electrical resistance measurements confirm that the films display the martensitic phase transformation well above the Curie temperature TC of 325 K. Orientation-dependent magnetization measurements are performed to determine magnetic film properties. Micromachining of the Ni-Mn-Ga films is performed on an alumina substrate covered by a temporary adhesive layer. A transfer bonding process is developed to finally integrate the micromachined Ni-Mn-Ga structures to a target substrate in order to obtain NiMnGa microactuators having freely movable microparts. Temperature-displacement characteristics demonstrate the actuation performance of epitaxial NiMnGa microactuators for the first time.

  7. Development and fabrication of structural components for a scramjet engine

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1990-01-01

    A program broadly directed toward design and development of long-life (100 hours and 1,000 cycles with a goal of 1,000 hours and 10,000 cycles) hydrogen-cooled structures for application to scramjets is presented. Previous phases of the program resulted in an overall engine design and analytical and experimental characterization of selected candidate materials and concepts. The latter efforts indicated that the basic life goals for the program can be reached with available means. The main objective of this effort was an integrated, experimental evaluation of the results of the previous program phases. The fuel injection strut was selected for this purpose, including fabrication development and fabrication of a full-scale strut. Testing of the completed strut was to be performed in a NASA-Langley wind tunnel. In addition, conceptual designs were formulated for a heat transfer test unit and a flat panel structural test unit. Tooling and fabrication procedures required to fabricate the strut were developed, and fabrication and delivery to NASA of all strut components, including major subassemblies, were completed.

  8. On the Application of Rapid Prototyping Technology for the Fabrication of Flapping Wings for Micro Air Vehicles

    NASA Astrophysics Data System (ADS)

    Kraemer, Kurtis Leigh

    Micro air vehicles (MAV) are a class of small uninhabited aircraft with dimensions less than 15 cm (6 in) and mass less than 500g (1.1 lbs). The aim of this research was to develop a fast, accurate, low-cost, and repeatable fabrication process for flapping MAV wings. Through the use of the RepRap Mendel open-source fused-deposition modeling (FDM) rapid prototyping machine ("3-D printer"), various wing prototypes were designed and fabricated using a bio-inspired approach. Testing of the aerodynamic performance of both real locust wings and the 3-D printed wing prototypes was performed through axial spin testing. Bending stiffness measurements were also performed on the 3-D printed wings. Through the use of open-source rapid prototyping technology, a fast and low-cost fabrication process for flapping MAV wings has been developed, out of which further understanding of flapping wing design and fabrication has been gained.

  9. Development and fabrication of an advanced liquid cooling garment

    NASA Technical Reports Server (NTRS)

    Leith, J. R.; Hixon, C. W.

    1976-01-01

    The elastomeric film fin/tube concept which was developed is a composite of polyurethane film, fine expanded silver mesh, a serpentine pattern polyurethane transport tubing and an integral comfort liner, all bonded via adhesive application and vacuum-bagged for final cure. As demonstrated by thermal analysis, the composite garment material is capable of removing a 293 watt (1000 BTU/hr) metabolic load through a head and torso cooling area of .46 sq m (5 sq ft) with tube spacing of slightly under one inch. A total of 60 test elements, each .15m x .15m (6 in. x 6 in.) were fabricated in support of the liquid cooling garment concept development. In parallel with the fabrication of these elements a continuing series of laboratory tests to support the fabrication techniques was carried out. The elements and supporting tests are described.

  10. Development and fabrication of improved Schottky power diodes

    NASA Technical Reports Server (NTRS)

    Cordes, L. F.; Garfinkel, M.; Taft, E. A.

    1975-01-01

    Reproducible methods for the fabrication of silicon Schottky diodes have been developed for tungsten, aluminum, conventional platinum silicide, and low temperature platinum silicide. Barrier heights and barrier lowering under reverse bias have been measured, permitting the accurate prediction of forward and reverse diode characteristics. Processing procedures have been developed that permit the fabrication of large area (about 1 sq cm) mesageometry power Schottky diodes with forward and reverse characteristics that approach theoretical values. A theoretical analysis of the operation of bridge rectifier circuits has been performed, which indicates the ranges of frequency and voltage for which Schottky rectifiers are preferred to p-n junctions. Power Schottky rectifiers have been fabricated and tested for voltage ratings up to 140 volts.

  11. Developments in Enzyme Technology.

    ERIC Educational Resources Information Center

    Chaplin, M. F.

    1984-01-01

    Enzyme technology has a well-established industrial base, with applications that have survived competition. The most prominent applications of enzymes in biotechnology are examined with an explanation of some theoretical background. Topics include extending an enzyme's useful life, partition and diffusion, industrial uses, and therapeutic uses.…

  12. Developing Technological Knowledge

    ERIC Educational Resources Information Center

    Stevenson, John

    2004-01-01

    It is argued in this paper that various approaches are available in designing teaching and learning experiences for technology education. However, many approaches are based on inappropriate assumptions about transfer, the ways in which meaning is represented by individuals and relationships among different kinds of experiences. It is advanced that…

  13. Robotics Technology Development Program. Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  14. New Space Technology Development

    NASA Technical Reports Server (NTRS)

    Mueller, Rob

    2014-01-01

    Visitors from Moon Express, a privately funded commercial space company, will be visiting KSC Swamp Works. This presentation includes a high-level introduction to NASA and commercial partnerships, as well as brief background on the moon - what we used to think about it hundreds of years ago, and what we know today with advanced technologies.***This third part being added includes Swamp Works technical capabilities and has a high-level overview of a selection of projects.***

  15. Recent developments of gigatron technology

    SciTech Connect

    McIntyre, P.M.; Elliott, S.M.; Gray, H.; Lee, B.; Pang, Yaoqi; Popovic, M. . Dept. of Physics; Naval Research Lab., Washington, DC; Texas A and M Univ., College Station, TX . Dept. of Physics)

    1989-01-01

    Gigatron is a new design concept for microwave power devices. A gated field-emitter array is employed as a directly modulated cathode. A ribbon beam configuration is used to mitigate space-charge effects and provide for efficient output coupling. A traveling-wave output coupler is used to obtain optimum coupling to a wide beam. Recent cathode tests are reported. Modeling of the bunched-emission process has led to an improved cathode fabrication procedure. A new application of a similar structure has led to a design for a new technology for precision tracking chambers for SSC detectors.

  16. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    Bunker, S.

    1981-01-01

    A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.

  17. Development of failure criterion for Kevlar-epoxy fabric laminates

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Elliott, W. G.

    1984-01-01

    The development of the tensor polynomial failure criterion for composite laminate analysis is discussed. In particular, emphasis is given to the fabrication and testing of Kevlar-49 fabric (Style 285)/Narmco 5208 Epoxy. The quadratic-failure criterion with F(12)=0 provides accurate estimates of failure stresses for the Kevlar/Epoxy investigated. The cubic failure criterion was re-cast into an operationally easier form, providing the engineer with design curves that can be applied to laminates fabricated from unidirectional prepregs. In the form presented no interaction strength tests are required, although recourse to the quadratic model and the principal strength parameters is necessary. However, insufficient test data exists at present to generalize this approach for all undirectional prepregs and its use must be restricted to the generic materials investigated to-date.

  18. Development of antibacterial ZnO-loaded cotton fabric based on in situ fabrication

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Zhu; Bremner, David H.; Wan, Na; Wang, Xiao

    2016-11-01

    A method provided for the deposition of nanostructured ZnO on cotton fabric to introduce antibacterial functionality was presented in this article. This strategy enabled fabric to be coated with inorganic-based functional materials through in situ synthesis of nanoparticles using ultrasonic irradiation. The amino-terminated silicon sol (AEAPTS) was employed to generate nanostructured ZnO, and the mechanism of the ultrasound-assisted coating was proposed. Antibacterial activities, UV protection and other properties of ZnO-loaded cotton characterized by SEM, FTIR, XRD and TGA were investigated. The results indicated that ZnO-loaded cotton exhibited excellent UV protective property, efficient antibacterial activities, well water-resistant effect, together with moderate cytotoxicity against L929 and lower tensile strength. The developed method provides not only a facile way for in situ synthesis of ZnO on textile but also the production of antibacterial materials for healthcare applications.

  19. Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE)

    NASA Astrophysics Data System (ADS)

    Wegrzecka, Iwona; Panas, Andrzej; Bar, Jan; Budzyński, Tadeusz; Grabiec, Piotr; Kozłowski, Roman; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecki, Maciej; Zaborowski, Michał

    2013-07-01

    The paper discusses the technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE). The developed technology enables the fabrication of both planar and epiplanar p+-ν-n+ detector structures with an active area of up to 50 cm2. The starting material for epiplanar structures are silicon wafers with a high-resistivity n-type epitaxial layer ( ν layer - ρ < 3 kΩcm) deposited on a highly doped n+-type substrate (ρ< 0,02Ωcm) developed and fabricated at the Institute of Electronic Materials Technology. Active layer thickness of the epiplanar detectors (νlayer) may range from 10 μm to 150 μm. Imported silicon with min. 5 kΩcm resistivity is used to fabricate planar detectors. Active layer thickness of the planar detectors (ν) layer) may range from 200 μm to 1 mm. This technology enables the fabrication of both discrete and multi-junction detectors (monolithic detector arrays), such as single-sided strip detectors (epiplanar and planar) and double-sided strip detectors (planar). Examples of process diagrams for fabrication of the epiplanar and planar detectors are presented in the paper, and selected technological processes are discussed.

  20. Innovative technologies for anti-flammable cotton fabrics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to its environmentally friendly properties, supercritical carbon dioxide (scCO2) is considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercr...

  1. JWST Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.

  2. Roll to roll fabrication technologies for optoelectronic and electronic devices and sensors

    NASA Astrophysics Data System (ADS)

    Maaninen, A.; Tuomikoski, M.; Kivimäki, L.; Kololuoma, T.; Välimäki, M.; Leinonen, M.; Känsäkoski, M.

    2005-09-01

    Embedding of optoelectrical, optical, and electrical functionalities into low-cost products like product packages and printed matter can be used to increase their information content. For these purposes, components like displays, photodetectors, light sources, solar cells, battery elements, diffractive optical elements, lightguides, electrical conductors, resistors, transistors, switching elements etc. and their integration to functional modules are required. Also the need of rapid and reliable di-agnostic systems for wellness and healthcare applications is apparent. Today the time from sampling to result can take hours or even several days. In future the target is to analyze the sample within a few minutes for further action. Additionally, the price of the components for low-end products and disposable sensors has to be in cent scale or preferably below that. Therefore, new, cost-effective, and volume scale capable manufacturing techniques are required. Recent developments of liquid-phase processable electrical and optical polymeric, inorganic, and hybrid material inks together with biocompatible materials have made it possible to fabricate functional components by conventional roll-to-roll techniques such as gravure printing on flexible paper and plastic like substrates. In this paper, we show our current achievements in the field of roll-to-roll fabricated electronics, optoelec-tronics and biosensors. With examples of light guiding structures, organic light emitting diodes, biocompatible materials etc., we demonstrate the huge potential of roll to roll fabrication as a low cost mass production technology for future low end electronic products.

  3. Alternative technology for fabrication of nano- or microstructured mould inserts used for optical components

    NASA Astrophysics Data System (ADS)

    Wissmann, M.; Guttmann, M.; Hartmann, M.

    2010-02-01

    For mass production of multiscale-optical components, micro- and nanostructured moulding tools are needed. Metal tools are used for hot embossing or injection moulding of microcomponents in plastics. Tools are typically produced by classical forming processes such as mechanical manufacturing e.g. turning or milling, laser manufacturing or electrical discharge machining (EDM). Microstructures with extremely tight specifications, e.g. low side wall roughness and high aspect ratios are generally made by lithographic procedures such as LIGA or DPW technology. However, these processes are unsuitable for low-cost mass production. They are limited by the exposure area and structure design. In cooperation with international partners alternative manufacturing methods of moulding tools have been developed at the Institute of Microstructure Technology (IMT). In a new replication procedure, mould inserts are fabricated using micro- and nanoscale optics. The multiscale structured prototypes, either in plastics, glass, metal or material combinations are used as sacrificial parts. Using joining technology, electroforming and EDM technology, a negative copy of a prototype is transferred into metal to be used as a moulding tool. The benefits of this replication technique are rapid and economical production of moulding tools with extremely precise micro- and nanostructures, large structured area and long tool life. Low-cost mass replication is possible with these moulding tools. In this paper, an established manufacturing chain will be presented. Multiscale and multimaterial optical prototypes e.g. out-of-plane coupler or microinterferometer were made by DPW or laser technology. The mould insert fabrication of each individual manufacturing step will be shown. The process reliability and suitability for mass production was tested by hot embossing.

  4. Electron Beam Technology - Some Recent Developments

    NASA Astrophysics Data System (ADS)

    Iqbal, Munawar; Fazal-E-Aleem

    2011-06-01

    Electron beam technology has been in focus since long due to wide variety of applications in research and industry. One of the important modes of e-beam production is through thermionic emission. Improvements and advancement in enhancing the capabilities of electron beam sources compatible with the task to be accomplished at a reduced cost are therefore necessary. We give an update of the recently developed and reported e-guns which are easy to fabricate, assemble and more efficient. Besides being cost effective, these guns are user friendly.

  5. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    PubMed

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  6. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    PubMed

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation. PMID:26830832

  7. Development and fabrication of an augmented power transistor

    NASA Technical Reports Server (NTRS)

    Geisler, M. J.; Hill, F. E.; Ostop, J. A.

    1983-01-01

    The development of device design and processing techniques for the fabrication of an augmented power transistor capable of fast switching and high voltage power conversion is discussed. The major device goals sustaining voltages in the range of 800 to 1000 V at 80 A and 50 A, respectively, at a gain of 14. The transistor switching rise and fall times were both to have been less than 0.5 microseconds. The development of a passivating glass technique to shield the device high voltage junction from moisture and ionic contaminants is discussed as well as the development of an isolated package that separates the thermal and electrical interfaces. A new method was found to alloy the transistors to the molybdenum disc at a relatively low temperature. The measured electrical performance compares well with the predicted optimum design specified in the original proposed design. A 40 mm diameter transistor was fabricated with seven times the emitter area of the earlier 23 mm diameter device.

  8. Development of an Automatic Fabrication System for Cast Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshihiko

    2015-04-01

    The developed automatic fabrication system comprised three component functions: weighing, alloying, and casting. The measurement error of automatic weighing specimen was about less 1 pct for Zr-based master alloys (approximately 30 g). Especially, sufficient stirrer effect of arc-melting ingot for homogeneity can be achieved by the development of sinusoidal arcing and applying magnetic field. In order to achieve superior homogeneity of the glass structure with no secondary phase ( i.e., an intermetallic compound with a high melting temperature), a prealloying process should be advisable. In this study, high reliability of the density and mechanical properties of automatic processed cast glassy alloys (CGAs) was successfully obtained. The developed automatic fabrication process has a potential to accelerate the industrial application of CGAs in the near future.

  9. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  10. Human Cartilage Tissue Fabrication Using Three-dimensional Inkjet Printing Technology

    PubMed Central

    Yonezawa, Tomo; Dai, Guohao

    2014-01-01

    Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering. PMID:24961492

  11. Human cartilage tissue fabrication using three-dimensional inkjet printing technology.

    PubMed

    Cui, Xiaofeng; Gao, Guifang; Yonezawa, Tomo; Dai, Guohao

    2014-01-01

    Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering. PMID:24961492

  12. Human cartilage tissue fabrication using three-dimensional inkjet printing technology.

    PubMed

    Cui, Xiaofeng; Gao, Guifang; Yonezawa, Tomo; Dai, Guohao

    2014-06-10

    Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.

  13. Development and fabrication of improved power transistor switches. [fabrication and manufacturing of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Chu, C. K.

    1976-01-01

    A new class of high-voltage power transistors has been achieved by adapting present interdigitated thyristor processing techniques to the fabrication of NPN Si transistors. Present devices are 2.3 cm in diameter. The electrical performance obtained is consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The forward safe operating area of the experimental transistors shows a significant improvement over commercially available devices. The report describes device design, wafer processing, and various measurements which include dc characteristics, forward and reverse second breakdown limits, and switching times.

  14. Supporting the Knowledge Continuum through Technology: From Consumption to Fabrication

    ERIC Educational Resources Information Center

    Blowers, Helene

    2012-01-01

    Spaces such as the Chicago and Miami YOUmedia centers are great examples of digital media labs. Focused on providing technology and services that allow teens to explore their passions in an unstructured creative process, these labs provide technology that encourages the self-expression and creation of ideas in almost any digital format, such as…

  15. Ti TiO2 Al normal metal insulator superconductor tunnel junctions fabricated in direct-write technology

    NASA Astrophysics Data System (ADS)

    Otto, Ernst; Tarasov, Mikhail; Kuzmin, Leonid

    2007-08-01

    We present a novel Ti-based direct-write technology for fabricating Ti TiO2 Al tunnel junctions for bolometer and thermometry applications. The goal of our research is to develop simple and efficient technology for fabricating SIS tunnel junctions between Ti and Al with TiO2 as an insulating barrier. The key point of this technology is the deposition of a Ti film as a base electrode and deposition of an Al electrode after oxidation of the Ti. This approach allows one to realize any geometry of the tunnel junctions and of the absorber with no limitation related to the area of the junctions or the thickness of the absorber. In particular, a very thin and completely flat absorber can be created with no bending parts, which is not possible using the shadow evaporation technique or standard trilayer technology. Besides, the proposed new approach does not require one-cycle evaporation for deposition of tunnel junctions which gives us more freedom in the geometry of the counter-electrodes. The junctions are to be used for bolometer applications, such as the fabrication of microwave receivers for sensitive measurements in new generation telescopes, e.g. CLOVER and BOOMERANG projects including polarization cosmic microwave background radiation measurements, and the OLIMPO balloon telescope project which is dedicated to measuring the Sunyaev Zeldovich effect in clusters of galaxies. As the first step, SIN tunnel junctions have been fabricated and characterized.

  16. Reproductive technologies in developing countries.

    PubMed

    Macklin, Ruth B

    1995-07-01

    Are there any ethical concerns about reproductive technologies that are specific or unique to developing countries? Three ethical concerns often mentioned specifically in regard to developing countries are (1), the "overpopulation argument"; (2) the limited resources argument; and (3) the ethical problem of poorly trained practitioners offering their services to unsuspecting and uninformed infertile individuals or couples. Each argument is explored in some detail, with the conclusion that ethical problems do, in fact, exist but are not unique to developing countries. Nevertheless, the difficulties relating to reproductive technologies are likely to be greater in developing countries than in developed ones because of limited resources and a larger number of poor people residing there.

  17. Fabrication and test of LARP technological quadrupole models of TQC series

    SciTech Connect

    Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Chlachidze, G.; Feher, S.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Nobrega, A.; Novitski, I.; /Fermilab /LBL, Berkeley /Brookhaven

    2008-08-01

    In support of the development of a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, several two-layer technological quadrupole models of TQC series with 90 mm aperture and collar-based mechanical structure have been developed at Fermilab in collaboration with LBNL. This paper summarizes the results of fabrication and test of TQC02a, the second TQC model based on RRP Nb3Sn strand, and TQC02b, built with both MJR and RRP strand. The test results presented include magnet strain and quench performance during training, as well as quench studies of current ramp rate and temperature dependence from 1.9K to 4.5K.

  18. Development of restraint material and tucked fabric joints

    NASA Technical Reports Server (NTRS)

    Mcmullen, J. M.

    1975-01-01

    A study was conducted to evaluate and select a suitable restraint material for the exterior of space suits pressurized to 4.0 PSID for normal operations, and to develop and improve tucked fabric joints for motions associated with the human shoulder, elbow, knee, waist, hip, ankle, and wrist. The many attributes of the end items are summarized to include structural integrity, simplicity, low maintenance, lightweight, high durability, low elongation, full range mobility, long life, and resistance to degradation in the operational environment.

  19. Magnetic Suspension Technology Development

    NASA Technical Reports Server (NTRS)

    Britcher, Colin

    1998-01-01

    This Cooperative Agreement, intended to support focused research efforts in the area of magnetic suspension systems, was initiated between NASA Langley Research Center (LaRC) and Old Dominion University (ODU) starting January 1, 1997. The original proposal called for a three-year effort, but funding for the second year proved to be unavailable, leading to termination of the agreement following a 5-month no-cost extension. This report covers work completed during the entire 17-month period of the award. This research built on work that had taken place over recent years involving both NASA LARC and the Principal Investigator (PI). The research was of a rather fundamental nature, although specific applications were kept in mind at all times, such as wind tunnel Magnetic Suspension and Balance Systems (MSBS), space payload pointing and vibration isolation systems, magnetic bearings for unconventional applications, magnetically levitated ground transportation and electromagnetic launch systems. Fundamental work was undertaken in areas such as the development of optimized magnetic configurations, analysis and modelling of eddy current effects, control strategies for magnetically levitated wind tunnel models and system calibration procedures. Despite the termination of this Cooperative Agreement, several aspects of the research work are currently continuing with alternative forms of support.

  20. Fabrication of polymer electrolyte membrane fuel cell MEAs utilizing inkjet print technology

    NASA Astrophysics Data System (ADS)

    Towne, Silas; Viswanathan, Vish; Holbery, James; Rieke, Peter

    Utilizing drop-on-demand technology, we have successfully fabricated hydrogen-air polymer electrolyte membrane fuel cells (PEMFC), demonstrated some of the processing advantages of this technology and have demonstrated that the performance is comparable to conventionally fabricated membrane electrode assemblies (MEAs). Commercial desktop inkjet printers were used to deposit the active catalyst electrode layer directly from print cartridges onto Nafion ® polymer membranes in the hydrogen form. The layers were well-adhered and withstood simple tape peel, bending and abrasion tests and did so without any post-deposition hot press step. The elimination of this processing step suggests that inkjet-based fabrication or similar processing technologies may provide a route to less expensive large-scale fabrication of PEMFCs. When tested in our experimental apparatus, open circuit voltages up to 0.87 V and power densities of up to 155 mW cm -2 were obtained with a catalyst loading of 0.20 mg Pt cm -2. A commercially available membrane under identical, albeit not optimized test conditions, showed about 7% greater power density. The objective of this work was to demonstrate some of the processing advantages of drop-on-demand technology for fabrication of MEAs. It remains to be determined if inkjet fabrication offers performance advantages or leads to more efficient utilization of expensive catalyst materials.

  1. Advanced Gas Turbine (AGT) Technology Development Project, ceramic component developments

    NASA Technical Reports Server (NTRS)

    Teneyck, M. O.; Macbeth, J. W.; Sweeting, T. B.

    1987-01-01

    The ceramic component technology development activity conducted by Standard Oil Engineered Materials Company while performing as a principal subcontractor to the Garrett Auxiliary Power Division for the Advanced Gas Turbine (AGT) Technology Development Project (NASA Contract DEN3-167) is summarized. The report covers the period October 1979 through July 1987, and includes information concerning ceramic technology work categorized as common and unique. The former pertains to ceramic development applicable to two parallel AGT projects established by NASA contracts DEN3-168 (AGT100) and DEN3-167 (AGT101), whereas the unique work solely pertains to Garrett directed activity under the latter contract. The AGT101 Technology Development Project is sponsored by DOE and administered by NASA-Lewis. Standard Oil directed its efforts toward the development of ceramic materials in the silicon-carbide family. Various shape forming and fabrication methods, and nondestructive evaluation techniques were explored to produce the static structural components for the ceramic engine. This permitted engine testing to proceed without program slippage.

  2. Technology development for launch vehicles

    NASA Astrophysics Data System (ADS)

    Robinson, Michael J.; Leonard, Bruce G.

    1990-10-01

    A program to develop technology for launch vehicles is now under way in the U.S. The Advanced Launch System (ALS) program was initiated by NASA and the USAF to develop a highly reliable heavy lift launch system that would deliver payloads to orbit at a cost of $300 per lb, as mandated by the U.S. Congress. The system development is proceeding in concert wth a technology development program, now called the Advanced Launch Development Program, described in this paper. A secondary objective of ALS is to transfer the technologies to other launch vehicles. Projects are under way in the following areas: propulsion, avionics, structures/materials/manufacturing, aerothermodynamics, recovery, operations, and subsystems. Brief overviews of each area are presented. In addition, a more detailed discussion of one of the projects, regarding expendable composite launch vehicle structures, is presented as an example.

  3. A Proposal to Develop Interactive Classification Technology

    NASA Technical Reports Server (NTRS)

    deBessonet, Cary

    1998-01-01

    Research for the first year was oriented towards: 1) the design of an interactive classification tool (ICT); and 2) the development of an appropriate theory of inference for use in ICT technology. The general objective was to develop a theory of classification that could accommodate a diverse array of objects, including events and their constituent objects. Throughout this report, the term "object" is to be interpreted in a broad sense to cover any kind of object, including living beings, non-living physical things, events, even ideas and concepts. The idea was to produce a theory that could serve as the uniting fabric of a base technology capable of being implemented in a variety of automated systems. The decision was made to employ two technologies under development by the principal investigator, namely, SMS (Symbolic Manipulation System) and SL (Symbolic Language) [see debessonet, 1991, for detailed descriptions of SMS and SL]. The plan was to enhance and modify these technologies for use in an ICT environment. As a means of giving focus and direction to the proposed research, the investigators decided to design an interactive, classificatory tool for use in building accessible knowledge bases for selected domains. Accordingly, the proposed research was divisible into tasks that included: 1) the design of technology for classifying domain objects and for building knowledge bases from the results automatically; 2) the development of a scheme of inference capable of drawing upon previously processed classificatory schemes and knowledge bases; and 3) the design of a query/ search module for accessing the knowledge bases built by the inclusive system. The interactive tool for classifying domain objects was to be designed initially for textual corpora with a view to having the technology eventually be used in robots to build sentential knowledge bases that would be supported by inference engines specially designed for the natural or man-made environments in which the

  4. Development and fabrication of a graphite polyimide box beam

    NASA Technical Reports Server (NTRS)

    Nadler, M. A.; Darms, F. J.

    1972-01-01

    The state-of-the-art of graphite/polyimide structures was evaluated and key design and fabrication issues to be considered in future hardware programs are defined. The fabrication and testing at 500 F of a graphite/polyimide center wing box beam using OV-10A aircraft criteria was accomplished. The baseline design of this box was developed in a series of studies of other advanced composite materials: glass/epoxy, boron/epoxy, and boron/polyimide. The use of this basic design permits ready comparison of the performance of graphite/polyimide with these materials. Modifications to the baseline composite design were made only in those areas effected by the change of materials. Processing studies of graphite fiber polyimide resins systems resulted in the selection of a Modmor II/Gemon L material.

  5. Technology transfer of CABAL-12 glass to support the fabrication of the MC4050 power supply

    SciTech Connect

    Watkins, R.D.; Kovacic, L.; Wengert, P.R.; Douglas, S.C.; Brow, R.K.; Burchett, S.N.; Street, H.K.

    1988-10-01

    The CABAL-12 glass technology was successfully transferred to private industry to support the fabrication of ambient-temperature lithium batteries for the MC4050 Power Supply. This report reviews all of the activities conducted, including (1) commercial production of CABAL-12 glass; (2) commercial preform fabrication; (3) corrosion studies of commercial CABAL-12 in both lithium/electrolyte and aqueous environments; (4) stress analyses of headers with CABAL-12 glass; and (5) commercial fabrication of CABAL-12 seals. 14 refs., 22 figs., 12 tabs.

  6. JWST Mirror Technology Development Results

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2007-01-01

    Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.

  7. VLBI Technology Development at SHAO

    NASA Technical Reports Server (NTRS)

    Zhang, Xiuzhong; Shu, Fengchun; Xiang, Ying; Zhu, Renjie; Xu, Zhijun; Chen, Zhong; Zheng, Weimin; Luo, Jintao; Wu, Yajun

    2010-01-01

    VLBI technology development made significant progress at SHAO in the last few years. The development status of the Chinese DBBC, the software and FPGA-based correlators, and the new VLBI antenna, as well as VLBI applications are summarized in this paper.

  8. A Low-Voltage Rotary Actuator Fabricated Using a Five-Level Polysilicon Surface Micromachining Technology

    SciTech Connect

    JAKUBCZAK II,JEROME F.; KRYGOWSKI,THOMAS W.; MILLER,SAMUEL L.; RODGERS,M. STEVEN; SNIEGOWSKI,JEFFRY J.

    1999-09-22

    The design, fabrication and characterization of a low-voltage rotary stepper motor are presented in this work. Using a five-level polysilicon MEMS technology, steps were taken to increase the capacitance over previous stepper motor designs to generate high torque at low voltages. A low-friction hub was developed to minimize frictional loads due to rubbing surfaces, producing an estimated resistive torque of about 6 pN-m. This design also allowed investigations into the potential benefit of using hard materials such as silicon nitride for lining of both the stationary and rotating hub components. The result is an electrostatic stepper motor capable of operation at less than six volts.

  9. Development and Coil Fabrication for the LARP 3.7-m Long Nb3Sn Quadrupole

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Jochen, G.; Kashikhin, V.V.; Kovach, P.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore,, J.; Nobreaga, F.; Novitsky, I.; Peggs, S.; Prestemon, S.; Sabbi, G. L.; Schmalzle, J.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A. V.

    2008-08-17

    The U.S. LHC Accelerator Research Program (LARP) has started the fabrication of 3.7-m long Nb{sub 3}Sn quadrupole models. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb{sub 3}Sn technology is mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, developed at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb{sub 3}Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.

  10. Development and coil fabrication for the LARP 3.7-m long Nb3Sn quadruple

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Felice, H.; Ferracin, P.; Ghosh, A.; /Fermilab /Brookhaven /LBL, Berkeley /Texas A-M

    2009-02-01

    The U.S. LHC Accelerator Research Program (LARP) has started the fabrication of 3.7-m long Nb{sub 3}Sn quadrupole models. The Long Quadrupoles (LQ) are 'Proof-of-Principle' magnets which are to demonstrate that Nb3Sn technology is mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, developed at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. The plans for the LQ R&D and a design update are presented and discussed in this paper. The challenges of fabricating long accelerator-quality Nb{sub 3}Sn coils are presented together with the solutions adopted for the LQ coils (based on the TQ experience). During the fabrication and inspection of practice coils some problems were found and corrected. The fabrication at BNL and FNAL of the set of coils for the first Long Quadrupole is in progress.

  11. Residual Strength Characterization of Unitized Structures Fabricated Using Different Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Smith, S. W.; Johnston, W. M.

    2008-01-01

    This viewgraph presentation describes residual strength analysis of integral structures fabricated using different manufacturing procedures. The topics include: 1) Built-up and Integral Structures; 2) Development of Prediction Methodology for Integral Structures Fabricated using different Manufacturing Procedures; 3) Testing Facility; 4) Fracture Parameters Definition; 5) Crack Branching in Integral Structures; 6) Results and Discussion; and 7) Concluding Remarks.

