Sample records for fabry-perot laser diodes

  1. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.

  2. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  3. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  4. Low-Cost, Single-Frequency Sources for Spectroscopy using Conventional Fabry-Perot Diode Lasers

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.

  5. Low-Cost, Single-Frequency Sources for Spectroscopy Using Conventional Fabry-Perot Diode Lasers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Duerksen, Gary L.

    1999-01-01

    Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.

  6. Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode.

    PubMed

    Yeh, Chien-Hung; Shih, Fu Y; Wang, Chia H; Chow, Chi W; Chi, Sien

    2008-01-07

    We propose and experimentally demonstrate a continuous wave (CW) tunable-wavelength fiber laser using self-seeding Fabry-Perot laser diode (FP-LD) without optical amplifier inside gain cavity. By employing a tunable bandpass filter (TBF) and a fiber reflected mirror (FRM) within a gain cavity, the fiber laser can lase a single-longitudinal wavelength due to the self-seeding operation. The proposed tunable wavelength laser has a good performance of the output power (> -15 dBm) and optical side-mode suppression ratio (> 40 dB) in the wavelength tuning range of 1533.75 to 1560.95 nm. In addition, the output stabilities of the fiber laser are also investigated.

  7. Investigation of mode partition noise in Fabry-Perot laser diode

    NASA Astrophysics Data System (ADS)

    Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping

    2014-09-01

    Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.

  8. Passive harmonic mode locking by mode selection in Fabry-Perot diode lasers with patterned effective index.

    PubMed

    Bitauld, David; Osborne, Simon; O'Brien, Stephen

    2010-07-01

    We demonstrate passive harmonic mode locking of a quantum-well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a nonperiodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform-limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.

  9. Passive signal processing for a miniature Fabry-Perot interferometric sensor with a multimode laser-diode source

    NASA Astrophysics Data System (ADS)

    Ezbiri, A.; Tatam, R. P.

    1995-09-01

    A passive signal-processing technique for addressing a miniature low-finesse fiber Fabry-Perot interferometric sensor with a multimode laser diode is reported. Two modes of a multimode laser diode separated by 3 nm are used to obtain quadrature outputs from an \\similar 20 - mu m cavity. Wavelength-division demultiplexing combined with digital signal processing is used to recover the measurand-induced phase change. The technique is demonstrated for the measurement of vibration. The signal-to-noise ratio is \\similar 70 dB at 500 Hz for \\similar pi /2 rad displacement of the mirror, which results in a minimum detectable signal of \\similar 200 mu rad H z-1/2 . A quantitative discussion of miscalibration and systematic errors is presented.

  10. All-optical logic gates and wavelength conversion via the injection locking of a Fabry-Perot semiconductor laser

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.

    2013-03-01

    This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.

  11. Continuous-Wave Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking Using Feedback from a Fiber Bragg Grating

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Single-frequency operation of uncoated Fabry-Perot laser diodes is demonstrated by phase- locking the laser oscillations through self-injection seeding with feedback from a fiber Bragg grating. By precisely tuning the laser temperature so that an axial-mode coincides with the short-wavelength band edge of the grating, the phase of the feedback is made conjugate to that of the axial mode, locking the phase of the laser oscillations to that mode.

  12. Optical power equalization for upstream traffic with injection-locked Fabry-Perot lasers in TDM-PON

    NASA Astrophysics Data System (ADS)

    Huang, Ting-Tsan; Sheu, Lih-Gen; Chi, Sien

    2010-10-01

    An optical power equalization of upstream traffic in time-division-multiplexed passive optical network (TDM-PON) based on injection-locked Fabry-Perot lasers has been experimentally investigated. The upstream transmitters with stable spectrum are achieved by using an external injection light source in the optical line terminal (OLT). The different upstream powers can be equalized by injection locking a Fabry-Perot laser diode (FP-LD) biased below threshold current in OLT. The dynamic upstream power range from - 8.5 to - 19.5 db m is reduced to a 1.6 dB maximal power variation, when the uplink signal is directly modulated at 1.25 Gb/s.

  13. SUNLITE program. Sub-Hertz relative frequency stabilization of two diode laser pumped Nd:YAG lasers locked to a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1990-01-01

    Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  14. Confocal Fabry-Perot interferometer for frequency stabilization of laser

    NASA Astrophysics Data System (ADS)

    Pan, H.-J.; Ruan, P.; Wang, H.-W.; Li, F.

    2011-02-01

    The frequency shift of laser source of Doppler lidar is required in the range of a few megahertzs. To satisfy this demand, a confocal Fabry-Perot (F-P) interferometer was manufactured as the frequency standard for frequency stabilization. After analyzing and contrasting the center frequency shift of confocal Fabry-Perot interferometers that are made of three different types of material with the change of temperature, the zerodur material was selected to fabricate the interferometer, and the cavity mirrors were optically contacted onto the end of spacer. The confocal Fabry-Perot interferometer was situated within a double-walled chamber, and the change of temperature in the chamber was less than 0.01 K. The experimental results indicate that the free spectral range is 500 MHz, the full-width at half maximum is 3.33 MHz, and the finesse is 150.

  15. Using Fabry-Perot laser diode and reflective semiconductor optical amplifier for long reach WDM-PON system

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Chow, C. W.; Wu, Y. F.; Shih, F. Y.; Chi, S.

    2011-10-01

    In this investigation, we propose and investigate the simple self-injection locked Fabry-Perot laser diodes (FP-LDs) in optical line terminal (OLT); and wavelength-tunable optical network unit (ONU) using reflective optical semiconductor amplifier (RSOA) and FP-LD laser for downstream and upstream traffic in long reach (LR) wavelength division multiplexed-passive optical network (WDM-PON) respectively. The output performance of the proposed two laser sources in terms of power and side-mode suppression ratio (SMSR) has been discussed. Here, for the downstream traffic, the proposed optical transmitter can be directly modulated at 2.5 Gb/s on-off keying (OOK) format with nearly 0.4 dB power penalty at bit error rate (BER) of 10 -9 through 75 km single-mode fiber (SMF) transmission. Moreover, the proposed upstream transmitter can be directly modulated at 1.25 and 2.5 Gb/s with nearly 0.5 and 1.1 dB power penalty, respectively, at the BER of 10 -9.

  16. Power-ratio tunable dual-wavelength laser using linearly variable Fabry-Perot filter as output coupler.

    PubMed

    Wang, Xiaozhong; Wang, Zhongfa; Bu, Yikun; Chen, Lujian; Cai, Guoxiong; Huang, Wencai; Cai, Zhiping; Chen, Nan

    2016-02-01

    For a linearly variable Fabry-Perot filter, the peak transmission wavelengths change linearly with the transverse position shift of the substrate. Such a Fabry-Perot filter is designed and fabricated and used as an output coupler of a c-cut Nd:YVO4 laser experimentally in this paper to obtain a 1062 and 1083 nm dual-wavelength laser. The peak transmission wavelengths are gradually shifted from 1040.8 to 1070.8 nm. The peak transmission wavelength of the Fabry-Perot filter used as the output coupler for the dual-wavelength laser is 1068 nm and resides between 1062 and 1083 nm, which makes the transmissions of the desired dual wavelengths change in opposite slopes with the transverse shift of the filter. Consequently, powers of the two wavelengths change in opposite directions. A branch power, oppositely tunable 1062 and 1083 nm dual-wavelength laser is successfully demonstrated. Design principles of the linear variable Fabry-Perot filter used as an output coupler are discussed. Advantages of the method are summarized.

  17. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    PubMed

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate <10(-10) is -25.6 dBm, and the power penalty added after 25-km transmission is less than 2 dB for all 16 channels.

  18. Strained layer Fabry-Perot device

    DOEpatents

    Brennan, Thomas M.; Fritz, Ian J.; Hammons, Burrell E.

    1994-01-01

    An asymmetric Fabry-Perot reflectance modulator (AFPM) consists of an active region between top and bottom mirrors, the bottom mirror being affixed to a substrate by a buffer layer. The active region comprises a strained-layer region having a bandgap and thickness chosen for resonance at the Fabry-Perot frequency. The mirrors are lattice matched to the active region, and the buffer layer is lattice matched to the mirror at the interface. The device operates at wavelengths of commercially available semiconductor lasers.

  19. Molecular dispersion spectroscopy based on Fabry-Perot quantum cascade lasers.

    PubMed

    Sterczewski, Lukasz A; Westberg, Jonas; Wysocki, Gerard

    2017-01-15

    Two Fabry-Perot quantum cascade lasers are used in a differential dual comb configuration to perform rapidly swept dispersion spectroscopy of low-pressure nitrous oxide with <1  ms acquisition time. Active feedback control of the laser injection current enables simultaneous wavelength modulation of both lasers at kilohertz rates. The system demonstrates similar performance in both absorption and dispersion spectroscopy modes and achieves a noise-equivalent absorption figure of merit in the low 10-4/Hz range.

  20. Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks.

    PubMed

    Kim, Hoon

    2010-01-18

    We propose and demonstrate a pulsed-incoherent-light-injected Fabry-Perot laser diode (FP-LD) which generates incoherent return-to-zero (RZ) signals for wavelength-division-multiplexing passive optical networks. For the generation of the RZ signals, we first convert the continuous-wave (CW) amplified spontaneous emission (ASE) into an ASE pulse train with a pulse carver, spectrum-slice it into multiple channels with a waveguide grating router, and then inject them into FP-LDs for data modulation. Thanks to a wide slicing bandwidth of the injected incoherent light, the spectral linewidth of the generated RZ signals is determined by the slicing bandwidth, without being affected by the use of the RZ format. Thus, compared to incoherent non-return-to-zero (NRZ) signals generated with CW-ASE-injected FP-LDs, the RZ signals have a similar spectral linewidth but a wide timing margin between adjacent bits. Thus, the proposed transmitter can offer better dispersion tolerance than the NRZ signals. For example, our experimental demonstration performed at 1.25 Gb/s shows approximately 50% higher dispersion tolerance than the NRZ signals generated with CW ASE-injected FP-LDs. Despite the large slicing bandwidth of 0.67 nm for the injected ASE, we were able to transmit 1.25-Gb/s signals over 45-km standard single-mode fiber without dispersion compensation. The receiver sensitivity is also improved by 1.5 dB by using the RZ format.

  1. Performance of a distributed simultaneous strain and temperature sensor based on a Fabry-Perot laser diode and a dual-stage FBG optical demultiplexer.

    PubMed

    Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon

    2013-11-12

    A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively.

  2. Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry-Perot interferometer and intrinsic Fabry-Perot interferometer sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Huang, Jie; Lan, Xinwei; Yuan, Lei; Xiao, Hai

    2014-06-01

    This paper presents an approach for simultaneous measurement of temperature and pressure using miniaturized fiber inline sensors. The approach utilizes the cascaded optical fiber inline intrinsic Fabry-Perot interferometer and extrinsic Fabry-Perot interferometer as temperature and pressure sensing elements, respectively. A CO2 laser was used to create a loss between them to balance their reflection power levels. The multiplexed signals were demodulated using a Fast Fourier transform-based wavelength tracking method. Experimental results showed that the sensing system could measure temperature and pressure unambiguously in a pressure range of 0 to 6.895×105 Pa and a temperature range from 20°C to 700°C.

  3. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Piccardo, Marco; Anand, Sajant; Mejia, Enrique A.; Wang, Yongrui; Mansuripur, Tobias S.; Xie, Feng; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2018-02-01

    Free-running Fabry-Perot lasers normally operate in a single-mode regime until the pumping current is increased beyond the single-mode instability threshold, above which they evolve into a multimode state. As a result of this instability, the single-mode operation of these lasers is typically constrained to few percents of their output power range, this being an undesired limitation in spectroscopy applications. In order to expand the span of single-mode operation, we use an optical injection seed generated by an external-cavity single-mode laser source to force the Fabry-Perot quantum cascade laser into a single-mode state in the high current range, where it would otherwise operate in a multimode regime. Utilizing this approach, we achieve single-mode emission at room temperature with a tuning range of 36 cm-1 and stable continuous-wave output power exceeding 1 W at 4.5 μm. Far-field measurements show that a single transverse mode is emitted up to the highest optical power, indicating that the beam properties of the seeded Fabry-Perot laser remain unchanged as compared to free-running operation.

  4. An Archetype Semi-Ring Fabry-Perot (SRFP) Resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin; VanZyl, Jakob

    2009-01-01

    We introduce and demonstrate the generation of a novel resonator, termed Semi-Ring Fabry-Perot (SRFP), that exhibits unique features, such as, its use of one plane mirror, allowing the SRFP to be easily fabricated as a symmetrical device. In addition to its unique features, it exhibits advantages of ring and Fabry-Perot resonators: 1) compared to a ring resonator that only allows a transmitted intensity, the Semi-Ring Fabry-Perot (SRFP) supports standing waves, allowing both a reflected and transmitted intensity; 2) the reflected light spectrum of the SRFP resonator is much narrower than similar Fabry-Perot, implying higher finesse.

  5. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal.

    PubMed

    Kwolek, J M; Wells, J E; Goodman, D S; Smith, W W

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca(+) ions, and its use in other applications with similar modest frequency stabilization requirements.

  6. Demonstrations Using a Fabry-Perot. I. Multiple-Slit Interference

    ERIC Educational Resources Information Center

    Roychoudhuri, Chandrasekhar

    1975-01-01

    Describes a demonstration technique for showing multiple-slit interference patterns with the use of a Fabry-Perot etalon and a laser beam. A simple derivation of the analytical expression for such fringes is presented. (Author/CP)

  7. Fiber optic microphone with large dynamic range based on bi-fiber Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Cheng, Jin; Lu, Dan-feng; Gao, Ran; Qi, Zhi-mei

    2017-10-01

    In this paper, we report a fiber optic microphone with a large dynamic range. The probe of microphone consists of bi-fiber Fabry-Perot cavity architecture. The wavelength of the working laser is about 1552.05nm. At this wavelength, the interference spectroscopies of these two fiber Fabry-Perot cavities have a quadrature shift. So the outputs of these two fiber Fabry-Perot sensors are orthogonal signal. By using orthogonal signal demodulation method, this microphone can output a signal of acoustic wave. Due to no relationship between output signal and the linear region on interference spectroscopy, the microphones have a large maximum acoustic pressure above 125dB.

  8. Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun

    2011-12-01

    We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.

  9. Proton and gamma irradiation of Fabry-Perot quantum cascade lasers for space qualification

    DOE PAGES

    Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.; ...

    2015-01-20

    Fabry-Perot quantum cascade lasers (QCLs) were characterized following irradiation by high energy (64 MeV) protons and Cobalt-60 gamma rays. Seven QCLs were exposed to radiation dosages that are typical for a space mission in which the total accumulated dosages from both radiation sources varied from 20 krad(Si) to 46.3 krad(Si). In conclusion, the QCLs did not show any measurable changes in threshold current or slope efficiency suggesting the suitability of QCLs for use in space-based missions.

  10. On-chip optical phase locking of single growth monolithically integrated Slotted Fabry Perot lasers.

    PubMed

    Morrissey, P E; Cotter, W; Goulding, D; Kelleher, B; Osborne, S; Yang, H; O'Callaghan, J; Roycroft, B; Corbett, B; Peters, F H

    2013-07-15

    This work investigates the optical phase locking performance of Slotted Fabry Perot (SFP) lasers and develops an integrated variable phase locked system on chip for the first time to our knowledge using these lasers. Stable phase locking is demonstrated between two SFP lasers coupled on chip via a variable gain waveguide section. The two lasers are biased differently, one just above the threshold current of the device with the other at three times this value. The coupling between the lasers can be controlled using the variable gain section which can act as a variable optical attenuator or amplifier depending on bias. Using this, the width of the stable phase locking region on chip is shown to be variable.

  11. Active stabilization of a diode laser injection lock.

    PubMed

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    2016-06-01

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser's transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399 nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.

  12. Compressible Fabry-Perot refractometer.

    PubMed

    Andersson, M; Eliasson, L; Pendrill, L R

    1987-11-15

    The use of a long, thermally stable Fabry-Perot etalon as a refractometer is considered in detail in this study of the refractive index of air. The etalon consists of two flat plates of fused silica 60 mm in diameter, with a cylindrical spacer made of Zerodur (a polycrystalline glass ceramic of extremely low thermal expansion) 200 mm long. The interferogram of light from a frequency-stabilized He-Ne laser is imaged with large-diameter mirror optics. The principal result is a demonstration of the effects of changes in atmospheric pressure on the etalon. The measured refractive-index values deviate by 2 parts in 10(7) from calculated values. Possible causes of error are considered in detail.

  13. Miniature fiber Fabry-Perot sensors based on fusion splicing

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-li; Wang, Ming; Yang, Chun-di; Wang, Ting-ting

    2013-03-01

    Fiber-optic Fabry-Perot (F-P) sensors are widely investigated because they have several advantages over conventional sensors, such as immunity to electromagnetic interference, ability to operate under bad environments, high sensitivity and the potential for multiplexing. A new method to fabricate micro-cavity Fabry-Perot interferometer is introduced, which is fusion splicing a section of conventional single-mode fiber (SMF) and a section of hollow core or solid core photonic crystal fiber (PCF) together to form a micro-cavity at the splice joint. The technology of fusion splicing is discussed, and two miniature optical fiber sensors based on Fabry-Perot interference using fusion splicing are presented. The two sensors are completely made of fused silica, and have good high-temperature capability.

  14. All-Optical Logic Gates and Wavelength Conversion Via the Injection-Locking of a Fabry-Perot Semiconductor Laser

    DTIC Science & Technology

    2013-03-21

    be modified to create a non -inverting output as well. The probe beam is initially injected at a slightly higher frequency than the slave mode so...input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non -injected Fabry–Perot modes, is induced, yielding a...laser diode), SLD (slave laser diode), EOM (electro-optic modulator), P (polarizer), OI (optical isolator), G (grating), L (lens), BE ( beam expander

  15. Micromachined Tunable Fabry-Perot Filters for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Barclay, Richard; Bier, Alexander; Chen, Tina; DiCamillo, Barbara; Deming, Drake; Greenhouse, Matthew; Henry, Ross; Hewagama, Tilak; Jacobson, Mindy; Loughlin, James; hide

    2002-01-01

    Micromachined Fabry-Perot tunable filters with a large clear aperture (12.5 to 40 mm) are being developed as an optical component for wide-field imaging 1:1 spectroscopy. This program applies silicon micromachining fabrication techniques to miniaturize Fabry-Perot filters for astronomical science instruments. The filter assembly consists of a stationary etalon plate mated to a plate in which the etalon is free to move along the optical axis on silicon springs attached to a stiff silicon support ring. The moving etalon is actuated electrostatically by electrode pairs on the fixed and moving etalons. To reduce mass, both etalons are fabricated by applying optical coatings to a thin freestanding silicon nitride film held flat in drumhead tension rather than to a thick optical substrate. The design, electro-mechanical modeling, fabrication, and initial results will be discussed. The potential application of the miniature Fabry-Perot filters will be briefly discussed with emphasis on the detection of extra-solar planets.

  16. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  17. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  18. High-temperature fiber-optic Fabry-Perot interferometric sensors

    NASA Astrophysics Data System (ADS)

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  19. Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Lin, Jie; Liu, Huan; Ma, Yuan; Yan, Lei; Jin, Peng

    2017-01-01

    A diaphragm based long cavity Fabry-Perot interferometric fiber acoustic sensor is proposed. The Fabry-Perot cavity is formed by a flat fiber facet and an ultra-thin silver diaphragm with a 6-meter long fiber inserted in the cavity. A narrow-linewidth ring-cavity erbium-doped fiber laser is applied to demodulate the sensing signal in the phase generated carrier algorithm. Experimental results have demonstrated that the phase sensitivity is about -140 dB re 1 rad/μPa at 2 kHz. The noise equivalent acoustic signal level is 60.6 μPa/Hz1/2 and the dynamic range is 65.1 dB-SPL at 2 kHz. The sensor is suitable for sensing of weak acoustic signals.

  20. Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.

    PubMed

    Marti, J; Capmany, J

    1996-12-20

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  1. Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources

    NASA Astrophysics Data System (ADS)

    Marti, Javier; Capmany, Jose

    1996-12-01

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  2. A Novel Fabry-Perot Cavity Fiber Sensor

    NASA Astrophysics Data System (ADS)

    Lin, Chun; Huang, Yuan Qing; Lei, Wang; Ye, Xiao Juan

    Fabry-Perot (F-P) cavity fiber sensors are often used in acceleration, vibration and pressure measurement. When the structure of sensors are similar, there are the same disadvantages exist. A novel design of Fabry-Perot (F-P) cavity fiber sensor is described in this paper, which is composed by a non-coating end-face and a holophote. Triple beams interference is formed in the sensor and shows higher sensitivity. In order to demodulate interference signal in great background noise, two photodiodes are connected in series to form short circuit current which delimits the common mode signal. Experimental results are described for the sensor signal responding to the vibration excited by PZT.^p

  3. Distributed torsion sensor based on cascaded coaxial cable Fabry-Perot interferometers

    NASA Astrophysics Data System (ADS)

    Cheng, Baokai; Zhu, Wenge; Hua, Liwei; Liu, Jie; Li, Yurong; Nygaard, Runar; Xiao, Hai

    2016-07-01

    Cascaded coaxial cable Fabry-Perot interferometers (FPI) are studied and demonstrated for distributed torsion measurement. Multiple weak reflectors are implemented on a coaxial cable so that any two consecutive reflectors can form a Fabry-Perot cavity. By fixing the cable sensor in a helical form on a shaft, the distributed torsion of the shaft can be measured by the cascaded Fabry-Perot cavities. A test on a single section shows that the sensor has a linear response with a sensitivity of 1.834 MHz (rad/m)-1 in the range of twisted rate from 0 to 8.726 rad m-1. The distributed torsion sensing capability is useful in drilling process monitoring, structure health monitoring and machine failure detection.

  4. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  5. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    PubMed

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  6. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, E.S.; Woodruff, S.D.

    1984-06-19

    A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.

  7. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, Edward S.; Woodruff, Steven D.

    1984-06-19

    A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.

  8. Levitated optomechanics with a fiber Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Pontin, A.; Mourounas, L. S.; Geraci, A. A.; Barker, P. F.

    2018-02-01

    In recent years, quantum phenomena have been experimentally demonstrated on variety of optomechanical systems ranging from micro-oscillators to photonic crystals. Since single photon couplings are quite small, most experimental approaches rely on the realization of high finesse Fabry-Perot cavities in order to enhance the effective coupling. Here we show that by exploiting a, long path, low finesse fiber Fabry-Perot interferometer ground state cooling can be achieved. We model a 100 m long cavity with a finesse of 10 and analyze the impact of additional noise sources arising from the fiber. As a mechanical oscillator we consider a levitated microdisk but the same approach could be applied to other optomechanical systems.

  9. Wavelength-Agile External-Cavity Diode Laser for DWDM

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  10. All-fiber, long-active-length Fabry-Perot strain sensor.

    PubMed

    Pevec, Simon; Donlagic, Denis

    2011-08-01

    This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.