  12. Space technology developments in Malaysia:

    NASA Astrophysics Data System (ADS)

    Sabirin, A.

    The venture of space is, by nature, a costly one. However, exploring space is not just an activity reserved for international superpowers. Smaller and emerging space nations, some with burgeoning space programs of their own, can play a role in space technology development and interplanetary exploration, sometimes simply by just being there. Over the past four decades, the range of services delivered by space technologies in Malaysia has grown enormously. For many business and public services, space based technologies have become the primary means of delivery of such services. Space technology development in Malaysia started with Malaysia's first microsatellite, TiungSAT-1. TiungSAT-1 has been successfully launched from the Baikonur Cosmodrome, Kazakhstan on the 26th of September 2000 on a Russian-Ukrainian Dnepr rocket. There have been wide imaging applications and information extraction using data from TiungSAT-1. Various techniques have been applied to the data for different applications in environmental assessment and monitoring as well as resource management. As a step forward, Malaysia has also initiated another space technology programme, RAZAKSAT. RAZAKSAT is a 180kg class satellite designed to provide 2.5meter ground sampling distance resolution imagery on a near equatorial orbit. Its mission objective is to demonstrate the capability of a medium high resolution remote sensing camera using a cost effective small satellite platform and a multi-channel linear push-broom electro-optical instrument. Realizing the immense benefits of space technology and its significant role in promoting sustainable development, Malaysia is committed to the continuous development and advancement of space technology within the scope of peaceful use of outer space and boosting its national economic growth through space related activities.

  13. Fabrication of Optical Devices Based on Printable Photonics Technology and Its Application for Biosensor

    NASA Astrophysics Data System (ADS)

    Endo, Tatsuro; Okuda, Norimichi; Yanagida, Yasuko; Tanaka, Satoru; Hatsuzawa, Takeshi

    The specific optical characteristics which can be observed nanostructured optical device have great potentials for applying to several applications such as lifescience, optical communications, and data storage. Application of nanostrcutured optical device to industry, we suggest “printable photonics technology” for fabrication of nanostructured optical device based on nanoimprint lithography (NIL). In this study, using printable photonics technology, fabrication of flexible photonic crystal (PC) and its application for biosensor was performed. Using printable photonics technology-based PC for biosensing application, high sensitive detection of protein adsorption (detection limit: 1 pg/ml) could be detected.

  14. Lost Circulation Technology Development Status

    SciTech Connect

    Glowka, David A.; Schafer, Diane M.; Loeppke, Glen E.; Scott, Douglas D.; Wernig, Marcus D.; Wright, Elton K.

    1992-03-24

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the U.S. Department of Energy. The goal of the program is to reduce lost circulation costs by 30-50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1991-March, 1992.

  15. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  16. Night vision device technology development

    SciTech Connect

    Funsten, H.; Nordholt, J.; Suszcynsky, D.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop microchannel plate (MCP) technologies for enhancement of night vision device (NVD) capabilities. First, segmented microchannel plates with independent gain control to minimize loss of low level light images in the presence of a bright light source (e.g., battlefield lasers, flares, and headlights) need to be developed. This enables, for example, enhanced vision capabilities during night operations in, for example, a city environment and continuous capability of aviators to see the horizon, nearground obstructions, and ground targets. Furthermore, curved microchannel plate technology to increase the field of view of NVDs while minimizing optical aberrations needs to be developed and applied. This development would significantly enhance peripheral vision capabilities of aviators and result in easier adaptation of the human eye to NVDs.

  17. Development and fabrication of heat-sterilizable inhalation therapy equipment

    NASA Technical Reports Server (NTRS)

    Irons, A. S.

    1974-01-01

    The development of a completely heat sterilizable intermittent positive pressure breathing (IPPB) ventilator in an effort to reduce the number of hospital acquired infections is reported. After appropriate changes in materials and design were made, six prototype units were fabricated and were successfully field tested in local hospitals. Most components of the modified ventilators are compatible with existing machines. In all but a few instances, such as installation of bacteria-retentive filters and a modified venturi, the change over from non-heat-sterilizable to sterilizable units was accomplished by replacement of heat labile materials with heat stable materials.

  18. Development of molded, coated fabric joints: Fabric construction criteria for a spacesuit elbow joint

    NASA Technical Reports Server (NTRS)

    Olson, L. H.

    1981-01-01

    The design and fabrication of a molded, coated fabric elbow joint capable of operating reliably at 8 psi internal pressure for extended periods of flexure is considered. The overall design of the joint includes: (1) selection of heatsettable fiber of sufficient strengths; (2) choosing an optimum fabric construction; (3) a fatigue resistant; flexible coating; and (4) a molding technique. A polyester yarn of type 56 Dacron and a urethane coating system were selected. The relationships between yarn and weave parameters which lead to an optimum fabric construction for the 8 psi elbow joint are defined.

  19. Innovative molding technologies for the fabrication of components for microsystems

    NASA Astrophysics Data System (ADS)

    Piotter, Volker; Benzler, Tobias; Hanemann, Thomas; Woellmer, Heinz; Ruprecht, Robert; Hausselt, Juergen H.

    1999-03-01

    Economic success of microsystems technology requires a wide range of materials as well as the related manufacturing processes. A suitable technology for medium/large scale production is micro injection molding which actually allows the manufacturing of plastic microstructures with 20 microns minimum thickness, structural details of approximately 0.2 microns or maximum aspect ratios of more than 20. These microstructures are, for example, applied as components in micro optics, micro fluidics or minimally invasive surgery. This is demonstrated by microparts that are currently available or will be available soon. For higher economic efficiency and cost reduction, fully electrical injection modeling machines of higher accuracy have been applied. Also, micro insert injection molding reduces mounting costs. Manufacturing of metal or ceramic microparts by powder injection modeling allows large-scale production of complex shaped microstructures with a wide range of materials. Typical examples are sintered structured like stepped LIGA- gear wheels with minimal dimensions of 50 microns in different metal and ceramic materials. Micro Precision Casting originating from conventional investment casting is a suitable process for small/medium-scale production. Examples are microturbine housings made of precious metal alloys. An approach similar to rapid prototyping applies photocurable reactive resins. Photoinduced molding of low viscous resins under ambient conditions leads to significantly reduced cycle times. Additionally, rapid testing of new composite materials can be performed easily. Microcomponents molded from polymers and different composites like dyes with nonlinear optical properties and nanosized ceramic powders will be presented.

  20. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks. PMID:26726935

  1. Micro-fabricated packed gas chromatography column based on laser etching technology.

    PubMed

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks.

  2. Technology and Motor Ability Development

    ERIC Educational Resources Information Center

    Wang, Lin; Lang, Yong; Luo, Zhongmin

    2014-01-01

    As a new member joining the technology family, active video games have been developed to promote physical exercise. This working-in-progress paper shares an ongoing project on examining the basic motor abilities that are enhanced through participating in commercially available active video games. [For the full proceedings see ED557181.

  3. An International Development Technology Center

    ERIC Educational Resources Information Center

    Morgan, Robert P.

    1969-01-01

    Main focus of the Center is "the application of science and technology to the solution of problems faced by people in less-developed areas of the world. Adapted from paper presented at ASEE Annual Meeting, The Pennsylvania State University, June, 1969. (Author/WM)

  4. Unshrouded Impeller Technology Development Status

    NASA Technical Reports Server (NTRS)

    Droege, Alan R.; Williams, Robert W.; Garcia, Roberto

    2000-01-01

    To increase payload and decrease the cost of future Reusable Launch Vehicles (RLVs), engineers at NASA/MSFC and Boeing, Rocketdyne are developing unshrouded impeller technology for application to rocket turbopumps. An unshrouded two-stage high-pressure fuel pump is being developed to meet the performance objectives of a three-stage shrouded pump. The new pump will have reduced manufacturing costs and pump weight. The lower pump weight will allow for increased payload.

  5. Photo sensor array technology development

    NASA Technical Reports Server (NTRS)

    Rossman, M. W.; Young, V. F.; Beall, J. R.

    1977-01-01

    The development of an improved capability photo sensor array imager for use in a Viking '75 type facsimile camera is presented. This imager consists of silicon photodiodes and lead sulfide detectors to cover a spectral range from 0.4 to 2.7 microns. An optical design specifying filter configurations and convergence angles is described. Three electronics design approaches: AC-chopped light, DC-dual detector, and DC-single detector, are investigated. Experimental and calculated results are compared whenever possible using breadboard testing and tolerance analysis techniques. Results show that any design used must be forgiving of the relative instability of lead sulfide detectors. A final design using lead sulfide detectors and associated electronics is implemented by fabrication of a hybrid prototype device. Test results of this device show a good agreement with calculated values.

  6. Technology development life cycle processes.

    SciTech Connect

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  7. Development of Self-Expanding Idealflo (tm) Sandcontrol Technology

    SciTech Connect

    Jeff A. Spray

    2007-09-30

    Development of Self-Expanding Idealflo{trademark} Sandscreen Technology was a successfully executed design-by-analysis through field demonstration project. This final report is presented as a two-part progression of concept development and manufacturing activities. The first part, conceptual development activities, discusses novel specifications creation and non-linear analytical design generation. The second part, manufacturing, contains achievement related information for detailed-design, fabrication, mechanical testing, and field demonstration activities.

  8. Night vision device technology development

    SciTech Connect

    Funsten, H.; Nordholt, J.; Suszcynsky, D.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop microchannel plate (MCP) technologies for enhancement of night vision device (NVD) capabilities. First, the authors addressed the need for segmented microchannel plates with independent gain control to minimize loss of low level light images in the presence of a bright light source (e.g., battlefield lasers, flares, and headlights). This would enable, for example, enhanced vision capabilities during night operations in a city environment and continuous capability of aviators to see the horizon, near-ground obstructions, and ground targets. Second, the authors addressed the need for curved microchannel plate technology to increase the field of view of NVDs while minimizing optical aberrations. This development would significantly enhance peripheral vision capabilities of aviators and result in easier adaptation of the human eye to NVDs. The authors have developed two technologies to overcome these problems, and they have initiated a collaborative effort with an industrial partner to develop a proof-of-principle prototype.

  9. Fabrication technology of chemiluminescent sensitive elements for rocket-borne ozone detectors

    NASA Astrophysics Data System (ADS)

    Kononkov, V. A.; Lelikova, A. I.; Perov, S. P.

    Attention is given to the technology behind the fabrication of chemiluminescent sensitive elements for rocket-borne ozone detectors. High-silica microporous glass is the basic material required for these detectors. It is noted that the luminophor consists of rhodamine-C and gallic acid, and that the desired ratio of these components depends on the sensitivity of a particular specimen to ozone.

  10. Microscale Technologies and Modular Approaches for Tissue Engineering: Moving toward the Fabrication of Complex Functional Structures

    PubMed Central

    Gauvin, Robert; Khademhosseini, Ali

    2011-01-01

    Micro- and nanoscale technologies have emerged as powerful tools in the fabrication of engineered tissues and organs. Here we focus on the application of these techniques to improve engineered tissue architecture and function using modular and directed self-assembly and highlight the emergence of this new class of materials for biomedical applications. PMID:21627163

  11. Graphite/epoxy composite stiffened panel fabrication development

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.

    1984-01-01

    This report describes the manufacturing development procedures used to fabricate a series of carbon/epoxy panels with integrally molded stiffeners. Panel size was started at 6 inches by 18 inches and one stiffener and increased to 30 inches by 60 inches and six integral stiffeners. Stiffener concepts were optimized for minimum weight (or mass) to carry stress levels from 1500 lbs/inch to 25,000 lbs/inch compression load. Designs were created and manufactured with a stiffener configuration of integrally molded hat, J, I, sine wave I, solid blade, and honeycomb blade shapes. Successful and unsuccessful detail methods of tooling, lay-up methods, and bagging methods are documented. Recommendations are made for the best state-of-the-art manufacturing technique developed for type of stiffener construction.

  12. High energy density capacitors fabricated by thin film technology

    SciTech Connect

    Barbee, T W; Johnson, G W; Wagner, A V

    1999-03-30

    Low energy density in conventional capacitors severely limits efforts to miniaturize power electronics and imposes design limitations on electronics in general. We have successfully applied physical vapor deposition technology to greatly increase capacitor energy density. The high dielectric breakdown strength we have achieved in alumina thin films allows high energy density to be achieved with this moderately low dielectric constant material. The small temperature dependence of the dielectric constant, and the high reliability, high resistivity, and low dielectric loss of Al 2 O 3 , make it even more appealing. We have constructed single dielectric layer thin film capacitors and shown that they can be stacked to form multilayered structures with no loss in yield for a given capacitance. Control of film growth morphology is critical for achieving the smooth, high quality interfaces between metal and dielectric necessary for device operation at high electric fields. Most importantly, high rate deposition with extremely low particle generation is essential for achieving high energy storage at a reasonable cost. This has been achieved by reactive magnetron sputtering in which the reaction to form the dielectric oxide has been confined to the deposition surface. By this technique we have achieved a yield of over 50% for 1 cm 2 devices with an energy density of 14 J per cubic centimeter of Al 2 O 3 dielectric material in 1.2 kV, 4 nF devices. By further reducing defect density and increasing the dielectric constant of the material, we will be able to increase capacitance and construct high energy density devices to meet the requirements of applications in power electronics.

  13. Nano polymeric carrier fabrication technologies for advanced antitumor therapy.

    PubMed

    Li, Wei; Zhao, Mengxin; Ke, Changhong; Zhang, Ge; Zhang, Li; Li, Huafei; Zhang, Fulei; Sun, Yun; Dai, Jianxin; Wang, Hao; Guo, Yajun

    2013-01-01

    Comparing with the traditional therapeutic methods, newly developed cancer therapy based on the nanoparticulates attracted extensively interest due to its unique advantages. However, there are still some drawbacks such as the unfavorable in vivo performance for nanomedicine and undesirable tumor escape from the immunotherapy. While as we know that the in vivo performance strongly depended on the nanocarrier structural properties, thus, the big gap between in vitro and in vivo can be overcome by nanocarrier's structural tailoring by fine chemical design and microstructural tuning. In addition, this fine nanocarrier's engineering can also provide practical solution to solve the problems in traditional cancer immunotherapy. In this paper, we review the latest development in nanomedicine, cancer therapy, and nanoimmunotherapy. We then give an explanation why fine nanocanrrie's engineering with special focus on the unique pathology of tumor microenvironments and properties of immunocells can obviously promote the in vivo performance and improve the therapeutic index of nanoimmunotherapy.

  14. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    NASA Astrophysics Data System (ADS)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  15. Advanced technology satellite demodulator development

    NASA Technical Reports Server (NTRS)

    Ames, Stephen A.

    1989-01-01

    Ford Aerospace has developed a proof-of-concept satellite 8 phase shift keying (PSK) modulation and coding system operating in the Time Division Multiple Access (TDMA) mode at a data range of 200 Mbps using rate 5/6 forward error correction coding. The 80 Msps 8 PSK modem was developed in a mostly digital form and is amenable to an ASIC realization in the next phase of development. The codec was developed as a paper design only. The power efficiency goal was to be within 2 dB of theoretical at a bit error rate (BER) of 5x10(exp 7) while the measured implementation loss was 4.5 dB. The bandwidth efficiency goal was 2 bits/sec/Hz while the realized bandwidth efficiency was 1.8 bits/sec/Hz. The burst format used a preamble of only 40 8 PSK symbol times including 32 symbols of all zeros and an eight symbol unique word. The modem and associated special test equipment (STE) were fabricated mostly on a specially designed stitch-weld board although a few of the highest rate circuits were built on printed circuit cards. All the digital circuits were ECL to support the clock rates of from 80 MHz to 360 MHz. The transmitter and receiver matched filters were square-root Nyquist bandpass filters realized at the 3.37 GHz i.f. The modem operated as a coherent system although no analog phase locked (PLL) loop was employed. Within the budgetary constraints of the program, the approach to the demodulator has been proven and is eligible to proceed to the next phase of development of a satellite demodulator engineering model. This would entail the development of an ASIC version of the digital portion of the demodulator, and MMIC version of the quadrature detector, and SAW Nyquist filters to realize the bandwidth efficiency.

  16. Proteomics: Technology Development and Applications

    PubMed Central

    Jayaraman, Arul

    2009-01-01

    Technology development in and the application of proteomics are emerging areas among the chemical engineers and others who presented at the 2008 American Institute of Chemical Engineers (AIChE) Annual Meeting. Overall, the centennial meeting offered a broad current perspective on the discipline of chemical engineering as it enters its second century. Biomedical and biochemical engineering continue to grow as important facets of the discipline. Within these, the value and applicability of proteomics were demonstrated in a number of interesting presentations. This year, as in the recent past, the AIChE Annual meeting was held in conjunction with the American Electrophoresis Society (AES) Annual Meeting. AES presenters offered further academic and industrial viewpoints on the still-developing role of proteomics and proteomic technologies in biological and clinical analyses. PMID:19210124

  17. Packaging Technology Designed, Fabricated, and Assembled for High-Temperature SiC Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2003-01-01

    A series of ceramic substrates and thick-film metalization-based prototype microsystem packages designed for silicon carbide (SiC) high-temperature microsystems have been developed for operation in 500 C harsh environments. These prototype packages were designed, fabricated, and assembled at the NASA Glenn Research Center. Both the electrical interconnection system and the die-attach scheme for this packaging system have been tested extensively at high temperatures. Printed circuit boards used to interconnect these chip-level packages and passive components also are being fabricated and tested. NASA space and aeronautical missions need harsh-environment, especially high-temperature, operable microsystems for probing the inner solar planets and for in situ monitoring and control of next-generation aeronautical engines. Various SiC high-temperature-operable microelectromechanical system (MEMS) sensors, actuators, and electronics have been demonstrated at temperatures as high as 600 C, but most of these devices were demonstrated only in the laboratory environment partially because systematic packaging technology for supporting these devices at temperatures of 500 C and beyond was not available. Thus, the development of a systematic high-temperature packaging technology is essential for both in situ testing and the commercialization of high-temperature SiC MEMS. Researchers at Glenn developed new prototype packages for high-temperature microsystems using ceramic substrates (aluminum nitride and 96- and 90-wt% aluminum oxides) and gold (Au) thick-film metalization. Packaging components, which include a thick-film metalization-based wirebond interconnection system and a low-electrical-resistance SiC die-attachment scheme, have been tested at temperatures up to 500 C. The interconnection system composed of Au thick-film printed wire and 1-mil Au wire bond was tested in 500 C oxidizing air with and without 50-mA direct current for over 5000 hr. The Au thick

  18. Fabrication of a resin appliance with alloy components using digital technology without an analog impression.

    PubMed

    Al Mortadi, Noor; Jones, Quentin; Eggbeer, Dominic; Lewis, Jeffrey; Williams, Robert J

    2015-11-01

    The aim of this study was to fabricate a resin appliance incorporating "wire" components without the use of an analog impression and dental casts using an intraoral scanner and computer technology to build the appliance. This unique alignment of technology offers an enormous reduction in the number of fabrication steps when compared with more traditional methods of manufacture. The prototype incorporated 2 Adams clasps and a fitted labial bow. The alloy components were built from cobalt-chromium in an initial powdered form using established digital technology methods and then inserted into a build of a resin base plate. This article reports the first known use of computer-aided design and additive manufacture to fabricate a resin and alloy appliance, and constitutes proof of the concept for such manufacturing. The original workflow described could be seen as an example for many other similar appliances, perhaps with active components. The scan data were imported into an appropriate specialized computer-aided design software, which was used in conjunction with a force feedback (haptic) interface. The appliance designs were then exported as stereolithography files and transferred to an additive manufacturing machine for fabrication. The results showed that the applied techniques may provide new manufacturing and design opportunities in orthodontics and highlights the need for intraoral-specific additive manufacture materials to be produced and tested for biocompatibility compliance. In a trial, the retainer was fitted orally and judged acceptable by the clinician according to the typical criteria when placing such appliances in situ. PMID:26522047

  19. Development and fabrication of improved power transistor switches

    NASA Technical Reports Server (NTRS)

    Hower, P. L.; Chu, C. K.

    1979-01-01

    A new class of high-voltage power transistors was achieved by adapting present interdigitated thyristor processing techniques to the fabrication of npn Si transistors. Present devices are 2.3 cm in diameter and have V sub CEO (sus) in the range of 400 to 600V. V sub CEO (sus) = 450V devices were made with an (h sub FE)(I sub C) product of 900A at V sub CE = 2.5V. The electrical performance obtained was consistent with the predictions of an optimum design theory specifically developed for power switching transistors. The device design, wafer processing, and assembly techniques are described. Experimental measurements of the dc characteristics, forward SOA, and switching times are included. A new method of characterizing the switching performance of power transistors is proposed.

  20. Silicon Web Process Development. [for solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1979-01-01

    Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.

  1. Composite transport wing technology development

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.

    1988-01-01

    The design, fabrication, testing, and analysis of stiffened wing cover panels to assess damage tolerance criteria are discussed. The damage tolerance improvements were demonstrated in a test program using full-sized cover panel subcomponents. The panels utilized a hard skin concept with identical laminates of 44-percent 0-degree, 44-percent plus or minus 45-degree, and 12-percent 90-degree plies in the skins and stiffeners. The panel skins were impacted at midbay between the stiffeners, directly over the stiffener, and over the stiffener flange edge. The stiffener blades were impacted laterally. Impact energy levels of 100 ft-lb and 200 ft-lb were used. NASTRAN finite-element analyses were performed to simulate the nonvisible damage that was detected in the panels by nondestructive inspection. A closed-form solution for generalized loading was developed to evaluate the peel stresses in the bonded structure. Two-dimensional delamination growth analysis was developed using the principle of minimum potential energy in terms of closed-form solution for critical strain. An analysis was conducted to determine the residual compressive stress in the panels after impact damage, and the analytical predictions were verified by compression testing of the damaged panels.

  2. Magnesium Research and Technology Development

    SciTech Connect

    Nyberg, Eric A.; Joost, William; Smith, Mark T.

    2009-12-30

    The Magnesium Research and Technical Development (MR&TD) project supports efforts to increase using magnesium in automotive applications, including improving technology, lowering costs and increasing the knowledge needed to enable alloy and manufacturing process optimization. MR&TD supports the U.S. Department of Energy (DOE)/United States Automotive Materials Partnership (USAMP) Magnesium Front End Research and Development (MFERD) project in collaboration with China and Canada. The MR&TD projects also maintains the magnesium bibliographic database at magnesium.pnl.gov.

  3. New developments in fertilizer technology

    SciTech Connect

    Not Available

    1985-10-01

    Objective of TVA's fertilizer technology demonstrations is to make results from research, development, and demonstration programs available to industry to facilitate their adoption. In our research and development work, we are continuing to emphasize projects that involve improving efficiency of nitrogen utilization, efficiently using US minerals and raw materials, avoiding environmental damage in fertilizer production and use, conserving energy, and using lower-cost and/or by-product raw materials and intermediates. Our program is balanced between work on dry or granular products and liquids.

  4. Interleaved arrays antenna technology development

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Phase one and two of a program to further develop and investigate advanced graphite epoxy waveguides, radiators, and components with application to space antennas are discussed. The objective of the two phases were to demonstrate mechanical integrity of a small panel of radiators and parts procured under a previous contract and to develop alternate designs and applications of the technology. Most of the emphasis was on the assembly and test of a 5 x 5 element module. This effort was supported by evaluation of adhesives and waveguide joint configurations. The evaluation and final assembly considered not only mechanical performance but also producibility in large scale.

  5. Mode-hop-free photonic crystal laser fabricated by holographic exposure technology.

    PubMed

    Zhang, Can; Wang, Baojun; Liang, Song; Zhu, Hongliang; Wang, Wei

    2014-05-15

    A mode-hop-free single-mode laser with a two-dimensional photonic crystal was demonstrated. In the device, the photonic crystal was realized by double holographic exposure technology. This novel procedure simplifies the fabrication of such structures greatly. The design of a reverse junction in the photonic crystal layer induces a partial gain coupling into the laser, which could break the symmetry of the transmission spectrum and realize stable single-mode lasing of the laser. The fabricated device has a high single-mode stability and side-mode suppression ratio of over 45 dB without mode hop at a relatively wide injected current range. The measurement results indicate that the laser with a simple fabrication process is promising as a stable single-mode and high-power light source in optical communication systems.

  6. Technology Development for Nickel X-Ray Optics Enhancement

    NASA Technical Reports Server (NTRS)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  7. Children's Developing Understanding of Technology

    ERIC Educational Resources Information Center

    Mawson, Brent

    2010-01-01

    The issue of children's conceptions of technology and technology education is seen as important by technology educators. While there is a solid body of literature that documents groups of children's understandings of technology and technology education, this is primarily focused on snapshot studies of children aged 11 and above. There is little…

  8. Lunar Dust Mitigation Technology Development

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Deluane, Paul B.

    2008-01-01

    NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.

  9. Geothermal technology development at Sandia

    SciTech Connect

    Dunn, J.C.

    1987-04-01

    Geothermal technology development at Sandia consists of work in two major project areas - Hard Rock Penetration and Magma Energy Extraction. The Hard Rock Penetration Program is directed at reducing drilling costs for geothermal wells. Current activities are focused in three areas: borehole mechanics, rock penetration mechanics, and industry cost-shared research. The Magma Energy Extraction Program is investigating the engineering feasibility of utilizing crustal magma bodies as a source of energy. Work is divided into four major areas: geophysics, geochemistry/materials, drilling, and energy extraction.

  10. Mars rover technology development requirements

    NASA Technical Reports Server (NTRS)

    Bedard, Roger; Cunningham, Glenn; Gershman, Robert; Pivirotto, Donna; Wilcox, Brian

    1988-01-01

    The technology development requirements for various Mars rover range capabilities are discussed, focusing on local navigation of the rover. The capabilities of two methods are compared. In one method, operators on the earth view stereo pictures sent by the rover and determine short traverse paths which the rover follows. The other method achieves more autonomous capability by using computer vision from orbital imagery with approximate long routes commanded from earth. The locomotion, navigation, ground operations, computation, power, thermal control, communications, sample acquisition, and analysis and preservation requirements are examined.

  11. Fabrication of an implant-supported overdenture using CAD/CAM technology: a clinical report.

    PubMed

    Rinke, Sven; Ziebolz, Dirk

    2013-02-01

    This case report describes a new method for the fabrication of implant-supported overdentures that are rigidly retained by custom tapered abutments milled from commercially pure titanium using CAD/CAM technology. The dentition of a 60-year-old woman was restored with six implants in the edentulous maxilla. An implant-supported overdenture retained by custom tapered abutments was fabricated using CAD/CAM technology. Screw-retained abutments were designed and milled with a taper of 6 degrees. The reinforcing metallic denture base with integrated secondary crowns, exactly fitting on the tapered abutments, was fabricated from the same data set. The secondary structures could be seated tensionfree on the six abutments, creating friction in the final position. No clinical complications were observed at the 12-month follow-up examination, and the patient remained satisfied with the function and esthetics of the restoration. This case demonstrates the practicality of a fully CAD/CAM fabrication of an implant-supported overdenture retained by friction only. Controlled clinical studies are needed to evaluate the long-term performance of this type of restoration.

  12. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    PubMed

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research.

  13. Technology Development for NASA Mars Missions

    NASA Technical Reports Server (NTRS)

    Hayati, Samad

    2005-01-01

    A viewgraph presentation on technology development for NASA Mars Missions is shown. The topics include: 1) Mars mission roadmaps; 2) Focus and Base Technology programs; 3) Technology Infusion; and 4) Feed Forward to Future Missions.

  14. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    SciTech Connect

    Wang, Juwen; Lewandowski, James; Van Pelt, John; Yoneda, Charles; Gudkov, Boris; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu; /KEK, Tsukuba

    2012-07-03

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed.

  15. Clinical outcome of metal-ceramic crowns fabricated with laser-sintering technology.

    PubMed

    Abou Tara, Milia; Eschbach, Stephanie; Bohlsen, Frank; Kern, Matthias

    2011-01-01

    This study evaluated the clinical outcome of posterior single-unit metal-ceramic crowns fabricated using computer-aided design/computer-assisted manufacture laser-sintering technology. Sixty restorations were placed in 39 patients and cemented with glass-ionomer cement. Follow-ups were performed annually. During a mean observation period of 47 months, one restoration was regarded a dropout, one crown failed (biologic failure), and one debonded. One abutment tooth had to be treated endodontically, and three teeth were treated because of caries. No further technical complications, eg, veneering ceramic chipping, occurred during the observation period. The results suggest that the clinical outcome of posterior single-unit metal-ceramic crowns fabricated using laser-sintering technology is promising.

  16. Energy Storage Technology Development for Space Exploration

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    The National Aeronautics and Space Administration is developing battery and fuel cell technology to meet the expected energy storage needs of human exploration systems. Improving battery performance and safety for human missions enhances a number of exploration systems, including un-tethered extravehicular activity suits and transportation systems including landers and rovers. Similarly, improved fuel cell and electrolyzer systems can reduce mass and increase the reliability of electrical power, oxygen, and water generation for crewed vehicles, depots and outposts. To achieve this, NASA is developing non-flow-through proton-exchange-membrane fuel cell stacks, and electrolyzers coupled with low permeability membranes for high pressure operation. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments over the past year include the fabrication and testing of several robust, small-scale non-flow-through fuel cell stacks that have demonstrated proof-of-concept. NASA is also developing advanced lithium-ion battery cells, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiatedmixed- metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety.

  17. Solid polymer electrolyte (SPE) fuel cell technology program, phase 1/1A. [design and fabrication

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte fuel cell was studied for the purpose of improving the characteristics of the technology. Several facets were evaluated, namely: (1) reduced fuel cell costs; (2) reduced fuel cell weight; (3) improved fuel cell efficiency; and (4) increased systems compatibility. Demonstrated advances were incorporated into a full scale hardware design. A single cell unit was fabricated. A substantial degree of success was demonstrated.

  18. Orbital transfer vehicle engine technology: Baffled injector design, fabrication, and verification

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.

    1991-01-01

    New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. Supporting tasks for the design of a dual expander cycle engine thrust chamber design are documented. The purpose of the studies was to research the materials used in the thrust chamber design, the supporting fabrication methods necessary to complete the design, and the modification of the injector element for optimum injector/chamber compatibility.

  19. Energy efficient engine high-pressure turbine single crystal vane and blade fabrication technology report

    NASA Technical Reports Server (NTRS)

    Giamei, A. F.; Salkeld, R. W.; Hayes, C. W.

    1981-01-01

    The objective of the High-Pressure Turbine Fabrication Program was to demonstrate the application and feasibility of Pratt & Whitney Aircraft-developed two-piece, single crystal casting and bonding technology on the turbine blade and vane configurations required for the high-pressure turbine in the Energy Efficient Engine. During the first phase of the program, casting feasibility was demonstrated. Several blade and vane halves were made for the bonding trials, plus solid blades and vanes were successfully cast for materials evaluation tests. Specimens exhibited the required microstructure and chemical composition. Bonding feasibility was demonstrated in the second phase of the effort. Bonding yields of 75 percent for the vane and 30 percent for the blade were achieved, and methods for improving these yield percentages were identified. A bond process was established for PWA 1480 single crystal material which incorporated a transient liquid phase interlayer. Bond properties were substantiated and sensitivities determined. Tooling die materials were identified, and an advanced differential thermal expansion tooling concept was incorporated into the bond process.

  20. A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology.

    PubMed

    Wilpers, Guido; See, Patrick; Gill, Patrick; Sinclair, Alastair G

    2012-09-01

    The coherent control of quantum-entangled states of trapped ions has led to significant advances in quantum information, quantum simulation, quantum metrology and laboratory tests of quantum mechanics and relativity. All of the basic requirements for processing quantum information with arrays of ion-based quantum bits (qubits) have been proven in principle. However, so far, no more than 14 ion-based qubits have been entangled with the ion-trap approach, so there is a clear need for arrays of ion traps that can handle a much larger number of qubits. Traps consisting of a two-dimensional electrode array have undergone significant development, but three-dimensional trap geometries can create a superior confining potential. However, existing three-dimensional approaches, as used in the most advanced experiments with trap arrays, cannot be scaled up to handle greatly increased numbers of ions. Here, we report a monolithic three-dimensional ion microtrap array etched from a silica-on-silicon wafer using conventional semiconductor fabrication technology. We have confined individual (88)Sr(+) ions and strings of up to 14 ions in a single segment of the array. We have measured motional frequencies, ion heating rates and storage times. Our results demonstrate that it should be possible to handle several tens of ion-based qubits with this approach. PMID:22820742

  1. Design and Fabrication of a Radiation-Hard 500-MHz Digitizer Using Deep Submicron Technology

    SciTech Connect

    K.K. Gan; M.O. Johnson; R.D. Kass; J. Moore

    2008-09-12

    The proposed International Linear Collider (ILC) will use tens of thousands of beam position monitors (BPMs) for precise beam alignment. The signal from each BPM is digitized and processed for feedback control. We proposed the development of an 11-bit (effective) digitizer with 500 MHz bandwidth and 2 G samples/s. The digitizer was somewhat beyond the state-of-the-art. Moreover we planned to design the digitizer chip using the deep-submicron technology with custom transistors that had proven to be very radiation hard (up to at least 60 Mrad). The design mitigated the need for costly shielding and long cables while providing ready access to the electronics for testing and maintenance. In FY06 as we prepared to submit a chip with test circuits and a partial ADC circuit we found that IBM had changed the availability of our chosen IC fabrication process (IBM 6HP SiGe BiCMOS), making it unaffordable for us, at roughly 3 times the previous price. This prompted us to change our design to the IBM 5HPE process with 0.35 µm feature size. We requested funding for FY07 to continue the design work and submit the first prototype chip. Unfortunately, the funding was not continued and we will summarize below the work accomplished so far.

  2. Information Communication Technology Planning in Developing Countries

    ERIC Educational Resources Information Center

    Malapile, Sandy; Keengwe, Jared

    2014-01-01

    This article explores major issues related to Information Communication Technology (ICT) in education and technology planning. Using the diffusion of innovation theory, the authors examine technology planning opportunities and challenges in Developing countries (DCs), technology planning trends in schools, and existing technology planning models…

  3. Fabrication process development for high-purity germanium radiation detectors with amorphous semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Looker, Quinn

    High-purity germanium (HPGe) radiation detectors are well established as a valuable tool in nuclear science, astrophysics, and nuclear security applications. HPGe detectors excel in gamma-ray spectroscopy, offering excellent energy resolution with large detector sizes for high radiation detection efficiency. Although a robust fabrication process has been developed, improvement is needed, especially in developing electrical contact and surface passivation technology for position-sensitive detectors. A systematic study is needed to understand how the detector fabrication process impacts detector performance and reliability. In order to provide position sensitivity, the electrical contacts are segmented to form multiple electrodes. This segmentation creates new challenges in the fabrication process and warrants consideration of additional detector effects related to the segmentation. A key area of development is the creation of the electrical contacts in a way that enables reliable operation, provides low electronic noise, and allows fine segmentation of electrodes, giving position sensitivity for radiation interactions in the detector. Amorphous semiconductor contacts have great potential to facilitate new HPGe detector designs by providing a thin, high-resistivity surface coating that is the basis for electrical contacts that block both electrons and holes and can easily be finely segmented. Additionally, amorphous semiconductor coatings form a suitable passivation layer to protect the HPGe crystal surface from contamination. This versatility allows a simple fabrication process for fully passivated, finely segmented detectors. However, the fabrication process for detectors with amorphous semiconductors is not as highly developed as for conventional technologies. The amorphous semiconductor layer properties can vary widely based on how they are created and these can translate into varying performance of HPGe detectors with these contacts. Some key challenges include

  4. Development of a Direct Fabrication Technique for Full-Shell X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Kolodziejczak, J. K.; Griffith, C.; Roche, J.; Smith, W. S.; Kester, T.; Atkins, C.; Arnold, W.; Ramsey, B.

    2016-01-01

    Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. The design of the polishing fixtures for the direct fabrication, the surface figure metrology techniques used and the results of the polishing experiments are presented.

  5. Advanced Electric Traction System Technology Development

    SciTech Connect

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  6. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  7. Excess noise in MWIR photovoltaic detectors fabricated using a new junction formation technology

    NASA Astrophysics Data System (ADS)

    Rais, Muhammad H.; Musca, Charles A.; Dell, John M.; Antoszewski, Jarek; Nener, Brett D.; Faraone, Lorenzo

    1999-10-01

    The current-voltage characteristics measured over a wide temperature range are reported for HgCdTe mid-wavelength IR n-on-p photodiodes fabricated using a novel junction formation technology. The planar homojunction device junctions were formed on LPE grown vacancy doped HgCdTe using a reactive ion etching (RIE) plasma induced conversion process. The zero bias dynamic resistance - junction area product, RoA, was 4.6 X 107 (Omega) .cm2 at 80K an is comparable to the best planar diodes reported using conventional and significantly more complicated ion implantation junction formation technology. Arrhenius plots of RoA exhibit an activation energy equal to the bandgap, Eg, and show that the diodes are diffusion limited for temperatures >= 130K. In order to further compare this junction formation technology to other techniques, a series of temperature dependent 1/f noise measurements were performed. Form this study the activation energy for 1/f noise in the region where the diodes are diffusion limited was found to be 0.7Eg. Energies close to this value have previously been associated with Hg vacancies in HgCdTe. These results are similar to those obtained from high quality HgCdTe photodiodes fabricated using mature ion implantation technology. However, the plasma based technology used in this work is significantly less complex and does not require any high temperature annealing steps.

  8. Development of antimicrobial cotton fabrics using herb loaded nanoparticles.

    PubMed

    Rajendran, R; Radhai, R; Kotresh, T M; Csiszar, Emilia

    2013-01-16

    In the present work ethanol, methanol, petroleum ether and water extracts of the leaves of Ocimum sanctum were screened for their anti-microbial activity by using the agar diffusion method. The minimum inhibitory concentration of the extracts was also measured. The methanol extracts O. sanctum proved to have the maximum antimicrobial effect were loaded inside the sodium alginate chitosan nanoparticles by cation induced controlled gelification method and finished on cotton fabric by pad dry cure method. The average particle size of the nanoparticles was calculated using dynamic light scattering technique. The antimicrobial activity of the fabrics was assessed by using the standard AATCC technique (AATCC 100). The quantitative tests proved that cotton fabrics finished with the methanol extract of O. sanctum loaded nanoparticles possessed remarkable antibacterial activities with excellent wash durability. The study revealed that the herb encapsulated nanoparticle could act as a biocontrol agent against bacteria in fabrics. PMID:23121954

  9. Development of a Fluid Structures Interaction Test Technique for Fabrics

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory G.; Heineck, James T.; Schairer, Edward T.; Mosher, Robert N.; Garbeff, Theodore Joseph

    2012-01-01

    Application of fluid structures interaction (FSI) computational techniques to configurations of interest to the entry, descent and landing (EDL) community is limited by two factors - limited characterization of the material properties for fabrics of interest and insufficient experimental data to validate the FSI codes. Recently ILC Dover Inc. performed standard tests to characterize the static stress-strain response of four candidate fabrics for use in EDL applications. The objective of the tests described here is to address the need for a FSI dataset for CFD validation purposes. To reach this objective, the structural response of fabrics was measured in a very simple aerodynamic environment with well controlled boundary conditions. Two test series were undertaken. The first series covered a range of tunnel conditions and the second focused on conditions that resulted in fabric panel buckling.

  10. SOFC technology development at Rolls-Royce

    NASA Astrophysics Data System (ADS)

    Gardner, F. J.; Day, M. J.; Brandon, N. P.; Pashley, M. N.; Cassidy, M.

    Fuel cells have the prospect for exploiting fossil fuels more benignly and more efficiently than alternatives. The various types represent quite different technologies, with no clear winner, yet. Nevertheless, the high temperature MCFC and solid oxide fuel cell (SOFC) types seem better suited to power generation in a hydrocarbon fuel economy. Presently, the costs of MCFCs and SOFCs are too high to compete directly with contemporary power generation plant. Seeking to overcome the drawbacks of first generation fuel cells, over the past 7 years an innovative second generation SOFC concept has been evolved in the Rolls-Royce Strategic Research Centre, with encouraging results. It is distinguished from other types by the name: Integrated Planar Solid Oxide Fuel Cell (IP-SOFC). It is a family of integrated system concepts supporting product flexibility with evolutionary stretch potential from a common SOFC module. Fabrication of the key component of the IP-SOFC, the "multi-cell membrane electrode assembly (multi-cell MEA) module" carrying many series connected cells with supported electrolyte membranes only 10 to 20 μm thick, has been proved. Development of the internal reforming subsystem, the next big hurdle, is now in hand. Following an outline of its salient features and test results, the methodology and results of recent IP-SOFC stack costing studies are presented, and the continuing research and development programme indicated.

  11. Advanced Refrigerator/Freezer Technology Development. Technology Assessment

    NASA Technical Reports Server (NTRS)

    Gaseor, Thomas; Hunter, Rick; Hamill, Doris

    1996-01-01

    The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.

  12. Fiber composite materials technology development

    SciTech Connect

    Chiao, T.T.

    1980-10-23

    The FY1980 technical accomplishments from the Lawrence Livermore National laboratory (LLNL) for the Fiber Composite Materials Technology Development Task fo the MEST project are summarized. The task is divided into three areas: Engineering data base for flywheel design (Washington University will report this part separately), new materials evaluation, and time-dependent behavior of Kevlar composite strands. An epoxy matrix was formulated which can be used in composites for 120/sup 0/C service with good processing and mechanical properties. Preliminary results on the time-dependent properties of the Kevlar 49/epoxy strands indicate: Fatigue loading, as compared to sustained loading, drastically reduces the lifetime of a Kevlar composie; the more the number of on-off load cycles, the less the lifetime; and dynamic fatigue of the Kevlar composite can not be predicted by current damage theories such as Miner's Rule.

  13. Technology in Sustainable Development Context

    NASA Astrophysics Data System (ADS)

    Uno, Kimio

    The economic and demographic growth in Asia has put increased importance to this part of the world whose contribution to the global community is vital in meeting global challenges. International cooperation in engineering education assumes a pivotal role in providing access to the frontiers of scientific and technological knowledge to the growing youths in the region. The thrust for advancement has been provided by the logic coming from the academic world itself, whereas expectations are high that the engineering education responds to challenges that are coming from outside the universities, such as environmental management, disaster management, and provision of common knowledge platform across disciplinary lines. Some cases are introduced in curriculum development that incorporates fieldwork and laboratory work intended to enhance the ability to cooperate. The new mode is discussed with focus on production, screening, storing/delivery, and leaning phases of knowledge. The strength of shared information will be enhanced through international cooperation.

  14. Low-cost EUV collector development: design, process, and fabrication

    NASA Astrophysics Data System (ADS)

    Venables, Ranju D.; Goldstein, Michael; Engelhaupt, Darell; Lee, Sang H.; Panning, Eric M.

    2007-03-01

    Cost of ownership (COO) is an area of concern that may limit the adoption and usage of Extreme Ultraviolet Lithography (EUVL). One of the key optical components that contribute to the COO budget is the collector. The collectors being fabricated today are based on existing x-ray optic design and fabrication processes. The main contributors to collector COO are fabrication cost and lifetime. We present experimental data and optical modeling to demonstrate a roadmap for optimized efficiency and a possible approach for significant reduction in collector COO. Current state of the art collectors are based on a Wolter type-1 design and have been adapted from x-ray telescopes. It uses a long format that is suitable for imaging distant light sources such as stars. As applied to industrial equipment and very bright nearby sources, however, a Wolter collector tends to be expensive and requires significant debris shielding and integrated cooling solutions due to the source proximity and length of the collector shells. Three collector concepts are discussed in this work. The elliptical collector that has been used as a test bed to demonstrate alternative cost effective fabrication method has been optimized for collection efficiency. However, this fabrication method can be applied to other optical designs as well. The number of shells and their design may be modified to increase the collection efficiency and to accommodate different EUV sources The fabrication process used in this work starts with a glass mandrel, which is elliptical on the inside. A seed layer is coated on the inside of the glass mandrel, which is then followed by electroplating nickel. The inside/exposed surface of the electroformed nickel is then polished to meet the figure and finish requirements for the particular shell and finally coated with Ru or a multilayer film depending on the angle of incidence of EUV light. Finally the collector shell is released from the inside surface of the mandrel. There are

  15. Design and Characterization of a Fully Differential MEMS Accelerometer Fabricated Using MetalMUMPs Technology

    PubMed Central

    Qu, Peng; Qu, Hongwei

    2013-01-01

    This paper presents a fully differential single-axis accelerometer fabricated using the MetalMUMPs process. The unique structural configuration and common-centriod wiring of the metal electrodes enables a fully differential sensing scheme with robust metal sensing structures. CoventorWare is used in structural and electrical design and simulation of the fully differential accelerometer. The MUMPs foundry fabrication process of the sensor allows for high yield, good process consistency and provides 20 μm structural thickness of the sensing element, which makes the capacitive sensing eligible. In device characterization, surface profile of the fabricated device is measured using a Veeco surface profilometer; and mean and gradient residual stress in the nickel structure are calculated as approximately 94.7 MPa and −5.27 MPa/μm, respectively. Dynamic characterization of the sensor is performed using a vibration shaker with a high-end commercial calibrating accelerometer as reference. The sensitivity of the sensor is measured as 0.52 mV/g prior to off-chip amplification. Temperature dependence of the sensing capacitance is also characterized. A −0.021fF/°C is observed. The findings in the presented work will provide useful information for design of sensors and actuators such as accelerometers, gyroscopes and electrothermal actuators that are to be fabricated using MetalMUMPs technology. PMID:23645109

  16. Design and fabrication of an RF GRIN lens using 3D printing technology

    NASA Astrophysics Data System (ADS)

    Allen, J. W.; Wu, B.-I.

    2013-03-01

    Electromagnetic media and metamaterials have been explored in frequency regimes ranging from the acoustic to the visible domain over the past decade. A large part of the design, fabrication and prototyping of such materials has focused on planar structures and devices have been demonstrated primarily for certain propagation directions and/or defined polarization. Here, we present the design of a focusing GRadient INdex (GRIN) lens that operates at RF frequencies and is not polarization constrained. We compare the theoretical and experimental results from this lens designed to operate at X-band and fabricated using 3D printing technology to implement the effective medium. The lens with radially varying refractive index gradient was designed, optimized and analyzed by conducting full-wave simulations finite-element method based software. The permittivity was estimated by effective medium theory and calculated using HFSS®. The optimized design was used to fabricate the GRIN lens with isotropic, inhomogenous dielectric material. The refractive index was designed to match the theoretical results using mixing ratio of air/voids and a polymer. Further, we used the refractive index profile to predict the rays' trajectories and focus length to compare them to those predicted by the FEM simulations. The field distributions were also analyzed to compare performance of the theoretical design to the fabricated lens and were found to be in good agreement with each other.

  17. The development of micromachined gyroscope structure and circuitry technology.

    PubMed

    Xia, Dunzhu; Yu, Cheng; Kong, Lun

    2014-01-14

    This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.

  18. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    PubMed Central

    Xia, Dunzhu; Yu, Cheng; Kong, Lun

    2014-01-01

    This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail. PMID:24424468

  19. Design and fabrication process of silicon micro-calorimeters on simple SOI technology for X-ray spectral imaging

    NASA Astrophysics Data System (ADS)

    Aliane, A.; Agnese, P.; Pigot, C.; Sauvageot, J.-L.; de Moro, F.; Ribot, H.; Gasse, A.; Szeflinski, V.; Gobil, Y.

    2008-09-01

    Several successful development programs have been conducted on infra-red bolometer arrays at the "Commissariat à l'Energie Atomique" (CEA-LETI Grenoble) in collaboration with the CEA-SAp (Saclay); taking advantage of this background, we are now developing an X-ray spectro-imaging camera for next generation space astronomy missions, using silicon only technology. We have developed monolithic silicon micro-calorimeters based on implanted thermistors in an improved array that could be used for future space missions. The 8×8 array consists of a grid of 64 suspended pixels fabricated on a silicon on insulator (SOI) wafer. Each pixel of this detector array is made of a tantalum (Ta) absorber, which is bound by means of indium bump hybridization, to a silicon thermistor. The absorber array is bound to the thermistor array in a collective process. The fabrication process of our detector involves a combination of standard technologies and silicon bulk micro-machining techniques, based on deposition, photolithography and plasma etching steps. Finally, we present the results of measurements performed on these four primary building blocks that are required to create a detector array up to 32×32 pixels in size.

  20. Advanced Technology Development for Active Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark; Cattafesta, Louis N., III; Nishida, Toshikazu; Kurdila, Andrew J.

    2001-01-01

    Objectives include: (1) Develop electro-mechanical/acoustic models of a Helmholtz resonator possessing a compliant diaphragm coupled to a piezoelectric device; (2) Design and fabricate the energy reclamation module and active Helmholtz resonator; (3) Develop and build appropriate energy reclamation/storage circuit; (4) Develop and fabricate appropriate piezoelectric shunt circuit to tune the compliance of the active Helmholtz resonator via a variable capacitor; (5) Quantify energy reclamation module efficiency in a grazing-flow plane wave tube possessing known acoustic energy input; and (6) Quantify actively tuned Helmholtz resonator performance in grazing-flow plane wave tube for a white-noise input

  1. Compact Submillimeter-Wave Receivers Made with Semiconductor Nano-Fabrication Technologies

    NASA Technical Reports Server (NTRS)

    Jung, C.; Thomas, B.; Lee, C.; Peralta, A.; Chattopadhyay, G.; Gill, J.; Cooper, K.; Mehdi, I.

    2011-01-01

    Advanced semiconductor nanofabrication techniques are utilized to design, fabricate and demonstrate a super-compact, low-mass (<10 grams) submillimeter-wave heterodyne front-end. RF elements such as waveguides and channels are fabricated in a silicon wafer substrate using deep-reactive ion etching (DRIE). Etched patterns with sidewalls angles controlled with 1 deg precision are reported, while maintaining a surface roughness of better than 20 nm rms for the etched structures. This approach is being developed to build compact 2-D imaging arrays in the THz frequency range.

  2. Arctic Energy Technology Development Laboratory

    SciTech Connect

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  3. Using imprinting technology to fabricate three-dimensional devices from moulds of thermosetting polymer patterns

    NASA Astrophysics Data System (ADS)

    Chen, Jem-Kun; Ko, Fu-Hsiang; Chan, Chia-Hao; Huang, Chih-Feng; Chang, Feng-Chih

    2006-09-01

    The fabrication of moulds for imprinting can be simplified significantly by using specialized cross-linking polymers to define the pattern on a silicon wafer. Thermosetting polymers (SU-8) can be used to pattern silicon moulds for imprinting technologies because (1) silicon oxide moulds bearing a thermosetting polymer pattern can be obtained using conventional semiconductor technologies and (2) thermosetting polymers have no obvious glass transition temperature (Tg) because of their cross-linked structure, but the hardness decreases significantly when the temperature is above the Tg. In this study, we used Su-8 resist as the thermosetting polymer pattern to obtain moulds on a silicon wafer. We have tested the thermal properties of thermosetting (SU-8) and thermoplastic polymers (22A4) for use as imprinting patterns and imprinted resists. We fabricated a hill-like structure by applying an electron beam strategy and used this thick film to increase the adhesion between the pattern and the silicon wafer. We used scanning electron microscopy to investigate the resolution of the thermoplastic polymer resist (22A4) pattern that we imprinted using the thermosetting polymer (SU-8) pattern. To define the feature size after imprinting, we determined the feature size shrink factor after separation of the thermosetting polymer pattern (SU-8) from the thermoplastic polymer (22A4) resist. In addition, we have fabricated a microlens of polydimethylsiloxane (PDMS) through replication using the thermoplastic polymer resist (22A4) obtained after imprinting the mould with the microlens structure of the thermosetting polymer (SU-8).

  4. Digital Fabrication as an Instructional Technology for Supporting Upper Elementary and Middle School Science and Mathematics Education

    ERIC Educational Resources Information Center

    Tillman, Daniel

    2012-01-01

    The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics…

  5. Olivine and spinel fabric development in lineated peridotites

    NASA Astrophysics Data System (ADS)

    German, Lindsey; Newman, Julie; Chatzaras, Vasileios; Kruckenberg, Seth; Stewart, Eric; Tikoff, Basil

    2016-04-01

    Investigation of olivine and spinel fabrics in lineated harzburgites from the Red Hills peridotite massif, New Zealand, reveals that the spinel grain population records the same orientation of the principal finite strain axes as olivine grains, however, olivine grains generally record stronger fabric anisotropy. Further, olivine crystallographic preferred orientation (CPO) reflects the constrictional kinematic context of these rocks. In these harzburgites, deformed at ~1200 °C and >6 kbar, spinel grains are variably oriented and display weak to no CPO. Shape fabric in spinels, determined using X-ray computed tomography (XRCT) indicates a range of geometries (L>S, L=S and Lfabric) to +0.55 (oblate fabric). Olivine grains (mean diameter: 0.13 - 0.27 mm) exhibit evidence for dislocation creep, including subgrains, undulose extinction and a strong shape preferred orientation, with long axes parallel or subparallel to the mean spinel long axis orientation derived from XRCT. Olivine fabric analyses, carried out using Image SXM on grain traces from optical photomicrographs of two mutually perpendicular thin sections from each sample, yield moderately to strongly prolate fabrics (L>S tectonites) for olivine in all samples. CPO, plotted with respect to lineation and foliation as defined by XRCT analyses of spinel grains, is characterized by [100] maxima parallel or subparallel to the lineation; [010] and [001] form girdles perpendicular to the lineation, consistent with the D-type CPO for olivine. Olivine CPO is typically interpreted in the context of deformation conditions (e.g., temperature, stress) based on experimental studies. However, the D-type CPO for olivine is generally associated with deformation at relatively lower temperatures than suggested by the mineral compositions in these rocks. Our data suggest that olivine CPO may not only respond to deformation conditions, but may be controlled by the

  6. Development and fabrication of bismaleimide-graphite composites

    NASA Technical Reports Server (NTRS)

    Stenzenberger, H.; Herzog, M.; Roemer, W.; Scheiblich, R.

    1979-01-01

    The successful fabrication of high temperature resistant composites depends mainly on the processability of the resin binder matrix. For two new bismaleimide type resins the processing of graphite fabric prepregs to composites is described. One resin coded M 751 has to be processed from N-Methylpyrrolidone, the other resin evaluated is a so-called hot melt solvent-less system. Commercial T300/3000 Graphite fabrics were used as reinforcement. The M 751 - Resin is a press grade material and laminates are therefore moulded in high pressure conditions (400 N/sq cm). The solvent-less resin system H 795 is an autoclave grade material and can be cured at 40 N/sq cm. The cure cycles for both the press grade and the autoclave grade material (Fiberite W 143 fabric prepregs) are provided and the mechanical properties of laminates at low (23 C) and high (232 C) temperatures were measured. For comparison, the neat resin flexural properties are also presented. The water absorption for the neat resins and the graphite fabric laminates after a 1000 hour period was evaluated.

  7. Technology development of RF MEMS switches on printed circuit boards

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Pin

    Today, some engineers have shifted their focus on the micro-electro-mechanical system (MEMS) to pursue better technological advancements. Recent development in RF MEMS technologies have lead to superior switch characteristics, i.e., very low insertion loss, very low power requirements, and high isolation comparing to the conventional semiconductor devices. This success has promised the potential of MEMS to revolutionize RF and microwave system implementation for the next generation of communication applications. However, RF MEMS switches integrated monolithically with various RF functional components on the same substrate to create multifunctional and reconfigurable complete communication systems remains to be a challenge research topic due to the concerns of the high cost of packaging process and the high cost of RF matching requirements in module board implementation. Furthermore, the fabrication of most RF MEMS switches requires thickness control and surface planarization of wide metal lines prior to deposition of a metal membrane bridge, which poses a major challenge to manufacturability. To ease the fabrication of RF MEMS switches and to facilitate their integration with other RF components such as antennas, phase delay lines, tunable filters, it is imperative to develop a manufacturable RF MEMS switch technology on a common substrate housing all essential RF components. Development of a novel RF MEMS technology to build a RF MEMS switch and provide a system-level packaging on microwave laminated printed circuit boards (PCBs) are proposed in this dissertation. Two key processes, high-density inductively coupled plasma chemical vapor deposition (HDICP CVD) for low temperature dielectric deposition, and compressive molding planarization (COMP) for the temporary sacrificial polymer planarization have been developed for fabricating RF MEMS switches on PCBs. Several membrane-type capacitive switches have been fabricated showing excellent RF performance and dynamic

  8. Pellet fabrication development using thermally denitrated UO sub 2 powder

    SciTech Connect

    Davis, N.C.; Griffin, C.W.

    1992-05-01

    Pacific Northwest Laboratory (PNL) has evaluted, on a laboratory scale, the characteristics and pellet fabrication properties of UO{sub 3} powder prepared by the thermal denitration process. Excellent quality, 96% TD (percent of theoretical density) pellets were produced from development lots of this powder. Apparently, the key to making this highly sinterable powder from uranyl nitrate is the addition of ammonium nitrate (NH{sub 4}NO{sub 3}) to the feed solution prior to thermal denitration. Powder lots were processed with and without the NH{sub 4}NO{sub 3} addition in the feed solution. The lots included samples from the ORNL laboratory rotary kiln and from a larger scale rotary kiln at National Lead of Ohio (NLO). In the PNL evaluation, samples of UO{sub 3} were calculated and reduced to UO{sub 2}, followed by conventional process procedures to compare the sinterability of the powder lots. The high density pellets made from the powder lots, which included the NH{sub 4}NO{sub 3} addition, were reduced to Fast Breeder Reactor (FBR) density range of 88 to 92% TD by the use of poreformers. The NH{sub 4}NO{sub 3} addition also improved the sinterability properties of uranium oxide powders that contain thorium and cerium. Thorium and cerium were used as stand-in'' for plutonium used in urania-plutonia FBR fuel pellets. A very preliminary examination of a single lot of thermally denitrated uranium-plutonium oxide powder was made. This powder lot was made with the NH{sub 3}NO{sub 3} addition and produced pellets just above the FBR density range.

  9. Development of Hot Pressing as a Low Cost Processing Technique for Fuel Cell Fabrication

    SciTech Connect

    Sarin, V

    2003-01-14

    Dependable, plentiful, and economical energy has been the driving force for financial, industrial, and political growth in the US since the mid 19th century. For a country whose progress is so deeply rooted in abundant energy and whose current political agenda involves stabilizing world fossil fuel prices, the development of a reliable, efficient and environmentally friendly power generating source seems compulsory. The maturing of high technology fuel cells may be the panacea the country will find indispensable to free itself from foreign dependence. Fuel cells offer an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions. Fuel cells have few moving parts and run almost silently. Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly to electrical energy. Unlike batteries, which store a finite amount of energy, fuel cells will generate electricity continuously, as long as fuel and oxidant are available to the electrodes. Additionally, fuel cells offer clean, efficient, and reliable power and they can be operated using a variety of fuels. Hence, the fuel cell is an extremely promising technology. Over the course of this research, the fundamental knowledge related to ceramic processing, sintering, and hot pressing to successfully hot press a single operational SOFC in one step has been developed. Ceramic powder processing for each of the components of an SOFC has bene tailored towards this goal. Processing parameter for the electrolyte and cathode have been studied and developed until they converted. Several anode fabrication techniques have been developed. Additionally, a novel anode structured has been developed and refined. These individual processes have been cultivated until a single cell SOFC has been fabricated in one step.

  10. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Minahan, J. A.

    1981-01-01

    The fabrication of solar cells from several unconventional silicon materials is described, and cell performance measured and analyzed. Unconventional materials evaluated are edge defined film fed grown (EFG), heat exchanger method (HEM), dendritic web grown, and continuous CZ silicons. Resistivity, current voltage, and spectral sensitivity of the cells were measured. Current voltage was measured under AM0 and AM1 conditions. Maximum conversion efficiencies of cells fabricated from these and other unconventional silicons were compared and test results analyzed. The HEM and continuous CZ silicon were found to be superior to silicon materials considered previously.

  11. Technology for Fast Fabrication of Glass Microhotplates Based on the Laser Processing

    NASA Astrophysics Data System (ADS)

    Oblov, Konstantin; Ivanova, Anastasia; Soloviev, Sergey; Samotaev, Nikolay; Vasiliev, Alexey; Sokolov, Andrey

    In this paper, we describe a novel cost-effective and simple technology for the production glass MEMS applied as microhotpalte platform for metal oxide gas sensors. The basis of the technology is magnetron sputtering of platinum heating layer followed by precise laser engraving and cutting used for heater patterning. As a result of the technology, we demonstrate the glass microhotplate cantilever with thickness of 30 μm equipped with platinum microheater with dimension of about 500×500 μm. The cantilever type MEMS microhotplate demonstrate very high stability at working temperatures up to 600 0C, which gives possibility to use it for the low-scale fabrication microhotplate of metal oxide gas sensors.

  12. Design, development, fabrication, and safety-of-flight testing of a panoramic night vision goggle

    NASA Astrophysics Data System (ADS)

    Jackson, Timothy W.; Craig, Jeffrey L.