  11. Measurement of the carrier envelope offset frequency of a femtosecond frequency comb using a Fabry-Perot interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basnak, D V; Bikmukhametov, K A; Dmitrieva, N I

    2010-10-15

    A method for measuring the carrier envelope offset (CEO) frequency of the femtosecond frequency comb with a bandwidth of less than one octave by using a Fabry-Perot interferometer is proposed and experimentally demonstrated. (laser components)

  12. Study of Fabry-Perot Etalon Stability and Tuning for Spectroscopic Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Mielke-Fagan, Amy F.; Elam, Kristie A.

    2010-01-01

    The Fabry-Perot interferometer is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating flow properties such as gas velocity and temperature. Rayleigh scattered light from a focused laser beam can be directly imaged through a solid Fabry-Perot etalon onto a CCD detector to provide the spectral content of the scattered light. The spatial resolution of the measurements is governed by the locations of interference fringes. The location of the fringes can be changed by altering the etalon?s physical characteristics, such as thickness and index of refraction. For a fused silica solid etalon the physical properties can be adjusted by changing the etalon temperature; hence changing the order of the interference pattern and the physical fringe locations. Controlling the temperature of the etalon can provide for a slow time-response spatial scanning method for this type of etalon system. A custom designed liquid crystal Fabry-Perot (LCFP) can provide for a fast time-response method of scanning the etalon system. Voltage applied to the liquid crystal interface sets the etalon?s properties allowing Rayleigh measurements to be acquired at varying spatial locations across the image of the laser beam over a very short time period. A standard fused silica etalon and a tunable LCFP etalon are characterized to select the system that is best suited for Rayleigh scattering measurements in subsonic and supersonic flow regimes. A frequency-stabilized laser is used to investigate the apparent frequency stability and temperature sensitivity of the etalon systems. Frequency stability and temperature sensitivity data of the fused silica and LCFP etalon systems are presented in this paper, along with measurements of the LCFP etalon?s tuning capabilities. Rayleigh scattering velocity measurements with both etalon systems are presented, in an effort to determine which etalon is better suited to provide optical flow

  13. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  14. Sapphire Fabry-Perot high-temperature sensor study

    NASA Astrophysics Data System (ADS)

    Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian

    2017-04-01

    A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.

  15. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.

    PubMed

    Liu, Ye; Wang, D N; Chen, W P

    2016-12-02

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  16. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Wang, D. N.; Chen, W. P.

    2016-12-01

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  17. Solid, 3-Mirror Fabry-Perot Etalon

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Fahey, Molly; Miller, Ian

    2017-01-01

    We present modeling and performance of a solid, fused silica, 3-mirror Fabry-Perot-type etalon. We show the optical cavity design and construction of the new etalon and show >95% peak transmission, improved passband shape and 20 dB better out of band rejection than a similar 2-mirror etalon.

  18. Three-stage Fabry-Perot liquid crystal tunable filter with extended spectral range.

    PubMed

    Zheng, Zhenrong; Yang, Guowei; Li, Haifeng; Liu, Xu

    2011-01-31

    A method to extend spectral range of tunable optical filter is proposed in this paper. Two same tunable Fabry-Perot filters and an additional tunable filter with different free spectral range are cascaded to extend spectral range and reduce sidelobes. Over 400 nm of free spectral range and 4 nm of full width at half maximum of the filter were achieved. Design procedure and simulation are described in detail. An experimental 3-stage tunable Fabry-Perot filter with visible and infrared spectra is demonstrated. The experimental results and the theoretical analysis are presented in detail to verify this method. The results revealed that a compact and extended tunable spectral range of Fabry-Perot filter can be easily attainable by this method.

  19. Use of PZT's for adaptive control of Fabry-Perot etalon plate figure

    NASA Technical Reports Server (NTRS)

    Skinner, WIlbert; Niciejewski, R.

    2005-01-01

    A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.

  20. Two-wavelength quadrature multipoint detection of partial discharge in power transformers using fiber Fabry-Perot acoustic sensors

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Han, Ming; Wang, Anbo

    2012-06-01

    A reliable and low-cost two-wavelength quadrature interrogating method has been developed to demodulate optical signals from diaphragm-based Fabry-Perot interferometric fiber optic sensors for multipoint partial discharge detection in power transformers. Commercial available fused-silica parts (a wafer, a fiber ferrule, and a mating sleeve) and a cleaved optical single mode fiber were bonded together to form an extrinsic Fabry-Perot acoustic sensor. Two lasers with center wavelengths separated by a quarter of the period of sensor interference fringes were used to probe acousticwave- induced diaphragm vibration. A coarse wavelength-division multiplexing (CWDM) add/drop multiplexer was used to separate the reflected two wavelengths before two photo detectors. Optical couplers were used to distribute mixed laser light to each sensor-detector module for multiplexing purpose. Sensor structure, detection system design and experiment results are presented.

  1. Research and investigation of a communication chain on optical fiber with a Fabry-Perot power diode for the automotive industry

    NASA Astrophysics Data System (ADS)

    Bacis, Irina Bristena; Vasile, Alexandru; Ionescu, Ciprian; Marghescu, Cristina

    2016-12-01

    The purpose of this paper is to analyze different power devices - emitters of optical flow, from the point of view of optical coupling, emitted optical powers, optical fiber losses and receiver. The research and characterization of the transmission through a power optical system is done using a computer system specialized for the automotive industry. This system/platform can deliver current pulses that are controlled by a computer through a software (it is possible to set different parameters such as pulse repetition frequency, duty cycle, and current intensity). For the experiments a power Fabry Perot 1035 laser diode operating in pulse with μφ 1055 nm, Ith = 40 mA, and Iop =750 mA was used with a single-mode SFM 128 optical fiber and an EM type optical coupler connected through alignment. Two types of measurements were conducted to demonstrate the usefulness of the experimental structure. In the first case the amplitude of the voltage pulses was measured at the output of an optical detector with receiving diode in a built-in amplifier with a 50 kΩ load resistance. In the second stage measurements were conducted to determine the optical power injected in the optical fiber and received at the reception cell of a power meter. Another parameter of optical coupling that can be measured using the experimental structure is irradiation. This parameter is very important to determine the optimum cutting angle of the fiber for continuity welding.

  2. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.

    PubMed

    Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching

    2010-05-01

    A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.

  3. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data.

    PubMed

    Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J

    2014-02-01

    The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.

  4. Nematic Fabry-Perot etalons for ground- and space-based atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Noto, John; Schneller, Kristin E.; Schneller, William J.; Kerr, Robert B.; Doe, R. A.

    1997-10-01

    Birefringent, nematic liquid crystals (LC) have been laminated between the substrates of several Fabry-Perot etalons. The application of an electric field allows the effective index of refraction of the LC to be varied. A polymer alignment layer is used to align the crystals perpendicular to the optical axis of the Fabry-Perot etalon. An oscillating electric field is used to rotate the crystal around the optical axis of the etalon, effectively changing the index of refraction. This change in index is used to tune the Fabry-Perot etalon in a manner similar to traditional pressure and mechanical tuning systems. However, the approach described here has the advantage of producing a solid-state etalon that is tunable without needing a bulky pressure system or environmentally sensitive piezo-electric stacks. A two etalon spectrometer consisting of two Fabry- Perot etalons coupled to a CID detector has been developed. A suppression etalon with a gap of 10 micrometers , and a LC wit a refractive index of 1.63 are used in conjunction with a high resolution etalon to produce an instrument ideal for observing the atomic spectra of hot, light neutral species and the molecular bands in the atmosphere. Several other etalons have been constructed to further develop this technology. Clear apertures greater than 2 inches have been achieved, and a hybrid spacer technique has been developed to allow for etalons with spacings of up to 1 cm. Fabry- Perot partial reflective coatings capable of operation from the visible to the NIR will also be discussed.

  5. Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation.

    PubMed

    Schmidt, M; Fürstenau, N

    1999-05-01

    A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry-Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.

  6. Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2010-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.

  7. In-fiber Fabry-Perot refractometer assisted by a long-period grating.

    PubMed

    Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V

    2010-02-15

    We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5).

  8. Actively mode-locked erbium fiber ring laser using a Fabry-Perot semiconductor modulator as mode locker and tunable filter

    NASA Astrophysics Data System (ADS)

    Li, Shenping; Chan, K. T.

    1999-05-01

    A wavelength-tunable actively mode-locked erbium fiber ring laser was demonstrated using a Fabry-Perot semiconductor modulator. The modulator played the simultaneous roles of an intensity mode locker and a tunable optical filter. Stable single- or dual-wavelength nearly transform-limited picosecond pulses at gigabit repetition rates were generated. Continuous wavelength tuning was achieved by simply controlling the temperature of the modulator. Pulse train with a repetition rate up to 19.93 GHz (eight times the driving frequency) was obtained by using rational harmonic mode-locking technique.

  9. Linewidth measurements of tunable diode lasers using heterodyne and etalon techniques

    NASA Technical Reports Server (NTRS)

    Reid, J.; Cassidy, D. T.; Menzies, R. T.

    1982-01-01

    Measurements of the linewidths of Pb-salt diode lasers operating in the 8- and 9-micron region are reported. The linewidths of the 9-micron lasers were determined by conventional heterodyne techniques, while for the 8-micron lasers a new technique based on a Fabry-Perot etalon was used. The new technique avoids the complexity and limited wavelength range of the heterodyne measurements and can be used for any tunable laser. The linewidths observed varied from 0.6 to more than 500-MHz FWHM. The linewidth was found to vary dramatically from device to device, to depend strongly on junction temperature and injection current, and to be correlated with vibrations caused by operation of a closed-cycle refrigerator.

  10. High-precision thermal expansion measurements using small Fabry-Perot etalons

    NASA Astrophysics Data System (ADS)

    Davis, Mark J.; Hayden, Joseph S.; Farber, Daniel L.

    2007-09-01

    Coefficient of thermal expansion (CTE) measurements using small Fabry-Perot etalons were conducted on high and low thermal expansion materials differing in CTE by a factor of nearly 400. The smallest detectable change in length was ~10 -12 m. The sample consisted of a mm-sized Fabry-Perot etalon equipped with spherical mirrors; the material-under-test served as the 2.5 mm-thick spacer between the mirrors. A heterodyne optical setup was used with one laser locked to an ~780 nm hyperfine line of Rb gas and the other locked to a resonance of the sample etalon; changes in the beat frequency between the two lasers as a function of temperature directly provided a CTE value. The measurement system was tested using the high-CTE SCHOTT optical glass N-KF9 (CTE = 9.5 ppm/K at 23 °C). Measurements conducted under reproducibility conditions using five identically-prepared N-KF9 etalons demonstrate a precision of 0.1 ppm/K; absolute values (accuracy) are within 2-sigma errors with those made using mechanical dilatometers with 100-mm long sample rods. Etalon-based CTE measurements were also made on a high-CTE (~10.5 ppm/K), proprietary glass-ceramic used for high peak-pressure electrical feedthroughs and revealed statistically significant differences among parts made under what were assumed to be identical conditions. Finally, CTE measurements were made on etalons constructed from SCHOTT's ultra-low CTE Zerodur (R) glass-ceramic (CTE about -20 ppb/K at 50 °C for the material tested herein).

  11. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

    PubMed

    Liao, C R; Hu, T Y; Wang, D N

    2012-09-24

    We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C.

  12. Fiber ring laser sensor based on Fabry-Perot cavity interferometer for temperature sensing

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yunshan; Li, Yong Tao

    2018-01-01

    A ring laser temperature sensor based on a novel reflective fiber Fabry-Perot (F-P) interferometer air cavity is proposed and experimentally demonstrated. The reflective F-P air cavity, which consists of a segment of glass capillary inserted between two single-mode fibers, is utilized as a sensing element as well as as a filter in the fiber ring cavity. As temperature increases, the reflection spectra of the F-P sensor move towards the longer wavelength, and then cause lasing wavelength shifts. By monitoring the variation of lasing wavelength, we obtain a temperature sensor system with a high temperature sensitivity of 0.249 nm °C-1, a narrow 3 dB bandwidth of 0.1514 nm, and a high signal-to-noise ratio of 52 dB. Moreover, it is convenient to fabricate the sensor head, and the stability is very good, giving it a wide range of applications.

  13. Gamma irradiation of Fabry–Perot interband cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.

    Two Fabry-Perot interband cascade lasers (ICLs) were exposed to Cobalt-60 gamma rays for a dosage of 500 krad(Si) each, which is higher than is typically encountered in space applications. The ICLs do not show any significant changes in threshold current or slope efficiency, suggesting the suitability of ICLs for use in radiation environments.

  14. A miniature electronically tunable Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    O'Sullivan, B.; Pietraszewski, K. A. R.

    A miniature electronically tunable, servo controlled Fabry-Perot filter for use in fiber optic sensors, spectroscopy, data and telecommunications, and laser tuning has been developed. The servo control system utilizes capacitance micrometry and piezo technology to maintain stable cavity mirror separations with a noise of less than 0.9nm rms while enabling random access tuning to any wavelength in the design range in less than 0.5ms. Free spectral ranges from 75,000GHz to 300GHz (560nm to 1.5nm at 1500nm wavelength) are typical with finesses between 3 and 300. At present the device has been made commercially available in two formats: fiber optically coupled, with single-mode or multimode fiber, or with a 3mm clear aperture. The design and performance of the instrument are presented along with some typical application examples.

  15. Fabry-Perot Interferometer-Based Electrooptic Modulator using LiNbO3 and Organic Thin Films

    NASA Technical Reports Server (NTRS)

    Banks, C.; Frazier, D.; Penn, B.; Abdeldayem, H.; Sharma, A.; Yelleswarapu, C.; Leyderman, Alexander; Correa, Margarita; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We report the study of a Fabry-Perot electro-optical modulator using thin crystalline film NPP, and Crystalline LiNbO3. We are able to observe 14, and 60 percent degree of modulation. Measurements were carried using a standard lock-in amplifier with a silicon detector. The proposal to design a Fabry-Perot electro-optic modulator with an intracavity electro-optically active organic material was based on the initial results using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Packets cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside die resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field.

  16. Wavelength-switchable C-band erbium-doped fibre laser incorporating all-fibre Fabry-Perot interferometer fabricated by chemical etching

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    A switchable and stable triple-wavelength, ring-cavity, erbium-doped fibre laser incorporating an all-fibre Fabry-Perot interferometer (FPI) is designed and experimentally demonstrated. In the proposed fibre laser, the all-fibre FPI is fabricated using the chemical etching method and is used to generate the filter effect. The laser threshold is 88 mW. Switchable single-wavelength lasing at 1529.9, 1545.1 and 1560.2 nm can be realized with a power fluctuation less than 0.64 dB under 20 min of scanning time at room temperature. In addition, the wavelength-switchable dual-wavelength lasers can be tuned by changing the polarization state in the experiment, and the maximum power fluctuations for the 1545.1 and 1560.2 nm lasers are less than 1.19 and 1.57 dB at 26 °C, respectively. Furthermore, a triple-wavelength laser is obtained by adjusting the polarization controller. The results demonstrate that switchable single-, dual-, or triple-wavelength lasers can be generated through the proposed fibre laser.

  17. Development of the Fabry-Perot Spectrometer Application

    NASA Technical Reports Server (NTRS)

    Browne, Kathryn

    2015-01-01

    Methane is a greenhouse gas with global warming effects 20 times more detrimental than carbon dioxide. Currently, only aircraft missions measure methane and do not provide continuous monitoring, This presentation will cover the Fabry-Perot spectrometer which will provide continuous monitoring of methane. It will also cover the development of the software used to extract and process the data the spectrometer collects.

  18. Multimode excitation-induced phase shifts in intrinsic Fabry-Perot interferometric fiber sensor spectra.

    PubMed

    Ma, Cheng; Wang, Anbo

    2010-09-01

    We report the modal analysis of optical fiber single-mode-multimode-single-mode intrinsic Fabry-Perot interferometer sensors. The multimode nature of the Fabry-Perot cavity gives rise to an additional phase term in the spectrogram due to intermodal dispersion-induced wavefront distortion, which could significantly affect the cavity length demodulation accuracy. By using an exact model to analyze the modal behavior, this phase term is explained by employing a rotating vector approach. Comparison of the theoretical analysis with experimental results is presented.

  19. First results from SAM-FP: Fabry-Perot observations with ground-layer adaptive optics - the structure and kinematics of the core of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Mendes de Oliveira, C.; Amram, P.; Quint, Bruno C.; Torres-Flores, S.; Barbá, R.; Andrade, D.

    2017-08-01

    The aim of this paper is to present the first data set obtained with SOAR Adaptive Module-Fabry-Parot (SAM-FP), a Fabry-Perot instrument mounted inside the SOAR telescope Adaptive-Optics Module. This is the only existing imaging Fabry-Perot interferometer using laser-assisted ground-layer adaptive optics. SAM-FP was used to observe the ionized gas, traced by Hα, in the centre of the 30 Doradus starburst (the Tarantula Nebula) in the Large Magellanic Cloud, with high spatial (˜0.6 arcsec, or 0.15 pc) and spectral (R ≃ 11 200) resolution. Radial velocity, velocity dispersion and monochromatic maps were derived. The region displays a mix of narrow, σ ˜ 20 km s-1 profiles and multiple broader profiles with σ ˜ 70-80 km s-1, indicating the complex nature of the nebula kinematics. A comparison with previously obtained VLT/FLAMES spectroscopy demonstrates that the data agree well in the regions of overlap, but the Fabry-Perot data are superior in spatial coverage. A preliminary analysis of the observations finds a new expanding bubble south of R136, with a projected radius of r = 5.6 pc and an expansion velocity of 29 ± 4 km s-1. In addition, the first-time detailed kinematic maps derived here for several complexes and filaments of 30 Doradus allow identification of kinematically independent structures. These data exemplify the power of the combination of a high-order Fabry-Perot with a wide-field imager (3 × 3 arcmin2 GLAO-corrected field of view) for high-resolution spatial and spectral studies. In particular, SAM-FP data cubes are highly advantageous over multifibre or long-slit data sets for nebula structure studies and to search for small-scale bubbles, given their greatly improved spatial coverage. For reference, this paper also presents two appendices with detailed descriptions of the usage of Fabry-Perot devices, including formulae and explanations for understanding Fabry-Perot observations.

  20. Downstream Fabry-Perot interferometer for acoustic wave monitoring in photoacoustic tomography.

    PubMed

    Nuster, Robert; Gruen, Hubert; Reitinger, Bernhard; Burgholzer, Peter; Gratt, Sibylle; Passler, Klaus; Paltauf, Guenther

    2011-03-15

    An optical detection setup consisting of a focused laser beam fed into a downstream Fabry-Perot interferometer (FPI) for demodulation of acoustically generated optical phase variations is investigated for its applicability in photoacoustic tomography. The device measures the time derivative of acoustic signals integrated along the beam. Compared to a setup where the detection beam is part of a Mach-Zehnder interferometer, the signal-to-noise ratio of the FPI is lower, but the image quality of the two devices is similar. Using the FPI in a photoacoustic tomograph allows scanning the probe beam around the imaging object without moving the latter.

  1. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study.

    PubMed

    Bardella, Paolo; Columbo, Lorenzo Luigi; Gioannini, Mariangela

    2017-10-16

    Optical Frequency Comb (OFC) generated by semiconductor lasers are currently widely used in the extremely timely field of high capacity optical interconnects and high precision spectroscopy. In the last decade, several experimental evidences of spontaneous OFC generation have been reported in single section Quantum Dot (QD) lasers. Here we provide a physical understanding of these self-organization phenomena by simulating the multi-mode dynamics of a single section Fabry-Perot (FP) QD laser using a Time-Domain Traveling-Wave (TDTW) model that properly accounts for coherent radiation-matter interaction in the semiconductor active medium and includes the carrier grating generated by the optical standing wave pattern in the laser cavity. We show that the latter is the fundamental physical effect at the origin of the multi-mode spectrum appearing just above threshold. A self-mode-locking regime associated with the emission of OFC is achieved for higher bias currents and ascribed to nonlinear phase sensitive effects as Four Wave Mixing (FWM). Our results explain in detail the behaviour observed experimentally by different research groups and in different QD and Quantum Dash (QDash) devices.

  2. Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com; Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776

    The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and outputmore » laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.« less

  3. Simplified design of diaphragm-based fiber optic extrinsic Fabry-Perot accelerometer

    NASA Astrophysics Data System (ADS)

    Wang, Zhaogang; Zhang, Wentao; Han, Jing; Huang, Wenzhu; Li, Fang

    2014-11-01

    A fiber optic Fabry-Perot accelerometer (FOFPA) with diaphragm-mass-collimator (DMC) gathered structure is presented. This design makes the structure more compacts and the manufacturing process more controllable. The operation principle based on Fabry-Perot interference is described. Several tests using intensity demodulation scheme which can control the working point of FOFPA were carried out. Experimental results show that: axis sensitivity of the proposed FOFPA is 36.07 dB (re: 0 dB=1 V/g) with a fluctuation less than 0.9 dB in a frequency bandwidth of 10-125 Hz, the resonant frequency is about 350 Hz, measurement range is about 70 dB@100 Hz. which are much close to theoretical values

  4. The IRAF Fabry-Perot analysis package: Ring fitting

    NASA Technical Reports Server (NTRS)

    Shopbell, P. L.; Bland-Hawthorn, J.; Cecil, G.

    1992-01-01

    As introduced at ADASSI, a Fabry-Perot analysis package for IRAF is currently under development as a joint effort of ourselves and Frank Valdes of the IRAF group. Although additional portions of the package were also implemented, we report primarily on the development of a robust ring fitting task, useful for fitting the calibration rings obtained in Fabry-Perot observations. The general equation of an ellipse is fit to the shape of the rings, providing information on ring center, ellipticity, and position angle. Such parameters provide valuable information on the wavelength response of the etalon and the geometric stability of the system. Appropriate statistical weighting is applied to the pixels to account for increasing numbers with radius, the Lorentzian cross-section, and uneven illumination. The major problems of incomplete, non-uniform, and multiple rings are addressed with the final task capable of fitting rings regardless of center, cross-section, or completion. The task requires only minimal user intervention, allowing large numbers of rings to be fit in an extremely automated manner.

  5. Intrinsic Fabry-Perot Sensors for Magnetic Field Detection

    NASA Astrophysics Data System (ADS)

    Broadway, Christian; Descamps, Frédéric; Kinet, Damien; Caucheteur, Christophe; Mégret, Patrice

    2018-01-01

    Within the context of ensuring stable nuclear fusion, it is important to monitor and control a number of parametersincluding the magnetic field associated with plasma circulation. Optical fibre sensing techniques have seen a surge in promulgation and research advances in recent years, due to their immunity to electromagnetic radiation and compact dimensions. Prior work has shown that fibre Bragg gratings are one method of recovering the induced magnetic field, with the main point of interest being their use as distributed point sensors. However, Bragg grating inscription leads to the creation of linear birefringence that increases detector noise and could obscure a given signal. We have hypothesised that by using an intrinsic Fabry-Perot cavity comprised of two identical Bragg gratings, we could obtain a more accurate detector with the removal of photo-induced birefringence in the detection region. We present a proof of concept optical fibre sensor based on an intrinsic Fabry-Perot cavity that shows spectrally visible amplitude modulation. Finally, we demonstrate faster data processing that allows real time monitoring of a given scenario.

  6. Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator

    PubMed Central

    Zhu, Wenqi; Xu, Ting; Wang, Haozhu; Zhang, Cheng; Deotare, Parag B.; Agrawal, Amit; Lezec, Henri J.