    1999-07-01

    A novel approach to significantly increasing the field of view (FOV) of night vision goggles (NVGs) has been developed. This approach uses four image intensifier tubes instead of the usual two to produce a 100 degree wide FOV. A conceptual demonstrator device was fabricated in November 1995 and limited flight evaluations were performed. Further development of this approach continues with eleven advanced technology demonstrators delivered in March 1999 that feature five different design configurations. Some of the units will be earmarked for ejection seat equipped aircraft due to their low profile design allowing the goggle to be retained safely during and after ejection. Other deliverables will be more traditional in design approach and lends itself to transport and helicopter aircraft as well as ground personnel. Extensive safety-of-flight testing has been accomplished as a precursor to the F-15C operational utility evaluation flight testing at Nellis AFB that began in March 1999.

  13. Cutting Edge Technologies Presentation: An Overview of Developing Sensor Technology Directions and Possible Barriers to New Technology Implementation

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2007-01-01

    The aerospace industry requires the development of a range of chemical sensor technologies for such applications as leak detection, emission monitoring, fuel leak detection, environmental monitoring, and fire detection. A range of chemical sensors are being developed based on micromachining and microfabrication technology to fabricate microsensors with minimal size, weight, and power consumption; and the use of nanomaterials and structures to develop sensors with improved stability combined with higher sensitivity, However, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. These technologies and technical approaches have direct relevance to breath monitoring for clinical applications. This presentation gives an overview of developing cutting-edge sensor technology and possible barriers to new technology implementation. This includes lessons learned from previous microsensor development, recent work in development of a breath monitoring system, and future directions in the implementation of cutting edge sensor technology.

  14. Teaching Science, Technology and Society. Developing Science and Technology Series.

    ERIC Educational Resources Information Center

    Solomon, Joan

    Science and technology are often presented and taught as two separate essences. When this is done, students as well as teachers are forced to attempt to develop the appropriate linkages. This book is one of a series designed to help teachers develop their science and technological education in ways that are both satisfying to themselves and…

  15. Critical stages of a biodetection platform development from sensor chip fabrication to surface chemistry and assay development

    NASA Astrophysics Data System (ADS)

    Uludag, Yildiz

    2014-06-01

    Once viewed solely as a tool to analyse biomolecular interactions, biosensors are gaining widespread interest for diagnostics, biological defense, environmental and quality assurance in agriculture/food industries. Advanced micro fabrication techniques have facilitated integration of microfluidics with sensing functionalities on the same chip making system automation more convenient1. Biosensor devices relying on lab-on-a-chip technologies and nanotechnology has attracted much of attention in recent years for biological defense research and development. However, compared with the numerous publications and patents available, the commercialization of biosensors technology has significantly lagged behind the research output. This paper reviews the reasons behind the slow commercialisation of biosensors with an insight to the critical stages of a biosensor development from the sensor chip fabrication to surface chemistry applications and nanotechnology applications in sensing with case studies. In addition, the paper includes the description of a new biodetection platform based on Real-time Electrochemical ProfilingTM (REPTM) that comprises novel electrode arrays and nanoparticle based sensing. The performance of the REPTM platform has been tested for the detection of Planktothrix agardhii, one of the toxic bloom-forming cyanobacteria, usually found in shallow fresh water sources that can be used for human consumption. The optimised REPTM assay allowed the detection of P. agardhii DNA down to 6 pM. This study, showed the potential of REPTM as a new biodetection platform for toxic bacteria and hence further studies will involve the development of a portable multi-analyte biosensor based on REPTM technology for on-site testing.

  16. Thermoelectric Development at Hi-Z Technology

    SciTech Connect

    Kushch, Aleksandr

    2001-08-05

    An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely. The TEG is comprised of 72 TE modules, which are capable of producing 1kW of electrical power at 30 V DC during nominal engine operation. Currently the upgraded generator has completed testing in a test cell and starting from August 2001 will be tested on a Diesel truck under typical road and environmental conditions. It is expected that the TEG will be able to supplement the existing shaft driven alternator, resulting in significant fuel saving, generating additional power required by the truck's accessories. The electronic and thermal properties of bulk materials are altered when they are incorporated into quantum wells. Two-dimensional quantum wells have been synthesized by alternating layers of B4C and B9C in one system and alternating layers of Si and Si0.8Ge0.2 in another system. Such nanostructures are being investigated as candidate thermoelectric materials with high figures of merit (Z). The predicted enhancement is attributed to the confined motion of charge carriers and phonons in the two dimensions and separating them from the ion scattering centers. Multilayer quantum well materials development continues with the fabrication of thicker films, evaluation of various substrates to minimize bypass heat loss, and bonding techniques to minimize high contact resistance. Quantum well thermoelectric devices with N-type Si/Si0.8Ge0.2 and P-type B4C/B9C have been fabricated from these films. The test results generated continue to indicate that much higher thermoelectric efficiencies can be achieved in the quantum wells compared to the bulk

  17. Technology, Limitations and Applications of space technology in developing countries

    NASA Astrophysics Data System (ADS)

    Canales-Romero, J.; Stamminger, P.; Pauly, K.

    A number of developing countries are undertaking projects pertaining to design and development of space technology either using their own resources or in collaboration with foreign countries on regional or international basis. This paper reviews a cooperation in different areas of space technology applications in South America. It gives a brief overview of the overarching goals and vision and the general institutional framework of south-american space researches cooperation. A few examples of previous and current activities in space technology applications and some opportunities for expanding the usage of these technology in the region are described. The major challenges to full-blown regional cooperation in space technology are also examined. The main aims of these efforts are to give a fillip to the country's R&D efforts in space technology and develop human resources in this field through hands-on experience in building and operation of satellites, and acquisition of new skills in project definition, funding and implementation

  18. Policy issues inherent in advanced technology development

    SciTech Connect

    Baumann, P.D.

    1994-12-31

    In the development of advanced technologies, there are several forces which are involved in the success of the development of those technologies. In the overall development of new technologies, a sufficient number of these forces must be present and working in order to have a successful opportunity at developing, introducing and integrating into the marketplace a new technology. This paper discusses some of these forces and how they enter into the equation for success in advanced technology research, development, demonstration, commercialization and deployment. This paper limits itself to programs which are generally governmental funded, which in essence represent most of the technology development efforts that provide defense, energy and environmental technological products. Along with the identification of these forces are some suggestions as to how changes may be brought about to better ensure success in a long term to attempt to minimize time and financial losses.

  19. Mobile Sensor Technologies Being Developed

    NASA Technical Reports Server (NTRS)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a

  20. Use of CAD/CAM technology to fabricate a removable partial denture framework.

    PubMed

    Williams, R J; Bibb, Richard; Eggbeer, Dominic; Collis, John

    2006-08-01

    This article reports on the first patient-fitted chromium cobalt removable partial denture framework produced by computer-assisted design, computer-assisted manufacture and rapid prototype technologies. Once the dental cast was scanned, virtual surveying and design of the framework on a 3-dimensional computer model was accomplished. A rapid prototype machine was used for direct fabrication of the alloy framework. Traditional finishing techniques were applied, the framework was assessed by a clinician in a conventional manner, fitted to the patient, and judged to be satisfactory by both the patient and clinician. PMID:16911885

  1. Developments in GDR metal forming technology assessed

    NASA Astrophysics Data System (ADS)

    Sickel, B.

    1985-02-01

    Technological developments in the German Democratic Republic in the area of metal forming are described. Work done by the Erfurt VEB Herbert Warnke Forming Technology Combine in machine tool production is highlighted.

  2. Energy Storage (II): Developing Advanced Technologies

    ERIC Educational Resources Information Center

    Robinson, Arthur L

    1974-01-01

    Energy storage, considered by some scientists to be the best technological and economic advancement after advanced nuclear power, still rates only modest funding for research concerning the development of advanced technologies. (PEB)

  3. Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology

    NASA Astrophysics Data System (ADS)

    Belsito, L.; Vannacci, E.; Mancarella, F.; Ferri, M.; Veronese, G. P.; Biagi, E.; Roncaglia, A.

    2014-08-01

    A micro-opto-mechanical system (MOMS) technology for the fabrication of fiber-optic optoacoustic emitters is presented. The described devices are based on the thermoelastic generation of ultrasonic waves from patterned carbon films obtained by the controlled pyrolysis of photoresist layers and fabricated on miniaturized single-crystal silicon frames used to mount the emitters on the tip of an optical fiber. Thanks to the micromachining process adopted, high miniaturization levels are reached in the fabrication of the emitters, and self-standing devices on optical fiber with diameter around 350 µm are demonstrated, potentially suited to minimally invasive medical applications. The functional testing of fiber-optic emitter prototypes in water performed by using a 1064 nm Q-switched Nd-YAG excitation laser source is also presented, yielding broadband emission spectra extended from low frequencies up to more than 40 MHz, and focused emission fields with a maximum peak-to-peak pressure level of about 1.2 MPa at a distance of 1 mm from the devices.

  4. HgCdTe mid-wavelength IR photovoltaic detectors fabricated using plasma induced junction technology

    NASA Astrophysics Data System (ADS)

    Dell, J. M.; Antoszewski, J.; Rais, M. H.; Musca, C.; White, J. K.; Nener, B. D.; Faraone, L.

    2000-06-01

    Preliminary characterization results are presented for mid-wave infrared (MWIR) mercury cadmium telluride n-on-p photodiodes fabricated using a plasma induced type conversion junction formation technology. The diodes have been fabricated on three different vacancy doped p-type epitaxial starting materials, grown by liquid phase epitaxy (LPE) on CdZnTe, LPE on sapphire, and P/p isotype heterojunction material grown by molecular beam epitaxy (MBE) on CdZnTe. All materials had CdTe mole fraction in the active region of the device of ˜0.3. The process uses a H2/CH4 plasma generated in a parallel plate reactive ion etching (RIE) system to type convert the p-type material to n-type. The process is different from previously reported type conversion techniques in that it does not require a high temperature anneal, does not expose the junction at the surface to atmosphere after formation, and requires significantly fewer process steps than other planar processes. Homojunction devices fabricated using this process exhibit R0A values >107 Ω·cm2 at 80 K. The R0A is diffusion limited for temperatures >˜135 K. Results for responsivity, bias dependence of dynamic resistance — junction area product and 1/f noise show that the resulting diodes are comparable to the best planar diodes reported in the literature.

  5. Fabrication of interdigitated electrodes by inkjet printing technology for apllication in ammonia sensing

    NASA Astrophysics Data System (ADS)

    Dam Le, Duy; Nhien Nguyen, Thi Ngoc; Chanh Tin Doan, Duc; Dung Dang, Thi My; Chien Dang, Mau

    2016-06-01

    In this paper interdigitated electrodes for gas sensors were fabricated by inkjet printing technology. Silver electrodes were inkjet printed on Si/SiO2 substrates instead of traditional photolithography method. The inkjet printing parameters to obtain desired dimensions, thickness of the electrodes and distance between the interdigitated electrodes were optimized in this study. The fabricated interdigitated silver electrodes were tested for application in ammonia gas sensors. Conductive polyaniline (PANI) layer was coated on the silver interdigitated electrodes by drop-coating. Ammonia detection of the PANI-coated chips was characterized with a gas measurement system in which humidity and ammonia concentrations were well-controlled. The electrical conductivity of the PANI films coated on the electrodes was measured when the PANI films were exposed to nitrogen and ammonia. The conductivity of the PANI films decreased significantly due to the deprotonation process of PANI upon ammonia expodure. The recovery time was about 15 min by heating up the polymer chip at 60 °C. The results showed that the silver electrodes fabricated by inkjet printing technique could be used as a sensor platform for ammonia detection.

  6. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  7. Development of Pollution Prevention Technologies

    SciTech Connect

    Polle, Juergen; Sanchez-Delgado, Roberto

    2013-12-30

    This project investigated technologies that may reduce environmental pollution. This was a basic research/educational project addressing two major areas: A. In the algae research project, newly isolated strains of microalgae were investigated for feedstock production to address the production of renewable fuels. An existing collection of microalgae was screened for lipid composition to determine strains with superior composition of biofuel molecules. As many microalgae store triacylglycerides in so-called oil bodies, selected candidate strains identified from the first screen that accumulate oil bodies were selected for further biochemical analysis, because almost nothing was known about the biochemistry of these oil bodies. Understanding sequestration of triacylglycerides in intracellular storage compartments is essential to developing better strains for achieving high oil productivities by microalgae. At the onset of the project there was almost no information available on how to obtain detailed profiles of lipids from strains of microalgae. Our research developed analytical methods to determine the lipid profiles of novel microalgal strains. The project was embedded into other ongoing microalgal projects in the Polle laboratory. The project benefited the public, because students were trained in cell cultivation and in the operation of state-of-the-art analytical equipment. In addition, students at Brooklyn College were introduced into the concept of a systems biology approach to study algal biofuels production. B. A series of new nanostructured catalysts were synthesized, and characterized by a variety of physical and chemical methods. Our catalyst design leads to active nanostructures comprising small metal particles in intimate contact with strongly basic sites provided by the supports, which include poly(4-vinylpyridine), magnesium oxide, functionalized multi-walled carbon nanotubes, and graphene oxide. The new materials display a good potential as catalysts

  8. PREFACE: Atomically controlled fabrication technology: new physics and functional device realization Atomically controlled fabrication technology: new physics and functional device realization

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuji; Kasai, Hideaki

    2011-10-01

    To realize next generation functional devices, atomic level controllability of the application and fabrication techniques is necessary. The conventional route to advance solid state devices, which involves improvement of 'instrumental accuracy', is now facing a major paradigm shift towards 'phenomenal accuracy'. Therefore, to keep up with this critical turn in the development of devices, pioneering research (both theoretical and experimental) on relevant materials, focusing on new physics at the atomic scale, is inevitable. This special section contains articles on the advancements in fabrication of functional devices with an emphasis on the exploration, clarification and understanding of atomistic phenomena. Research articles reporting theoretical and experimental findings on various materials such as semiconductors, metals, magnetic and organic systems, collectively present and 'capture' the appropriate processes and mechanisms of this rapidly developing field. The theoretical investigations employ first-principles quantum-mechanical simulations to clarify and bring about design principles and guidelines, or to develop more reliable computational methods. Experimental studies, on the other hand, introduce novel capabilities to build, view and manipulate materials at the atomic scale by employing pioneering techniques. Thus, the section pays significant attention to novel structures and properties and the accompanying fabrication techniques and design arising from the understanding of properties and structures at the atomic scale. We hope that researchers in the area of physics, materials science and engineering, interested in the development of functional devices via atomic level control, will find valuable information in this collaborative work. We are grateful to all of the authors for their contributions. Atomically controlled fabrication contents On the mechanism of carbon nanotube formation: the role of the catalyst G N Ayre, T Uchino, B Mazumder, A L Hector

  9. Developments in Hollow Graphite Fiber Technology

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W., Jr. (Technical Monitor)

    2002-01-01

    Hollow graphite fibers will be lighter than standard solid graphite fibers and, thus, will save weight in optical components. This program will optimize the processing and properties of hollow carbon fibers developed by MER and to scale-up the processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA.

  10. Opportunities for Technology Development at NASA

    NASA Astrophysics Data System (ADS)

    Brewer, D. A.

    1999-05-01

    Many opportunities for space science-related technology development exist at NASA. They include the following programs: Advanced Concepts, Cross Enterprise Technology Development (CETD), Enterprise-unique (or focused), New Millennium, mission-specific, and Small Business Innovative Research. The ability to access the opportunities depends upon the maturity of the technology being sought for additional development and the customers who would benefit from the technology products. NASA is divided into Enterprises or business units. Customer requirements are derived from the Enterprise Strategic Plans, and the Strategic Plans are updated based upon the results of the Enterprise roadmaps. The CETD program funds technology applicable to more than one Enterprise that has not achieved mid-level maturity. The Advanced Concepts program funds very early technology development. Enterprise-unique programs such as the Explorer technology and X2000 programs focus on technology development unique to space science that has not achieved mid-level maturity. The New Millennium Program focuses on systems-level flight validations of breakthrough or enabling technology. Space science-unique instrument technology is developed within the space science program. Technology that has achieved pre-prototype validation in a relevant environment and is applicable to a specific mission is developed as part of the development of the mission. Small Business Innovative Research provides an opportunity for small businesses to develop technology for future NASA and commercial applications. Most of the technology development is funded through competitive procurements. Announcements of the procurement forecasts and procurement releases are available on the Internet. Details of the contents of the technology programs will be presented.

  11. Effects associated with nanostructure fabrication using in situ liquid cell TEM technology

    DOE PAGES

    Chen, Xin; Zhou, Lihui; Wang, Ping; Cao, Hongliang; Miao, Xiaoli; Wei, Feifei; Chen, Xia

    2015-07-28

    We studied silicon, carbon, and SiCx nanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems. Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend, with precursor concentrations from pure SiCl4 to 0 % SiCl4 in CH2Cl2, and electron beamintensity ranges of two orders of magnitude, showing good controllability of the deposition. Secondary electrons contributed to the determination of the lateral sizes of the nanostructures, while the primary beam appeared to have an effect in reducing the vertical growth rate. These results can be used to generate donut-shaped nanostructures. Using a scanningmore » electron beam, line structures with both branched and unbranched morphologies were also obtained. As a result, the liquid-phase electron-beam induced deposition technology is shown to be an effective tool for advanced nanostructured material generation.« less

  12. History of nuclear technology development in Japan

    SciTech Connect

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  13. History of nuclear technology development in Japan

    NASA Astrophysics Data System (ADS)

    Yamashita, Kiyonobu

    2015-04-01

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  14. JWST Primary Mirror Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist

  15. Technology Mapping: An Approach for Developing Technological Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Angeli, Charoula; Valanides, Nicos

    2013-01-01

    Technology mapping[TM] is proposed as an approach for developing technological pedagogical content knowledge (TPCK). The study discusses in detail instructional design guidelines in relation to the enactment of TM, and reports on empirical findings from a study with 72 pre-service primary teachers within the context of teaching them how to teach…

  16. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  17. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  18. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  19. Space Station engineering and technology development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Historical background, costs, organizational assignments, technology development, user requirements, mission evolution, systems analyses and design, systems engineering and integration, contracting, and policies of the space station are discussed.

  20. SCIENCE AND TECHNOLOGY AS DEVELOPMENT FACTORS.

    ERIC Educational Resources Information Center

    LENGYEL, PETER

    PROCEEDINGS FROM A MEETING OF UNESCO'S ADVISORY COUNCIL TO ITS OFFICE OF ECONOMIC ANALYSIS AND ITS DIVISION OF SCIENCE POLICY ARE REPORTED. THE CENTRAL THEME OF THE CONFERENCE IS SCIENCE AND TECHNOLOGY IN ECONOMIC DEVELOPMENT. AN INTRODUCTORY PAPER DEALS WITH RESOURCES IN SCIENCE AND TECHNOLOGY, THE INFLUENCE OF SCIENCE AND TECHNOLOGY ON…

  1. Pipe Leak Detection Technology Development

    EPA Science Inventory

    The U. S. Environmental Protection Agency (EPA) has determined that one of the nation’s biggest infrastructural needs is the replacement or rehabilitation of the water distribution and transmission systems. The institution of more effective pipe leak detection technology will im...

  2. Lunar Surface Systems Supportability Technology Development Roadmap

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; Meseroll, Robert; Quiter, John; Shannon, Russell; Easton, John W.; Madaras, Eric I.; BrownTaminger, Karen M.; Tabera, John T.; Tellado, Joseph; Williams, Marth K.; Zeitlin, Nancy P.

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  3. Clean Technology Evaluation & Workforce Development Program

    SciTech Connect

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  4. Unique cost-effective approach for multisurfaced micro-aspheric lens prototyping and fabrication by single-point diamond turning and micro-injection molding technology

    NASA Astrophysics Data System (ADS)

    Pun, Ashley M.; Wong, Chi-Choy; Chan, Norman S.; Louie, Derek C.; Li, Li-Man

    2004-02-01

    The latest development of sophisticated high-precision optical devices necessitates precision fabrication methodologies of freeform microlens having very tight, up to micron tolerance. Instead of adopting high-end multi-axis freeform machining approach, the proposed acrylic multi-surfaced microaspheric lens, with the axial diameter of 1.3mm, was cost-effectively prototyped and fabricated by single point diamond turning and micro-injection molding technology respectively. The micro-optical component was used as an opto-electronic module for high-speed data-transmission in fiber optics. Sequential fixturing technique was applied to facilitate the precise fabrication of the optical surfaces from different optical alignments. The aspherical accuracy and surface finish of the machined surfaces were evaluated, and end result was determined to be satisfactory. Further, the ultra precision tooling would be developed for micro-injection molding for carrying out mass production of the micro-optical component.

  5. Innovative Technology Development Program. Final summary report

    SciTech Connect

    Beller, J.

    1995-08-01

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) Program. The plan is part of the DOE`s program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE`s clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process.

  6. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  7. Oil heat technology research and development

    SciTech Connect

    Kweller, E.R.; McDonald, R.J.

    1995-04-01

    The purpose of this United States Department of Energy (DOE)/Brookhaven National Laboratory (BNL) program is to develop a technology base for advancing the state-of-the-art related to oilfired combustion equipment. The major thrust is through technology based research that will seek new knowledge leading to improved designs and equipment optimization. The Combustion Equipment space Conditioning Technology program currently deals exclusively with residential and small commercial building oil heat technology.

  8. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  9. Development and fabrication of large vented nickel-zinc cells

    NASA Technical Reports Server (NTRS)

    Donnel, C. P., III

    1975-01-01

    A preliminary cell design for a 300AH vented nickel-zinc cell was established based on volume requirements and cell component materials selected by NASA Lewis Research Center. A 100AH cell configuration was derived from the 300AH cell design utilizing the same size electrodes, separators, and cell terminal hardware. The first cells fabricated were four groups of three cells each in the 100AH size. These 100AH experimental nickel-zinc cells had as common components the nickel positive electrodes (GFM), flexible inorganic separator (GFM) bags on the negative electrodes, pressed powder zinc oxide electrodes, and cell containers with hardware. The variations introduced were four differing electrolyte absorber (interseparator) systems used to encase the nickel positive electrodes of each cell group. The four groups of 100AH experimental vented nickel-zinc cells were tested to determine, based on cell performance, the best two interseparator systems. Using the two interseparator systems, two groups of experimental 300AH cells were fabricated. Each group of three cells differed only in the interseparator material used. The six cells were filled, formed and tested to evaluate the interseparator materials and investigate the performance characteristics of the 300AH cell configuration and its components.

  10. Technology Development Roadmaps - a Systematic Approach to Maturing Needed Technologies

    SciTech Connect

    John W. Colllins; Layne Pincock

    2010-07-01

    Abstract. Planning and decision making represent important challenges for all projects. This paper presents the steps needed to assess technical readiness and determine the path forward to mature the technologies required for the Next Generation Nuclear Plant. A Technology Readiness Assessment is used to evaluate the required systems, subsystems, and components (SSC) comprising the desired plant architecture and assess the SSCs against established Technology Readiness Levels (TRLs). A validated TRL baseline is then established for the proposed physical design. Technology Development Roadmaps are generated to define the path forward and focus project research and development and engineering tasks on advancing the technologies to increasing levels of maturity. Tasks include modeling, testing, bench-scale demonstrations, pilot-scale demonstrations, and fully integrated prototype demonstrations. The roadmaps identify precise project objectives and requirements; create a consensus vision of project needs; provide a structured, defensible, decision-based project plan; and, minimize project costs and schedules.

  11. Design, development, fabrication and delivery of register and multiplexer units. [CMOS monolithic chip development

    NASA Technical Reports Server (NTRS)

    Feller, A.; Lombardi, T.

    1978-01-01

    Several approaches for implementing the register and multiplexer unit into two CMOS monolithic chip types were evaluated. The CMOS standard cell array technique was selected and implemented. Using this design automation technology, two LSI CMOS arrays were designed, fabricated, packaged, and tested for proper static, functional, and dynamic operation. One of the chip types, multiplexer register type 1, is fabricated on a 0.143 x 0.123 inch chip. It uses nine standard cell types for a total of 54 standard cells. This involves more than 350 transistors and has the functional equivalent of 111 gates. The second chip, multiplexer register type 2, is housed on a 0.12 x 0.12 inch die. It uses 13 standard cell types, for a total of 42 standard cells. It contains more than 300 transistors, the functional equivalent of 112 gates. All of the hermetically sealed units were initially screened for proper functional operation. The static leakage and the dynamic leakage were measured. Dynamic measurements were made and recorded. At 10 V, 14 megabit shifting rates were measured on multiplexer register type 1. At 5 V these units shifted data at a 6.6 MHz rate. The units were designed to operate over the 3 to 15 V operating range and over a temperature range of -55 to 125 C.

  12. Microhole Drilling Tractor Technology Development

    SciTech Connect

    Western Well Tool

    2007-07-09

    In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly

  13. Latest development of display technologies

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Yue; Yao, Qiu-Xiang; Liu, Pan; Zheng, Zhi-Qiang; Liu, Ji-Cheng; Zheng, Hua-Dong; Zeng, Chao; Yu, Ying-Jie; Sun, Tao; Zeng, Zhen-Xiang

    2016-09-01

    In this review we will focus on recent progress in the field of two-dimensional (2D) and three-dimensional (3D) display technologies. We present the current display materials and their applications, including organic light-emitting diodes (OLEDs), flexible OLEDs quantum dot light emitting diodes (QLEDs), active-matrix organic light emitting diodes (AMOLEDs), electronic paper (E-paper), curved displays, stereoscopic 3D displays, volumetric 3D displays, light field 3D displays, and holographic 3D displays. Conventional 2D display devices, such as liquid crystal devices (LCDs) often result in ambiguity in high-dimensional data images because of lacking true depth information. This review thus provides a detailed description of 3D display technologies.

  14. KSC Education Technology Research and Development Plan

    NASA Technical Reports Server (NTRS)

    Odell, Michael R. L.

    2003-01-01

    Educational technology is facilitating new approaches to teaching and learning science, technology, engineering, and mathematics (STEM) education. Cognitive research is beginning to inform educators about how students learn providing a basis for design of more effective learning environments incorporating technology. At the same time, access to computers, the Internet and other technology tools are becoming common features in K-20 classrooms. Encouraged by these developments, STEM educators are transforming traditional STEM education into active learning environments that hold the promise of enhancing learning. This document illustrates the use of technology in STEM education today, identifies possible areas of development, links this development to the NASA Strategic Plan, and makes recommendations for the Kennedy Space Center (KSC) Education Office for consideration in the research, development, and design of new educational technologies and applications.

  15. Advances in Technology, Education and Development

    ERIC Educational Resources Information Center

    Kouwenhoven, Wim, Ed.

    2009-01-01

    From 3rd to 5th March 2008 the International Association of Technology, Education and Development organised its International Technology, Education and Development Conference in Valencia, Spain. Over a hundred papers were presented by participants from a great variety of countries. Summarising, this book provides a kaleidoscopic view of work that…

  16. Aligning Technology Education Teaching with Brain Development

    ERIC Educational Resources Information Center

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  17. The Human Response to Technological Development.

    ERIC Educational Resources Information Center

    Ramey, Luellen

    Technological development and our human potential are two of the greatest challenges facing humankind today. The appropriate response to technological development seems to be to shape it for positive and productive human uses. Just as America once shifted from an agricultural economy to an industrial economy, we are now shifting from an industrial…

  18. SRS environmental technology development field test platform

    SciTech Connect

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-09-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications.

  19. Technology for fabricating micro-lens arrays utilizing lithographically replicated concave resist patterns

    NASA Astrophysics Data System (ADS)

    Kobayashi, Noa; Sasaki, Ryunosuke; Horiuchi, Toshiyuki

    2016-05-01

    Lithography has been generally used for printing two-dimensional patterns on flat wafers. Recently, however, it is also applied to a three-dimensional patterning for fabricating various MEMS (Micro Electro Mechanical Systems) components. The purpose of this research is to develop a new method for fabricating micro-lens arrays. At first, resist (Tokyo Ohka Kogyo, PMER LA-900PM) mold patterns with densely arrayed square or hexagonal concaves were replicated by intentionally shifting the focal position of projection exposure. The size of resist-mold was 2 mm square, and the initial thickness of the resist was 10 μm. Next, the wafer with the concave resist patterns was cut into small chips, and each wafer chip was fixed at the bottom of a paper cup using an adhesive tape. Then the epoxy resin (Nissin resin, Crystal resin Neo) was poured on the concave resist-mold patterns, and the resin was coagulated. Afterward, the hardened resin was grooved along the wafer chip using a cutter knife, and the wafer chip with the resist-mold patterns was forcibly removed using a pair of tweezers. Finally, both sides of the resin block were polished, and the thickness was reduced. Although the transparency and roughness of the resin block surfaces should be improved, epoxy micro-lens arrays were certainly fabricated. The mean values of curvature radius and lens height were 28.3μm and 4.9 μm, respectively.

  20. Plasma Modeling Enabled Technology Development Empowered by Fundamental Scattering Data

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.

    2016-05-01

    Technology development increasingly relies on modeling to speed the innovation cycle. This is particularly true for systems using low temperature plasmas (LTPs) and their role in enabling energy efficient processes with minimal environmental impact. In the innovation cycle, LTP modeling supports investigation of fundamental processes that seed the cycle, optimization of newly developed technologies, and prediction of performance of unbuilt systems for new applications. Although proof-of-principle modeling may be performed for idealized systems in simple gases, technology development must address physically complex systems that use complex gas mixtures that now may be multi-phase (e.g., in contact with liquids). The variety of fundamental electron and ion scattering, and radiation transport data (FSRD) required for this modeling increases as the innovation cycle progresses, while the accuracy required of that data depends on the intended outcome. In all cases, the fidelity, depth and impact of the modeling depends on the availability of FSRD. Modeling and technology development are, in fact, empowered by the availability and robustness of FSRD. In this talk, examples of the impact of and requirements for FSRD in the innovation cycle enabled by plasma modeling will be discussed using results from multidimensional and global models. Examples of fundamental studies and technology optimization will focus on microelectronics fabrication and on optically pumped lasers. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids. Work supported by DOE Office of Fusion Energy Science and the National Science Foundation.

  1. (Experimental development, testing and research work in support of the inertial confinement fusion program)

    SciTech Connect

    Drake, D.J.; Luckhardt, R.; Moyer, S.; Armentrout, C.J.; Downs, R.L.; Moncur, K.

    1990-02-28

    This report discusses: Cryogenic technology; polymer shell fabrication; glass shell fabrication and characterization; coating technology; development of characterization techniques; laser technology; and plasma research and instrumentation.

  2. Technology Development: From Idea to Implementation - 12131

    SciTech Connect

    Spires, Renee H.