    2017-01-01

    Recent years have witnessed a growing interest in the development of small-footprint lasers for potential applications in small-volume sensing and on-chip optical communications. Surface plasmons—electromagnetic modes evanescently confined to metal-dielectric interfaces—offer an effective route to achieving lasing at nanometer-scale dimensions when resonantly amplified in contact with a gain medium. We achieve narrow-linewidth visible-frequency lasing at room temperature by leveraging surface plasmons propagating in an open Fabry-Perot cavity formed by a flat metal surface coated with a subwavelength-thick layer of optically pumped gain medium and orthogonally bound by a pair of flat metal sidewalls. We show how the lasing threshold and linewidth can be lowered by incorporating a low-profile tapered grating on the cavity floor to couple the excitation beam into a pump surface plasmon polariton providing a strong modal overlap with the gain medium. Low-perturbation transmission-configuration sampling of the lasing plasmon mode is achieved via an evanescently coupled recessed nanoslit, opening the way to high–figure of merit refractive index sensing of analytes interacting with the open metallic trench. PMID:28989962

  7. All sky imaging Fabry-Perot spectrometer for optical investigation of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Sekar, R.; Gurubaran, S.; Sridharan, R.

    1993-06-01

    A simple optical design, keeping in view of the available components, has been worked out to develop the 'all sky imaging Fabry-Perot spectrometer' to study the spatial structures in thermospheric winds and temperature. This system comprises three subsystems, namely, (1) field widening front-end optics, (2) high resolution Fabry-Perot spectrometer and (3) a two-dimensional detector. The design details of the above imaging spectrometer that has been commissioned for routine observations from Mt. Abu along with the first results on OI 6300 A airglow emission are presented and discussed.

  8. Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities

    NASA Astrophysics Data System (ADS)

    Peterka, Pavel; Navrátil, Petr; Dussardier, Bernard; Slavík, Radan; Honzátko, Pavel; Kubecek, Václav

    2012-06-01

    Rare-earth doped fiber lasers are subject to instabilities and various self-pulsed regimes that can lead to catastrophic damage of their components. An interesting self-pulsing regime accompanied with laser wavelength drift with time is the so called self-induced laser line sweeping (SLLS). Despite the early observations of the SLLS in solid-state ruby lasers, in fiber lasers it was first time mentioned in literature only in 2009 where such a laser wavelength drift with time was observed in a relatively broad range of about 1076 -1084 nm in ring ytterbium-doped fiber laser (YDFL). The main characteristic of the SLLS is the scanning of the laser wavelength from shorter to longer wavelength, spanning over large interval of several nanometers, and instantaneous bounce backward. The period of this sweeping is usually quite long, of the order of seconds. This spectacular effect was attributed to spatial-hole burning caused by standing-wave in the laser cavity. In this paper we present experimental investigation of the SLLS in YDFLs in Fabry-Perot cavity and ring cavities. The SLLS was observed also in erbium-doped fiber laser around 1560 nm. We present for the first time observation of the laser wavelength sweep in reverse direction, i.e., from longer towards shorter wavelengths. It was observed in YDFL around 1080 nm.

  9. Near-infrared tunable laser diode spectroscopy: an easy way for gas sensing

    NASA Astrophysics Data System (ADS)

    Larive, Marc; Henriot, V.

    1997-05-01

    A gas sensor using optical spectrometry and dedicated to a specific gas is studied. It should be able to operate out of laboratories with a very long life and a low maintenance requirement. It is based on TLDS (tunable laser diode spectroscopy) and uses a standard Perot-Fabry laser diode already developed for telecommunications. The mode selection is realized by a passband filter and the wavelength tuning is performed via the diode temperature or its injection current. A PIN photodiode is used for detection, however a rough photoacoustic solution is intended for the future. Absorptions as low as 3.10-3 are detected with this rough system and a limit detection of 10-3 is available with a signal to noise ratio of unity. Experiments have shown that this system is strongly selective for the specified gas (currently the methane). A simulation has been performed which very well fits the experiment and allows us to extrapolate the performances of the system for other gases.

  10. A coaxial cable Fabry-Perot interferometer for sensing applications.

    PubMed

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-11-07

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed.

  11. Composite-cavity-based Fabry-Perot interferometric strain sensors.

    PubMed

    Zhang, Jianzhong; Peng, G D; Yuan, Libo; Sun, Weimin

    2007-07-01

    A composite-cavity-based Fabry-Perot interferometric strain sensor system is proposed to gain the minimum cross sensitivity to temperature and a high multiplexing capability at the same time. The interrogation of the sensor system is based on a white-light interferometric technology, and the demodulation is achieved by analyzing the coherence spectra. A demonstration system with two sensors is presented and tested.

  12. Optical fiber Fabry-Perot interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Anbo

    2014-06-01

    Fiber Fabry-Perot (FP) interferometry is one of the most important tools for harsh environment sensing because of its great flexibility of sensor material selection, superior long-­-term stability, and nature of remote passive operation. Virginia Tech's Center for Photonics Technology has been involved in the research of this field for many years. After a quick review of the typical methods for the construction of F-P sensors, emphasis will be placed on the whitelight interferometry, which is perhaps the most robust interferometric sensor demodulation technique today. The recent discovery of an additional phase will be presented and its significance to the sensor demodulation will be discussed.

  13. A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications

    PubMed Central

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-01-01

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed. PMID:24212121

  14. Chaotic LIDAR for Naval Applications

    DTIC Science & Technology

    2014-08-29

    Perot Fiber Laser PD ^^ /- x —► -(YDF\\ {SMFV X — FBG 1 0 r utput FBG 70 Fabry-Perot Laser Output Pump Power (mW) Fig 2. Fabry-Perot...chaotic fiber laser. Left: Block diagram of the laser. Right: Output power versus pump power. (PD: Pump Diode; FBG : Fiber Braggs Grating; YDF: Ytterbium

  15. FIFI: The MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Geis, Norbert; Genzel, Reinhard; Haggerty, M.; Herrmann, F.; Jackson, J.; Madden, Suzanne C.; Nikola, T.; Poglitsch, Albrecht; Rumitz, M.; Stacey, G. J.

    1995-01-01

    We describe the performance characteristics of the MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer (FIFI) for the Kuiper Airborne Observatory (KAO). The spectrometer features two or three cryogenic tunable Fabry-Perot filters in series giving spectral resolution R of up to 10(exp 5) in the range of 40 microns less than lambda less than 200 microns, and an imaging 5x5 array of photoconductive detectors with variable focal plane plate scale. The instrument works at background limited sensitivity of up to 2 x 10(exp -19) W cm(exp -2) Hz(exp -1/2) per pixel per resolution element at R = 10(exp 5) on the KAO.

  16. Thin-film-based optical fiber Fabry-Perot interferometer used for humidity sensing.

    PubMed

    Peng, Jiankun; Qu, Yapeng; Wang, Weijia; Sun, Tengpeng; Yang, Minghong

    2018-04-20

    A thin-film-based optical fiber Fabry-Perot interferometer that consists of ZrO 2 and SiO 2 porous thin films is designed and fabricated by electron beam physical vapor deposition. Since the SiO 2 porous thin film has the capability of water adsorption, the proposed Fabry-Perot interferometer is appropriate to detect humidity. Experimental results show that the prepared sensor has a humidity detection range from 0.06% RH to 70% RH. A cycling test shows that the humidity sensor has a responding or recover time of 4 s and good repeatability among different humidity environments. Especially, the proposed humidity sensor is insensitive to temperature variation and suitable for the detection of low relative humidity.

  17. An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor

    NASA Astrophysics Data System (ADS)

    Ren, Qianyu; Li, Junhong; Hong, Yingping; Jia, Pinggang; Xiong, Jijun

    2017-09-01

    A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.

  18. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  19. New PbSnTe heterojunction laser diode structures with improved performance

    NASA Technical Reports Server (NTRS)

    Fonstad, C. G.; Kasemset, D.; Hsieh, H. H.; Rotter, S.

    1980-01-01

    Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved.

  20. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  1. Novel Fabry-Perot fiber optic sensor with multiple applications

    NASA Astrophysics Data System (ADS)

    Chen, Xiaopei; Shen, Fabin; Wang, Anbo; Wang, Zhuang; Zhang, Yan

    2004-12-01

    A novel Intrinsic Fabry-Perot fiber-optic sensor is presented in this paper. The sensors were made through two simple steps: wet chemical etch and fusion splice. Micro air-gaps were generated inside the fibers and functioned as reflective mirrors. This procedure not only provides a simple and cost effective technology for fabricating intrinsic Fabry-Perot Interferometric (IFPI) fiber sensors, but also provides two possible IFPI structures. Both of the fiber cavity between the air-gaps or the air-gap and cleaved fiber end can be used as sensing elements. With these two structures, this sensor can be used to measure the temperature, strain, pressure, refractive index of chemicals and the thin film thickness by itself. Multi-point measurements can also be achieved by multiplexing. Furthermore, it also can be multiplexed with other sensors such as Long Period Gratings (LPG) to provide compensations for other perturbation sensing. Theoretical and experimental studies of two sensor structures are described. Experimental results show that high resolution and high sensitivity can be obtained with appropriate signal processing.

  2. Enhanced green fluorescent protein in optofluidic Fabry-Perot microcavity to detect laser induced temperature changes in a bacterial culture

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Walo, D.; Freire, R.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-09-01

    Thermal therapy using laser sources can be used in combination with other cancer therapies to eliminate tumors. However, high precision temperature control is required to avoid damage in healthy surrounding tissues. Therefore, in order to detect laser induced temperature changes, we have used the fluorescence signal of the enhanced Green Fluorescent Protein (eGFP) over-expressed in an E. coli bacterial culture. For that purpose, the bacteria expressing eGFP are injected in a Fabry-Perot (FP) optofluidic planar microcavity. In order to locally heat the bacterial culture, external infrared or ultraviolet lasers were used. Shifts in the wavelengths of the resonant FP modes are used to determine the temperature increase as a function of the heating laser pump power. Laser induced local temperature increments up to 6-7 °C were measured. These results show a relatively easy way to measure laser induced local temperature changes using a FP microcavity and using eGFP as a molecular probe instead of external nanoparticles, which could damage/alter the cell. Therefore, we believe that this approach can be of interest for the study of thermal effects in laser induced thermal therapies.

  3. Deep Fabry-Perot imaging of NGC 6240: Kinematic evidence for merging galaxies

    NASA Technical Reports Server (NTRS)

    Hawthorn, J. Bland; Wilson, A. S.; Tully, R. B.

    1990-01-01

    The authors have observed the superluminous, infrared galaxy NGC 6240 (z = 0.025) at H alpha with the Hawaii Imaging Fabry-Perot Interferometer (HIFI - Bland and Tully 1989). During the past decade, observational evidence from all wavebands indicates that the unusual appearance of NGC 6240 has resulted from a collision between two gas-rich systems, a view which is supported by our spectrophotometric data. However, the origin of the enormous infrared luminosity (4 times 10(exp 11) solar luminosity) detected by the Infrared Astronomy Satellite (IRAS) remains highly controversial, where opinions differ on the relative roles of large-scale shocks, massive star formation or a buried 'active' nucleus. These mechanisms are discussed in the light of the author's Fabry-Perot observations.

  4. Solid, 3-mirror Fabry-Perot etalon.

    PubMed

    Stephen, Mark; Fahey, Molly; Miller, Ian

    2017-04-01

    We present modeling and performance of a solid, fused silica, 3-mirror Fabry-Perot-type etalon. 3-mirror etalons have been known for decades to have superior theoretical performance but for the first time we demonstrate an etalon with sufficient quality to realize the benefits of the more complex design. 3-mirror etalons have better passband shape and higher contrast ratio enabling significantly improved wavelength separation. We show the optical cavity design and construction of the new etalon and show >95% peak transmission, improved passband shape and 20 dB better out-of-band rejection than a similar 2-mirror etalon.

  5. A theoretical multi-reflection method for analysis of optomechanical behavior of the Fabry-Perot cavity with moving boundary condition

    NASA Astrophysics Data System (ADS)

    Bahrampour, A. R.; Vahedi, M.; Abdi, M.; Ghobadi, R.; Golshani, M.; Tofighi, S.; Parvin, B.

    2011-09-01

    The opto-mechanical coupling and the generation of Stokes and anti-Stokes frequencies in the in-band and intra-band regimes of operation of the Fabry-Perot cavity with a moving mirror on the basis of multi-reflection method (MRM) are described by a unique theory. The frequency characteristic function of the Fabry-Perot filter is modified. By increasing the amplitude of mirror oscillation the Fabry-Perot bandwidth increases and normal mode splitting occurred. The conversion efficiencies of the Stokes and anti-Stokes frequencies versus the mechanical amplitude of oscillation have an optimum value. Also, the delay function corresponding to the radiation pressure is obtained.

  6. Effect of the pump rate and loss perturbations on the lasing dynamics of a Fabry-Perot laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, N; Ledenev, V I

    2010-11-13

    Transition from generation of the fundamental mode to generation of the fundamental and first modes is studied numerically under the action of nonstationary asymmetric perturbations of pump rate and loss distributions in the active medium layer. It is shown that emergence of perturbations directly leads to excitation of the first mode with significant amplitude. The regime of two-mode lasing in the presence of perturbations is shown to appear at a pump rate that is smaller than the threshold one for two-mode lasing in the absence of perturbations. It is found that the first-mode amplitude has a maximum at a frequencymore » of intermode beatings of an unfilled Fabry-Perot resonator. It is also determined that emergence of nonstationary asymmetric perturbations leads to an increase in the average intensity of the fundamental mode. Various transition regimes to two-mode lasing are compared in different types and periods of perturbations. The operability of the scheme controlling the mode composition of laser radiation is considered. (lasers)« less

  7. Absolute-length determination of a long-baseline Fabry-Perot cavity by means of resonating modulation sidebands.

    PubMed

    Araya, A; Telada, S; Tochikubo, K; Taniguchi, S; Takahashi, R; Kawabe, K; Tatsumi, D; Yamazaki, T; Kawamura, S; Miyoki, S; Moriwaki, S; Musha, M; Nagano, S; Fujimoto, M K; Horikoshi, K; Mio, N; Naito, Y; Takamori, A; Yamamoto, K

    1999-05-01

    A new method has been demonstrated for absolute-length measurements of a long-baseline Fabry-Perot cavity by use of phase-modulated light. This method is based on determination of a free spectral range (FSR) of the cavity from the frequency difference between a carrier and phase-modulation sidebands, both of which resonate in the cavity. Sensitive response of the Fabry-Perot cavity near resonant frequencies ensures accurate determination of the FSR and thus of the absolute length of the cavity. This method was applied to a 300-m Fabry-Perot cavity of the TAMA gravitational wave detector that is being developed at the National Astronomical Observatory, Tokyo. With a modulation frequency of approximately 12 MHz, we successfully determined the absolute cavity length with resolution of 1 microm (3 x 10(-9) in strain) and observed local ground strain variations of 6 x 10(-8).

  8. A 532 nm Chaotic Fiber Laser Transmitter for Underwater Lidar

    DTIC Science & Technology

    2013-04-23

    passes through unaffected. 3.1.1.2 Ring Lasers as Oscillators The simplest form of laser is a called a Fabry - Perot laser, in which two reflectors are...insufficient to drive the gain amplifier, and so the circulator-based design was scrapped in favor of the Fabry - Perot , whose efficiency was far better...Bidirectional Ring and Fabry - Perot Lasers The Fabry - Perot laser used two matched FBGs to create a wavelength-selective resonator cavity. First single- and

  9. Modified Fabry-Perot interferometer for displacement measurement in ultra large measuring range

    NASA Astrophysics Data System (ADS)

    Chang, Chung-Ping; Tung, Pi-Cheng; Shyu, Lih-Horng; Wang, Yung-Cheng; Manske, Eberhard

    2013-05-01

    Laser interferometers have demonstrated outstanding measuring performances for high precision positioning or dimensional measurements in the precision industry, especially in the length measurement. Due to the non-common-optical-path structure, appreciable measurement errors can be easily induced under ordinary measurement conditions. That will lead to the limitation and inconvenience for in situ industrial applications. To minimize the environmental and mechanical effects, a new interferometric displacement measuring system with the common-optical-path structure and the resistance to tilt-angle is proposed. With the integration of optomechatronic modules in the novel interferometric system, the resolution up to picometer order, high precision, and ultra large measuring range have been realized. For the signal stabilization of displacement measurement, an automatic gain control module has been proposed. A self-developed interpolation model has been employed for enhancing the resolution. The novel interferometer can hold the advantage of high resolution and large measuring range simultaneously. By the experimental verifications, it has been proven that the actual resolution of 2.5 nm can be achieved in the measuring range of 500 mm. According to the comparison experiments, the maximal standard deviation of the difference between the self-developed Fabry-Perot interferometer and the reference commercial Michelson interferometer is 0.146 μm in the traveling range of 500 mm. With the prominent measuring characteristics, this should be the largest dynamic measurement range of a Fabry-Perot interferometer up till now.

  10. Folded Fabry-Perot quasi-optical ring resonator diplexer Theory and experiment

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.; Chiou, A. E. T.

    1983-01-01

    Performance of folded Fabry-Perot quasi-optical ring resonator diplexers with different geometries of reflecting surfaces is investigated both theoretically and experimentally. Design of optimum surface geometry for minimum diffraction, together with the figure of merit indicating improvement in performance, are given.

  11. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Wang, Ming; Yang, Chundi

    2009-10-01

    This paper presents a miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only fusion splicing, cleaving, and wet chemical etching. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost. It may also find uses in medical applications.

  12. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Zhou, Junping; Wang, Tingting

    2011-11-01

    A miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber is presented. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only cleaving, wet chemical etching and fusion splicing. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. Experimental results show the sensor has a good linearity. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost.

  13. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.

    PubMed

    Wang, Ruijun; Sprengel, Stephan; Boehm, Gerhard; Muneeb, Muhammad; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2016-09-05

    Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 μm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range.

  14. A hybrid demodulation method of fiber-optic Fabry-Perot pressure sensor

    NASA Astrophysics Data System (ADS)

    Yu, Le; Lang, Jianjun; Pan, Yong; Wu, Di; Zhang, Min

    2013-12-01

    The fiber-optic Fabry-Perot pressure sensors have been widely applied to measure pressure in oilfield. For multi-well it will take a long time (dozens of seconds) to demodulate downhole pressure values of all wells by using only one demodulation system and it will cost a lot when every well is equipped with one system, which heavily limits the sensor applied in oilfield. In present paper, a new hybrid demodulation method, combining the windowed nonequispaced discrete Fourier Transform (nDFT) method with segment search minimum mean square error estimation (MMSE) method, was developed, by which the demodulation time can be reduced to 200ms, i.e., measuring 10 channels/wells was less than 2s. Besides, experimental results showed the demodulation cavity length of the fiber-optic Fabry-Perot sensor has a maximum error of 0.5 nm and consequently pressure measurement accuracy can reach 0.4% F.S.

  15. Sensing Properties of a Fabry-Perot Dielectric Structure and Dimer Nanoparticles

    DOE PAGES

    Polemi, A.; Shuford, K. L.

    2012-01-01

    We investigate the use of a Fabry-Perot dielectric structure combined with differently shaped nanoparticles for Surface Enhanced Raman Scattering. In particular, we show how an ideal two-layer Fabry-Perot configuration enhances the local surface field of silver nanoparticles positioned on the surface of the structure. We develop the concept using disc dimers and then extend the discussion to bowtie nanoparticles. The structure is excited by a single emitter, which couples to the nanoparticles through the dielectric layers, producing a wide aperture field that can be used to excite multiple dimers. We show how an array of nanoparticles can be properly arrangedmore » in order to increase the total scattering signal generated from the structure. The layered geometry produces robust field properties in between nanoparticles, making the overall sensing characteristics less sensitive to the interparticle seperation distance and incident polarization.« less

  16. Electro-optic Modulation Using a DAST Single-crystal Film in a Fabry-Perot Cavity

    NASA Astrophysics Data System (ADS)

    Kutty, S. P.

    2005-03-01

    In this paper, we report a multiple-pass electro-optic modulator using a single- crystal film of 4'-dimethyamino-N-methyl-4-stilbazolium tosylate (DAST) placed inside a Fabry-Perot cavity. The single-crystal film was prepared using the modified shear method. Electro-optic modulation was achieved at 633 nm using field-induced birefringence in the cross polarized geometry including the Fabry-Perot cavity. The modulation due to the electro-optic effect was recorded as a function of phase while the phase was controlled by moving one of the mirrors in the cavity. The observed modulation was high (80 percent) for a low field (0.5V/micron) applied along the charge transfer axis on the film. Similar modulation using the Fabry-Perot cavity with a lower modulation depth was observed involving electroabsorption at 633 nm. Electroabsorption in the DAST film has been recently reported [1]. These are important results considering applications in photonics. [1] ``Electroabsorption in single-crystal film of a second-order optical material,'' R. K. Swamy, S. P. Kutty, J. Titus, S. Khatavkar, and M. Thakur, APL, Vol. 85, 4025, (2004).

  17. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    DOEpatents

    Wang, Anbo

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  18. High-power Al-free active region (λ= 852nm) DFB laser diodes for atomic clocks and interferometry applications

    NASA Astrophysics Data System (ADS)

    Ligeret, V.; Vermersch, F.-J.; Bansropun, S.; Lecomte, M.; Calligaro, M.; Parillaud, O.; Krakowski, M.

    2017-11-01

    Atomic clocks will be used in the future European positioning system Galileo. Among them, the optically pumped clocks provide a better alternative with comparable accuracy for a more compact system. For these systems, diode lasers emitting at 852nm are strategic components. The laser in a conventional bench for atomic clocks presents disadvantages for spatial applications. A better approach would be to realise a system based on a distributed-feedback laser (DFB). We have developed the technological foundations of such lasers operating at 852nm. These include an Al free active region, a single spatial mode ridge waveguide and a DFB structure. The device is a separate confinement heterostructure with a GaInP large optical cavity and a single compressive strained GaInAsP quantum well. The broad area laser diodes are characterised by low internal losses (<3cm -1 ), a high internal efficiency (94%) and a low transparency current density (100A/cm2). For an AR-HR coated ridge Fabry Perot laser, we obtain a power of 230mW with M2=1.3. An optical power of 150mW was obtained at 854nm wavelength, 20°C for AR-HR coated devices. We obtain a single spatial mode emission with M2=1.21 and a SMSR over 30dB, both at 150mW. DFB Lasers at 852.12nm, corresponding to the D2 caesium transition, were then realised with a power of 40mW, 37°C for uncoated devices. The SMSR is over 30dB and the M2=1.33 at 40mW. Furthermore, the preliminary results of the linewidth obtained with a Fabry Perot interferometer give a value of less than 2MHz.

  19. Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.

    1987-01-01

    The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.

  20. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    DOE PAGES

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.; ...

    2016-03-31

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO 3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancementmore » of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less

  1. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  2. The MPE/UCB far-infrared imaging Fabry-Perot interferometer (FIFI)

    NASA Technical Reports Server (NTRS)

    Poglitsch, A.; Geis, N.; Genzel, R.; Haggerty, M.; Beeman, J. W.

    1991-01-01

    FIFI, an imaging spectrometer with two or three Fabry-Perot interferometers in a series for astronomical observations in the FIR range, is described. Spectral resolutions of 2 km/s can be obtained with FIFI. Design considerations are discussed as well as optics, the detector array, the transimpedance amplifier array, signal demodulation, data acquisition, and instrument control.

  3. Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity—Towards Spectral Characteristics and Strain Sensing Technology

    PubMed Central

    Wang, Qi; Yan, Dongchao; Cui, Binbin; Guo, Zixuan

    2017-01-01

    An hourglass in-fiber air microcavity Fabry-Perot interferometer is proposed in this paper, and its second reflecting surface of in-fiber microcavity is designed to be a concave reflector with the best curvature radius in order to improve the spectral characteristics. Experimental results proved that the extinction ratio of Fabry-Perot interferometer with cavity length of 60 μm and concave reflector radius of 60 μm is higher than for a rectangular Fabry-Perot interferometer with cavity length of 60 μm (14 dB: 11 dB). Theory and numerical simulation results show that the strain sensitivity of sensor can be improved by reducing the microcavity wall thickness and microcavity diameter, and when the in-fiber microcavity length is 40 μm, the microcavity wall thickness is 10 μm, the microcavity diameter is 20 μm, and the curvature radius of reflective surface II is 50 μm, the interference fringe contrast of is greater than 0.97, an Axial-pull sensitivity of 20.46 nm/N and resolution of 1 mN can be achieved in the range of 0–1 N axial tension. The results show that the performance of hourglass in-fiber microcavity interferometer is far superior to that of the traditional Fabry-Perot interferometer. PMID:28587221

  4. Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.

    PubMed

    Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D

    2000-03-20

    The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.

  5. The Effects of Laser Phase Noise on Laser Radar Performance

    DTIC Science & Technology

    1992-12-01

    Laboratory 5. Figure 3 shows Allan variance plots of the above ultrastable C02 laser which has an open Fabry - Perot cavity 5. The open and solid circles...the same measurement time -r) by more than 10 dB. Therefore, the root Allan variance for the Fabry - Perot cavity ultrastable C02 laser can be...variance so that the SSB phase noise for the Fabry - Perot cavity ultrastable CO 2 laser is about 20 dB (because of the squaring operation) below that of the

  6. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

    PubMed Central

    Islam, Md. Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-01-01

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed. PMID:24763250

  7. Composite material embedded fiber-optic Fabry-Perot strain rosette

    NASA Astrophysics Data System (ADS)

    Valis, Thomas; Hogg, Dayle; Measures, Raymond M.

    1990-12-01

    A fiber-optic strain rosette is embedded in Kevlar/epoxy. The individual arms of the rosette are fiber Fabry-Perot interferometers operated in reflection-mode with gauge (i.e., cavity) lengths of approximately 5 mm. Procedures for manufacturing the cavities, and bending the fibers, to form a strain rosette are described. Experimental results showing 2D interlaminar strain-tensor measurement are presented. The sensor is also tested as a surface adhered device.

  8. Fabry-Perot interferometer development for rocket engine plume spectroscopy

    NASA Astrophysics Data System (ADS)

    Bickford, R. L.; Madzsar, G.

    1990-07-01

    This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.

  9. Fabry-Perot interferometer development for rocket engine plume spectroscopy

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Madzsar, G.

    1990-01-01

    This paper describes a new rugged high-resolution Fabry-Perot interferometer (FPI) designed for rocket engine plume spectroscopy, which is capable of detecting spectral signatures of eroding engine components during rocket engine tests and/or flight operations. The FPI system will make it possible to predict and to respond to the incipient rocket engine failures and to indicate the presence of rocket components degradation. The design diagram of the FPI spectrometer is presented.

  10. An electronically tunable, first-order Fabry-Perot infrared filter

    NASA Astrophysics Data System (ADS)

    Knudtson, J. T.; Levy, D. S.; Herr, K. C.

    1995-04-01

    A tunable infrared filter capable of scanning from 8.2 to 12.8 micrometers has been designed, constructed and tested. It is a first order Fabry Perot interferometer with piezoelectrically driven cavity spacing. Multilayer dielectric coatings for the partially transmitting mirrors were designed to minimize the wavelength dependent phase change produced by reflection. The transmission bandwidth ranged from 2.8 to 4.0% across the tuning range. Continuous scanning at 20 Hz rates was demonstrated.

  11. Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers.

    PubMed

    Teichert, Holger; Fernholz, Thomas; Ebert, Volker

    2003-04-20

    We present what is to our knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber (20-m diameter, 13-m path length) of a 600-MW lignite-fired power plant. A fiber-coupled distributed-feedback diode-laser module at 1.56 microm served for CO detection, and a Fabry-Perot diode laser at 813 nm was used to determine H2O concentrations and temperature from multiline water spectra. Despite severe light losses (transmission, <10(-8)) and strong background radiation we achieved a resolution of 1.9 x 10(-4) (1sigma) fractional absorption, equivalent to 200 parts in 10(6) by volume of CO (at 1450 K, 10(5) Pa) with 30-s averaging time.

  12. 2.05 µm holmium-doped all-fiber laser diode-pumped at 1.125 µm

    NASA Astrophysics Data System (ADS)

    Kir'yanov, A. V.; Barmenkov, Y. O.; Villegas Garcia, I.

    2017-08-01

    We report a holmium-doped all-fiber laser oscillating at ~2.05 µm in continuous wave at direct in-core pumping by a 1.125 µm laser diode. Two types of home-made holmium-doped alumino-germano-silicate fiber (HDF), differentiated in the Ho3+ doping level, were fabricated to implement the laser, for revealing the effect of Ho3+ concentration upon the laser output. Firstly, the fibers were characterized thoroughly from the material and optical viewpoints. Then, laser action with both HDFs was assessed using the simplest Fabry-Perot cavity, assembled by a couple of spectrally adjusted fiber Bragg gratings, also made-in-house. In the best case, when using the lower-doped HDF of proper length (1.4 m), low threshold (~370 mW) and moderate slope efficiency (~13%) of ~2.05 µm lasing were obtained at 1.125 µm diode pumping. Long-term stability, high brightness, low noise, and purely CW operation are shown to be the laser’s attractive features. Yet, when utilizing the heavier-doped HDF, laser output is revealed to be overall worse, with a possible reason being the deteriorating Ho3+ concentration-related effects.

  13. Integration of miniature Fabry-Perot fiber optic sensor with FBG for the measurement of temperature and strain

    NASA Astrophysics Data System (ADS)

    Li, L.; Tong, X. L.; Zhou, C. M.; Wen, H. Q.; Lv, D. J.; Ling, K.; Wen, C. S.

    2011-03-01

    A sensor has been fabricated by the integration of a fiber Bragg gating sensor (FBGs) with a fiber Fabry-Perot (F-P) sensor fabricated by etching method. In the integrated sensor, the FBG was used to measure temperature, while the fiber Fabry-Perot interferometer sensor (FFPIs) was used for strain measurement. Wavelength decoding for FBG and peak tracking for FFPI was employed for demodulation, respectively. The result showed that the temperature and strain sensitivity for the integrated sensor is ~ 2.7 pm/ μɛand ~ 9.3 pm/°C, respectively.

  14. High flux circularly polarized gamma beam factory: coupling a Fabry-Perot optical cavity with an electron storage ring

    PubMed Central

    Chaikovska, I.; Cassou, K.; Chiche, R.; Cizeron, R.; Cornebise, P.; Delerue, N.; Jehanno, D.; Labaye, F.; Marie, R.; Martens, A.; Peinaud, Y.; Soskov, V.; Variola, A.; Zomer, F.; Cormier, E.; Lhermite, J.; Dolique, V.; Flaminio, R.; Michel, C.; Pinard, L.; Sassolas, B.; Akagi, T.; Araki, S.; Honda, Y.; Omori, T.; Terunuma, N.; Urakawa, J.; Miyoshi, S.; Takahashi, T.; Yoshitama, H.

    2016-01-01

    We report and discuss high-flux generation of circularly polarized γ-rays by means of Compton scattering. The γ-ray beam results from the collision of an external-cavity-enhanced infrared laser beam and a low emittance relativistic electron beam. By operating a non-planar bow-tie high-finesse optical Fabry-Perot cavity coupled to a storage ring, we have recorded a flux of up to (3.5 ± 0.3) × 108 photons per second with a mean measured energy of 24 MeV. The γ-ray flux has been sustained for several hours. In particular, we were able to measure a record value of up to 400 γ-rays per collision in a full bandwidth. Moreover, the impact of Compton scattering on the electron beam dynamics could be observed resulting in a reduction of the electron beam lifetime correlated to the laser power stored in the Fabry-Perot cavity. We demonstrate that the electron beam lifetime provides an independent and consistent determination of the γ-ray flux. Furthermore, a reduction of the γ-ray flux due to intrabeam scattering has clearly been identified. These results, obtained on an accelerator test facility, warrant potential scaling and revealed both expected and yet unobserved effects. They set the baseline for further scaling of the future Compton sources under development around the world. PMID:27857146

  15. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.

    PubMed

    Bitarafan, Mohammad H; DeCorby, Ray G

    2017-07-31

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  16. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    PubMed Central

    Bitarafan, Mohammad H.; DeCorby, Ray G.

    2017-01-01

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics. PMID:28758967

  17. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  18. Phase-sensitive reflection technique for characterization of a fabry-perot interferometer.

    PubMed

    Slagmolen, B J; Gray, M B; Baigent, K G; McClelland, D E

    2000-07-20

    Using a radio frequency coherent modulation and demodulation technique, we explicitly measure both the amplitude and the phase response of Fabry-Perot interferometers in reflection. This allows us to differentiate clearly between overcoupled and undercoupled cavities and allows a detailed measurement of the full width at half-maximum, the free spectral range, and the finesse of the cavities.

  19. Metrology of semiconductor structures using novel Fabry Perot fringe stretching system

    NASA Astrophysics Data System (ADS)

    Walecki, Wojtek J.; Pravdivtsev, Alexander

    2017-08-01

    We describe patent pending fiber optic apparatus for measurements of thicknesses and distance employing low resolution spectrometer and etalon. The application of an additional known reference etalon "stretches fringes" and allows us to use Fabry Perot interference to investigate thick samples and large distances which would not be possible when using the low resolution spectrometer alone.

  20. Fabry-Perot confocal resonator optical associative memory

    NASA Astrophysics Data System (ADS)

    Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.

    1993-03-01

    A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.

  1. Fabry-Perot enhanced Faraday rotation in graphene.

    PubMed

    Ubrig, Nicolas; Crassee, Iris; Levallois, Julien; Nedoliuk, Ievgeniia O; Fromm, Felix; Kaiser, Michl; Seyller, Thomas; Kuzmenko, Alexey B

    2013-10-21

    We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.

  2. A modified cross-correlation method for white-light optical fiber extrinsic Fabry-Perot interferometric hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Zhang, Min; Liao, Yanbiao; Lai, Shurong; Tian, Qian; Li, Qisheng; Zhang, Yi; Zhuang, Zhi

    2009-11-01

    An extrinsic Fabry-Perot interferometric (EFPI) optical fiber hydrogen sensor based on palladium silver (Pd-Ag) film is designed for hydrogen leakage detection. A modified cross correlation signal processing method for an optical fiber EFPI hydrogen sensor is presented. As the applying of a special correlating factor which advises the effect on the fringe visibility of the gap length and wavelength, the cross correlation method has a high accuracy which is insensitive to light source power drift or changes in attenuation in the fiber, and the segment search method is employed to reduce computation and demodulating speed is fast. The Fabry-Perot gap length resolution of better than 0.2nm is achieved in a certain concentration of hydrogen.

  3. A compact LWIR imaging spectrometer with a variable gap Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Gao, Jiaobo; Wang, Nan; Zhao, Yujie; Zhang, Lei; Gao, Shan

    2017-02-01

    Fourier transform spectroscopy is a widely employed method for obtaining spectra, with applications ranging from the desktop to remote sensing. The long wave infrared (LWIR) interferometric spectral imaging system is always with huge volume and large weight. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (FP) interferometer is researched. With the system working principle analyzed, theoretically, it is researched that how to make certain the primary parameter, such as, the reflectivity of the two interferometric cavity surfaces, field of view (FOV) and f-number of the imaging lens. A prototype is developed and a good experimental result of CO2 laser is obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.

  4. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    PubMed

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.

  5. DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD.

    PubMed

    Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V

    2007-08-06

    We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.

  6. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  7. Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Wilson, Emily L.; Georgieva, Elena

    2007-01-01

    Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.

  8. Tunable Fabry-Perot etalon-based long-wavelength infrared imaging spectroradiometer.

    PubMed

    Marinelli, W J; Gittins, C M; Gelb, A H; Green, B D

    1999-04-20

    Imaging spectrometry enables passive, stand-off detection and analysis of the chemical composition of gas plumes and surfaces over wide geographic areas. We describe the use of a long-wavelength infrared imaging spectroradiometer, comprised of a low-order tunable Fabry-Perot etalon coupled to a HgCdTe detector array, to perform multispectral detection of chemical vapor plumes. The tunable Fabry-Perot etalon used in this research provides coverage of the 9.5-14-microm spectral region with a resolution of 7-9 cm(-1). The etalon-based imaging system provides the opportunity to image a scene at only those wavelengths needed for chemical species identification and quantification and thereby minimize the data volume necessary for selective species detection. We present initial results using a brassboard imaging system for stand-off detection and quantification of chemical vapor plumes against near-ambient-temperature backgrounds. These data show detection limits of 22 parts per million by volume times meter (ppmv x m) and 0.6 ppmv x m for dimethyl methyphosphonate and SF6, respectively, for a gas/background DeltaT of 6 K. The system noise-equivalent spectral radiance is approximately 2 microW cm(-2) sr(-1) microm(-1). Model calculations are presented comparing the measured sensitivity of the sensor to the anticipated signal levels for two chemical release scenarios.

  9. Components for monolithic fiber chirped pulse amplification laser systems

    NASA Astrophysics Data System (ADS)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  10. Heterogeneous Silicon III-V Mode-Locked Lasers

    NASA Astrophysics Data System (ADS)

    Davenport, Michael Loehrlein

    Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.

  11. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor.

    PubMed

    Zhang, Wenlu; Chen, Fengyi; Ma, Wenwen; Rong, Qiangzhou; Qiao, Xueguang; Wang, Ruohui

    2018-04-16

    A fringe visibility enhanced fiber-optic Fabry-Perot interferometer based ultrasonic sensor is proposed and experimentally demonstrated for seismic physical model imaging. The sensor consists of a graded index multimode fiber collimator and a PTFE (polytetrafluoroethylene) diaphragm to form a Fabry-Perot interferometer. Owing to the increase of the sensor's spectral sideband slope and the smaller Young's modulus of the PTFE diaphragm, a high response to both continuous and pulsed ultrasound with a high SNR of 42.92 dB in 300 kHz is achieved when the spectral sideband filter technique is used to interrogate the sensor. The ultrasonic reconstructed images can clearly differentiate the shape of models with a high resolution.

  12. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing

    PubMed Central

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M.; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-01-01

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor’s properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift. PMID:28420083

  13. A Theoretical Study and Numerical Simulation of a Quasi-Distributed Sensor Based on the Low-Finesse Fabry-Perot Interferometer: Frequency-Division Multiplexing.

    PubMed

    Guillen Bonilla, José Trinidad; Guillen Bonilla, Alex; Rodríguez Betancourtt, Verónica M; Guillen Bonilla, Héctor; Casillas Zamora, Antonio

    2017-04-14

    The application of the sensor optical fibers in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum was analyzed and sensor's properties were defined. Following that, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system, and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolution. Both resolutions are conceivable because the Fourier Domain Phase Analysis (FDPA) algorithm elaborates two evaluations of Bragg wavelength shift.

  14. Improvements to Optical Communication Capabilities Achieved through the Optical Injection of Semiconductor Lasers

    DTIC Science & Technology

    2012-03-22

    locked Fabry - Perot laser showed a 57 fold improvement to the bit rate-distance product compared to the free-running case when received optical power...than 10dB for marginal changes in modulation rates. Temperature tuning of the master laser to each of the Fabry - Perot modes of the slave laser...demonstrated over 60 km of SMF in this work, shows that OIL of Fabry - Perot lasers is a viable approach towards a high-speed, long distance capable

  15. A Novel, Poly-Etalon, Fabry-Perot for Planetary Research

    NASA Technical Reports Server (NTRS)

    Kerr, Robert B.; Doe, Richard; Noto, John

    1997-01-01

    In an effort to develop a mechanically robust, high throughput and solid state spectrometer several liquid crystal Fabry-Perot etalons were constructed. The etalons were tested for spectral response, radiation resistance and optical transmission. The first year of this project was spent developing and understanding the properties of the liquid crystal etalons; in the second year an intensified all-sky imaging system was developed around a pair of LC etalons. The imaging system, developed jointly with SRI International represents a unique brassboard to demonstrate the use of LC etalons as tunable filters. The first set of etalons constructed in year one of this project were tested for spectral response and throughput while etalon surrogates were exposed to proton radiation simulating the exposure of an object in Low Earth Orbit (LEO). The 2" diameter etalons had a measure finesse of approximately 10 and were tunable over five orders. Liquid crystals exposed to proton irradiation showed no signs of damage. In year two two larger diameter (3") etalons were constructed with gaps of 3 and 5 microns. This pair of etalons is for use in a high resolution, all-sky spectral imager. The WATUMI imager system follows the heritage of all sky, narrow band, intensified imagers however it includes two LC Fabry-Perot etalons to provide tunability and the ability to switch wavelengths rapidly, an import consideration in auroral airglow imaging. This work also resulted in two publications and one poster presentation. The instrument will be uniquely capable, with superior throughput and speed, to measure optical airglow of multiple emission lines in harsh conditions.

  16. Development of a Fabry-Perot Interferometer for Ultra-Precise Measurements of Column CO2

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, Elena M.; Heaps, William S.

    2005-01-01

    A passive Fabry-Perot based instrument is described for detecting column CO2 through absorption measurements at 1.58 microns . In this design, solar flux reaches the instrument platform and is directed through two channels. In the first channel, transmittance fi5nges from a Fabry-Perot interferometer are aligned with CO2 absorption lines so that absorption due to CO2 is primarily detected. The second channel encompasses the same frequency region as the first, but is comparatively more sensitive to changes in the solar flux than absorption due to CO2. The ratio of these channels is sensitive to changes in the total CO2 column, but not to changes in solar flux. This inexpensive instrument will offer high precision measurements (error 4%) in a compact package. Design of this instrument and preliminary ground-based measurements of column CO2 are presented here as well as strategies for deployment on aircraft and satellite platforms.

  17. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry.

    PubMed

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  18. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    NASA Astrophysics Data System (ADS)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  19. Fiber Optic Laser Accelerometer

    DTIC Science & Technology

    2007-11-06

    embodiment of a fiber laser accelerometer 10. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type...cavity fiber laser or a distributed feedback fiber laser. In a 4 Attorney Docket No. 97966 Fabry - Perot type fiber laser, the laser cavity is a length...type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by

  20. Fiber optic extrinsic Fabry-Perot accelerometer using laser emission frequency modulated phase generated carrier demodulation scheme

    NASA Astrophysics Data System (ADS)

    Wang, Dai-Hua; Jia, Ping-Gang

    2013-05-01

    The principle of a fiber optic Fabry-Perot (F-P) accelerometer (FOFPA) system using the laser emission frequency modulated phase generated carrier (FMPGC) demodulation scheme is first described and experimentally demonstrated. The F-P cavity, which is constituted by placing the end face of a gradient-index lens in parallel with the reflector on the inertial mass, directly translates the inertial mass's displacement generated by the measured acceleration into phase shifts of the interference output from the F-P cavity. An FMPGC demodulation scheme based on the arctangent (Arctan) algorithm is adapted to demodulate the phase shifts. The sensing model for the FOFPA system using the FMPGC-Arctan demodulation scheme is established and the sensing characteristics are theoretically analyzed. On these bases, the FOFPA is designed and fabricated and a prototyping system is built and tested. The results indicate that: (1) the nonlinearity of the FOFPA system using the FMPGC-Arctan demodulation scheme is less than 0.58%, (2) the resonant frequency, on-axial sensitivity, and resolution are 393 Hz, 13.11 rad/g, and 450 μ, respectively, and (3) the maximum deviation of the phase sensitivity of the FOFPA within the temperature range of 30 to 80°C is 0.49 dB re 1 rad/g.

  1. Pressure sensing of Fabry-Perot interferometer with a microchannel demodulated by a FBG

    NASA Astrophysics Data System (ADS)

    Yu, Yongqin; Chen, Xue; Huang, Quandong; Du, Chenlin; Ruan, Shuangchen

    2015-07-01

    A novel and compact fiber-probe pressure sensor was demonstrated based on micro Fabry-Perot interferometer (FPI). The device was fabricated by splicing both ends of a short section simplified hollow-core photonic crystal fiber (SHCPCF) with single mode fibers (SMFs), and then a micro channel was drilled by femtosecond laser micromachining in the SHC-PCF to significantly enhance the pressure sensitivity. The pressure sensing characteristics based on micro-FPI have been investigated by measuring the signals through the demodulation of phase since the external signal imposing on the interferometer will induce the phase change of interference signal. Then a FBG was cascaded to demodulate the signal. A micro FPI demonstrates a maximum pressure sensitivity of 32 dB/MPa, while a low temperature cross-sensitivity of 0.27 KPa/°C. Hence it may have potential for pressure applications in harsh environment.

  2. Observations of comet Levy 1990c in the (OI) 6300-A line with an imaging Fabry-Perot

    NASA Technical Reports Server (NTRS)

    Prasad, C. Debi; Jockers, Klaus; Rauer, H.; Geyer, E. H.

    1992-01-01

    We have observed the comet Levy 1990c during 16-25 August 1990 using the MPAE focal reducer system based Fabry-Perot etalon coupled with the 1 meter telescope of the Observatory of Hoher List. The free spectral range and resolution limit of the interferometer was approximately 2.18 A and approximately 0.171 A respectively. Classical Fabry-Perot fringes were recorded on a CCD in the cometary (OI) 6300 A line. They are well resolved from telluric air glow and cometary NH2 emission. Our observations indicate that the (OI) is distributed asymmetrically with respect to the center of the comet. In this paper we report the spatial distribution of (OI) emission and its line width in the coma of comet Levy.

  3. Characteristics of Extrinsic Fabry-Perot Interferometric (EFPI) Fiber-Optic Strain Gages

    NASA Technical Reports Server (NTRS)

    Hare, David A.; Moore, Thomas C., Sr.

    2000-01-01

    The focus of this paper is a comparison of the strain-measuring characteristics of one type of commercially available fiber-optic strain sensor with the performance of conventional resistance strain gages. Fabry-Perot type fiber-optic strain sensors were selected for this testing program. Comparative testing is emphasized and includes load testing at room temperature with apparent strain characterization cryogenically and at elevated temperatures. The absolute accuracy of either of these types of strain gages is not addressed.