    2012-07-01

    There are good ideas and new technologies proposed every day to solve problems within the DOE complex. A process to transition a new technology from inception to the decision to launch a project with baselines is described. Examples from active technology development projects within Savannah River Remediation (SRR) will be used to illustrate the points. The process includes decision points at key junctures leading to preliminary design. At that point, normal project management tools can be employed. The technology development steps include proof-of-principle testing, scaled testing and analysis, and conceptual design. Tools are used that define the scope necessary for each step of technology development. The tools include use of the DOE technology readiness guide, Consolidated Hazards Analysis (CHA) and internal checklists developed by Savannah River Remediation. Integration with operating or planned facilities is also included. The result is a roadmap and spreadsheet that identifies each open question and how it may be answered. Performance criteria are developed that enable simple decisions to be made after the completion of each step. Conceptual design tasks should begin as the technology development continues. The most important conceptual design tasks at this point in the process include process flow diagrams (PFDs), high level Process and Instrumentation Drawings (P and IDs), and general layout drawings. These should influence the design of the scaled simulant testing. Mechanical and electrical drawings that support cost and schedule development should also be developed. An early safety control strategy developed from the CHA will also influence the cost. The combination of test results, calculations and early design output with rough order of magnitude cost and schedule information provide input into the decisions to proceed with a project and data to establish the baseline. This process can be used to mature any new technology, especially those that must be

  3. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory

  4. A novel method for fabricating curved frequency selective surface via 3D printing technology

    NASA Astrophysics Data System (ADS)

    Liang, Fengchao; Gao, Jinsong

    2014-12-01

    A novel method for fabricating curved frequency selective surfaces with undevelopable curved shape using 3D printing technology was proposed in this paper. First, FSS composed of Y slotted elements that adapt to 0° ~ 70 ° incidences was designed. Then, the 3D model of the curved FSS was created in a 3D modeling software. Next, the 3D model was digitalized into stl format file and then the stl file was inputted into a stereo lithography 3D printer. Next, the prototype of the curved FSS was fabricated by the 3D printer layer by layer. Finally, a 10 μm thick aluminum film was coated on the outer surface of the prototype of the curved FSS by a vacuum coater. The transmission performance of the metallised curved FSS was tested using free space method. It was shown that frequency selection characteristic of the metallised curved FSS reached the requirements of simulation design. The pass-band was in the Ku-band and the transmission rate on center frequency was 63% for nose cone incident direction. This method provides a new way to apply the FSS to arbitrary curved electromagnetic window.

  5. HTGR technology development: status and direction

    SciTech Connect

    Kasten, P.R.

    1982-01-01

    During the last two years there has been an extensive and comprehensive effort expended primarily by General Atomic (GA) in generating a revised technology development plan. Oak Ridge National Laboratory (ORNL) has assisted in this effort, primarily through its interactions over the past years in working together with GA in technology development, but also through detailed review of the initial versions of the technology development plan as prepared by GA. The plan covers Fuel Technology, Materials Technology (including metals, graphite, and ceramics), Plant Technology (including methods, safety, structures, systems, heat exchangers, control and electrical, and mechanical), and Component Design Verification and Support areas (including the PCRV, control, fuel handling, service equipment, reactor core and internals, cooling and service systems).

  6. Technology, limitations and applications of space technology in developing countries

    NASA Astrophysics Data System (ADS)

    Canales Romero, Juan Martín

    2004-01-01

    A number of developing countries are undertaking projects pertaining to the design and development of space technology, either using their own resources or in collaboration with foreign countries, on a regional or international basis. This paper reviews cooperation in different areas of space technology applications in South America. It gives a brief overview of the overarching goals and vision and the general institutional framework of South-American space research and cooperation. A few examples of previous and current activities in space technology applications and some opportunities for expanding the usage of this technology in the region are described. The major challenges to full-blown regional cooperation in space technology are also examined. The main aims of these efforts are to give a fillip to the region's Research and Development (R&D) efforts in space technology and development of human resources in this field, through hands-on experience in building and operation of satellites, and acquisition of new skills in project definition, funding and implementation.

  7. High gain CMOS image sensor design and fabrication on SOI and bulk technology

    NASA Astrophysics Data System (ADS)

    Zhang, Weiquan

    2000-12-01

    The CMOS imager is now competing with the CCD imager, which still dominates the electronic imaging market. By taking advantage of the mature CMOS technology, the CMOS imager can integrate AID converters, digital signal processing (DSP) and timing control circuits on the same chip. This low cost and high-density integration solution to the image capture is the strong driving force in industry. Silicon on insulator (SOI) is considered as the coming mainstream technology. It challenges the current bulk CMOS technology because of its reduced power consumption, high speed, radiation hardness etc. Moving the CMOS imager from the bulk to the SOI substrate will benefit from these intrinsic advantages. In addition, the blooming and the cross-talk between the pixels of the sensor array can be ideally eliminated, unlike those on the bulk technology. Though there are many advantages to integrate CMOS imager on SOI, the problem is that the top silicon film is very thin, such as 2000Å. Many photons can just pass through this layer without being absorbed. A good photo-detector on SOI is critical to integrate SOI CMOS imagers. In this thesis, several methods to make photo-detectors on SOI substrate are investigated. A floating gate MOSFET on SOI substrate, operating in its lateral bipolar mode, is photon sensitive. One step further, the SOI MOSFET gate and body can be tied together. The positive feedback between the body and gate enables this device have a high responsivity. A similar device can be found on the bulk CMOS technology: the gate-well tied PMOSFET. A 32 x 32 CMOS imager is designed and characterized using such a device as the light-sensing element. I also proposed the idea of building hybrid active pixels on SOI substrate. Such devices are fabricated and characterized. The work here represents my contribution on the CMOS imager, especially moving the CMOS imager onto the SOI substrate.

  8. Development and fabrication of improved Schottky power diodes, phases I and II

    NASA Technical Reports Server (NTRS)

    Cordes, L. F.; Garfinkle, M.; Taft, E. A.

    1974-01-01

    Reproducible methods for the fabrication of silicon Schottky diodes were developed for the metals tungsten, aluminum, conventional platinum silicide and low temperature platinum silicide. Barrier heights and barrier lowering were measured permitting the accurate prediction of ideal forward and reverse diode performance. Processing procedures were developed which permit the fabrication of large area (approximately 1 sqcm) mesa-geometry power Schottky diodes with forward and reverse characteristics that approach theoretical values.

  9. A Wireless Passive Pressure Microsensor Fabricated in HTCC MEMS Technology for Harsh Environments

    PubMed Central

    Tan, Qiulin; Kang, Hao; Xiong, Jijun; Qin, Li; Zhang, Wendong; Li, Chen; Ding, Liqiong; Zhang, Xiansheng; Yang, Mingliang

    2013-01-01

    A wireless passive high-temperature pressure sensor without evacuation channel fabricated in high-temperature co-fired ceramics (HTCC) technology is proposed. The properties of the HTCC material ensure the sensor can be applied in harsh environments. The sensor without evacuation channel can be completely gastight. The wireless data is obtained with a reader antenna by mutual inductance coupling. Experimental systems are designed to obtain the frequency-pressure characteristic, frequency-temperature characteristic and coupling distance. Experimental results show that the sensor can be coupled with an antenna at 600 °C and max distance of 2.8 cm at room temperature. The senor sensitivity is about 860 Hz/bar and hysteresis error and repeatability error are quite low. PMID:23917261

  10. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    NASA Astrophysics Data System (ADS)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  11. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    SciTech Connect

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% for a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.

  12. Mirror fusion vacuum technology developments

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1983-11-21

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10/sup 7/ to 10/sup 8/ l/s for D/sub 2/, T/sub 2/ and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility.

  13. Space Technology Mission Directorate: Game Changing Development

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  14. Space Station Freedom advanced photovoltaics and battery technology development planning

    NASA Technical Reports Server (NTRS)

    Brender, Karen D.; Cox, Spruce M.; Gates, Mark T.; Verzwyvelt, Scott A.

    1993-01-01

    Space Station Freedom (SSF) usable electrical power is planned to be built up incrementally during assembly phase to a peak of 75 kW end-of-life (EOL) shortly after Permanently Manned Capability (PMC) is achieved in 1999. This power will be provided by planar silicon (Si) arrays and nickel-hydrogen (NiH2) batteries. The need for power is expected to grow from 75 kW to as much as 150 kW EOL during the evolutionary phase of SSF, with initial increases beginning as early as 2002. Providing this additional power with current technology may not be as cost effective as using advanced technology arrays and batteries expected to develop prior to this evolutionary phase. A six-month study sponsored by NASA Langley Research Center and conducted by Boeing Defense and Space Group was initiated in Aug. 1991. The purpose of the study was to prepare technology development plans for cost effective advanced photovoltaic (PV) and battery technologies with application to SSF growth, SSF upgrade after its arrays and batteries reach the end of their design lives, and other low Earth orbit (LEO) platforms. Study scope was limited to information available in the literature, informal industry contacts, and key representatives from NASA and Boeing involved in PV and battery research and development. Ten battery and 32 PV technologies were examined and their performance estimated for SSF application. Promising technologies were identified based on performance and development risk. Rough order of magnitude cost estimates were prepared for development, fabrication, launch, and operation. Roadmaps were generated describing key issues and development paths for maturing these technologies with focus on SSF application.

  15. FY03 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Minichino, C

    2004-03-05

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2003, and exemplifies Engineering's 50-year history of researching and developing the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Engineering's investment in technologies is carried out through two programs, the LDRD program and the ''Tech Base'' program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2003, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the science and technology investments for the Directorate. The Centers represent technology areas that have been identified as critical for the present and future work of the Laboratory, and are

  16. Titan probe technology assessment and technology development plan study

    NASA Technical Reports Server (NTRS)

    Castro, A. J.

    1980-01-01

    The need for technology advances to accomplish the Titan probe mission was determined by defining mission conditions and requirements and evaluating the technology impact on the baseline probe configuration. Mission characteristics found to be technology drivers include (1) ten years dormant life in space vacuum; (2) unknown surface conditions, various sample materials, and a surface temperature; and (3) mission constraints of the Saturn Orbiter Dual Probe mission regarding weight allocation. The following areas were identified for further development: surface sample acquisition system; battery powered system; nonmetallic materials; magnetic bubble memory devices, and the landing system. Preentry science, reliability, and weight reduction and redundancy must also be considered.

  17. The Developing Science and Technologies List (DSTL)

    NASA Astrophysics Data System (ADS)

    Wick, Raymond V.

    2006-08-01

    This paper describes the Militarily Critical Technologies Program's (MCTP) Developing Science and Technologies List (DSTL) sponsored by the Office of the Director, Defense Research and Engineering (DDR&E). It outlines the unique Technology Working Group (TWG) process developed by the Institute for Defense Analyses (IDA) to support the MCTP and specifically the DSTL. It also outlines the approach used to determine the technologies that are included as well as how worldwide technology capability assessments are incorporated into the review process. As an example, this paper outlines the technology parameters associated with Deformable Mirrors and identifies how both military and commercial applications have an input into the TWG process. The membership of the TWGs is explained and its role identified. Each TWG has a broad base, including representatives from government, industry and academia who are technical experts in their respective fields.

  18. High speed bus technology development

    NASA Astrophysics Data System (ADS)

    Modrow, Marlan B.; Hatfield, Donald W.

    1989-09-01

    The development and demonstration of the High Speed Data Bus system, a 50 Million bits per second (Mbps) local data network intended for avionics applications in advanced military aircraft is described. The Advanced System Avionics (ASA)/PAVE PILLAR program provided the avionics architecture concept and basic requirements. Designs for wire and fiber optic media were produced and hardware demonstrations were performed. An efficient, robust token-passing protocol was developed and partially demonstrated. The requirements specifications, the trade-offs made, and the resulting designs for both a coaxial wire media system and a fiber optics design are examined. Also, the development of a message-oriented media access protocol is described, from requirements definition through analysis, simulation and experimentation. Finally, the testing and demonstrations conducted on the breadboard and brassboard hardware is presented.

  19. Development Status of the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Pearson, Jon Boise; Godfoy, Thomas

    2012-01-01

    This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at GRC.

  20. Development Status of the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M; Pearson, Jon Boise; Godfroy, Thomas

    2012-01-01

    This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at NASA GRC.

  1. Genetic Technology and Agricultural Development

    ERIC Educational Resources Information Center

    Staub, William J.; Blase, Melvin G.

    1971-01-01

    Examines the nature, application, limits and potential of applied genetics in plant breeding as a factor in South Asian agricultural development. Concludes other factors were also present in recent agricultural growth, and indicates some economic implications of continued growth, including problems of employment of displaced rural workers. (AL)

  2. Development of 3D in Vitro Technology for Medical Applications

    PubMed Central

    Ou, Keng-Liang; Hosseinkhani, Hossein

    2014-01-01

    In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering. PMID:25299693

  3. Compliant membranes for the development of MEMS dual-backplate capacitive microphone using the SUMMiT V fabrication process.

    SciTech Connect

    Martin, David

    2005-11-01

    The objective of this project is the investigation of compliant membranes for the development of a MicroElectrical Mechanical Systems (MEMS) microphone using the Sandia Ultraplanar, Multilevel MEMS Technology (SUMMiT V) fabrication process. The microphone is a dual-backplate capacitive microphone utilizing electrostatic force feedback. The microphone consists of a diaphragm and two porous backplates, one on either side of the diaphragm. This forms a capacitor between the diaphragm and each backplate. As the incident pressure deflects the diaphragm, the value of each capacitor will change, thus resulting in an electrical output. Feedback may be used in this device by applying a voltage between the diaphragm and the backplates to balance the incident pressure keeping the diaphragm stationary. The SUMMiT V fabrication process is unique in that it can meet the fabrication requirements of this project. All five layers of polysilicon are used in the fabrication of this device. The SUMMiT V process has been optimized to provide low-stress mechanical layers that are ideal for the construction of the microphone's diaphragm. The use of chemical mechanical polishing in the SUMMiT V process results in extremely flat structural layers and uniform spacing between the layers, both of which are critical to the successful fabrication of the MEMS microphone. The MEMS capacitive microphone was fabricated at Sandia National Laboratories and post-processed, packaged, and tested at the University of Florida. The microphone demonstrates a flat frequency response, a linear response up to the designed limit, and a sensitivity that is close to the designed value. Future work will focus on characterization of additional devices, extending the frequency response measurements, and investigating the use of other types of interface circuitry.

  4. Exploration Life Support Technology Development Challenges

    NASA Technical Reports Server (NTRS)

    Chambliss Joe; Rulis, Susan

    2007-01-01

    The Exploration Life Support project is developing technologies to address the needs for life support during NASA s exploration missions. The focus of development is Air Revitalization, Water Recovery, and Waste Management Systems (ARS, WRS, and WMS). The approach to meeting exploration needs for life support intrinsically involves processing mixtures of gases, liquids and solids; thus the effects of micro or hypo gravity must be considered in developing and verifying the technologies. This paper provides an overview of the ELS project, how ELS technologies are planned to be used in exploration vehicles and the challenges being addressed.

  5. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    SciTech Connect

    Berg, Thomas A.; Disney, Richard K.

    2004-02-04

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  6. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    NASA Astrophysics Data System (ADS)

    Berg, Thomas A.; Disney, Richard K.

    2004-02-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  7. Water Processor Assembly Technology Development

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert; Parker, Dave; OConnor, Ed

    1999-01-01

    The International Space Station (ISS) Water Processor Assembly (WPA) produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. This paper describes the WPA integration into the ISS Node 3. It details the substantial development history supporting the design and describes the WPA System characteristics and its physical layout.

  8. UH Information Technology Services: Faculty Development Program

    ERIC Educational Resources Information Center

    Okimoto, Hae

    2002-01-01

    Universities are increasingly looking toward technology to overcome geographical barriers to access, and this has placed new demands on faculty to explore the potential of technology in their classrooms. As a result, faculty development in the use of appropriate applications for teaching and learning has become a critical issue. In the 2000…

  9. Technology, Innovation, and Regional Economic Development.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    In recent years state and local governments, universities, and private sector groups have become increasingly active in promoting technological innovation and technology-based business development in their local economies. These efforts have resulted in productive new forms of partnership and cooperation at all levels. While federal programs have…

  10. Fabrication and nondestructive examination development for advanced components and materials for the SP-100 space reactor

    NASA Astrophysics Data System (ADS)

    Ring, Peter J.; Dobrzynski, Walter J.

    1993-01-01

    Significant progress has now been made in the development of fabrication and Nondestructive Examination techniques for the SP-100 Space Reactor. All major fabrication challenges have been faced and overcome. Methods are in place for the fabrication and inspection of composite fuel cladding, the reactor honeycomb core, cold forging of the core support nozzle course, and electron beam welding of the auxiliary cooling loop system. Specifications and procedures have been developed and proven on actual hardware for electron beam welding, gas tungsten arc welding, heat treatment, solvent cleaning, chemical cleaning, ultrasonic inspection, helium leak testing, dye penetrant and microfocus rod anode radiography. Signicant work remains to be done but no problems have been identified which would prevent fabrication of the high temperature SP-100 Space Reactor.

  11. Three-dimensional integration of vertically coupled microring resonator filters: fabrication and wavelength trimming technologies

    NASA Astrophysics Data System (ADS)

    Kokubun, Yasuo

    2003-04-01

    We have proposed and demonstrated a vertically coupled microring resonator filter as an Add/Drop wavelength filter. The ultra-compact ring resonantor can be realized by the ultra-high index contrast waveguide (=34%) consisting of glass core (n=1.80) and air cladding and the vertically coupled configuration, where a microring resonator with a few tens micron radius is stacked on the crossing point of cross-grid bus waveguides. The cross-grid topology of busline waveguides and very small ring radius enables a dense integration of filter circuit. To achieve the 3D integration, we developed a novel fabrication process of flat-top waveguide using a so-called lift-off process and the SOG (Spin-On-Glass), and successfully obtained a very smooth and flat surface of lower waveguide with a step height less than 0.01μm. In addition, to manipulate the center wavelength after fabrication, we developed two trimming methods; one is the use of UV-sensitive polymer for the over-cladding, and the other is the direct UV irradiation to the ring ocre made of Ta2O5-SiO2 compound glass. Utilizing the former method, the channel spacing of filter array was precisely controlled within 0.5nm, which can not be achieved by the control of ring radius.

  12. Effects associated with nanostructure fabrication using in situ liquid cell TEM technology

    SciTech Connect

    Chen, Xin; Zhou, Lihui; Wang, Ping; Cao, Hongliang; Miao, Xiaoli; Wei, Feifei; Chen, Xia

    2015-07-28

    We studied silicon, carbon, and SiCx nanostructures fabricated using liquid-phase electron-beam-induced deposition technology in transmission electron microscopy systems. Nanodots obtained from fixed electron beam irradiation followed a universal size versus beam dose trend, with precursor concentrations from pure SiCl4 to 0 % SiCl4 in CH2Cl2, and electron beamintensity ranges of two orders of magnitude, showing good controllability of the deposition. Secondary electrons contributed to the determination of the lateral sizes of the nanostructures, while the primary beam appeared to have an effect in reducing the vertical growth rate. These results can be used to generate donut-shaped nanostructures. Using a scanning electron beam, line structures with both branched and unbranched morphologies were also obtained. As a result, the liquid-phase electron-beam induced deposition technology is shown to be an effective tool for advanced nanostructured material generation.

  13. Interleaved array antenna technology development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is the third phase of a program to establish an antenna concept for shuttle and free flying spacecraft earth resources experiments using Synthetic Aperture Radar. The feasibility of a plated graphite epoxy waveguide for a space antenna was evaluated. A quantity of flat panels and waveguides were developed, procured, and tested for electrical and mechanical properties. In addition, processes for the assembly of a unique waveguide array were investigated. Finally, trades between various configurations that would allow elevation (range) electronic scanning and that would minimize feed complexity for various RF bandwidths were made.

  14. Space power development impact on technology requirements

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.; Fitzgerald, T. J.; Gilje, R. I.; Gordon, J. D.

    1986-01-01

    The paper is concerned with the selection of a specific spacecraft power technology and the identification of technology development to meet system requirements. Requirements which influence the selection of a given technology include the power level required, whether the load is constant or transient in nature, and in the case of transient loads, the time required to recover the power, and overall system safety. Various power technologies, such as solar voltaic power, solar dynamic power, nuclear power systems, and electrochemical energy storage, are briefly described.

  15. Geo energy research and development: technology transfer

    SciTech Connect

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  16. Fabrication of metrology test structures for future technology nodes using high-resolution variable-shaped e-beam direct write

    NASA Astrophysics Data System (ADS)

    Szikszai, László; Jaschinsky, Philipp; Keil, Katja; Hauptmann, Marc; Mört, Manfred; Seifert, Uwe; Hohle, Christoph; Choi, Kang-Hoon; Thrum, Frank; Kretz, Johannes; Ferreras Paz, Vaeriano; den Boef, Arie

    2009-03-01

    Electron beam direct write (EBDW) can be utilized for developing metrology methods for future technology nodes. Due to its advantage of high resolution and flexibility combined with suitable throughput capability, variable-shaped E-Beam lithography is the appropriate method to fabricate sub 40nm resist structures with accurately defined properties, such as critical dimension (CD), pitch, line edge roughness (LER) and line width roughness (LWR). In this study we present results of exposure experiments intended to serve as an important instrument for testing and fitting various metrology and defect density measurement methods for future technology nodes. We successfully fabricated sub 40nm gratings with varying CD, pitch, programmed defects and LER/LWR. First metrology measurements by means of optical scatterometry on these dense structures show that variation of the signal response is sufficient to detect sub 10nm fluctuations with a satisfying repeatability.

  17. Thirty years of plant transformation technology development.

    PubMed

    Vain, Philippe

    2007-03-01

    Technology development is seminal to many aspects of basic and applied plant transgenic science. Through the development and commercialization of genetically modified crops, the evolution of plant transgenic technologies is also relevant to society as a whole. In this study, literature statistics were used to uncover trends in the development of these technologies. Publication volume and impact (citation) over the past 30 years were analysed with respect to economic zones, countries, species and DNA delivery method. This revealed that, following a dramatic expansion in the 1980s, publications focusing on the development of transgenic technology have been slowing down worldwide since the early mid-1990s, except in a few leading Asian countries. The implications of these trends on the future of plant transgenic science as a whole are discussed.

  18. Aerospace Flywheel Technology Development for IPACS Applications

    NASA Technical Reports Server (NTRS)

    McLallin, Kerry L.; Jansen, Ralph H.; Fausz, Jerry; Bauer, Robert D.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) are cooperating under a space act agreement to sponsor the research and development of aerospace flywheel technologies to address mutual future mission needs. Flywheel technology offers significantly enhanced capability or is an enabling technology. Generally these missions are for energy storage and/or integrated power and attitude control systems (IPACS) for mid-to-large satellites in low earth orbit. These missions require significant energy storage as well as a CMG or reaction wheel function for attitude control. A summary description of the NASA and AFRL flywheel technology development programs is provided, followed by specific descriptions of the development plans for integrated flywheel system tests for IPACS applications utilizing both fixed and actuated flywheel units. These flywheel system development tests will be conducted at facilities at AFRL and NASA Glenn Research Center and include participation by industry participants Honeywell and Lockheed Martin.

  19. Design and technical support for development of a molded fabric space suit joint

    NASA Technical Reports Server (NTRS)

    Olson, L. Howard

    1994-01-01

    NASA Ames Research Center has under design a new joint or element for use in a space suit. The design concept involves molding a fabric to a geometry developed at Ames. Unusual characteristics of this design include the need to produce a fabric molding draw ratio on the order of thirty percent circumferentially on the surface. Previous work done at NASA on molded fabric joints has shown that standard, NASA qualified polyester fabrics as are currently available in the textile industry for use in suits have a maximum of about fifteen percent draw ratio. NASA has done the fundamental design for a prototype joint and of a mold which would impart the correct shape to the fabric support layer of the joint. NASA also has the capability to test a finished product for suitability and reliability. Responsibilities resting with Georgia Tech in the design effort for this project are textile related, namely fiber selection, fabric design to achieve the properties of the objective design, and determining production means and sources for the fabrics. The project goals are to produce a prototype joint using the NASA design for evaluation of effectiveness by NASA, and to establish the sources and specifications which would allow reliable and repeatable production of the joint.

  20. Space power thermal management materials and fabrication technologies for commerical use

    NASA Astrophysics Data System (ADS)

    Rosenfeld, John H.; Anderson, William G.; Horner-Richardson, Kevin; Hartenstine, John R.; Keller, Robert F.; Beals, James T.

    1995-01-01

    This paper describes three materials technologies, developed for space nuclear power thermal management, with exciting and varied applications in other fields. Six dual-use applications are presented. The three basic technologies are described: (1) Refractory-metal/ceramic layered composites can be made into thin, rigid, vacuum tight shells. These shells can be tailored for excellent impact resistance and/or excellent corrision/erosion properties. Dual use applications range from micrometeroid shield radiators for spacecraft to erosion resistant waste-stream heat recovery for corrosive exhaust. (2.) Porous metal technology was initially developed to produce wicks for liquid metal heat pipes. This technology is being developed in several new directions. Porous metal heat exchangers feature extraordinarily high specific surface ratios and have absorbed heat fluxes in excess of 100 MW/m2. Porous metal structures are highly compliant, so the technology has been expanded to produce a compliant interface for the attachment of materials with widely different coefficients of thermal expansion such as low expansion carbon-carbon to high expansion metals. (3.) The paper also describes a process, developed for space nuclear power (thermionics), which achieves 100% dense tungsten by plasma spraying. This could have major application in the reprocessing of spent nuclear fuel or other pyrochemical processes, where it would replace gun-drilled tungsten-molybdenum tubes with pure tungsten tubes of smaller diameter, longer, and thiner walled. The process could produce pure tungsten components in complex shapes for arcjet thrusters and other electric propulsion devices.

  1. X-43 Hypersonic Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  2. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  3. Advanced Technology Development for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope generator (SRG) for use on potential NASA space missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center. GRC is also developing advanced technology for Stirling converters, aimed at substantially improving the specific power and efficiency of the converter.The status and results to date will be discussed in this paper.

  4. Technology Challenges in Small UAV Development

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Vranas, Thomas L.; Motter, Mark; Shams, Qamar; Pollock, Dion S.

    2005-01-01

    Development of highly capable small UAVs present unique challenges for technology protagonists. Size constraints, the desire for ultra low cost and/or disposable platforms, lack of capable design and analysis tools, and unique mission requirements all add to the level of difficulty in creating state-of-the-art small UAVs. This paper presents the results of several small UAV developments, the difficulties encountered, and proposes a list of technology shortfalls that need to be addressed.

  5. Developing technologies for lunar-based astronomy

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Burns, Jack O.; Chua, Koon Meng; Wetzel, John P.

    1992-01-01

    Prospects for lunar-based astronomy and the development of the required technologies are briefly reviewed. A systematic approach to lunar-based astronomy includes a progression in capability from small automated telescopes to the 16-meter reflector on the moon. A next step beyond the 16-meter reflector will be a Lunar Optical/Ultraviolet/Infrared Synthesis Array. Intermediate steps are represented by the Lunar Transit Telescope and the Lunar Cluster Telescope Experiment. Priorities for the required technology development are identified.

  6. Assistive Technology Developments in Puerto Rico.

    ERIC Educational Resources Information Center

    Lizama, Mauricio A.; Mendez, Hector L.

    Recent efforts to develop Spanish-based adaptations for alternate computer input devices are considered, as are their implications for Hispanics with disabilities and for the development of language sensitive devices worldwide. Emphasis is placed on the particular need to develop low-cost high technology devices for Puerto Rico and Latin America…

  7. Capitalizing on App Development Tools and Technologies

    ERIC Educational Resources Information Center

    Luterbach, Kenneth J.; Hubbell, Kenneth R.

    2015-01-01

    Instructional developers and others creating apps must choose from a wide variety of app development tools and technologies. Some app development tools have incorporated visual programming features, which enable some drag and drop coding and contextual programming. While those features help novices begin programming with greater ease, questions…

  8. Banking, Technology Workers and Their Career Development.

    ERIC Educational Resources Information Center

    Armstrong, Lesley; West, Jim

    2001-01-01

    An Australian bank developed a four-stage career development strategy for information technology workers: (1) career coaching sessions with executives; (2) career coaching seminars for line managers and team leaders; (3) staff career planning workshops; and (4) online career development support. The program resulted in increased satisfaction,…

  9. Advances in space technology: the NSBRI Technology Development Team

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Charles, H. K. Jr; Pisacane, V. L.

    2002-01-01

    As evidenced from Mir and other long-duration space missions, the space environment can cause significant alterations in the human physiology that could prove dangerous for astronauts. The NASA programme to develop countermeasures for these deleterious human health effects is being carried out by the National Space Biomedical Research Institute (NSBRI). The NSBRI has 12 research teams, ten of which are primarily physiology based, one addresses on-board medical care, and the twelfth focuses on technology development in support of the other research teams. This Technology Development (TD) Team initially supported four instrumentation developments: (1) an advanced, multiple projection, dual energy X ray absorptiometry (AMPDXA) scanning system: (2) a portable neutron spectrometer; (3) a miniature time-of-flight mass spectrometer: and (4) a cardiovascular identification system. Technical highlights of the original projects are presented along with an introduction to the five new TD Team projects being funded by the NSBRI.

  10. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  11. Role of research aircraft in technology development

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1984-01-01

    The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.

  12. Technology development program for an advanced microsheet glass concentrator

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.; Lacy, Dovie E.

    1990-01-01

    Solar Dynamic Space Power Systems are candidate electrical power generating systems for future NASA missions. One of the key components in a solar dynamic power system is the concentrator which collects the sun's energy and focuses it into a receiver. In 1985, the NASA Lewis Research Center initiated the Advanced Solar Dynamic Concentrator Program with funding from NASA's Office of Aeronautics and Space Technology (OAST). The objectives of the Advanced Concentrator Program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived (7 to 10 years) space solar dynamic concentrators. The Advanced Concentrator Program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. The Advanced Microsheet Glass Concentrator Program, a reflector concept, that is currently being investigated both in-house and under contract is discussed.

  13. Low-cost fabrication technologies for nanostructures: state-of-the-art and potential

    NASA Astrophysics Data System (ADS)

    Santos, A.; Deen, M. J.; Marsal, L. F.

    2015-01-01

    In the last decade, some low-cost nanofabrication technologies used in several disciplines of nanotechnology have demonstrated promising results in terms of versatility and scalability for producing innovative nanostructures. While conventional nanofabrication technologies such as photolithography are and will be an important part of nanofabrication, some low-cost nanofabrication technologies have demonstrated outstanding capabilities for large-scale production, providing high throughputs with acceptable resolution and broad versatility. Some of these nanotechnological approaches are reviewed in this article, providing information about the fundamentals, limitations and potential future developments towards nanofabrication processes capable of producing a broad range of nanostructures. Furthermore, in many cases, these low-cost nanofabrication approaches can be combined with traditional nanofabrication technologies. This combination is considered a promising way of generating innovative nanostructures suitable for a broad range of applications such as in opto-electronics, nano-electronics, photonics, sensing, biotechnology or medicine.