  4. The Characteristics in the Sensitivity of Microfiber Fabry-Perot Interferometric Transducers

    NASA Astrophysics Data System (ADS)

    Wang, Xiuxin; Li, Zhangyong; Lin, Jinzhao; Wang, Wei; Tian, Yin; Pang, Yu

    2018-01-01

    We inscribe a Fabry-Perot (FP) resonator in the microfiber utilizing the 193-nm UV exposure and the phase mask technique. Some new characteristics in contrast to the conventional counterparts are measured, which are attributed to the index change in the grating and the dispersion of the effective grating length, respectively. The FP spectral dependencies on external strain, temperature, and refractive index are investigated. Our fabricated structures can have potential of acting as ultrasonic transducers and photo acoustic imaging.

  5. Remote ultrasound detection with a quasi-balanced confocal Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Reitinger, B.; Roither, J.; Berer, T.; Hornhuber, C.; Burgholzer, P.

    2011-09-01

    In this article, we show the benefits of a quasi-balanced fringe hopping confocal Fabry-Perot interferometer (CFPI) with broadband common mode rejection ratio (CMRR) for remote ultrasound detection. In laser ultrasound, the ultrasonic information, in general, lies in the phase modulation of laser light which in this case is demodulated using the CFPI at a certain working point on a fringe. By hopping from the positive to the negative slope on the same fringe, the detected ultrasonic signals are inverted. In contrary, interference signals - such crosstalk from the generation, ghosts or noise correlated to pulse laser excitation - are not influenced and hence get rejected by subtracting the signals measured at both slopes. Hence, a minimum of two measurements is needed for common mode rejection. The fringe hopping from the positive to the negative slope is done by changing the distance of the CFPI mirrors with a precise piezoelectric-stack and a fast high-resolution digital controller. As only one photodetector with a transimpedance amplifier is needed, a high CMRR can be accomplished. The CMRR is not affected by the symmetry of the fringe but only by pulse-to-pulse energy fluctuations of the generation laser. We show that with fringe hopping and averaging the signal-to-noise ratio increases much faster than with averaging without fringe hopping. This is due to the correlation of the quasi-noise with the generation cycle.

  6. [The project and simulation of a compositive miniature spectrum instrument based on the array of Fabry-Perot cavity].

    PubMed

    Wen, Zhi-yu; Chen, Gang; Wang, Jian-guo

    2006-10-01

    This paper advances a kind of micro-spectrometer based on Fabry-Perot cavity's character of filtering the waves. The basic structure of the micro-spectrometer is the array of Fabry-Perot cavity which contains many different lengths of cavity on the substrate of silicon, consequently the authors can achieve the detection at several wavelengths simultaneously. The unit of probing is a Fabry-Perot cavity made up of the substrate of silicon-metal film-silicon dioxide layer-metal film. The authors carried out the corresponding simulation. In the basic structure of aluminum film(14 nm)-silicon dioxide layer-silver film(39 nm), the resolution can reach 15 nm. When the area of a unit of probing is 0.14 mm x 0.14 mm only, it can reach the luminous flux of miniature grating spectrum instrument (the minimum volume in the order of cm), but the volume of the part of spectrum detection is only of the order of mm. The design size of the micro-spectrometer is a few millimeters. Furthermore it has no movable parts and could detect several wavelengths at the same time. It is possible to fabricate such micro-spectrometer through existing processing methods of IC technology.

  7. Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity.

    PubMed

    Li, Jitao; Jiang, Mingming; Xu, Chunxiang; Wang, Yueyue; Lin, Yi; Lu, Junfeng; Shi, Zengliang

    2015-03-19

    The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was constructed to investigate the fundamental physics of graphene SP and the functional extension of ZnO UV lasing. Through the coupling between graphene SP modes and conventional optical microcavity modes of ZnO, improved F-P lasing performance was realized, including the lowered lasing threshold, the improved lasing quality and the remarkably enhanced lasing intensity. The underlying mechanism of the improved lasing performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures.

  8. Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity

    PubMed Central

    Li, Jitao; Jiang, Mingming; Xu, Chunxiang; Wang, Yueyue; Lin, Yi; Lu, Junfeng; Shi, Zengliang

    2015-01-01

    The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was constructed to investigate the fundamental physics of graphene SP and the functional extension of ZnO UV lasing. Through the coupling between graphene SP modes and conventional optical microcavity modes of ZnO, improved F-P lasing performance was realized, including the lowered lasing threshold, the improved lasing quality and the remarkably enhanced lasing intensity. The underlying mechanism of the improved lasing performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures. PMID:25786359

  9. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  10. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    PubMed

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  11. A double-fibre Fabry-Perot sensor based on modified fringe counting and direct phase demodulation

    NASA Astrophysics Data System (ADS)

    Li, M.; Tong, B.; Arsad, N.; Guo, J. J.

    2013-09-01

    A modified double-fibre Fabry-Perot cavity is developed for determination of the fringe moving direction and higher sensitivity in applications of liquid level and displacement sensors. Two fibres are integrated into a silica ferrule where the ends of the two fibres in the ferrule serve as the front surfaces of the Fabry-Perot cavities, and a diaphragm, which is replaced by a moving mirror for measurement of displacement, serves as the rear surface for both cavities in liquid level sensing. Our design has no strict requirements for a specific phase difference between the two optical paths, just a constant difference resulting from the processing error between the two fibre end positions rather than a precise optical path difference of λ/8 to judge the pattern shift direction. Experimental results demonstrate the feasibility of this approach to determining the fringe moving direction, a displacement sensitivity of 3 µm and good linearity for both applications.

  12. Tuning operating point of extrinsic Fabry-Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure.

    PubMed

    Tian, Jiajun; Zhang, Qi; Fink, Thomas; Li, Hong; Peng, Wei; Han, Ming

    2012-11-15

    Intensity-based demodulation of extrinsic Fabry-Perot interferometric (EFPI) fiber-optic sensors requires the light wavelength to be on the quadrature point of the interferometric fringes for maximum sensitivity. In this Letter, we propose a novel and remote operating-point tuning method for EFPI fiber-optic sensors using microstructured fibers (MFs) and gas pressure. We demonstrated the method using a diaphragm-based EFPI sensor with a microstructured lead-in fiber. The holes in the MF were used as gas channels to remotely control the gas pressure inside the Fabry-Perot cavity. Because of the deformation of the diaphragm with gas pressure, the cavity length and consequently the operating point can be remotely tuned for maximum sensitivity. The proposed operating-point tuning method has the advantage of reduced complexity and cost compared to previously reported methods.

  13. Fabry-Perot interferometer measurement of static temperature and velocity for ASTOVL model tests

    NASA Technical Reports Server (NTRS)

    Kourous, Helen E.; Seacholtz, Richard G.

    1995-01-01

    A spectrally resolved Rayleigh/Mie scattering diagnostic was developed to measure temperature and wing-spanwise velocity in the vicinity of an ASTOVL aircraft model in the Lewis 9 x 15 Low Speed Wind Tunnel. The spectrum of argon-ion laser light scattered by the air molecules and particles in the flow was resolved with a Fabry-Perot interferometer. Temperature was extracted from the spectral width of the Rayleigh scattering component, and spanwise gas velocity from the gross spectral shift. Nozzle temperature approached 800 K, and the velocity component approached 30 m/s. The measurement uncertainty was about 5 percent for the gas temperature, and about 10 m/s for the velocity. The large difference in the spectral width of the Mie scattering from particles and the Rayleigh scattering from gas molecules allowed the gas temperature to be measured in flow containing both naturally occurring dust and LDV seed (both were present).

  14. Spectral response of fiber-coupled Fabry-Perot etalons.

    PubMed

    Ionov, Pavel

    2014-03-01

    In many remote sensing applications one or multiple Fabry-Perot etalons are used as high-spectral-resolution filter elements. These etalons are often coupled to a receiving telescope with a multimode fiber, leading to subtle effects of the fiber mode order on the overall spectral response of the system. A theoretical model is developed to treat the spectral response of the combined system: fiber, collimator, and etalon. The method is based on a closed-form expression of the diffracted mode in terms of a Hankel transform. In this representation, it is shown how the spectral effect of the fiber and collimator can be separated from the details of the etalon and can be viewed as a mode-dependent spectral broadening and shift.

  15. [Quartz-enhanced photoacoustic spectroscopy trace gas detection system based on the Fabry-Perot demodulation].

    PubMed

    Lin, Cheng; Zhu, Yong; Wei, Wei; Zhang, Jie; Tian, Li; Xu, Zu-Wen

    2013-05-01

    An all-optical quartz-enhanced photoacoustic spectroscopy system, based on the F-P demodulation, for trace gas detection in the open environment was proposed. In quartz-enhanced photoacoustic spectroscopy (QEPAS), an optical fiber Fabry-Perot method was used to replace the conventional electronic demodulation method. The photoacoustic signal was obtained by demodulating the variation of the Fabry-Perot cavity between the quartz tuning fork side and the fiber face. An experimental system was setup. The experiment for detection of water vapour in the open environment was carried on. A normalized noise equivalent absorption coefficient of 2.80 x 10(-7) cm(-1) x W x Hz(-1/2) was achieved. The result demonstrated that the sensitivity of the all-optical quartz-enhanced photoacoustic spectroscopy system is about 2.6 times higher than that of the conventional QEPAS system. The all-optical quartz-enhanced photoacoustic spectroscopy system is immune to electromagnetic interference, safe in flammable and explosive gas detection, suitable for high temperature and high humidity environments and realizable for long distance, multi-point and network sensing.

  16. Strong Optical Injection Locking of Edge-Emitting Lasers and Its Applications

    DTIC Science & Technology

    2006-08-18

    investigated for communications applications. Using AlGaAs lasers, Kobayashi et al. demonstrated stable single-mode operation of Fabry - Perot (F-P...modulation (AM) efficiency is obtained at the expense of linearity. Furthermore, the previous gain-lever devices were Fabry - Perot (F-P) lasers operating in...coating of ~ 0.2-μm Zirconium dioxide (ZrO2) layer with a reflectivity of less than 0.1% is deposited on one facet to suppress the Fabry - Perot (F-P

  17. Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.

    PubMed

    Yu, Zhihao; Tian, Zhipeng; Wang, Anbo

    2017-02-15

    In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.

  18. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    PubMed Central

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  19. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    PubMed

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-07-09

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  20. Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter

    NASA Technical Reports Server (NTRS)

    Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)

    2001-01-01

    The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.

  1. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  2. Three-channel imaging fabry-perot interferometer for measurement of mid-latitude airglow.

    PubMed

    Shiokawa, K; Kadota, T; Ejiri, M K; Otsuka, Y; Katoh, Y; Satoh, M; Ogawa, T

    2001-08-20

    We have developed a three-channel imaging Fabry-Perot interferometer with which to measure atmospheric wind and temperature in the mesosphere and thermosphere through nocturnal airglow emissions. The interferometer measures two-dimensional wind and temperature for wavelengths of 630.0 nm (OI, altitude, 200-300 km), 557.7 nm (OI, 96 km), and 839.9 nm (OH, 86 km) simultaneously with a time resolution of 20 min, using three cooled CCD detectors with liquid-N(2) Dewars. Because we found that the CCD sensor moves as a result of changes in the level of liquid N(2) in the Dewars, the cooling system has been replaced by thermoelectric coolers. The fringe drift that is due to changes in temperature of the etalon is monitored with a frequency-stabilized He-Ne laser. We also describe a data-reduction scheme for calculating wind and temperature from the observed fringes. The system is fully automated and has been in operation since June 1999 at the Shigaraki Observatory (34.8N, 136.1E), Shiga, Japan.

  3. Fiber Fabry-Perot Interferometric Sensor for the Measurement of Electric Current Flowing through a Fuse

    NASA Astrophysics Data System (ADS)

    Park, Jaehee

    2007-06-01

    A fiber Fabry-Perot inteferometric sensor bonded close to a fusing element has been studied for the measurement of electric current flowing through a fuse. The phase shift of the sensor output signal is proportional to the square of the electric current passing through the fuse and the sensitivity is 0.827°/mA2.

  4. Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers.

    PubMed

    von Keyserlingk, C W; Simon, S H; Rosenow, Bernd

    2015-09-18

    Recent experiments use Fabry-Perot (FP) interferometry to claim that the ν=5/2 quantum Hall state exhibits non-Abelian topological order. We note that the experiments appear inconsistent with a model neglecting bulk-edge Coulomb coupling and Majorana tunneling, so we reexamine the theory of FP devices. Even a moderate Coulomb coupling may strongly affect some fractional plateaus, but very weakly affect others, allowing us to model the data over a wide range of plateaus. While experiments are consistent with the ν=5/2 state harboring Moore-Read topological order, they may have measured Coulomb effects rather than an "even-odd effect" due to non-Abelian braiding.

  5. Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.

    NASA Astrophysics Data System (ADS)

    Coakley, Monica Marie

    1995-01-01

    This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements

  6. A Fabry-Perot interferometric imaging spectrometer in LWIR

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Gao, Jiaobo; Wang, Nan; Wu, Jianghui; Meng, Hemin; Zhang, Lei; Gao, Shan

    2017-02-01

    With applications ranging from the desktop to remote sensing, the long wave infrared (LWIR) interferometric spectral imaging system is always with huge volume and large weight. In order to miniaturize and light the instrument, a new method of LWIR spectral imaging system based on a variable gap Fabry-Perot (FP) interferometer is researched. With the system working principle analyzed, theoretically, it is researched that how to make certain the primary parameter, such as, wedge angle of interferometric cavity, f-number of the imaging lens and the relationship between the wedge angle and the modulation of the interferogram. A prototype is developed and a good experimental result of a uniform radiation source, a monochromatic source, is obtained. The research shows that besides high throughput and high spectral resolution, the advantage of miniaturization is also simultaneously achieved in this method.

  7. HTS Fabry-Perot resonators for the far infrared

    NASA Astrophysics Data System (ADS)

    Keller, Philipp; Prenninger, Martin; Pechen, Evgeny V.; Renk, Karl F.

    1996-06-01

    We report on far infrared (FIR) Fabry-Perot resonators (FPR) with high temperature superconductor (HTS) thin films as mirrors. For the fabrication of FPR we use two parallel MgO plates covered with YBa2Cu3O7-delta thin films on adjacent sides. We have measured the far-infrared transmissivity at 10 K with a Fourier transform infrared spectrometer. Very sharp resonances can be observed for frequencies below 6 THz where the MgO is transparent. The finesse (width of the first order resonance) is comparable to the FPR with metallic meshes as reflectors that are applied in the FIR spectroscopy and astronomy. We have also shown that thin films of gold are not adequate substitute to HTS thin films and not suitable for the fabrication of high-quality FPR due to the ohmic losses.

  8. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    NASA Technical Reports Server (NTRS)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  9. A Fabry-Perot spectrometer for high-resolution observation of the Sun

    NASA Astrophysics Data System (ADS)

    Kneer, F.; Hirzberger, H.

    2001-12-01

    Fabry-Perot interferometers (FPIs) are powerful instruments for spectro-polarimetry of the Sun with high spatial resolution. They allow easy image reconstruction of two-dimensional fields of view. Some examples of high quality results obtained with the ``Göttingen'' FPI spectrometer, mounted in the Vacuum Tower Telescope at the Observatorio del Teide/Tenerife, are presented in a poster to this workshop. We thus concentrate on the design of a new instrument for the 1.5 m GREGOR solar telescope. We discuss the pros and cons of telecentric and collimated mounting and describe the expected performance, especially the spectral resolution, of our design.

  10. High precision optical fiber Fabry-Perot sensor for gas pressure detection

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xing-lin

    2013-09-01

    An optical fiber Fabry-Perot (F-P) sensor with quartz diaphragm for gas pressure testing was designed and fabricated. It consisted of single-mode fiber, hollow glass tube and quartz diaphragm. It uses the double peak demodulation to obtain the initialized cavity length. The variety of cavity length can be calcultated by the single peak demodulation after changing the gas pressure. The results show that the sensor is small in size, whose sensitivity is 19 pm/kPa in the range of the 10 ~ 260 kPa gas pressure. And it has good linearity and repeatability.

  11. Fiber Fabry-Perot interferometer sensor for measuring resonances of piezoelectric elements

    NASA Astrophysics Data System (ADS)

    da Silva, Ricardo E.; Oliveira, Roberson A.; Pohl, Alexandre A. P.

    2011-05-01

    The development of a fiber extrinsic Fabry-Perot interferometer for measuring vibration amplitude and resonances of piezoelectric elements is reported. The signal demodulation method based on the use of an optical spectrum analyzer allows the measurement of displacements and resonances with high resolution. The technique consists basically in monitoring changes in the intensity or the wavelength of a single interferometric fringe at a point of high sensitivity in the sensor response curve. For sensor calibration, three signal processing techniques were employed. Vibration amplitude measurement with 0.84 nm/V sensitivity and the characterization of the piezo resonance is demonstrated.

  12. Photonic crystal fiber Fabry-Perot interferometers with high-reflectance internal mirrors

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Hou, Yuanbin; Sun, Wei

    2015-06-01

    We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by reshaping the air cavity. Experimental results showed that such a device could be used as a highly sensitive strain sensor with the sensitivity of 4.5 pm/μɛ. Moreover, it offered some other outstanding advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy.

  13. Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters.

    PubMed

    Hoffman, David S; Repasky, Kevin S; Reagan, John A; Carlsten, John L

    2012-09-01

    The high spectral resolution lidar (HSRL) instrument described in this paper utilizes the fundamental and second-harmonic output from an injection seeded Nd:YAG laser as the laser transmitter. The light scattered in the atmosphere is collected using a commercial Schmidt-Cassegrain telescope with the optical receiver train first splitting the fundamental and second-harmonic return signal with the fundament light monitored using an avalanche photodiode. The second-harmonic return signal is mode matched into a tunable confocal Fabry-Perot (CFP) interferometer with a free spectral range of 7.5 GHz and a finesse of 50.7 (312) at 532 nm (1064 nm) placed in the optical receiver for spectrally filtering the molecular and aerosol return signals. The light transmitted through the CFP is used to monitor the aerosol return signal while the light reflected from the CFP is used to monitor the molecular return signal. Data collected with the HSRL are presented and inversion results are compared to a co-located solar radiometer, demonstrating the successful operation of the instrument. The CFP-based filtering technique successfully employed by this HSRL instrument is easily portable to other arbitrary wavelengths, thus allowing for the future development of multiwavelength HSRL instruments.

  14. VTT's Fabry-Perot interferometer technologies for hyperspectral imaging and mobile sensing applications

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Guo, Bin; Saari, Heikki; Näsilä, Antti; Mannila, Rami; Akujärvi, Altti; Ojanen, Harri

    2017-02-01

    VTT's Fabry-Perot interferometers (FPI) technology enables creation of small and cost-efficient microspectrometers and hyperspectral imagers - these robust and light-weight sensors are currently finding their way into a variety of novel applications, including emerging medical products, automotive sensors, space instruments and mobile sensing devices. This presentation gives an overview of our core FPI technologies with current advances in generation of novel sensing applications including recent mobile technology demonstrators of a hyperspectral iPhone and a mobile phone CO2 sensor, which aim to advance mobile spectroscopic sensing.

  15. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.

    PubMed

    Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo

    2003-06-01

    A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.

  16. High quality factor surface Fabry-Perot cavity of acoustic waves

    NASA Astrophysics Data System (ADS)

    Xu, Yuntao; Fu, Wei; Zou, Chang-ling; Shen, Zhen; Tang, Hong X.

    2018-02-01

    Surface acoustic wave (SAW) resonators are critical components in wireless communications and many sensing applications. They have also recently emerged as a subject of study in quantum acoustics at the single phonon level. Acoustic loss reduction and mode confinement are key performance factors in SAW resonators. Here, we report the design and experimental realization of high quality factor Fabry-Perot SAW resonators formed in between the tapered phononic crystal mirrors patterned on a GaN-on-sapphire material platform. The fabricated SAW resonators are characterized by both an electrical network analyzer and an optical heterodyne vibrometer. We observed standing Rayleigh waves inside the cavity, with an intrinsic quality factor exceeding 1.3 × 104 at ambient conditions.

  17. External electro-optic sampling utilizing a poled polymer asymmetric Fabry Perot cavity as an electro-optical probe tip

    NASA Astrophysics Data System (ADS)

    Chen, Kaixin; Zhang, Hongbo; Zhang, Daming; Yang, Han; Yi, Maobin

    2002-09-01

    External electro-optic sampling utilizing a poled polymer asymmetry Fabry-Perot cavity as electro-optic probe tip has been demonstrated. Electro-optical polymer spin coated on the high-reflectivity mirror (HRM) was corona poled. Thus, an asymmetric F-P cavity was formed based on the different reflectivity of the polymer and HRM and it converted the phase modulation that originates from electro-optic effect of the poled polymer to amplitude modulation, so only one laser beam is needed in this system. The principle of the sampling was analyzed by multiple reflection and index ellipsoid methods. A 1.2 GHz microwave signal propagating on coplanar waveguide transmission line was sampled, and the voltage sensitivity about 0.5 mV/ Hz was obtained.

  18. Single resonance monolithic Fabry-Perot filters formed by volume Bragg gratings and multilayer dielectric mirrors

    NASA Astrophysics Data System (ADS)

    Lumeau, Julien; Koc, Cihan; Mokhun, Oleksiy; Smirnov, Vadim; Lequime, Michel; Glebov, Leonid B.

    2012-02-01

    High efficiency reflecting volume Bragg gratings (VBGs) recorded in PTR glass plates have shown un-preceded performances that make them very good candidates for narrowband spectral filtering with sub-nanometer spectral widths. However, decreasing the bandwidth to value below 30-50 pm is very challenging as it requires increasing the thickness of the RBG to more than 15-20 mm. To overcome this limitation, we propose a new approach which is a monolithic Fabry-Perot cavity which consists from a reflecting VBG with a multilayer dielectric mirror (MDM) deposited on its surface. A VBG with a grating vector perpendicular to its surface and a MDM produce a Fabry-Perot resonator with a single transmission band inside of the reflection spectrum of the VBG. We present a theoretical description of this new class of filters that allow achieving a single ultra-narrowband resonance associated with several hundred nanometers rejection band. Then we show the methods for designing and fabricating such filter. Finally, we present the steps that we followed in order to fabricate a first prototype for 852 nm and 1062 nm region that demonstrates a 30 pm bandwidth, 90+% transmission at resonance and a good agreement with theoretical simulation.

  19. Transversely coupled Fabry-Perot resonators with Bragg grating reflectors.

    PubMed

    Saber, Md Ghulam; Wang, Yun; El-Fiky, Eslam; Patel, David; Shahriar, Kh Arif; Alam, Md Samiul; Jacques, Maxime; Xing, Zhenping; Xu, Luhua; Abadía, Nicolás; Plant, David V

    2018-01-01

    We design and demonstrate Fabry-Perot resonators with transverse coupling using Bragg gratings as reflectors on the silicon-on-insulator (SOI) platform. The effects of tailoring the cavity length and the coupling coefficient of the directional coupler on the spectral characteristics of the device are studied. The fabricated resonators achieved an extinction ratio (ER) of 37.28 dB and a Q-factor of 3356 with an effective cavity length of 110 μm, and an ER of 8.69 dB and a Q-factor of 23642 with a 943 μm effective cavity length. The resonator structure presented here has the highest reported ER on SOI and provides additional degrees of freedom compared to an all-pass ring resonator to tune the spectral characteristics.

  20. Evaluation of a Magneto-optical Filter and a Fabry-perot Interferometer for the Measurement of Solar Velocity Fields from Space

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Blamont, J.; Tomczyk, S.; Ulrich, R. K.; Howard, R. F.

    1984-01-01

    A program was developed to evaluate the performance of three different devices as possible space-borne solar velocity field imagers. Two of these three devices, a magneto-optical filter and a molecular adherence Fabry-Perot interferometer were installed in a newly-constructed observing system located at the 60-foot tower telescope at the Mt. Wilson Observatory. Time series of solar filtergrams and Dopplergrams lasting up to 10 hours per day were obtained with the filter while shorter runs were obtained with the Fabry-Perot. Two-dimensional k (sub h)-omega power spectra which show clearly the well-known p-mode ridges were computed from the time series obtained with the magneto-optical filter. These power spectra were compared with similar power spectra obtained recently with the 13.7-m McMath spectrograph at Kitt Peak.

  1. Fabry-Perot Interferometer for Column CO2

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, Randolph; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Global atmospheric CO2 measurements are essential to resolving significant discrepancies in our understanding of the global carbon budget and, hence, humankind's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision approx. 0.3%). No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise detection required to measure column CO2 at the target specification. The objective of this program is to construct a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. To date we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also measuring signal and noise levels in actual sunlight to evaluate component performance.

  2. A Fabry-Perot Spectrometer for High-Resolution Observation of the Sun

    NASA Astrophysics Data System (ADS)

    Kneer, F.; Hirzberger, J.

    Fabry-Perot interferometers (FPIs) are powerful instruments for spectro-polarimetry of the Sun with high spatial resolution. They allow easy image reconstruction of two-dimensional narrow-band fields of view. Some examples of high quality results obtained with the ``Göttingen'' FPI spectrometer, mounted in the Vacuum Tower Telescope at the Observatorio del Teide/Tenerife, are presented in a poster to this workshop. We thus concentrate on the design of a new instrument for the 1.5 m GREGOR solar telescope. We discuss the pros and cons of telecentric and collimated mounting and describe the expected performance, especially the spectral resolution, of our design.

  3. Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement.

    PubMed

    Chen, W P; Wang, D N; Xu, Ben; Zhao, C L; Chen, H F

    2017-03-23

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on an etched end of multimode fiber filled with ultraviolet adhesive. The fiber device is miniature (with diameter of less than 60 μm), robust and low cost, in a convenient reflection mode of operation, and has a very high gas pressure sensitivity of -40.94 nm/MPa, a large temperature sensitivity of 213 pm/°C within the range from 55 to 85 °C, and a relatively low temperature cross-sensitivity of 5.2 kPa/°C. This device has a high potential in monitoring environment of high pressure.

  4. Ultra-stable microwave generation with a diode-pumped solid-state laser in the 1.5-μm range

    NASA Astrophysics Data System (ADS)

    Dolgovskiy, Vladimir; Schilt, Stéphane; Bucalovic, Nikola; Di Domenico, Gianni; Grop, Serge; Dubois, Benoît; Giordano, Vincent; Südmeyer, Thomas

    2014-09-01

    We demonstrate the first ultra-stable microwave generation based on a 1.5-μm diode-pumped solid-state laser (DPSSL) frequency comb. Our system relies on optical-to-microwave frequency division from a planar-waveguide external cavity laser referenced to an ultra-stable Fabry-Perot cavity. The evaluation of the microwave signal at ~10 GHz uses the transportable ultra-low-instability signal source ULISS®, which employs a cryo-cooled sapphire oscillator. With the DPSSL comb, we measured -125 dBc/Hz phase noise at 1 kHz offset frequency, likely limited by the photo-detection shot-noise or by the noise floor of the reference cryo-cooled sapphire oscillator. For comparison, we also generated low-noise microwave using a commercial Er:fiber comb stabilized in similar conditions and observed >20 dB lower phase noise in the microwave generated from the DPSSL comb. Our results confirm the high potential of the DPSSL technology for low-noise comb applications.

  5. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  6. FAST: A near-infrared imaging Fabry-Perot spectrometer

    NASA Astrophysics Data System (ADS)

    Krabbe, A.; Rotaciuc, V.; Storey, J. W. V.; Cameron, M.; Blietz, M.; Drapatz, S.; Hofmann, R.; Saemann, G.; Genzel, R.

    1993-12-01

    The near-infrared imaging spectrometer Fabry-Perot Array Spectrometer (FAST) provides a spectral resolution of 1000-2700 over a field of view of approximately 30 x 30 sq arcsec with a plate scale of 0.5-1.0 arcsec/pixel. FAST is based on a SBRC InSb 58 x 62 FPA working at 6 K, yielding a sensitivity 5(sigma), tint = 100 s, K band) of 1.1 x 10-4 erg/s (sq cm) (sr) at R = 1000. As a portable, self-contained instrument FAST has already been successfully deployed at several 2- and 4-m class telescopes. The optical and mechanical design, computer hardware and software control, as well as spectral calibration of the FPI, special treatment of the detectors, and the main data reduction steps are described. The necessity for such a dedicated system in the investigation of line-emission mechanisms in various galactic and extragalactic environments is illustrated by recently obtained results.

  7. Fabry-Perot microcavity sensor for H2-breath-test analysis

    NASA Astrophysics Data System (ADS)

    Vincenti, Maria Antonietta; De Sario, Marco; Petruzzelli, V.; D'Orazio, Antonella; Prudenzano, Francesco; de Ceglia, Domenico; Scalora, Michael

    2007-10-01

    Leak detection of hydrogen for medical purposes, based on the monitoring of the optical response of a simple Fabry-Perot microcavity, is proposed to investigate either the occurrence of lactose intolerance, or lactose malabsorption condition. Both pathologic conditions result in bacterial overgrowth in the intestine, which causes increased spontaneous emission of H2 in the human breath. Two sensitivity figures of merit are introduced to inspect changes in the sensor response, and to relate the microcavity response to a pathologic condition, which is strictly related to a different level of exhaled hydrogen. Different sensor configurations using a metal-dielectric microcavity are reported and discussed in order to make the most of the well-known ability of palladium to spontaneously absorb hydrogen.

  8. Miniaturized fiber inline Fabry-Perot interferometer for chemical sensing.

    DOT National Transportation Integrated Search

    2010-01-01

    This paper demonstrates the chemical sensing capability of a miniaturized fiber inline Fabry-Prot sensor fabricated by femtosecond : laser. Its accessible cavity enables the device to measure the refractive index within the cavity. The refractive i...

  9. Displacement and Strain Measurement up to 1000 °C Using a Hollow Coaxial Cable Fabry-Perot Resonator.

    PubMed

    Zhu, Chen; Chen, Yizheng; Zhuang, Yiyang; Huang, Jie

    2018-04-24

    We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments.

  10. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure.

    PubMed

    Jung, Boo Young; Kim, Nam Young; Lee, Changhee; Hwangbo, Chang Kwon; Seoul, Chang

    2002-06-01

    We report the fabrication of Fabry-Perot microcavity structures with the organic light-emitting material tris-(8-hydroxyquinoline) aluminum (Alq3) and derive their optical properties by measuring their photoluminescence (PL) and absorption. Silver and a TiO2-SiO2 multilayer were used as metal and dielectric reflectors, respectively, in a Fabry-Perot microcavity structure. Three types of microcavity were prepared: type A consisted of [air[Ag[Alq3]Ag]glass]; type B, of [air[dielectric[Alq3]dielectric]glass]; and type C, of [air[Ag[Alq2]dielectric]glass]. A bare Alq3 film of [air[Alq3]glass] had its PL peak near 514 nm, and its full width at half-maximum (FWHM) was 80 nm. The broad FWHM of a bare Alq3 film was reduced to 15-27.5, 7-10.5, and 16-16.6 nm for microcavity types A, B, and C, respectively. Also, we could control the PL peak of the microcavity structure by changing the spacer thickness, the amount of phase change on reflection, and the angle of incidence.

  11. Displacement and Strain Measurement up to 1000 °C Using a Hollow Coaxial Cable Fabry-Perot Resonator

    PubMed Central

    Chen, Yizheng; Zhuang, Yiyang

    2018-01-01

    We present a hollow coaxial cable Fabry-Perot resonator for displacement and strain measurement up to 1000 °C. By employing a novel homemade hollow coaxial cable made of stainless steel as a sensing platform, the high-temperature tolerance of the sensor is dramatically improved. A Fabry-Perot resonator is implemented on this hollow coaxial cable by introducing two highly-reflective reflectors along the cable. Based on a nested structure design, the external displacement and strain can be directly correlated to the cavity length of the resonator. By tracking the shift of the amplitude reflection spectrum of the microwave resonator, the applied displacement and strain can be determined. The displacement measurement experiment showed that the sensor could function properly up to 1000 °C. The sensor was also employed to measure the thermal strain of a steel plate during the heating process. The stability of the novel sensor was also investigated. The developed sensing platform and sensing configurations are robust, cost-effective, easy to manufacture, and can be flexibly designed for many other measurement applications in harsh high-temperature environments. PMID:29695063

  12. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference.

    PubMed

    Park, Hyoung-Jun; Song, Minho

    2008-10-29

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.

  13. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    PubMed Central

    Park, Hyoung-Jun; Song, Minho

    2008-01-01

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method. PMID:27873898

  14. PCF-based Fabry-Perot interferometric sensor for strain measurement under high-temperature

    NASA Astrophysics Data System (ADS)

    Deng, Ming; Tang, Chang-Ping; Zhu, Tao; Rao, Yun-Jiang

    2011-05-01

    We report a simple and robust all-fiber in-line Fabry-Perot interferometer (FPI) with bubble cavity, which is fabricated by directly splicing a mutimode photonic crystal fiber to a conventional single mode fiber by using a commercial splicer. The fabrication process only involves fusion splicing and cleaving. The high-temperature strain characteristic of such a device is evaluated and experimental results shows that this FPI can be used as an ideal sensor for precise strain measurement under high temperatures of up to 750°C. Therefore, such a FPI sensor may find important applications in aeronautics or metallurgy areas.

  15. Development of an embedded Fabry Perot Fiber Optic Strain Rosette Sensor (FP-FOSRS)

    NASA Technical Reports Server (NTRS)

    Carman, Gregory P.; Lesko, John J.; Case, Scott W.; Fogg, Brian; Claus, Richard O.

    1992-01-01

    We investigate the feasibility of utilizing a Fabry-Perot Fiber Optic Strain Rosette Sensor (FP-FOSRS) for the evaluation of the internal strain state of a material system. We briefly describe the manufacturing process for this sensor and point out some potential problem areas. Results of an embedded FP-FOSRS in an epoxy matrix with external resistance strain gauges applied for comparative purposes are presented. We show that the internal and external strain measurements are in close agreement. This work lays the foundation for embedding this sensor in actual composite laminas.

  16. High spectral resolution lidar using spherical Fabry-Perot to measure aerosol and atmospheric molecular density

    NASA Astrophysics Data System (ADS)

    Yann, Caraty; Alain, Hauchecorne; Philippe, Keckhut; Jean-François, Mariscal; Eric, Dalmeida

    2018-04-01

    In theory, the HSRL method should expand the validity range of the atmospheric molecular density and temperature profiles of the Rayleigh LIDAR in the UTLS below 30 km, with an accuracy of 1 K, while suppressing the particle contribution. We tested a Spherical Fabry-Perot which achieves these performances while keeping a big flexibility in optical alignment. However, this device has some limitations (thermal drift and a possible partial depolarisation of the backscattered signal).

  17. Fabry-Perot cavity cascaded sagnac loops for temperature and strain measurements

    NASA Astrophysics Data System (ADS)

    Shangguan, Chunmei; Zhang, Wen; Hei, Wei; Luo, Fei; Zhu, Lianqing

    2018-04-01

    The fabrication process and temperature and strain characterizations of an all-fiber sensor are presented. The sensing structure based on a Fabry-Perot cavity (FPC) and sagnac loops was proposed and experimentally demonstrated for measurements of temperature and strain. The FPC consists of a micropiece of chemical etched multimode fiber end face, welded with another single mode fiber. Then, the sagnac loops composed of polarization maintaining fiber was connected to the FPC. The sensor was fabricated and tested for temperature and strain. Experimental results show that sensitivity of temperature and strain is 0.71 ± 0.03 nm / ° C and 1.30 ± 0.01 pm / μɛ, respectively; the linearity are 0.9970 and 0.9996, respectively.

  18. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

  19. Noise Suppression on the Tunable Laser for Precise Cavity Length Displacement Measurement

    PubMed Central

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej

    2016-01-01

    The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30–300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10−9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm. PMID:27608024

  20. Noise Suppression on the Tunable Laser for Precise Cavity Length Displacement Measurement.

    PubMed

    Šmíd, Radek; Čížek, Martin; Mikel, Břetislav; Hrabina, Jan; Lazar, Josef; Číp, Ondřej

    2016-09-06

    The absolute distance between the mirrors of a Fabry-Perot cavity with a spacer from an ultra low expansion material was measured by an ultra wide tunable laser diode. The DFB laser diode working at 1542 nm with 1.5 MHz linewidth and 2 nm tuning range has been suppressed with an unbalanced heterodyne fiber interferometer. The frequency noise of laser has been suppressed by 40 dB across the Fourier frequency range 30-300 Hz and by 20 dB up to 4 kHz and the linewidth of the laser below 300 kHz. The relative resolution of the measurement was 10 - 9 that corresponds to 0.3 nm (sub-nm) for 0.178 m long cavity with ability of displacement measurement of 0.5 mm.

  1. Suppression of span in sealed microcavity Fabry-Perot pressure sensors

    NASA Astrophysics Data System (ADS)

    Mishra, Shivam; Rajappa, Balasubramaniam; Chandra, Sudhir

    2017-01-01

    Optical microelectromechanical system pressure sensors working on the principle of extrinsic Fabry-Perot (FP) interferometer are designed and fabricated for pressure range of 1-bar absolute. Anodic bonding of silicon with glass is performed under atmospheric pressure to form FP cavity. This process results in entrapment of gas in the sealed microcavity. The effect of trapped gas is investigated on sensor characteristics. A closed-loop solution is derived for the deflection of the diaphragm of a sealed microcavity pressure sensor. Phenomenon of "suppression of span" is brought out. The sensors are tested using white light interferometry technique. The residual pressure of the trapped gas is estimated from the experiments. The developed model has been used to estimate the deflection sensitivity of the free diaphragm and the extent of suppression of span after bonding.

  2. Optical fiber extrinsic Fabry-Perot interferometer sensors for ultrasound detection

    NASA Astrophysics Data System (ADS)

    Sun, Qingguo; Chen, Na; Ding, Yuetong; Chen, Zhenyi; Wang, Tingyun

    2009-11-01

    In this paper, a new method is proposed to fabricate an optical fiber extrinsic Fabry-Perot interferometer (EFPI) as an ultrasonic sensor. An acoustic emission detecting system is constructed based on multiple EFPI sensors and demodulation circuit. Ultrasound detection experiments were done from both traditional piezoelectric transducer (PZT) and high voltage discharge. In the experiments, strong ultrasound signals were detected in both cases. The signal attenuation related to the distance and the angle between the acoustic emission source and the FP sensor are obtained. The results indicate that the receiving angle of the FP sensor is nearly 90° and the maximum detection distance in the air is more than 200cm. Furthermore, four sensors are used to locate the position of the ultrasound source produced by high voltage discharge.

  3. Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon. Degree awarded by Colorado Univ., Boulder, CO

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1997-01-01

    The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.

  4. Ultrasensitive, real-time trace gas detection using a high-power, multimode diode laser and cavity ringdown spectroscopy.

    PubMed

    Karpf, Andreas; Qiao, Yuhao; Rao, Gottipaty N

    2016-06-01

    We present a simplified cavity ringdown (CRD) trace gas detection technique that is insensitive to vibration, and capable of extremely sensitive, real-time absorption measurements. A high-power, multimode Fabry-Perot (FP) diode laser with a broad wavelength range (Δλlaser∼0.6  nm) is used to excite a large number of cavity modes, thereby reducing the detector's susceptibility to vibration and making it well suited for field deployment. When detecting molecular species with broad absorption features (Δλabsorption≫Δλlaser), the laser's broad linewidth removes the need for precision wavelength stabilization. The laser's power and broad linewidth allow the use of on-axis cavity alignment, improving the signal-to-noise ratio while maintaining its vibration insensitivity. The use of an FP diode laser has the added advantages of being inexpensive, compact, and insensitive to vibration. The technique was demonstrated using a 1.1 W (λ=400  nm) diode laser to measure low concentrations of nitrogen dioxide (NO2) in zero air. A sensitivity of 38 parts in 1012 (ppt) was achieved using an integration time of 128 ms; for single-shot detection, 530 ppt sensitivity was demonstrated with a measurement time of 60 μs, which opens the door to sensitive measurements with extremely high temporal resolution; to the best of our knowledge, these are the highest speed measurements of NO2 concentration using CRD spectroscopy. The reduced susceptibility to vibration was demonstrated by introducing small vibrations into the apparatus and observing that there was no measurable effect on the sensitivity of detection.

  5. InP femtosecond mode-locked laser in a compound feedback cavity with a switchable repetition rate

    NASA Astrophysics Data System (ADS)

    Lo, Mu-Chieh; Guzmán, Robinson; Carpintero, Guillermo

    2018-02-01

    A monolithically integrated mode-locked semiconductor laser is proposed. The compound ring cavity is composed of a colliding pulse mode-locking (ML) subcavity and a passive Fabry-Perot feedback subcavity. These two 1.6 mm long subcavities are coupled by using on-chip reflectors at both ends, enabling harmonic mode locking. By changing DC-bias conditions, optical mode spacing from 50 to 450 GHz is experimentally demonstrated. Ultrafast pulses shorter than 0.3 ps emitted from this laser diode are shown in autocorrelation traces.

  6. System and method for generating a displacement with ultra-high accuracy using a fabry-perot interferometer

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A system and method for generating a desired displacement of an object, i.e., a target, from a reference position with ultra-high accuracy utilizes a Fabry-Perot etalon having an expandable tube cavity for resolving, with an Iodine stabilized laser, displacements with high accuracy and for effecting (as an actuator) displacements of the target. A mechanical amplifier in the form of a micropositioning stage has a platform and a frame which are movable relative to one another, and the tube cavity of the etalon is connected between the platform and frame so that an adjustment in length of the cavity effects a corresponding, amplified movement of the frame relative to the cavity. Therefore, in order to provide a preselected magnitude of displacement of the stage frame relative to the platform, the etalon tube cavity is adjusted in length by a corresponding amount. The system and method are particularly well-suited for use when calibrating a high accuracy measuring device.

  7. Highly compact fiber Fabry-Perot interferometer: A new instrument design

    NASA Astrophysics Data System (ADS)

    Nowakowski, B. K.; Smith, D. T.; Smith, S. T.

    2016-11-01

    This paper presents the design, construction, and characterization of a new optical-fiber-based, low-finesse Fabry-Perot interferometer with a simple cavity formed by two reflecting surfaces (the end of a cleaved optical fiber and a plane, reflecting counter-surface), for the continuous measurement of displacements of several nanometers to several tens of millimeters. No beam collimation or focusing optics are required, resulting in a displacement sensor that is extremely compact (optical fiber diameter 125 μm), is surprisingly tolerant of misalignment (more than 5°), and can be used over a very wide range of temperatures and environmental conditions, including ultra-high-vacuum. The displacement measurement is derived from interferometric phase measurements using an infrared laser source whose wavelength is modulated sinusoidally at a frequency f. The phase signal is in turn derived from changes in the amplitudes of demodulated signals, at both the modulation frequency, f, and its harmonic at 2f, coming from a photodetector that is monitoring light intensity reflected back from the cavity as the cavity length changes. Simple quadrature detection results in phase errors corresponding to displacement errors of up to 25 nm, but by using compensation algorithms discussed in this paper, these inherent non-linearities can be reduced to below 3 nm. In addition, wavelength sweep capability enables measurement of the absolute surface separation. This experimental design creates a unique set of displacement measuring capabilities not previously combined in a single interferometer.

  8. 2.05-μm Holmium-doped all-fiber continuous-wave laser at in-core diode-pumping at 1.125 μm

    NASA Astrophysics Data System (ADS)

    Kir'yanov, Alexander V.; Barmenkov, Yuri O.

    2017-08-01

    We report a Holmium-doped all-fiber laser oscillating in continuous-wave at 2.05 μm, at in-core pumping by a 1.125-μm laser diode. The active fibers employed are alumino-germano-silicate fibers doped with Ho3+ at concentrations of 1.2×1019 and 1.8×1019 cm-3. The laser is implemented in non-optimized Fabry-Perot cavity's geometry, composed of a couple of fiber Bragg gratings with reflectivity of 99 and 90%. When using the lower doped Holmium-doped fiber of proper length (1.4 m), low threshold ( 370 mW) and moderate slope efficiency ( 13%) of 2.05-μm lasing were obtained. High-brightness (laser line's width is 60 pm) and good noise-to-signal ratio (<0.006) are the laser's attractivities. In case of the heavier doped fiber of optimal length (1.2 m), the laser output (threshold of 430 mW, slope efficiency of 9%, output power of 9 mW, laser line's width of 110 pm, noise-to-signal ratio of <0.009) is worse, with a probable reason being deteriorating Ho3+ concentration effects.

  9. GaN microwires as optical microcavities: whispering gallery modes Vs Fabry-Perot modes.

    PubMed

    Coulon, Pierre-Marie; Hugues, Maxime; Alloing, Blandine; Beraudo, Emmanuel; Leroux, Mathieu; Zuniga-Perez, Jesus

    2012-08-13

    GaN microwires grown by metalorganic vapour phase epitaxy and with radii typically on the order of 1-5 micrometers exhibit a number of resonances in their photoluminescence spectra. These resonances include whispering gallery modes and transverse Fabry-Perot modes. A detailed spectroscopic study by polarization-resolved microphotoluminescence, in combination with electron microscopy images, has enabled to differentiate both kinds of modes and determined their main spectral properties. Finally, the dispersion of the ordinary and extraordinary refractive indices of strain-free GaN in the visible-UV range has been obtained thanks to the numerical simulation of the observed modes.

  10. High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors

    NASA Astrophysics Data System (ADS)

    Xie, Jiehui; Wang, Fuyin; Pan, Yao; Wang, Junjie; Hu, Zhengliang; Hu, Yongming

    2015-03-01

    In this paper, a signal-processing method for optical fiber extrinsic Fabry-Perot interferometric sensors is presented. It achieves both high resolution and absolute measurement of the dynamic change of cavity length with low sampling points in wavelength domain. In order to improve the demodulation accuracy, the reflected interference spectrum is cleared by Discrete Wavelet Transform and adjusted by the Hilbert transform. Then the cavity length is interrogated by the cross correlation algorithm. The continuous tests show the resolution of cavity length is only 36.7 pm. Moreover, the corresponding resolution of cavity length is only 1 pm on the low frequency range below 420 Hz, and the corresponding power spectrum shows the possibility of detecting the ultra-low frequency signals based on spectra detection.