  14. Smart DNA Fabrication Using Sound Waves: Applying Acoustic Dispensing Technologies to Synthetic Biology.

    PubMed

    Kanigowska, Paulina; Shen, Yue; Zheng, Yijing; Rosser, Susan; Cai, Yizhi

    2016-02-01

    Acoustic droplet ejection (ADE) technology uses focused acoustic energy to transfer nanoliter-scale liquid droplets with high precision and accuracy. This noncontact, tipless, low-volume dispensing technology minimizes the possibility of cross-contamination and potentially reduces the costs of reagents and consumables. To date, acoustic dispensers have mainly been used in screening libraries of compounds. In this paper, we describe the first application of this powerful technology to the rapidly developing field of synthetic biology, for DNA synthesis and assembly at the nanoliter scale using a Labcyte Echo 550 acoustic dispenser. We were able to successfully downscale PCRs and the popular one-pot DNA assembly methods, Golden Gate and Gibson assemblies, from the microliter to the nanoliter scale with high assembly efficiency, which effectively cut the reagent cost by 20- to 100-fold. We envision that acoustic dispensing will become an instrumental technology in synthetic biology, in particular in the era of DNA foundries.

  15. Low-cost fabrication technologies for nanostructures: state-of-the-art and potential.

    PubMed

    Santos, A; Deen, M J; Marsal, L F

    2015-01-30

    In the last decade, some low-cost nanofabrication technologies used in several disciplines of nanotechnology have demonstrated promising results in terms of versatility and scalability for producing innovative nanostructures. While conventional nanofabrication technologies such as photolithography are and will be an important part of nanofabrication, some low-cost nanofabrication technologies have demonstrated outstanding capabilities for large-scale production, providing high throughputs with acceptable resolution and broad versatility. Some of these nanotechnological approaches are reviewed in this article, providing information about the fundamentals, limitations and potential future developments towards nanofabrication processes capable of producing a broad range of nanostructures. Furthermore, in many cases, these low-cost nanofabrication approaches can be combined with traditional nanofabrication technologies. This combination is considered a promising way of generating innovative nanostructures suitable for a broad range of applications such as in opto-electronics, nano-electronics, photonics, sensing, biotechnology or medicine. PMID:25567484

  16. Cost update: Technology, safety, and costs of decommissioning a reference uranium fuel fabrication plant

    SciTech Connect

    Miles, T.L.; Liu, Y.

    1994-06-01

    The cost estimates originally developed in NUREG/CR-1266 for commissioning a reference low-enrichment uranium fuel fabrication plant are updated from 1978 to early 1993 dollars. During this time, the costs for labor and materials increased approximately at the rate of inflation, the cost of energy increased more slowly than the rate of inflation, and the cost of low-level radioactive waste disposal increased much more rapidly than the rate of inflation. The results of the analysis indicate that the estimated costs for the immediate dismantlement and decontamination for unrestricted facility release (DECON) of the reference plant have increased from the mid-1978 value of $3.57 million to $8.08 million in 1993 with in-compact low-level radioactive waste disposal at the US Ecoloay facility near Richland, Washington. The cost estimate rises to $19.62 million with out-of-compact radioactive waste disposal at the Chem-Nuclear facility near Barnwell, South Carolina. A methodology and a formula are presented for estimating the cost of decommissioning the reference uranium fuel fabrication plant at some future time, based on these early 1993 cost estimates. The formula contains essentially the same elements as the formula given in 10 CFR 50.75 for escalating the decommissioning costs for nuclear power reactors to some future time.

  17. Fabricating quench condensed lead thin film circuits using MEMS Fab on a Chip technology

    NASA Astrophysics Data System (ADS)

    Imboden, Matthias; Han, Han; Del Corro, Pablo; Pardo, Flavio; Bolle, Cristian; Bishop, David

    2015-03-01

    We have developed a MEMS Fab on a Chip consisting of micro-sources, mass sensors, heaters/thermometers, shutters and a dynamic stencil. The fab only occupies a volume of a few cubic millimeters and consumes milliwatts of power, and hence can be operated in a cryostat. Thin film patterns of arbitrary shapes using multiple materials can be manufactured, while strongly suppressing thermal annealing effects. We demonstrate deposition of quench condensed lead films with fractions of a monolayer thickness control. Furthermore, using low deposition rates it is estimated that the surface temperature of the target heats by only 1.7 K. We study the effects of growing quench condensed films with different evaporation rates to demonstrate thermal annealing effects which occur during deposition. We measure the minimum conduction thickness (insulator to metal transition) as well as the superconducting transition temperature as a function of film thickness in order to shed light on growth of amorphous films and the transition to nanocluster formations. The Fab on a Chip will allow us to build nanocircuits made of ultra-thin materials. Annealing and doping is controlled and measurements occur in situ, without exposing the fabricated circuits to thermal fluctuations or foreign contaminants. This enables new types of experiments based on quantum circuits which cannot be fabricated using standard lithography techniques.

  18. Development of improved technology for decommissioning operations

    SciTech Connect

    Allen, R.P.

    1982-07-01

    This paper describes the technology development activities conducted at Pacific Northwest Laboratory under US Department of Energy sponsorship to help ensure the availability of safe, cost-effective and environmentally sound decommissioning technology for radioactively contaminated facilities. These improved decommissioning technologies include techniques for the removal of contaminated concrete surfaces and coatings, adaptation of electropolishing and vibratory finishing decontamination techniques for field decommissioning applications, development of sensitive field instrumentation and methods for the monitoring of large surface areas, techniques for the field sectioning of contaminated components, improved contamination-stabilizing coatings and application methods, and development of a small solidification system for the field solidification of liquid waste. The results of cost/benefit studies for some of these technologies are also reported.

  19. Recent Developments in Chalcopyrite Solar Cell and Module Technologies

    NASA Astrophysics Data System (ADS)

    Ishizuka, Shogo; Komaki, Hironori; Yoshiyama, Takashi; Mizukoshi, Kazuyuki; Yamada, Akimasa; Niki, Shigeru

    Chalcopyrite Cu(In, Ga)Se2(CIGS) and related compounds belong to the semiconducting I-III-VI2 materials family and are most promising thin film solar cells which have demonstrated up to 20% cell efficiencies and over 15% module efficiencies to date. Many CIGS companies in EU, US, and Japan have started several ten MW/year scale commercial production and have announced to increase their production capacities further within a couple of years. In this review, recent developments in highly efficient CIGS module technologies and issues to be solved for further development are discussed. Recent progress in the development of reliable alkali incorporation control techniques which is required to demonstrate high cell efficiencies from flexible CIGS cells fabricated on alkali-free substrates is also introduced. The mechanism behind the beneficial effects of alkali doping into CIGS absorber layers is also discussed.

  20. Qualification of local advanced cryogenic cleaning technology for 14nm photomask fabrication

    NASA Astrophysics Data System (ADS)

    Taumer, Ralf; Krome, Thorsten; Bowers, Chuck; Varghese, Ivin; Hopkins, Tyler; White, Roy; Brunner, Martin; Yi, Daniel

    2014-10-01

    The march toward tighter design rules, and thus smaller defects, implies stronger surface adhesion between defects and the photomask surface compared to past generations, thereby resulting in increased difficulty in photomask cleaning. Current state-of-the-art wet clean technologies utilize functional water and various energies in an attempt to produce similar yield to the acid cleans of previous generations, but without some of the negative side effects. Still, wet cleans have continued to be plagued with issues such as persistent particles and contaminations, SRAF and feature damages, leaving contaminants behind that accelerate photo-induced defect growth, and others. This paper details work done through a design of experiments (DOE) utilized to qualify an improved cryogenic cleaning technology for production in the Advanced Mask Technology Center (AMTC) advanced production lines for 20 and 14 nm processing. All work was conducted at the AMTC facility in Dresden, Germany utilizing technology developed by Eco-Snow Systems and RAVE LLC for their cryogenic local cleaning VC1200F platform. This system uses a newly designed nozzle, improved gaseous CO2 delivery, extensive filtration to remove hydrocarbons and minimize particle adders, and other process improvements to overcome the limitations of the previous generation local cleaning tool. AMTC has successfully qualified this cryogenic cleaning technology and is currently using it regularly to enhance production yields even at the most challenging technology nodes.

  1. Transfer of radiation technology to developing countries

    NASA Astrophysics Data System (ADS)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  2. DEVELOPMENT OF EMERGING TECHNOLOGIES WITHIN THE SITE PROGRAM

    EPA Science Inventory

    The Site Program is formed by five research programs: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technology Development Program, the Innovative Technology Program, and the Technology Transfer Program. The Emerging Technology (ET) P...

  3. [Custom-made artificial bones fabricated by an inkjet printing technology].

    PubMed

    Igawa, Kazuyo; Chung, Ung-il; Tei, Yuichi

    2008-12-01

    Although current treatment modalities for bone defects include autograft, allograft, and artificial bone substitutes, they have problems concerning invasiveness, safety, and performance, respectively, calling for development of innovative artificial bones with better handling and mechanical strength, better control of external and internal structures, and better biodegradability and osteo-inductive ability. We propose to fabricate novel high performance artificial bones using 3D inkjet printer based on the image data of bone deformity. Shape precisely fitting to the deformity, internal structure facilitating cell invasion, and good biodegradability are achieved. Bioactive substances can be incorporated by printing in combination with drug delivery system to induce bone regeneration at desired locations. These osteo-inductive artificial bones will help efficiently treat various types of bone deformity in a less invasive and safe manner.

  4. Developing novel 3D antennas using advanced additive manufacturing technology

    NASA Astrophysics Data System (ADS)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  5. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  6. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  7. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    SciTech Connect

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

  8. Low cost fabrication development for oxide dispersion strengthened alloy vanes

    NASA Technical Reports Server (NTRS)

    Perkins, R. J.; Bailey, P. G.

    1978-01-01

    Viable processes were developed for secondary working of oxide dispersion strengthened (ODS) alloys to near-net shapes (NNS) for aircraft turbine vanes. These processes were shown capable of producing required microstructure and properties for vane applications. Material cost savings of 40 to 50% are projected for the NNS process over the current procedures which involve machining from rectangular bar. Additional machining cost savings are projected. Of three secondary working processes evaluated, directional forging and plate bending were determined to be viable NNS processes for ODS vanes. Directional forging was deemed most applicable to high pressure turbine (HPT) vanes with their large thickness variations while plate bending was determined to be most cost effective for low pressure turbine (LPT) vanes because of their limited thickness variations. Since the F101 LPT vane was selected for study in this program, development of plate bending was carried through to establishment of a preliminary process. Preparation of ODS alloy plate for bending was found to be a straight forward process using currently available bar stock, providing that the capability for reheating between roll passes is available. Advanced ODS-NiCrAl and ODS-FeCrAl alloys were utilized on this program. Workability of all alloys was adequate for directional forging and plate bending, but only the ODS-FeCrAl had adequate workability for shaped preform extrustion.

  9. Earth feature identification and tracking technology development

    NASA Technical Reports Server (NTRS)

    Wilson, R. G.; Sivertson, W. E., Jr.

    1979-01-01

    The paper discusses needs for smart sensing in terrestrial and atmospheric remote sensing as related to current technology and a scheduled Shuttle experiment. An approach is outlined involving Shuttle-borne experiments to develop earth feature identification and tracking technology including a Feature Identification and Location Experiment (FILE) scheduled for flight on the NASA Shuttle with an objective of classifying earth features into categories of bare land, water, vegetation, and clouds, snow, and ice. The plan for evolution of the FILE-related technology leads to capabilities for pointing instruments to predetermined sites, reacquiring earth features or landmarks, and tracking features such as coastlines and rivers. Technology concepts relative to an overall system transfer function is discussed, and the development status outlined.

  10. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and asteroid redirection; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  11. Advances in Robotic Servicing Technology Development

    NASA Technical Reports Server (NTRS)

    Gefke, Gardell G.; Janas, Alex; Pellegrino, Joseph; Sammons, Matthew; Reed, Benjamin

    2015-01-01

    NASA's Satellite Servicing Capabilities Office (SSCO) has matured robotic and automation technologies applicable to in-space robotic servicing and robotic exploration over the last six years. This paper presents the progress of technology development activities at the Goddard Space Flight Center Servicing Technology Center and on the ISS, with an emphasis on those occurring in the past year. Highlighted advancements are design reference mission analysis for servicing in low Earth orbit (LEO) and near Earth asteroid boulder retrieval; delivery of the engineering development unit of the NASA Servicing Arm; an update on International Space Station Robotic Refueling Mission; and status of a comprehensive ground-based space robot technology demonstration expanding in-space robotic servicing capabilities beginning fall 2015.

  12. Cyrogenic Life Support Technology Development Project

    NASA Technical Reports Server (NTRS)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  13. Aviation technology applicable to developing regions

    NASA Technical Reports Server (NTRS)

    Zuk, John; Alton, Larry R.

    1988-01-01

    This paper is an analysis of aviation technologies useful for formulation of development plans to the year 2000 for emerging nations. The Caribbean Basin was used as a specific application. This development promises to be so explosive over the next 15 years as to be virtually unpredictable.

  14. New Achievements in Technology Education and Development

    ERIC Educational Resources Information Center

    Soomro, Safeeullah, Ed.

    2010-01-01

    Since many decades Education Science and Technology has an achieved tremendous recognition and has been applied to variety of disciplines, mainly Curriculum development, methodology to develop e-learning systems and education management. Many efforts have been taken to improve knowledge of students, researchers, educationists in the field of…

  15. Human Capital and Technology Development in Malaysia

    ERIC Educational Resources Information Center

    Awang, Halimah

    2004-01-01

    This paper examines the development of Information and Communication Technology (ICT) and its relation to the development of human capital in Malaysia as a country undergoing transformation into an ICT-driven and knowledge-based society. Education and training, being the key variable of human capital, is examined in terms of the government…

  16. Multi-wavelength lasers fabricated by an Al layer controlled quantum well intermixing technology

    NASA Astrophysics Data System (ADS)

    Teng, J. H.; Chua, S. J.; Huang, Y. H.; Li, G.; Zhang, Z. H.; Helmy, A. Saher; Marsh, J. H.

    2000-09-01

    We report that the shift in the band gap of Al0.3Ga0.7As/GaAs quantum well structures can be precisely controlled by an Al layer buried between a spin-on silica film and a wet-oxidized GaAs surface. The blueshift in wavelength of the Al0.3Ga0.7As/GaAs quantum well photoluminescence (PL) depends linearly on the thickness of the buried Al layer. By changing the Al layer thickness, the PL peak wavelength can be tuned from 7870 Å for the as-grown sample to 7300 and 7050 Å after 20 and 45 s rapid thermal annealing at 850 °C, respectively. Applying this technology, Al layers with different thickness, i.e., no Al, 200 and 300 Å thick, were applied to the oxidized GaAs surface in three adjacent regions with 200 μm spacing on a quantum well laser structure sample. Three wavelength lasers were successfully fabricated in a single chip by a one step rapid thermal annealing. All the lasers have similar threshold current and slope efficiency.

  17. Nonlinear electromagnetic energy harvesters fabricated by rigid-flex printed circuit board technology

    NASA Astrophysics Data System (ADS)

    Chiu, Yi; Hong, Hao-Chiao; Hsu, Wei-Hung

    2015-12-01

    In this paper, a wideband electromagnetic energy harvester designed and fabricated by commercial rigid-flex PCB technology is demonstrated. The rigid FR-4 boards are used for mechanical frames and coil winding whereas the flexible polyimide film is used for mechanical springs and mass platforms. The total dimension of the device is 20 × 20 × 2 mm3. The internal coil resistance is 15 Ω. In vibration tests, nonlinearity can be observed even at 0.1 g vibration level due to the spring hardening effect. The peak frequency was increased as the vibration level increased. The effective bandwidth was increased from 6 Hz at 0.1 g to 21 Hz at 0.5 g and 27 Hz at 1 g, respectivel, due to the hysteresis effect. For a matched load and 1 g vibration at 240 Hz, the maximum output power is 24.5 nW, corresponding to a power density of 31 nW/cm3.

  18. Development, Fabrication, and Testing of a Liquid/Liquid Microchannel Heat Exchanger for Constellation Spacecrafts

    NASA Technical Reports Server (NTRS)

    Hawkins-Reynolds, Ebony; Le,Hung; Stephans, Ryan A.

    2009-01-01

    Minimizing mass and volume is critically important for space hardware. Microchannel technology can be used to decrease both of these parameters for heat exchangers. Working in concert with NASA, Pacific Northwest National Laboratories (PNNL) has developed a microchannel liquid/liquid heat exchanger that has resulted in significant mass and volume savings. The microchannel heat exchanger delivers these improvements without sacrificing thermal and pressure drop performance. A conventional heat exchanger has been tested and the performance of it recorded to compare it to the microchannel heat exchanger that PNNL has fabricated. The microchannel heat exchanger was designed to meet all of the requirements of the baseline heat exchanger, while reducing the heat exchanger mass and volume. The baseline heat exchanger was designed to have an transfer approximately 3.1 kW for a specific set of inlet conditions. The baseline heat exchanger mass was 2.7 kg while the microchannel mass was only 2.0 kg. More impressive, however, was the volumetric savings associated with the microchannel heat exchanger. The microchannel heat exchanger was an order of magnitude smaller than the baseline heat exchanger (2180cm3 vs. 311 cm3). This paper will describe the test apparatus designed to complete performance tests for both heat exchangers. Also described in this paper will be the performance specifications for the microchannel heat exchanger and how they compare to the baseline heat exchanger.

  19. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A processing system capable of producing solar cell junctions by ion implantation followed by pulsed electron beam annealing was developed and constructed. The machine was to be capable of processing 4-inch diameter single-crystal wafers at a rate of 10(7) wafers per year. A microcomputer-controlled pulsed electron beam annealer with a vacuum interlocked wafer transport system was designed, built and demonstrated to produce solar cell junctions on 4-inch wafers with an AMI efficiency of 12%. Experiments showed that a non-mass-analyzed (NMA) ion beam could implant 10 keV phosphorous dopant to form solar cell junctions which were equivalent to mass-analyzed implants. A NMA ion implanter, compatible with the pulsed electron beam annealer and wafer transport system was designed in detail but was not built because of program termination.

  20. MICROHOLE TECHNOLOGY PROGRESS ON BOREHOLE INSTRUMENTATION DEVELOPMENT

    SciTech Connect

    J. ALBRIGHT

    2000-09-01

    Microhole technology development is based on the premise that with advances in electronics and sensors, large conventional-diameter wells are no longer necessary for obtaining subsurface information. Furthermore, microholes offer an environment for improved substance measurement. The combination of deep microholes having diameters of 1-3/8 in. at their terminal depth and 7/8-in. diameter logging tools will comprise a very low cost alternative to currently available technology for deep subsurface characterization and monitoring.

  1. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    SciTech Connect

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  2. Mobile display technologies: Past developments, present technologies, and future opportunities

    NASA Astrophysics Data System (ADS)

    Ohshima, Hiroyuki

    2014-01-01

    It has been thirty years since the first active matrix (AM) flat panel display (FPD) was industrialized for portable televisions (TVs) in 1984. The AM FPD has become a dominant electronic display technology widely used from mobile displays to large TVs. The development of AM FPDs for mobile displays has significantly changed our lives by enabling new applications, such as notebook personal computers (PCs), smartphones and tablet PCs. In the future, the role of mobile displays will become even more important, since mobile displays are the live interface for the world of mobile communications in the era of ubiquitous networks. Various developments are being conducted to improve visual performance, reduce power consumption and add new functionality. At the same time, innovative display concepts and novel manufacturing technologies are being investigated to create new values.

  3. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  4. Nuclear Fabrication Consortium

    SciTech Connect

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium

  5. Hybrid fuel formulation and technology development

    NASA Technical Reports Server (NTRS)

    Dean, D. L.

    1995-01-01

    The objective was to develop an improved hybrid fuel with higher regression rate, a regression rate expression exponent close to 0.5, lower cost, and higher density. The approach was to formulate candidate fuels based on promising concepts, perform thermomechanical analyses to select the most promising candidates, develop laboratory processes to fabricate fuel grains as needed, fabricate fuel grains and test in a small lab-scale motor, select the best candidate, and then scale up and validate performance in a 2500 lbf scale, 11-inch diameter motor. The characteristics of a high performance fuel have been verified in 11-inch motor testing. The advanced fuel exhibits a 15% increase in density over an all hydrocarbon formulation accompanied by a 50% increase in regression rate, which when multiplied by the increase in density yields a 70% increase in fuel mass flow rate; has a significantly lower oxidizer-to-fuel (O/F) ratio requirement at 1.5; has a significantly decreased axial regression rate variation making for more uniform propellant flow throughout motor operation; is very clean burning; extinguishes cleanly and quickly; and burns with a high combustion efficiency.

  6. Wind technology development: Large and small turbines

    NASA Astrophysics Data System (ADS)

    Thresher, R. W.; Hock, S. M.; Loose, R. R.; Goldman, P.

    1994-12-01

    Wind technology has developed rapidly over the last decade with the design and development of advanced systems with improved performance, higher reliability, and lower costs. During the past several years, substantial gains have been made in wind turbine designs, lowering costs to an average of $0.05/kWh while further technology development is expected to allow the cost to drop below $0.04/kWh by 2000. As a result, wind is expected to be one of the least expensive forms of new electric generation in the next century. This paper will present the technology developments for both utility-scale wind turbines and remote, small-village wind turbines that are currently available or in development. Technology innovations are being adapted for remote and stand-alone power applications with smaller wind turbines. Hybrid power systems using smaller 1 to 50 (kW) wind turbines are being developed for non-grid-connected electrical generation applications. These village power systems typically use wind energy, photovoltaics, battery storage, and conventional diesel generators to power remote communities. Smaller turbines are being explored for application as distributed generation sources on utility grids to supply power during periods of peak demand, avoiding costly upgrades in distribution equipment. New turbine designs now account for turbulence-induced loads, unsteady aerodynamic stall effects, and complex fatigue loads, making use of new technology developments such as advanced airfoils. The new airfoils increase the energy capture, improve the operating efficiency, and reduce the sensitivity of the airfoils to operation roughness. Electronic controls are allowing variable rotor speed operation; while aerodynamic control devices, such as ailerons and flaps, are used to modulate power or stop the rotor in high-speed conditions. These technology trends and future turbine configurations are being sponsored and explored by the U.S. Department of Energy's Wind Energy Program.

  7. Fundamentals and advances in the development of remote welding fabrication systems

    NASA Technical Reports Server (NTRS)

    Agapakis, J. E.; Masubuchi, K.; Von Alt, C.

    1986-01-01

    Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.

  8. Development of Laser Fabricated Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III

    2006-01-01

    Laser Engineered Net Shaping (LENS) depositions with Ti-6Al-4V gas-atomized powder were accomplished at five different temperatures, ranging from 30 to 400 C, imposed on the base plate. These base plate temperatures were employed in an effort to relieve stresses which develop during the deposition. Warpage of the base plate was monitored. Only a slight decline in warpage was observed as the base plate temperature was increased. Results indicate that substrate temperatures closer to the stress relief minimum of 480 C would relieve deposition stresses, though process parameters would likely need to be modified to compensate for the higher base plate temperature. The compositions of the as-received powder and the LENS deposited material were chemically analyzed. The oxygen content of the LENS material was 0.154 wt.% which is less than the maximum impurity limit of 0.2 percent for commercial Ti-6Al-4V alloys, but is over the limit allowed in ELI grade (0.13 percent). The level of oxygen in the commercial base plate used was only 0.0635 percent. Tensile specimens were machined from the LENS deposited material and tested in tension at room temperature. The ultimate and yield tensile stresses of the LENS material were about 1200 and 1150 MPa respectively, which is about 20 percent higher than the strengths of wrought Ti-6Al-4V. The higher strength of the LENS material was due to its fine structure and high oxygen content. The LENS deposits were not fully dense; voids were frequent at the interfaces between deposited layers. These dispersed sheets of voids were parallel to the longitudinal axis of the resulting tensile specimens. Apparently there was sufficient continuous, fully dense material longitudinally to enable the high strengths. Ductility was low in the LENS material. Percent elongation at failure in the LENS material was near 4 percent, which is less than half of what is usually expected from Ti-6Al-4V. The low ductility was caused by high oxygen levels, and the

  9. ISV technology development plan for buried waste

    SciTech Connect

    Nickelson, D.F.; Callow, R.A. ); Luey, J.K. )

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy's Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K).

  10. ISV technology development plan for buried waste

    SciTech Connect

    Nickelson, D.F.; Callow, R.A.; Luey, J.K.

    1992-07-01

    This report identifies the main technical issues facing the in situ vitrification (ISV) application to buried waste, and presents a plan showing the top-level schedule and projected resources needed to develop and demonstrate the technology for meeting Environmental Restoration Department (ERD) needs. The plan also proposes a model strategy for the technology transfer from the Department of Energy`s Office of Technology Development (DOE-OTD) to the Office of Environmental Restoration (DOE-ER) as the technology proceeds from issues resolution (development) to demonstration and remedial readiness. Implementation of the plan would require $34,91 1K in total funding to be spread in the years FY-93 through FY-98. Of this amount, $10,183K is planned to be funded by DOE-OTD through the ISV Integrated Program. The remaining amount, $24,728K, is recommended to be split between the Department of Energy (DOE) Office of Technology Development ($6,670K) and DOE Office of Environmental Restoration ($18,058K).

  11. Advanced on-site power plant development technology program

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A 30-cell, full area short stack containing advanced cell features was tested for 2900 hours. A stack acid addition approach was selected and will be evaluated on the stack at 5000 hours test time. A brassboard inverter was designed and fabrication was initiated. Evaluation of this brassboard inverter will take place in 1984. A Teflon coated commercial heat exchanger was selected as the preferred approach for the acid condenser. A reformer catalyst with significantly less pressure drop and equivalent performance relative to the 40-K baseline catalyst was selected for the development reformer. The early 40-kW field power plant history was reviewed and adjustments were made to the On-Site Technology Development Program to address critical component issues.

  12. Making technological innovation work for sustainable development.

    PubMed

    Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G; Matus, Kira; Moon, Suerie; Murthy, Sharmila L; Clark, William C

    2016-08-30

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset.

  13. Making technological innovation work for sustainable development.

    PubMed

    Anadon, Laura Diaz; Chan, Gabriel; Harley, Alicia G; Matus, Kira; Moon, Suerie; Murthy, Sharmila L; Clark, William C

    2016-08-30

    This paper presents insights and action proposals to better harness technological innovation for sustainable development. We begin with three key insights from scholarship and practice. First, technological innovation processes do not follow a set sequence but rather emerge from complex adaptive systems involving many actors and institutions operating simultaneously from local to global scales. Barriers arise at all stages of innovation, from the invention of a technology through its selection, production, adaptation, adoption, and retirement. Second, learning from past efforts to mobilize innovation for sustainable development can be greatly improved through structured cross-sectoral comparisons that recognize the socio-technical nature of innovation systems. Third, current institutions (rules, norms, and incentives) shaping technological innovation are often not aligned toward the goals of sustainable development because impoverished, marginalized, and unborn populations too often lack the economic and political power to shape innovation systems to meet their needs. However, these institutions can be reformed, and many actors have the power to do so through research, advocacy, training, convening, policymaking, and financing. We conclude with three practice-oriented recommendations to further realize the potential of innovation for sustainable development: (i) channels for regularized learning across domains of practice should be established; (ii) measures that systematically take into account the interests of underserved populations throughout the innovation process should be developed; and (iii) institutions should be reformed to reorient innovation systems toward sustainable development and ensure that all innovation stages and scales are considered at the outset. PMID:27519800

  14. Cryogenic wind-tunnel model technology development activities at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr.; Bradshaw, J. F.; Rush, H. F., Jr.; Wallace, J. W.; Watkins, V. E., Jr.

    1984-01-01

    This paper summarizes the current cryogenic wind-tunnel model technology development activities at the NASA Langley Research Center. These research and development activities are being conducted in support of the design and fabrication of models for the new National Transonic Facility (NTF). The scope and current status of major research and development work is described and where available, data are presented from various investigations conducted to date. In addition, design and fabrication experience for existing developmental models to be tested in the NTF is discussed.

  15. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  16. Incorporating Geospatial Technology into Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Sproles, E. A.; Songer, L.

    2009-12-01

    The need for students to think spatially and use geospatial technologies is becoming more critical as these tools and concepts are increasingly incorporated into a broad range of occupations and academic disciplines. Geospatial Teaching Across the Curriculum (Geo-STAC) is a collaborative program that provides high school teachers with mentored professional development workshops in geospatial thought and technology. The seminars, led by community college faculty, give high school teachers the ability to incorporate geospatial technology into coursework across the curriculum — in Science, Technology, Engineering, and Math (STEM) and non-STEM disciplines. Students participating in the hands-on lessons gain experience in web-based and desktop Geographic Information Systems (GIS). The goals of the workshop are for teachers to: (1) understand the importance of geospatial thinking; (2) learn how to employ geospatial thinking in each discipline; (3) learn about geospatial technologies; (4) develop a Web-based GIS lesson; and, (5) implement a Web-based GIS lesson. Additionally, Geo-STAC works with high school students so that they: (1) understand the importance of geospatial technologies and careers in future job markets; (2) learn how to use Web-based GIS to solve problems; and, (3) visit the community college GIS lab and experience using desktop GIS. Geo-STAC actively disseminates this collaborative model to colleges to community colleges and high schools across the country.

  17. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.

  18. Air Force Research Laboratory Cryocooler Technology Development

    NASA Astrophysics Data System (ADS)

    Davis, Thomas M.; Smith, D. Adam; Easton, Ryan M.

    2004-06-01

    This paper presents an overview of the cryogenic refrigerator and cryogenic integration programs in development and characterization under the Cryogenic Cooling Technology Group, Space Vehicles Directorate of the Air Force Research Laboratory (AFRL). The vision statement for the group is to support the space community as the center of excellence for developing and transitioning space cryogenic thermal management technologies. This paper will describe the range of Stirling, pulse tube; reverse Brayton, and Joule-Thomson cycle cryocoolers currently under development to meet current and future Air Force and Department of Defense requirements. Cooling requirements at 10K, 35K, 60K, 95K, and multistage cooling requirements at 35/85K are addressed. In order to meet these various requirements, the Air Force Research Laboratory, Space Vehicles Directorate is pursuing various strategic cryocooler and cryogenic integration options. The Air Force Research Laboratory, working with industry partners, is also developing several advanced cryogenic integration technologies that will result in the reduction in current cryogenic system integration penalties and design time. These technologies include the continued development of gimbaled transport systems, 35K and 10K thermal storage units, heat pipes, cryogenic straps, and thermal switches.