  11. Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2009-01-01

    Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported

  12. Fabry-Perot color filter with antireflective nano-grating surface

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayuan; Zhang, Jie; Dong, Xiaoxuan

    2013-12-01

    In order to improve the color saturation of reflective Fabry-Perot(FP) color filter, we proposed a reflective color filter incorporating FP resonator with a dielectric grating. The FP resonator consists of high reflection metal film, dielectric film and semi-transparent metal film. The dielectric grating, above the semi-transparent metal film, can reduce the reflection from the semi-transparent film in which case high saturation will be achieved. By using Finite Difference Time Domain(FDTD) method, the reflection spectra characteristic is analyzed as a function of duty cycle, period, refractive index and thickness of the dielectric grating. Based on the simulation results, a high performance color filter is proposed by optimizing the structural parameters. The full width at half-maximum (FWHM) reflection spectrum of the filters are reduced from 100 nm to 70 nm and the peak reflection efficiency of the filters are about 90%. The overlap of the tricolor output spectra decreases effectively, which will increase the color saturation of the color filter.

  13. Neutron radiation effects on Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Talnagi, Joseph; Miller, Don W.

    2003-07-01

    Nuclear Power Plant operators and Generation IV plant designers are considering advanced data transmission and measurement systems to improve system economics and safety, while concurrently addressing the issue of obsolescence of instrumentation and control systems. Fiber optic sensors have advantages over traditional sensors such as immunity to electromagnetic interference or radio frequency interference, higher sensitivity and accuracy, smaller size and less weight, higher bandwidth and multiplexing capability. A Fabry-Perot fiber optic sensor utilizes a unique interferometric mechanism and data processing technique, and has potential applications in nuclear radiation environments. Three sensors with different gamma irradiation history were irradiated in a mixed neutron/gamma irradiation field, in which the total neutron fluence was 2.6×10 16 neutrons/cm 2 and the total gamma dose was 1.09 MGy. All of them experienced a temperature shift of about 34°F but responded linearly to temperature changes. An annealing phenomenon was observed as the environmental temperature increased, which reduced the offset by approximately 63%.

  14. Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) for spaceborne measurements of CO

    NASA Astrophysics Data System (ADS)

    Johnson, Brian R.; Kampe, Thomas U.; Cook, William B.; Miecznik, Grzegorz; Novelli, Paul C.; Snell, Hilary E.; Turner-Valle, Jennifer A.

    2003-11-01

    An instrument concept for an Imaging Multi-Order Fabry-Perot Spectrometer (IMOFPS) has been developed for measuring tropospheric carbon monoxide (CO) from space. The concept is based upon a correlation technique similar in nature to multi-order Fabry-Perot (FP) interferometer or gas filter radiometer techniques, which simultaneously measure atmospheric emission from several infrared vibration-rotation lines of CO. Correlation techniques provide a multiplex advantage for increased throughput, high spectral resolution and selectivity necessary for profiling tropospheric CO. Use of unconventional multilayer interference filter designs leads to improvement in CO spectral line correlation compared with the traditional FP multi-order technique, approaching the theoretical performance of gas filter correlation radiometry. In this implementation, however, the gas cell is replaced with a simple, robust solid interference filter. In addition to measuring CO, the correlation filter technique can be applied to measurements of other important gases such as carbon dioxide, nitrous oxide and methane. Imaging the scene onto a 2-D detector array enables a limited range of spectral sampling owing to the field-angle dependence of the filter transmission function. An innovative anamorphic optical system provides a relatively large instrument field-of-view for imaging along the orthogonal direction across the detector array. An important advantage of the IMOFPS concept is that it is a small, low mass and high spectral resolution spectrometer having no moving parts. A small, correlation spectrometer like IMOFPS would be well suited for global observations of CO2, CO, and CH4 from low Earth or regional observations from Geostationary orbit. A prototype instrument is in development for flight demonstration on an airborne platform with potential applications to atmospheric chemistry, wild fire and biomass burning, and chemical dispersion monitoring.

  15. Strong fiber Bragg grating based asymmetric Fabry-Perot sensor system with multiple reflections for high sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Hu, Zhengliang; Ma, Mingxiang; Lin, Huizu; Hu, Yongming

    2014-03-01

    A fiber Bragg grating based (FBG-based) Fabry-Perot (FP) sensor system utilizing multiple reflections between two strong FBGs with different reflectiveties to enhance the sensitivity is proposed. The different interference signals are obtained by using different multiple-path-matched Michelson interferometers (MIs). The system is lighted by the ultra-narrow line width erbium-doped fiber ring laser and the signal is demodulated by phase-generated carrier (PGC) scheme. The method to choose the optimal parameters of the FBG-based asymmetric FP sensor and the different matching MIs is analyzed. The experimental results show that each matching MI can steadily enhance the sensitivity of the demodulated signal in the bandwidth of 80-8000 Hz. The sensitivity of the system can be enhanced about 19.1 dB when the light reflects nine times between the two FBGs. Further more, this system can be used to extend the dynamic range and the effective working bandwidth and so on.

  16. Dual-modulation fiber Fabry-Perot interferometer with double reflection for slowly-varying displacements.

    PubMed

    Seat, H C; Chawah, P; Cattoen, M; Sourice, A; Plantier, G; Boudin, F; Chéry, J; Brunet, C; Bernard, P; Suleiman, M

    2012-07-15

    This Letter describes a dual-amplitude modulation technique incorporated into a double reflection extrinsic-type fiber Fabry-Perot interferometer to measure periodic, nonperiodic as well as quasi-static displacements. The modulation scheme simultaneously maintains the interference signal pair in quadrature and provides a reference signal for displacements inferior to a quarter of the source wavelength. The control and phase demodulation of the interferometer carried out via software enable quasi-real-time measurement and facilitates sensor alignment. The sensor system can be exploited in the low frequency range from 10(-3) to ∼500 Hz and has a resolution better than 2.2 nm, targeting applications in geophysics.

  17. Fabry-Perot observations of comet Austin

    NASA Technical Reports Server (NTRS)

    Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.

    1990-01-01

    Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.

  18. An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement

    NASA Astrophysics Data System (ADS)

    Pullteap, S.; Seat, H. C.

    2015-03-01

    A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 μm to 140 μm. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of λ/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.

  19. An Extrinsic Fabry-Perot Interferometric Sensor using Intermodal Phase Shifting and Demultiplexing of the Propagating Modes in a Few-Mode Fiber

    NASA Astrophysics Data System (ADS)

    Chatterjee, Julius

    This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.

  20. Mode power distribution effect in white-light multimode fiber extrinsic Fabry-Perot interferometric sensor systems.

    PubMed

    Han, Ming; Wang, Anbo

    2006-05-01

    Theoretical and experimental results have shown that mode power distribution (MPD) variations could significantly vary the phase of spectral fringes from multimode fiber extrinsic Fabry-Perot interferometric (MMF-EFPI) sensor systems, owing to the fact that different modes introduce different extra phase shifts resulting from the coupling of modes reflected at the second surface to the lead-in fiber end. This dependence of fringe pattern on MPD could cause measurement errors in signal demodulation methods of white-light MMF-EFPI sensors that implement the phase information of the fringes.

  1. Hybrid Fabry-Perot interferometer for simultaneous liquid refractive index and temperature measurement.

    PubMed

    Xu, Ben; Yang, Yi; Jia, Zhenbao; Wang, D N

    2017-06-26

    A compact and high sensitivity sensor with a fiber-tip structure is proposed and demonstrated for simultaneously liquid refractive index (RI) and temperature sensing. The device is fabricated by inserting a tiny segment of capillary tube between single-mode fibers (SMFs) to form two cascaded Fabry-Perot interferometers (FPIs). The theoretical and experimental results demonstrate that the ambient liquid RI and temperature can be simultaneously determined by the intensity and shift of the resonant wavelength in the reflection spectrum. Our proposed device has the highest RI sensitivity of ~216.37 dB/RIU at the RI value of 1.30; a high spatial resolution owing to its compact size (with dimension <400 μm) makes it promising for high precision bio/chemical sensing applications.

  2. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.

    2007-01-01

    New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based

  3. Optical fiber extrinsic Fabry-Perot interferometric (EFPI)-based biosensors

    NASA Astrophysics Data System (ADS)

    Elster, Jennifer L.; Jones, Mark E.; Evans, Mishell K.; Lenahan, Shannon M.; Boyce, Christopher A.; Velander, William H.; VanTassell, Roger

    2000-05-01

    A novel system incorporating optical fiber extrinsic Fabry- Perot interferometric (EFPI)-based sensors for rapid detection of biological targets is presented. With the appropriate configuration, the EFPI senor is able to measure key environmental parameters by monitoring the interferometric fringes resulting from an optical path differences of reflected signals. The optical fiber EFPI sensor has been demonstrated for strain, pressure, and temperature measurements and can be readily modified for refractive index measurements by allowing solutions to flow into an open cavity. The sensor allows for highly sensitive, real-time, refractive index measurements and by applying affinity coatings containing ligands within this cavity, specific binding of target molecules can be accomplished. As target molecules bind to the coating, there is an increased density within the film, causing a measurable refractive index change that correlates to the concentration of detected target molecules. This sensor platform offers enhanced sensing capabilities for clinical diagnostics, pharmaceutical screening, environmental monitoring, food pathogen detection, biological warfare agent detection, and industrial bioprocessing. Promising applications also exist for process monitoring within the food/beverage, petroleum, and chemical industry.

  4. Large size MOEMS Fabry-Perot interferometer filter for focal plane array hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chee, J.; Hwu, J.; Kim, T. S.; Kubby, J.; Velicu, S.; Gupta, N.

    2015-02-01

    Focal plane array (FPA) technology is mature and is widely used for imaging applications. However, FPAs have broadband responses which limit their ability to provide high performance in hyperspectral applications such as detection of buried explosives, and identifying the presence of explosive chemicals and their concentrations. EPIR is currently developing Micro-Opto-Electro-Mechanical System (MOEMS) Fabry-Perot interferometer filter (FPF) devices for FPAs. In this paper, we present our approach to MOEMS FPF design and fabrication that will meet the size requirements for large format FPA hyperspectral imaging. We also report the performance of our FPF resonance cavity, capable of up to 3 μm change gap in tens of nanometer increments.

  5. An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning

    2015-08-01

    An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.

  6. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer

    PubMed Central

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D.; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C.; Estudillo-Ayala, Julian M.; Rojas-Laguna, Roberto

    2015-01-01

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10−4 RIU can be implemented by using a couple of standard and low cost photodetectors. PMID:26501277

  7. Analytical modelling of a refractive index sensor based on an intrinsic micro Fabry-Perot interferometer.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C; Estudillo-Ayala, Julian M; Rojas-Laguna, Roberto

    2015-10-15

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10(-4) RIU can be implemented by using a couple of standard and low cost photodetectors.

  8. Demodulation of micro fiber-optic Fabry-Perot interferometer using subcarrier and dual-wavelength method

    NASA Astrophysics Data System (ADS)

    Lu, En; Ran, Zengling; Peng, Fei; Liu, Zhiwei; Xu, Fuguo

    2012-03-01

    Subcarrier technology and dual-wavelength demodulation method are combined for tracking the cavity length variation of a micro fiber-optic Fabry-Perot (F-P). Compared with conventional dual-wavelength demodulation method, two operation wavelengths for demodulation are modulated with two different carrier frequencies, respectively, and then injected into optical link connected with the F-P cavity. Light power reflected for the two wavelengths is obtained by interrogating the powers of Fast Fourier Transform (FFT) spectrum at their carrier frequencies. Because the light at the two wavelengths experiences the same optical and electrical routes, measurement deviation resulting from the drift of optical and electrical links can be entirely eliminated.

  9. Optical filter based on Fabry-Perot structure using a suspension of goethite nanoparticles as electro-optic material

    NASA Astrophysics Data System (ADS)

    Abbas, Samir; Dupont, Laurent; Dozov, Ivan; Davidson, Patrick; Chanéac, Corinne

    2018-02-01

    We have investigated the feasibility of optical tunable filters based on a Fabry-Perot etalon that uses a suspension of goethite (α-FeOOH) nanorods as electro-optic material for application in optical telecommunications in the near IR range. These synthetic nanoparticles have a high optical anisotropy that give rise to a very strong Kerr effect in their colloidal suspensions. Currently, these particles are dispersed in aqueous solvent, with pH2 to ensure the colloidal electrostatic stability. However, the high conductivity of these suspensions requires using high-frequency electric fields (f > 1 MHz), which brings about a high power consumption of the driver. To decrease the field frequency, we have changed the solvent to ethylene glycol which has a lower electrical conductivity than the aqueous solvent. We have built a Fabry-Perot cell, filled with this colloidal suspension in the isotropic phase, and showed that a phase shift of 14 nm can be obtained in a field of 3V/μm. Therefore, the device can operate as a tunable filter. A key advantage of this filter is that it is, by principle, completely insensitive to the polarization of the input light. However, several technological issues still need to be solved, such as ionic contamination of the suspension from the blocking layers, and dielectrophoretic and thermal effects.

  10. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging

  11. Common mode frequency instability in internally phase-locked terahertz quantum cascade lasers.

    PubMed

    Wanke, M C; Grine, A D; Fuller, C T; Nordquist, C D; Cich, M J; Reno, J L; Lee, Mark

    2011-11-21

    Feedback from a diode mixer integrated into a 2.8 THz quantum cascade laser (QCL) was used to phase lock the difference frequencies (DFs) among the Fabry-Perot (F-P) longitudinal modes of a QCL. Approximately 40% of the DF power was phase locked, consistent with feedback loop bandwidth of 10 kHz and phase noise bandwidth ~0.5 MHz. While the locked DF signal has ≤ 1 Hz linewidth and negligible drift over ~30 min, mixing measurements between two QCLs and between a QCL and molecular gas laser show that the common mode frequency stability is no better than a free-running QCL. © 2011 Optical Society of America

  12. Picometre displacement measurements using a differential Fabry-Perot optical interferometer and an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Çelik, Mehmet; Hamid, Ramiz; Kuetgens, Ulrich; Yacoot, Andrew

    2012-08-01

    X-ray interferometry is emerging as an important tool for dimensional nanometrology both for sub-nanometre measurement and displacement. It has been used to verify the performance of the next generation of displacement measuring optical interferometers within the European Metrology Research Programme project NANOTRACE. Within this project a more detailed set of comparison measurements between the x-ray interferometer and a dual channel Fabry-Perot optical interferometer (DFPI) have been made to demonstrate the capabilities of both instruments for picometre displacement metrology. The results show good agreement between the two instruments, although some minor differences of less than 5 pm have been observed.

  13. Optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect

    NASA Astrophysics Data System (ADS)

    Li, Yina; Zhao, Chunliu; Xu, Ben; Wang, Dongning; Yang, Minghong

    2018-05-01

    An optical cascaded Fabry-Perot interferometer hydrogen sensor based on vernier effect has been proposed and achieved. The proposed sensor, which total length is ∼594 μm, is composed of a segment of large mode area fiber (LMAF) and a segment of hollow-core fiber (HCF). The proposed sensor is coated with the Pt-loaded WO3/SiO2 powder which will result in the increase of local temperature of the sensor head when exposed to hydrogen atmosphere. Thus the hydrogen sensor can be achieved by monitoring the change of resonant envelope wavelength. The hydrogen sensitivity is -1.04 nm/% within the range of 0 % -2.4 % which is greatly improved because of the vernier effect. The response time is ∼80 s. Due to its compact configuration, the proposed sensor provides a feasible and miniature structure to achieve detection of hydrogen.

  14. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter.

    PubMed

    Boutami, S; Ben Bakir, B; Leclercq, J-L; Letartre, X; Rojo-Romeo, P; Garrigues, M; Viktorovitch, P; Sagnes, I; Legratiet, L; Strassner, M

    2006-04-17

    The authors report a compact and highly selective tunable filter using a Fabry-Perot resonator combining a bottom micromachined 3-pair-InP/air-gap Bragg reflector with a top photonic crystal slab mirror. It is based on the coupling between radiated vertical cavity modes and waveguided modes of the photonic crystal. The full-width at half maximum (FWHM) of the resonance, as measured by microreflectivity experiments, is close to 1.5nm (around 1.55 microm). The presence of the photonic crystal slab mirror results in a very compact resonator, with a limited number of layers. The demonstrator was tuned over a 20nm range for a 4V tuning voltage, the FWHM being kept below 2.5nm. Bending of membranes is a critical issue, and better results (FWHM=0.5nm) should be obtained on the same structure if this technological point is fixed.

  15. Fresnel coefficients and Fabry-Perot formula for spatially dispersive metallic layers

    NASA Astrophysics Data System (ADS)

    Pitelet, Armel; Mallet, Émilien; Centeno, Emmanuel; Moreau, Antoine

    2017-07-01

    The repulsion between free electrons inside a metal makes its optical response spatially dispersive, so that it is not described by Drude's model but by a hydrodynamic model. We give here fully analytic results for a metallic slab in this framework, thanks to a two-mode cavity formalism leading to a Fabry-Perot formula, and show that a simplification can be made that preserves the accuracy of the results while allowing much simpler analytic expressions. For metallic layers thicker than 2.7 nm modified Fresnel coefficients can actually be used to accurately predict the response of any multilayer with spatially dispersive metals (for reflection, transmission, or the guided modes). Finally, this explains why adding a small dielectric layer [Y. Luo et al., Phys. Rev. Lett. 111, 093901 (2013), 10.1103/PhysRevLett.111.093901] allows one to reproduce the effects of nonlocality in many cases, and especially for multilayers.

  16. High-temperature measurement by using a PCF-based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Xu, Lai-Cai; Deng, Ming; Duan, De-Wen; Wen, Wei-Ping; Han, Meng

    2012-10-01

    A new method for fabricating a fiber-optic Fabry-Perot interferometer (FPI) for high-temperature sensing is presented. The sensor is fabricated by fusion splicing a short section of endlessly single-mode photonic crystal fiber (ESM-PCF) to the cleaved end facet of a single-mode fiber (SMF) with an intentional complete collapse at the splice joint. This procedure not only provides easier, faster and cheaper technology for FPI sensors but also yields the FPI exhibiting an accurate and stable sinusoidal interference fringe with relatively high signal-to-noise ratio (SNR). The high-temperature response of the FPI sensors were experimentally studied and the results show that the sensor allows linear and stable measurement of temperatures up to 1100 °C with a sensitivity of ˜39.1 nm/°C for a cavity length of 1377 um, which makes it attractive for aeronautics and metallurgy areas.

  17. Fiber Fabry-Perot tip sensor based on multimode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wu, Di; Huang, Yu; Fu, Jian-Yu; Wang, Guo-Yin

    2015-03-01

    We propose a novel Fabry-Perot interferometer (FPI) sensor for simultaneous measurement of refractive index (RI) and temperature based on Fresnel reflection and the thermo-optic effect of silica. The sensor head consists of a short section of multimode photonic crystal fiber (MPCF) and a conventional single mode fiber (SMF), where two thin films are formed by collapsing the air holes of MPCF with a commercialized fusion splicer. Experimental results show that such a device has a linear RI sensitivity of ~21.52 dB/RIU (RI unit) and a linear optical path difference (OPD) temperature sensitivity of ~25 nm/°C. In addition, a high RI resolution of about ~1.7×10-5 is obtained by using the Fourier transformation to decompose the spectral response in different spatial frequencies. Low-cost, easy fabrication and high resolution make it appropriate for practical applications.

  18. Measurement of a free spectral range of a Fabry-Perot cavity using frequency modulation and null method under off-resonance conditions

    NASA Astrophysics Data System (ADS)

    Aketagawa, Masato; Kimura, Shohei; Yashiki, Takuya; Iwata, Hiroshi; Banh, Tuan Quoc; Hirata, Kenji

    2011-02-01

    In this paper, we discuss a method to measure the free spectral range (FSR) of a Fabry-Perot cavity (FP-cavity) using frequency modulation with one electric optical modulator (EOM) and the null method. A laser beam modulated by the EOM, to which a sine wave signal is supplied from a radio frequency (RF) oscillator, is incident on the FP-cavity. The transmitted or reflected light from the FP-cavity is observed and converted to an RF signal by a high-speed photodetector, and the RF signal is synchronously demodulated with a lock-in amplifier by referring to a cosine wave signal from the oscillator. We theoretically and experimentally demonstrate that the lock-in amplifier signal for the transmitted or reflected light becomes null with a steep slope when the modulation frequency is equal to the FSR under the condition that the carrier frequency of the laser is slightly detuned from the resonance of the FP-cavity. To reduce the measurement uncertainty for the FSR, we also discuss a selection method for laser power, a modulation index and the detuning shift of the carrier frequency, respectively.

  19. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer.

    PubMed

    Shangguan, Mingjia; Xia, Haiyun; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-Wei

    2016-08-22

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1.5 μm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the center frequencies and the bandwidths of spectra of the aerosol backscatter are obtained simultaneously. Continuous LOS wind observations are carried out on two days at Hefei (31.843 °N, 117.265 °E), China. The horizontal detection range of 4 km is realized with temporal resolution of 1 minute. The spatial resolution is switched from 30 m to 60 m at distance of 1.8 km. In a comparison experiment, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). An empirical method is adopted to evaluate the precision of the measurements. The standard deviation of the wind speed is 0.76 m/s at 1.8 km. The standard deviation of bandwidth variation is 2.07 MHz at 1.8 km.

  20. Optical fiber voltage sensor based on Michelsion interferometer using Fabry-Perot demodulation interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Xinwei; He, Shengnan; Li, Dandan; Wang, Kai; Fan, Yan'en; Wu, Shuai

    2014-11-01

    We present an optical fiber voltage sensor by Michelsion interferometer (MI) employing a Fabry-Perot (F-P) interferometer and the DC phase tracking (DCPT) signal processing method. By mounting a MI fabricated by an optical fiber coupler on a piezoelectric (PZT) transducer bar, a dynamic strain would be generated to change the optical path difference (OPD) of the interferometer when the measured voltage was applied on the PZT. Applying an F-P interferometer to demodulate the optical intensity variation output of the MI, the voltage can be obtained. The experiment results show that the relationship between the optical intensity variation and the voltage applied on the PZT is approximately linear. Furthermore, the phase generate carrier (PGC) algorithm was applied to demodulate the output of the sensor also.

  1. Applications of Gunn lasers

    NASA Astrophysics Data System (ADS)

    Balkan, N.; Chung, S. H.

    2008-04-01

    The principle of the operation of a Gunn laser is based on the band to band recombination of impact ionized non-equilibrium electron-hole pairs in propagating high field space-charge domains in a Gunn diode, which is biased above the negative differential resistance threshold and placed in a Fabry-Perot or a vertical micro cavity (VCSEL). In conventional VCSEL structures, unless specific measures such as the addition of oxide apertures and use of small windows are employed, the lack of uniformity in the density of current injected into the active region can reduce the efficiency and delay the lasing threshold. In a vertical-cavity structured Gunn device, however, the current is uniformly injected into the active region independently of the distributed Bragg reflector (DBR) layers. Therefore, lasing occurs from the entire surface of the device. The light emission from Gunn domains is an electric field induced effect. Therefore, the operation of Gunn-VCSEL or F-P laser is independent of the polarity of the applied voltage. Red-NIR VCSELs emitting in the range of 630-850 nm are also possible when Ga 1-xAl xAs (x < 0.45) is used the active layer, making them candidates for light sources in plastic optical fibre (POF) based short-distance data communications. Furthermore the device may find applications as an optical clock and cross link between microwave and NIR communications. The operation of a both Gunn-Fabry-Perot laser and Gunn-VCSEL has been demonstrated by us recently. In the current work we present the potential results of experimental and theoretical studies concerning the applications together with the gain and emission characteristics of Gunn-Lasers.