  19. Carbon prices and incentives for technological development.

    PubMed

    Lundgren, Tommy; Marklund, Per-Olov; Samakovlis, Eva; Zhou, Wenchao

    2015-03-01

    There is concern that the carbon prices generated through climate policies are too low to create the incentives necessary to stimulate technological development. This paper empirically analyzes how the Swedish carbon dioxide (CO2) tax and the European Union emission trading system (EU ETS) have affected productivity development in the Swedish pulp and paper industry 1998-2008. A Luenberger total factor productivity (TFP) indicator is computed using data envelopment analysis. The results show that climate policy had a modest impact on technological development in the pulp and paper industry, and if significant it was negative. The price of fossil fuels, on the contrary, seems to have created important incentives for technological development. Hence, the results suggest that the carbon prices faced by the industry through EU ETS and the CO2 tax have been too low. Even though the data for this study is specific for Sweden, the models and results are applicable internationally. When designing policy to mitigate CO2 emissions, it is vital that the policy creates a carbon price that is high enough - otherwise the pressure on technological development will not be sufficiently strong.

  20. Carbon prices and incentives for technological development.

    PubMed

    Lundgren, Tommy; Marklund, Per-Olov; Samakovlis, Eva; Zhou, Wenchao

    2015-03-01

    There is concern that the carbon prices generated through climate policies are too low to create the incentives necessary to stimulate technological development. This paper empirically analyzes how the Swedish carbon dioxide (CO2) tax and the European Union emission trading system (EU ETS) have affected productivity development in the Swedish pulp and paper industry 1998-2008. A Luenberger total factor productivity (TFP) indicator is computed using data envelopment analysis. The results show that climate policy had a modest impact on technological development in the pulp and paper industry, and if significant it was negative. The price of fossil fuels, on the contrary, seems to have created important incentives for technological development. Hence, the results suggest that the carbon prices faced by the industry through EU ETS and the CO2 tax have been too low. Even though the data for this study is specific for Sweden, the models and results are applicable internationally. When designing policy to mitigate CO2 emissions, it is vital that the policy creates a carbon price that is high enough - otherwise the pressure on technological development will not be sufficiently strong. PMID:25560661

  1. Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology

    NASA Astrophysics Data System (ADS)

    Haji, Aminoddin; Semnani Rahbar, Ruhollah; Mousavi Shoushtari, Ahmad

    2014-08-01

    Four different procedures were conducted to load amine functionalized multiwall carbon nanotube (NH2-MWCNT) onto poly (ethylene terephthalate) (PET) fabric surface to obtain a microwave shielding sample. Plasma treated fabric which was subsequently coated with NH2-MWCNT in the presence of acrylic acid was chosen as the best sample. Surface changes in the PET fabrics were investigated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Wide-angle X-ray diffraction was used to study the crystalline structure of the PET fabric. The microwave shielding performance of the PET fabrics in term of reflection loss was determined using a network analyzer at X-band (8.2-12.4 GHz). The XPS results revealed that the carbon atomic percentage decreased while the oxygen atomic percentage increased when the fabric was plasma treated and coated with NH2-MWCNT. The SEM images showed that the NH2-MWCNTs were homogenously dispersed and individually separated in the surface of fabric. Moreover, the structural studies showed that the crystalline region of the fabrics was not affected by NH2-MWCNT and plasma treatment. The best microwave absorbing properties were obtained from the plasma treated fabric which was then coated with 10% NH2-MWCNT in the presence of acrylic acid. It showed a minimum reflection loss of ∼-18.2 dB about 11 GHz. Proper attachments of NH2-MWCNT on the PET fabric surface was explained in the suggested mechanism in which hydrogen bonding and amide linkage are responsible for the achievement of microwave shielding properties with high durability.

  2. Digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education

    NASA Astrophysics Data System (ADS)

    Tillman, Daniel

    The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital

  3. Segmented Thermoelectric Multicouple Converter Technology Development

    NASA Astrophysics Data System (ADS)

    Mondt, Jack; Johnson, Ken; Fleurial, Jean-Pierre; El Genk, Mohamed; Frye, Patrick; Determan, Bill

    2005-02-01

    The primary objectives of the segmented thermoelectric multicouple converter (STMC) technology development effort are: to define a conceptual design for a passive, low mass (3000 kg), long life (15 years) thermoelectric advanced Space Reactor Power System that provides 100kWe 400 Volt dc power for a 6000 volt dc electric propulsion system, to prepare a preliminary design of the power conversion system and to prepare technology development plan to advance power conversion system technology to TRL 6. The SRPS consists of a heat pipe cooled reactor radiatively couple to high efficiency solid-state segmented thermoelectric multicouple converters which are conductively coupled to a low mass heat pipe radiator. The SRPS conceptual design as well as the Power Conversion System preliminary design is complete and their description reported in this paper.

  4. Three-dimensional cardiac tissue fabrication based on cell sheet technology.

    PubMed

    Masuda, Shinako; Shimizu, Tatsuya

    2016-01-15

    Cardiac tissue engineering is a promising therapeutic strategy for severe heart failure. However, conventional tissue engineering methods by seeding cells into biodegradable scaffolds have intrinsic limitations such as inflammatory responses and fibrosis arising from the degradation of scaffolds. On the other hand, we have developed cell sheet engineering as a scaffold-free approach for cardiac tissue engineering. Confluent cultured cells are harvested as an intact cell sheet using a temperature-responsive culture surface. By layering cardiac cell sheets, it is possible to form electrically communicative three-dimensional cardiac constructs. Cell sheet transplantation onto damaged hearts in several animal models has revealed improvements in heart functions. Because of the lack of vasculature, the thickness of viable cardiac cell sheet-layered tissues is limited to three layers. Pre-vascularized structure formation within cardiac tissue and multi-step transplantation methods has enabled the formation of thick vascularized tissues in vivo. Furthermore, development of original bioreactor systems with vascular beds has allowed reconstruction of three-dimensional cardiac tissues with a functional vascular structure in vitro. Large-scale culture systems to generate pluripotent stem cell-derived cardiac cells can create large numbers of cardiac cell sheets. Three-dimensional cardiac tissues fabricated by cell sheet engineering may be applied to treat heart disease and tissue model construction.

  5. Multiwavelength lasers fabricated by a novel impurity-free quantum-well intermixing technology

    NASA Astrophysics Data System (ADS)

    Teng, JingHua; Chua, Soo-Jin; Huang, Y. H.; Zhang, Zhenhua; Li, G.; Saher Helmy, A.; Marsh, John H.

    1999-11-01

    Using impurity free vacancy enhanced disordering (IFVD), the shift in the band gap of Al0.3Ga0.7As/GaAs QW structures can be precisely controlled by an Al layer buried between a spin-on silica film and wet-oxidized GaAs surface. The blue shift in wavelength of Al0.3Ga0.7As/GaAs QW photoluminescence (PL) depends linearly on the thickness of the buried Al layer. By changing the Al layer thickness, the PL peak wavelength can be tuned from 7870 angstrom for the as-grown sample to 7300 angstrom and 7050 angstrom after 20s and 45s rapid thermal annealing at 850°C respectively. Applying this technology, three wavelength lasers were successfully fabricated in a single chip. The laser is a GaAs/Al0.3Ga0.7As three quantum well GRIN-SCH structure. Al layers with different thickness, i.e., no Al, 200 angstrom and 300 angstrom thick respectively, were buried between the oxidized GaAs surface and the silica film by two step photo-lithography and lift- off in three adjacent regions with 200 μm spacing. After one step rapid thermal annealing, the wafer was processed into 6 μm oxide-strip lasers. At room temperature the intermixed lasers covered with different thickness of Al layer show different lasing wavelengths. All the lasers have similar threshold current and slope efficiency.

  6. Development of engineering technology basis for industrialization of pyrometallurgical reprocessing

    SciTech Connect

    Koyama, Tadafumi; Hijikata, Takatoshi; Yokoo, Takeshi; Inoue, Tadashi

    2007-07-01

    Development of the engineering technology basis of pyrometallurgical reprocessing is a key issue for industrialization. For development of the transport technologies of molten salt and liquid cadmium at around 500 deg. C, a salt transport test rig and a metal transport test rig were installed in Ar glove box. Function of centrifugal pump and 1/2' declined tubing were confirmed with LiCl- KCl molten salt. The transport behavior of molten salt was found to follow that of water. Function of centrifugal pump, vacuum sucking and 1/2' declined tubing were confirmed with liquid Cd. With employing the transport technologies, industrialization applicable electro-refiner was newly designed and engineering-scale model was fabricated in Ar glove box. The electro-refiner has semi-continuous liquid Cd cathode instead of conventional one used in small-scale tests. With using actinide-simulating elements, demonstration of industrial-scale throughput will be carried out in this electro-refiner for more precise evaluation of industrialization potential of pyrometallurgical reprocessing. (authors)

  7. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective

  8. Man-computer Inactive Data Access System (McIDAS). [design, development, fabrication, and testing

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A technical description is given of the effort to design, develop, fabricate, and test the two dimensional data processing system, McIDAS. The system has three basic sections: an access and data archive section, a control section, and a display section. Areas reported include hardware, system software, and applications software.

  9. Development of a Batch Fabrication Process for Chemical Nanosensors: Recent Advancements at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Biaggi-Labiosa, Azlin M.

    2014-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption. Chemical sensors involving nanostructured materials can provide these characteristics as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited by the ability to control their location on the sensor platform, which in turn hinders the progress for batch fabrication. This presentation will discuss the following: the development of a novel room temperature methane (CH4) sensor fabricated using porous tin oxide (SnO2) nanorods as the sensing material, the advantages of using nanomaterials in sensor designs, the challenges encountered with the integration of nanostructures into microsensordevices, and the different methods that have been attempted to address these challenges. An approach for the mass production of sensors with nanostructures using a method developed by our group at the NASA Glenn Research Center to control the alignment of nanostructures onto a sensor platform will also be described.

  10. Business developments of nonthermal solar technologies

    SciTech Connect

    Smith, S.A.; Watts, R.L.; Williams, T.A.

    1985-10-01

    Information on the developments of nonthermal solar technologies is presented. The focus is on the success of wind energy conversion systems (WECS) and photovoltaics. Detailed information on the installed generating capacity, market sectors, financing sources, systems costs and warranties of WECS and photovoltaic systems is summarized. (BCS)

  11. Human Support Technology Research, Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra; Trinh, Eugene

    2004-01-01

    The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.

  12. Thermoelectric Development at Hi-Z Technology

    SciTech Connect

    Kushch, Aleksandr S.; Bass, John C.; Ghamaty, Saeid; Elsner, Norbert B.; Bergstrand, Richard A.; Furrow, David; Melvin, Mike

    2002-08-25

    An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely.

  13. Biennial Research and Technology Development Report

    NASA Technical Reports Server (NTRS)

    Taylor, Elizabeth; Radigan, Jeff; Haas, John; Kelly, Brian; Hall, Tim

    2009-01-01

    Various articles for the Biennial Research and Technology Development Report of the Johnson Space Center include: Automating ISS File Management using Agent-Based Systems Integration; International Space Station Operations; Planning and Monitoring ISS Solar Array Operations; Water Egress and Survival Trainer; Search and Relationship -- Mining of Heterogeneous Flight Control Documents; and Anomaly Monitoring Inductive Software System.

  14. Cosmic Origins (COR) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Werneth, Russell; Pham, B.; Clampin, M.

    2014-01-01

    The Cosmic Origins (COR) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for COR Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the COR Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report includes a 4m-class UV/optical telescope that would conduct imaging and spectroscopy as a post-Hubble observatory with significantly improved sensitivity and capability, a near-term investigation of NASA participation in the Japanese Aerospace Exploration Agency/Institute of Space and Astronautical Science (JAXA/ISAS) Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission, and future Explorers.

  15. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  16. Development of segmented thermoelectric multicouple converter technology

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre; Johnson, Kenneth; Sakamoto, Jeff; Huang, Chen-Kuo; Snyder, Jeff; Mondt, Jack; Blair, Richard; Frye, Patrick; Stapfer, Gerhard; Caillat, Thierry; Determan, William; Heshmatpour, Ben; Brooks, Michael; Tuttle, Karen

    2006-01-01

    The Jet Propulsion Laboratory (JPL), Pratt & Whitney Rocketdyne, and Teledyne Energy Systems, Inc., have teamed together under JPL leadership to develop the next generation of advanced thermoelectric space reactor power conversion systems. The program goals are to develop the technologies needed to achieve a space nuclear power system specific mass goal of less than 30 kg/kW at the 100 kW power level with a greater than 15 year lifetime.

  17. Extended Temperature Solar Cell Technology Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip; Scheiman, David; Rafaelle, Ryne

    2004-01-01

    Future NASA missions will require solar cells to operate both in regimes closer to the sun, and farther from the sun, where the operating temperatures will be higher and lower than standard operational conditions. NASA Glenn is engaged in testing solar cells under extended temperature ranges, developing theoretical models of cell operation as a function of temperature, and in developing technology for improving the performance of solar cells for both high and low temperature operation.

  18. NASA Astrophysics Funds Strategic Technology Development

    NASA Astrophysics Data System (ADS)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  19. Affordable, Robust Ceramic Joining Technology (ARCJoint) Developed

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    Affordable, Robust Ceramic Joining Technology (ARCJoint) is a method for joining high temperature- resistant ceramic pieces together, establishing joints that are strong, and allowing joining to be done in the field. This new way of joining allows complex shapes to be formed by joining together geometrically simple shapes. The joining technology at NASA is one of the enabling technologies for the application of silicon-carbide-based ceramic and composite components in demanding and high-temperature applications. The technology is being developed and tested for high-temperature propulsion parts for aerospace use. Commercially, it can be used for joining ceramic pieces used for high temperature applications in the power-generating and chemical industries, as well as in the microelectronics industry. This innovation could yield big payoffs for not only the power-generating industry but also the Silicon Valley chipmakers. This technology, which was developed at the NASA Glenn Research Center by Dr. Mrityunjay Singh, is a two-step process involving first using a paste to join together ceramic pieces and bonding them by heating the joint to 110 to 120 C for between 10 and 20 min. This makes the joint strong enough to be handled for the final joining. Then, a silicon-based substance is applied to the joint and heated to 1400 C for 10 to 15 min. The resulting joint is as strong as the original ceramic material and can withstand the same high temperatures.

  20. Packaging Technology Developed for High-Temperature Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.

    2001-01-01

    High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as sensors and electronics for space missions to the inner solar system, sensors for in situ combustion and emission monitoring, and electronics for combustion control for aeronautical and automotive engines. However, these devices cannot be used until they can be packaged in appropriate forms for specific applications. Suitable packaging technology for operation temperatures up to 500 C and beyond is not commercially available. Thus, the development of a systematic high-temperature packaging technology for SiC-based microsystems is essential for both in situ testing and commercializing high-temperature SiC sensors and electronics. In response to these needs, researchers at Glenn innovatively designed, fabricated, and assembled a new prototype electronic package for high-temperature electronic microsystems using ceramic substrates (aluminum nitride and aluminum oxide) and gold (Au) thick-film metallization. Packaging components include a ceramic packaging frame, thick-film metallization-based interconnection system, and a low electrical resistance SiC die-attachment scheme. Both the materials and fabrication process of the basic packaging components have been tested with an in-house-fabricated SiC semiconductor test chip in an oxidizing environment at temperatures from room temperature to 500 C for more than 1000 hr. These test results set lifetime records for both high-temperature electronic packaging and high-temperature electronic device testing. As required, the thick-film-based interconnection system demonstrated low (2.5 times of the room-temperature resistance of the Au conductor) and stable (decreased 3 percent in 1500 hr of continuous testing) electrical resistance at 500 C in an oxidizing environment. Also as required, the electrical isolation impedance between printed wires that were not electrically joined by a wire bond remained high

  1. Recent developments on CFB-FGD technology

    SciTech Connect

    Sauer, H.; Baege, R.

    1998-07-01

    Since 1978, when the first commercial sized unit for gas cleaning has been designed applying the expanded circulating fluidized bed principle some process developments have improved the technical and commercial advantages of this simple but highly efficient and reliable dry gas cleaning concept. The multiple nozzle design led to an unlimited size of the absorber gas flow capacity. The partial clean gas recirculation back to the raw gas inlet duct increased the flexibility of the process related on the partial load behavior. The use of a low pressure pulse-jet fabric filter allows unlimited size of the total CFB-FGD system for one unit. The recirculation of the reaction products and the feed of make up hydrated lime upstream of the venturi nozzle improves the flowability of the reaction products even on chemically critical compounds. The limestone injection into the boiler reduces the sorbent costs in relation to using hydrated lime.

  2. Development of Technology for Effective Removal of Arsenic and Cyanides from Drinking Water and Wastewater

    SciTech Connect

    Jo, Jae

    2008-02-09

    The purpose of the project was to perform a joint research and development effort focused upon the development of methods and the prototype facility for effective removal of arsenic and cyanides from drinking water and wastewater, based on the UPEC patented technology. The goals of this project were to validate UPEC technology, to manufacture a prototype facility meeting the market requirements, and to introduce it to both industry and municipalities which deal with the water quality. The project involved design and fabrication of one experimental unit and one prototypical industrial unit, and tests at industrial and mining sites. The project used sodium ferrate (Na2FeO4) as the media to remove arsenic in drinking water and convert arsenic into non-hazardous form. The work consisted of distinct phases ending with specific deliverables in development, design, fabrication and testing of prototype systems and eventually producing validation data to support commercial introduction of technology and its successful implementation.

  3. Development of a triaxially formed fabric for use in an improved restraint layer in the shuttle space suit

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A series of materials for use as an improved restraint layer in the shuttle space suit was developed. The feasibility of weaving triaxial fabrics in tight, low porosity configurations with yarns of appropriate sizes and materials was demonstrated along with the stability and isotropy of triaxial fabrics. The triaxial fabric constructions, BP44P and BP40M, can be reproduced on a production basis. Both fabric constructions afford excellent strength-to-weight ratio and exhibit improved tear strength and shear resistance over biaxial fabrics.

  4. Study of Organic Thin Film Transistors on Ultraviolet-Curable Dielectrics with Periodic Patterns Fabricated by Nano Imprint Technology

    NASA Astrophysics Data System (ADS)

    Chen, Henry J. H.; Chen, Jun-Yu

    2013-06-01

    In this work, the organic thin film transistors (OTFTs) on UV-curable dielectrics with periodic patterns fabricated by nano imprint technology were investigated. The surface morphologies of pentacene and device performances with respect to line/space ratio of periodic patterns were studied. The anisotropic electrical characteristics of OTFTs were also investigated. This technique will be suitable for the future low-cost and flexible electronics applications.

  5. Continuation of Crosscutting Technology Development at Cast

    SciTech Connect

    Yoon, Roe-Hoan

    2012-03-31

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  6. Survey and analysis of federally developed technology

    SciTech Connect

    Reed, J.E.; Conrad, J.L.

    1983-02-01

    The methodology and results of a test effort to determine whether there exist unexpected opportunities for the direct transfer of technologies from federal laboratories to industry are presented. Specifically, the latest results of six federal laboratories with potential application in the pulp and paper industry, particularly those results applicable to improving energy productivity, were evaluated, cataloged, and distributed to industry representatives to gauge their reaction. The principal methodological steps in this effort were the development of a taxonomy of the pulp and paper industry, identification of industry needs and laboratory capabilities, laboratory visits, review of technology findings with industry, and evaluation and compilation of industry responses.

  7. Advanced Gas Turbine (AGT) technology development project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This report is the final in a series of Technical Summary Reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorizrd under NASA Contract DEN3-167 and sponsored by the DOE. The project was administered by NASA-Lewis Research Center of Cleveland, Ohio. Plans and progress are summarized for the period October 1979 through June 1987. This program aims to provide the US automotive industry the high risk, long range technology necessary to produce gas turbine engines for automobiles that will reduce fuel consumption and reduce environmental impact. The intent is that this technology will reach the marketplace by the 1990s. The Garrett/Ford automotive AGT was designated AGT101. The AGT101 is a 74.5 kW (100 shp) engine, capable of speeds to 100,000 rpm, and operates at turbine inlet temperatures to 1370 C (2500 F) with a specific fuel consumption level of 0.18 kg/kW-hr (0.3 lbs/hp-hr) over most of the operating range. This final report summarizes the powertrain design, power section development and component/ceramic technology development.

  8. The development of enabling technologies for producing active interrogation beams

    SciTech Connect

    Kwan, Thomas J. T.; Morgado, Richard E.; Wang, Tai-Sen F.; Vodolaga, B.; Terekhin, V.; Onischenko, L. M.; Vorozhtsov, S. B.; Samsonov, E. V.; Vorozhtsov, A. S.; Alenitsky, Yu. G.; Perpelkin, E. E.; Glazov, A. A.; Novikov, D. L.; Parkhomchuk, V.; Reva, V.; Vostrikov, V.; Mashinin, V. A.; Fedotov, S. N.; Minayev, S. A.

    2010-10-15

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current ({approx}1 mA) and high-quality (emittance {approx}15 {pi}mm mrad; energy spread {approx}0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  9. The development of enabling technologies for producing active interrogation beams.

    PubMed

    Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A

    2010-10-01

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  10. Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology

    NASA Astrophysics Data System (ADS)

    Zhang, Can; Zhu, Hongliang; Liang, Song; Cui, Xiao; Wang, Huitao; Zhao, Lingjuan; Wang, Wei

    2014-12-01

    A 10-channel InP-based large-scale photonic integrated transmitter was fabricated by selective area growth (SAG) technology combined with butt-joint regrowth (BJR) technology. The SAG technology was utilized to fabricate the electroabsorption modulated distributed feedback (DFB) laser (EML) arrays at the same time. The design of coplanar electrodes for electroabsorption modulator (EAM) was used for the flip-chip bonding package. The lasing wavelength of DFB laser could be tuned by the integrated micro-heater to match the ITU grids, which only needs one electrode pad. The average output power of each channel is 250 μW with an injection current of 200 mA. The static extinction ratios of the EAMs for 10 channels tested are ranged from 15 to 27 dB with a reverse bias of 6 V. The frequencies of 3 dB bandwidth of the chip for each channel are around 14 GHz. The novel design and simple fabrication process show its enormous potential in reducing the cost of large-scale photonic integrated circuit (LS-PIC) transmitter with high chip yields.

  11. Summary report on fuel development and miniplate fabrication for the RERTR Program, 1978 to 1990

    SciTech Connect

    Wiencek, T.C.

    1995-08-01

    This report summarizes the efforts of the Fabrication Technology Section at Argonne National Laboratory in the program of Reduced Enrichment Research and Test Reactors (RERTR). The main objective of this program was to reduce the amount of high enriched ({approx}93% {sup 235}U) uranium (HEU) used in nonpower reactors. Conversion from low-density (0.8--1.6 g U/cm{sup 3}) HEU fuel elements to highly loaded (up to 7 g U/cm{sup 3}) low-enrichment (<20% {sup 235}U) uranium (LEU) fuel elements allows the same reactor power levels, core designs and sizes to be retained while greatly reducing the possibility of illicit diversion of HEU nuclear fuel. This document is intended as an overview of the period 1978--1990, during which the Section supported this project by fabricating mainly powder metallurgy uranium-silicide dispersion fuel plates. Most of the subjects covered in detail are fabrication-related studies of uranium silicide fuels and fuel plate properties. Some data are included for out-of-pile experiments such as corrosion and compatibility tests. Also briefly covered are most other aspects of the RERTR program such as irradiation tests, full-core demonstrations, and technology transfer. References included are for further information on most aspects of the entire program. A significant portion of the report is devoted to data that were never published in their entirety. The appendices contain a list of previous RERTR reports, ANL fabrication procedures, calculations for phases present in two-phase fuels, chemical analysis of fuels, miniplate characteristics, and a summary of bonding runs made by hot isostatic pressing.

  12. Latest Developments in Nuclear Emulsion Technology

    NASA Astrophysics Data System (ADS)

    Morishima, Kunihiro

    Nuclear emulsion is high sensitive photographic film used for detection of three-dimensional trajectory of charged particles. These trajectories are recorded as tracks consist of a lot of silver grains. The size of silver grain is about 1 μm, so that nuclear emulsion has submicron three-dimensional spatial resolution, which gives us a few mrad three-dimensional angular resolution. The important technical progress was speed-up of the read-out technique of nuclear emulsions built with optical microscope system. We succeeded in developing a high-speed three-dimensional read-out system named Super Ultra Track Selector (S-UTS) with the operating read-out speed of approximately 50 cm2/h. Nowadays we are developing the nuclear emulsion gel independently in Nagoya University by introducing emulsion gel production machine. Moreover, we are developing nuclear emulsion production technologies (gel production, poring and mass production). In this paper, development of nuclear emulsion technologies for the OPERA experiment, applications by the technologies and current development are described.

  13. Extravehicular Activity Technology Development Status and Forecast

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Westheimer, David T.

    2011-01-01

    The goal of NASA s current EVA technology effort is to further develop technologies that will be used to demonstrate a robust EVA system that has application for a variety of future missions including microgravity and surface EVA. Overall the objectives will be to reduce system mass, reduce consumables and maintenance, increase EVA hardware robustness and life, increase crew member efficiency and autonomy, and enable rapid vehicle egress and ingress. Over the past several years, NASA realized a tremendous increase in EVA system development as part of the Exploration Technology Development Program and the Constellation Program. The evident demand for efficient and reliable EVA technologies, particularly regenerable technologies was apparent under these former programs and will continue to be needed as future mission opportunities arise. The technological need for EVA in space has been realized over the last several decades by the Gemini, Apollo, Skylab, Space Shuttle, and the International Space Station (ISS) programs. EVAs were critical to the success of these programs. Now with the ISS extension to 2028 in conjunction with a current forecasted need of at least eight EVAs per year, the EVA hardware life and limited availability of the Extravehicular Mobility Units (EMUs) will eventually become a critical issue. The current EMU has successfully served EVA demands by performing critical operations to assemble the ISS and provide repairs of satellites such as the Hubble Space Telescope. However, as the life of ISS and the vision for future mission opportunities are realized, a new EVA systems capability will be needed and the current architectures and technologies under development offer significant improvements over the current flight systems. In addition to ISS, potential mission applications include EVAs for missions to Near Earth Objects (NEO), Phobos, or future surface missions. Surface missions could include either exploration of the Moon or Mars. Providing an

  14. A Combination of Various Technologies in the Fabrication of a Removable Partial Denture--A Case Study.

    PubMed

    Seitz, Stefanie; Cox, Nicholas; Jones, John D; Zimmermann, Richard

    2016-01-01

    Digital dentistry is increasing prevalent throughout general dental practice. Scanned impression systems, CAD/CAM software, milling units, and 3D printers are becoming used with regularity by some private practitioners. This case report describes a combination of multiple technologies including intraoral scanning, 3D printing, and traditional impression and processing techniques used for fabricating a removable partial denture. The patient indicated that he was highly satisfied throughout the course of treatment and especially with the final result. Future technology will continue to evolve and be more widely used in removable prosthodontics and other areas of dentistry.

  15. Fabrication of the mandibular implant-supported fixed restoration using CAD/CAM technology: a clinical report.

    PubMed

    Reshad, Mamaly; Cascione, Domenico; Aalam, Alexandre Amir

    2009-11-01

    The mandibular implant-supported fixed restoration is an appropriate treatment choice for patients with inadequate bone volume in the posterior mandible. Computer-aided design/computer-aided manufacturing (CAD/CAM) technology has broadened the scope and application for this treatment option. A milled titanium bar retaining individual all-ceramic zirconium oxide crowns, with composite resin replicating gingival tissues, is recommended as an acceptable variation for this type of prosthesis. An alternative method for fabricating a mandibular implant-supported fixed restoration using CAD/CAM technology is described.

  16. A Combination of Various Technologies in the Fabrication of a Removable Partial Denture--A Case Study.

    PubMed

    Seitz, Stefanie; Cox, Nicholas; Jones, John D; Zimmermann, Richard

    2016-01-01

    Digital dentistry is increasing prevalent throughout general dental practice. Scanned impression systems, CAD/CAM software, milling units, and 3D printers are becoming used with regularity by some private practitioners. This case report describes a combination of multiple technologies including intraoral scanning, 3D printing, and traditional impression and processing techniques used for fabricating a removable partial denture. The patient indicated that he was highly satisfied throughout the course of treatment and especially with the final result. Future technology will continue to evolve and be more widely used in removable prosthodontics and other areas of dentistry. PMID:27008841

  17. NASA GRC Stirling Technology Development Overview

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2003-01-01

    The Department of Energy, Lockheed Martin (LM), Stirling Technology Company, and NASA Glenn Research Center (GRC) are developing a high-efficiency Stirling Radioisotope Generator (SRG) for potential NASA Space Science missions. The SRG is being developed for multimission use, including providing spacecraft onboard electric power for NASA deep space missions and power for unmanned Mars rovers. NASA GRC is conducting an in- house supporting technology project to assist in developing the Stirling convertor for space qualification and mission implementation. Preparations are underway for a thermalhacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. Heater head life assessment efforts continue, including verification of the heater head brazing and heat treatment schedules and evaluation of any potential regenerator oxidation. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. Testing of the magnet/lamination epoxy bond for performance and lifetime characteristics is now underway. These efforts are expected to provide key inputs as the system integrator, LM, begins system development of the SRG. GRC is also developing advanced technology for Stirling convertors. Cleveland State University (CSU) is progressing toward a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. Validation efforts at both CSU and the University of Minnesota are complementing the code development. New efforts have been started this year on a lightweight convertor, advanced controllers, high-temperature materials, and an end-to-end system dynamics model. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems.

  18. NASA GRC Stirling Technology Development Overview

    NASA Astrophysics Data System (ADS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2003-01-01

    The Department of Energy, Lockheed Martin (LM), Stirling Technology Company, and NASA Glenn Research Center (GRC) are developing a high-efficiency Stirling Radioisotope Generator (SRG) for potential NASA Space Science missions. The SRG is being developed for multimission use, including providing spacecraft onboard electric power for NASA deep space missions and power for unmanned Mars rovers. NASA GRC is conducting an in-house supporting technology project to assist in developing the Stirling convertor for space qualification and mission implementation. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. Heater head life assessment efforts continue, including verification of the heater head brazing and heat treatment schedules and evaluation of any potential regenerator oxidation. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. Testing of the magnet/lamination epoxy bond for performance and lifetime characteristics is now underway. These efforts are expected to provide key inputs as the system integrator, LM, begins system development of the SRG. GRC is also developing advanced technology for Stirling convertors. Cleveland State University (CSU) is progressing toward a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. Validation efforts at both CSU and the University of Minnesota are complementing the code development. New efforts have been started this year on a lightweight convertor, advanced controllers, high-temperature materials, and an end-to-end system dynamics model. Performance and mass improvement goals have been established for second- and third-generation Stirling radioisotope power systems.

  19. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  20. Recent developments in terahertz sensing technology

    NASA Astrophysics Data System (ADS)

    Shur, Michael

    2016-05-01

    Terahertz technology has found numerous applications for the detection of biological and chemical hazardous agents, medical diagnostics, detection of explosives, providing security in buildings, airports, and other public spaces, shortrange covert communications (in the THz and sub-THz windows), and applications in radio astronomy and space research. The expansion of these applications will depend on the development of efficient electronic terahertz sources and sensitive low-noise terahertz detectors. Schottky diode frequency multipliers have emerged as a viable THz source technology reaching a few THz. High speed three terminal electronic devices (FETs and HBTs) have entered the THz range (with cutoff frequencies and maximum frequencies of operation above 1 THz). A new approach called plasma wave electronics recently demonstrated an efficient terahertz detection in GaAs-based and GaN-based HEMTs and in Si MOS, SOI, FINFETs and in FET arrays. This progress in THz electronic technology has promise for a significant expansion of THz applications.

  1. Technology Transfer and the Product Development Process

    SciTech Connect

    Mock, John E.

    1989-03-21

    It is my pleasure this morning to address a topic that is much talked about in passing but rarely examined from a first person point of view. That topic is Technology Transfer. Over the next 30 minutes I'd like to approach Technology Transfer within the context of the Product Development Process looking at it from the perspectives of the federal government researcher and the industry manufacturer/user. Fist let us recognize that we are living in an ''Information Age'', where global economic and military competition is determined as much by technology as it is by natural resource assets. It is estimated that technical/scientific information is presently growing at a rate of l3 percent per year; this is expected to increase to 30 percent per year by the turn of the century. In fact, something like 90 percent of all scientific knowledge has been generated in the last 30 years; this pool will double again in the next 10-15 years (Exhibit 1). Of all the scientists and engineers throughout history, 90% live and work in the present time. Successfully managing this technical information/knowledge--i.e., transforming the results of R&D to practical applications--will be an important measure of national strength. A little over a dozen years ago, the United States with only 5 percent of the world's population was generating approximately 75 percent of the world's technology. The US. share is now 50 percent and may decline to 30 percent by the turn of the century. This decline won't be because of downturn in U.S. technological advances but because the other 95 percent of the world's population will be increasing its contribution. Economic and military strength then, will be determined by how quickly and successfully companies, industries, and nations can apply new technological information to practical applications--i.e., how they manage technology transfer within the context of the product development process. Much discussion and pronouncements are ongoing in public forums

  2. Development and demonstration of manufacturing processes for fabricating graphite/LARC-160 polyimide structural elements, part 4, paragraph B

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A quality assurance program was developed which included specifications for celion/LARC-160 polyimide materials and quality control of materials and processes. The effects of monomers and/or polymer variables and prepeg variables on the processibility of celion/LARC prepeg were included. Processes for fabricating laminates, honeycomb core panels, and chopped fiber moldings were developed. Specimens and conduct tests were fabricated to qualify the processes for fabrication of demonstration components.

  3. Modular, Reconfigurable, High-Energy Technology Development

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  4. Overview of ERA Ultra High Bypass Propulsor Technology Development

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher

    2011-01-01

    A review of the current research being conducted under the Environmentally Responsible Aviation (ERA) Ultra High Bypass (UHB) Testing subelement is presented. The four exiting tasks under the subelement, a description of each task, and the current status of each are given. The four tasks are: 1. Collaborate with P&W to design, fabricate and test a second generation of Geared Turbofan 2. Design, fabricate and test advanced Over the Rotor acoustic treatment and acoustically treated Soft Vanes 3. Develop a Shape Memory Alloy Variable Area Nozzle concept and demonstrate prototype 4. Refurbish and update the GRC Ultra High Bypass Drive Rig Following the current task updates, an overview of three proposed additional tasks to support the existing tasks is presented. The additional tasks would allow noise reduction and noise diagnostic testing technologies to be demonstrated at TRL 4 as part of existing planned fan model testing in the NASA Glenn 9 x15 Low Speed Wind Tunnel under the ERA UHB Testing subelement.

  5. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct. PMID:26826637

  6. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct.

  7. Deep Etching Process Developed for the Fabrication of Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn M.

    2000-01-01

    Silicon carbide (SiC), because of its superior electrical and mechanical properties at elevated temperatures, is a nearly ideal material for the microminiature sensors and actuators that are used in harsh environments where temperatures may reach 600 C or greater. Deep etching using plasma methods is one of the key processes used to fabricate silicon microsystems for more benign environments, but SiC has proven to be a more difficult material to etch, and etch depths in SiC have been limited to several micrometers. Recently, the Sensors and Electronics Technology Branch at the NASA Glenn Research Center at Lewis Field developed a plasma etching process that was shown to be capable of etching SiC to a depth of 60 mm. Deep etching of SiC is achieved by inductive coupling of radiofrequency electrical energy to a sulfur hexafluoride (SF6) plasma to direct a high flux of energetic ions and reactive fluorine atoms to the SiC surface. The plasma etch is performed at a low pressure, 5 mtorr, which together with a high gas throughput, provides for rapid removal of the gaseous etch products. The lateral topology of the SiC microstructure is defined by a thin film of etch-resistant material, such as indium-tin-oxide, which is patterned using conventional photolithographic processes. Ions from the plasma bombard the exposed SiC surfaces and supply the energy needed to initiate a reaction between SiC and atomic fluorine. In the absence of ion bombardment, no reaction occurs, so surfaces perpendicular to the wafer surface (the etch sidewalls) are etched slowly, yielding the desired vertical sidewalls.

  8. Project-Based Technology: Instructional Strategy for Developing Technological Literacy

    ERIC Educational Resources Information Center

    Frank, Moti; Barzilai, Abigail

    2006-01-01

    Because we live in a society that increasingly depends upon technology, a growing number of voices are calling for the mandatory study of technology by school-aged children worldwide. Technological literacy is the ability to use, manage, assess, and understand technology, and involves the application of knowledge and abilities to real-world…

  9. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  10. WRAP-RIB antenna technology development

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Garcia, N. F.; Iwamoto, H.

    1985-01-01

    The wrap-rib deployable antenna concept development is based on a combination of hardware development and testing along with extensive supporting analysis. The proof-of-concept hardware models are large in size so they will address the same basic problems associated with the design fabrication, assembly and test as the full-scale systems which were selected to be 100 meters at the beginning of the program. The hardware evaluation program consists of functional performance tests, design verification tests and analytical model verification tests. Functional testing consists of kinematic deployment, mesh management and verification of mechanical packaging efficiencies. Design verification consists of rib contour precision measurement, rib cross-section variation evaluation, rib materials characterizations and manufacturing imperfections assessment. Analytical model verification and refinement include mesh stiffness measurement, rib static and dynamic testing, mass measurement, and rib cross-section characterization. This concept was considered for a number of potential applications that include mobile communications, VLBI, and aircraft surveillance. In fact, baseline system configurations were developed by JPL, using the appropriate wrap-rib antenna, for all three classes of applications.

  11. Data on development of new energy technologies

    NASA Astrophysics Data System (ADS)

    1994-03-01

    The paper compiles data on the trend of development of new energy technologies into a book. By category, renewable energy is solar energy, wind power generation, geothermal power generation, ocean energy, and biomass. As a category of fuel form conversion, cited are coal liquefaction/gasification, coal gasification combined cycle power generation, and natural gas liquefaction/decarbonization. The other categories are cogeneration by fuel cell and ceramic gas turbine, district heat supply system, power load leveling technology, transportation-use substitution-fuel vehicle, and others (Stirling engine, superconducting power generator, etc.). The data are systematically compiled on essential principles, transition of introduction, objectives of introduction, status of production, cost, development schedule, performance, etc. The paper also deals with the related legislation system, developmental organizations, and a menu for power companies' buying surplus power.

  12. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  13. Technology Development Towards a Flight Coronagraph

    NASA Astrophysics Data System (ADS)

    Siegler, N.

    2014-03-01

    The first biosignatures in the spectrum of an Earth-like planet will be measured by a spectrometer aboard a future space telescope. But before the planet's light can be captured and characterized, the host star's light may have to be suppressed by a factor of about 10 billion. One of these instruments may likely be an internal coronagraph working at visible wavelengths. Thanks to both a potential funding wedge in FY17 created by a JWST ramp-down to launch and a "gift" 2.4m telescope from the NRO being converted into a possible "AFTA-WFIRST" mission, NASA has already begun funding technology development towards flight coronagraphs that will take astronomers one step closer towards their goal. This talk will focus on the technology development underway and planned over the next few years for a flight coronagraph on an AFTA-WFIRST mission.

  14. Anisotropy of ice Ih: Developement of fabric and effects of anisotropy on deformation

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Throstur

    The anisotropy arising from preferred crystal orientation of ice I h is examined. To understand plastic anisotropy of polycrystalline materials it is necessary to examine the behavior at the single crystal level. Ice crystals have extremely strong plastic anisotropy that strongly influences the bulk behavior. There are several ways to relate single crystal deformation to the bulk behavior. Two approaches are used here. The first one is to assume a homogeneous stress throughout the bulk, which allows us to derive analytical relations between stress and strain rate. The anisotropy affects the strain rate-stress relationship significantly. For example strongly anisotropic ice, with a vertically symmetric fabric, can deform transversely to the applied stress in pure shear, be nearly undeformable in vertical compression, and shear easily in simple shear. The second approach takes the interaction between neighboring crystals into account, and recrystallization processes are also considered. Comparison of fabric evolution using the model and fabric from the GRIP ice core indicates that nearest neighbor interaction is necessary to explain observations. Quantification of the interaction is complicated by recrystallization processes. A consistent method of characterizing measured fabric is needed to verify models of fabric development. Here the elastic anisotropy of ice plays a central role, and relations between fabric and elastic wave velocities are used to characterize fabric. As always, several other methods are possible, but comparison indicates that sonic measurements give an accurate estimate for deformation effects from vertically symmetric fabric especially in simple shear. The deformation of the borehole at Dye 3, Greenland, has been measured with borehole inclinometry. Sonic velocity measurements done in the borehole allow us to model the deformation using an anisotropic flow law. Anisotropy alone cannot explain all the deformation. The additional processes

  15. EXCEDE technology development III: first vacuum tests

    NASA Astrophysics Data System (ADS)

    Belikov, Ruslan; Lozi, Julien; Pluzhnik, Eugene; Hix, Troy T.; Bendek, Eduardo; Thomas, Sandrine J.; Lynch, Dana H.; Mihara, Roger; Irwin, J. Wes; Duncan, Alan L.; Greene, Thomas P.; Guyon, Olivier; Kendrick, Richard L.; Smith, Eric H.; Witteborn, Fred C.; Schneider, Glenn

    2014-08-01

    This paper is the third in the series on the technology development for the EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer) mission concept, which in 2011 was selected by NASA's Explorer program for technology development (Category III). EXCEDE is a 0.7m space telescope concept designed to achieve raw contrasts of 1e6 at an inner working angle of 1.2 l/D and 1e7 at 2 l/D and beyond. This will allow it to directly detect and spatially resolve low surface brightness circumstellar debris disks as well as image giant planets as close as in the habitable zones of their host stars. In addition to doing fundamental science on debris disks, EXCEDE will also serve as a technological and scientific precursor for any future exo-Earth imaging mission. EXCEDE uses a Starlight Suppression System (SSS) based on the PIAA coronagraph, enabling aggressive performance. Previously, we reported on the achievement of our first milestone (demonstration of EXCEDE IWA and contrast in monochromatic light) in air. In this presentation, we report on our continuing progress of developing the SSS for EXCEDE, and in particular (a) the reconfiguration of our system into a more flight-like layout, with an upstream deformable mirror and an inverse PIAA system, and (b) testing this system in a vacuum chamber, including IWA, contrast, and stability performance. Even though this technology development is primarily targeted towards EXCEDE, it is also germane to any exoplanet direct imaging space-based telescopes because of the many challenges common to different coronagraph architectures and mission requirements. This work was supported in part by the NASA Explorer program and Ames Research Center, University of Arizona, and Lockheed Martin SSC.

  16. Ultrashort pulsed laser technology development program

    NASA Astrophysics Data System (ADS)

    Manke, Gerald C.

    2014-10-01

    The Department of Navy has been pursuing a technology development program for advanced, all-fiber, Ultra Short Pulsed Laser (USPL) systems via Small Business Innovative Research (SBIR) programs. Multiple topics have been published to promote and fund research that encompasses every critical component of a standard USPL system and enable the demonstration of mJ/pulse class systems with an all fiber architecture. This presentation will summarize published topics and funded programs.

  17. Gas cooled fuel cell systems technology development

    NASA Technical Reports Server (NTRS)

    Feret, J. M.

    1986-01-01

    The work performed during the Second Logical Unit of Work of a multi-year program designed to develop a phosphoric acid fuel cell (PAFC) for electric utility power plant application is discussed. The Second Logical Unit of Work, which covers the period May 14, 1983 through May 13, 1984, was funded by the U.S. Department of Energy, Office of Fossil Energy, Morgantown Energy Technology Center, and managed by the NASA Lewis Research Center.

  18. Radar Technology Development at NASA/JPL

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2011-01-01

    Radar at JPL and worldwide is enjoying a period of unprecedented development. JPL's science-driven program focuses on exploiting commercially available components to build new technologies to meet NASA's science goals. Investments in onboard-processing, advanced digital systems, and efficient high-power devices, point to a new generation of high-performance scientific SAR systems in the US. Partnerships are a key strategy for US missions in the coming decade

  19. Technology development for DOE SNF management

    SciTech Connect

    Hale, D.L.; Einziger, R.E.; Murphy, J.R.

    1995-12-31

    This paper describes the process used to identify technology development needs for the same management of spent nuclear fuel (SNF) in the US Department of Energy (DOE) inventory. Needs were assessed for each of the over 250 fuel types stores at DOE sites around the country for each stage of SNF management--existing storage, transportation, interim storage, and disposal. The needs were then placed into functional groupings to facilitate integration and collaboration among the sites.

  20. Recent developments in PET detector technology

    PubMed Central

    Lewellen, Tom K

    2010-01-01

    Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301

  1. Development of Three-Dimensional Integration Technology for Highly Parallel Image-Processing Chip

    NASA Astrophysics Data System (ADS)

    Lee, Kang Wook; Nakamura, Tomonori; Sakuma, Katsuyuki; Park, Ki Tae; Shimazutsu, Hiroaki; Miyakawa, Nobuaki; Kim, Ki Yoon; Kurino, Hiroyuki; Koyanagi, Mitsumasa

    2000-04-01

    A new three-dimensional (3D) integration technology for realizing a highly parallel image-processing chip has been developed. Several LSI wafers are vertically stacked and glued to each other after thinning them using this new technology. This technology can be considered as both 3D LSI technology and wafer-scale 3D chip-on-chip packaging technology. The effective packaging density can be significantly increased by stacking the chips in a vertical direction. Several key techniques for this 3D integration have been developed. In this paper, we demonstrate the highly parallel image sensor chip with a 3D structure. The 3D image sensor test chip was fabricated using this new 3D integration technology and its basic performance was evaluated.

  2. Development and fabrication of high strength alloy fibers for use in metal-metal matrix composites

    NASA Technical Reports Server (NTRS)

    King, G. W.; Petrasek, D. W.

    1979-01-01

    Metal fiber reinforced superalloys are being considered for construction of critical components in turbine engines that operate at high temperature. The problems involved in fabricating refractory metal alloys into wire form in such a manner as to maximize their strength properties without developing excessive structural defects are described. The fundamental principles underlying the development of such alloy fibers are also briefly discussed. The progress made to date in developing tungsten, tantalum and columbium base alloys for fiber reinforcement is reported and future prospects for alloy fiber development considered.

  3. Development of Fundamental Technologies for Micro Bioreactors

    NASA Astrophysics Data System (ADS)

    Sato, Kiichi; Kitamori, Takehiko

    This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.

  4. An overview: Challenges in wind technology development

    SciTech Connect

    Thresher, R W; Hock, S M

    1991-12-01

    Developing innovative wind turbine components and advanced turbine configurations is a primary focus for wind technology researchers. In their rush to bring these new components and systems to the marketplace, designers and developers should consider the lessons learned in the wind farms over the past 10 years. Experience has shown that a disciplined design approach is required that realistically accounts for the turbulence-induced loads, unsteady stall loading, and fatigue effects. This paper reviews past experiences and compares current modelling capabilities with experimental measurements in order to identify some of the knowledge gaps that challenge designers of advanced components and systems. 7 refs., 11 figs.

  5. Developing Technology Products - A Physicist's Perspective

    NASA Astrophysics Data System (ADS)

    Burka, Michael

    2014-03-01

    There are many physicists working in the industrial sector. We rarely have the word physicist in our job title; we are far more commonly called engineers or scientists. But, we are physicists, and we succeed because our training in physics has given us the habits of mind and the technical skills that one needs to solve complex technical challenges. This talk will explore the transition from physics research to technology product development using examples from my own career, first as a postdoctoral fellow and research scientist on the LIGO project, and then developing products in the spectroscopy, telecommunications, and medical device industries. Approaches to identifying and pursuing opportunities in industry will be discussed.

  6. Development of Jacketing Technologies for Iter CS and TF Conductor

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Nakajima, H.; Matsui, K.; Kawano, K.; Takano, K.; Tsutsumi, F.; Okuno, K.; Teshima, O.; Soejima, K.

    2008-03-01

    The Japan Atomic Energy Agency (JAEA) has developed jacketing technologies for ITER Toroidal Field (TF) and Central Solenoid (CS) conductor. Full scale TF and CS conduits were fabricated using carbon-reduced SUS316LN and boron-added (˜40 ppm) high manganese stainless steel (0.025C -22Mn -13Cr -9Ni -0.12N: JK2LB), respectively. Welding condition was optimized so that back bead does not interfere a cable insertion. The weld joint samples were compacted by a compaction machine that was newly constructed and tested at 4.2 K. Mechanical characteristics at 4K of CS, TF conduits and CS welded joint satisfied ITER mechanical requirements. TF welded joint shows slightly lower value of 0.2% yield strength (885 MPa) than that of ITER requirement (900 MPa). The TF conduit contains nitrogen content of 0.14%, which is minimum value in ITER specification. The lower nitrogen content may be caused by the release of nitrogen from molten metal during non-filler welding resulting in a 4 K strength decrease. To satisfy the ITER requirements, minimum nitrogen contents of conduit should be increased from 0.14% to 0.15% at least. Therefore, JAEA successfully developed TF and CS conduits with welding technologies and finalized the procurement specification for ITER conductor jacketing.

  7. Development of Core Cladding Fabrication Techniques for Phase I Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Salvail, Patrick G.; Reid, Robert S.; Ring, Peter J.; Gentz, Steven J. (Technical Monitor)

    2001-01-01

    Phase I fission propulsion systems focus on safety, timely development, and affordability. Prototype and flight units can be tested at full thrust, using resistance heaters to closely simulate heat from a fission reaction. In Phase I ground testing, one goal is to establish a reliable and affordable manufacturing technique for fabricating a flight-like core. A refractory metal (Mo) has been suggested for the core substrate, primarily due to the existence of a significant database for Mo/LJ02 fuel. The core can be fabricated by bundling Mo tubes with a bonding system that meets preliminary test goals. These criteria include materials compatibility, ability to maintain thermal and structural integrity during 10,000 hours of operation, and fabrication with existing facilities. This paper describes an effort to investigate several fabrication techniques in a cost-effective manner. First, inexpensive materials were tested at low temperatures to determine the relative effectiveness of such techniques as welding, brazing, plating, and vacuum plasma spraying (VPSing). Promising techniques were chosen for further evaluation, including thermal and structural studies, using ceramic tubing at intermediate temperatures. The most desirable technique will be tested on actual Mo tubing at anticipated operating temperatures. This work is being performed by the National Aeronautics & Space Administration (NASA) at George C. Marshall Space Flight Center (MSFC), Los Alamos National Laboratory (LANL), and Advanced Methods & Materials (AMM), Inc.

  8. Fabrication development and preliminary characterization of Li 2TiO 3 pebbles by wet process

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kunihiko; Kawamura, Hiroshi; Fuchinoue, Katsuhiro; Sawada, Hiroshi; Watarumi, Kazutoshi

    1998-10-01

    Lithium titanate (Li 2TiO 3) has attracted attention of many researchers because of easy tritium recovery at low temperature, high chemical stability, etc. The application of small Li 2TiO 3 spheres has been proposed in some designs of fusion blanket. Although, the wet process and sol-gel method are the most advantageous as a fabrication method of Li 2TiO 3 pebbles from points of mass production, and of reprocessing necessary for effective use of resources and reduction of radioactive wastes. However, the fabrication of Li 2TiO 3 pebbles by the wet process has not been established. Therefore, in this study, fabrication development and preliminary characterization of Li 2TiO 3 pebbles by the wet process were performed, noting the aging and sintering conditions in the fabrication process of gel-spheres. At the best condition, Li 2TiO 3 pebbles with the target density of 80-85%T.D. were obtained.

  9. Development of superhydrophilic and superhydrophobic polyester fabric by growing zinc oxide nanorods.

    PubMed

    Ashraf, Munir; Campagne, Christine; Perwuelz, Anne; Champagne, Philippe; Leriche, Anne; Courtois, Christian

    2013-03-15

    ZnO nanorods were grown on microfibers of Polyethylene terephthalate (PET) fabric by seeding method to develop hierarchical roughness structure. XRD and XPS analysis show the presence of crystalline ZnO and chemical Zn species at the fiber surface at each stage of the process. Five series of samples with different seed concentrations have been realized, and their surface morphology and topography were characterized by AFM and SEM. Increasing seed concentrations lead to samples with superhydrophilic properties. Not only the water contact angle at fabric surface tends to zero but also the water capillary diffusion inside fabric is faster. Nanostructuration affects the structure inside the fabric, and further experiments with decane liquid have been made to get a better understanding of this effect. To study the superhydrophobicity, nanorods treated samples were modified with octadecyltrimethoxysilane (ODS) by two method; solution deposition and vapor deposition. The superhydrophobicity was characterized by measuring the water contact angle and water sliding angle with 5 μl water droplet. The samples modified with ODS by vapor deposition showed higher water contact angles and low water sliding angle than the ones modified with solution method. The lotus effect has been well correlated with the surface morphology of the nanorods structured fibers. The application of the Cassie-Baxter equation is discussed.

  10. Development of core cladding fabrication techniques for phase I fission propulsion systems

    NASA Astrophysics Data System (ADS)

    Salvail, Patrick G.; Reid, Robert S.; Ring, Peter J.

    2001-02-01

    Phase I fission propulsion systems focus on safety, timely development, and affordability. Prototype and flight units can be tested at full thrust, using resistance heaters to closely simulate heat from a fission reaction. In Phase I ground testing, one goal is to establish a reliable and affordable manufacturing technique for fabricating a flight-like core. A refractory metal (Mo) has been suggested for the core substrate, primarily due to the existence of a significant database for Mo/UO2 fuel. The core can be fabricated by bundling Mo tubes with a bonding system that meets preliminary test goals. These criteria include materials compatibility, ability to maintain thermal and structural integrity during 10,000 hours of operation, and fabrication with existing facilities. This paper describes an effort to investigate several fabrication techniques in a cost-effective manner. First, inexpensive materials were tested at low temperatures to determine the relative effectiveness of such techniques as welding, brazing, plating, and vacuum plasma spraying (VPSing). Promising techniques were chosen for further evaluation, including thermal and structural studies, using ceramic tubing at intermediate temperatures. The most desirable technique will be tested on actual Mo tubing at anticipated operating temperatures. This work is being performed by the National Aeronautics & Space Administration (NASA) at George C. Marshall Space Flight Center (MSFC), Los Alamos National Laboratory (LANL), and Advanced Methods & Materials (AMM), Inc. .

  11. Parallel nanogap fabrication with nanometer size control using III-V semiconductor epitaxial technology.

    PubMed

    Fernández-Martínez, Iván; González, Yolanda; Briones, Fernando

    2008-07-01

    A nanogap fabrication process using strained epitaxial III-V beams is reported. The process is highly reproducible, allowing parallel fabrication and nanogap size control. The beams are fabricated from MBE-grown (GaAs/GaP)/AlGaAs strained heterostructures, standard e-beam lithography and wet etching. During the wet etching process, the relaxation of the accumulated stress at the epitaxial heterostructure produces a controlled beam breakage at the previously defined beam notch. After the breakage, the relaxed strain is proportional to the beam length, allowing nanogap size control. The starting structure is similar to a mechanically adjustable break junction but the stress causing the breakage is, in this case, built into the beam. This novel technique should be useful for molecular-scale electronic devices.

  12. DEVELOPMENT AND ACHIEVEMENTS OF ASSISTED REPRODUCTIVE TECHNOLOGY.

    PubMed

    Bjelica, Artur; Nikolić, Svetlana

    2015-01-01

    History of marital infertility is as long as history of human :ivilization. Becoming aware about the importance of procreation, as well as the problems with which people may confront, has been the subject of interest since the moment of the first human community creation. Historically, each stage of social development, hence the development of science, has carried within itself certain findings more or less acceptable from today's point of view. The development of human awareness and acquisition of findings based on empirical evidence have contributed to understanding and solution of the problem which was considered to be a result of force majeure until that moment and therefore could not be influenced. This paper deals with the previously mentioned issues through the review of historical development of assisted reproductive technology and its importance. The authors' intention was to present the developmental road of assisted reproductive technology through history succinctly with a special emphasis on the moments which have been of the crucial importance and which have marked certain stages of its development.

  13. Fission Surface Power Technology Development Update

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2011-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power

  14. NASA Solar Sail Propulsion Technology Development

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Montgomery, Edward E.; Young, Roy; Adams, Charles

    2007-01-01

    NASA's In-Space Propulsion Technology Program has developed the first generation of solar sail propulsion systems sufficient to accomplish inner solar system science and exploration missions. These first generation solar sails, when operational, will range in size from 40 meters to well over 100 meters in diameter and have an areal density of less than 13 grams per square meter. A rigorous, multi-year technology development effort culminated in 2005 with the testing of two different 20-m solar sail systems under thermal vacuum conditions. The first system, developed by ATK Space Systems of Goleta, California, uses rigid booms to deploy and stabilize the sail. In the second approach, L'Garde, Inc. of Tustin, California uses inflatable booms that rigidize in the coldness of space to accomplish sail deployment. This effort provided a number of significant insights into the optimal design and expected performance of solar sails as well as an understanding of the methods and costs of building and using them. In a separate effort, solar sail orbital analysis tools for mission design were developed and tested. Laboratory simulations of the effects of long-term space radiation exposure were also conducted on two candidate solar sail materials. Detailed radiation and charging environments were defined for mission trajectories outside the protection of the earth's magnetosphere, in the solar wind environment. These were used in other analytical tools to prove the adequacy of sail design features for accommodating the harsh space environment. Preceding and in conjunction with these technology efforts, NASA sponsored several mission application studies for solar sails. Potential missions include those that would be flown in the near term to study the sun and be used in space weather prediction to one that would use an evolved sail capability to support humanity's first mission into nearby interstellar space. This paper will describe the status of solar sail propulsion within

  15. Design and Fabrication of AlN/GaN Heterostructures for Intersubband Technology

    NASA Astrophysics Data System (ADS)

    Ive, Tommy; Berland, Kristian; Stattin, Martin; Fälth, Fredrik; Hyldgaard, Per; Larsson, Anders; Andersson, Thorvald G.

    2012-01-01

    We have used models based on the effective-mass approximation and Schrödinger-Poisson to design AlN/GaN multiple quantum well structures for intersubband transitions between two or three energy levels. The structures were realized by molecular beam epitaxy and the surface morphology and structural quality were investigated. We also investigated GaN waveguides that were fabricated using standard cleanroom techniques. Our work is focused on the various challenges associated to the fabrication of quantum cascade lasers based on group III-nitrides. These challenges are discussed in the light of our results.

  16. Design and Fabrication Development of J-2X Engine Metallic Nozzle Extension

    NASA Technical Reports Server (NTRS)

    Kopicz, C.; Gradl, P.

    2015-01-01

    Maximized rocket engine performance is in part derived from expanding combustion gasses through the rocket nozzle. For upper stage engines the nozzles can be quite large. On the J-2X engine, an uncooled extension of a regeneratively cooled nozzle is used to expand the combustion gasses to a targeted exit pressure which is defined by an altitude for the desired maximum performance. Creating a J-2X nozzle extension capable of surviving the loads of test and flight environments while meeting engine system performance requirements required development of new processes and facilities. Meeting the challenges of the development resulted in concurrent J-2X nozzle extension design and fabrication. This paper describes how some of the design and fabrication challenges were resolved.

  17. SCARLET development, fabrication and testing for the Deep Space 1 spacecraft

    SciTech Connect

    Murphy, D.M.; Allen, D.M.

    1997-12-31

    An advanced version of ``Solar Concentrator Arrays with Refractive Linear Element Technology`` (SCARLET) is being assembled for use on the first NASA/JPL New Millennium spacecraft: Deep Space 1 (DS1). The array is scaled up from the first SCARLET array that was built for the METEOR satellite in 1995 and incorporates advanced technologies such as dual-junction solar cells and an improved structural design. Due to the failure of the Conestoga launch vehicle, this will be the first flight of a modular concentrator array. SCARLET will provide 2.6 kW to the DS1 spacecraft to be launched in July 1998 for a mission that includes fly-bys of the asteroid McAuliffe, Mars, and the comet West-Kohoutek-Ikemura. This paper describes the SCARLET design, fabrication/assembly, and testing program for the flight system.

  18. Technology developments for a compound cycle engine

    NASA Technical Reports Server (NTRS)

    Bobula, George A.; Wintucky, William T.; Castor, J. G.

    1988-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the light weight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hour (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. Results of recent activities in a program to establish the technology base for a CCE are presented. The objective of this program is to research and develop those critical technologies which are necessary for the demonstration of a multicylinder diesel core in the early 1990s. A major accomplishment was the initial screening and identification of a lubricant which has potential for meeting the material wear rate limits of the application. An in-situ wear measurement system also was developed to provide accurate, readily obtainable, real time measurements of ring and liner wear. Wear data, from early single cylinder engine tests, are presented to show correlation of the in-situ measurements and the system's utility in determining parametric wear trends. A plan to demonstrate a compound cycle engine by the mid 1990s is included.

  19. Small Hydropower Research and Development Technology Project

    SciTech Connect

    Blackmore, Mo

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  20. Environmental technology development through industry partnership

    SciTech Connect

    Sebastion, R.L.

    1995-12-31

    The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system. The precision measurement capability of the coherent laser radar (CLR) technology has already been demonstrated in the form of the CLR 3D Mapper, of which several copies have been delivered or are under order. The CLVS system, in contrast to the CLR 3D Mapper, will have substantially greater imaging speed with a compact no-moving parts scanner, more suitable for real-time robotic operations.