  2. High Resolution Fabry-Perot Spectroscopy Of Comet Fragments 73P/ Schwassmann-Wachmann 3-B,C

    NASA Astrophysics Data System (ADS)

    Oliversen, Ronald J.; Mierkiewicz, E. J.; Morgenthaler, J. P.; Harris, W. M.; Kokorowski, M.; Kidder, A.; Schnackenberg, T.; Carpena Nunez, J.; Hall, T.; Haffner, L.

    2006-09-01

    In May 2006, comet 73P/Schwassmann-Wachmann 3 (SW3) made a spectacular close approach to the Earth. During its 1995 apparition, the comet fragmented into several pieces. One of the brighter components, SW3-B, fragmented into dozens of pieces during the 2006 apparition while another bright fragment, SW3-C did not. Understanding the difference between these two fragments will contribute significantly to our understanding of cometary interiors. We performed observations of SW3-B and SW3-C from Kitt Peak using the Fabry-Perot spectrometers at the McMath-Pierce (MMP) telescope from April 29 - May 10 and at the Wisconsin Hydrogen Alpha Mapper (WHαM) from May 1 - 6, 2006. This period is significant due to its proximity to perigee, overlap with complementary observations, and coincidence with the onset and decline-phase of a major outburst/fragmentation event from SW3-B. The MMP and WHAM Fabry-Perot spectrometers made high resolution measurements of [O I] and NH2 emissions near 6300 Å at δV = 5 km/s and 12 km/s with 4.5 arcmin and 1 degree fields of view, respectively. Many of the spectra separate the cometary and terrestrial [O I] lines and allow determination of water production rates. We report the preliminary analysis of these data, including discussion of the radial distribution of emissions, a comparison activity levels between the two fragments, and a comparison with complementary production rate measurements made over the same period. In addition, following the SW3-B May 9 outburst, H20+ measurements near 6200 Å were made to map the acceleration of water ions near the head and down the tail.

  3. Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors.

    PubMed

    Xia, Ji; Xiong, Shuidong; Wang, Fuyin; Luo, Hong

    2016-07-01

    We report on phase interrogation of extrinsic Fabry-Perot interferometric (EFPI) sensors through a wavelength-switched unit with a polarization-maintaining fiber Bragg grating (PMFBG). The measurements at two wavelengths are first achieved in one total-optical path. The reflected peaks of the PMFBG with two natural wavelengths are in mutually perpendicular polarization detection, and they are switched through an electro-optic modulator at a high switching speed of 10 kHz. An ellipse fitting differential cross multiplication (EF-DCM) algorithm is proposed for interrogating the variation of the gap length of the EFPI sensors. The phase demodulation system has been demonstrated to recover a minimum phase of 0.42  μrad/Hz at the test frequency of 100 Hz with a stable intensity fluctuation level of ±0.8  dB. Three EFPI sensors with different cavity lengths are tested at the test frequency of 200 Hz, and the results indicate that the system can achieve the demodulation of EFPI sensors with different cavity lengths stably.

  4. Fabry-Perot Interferometry in the Integer and Fractional Quantum Hall Regimes

    NASA Astrophysics Data System (ADS)

    McClure, Douglas; Chang, Willy; Kou, Angela; Marcus, Charles; Pfeiffer, Loren; West, Ken

    2011-03-01

    We present measurements of electronic Fabry-Perot interferometers in the integer and fractional quantum Hall regimes. Two classes of resistance oscillations may be seen as a function of magnetic field and gate voltage, as we have previously reported. In small interferometers in the integer regime, oscillations of the type associated with Coulomb interaction are ubiquitous, while those consistent with single-particle Aharonov-Bohm interference are seen to co-exist in some configurations. The amplitude scaling of both types with temperature and device size is consistent with a theoretical model. Oscillations are further observed in the fractional quantum Hall regime. Here the dependence of the period on the filling factors in the constrictions and bulk of the interferometer can shed light on the effective charge of the interfering quasiparticles, but care is needed to distinguish these oscillations from those associated with integer quantum Hall states. We acknowledge funding from Microsoft Project Q and IBM.

  5. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  6. Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam

    2015-09-01

    An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.

  7. Wavelength-division-multiplexing method of polarized low-coherence interferometry for fiber Fabry-Perot interferometric sensors.

    PubMed

    Yin, Jinde; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; Wu, Fan; Ding, Zhenyang

    2013-10-01

    We propose a new wavelength-division-multiplexing method for extrinsic fiber Fabry-Perot interferometric (EFPI) sensing in a polarized low-coherence interferometer configuration. In the proposed method, multiple LED sources are used with different center wavelengths, and each LED is used by a specific sensing channel, and therefore the spatial frequency of the low-coherence interferogram of each channel can be separated. A bandpass filter is used to extract the low-coherence interferogram of each EFPI channel, and thus the cavity length of each EFPI channel can be identified through demultiplexing. We successfully demonstrate the simultaneous demodulation of EFPI sensors with same nominal cavity length while maintaining high measurement precision.

  8. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  9. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, Gary W.

    1996-01-01

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  10. Parallel demodulation system and signal-processing method for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors.

    PubMed

    Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin

    2005-03-15

    A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented that is based on a Michelson interferometer and combines the methods of low-coherence interference and Fourier transform spectrum. Signals from EFPI and FBG sensors are obtained simultaneously by scanning one arm of a Michelson interferometer, and an algorithm model is established to process the signals and retrieve both the wavelength of the FBG and the cavity length of the EFPI at the same time, which are then used to determine the strain and temperature.

  11. Hollow glass microsphere-structured Fabry-Perot interferometric sensor for highly sensitive temperature measurement

    NASA Astrophysics Data System (ADS)

    Cheng, Junna; Zhou, Ciming; Fan, Dian; Ou, Yiwen

    2017-04-01

    We propose and demonstrate a miniature Fabry-Perot (F-P) interferometric sensor based on a hollow glass microsphere (HGM) for highly sensitive temperature measurement. The sensor head is fabricated by sticking a HGM on the end face of a single-mode fiber, and it consists of a short air F-P cavity between the front and the rear surfaces of the HGM. A sensor with 135.7280-μm cavity length was tested for temperature measurement from -5 °C to 50 °C. The obtained sensitivity reached up to 24.5 pm/°C and the variation rate of the HGM- F-P's cavity length was2.1 nm/°C. The advantages of compact size, easy fabrication and low cost make the sensor suitable for highly sensitive temperature sensing.

  12. Fiber-integrated refractive index sensor based on a diced Fabry-Perot micro-resonator.

    PubMed

    Suntsov, Sergiy; Rüter, Christian E; Schipkowski, Tom; Kip, Detlef

    2017-11-20

    We report on a fiber-integrated refractive index sensor based on a Fabry-Perot micro-resonator fabricated using simple diamond blade dicing of a single-mode step-index fiber. The performance of the device has been tested for the refractive index measurements of sucrose solutions as well as in air. The device shows a sensitivity of 1160 nm/RIU (refractive index unit) at a wavelength of 1.55 μm and a temperature cross-sensitivity of less than 10 -7   RIU/°C. Based on evaluation of the broadband reflection spectra, refractive index steps of 10 -5 of the solutions were accurately measured. The conducted coating of the resonator sidewalls with layers of a high-index material with real-time reflection spectrum monitoring could help to significantly improve the sensor performance.

  13. Signal processing of white-light interferometric low-finesse fiber-optic Fabry-Perot sensors.

    PubMed

    Ma, Cheng; Wang, Anbo

    2013-01-10

    Signal processing for low-finesse fiber-optic Fabry-Perot sensors based on white-light interferometry is investigated. The problem is demonstrated as analogous to the parameter estimation of a noisy, real, discrete harmonic of finite length. The Cramer-Rao bounds for the estimators are given, and three algorithms are evaluated and proven to approach the bounds. A long-standing problem with these types of sensors is the unpredictable jumps in the phase estimation. Emphasis is made on the property and mechanism of the "total phase" estimator in reducing the estimation error, and a varying phase term in the total phase is identified to be responsible for the unwanted demodulation jumps. The theories are verified by simulation and experiment. A solution to reducing the probability of jump is demonstrated. © 2013 Optical Society of America

  14. UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer.

    PubMed

    Rong, Qiangzhou; Hao, Yongxin; Zhou, Ruixiang; Yin, Xunli; Shao, Zhihua; Liang, Lei; Qiao, Xueguang

    2017-02-17

    A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D) images of four physical models are reconstructed.

  15. Laser interferometric high-precision angle monitor for JASMINE

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei

    2006-06-01

    The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.

  16. Stable and rugged etalon for the Dynamics Explorer Fabry-Perot interferometer. 1: Design and construction.

    PubMed

    Rees, D; Fuller-Rowell, T J; Lyons, A; Killeen, T L; Hays, P B

    1982-11-01

    This is one of two papers which describe the development and performance of a very stable and rugged etalon designed for use in the Fabry-Perot interferometer, one of the instruments of the NASA Dynamics Explorer satellite mission, and which will obtain global measurements of the thermospheric and mesospheric wind and temperature with an accuracy of aporoximately 10 m/sec. The etalon consists of two flat plates of fused silica, with spacers constructed of Zerodur (a polycrystalline glass ceramic of extremely low expansion coefficient) which are cemented together using cyanoacrylic adhesives. This provides adequate mechanical integrity and stability for any space flight application and has a thermal expansion coefficient of the etalon cavity of <10(-7)/ degrees C.

  17. New GasB-based single-mode diode lasers in the NIR and MIR spectral regime for sensor applications

    NASA Astrophysics Data System (ADS)

    Milde, Tobias; Hoppe, Morten; Tatenguem, Herve; Honsberg, Martin; Mordmüller, Mario; O'Gorman, James; Schade, Wolfgang; Sacher, Joachim

    2018-02-01

    The NIR/MIR region between 1.8μm and 3.5μm contains important absorption lines for gas detection. State of the art are InP laser based setups, which show poor gain above 1.8μm and cannot be applied beyond 2.1μm. GaSb laser show a significantly higher output power (100mW for Fabry-Perot, 30mW for DFB). The laser design is presented with simulation and actual performance data. The superior performance of the GaSb lasers is verified in gas sensing applications. TDLAS and QEPAS measurements at trace gases like CH4, CO2 and N2O are shown to prove the spectroscopy performance.

  18. Wide field of view spectroscopy using solid Fabry-Perot interferometers

    NASA Astrophysics Data System (ADS)

    Nikoleyczik, Jonathan; Kutyrev, Alexander; Moseley, Harvey; Veilleux, Sylvain

    2016-08-01

    We present a high resolution spectrometer consisting of dual solid Fabry-Perot Interferometers (FPI). Each FPI is made of a single piece of L-BBH2 glass which has a high index of refraction n 2.07. Each is then coated with partially reflective mirrors to achieve a spectral resolution of R 30,000. Running the FPIs in tandem reduces the overlapping orders and allows for a much wider free spectral range and higher contrast. Tuning of the FPIs is achieved by adjusting the temperature and thus changing the FPI gap and the refractive index of the material. The spectrometer then moves spatially in order to get spectral information at every point in the field of view. We select spectral lines for further analysis and create maps of the line depths across the field. Using this technique we are able to measure the fluorescence of chlorophyll in plants and observe zodiacal light. In the chlorophyll analysis we are able to detect chlorophyll fluorescence using the line depth in a plant using the sky as a reference solar spectrum. This instrument has possible applications in either a cubesat or aerial observations to measure bulk plant activity over large areas.

  19. Widely tunable Fabry-Perot filter based MWIR and LWIR microspectrometers

    NASA Astrophysics Data System (ADS)

    Ebermann, Martin; Neumann, Norbert; Hiller, Karla; Gittler, Elvira; Meinig, Marco; Kurth, Steffen

    2012-06-01

    As is generally known, miniature infrared spectrometers have great potential, e. g. for process and environmental analytics or in medical applications. Many efforts are being made to shrink conventional spectrometers, such as FTIR or grating based devices. A more rigorous approach for miniaturization is the use of MEMS technologies. Based on an established design for the MWIR new MEMS Fabry-Perot filters and sensors with expanded spectral ranges in the LWIR have been developed. The range 5.5 - 8 μm is particularly suited for the analysis of liquids. A dual-band sensor, which can be simultaneously tuned from 4 - 5 μm and 8 - 11 μm for the measurement of anesthetics and carbon dioxide has also been developed. A new material system is used to reduce internal stress in the reflector layer stack. Good results in terms of finesse (<= 60) and transmittance (<= 80 %) could be demonstrated. The hybrid integration of the filter in a pyroelectric detector results in very compact, robust and cost effective microspectrometers. FP filters with two moveable reflectors instead of only one reduce significantly the acceleration sensitivity and actuation voltage.

  20. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.

    PubMed

    Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie

    2013-11-10

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  1. A novel fiber optic Fabry-Perot structure with a micrometric diameter tip

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Xu, Juncheng; Wang, Zhuang; Cooper, Kristie L.; Wang, Anbo

    2006-08-01

    This paper presents a novel fiber optic Fabry-Perot (FP) structure with a micrometric diameter tip. The fabrication of micro scale probes has become essential in intracellular surgery, in cell sensing, manipulation, and injection. It is of great importance in many fields, such as genetics, pathology, criminology, pharmacogenetics, and food safety. With such a tiny protrusion, the sensor can be inserted into micron size cells, say, for DNA analysis. With the FP cavity inside the fiber, the change of optical path difference (OPD) caused by the environment can be demodulated. In addition, the structure is intrinsically capable of temperature compensation. What's more, it is simple, cost-efficient, and compact. Last but not the least, the structure shows promise for nanometric protrusion. Once this goal is achieved, the sensor can be inserted into most cells. The sensor could pave the way for faster, more accurate medical diagnostic tests for countless conditions and may ultimately save lives by allowing earlier disease detection and intervention.

  2. Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)

    2000-01-01

    We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.

  3. Tunable MOEMS Fabry-Perot interferometer for miniaturized spectral sensing in near-infrared

    NASA Astrophysics Data System (ADS)

    Rissanen, A.; Mannila, R.; Tuohiniemi, M.; Akujärvi, A.; Antila, J.

    2014-03-01

    This paper presents a novel MOEMS Fabry-Perot interferometer (FPI) process platform for the range of 800 - 1050 nm. Simulation results including design and optimization of device properties in terms of transmission peak width, tuning range and electrical properties are discussed. Process flow for the device fabrication is presented, with overall process integration and backend dicing steps resulting in successful fabrication yield. The mirrors of the FPI consist of LPCVD (low-pressure chemical vapor) deposited polySi-SiN λ/4-thin film Bragg reflectors, with the air gap formed by sacrificial SiO2 etching in HF vapor. Silicon substrate below the optical aperture is removed by inductively coupled plasma (ICP) etching to ensure transmission in the visible - near infra-red (NIR), which is below silicon transmission range. The characterized optical properties of the chips are compared to the simulated values. Achieved optical aperture diameter size enables utilization of the chips in both imaging as well as single-point spectral sensors.

  4. Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.

    PubMed

    Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R

    2014-10-10

    Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062  nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067  nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067  nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.

  5. Apparatus for controlling the scan width of a scanning laser beam

    DOEpatents

    Johnson, G.W.

    1996-10-22

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  6. H-alpha Fabry-Perot interferometric observations of blue compact dwarf galaxies

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh Xuan; Williams, T. B.; Malumuth, E.

    1987-01-01

    H-alpha Fabry-Perot interferometric observations of the two blue compact dwarf galaxies (BCDs) 7 Zw 403 and 1 Zw 49 are presented. The velocity field of 7 Zw 403 shows no clear large-scale organized motion but the velocity field is not completely chaotic either. The gas associated with the 8 H II regions in 7 Zw 403 has neither the highest nor lowest velocities. The BCD 1 Zw 49 is dominated by a single H II region which is about 50 times brighter than any other feature in the galaxy. There is a chain of fainter H II regions extending across the galaxy. The velocity field is well ordered along the H II region chain, but it is very complex around the dominant H II region, suggesting H-alpha loops and filaments around the latter. Both BCDs show velocity gradients of about 25 km/s on scales of about 10 pc in 7 Zw 403 and of about 50 pc in 1 Zw 49. These velocity discontinuities compress the gas and are probably responsible for the star formation.

  7. 2.1 μm high-power laser diode beam combining(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Berrou, Antoine P. C.; Elder, Ian F.; Lamb, Robert A.; Esser, M. J. Daniel

    2016-10-01

    Laser power and brightness scaling, in "eye safe" atmospheric transmission windows, is driving laser system research and development. High power lasers with good beam quality, at wavelength around 2.1 µm, are necessary for optical countermeasure applications. For such applications, focusing on efficiency and compactness of the system is mandatory. In order to cope with these requirements, one must consider the use of laser diodes which emit directly in the desired spectral region. The challenge for these diodes is to maintain a good beam quality factor as the output power increases. 2 µm diodes with excellent beam quality in both axes are available with output powers of 100 mW. Therefore, in order to reach multi-watt of average output power, broad-area single emitters and beam combining becomes relevant. Different solutions have been implemented in the 1.9 to 2 µm wavelength range, one of which is to stack multiple emitter bars reaching more than one hundred watt, while another is a fibre coupled diode module. The beam propagation factor of these systems is too high for long atmospheric propagation applications. Here we describe preliminary results on non-coherent beam combining of 2.1 µm high power Fabry-Perot GaSb laser diodes supplied by Brolis Semiconductors Ltd. First we evaluated single mode diodes (143 mW) with good beam quality (M2 < 1.5 for slow axis and < 1.1 for fast axis). Then we characterized broad-area single emitter diodes (808 mW) with an electrical-to-optical efficiency of 19 %. The emitter width was 90 µm with a cavity length of 1.5 mm. In our experiments we found that the slow axis multimode output beam consisted of two symmetric lobes with a total full width at half maximum (FWHM) divergence angle of 25 degrees, corresponding to a calculated beam quality factor of M2 = 25. The fast axis divergence was specified to be 44 degrees, with an expected beam quality factor close to the diffraction limit, which informed our selection of collimation

  8. A highly directive graphene antenna embedded inside a Fabry-Perot cavity in terahertz regime

    NASA Astrophysics Data System (ADS)

    Roshanaei, Majid; Karami, Hamidreza; Dehkhoda, Parisa; Esfahani, Hamid; Dabir, Fatemeh

    2018-05-01

    In this paper, a highly directive nano-thickness graphene-based antenna is introduced in the terahertz frequency band. The antenna is a graphene patch dipole which is placed between two Bragg mirrors called Fabry-Perot cavity. Tunability of the graphene's conductivity makes it possible to excite the desired resonances of the cavity. Here, first, a single resonant antenna is introduced at 5 THz with an enhanced gain from 2.11 dBi to 12.8 dBi with a beamwidth of 22.7°. Then, a triple resonant antenna at 4.7, 5 and 5.3 THz is presented with respective gains of 7.97, 11.9 and 8.52 dBi. Finally, the effect of dimensions and number of the dielectric layers of the cavity are studied in order to further increase in directivity.

  9. Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui

    2016-03-01

    We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.

  10. Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation

    DTIC Science & Technology

    2012-05-11

    modulation experiments 65 5.1 Review of FM lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.1.1 Fabry - Perot lasers...asymmetrical Mach Zehnder interferometers (a-MZI) [17, 34], Fabry - Perot filters [35], fiber Bragg gratings [36] and tunable integrated filters [37, 38...transmitting subcarrier-multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonenko, A A; Dorogush, E S; Malyshev, S A

    Using a system of coupled travelling wave equations, in the small-signal regime we analyse frequency and noise characteristics of index- or absorption-coupled distributed feedback laser diodes, as well as of FabryPerot (FP) laser diodes. It is shown that the weakest dependence of the direct modulation efficiency on the locking frequency in the regime of strong external optical injection locking is exhibited by a FP laser diode formed by highly reflective and antireflective coatings on the end faces of a laser structure. A reduction in the dependence of output characteristics of the laser diode on the locking frequency canmore » be attained by decreasing the reflection coefficient of the antireflective FP mirror. (control of laser radiation parameters)« less

  12. A compact LWIR hyperspectral system employing a microbolometer array and a variable gap Fabry-Perot interferometer employed as a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Hinrichs, John L.; Akagi, Jason

    2012-06-01

    A prototype long wave infrared Fourier transform spectral imaging system using a wedged Fabry-Perot interferometer and a microbolometer array was designed and built. The instrument can be used at both short (cm) and long standoff ranges (infinity focus). Signal to noise ratios are in the several hundred range for 30 C targets. The sensor is compact, fitting in a volume about 12 x12 x 4 inches.

  13. The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor.

    PubMed

    Cox, Benjamin T; Beard, Paul C

    2007-02-01

    A model of the frequency-dependent directivity of a planar, optically-addressed, Fabry-Perot (FP), polymer film ultrasound sensor is described and validated against experimental directivity measurements made over a frequency range of 1 to 15 MHz and angles from normal incidence to 80 degrees. The model may be used, for example, as a predictive tool to improve sensor design, or to provide a noise-free response function that could be deconvolved from sound-field measurements in order to improve accuracy in high-frequency metrology and imaging applications. The specific question of whether effective element sizes as small as the optical-diffraction limit can be achieved was investigated. For a polymer film sensor with a FP cavity of thickness d, the minimum effective element radius was found to be about 0.9 d, and that an illumination spot radius of less than d/4 is required to achieve it.

  14. Design of distributed FBG vibration measuring system based on Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Miao, Changyun; Li, Hongqiang; Gao, Hua; Gan, Jingmeng

    2011-11-01

    A distributed optical fiber grating wavelength interrogator based on fiber Fabry Perot tunable filter(FFP-TF) was proposed, which could measure dynamic strain or vibration of multi-sensing fiber gratings in one optical fiber by time division way. The wavelength demodulated mathematical model was built, the formulas of system output voltage and sensitivity were deduced and the method of finding static operating point was determined. The wavelength drifting characteristic of FFP-TF was discussed when the center wavelength of FFP-TF was set on the static operating point. A wavelength locking method was proposed by introducing a high-frequency driving voltage signal. A demodulated system was established based on Labview and its demodulated wavelength dynamic range is 290pm in theory. In experiment, by digital filtering applied to the system output data, 100Hz and 250Hz vibration signals were measured. The experiment results proved the feasibility of the demodulated method.

  15. Simultaneous measurement of absolute strain and differential strain based on fiber Bragg grating Fabry-Perot sensor

    NASA Astrophysics Data System (ADS)

    Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding

    2013-10-01

    We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.

  16. Photonic filtering of microwave signals in the frequency range of 0.01-20 GHz using a Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Aguayo-Rodríguez, G.; Zaldívar-Huerta, I. E.; García-Juárez, A.; Rodríguez-Asomoza, J.; Larger, L.; Courjal, N.

    2011-01-01

    We demonstrate experimentally the efficiency of tuning of a photonic filter in the frequency range of 0.01 to 20 GHz. The presented work combines the use of a multimode optical source associated with a dispersive optical fiber to obtain the filtering effect. Tunability effect is achieved by the use of a Fabry-Perot filter that allows altering the spectral characteristics of the optical source. Experimental results are validated by means of numerical simulations. The scheme here proposed has a potential application in the field of optical telecommunications.

  17. Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of multimode fiber

    NASA Astrophysics Data System (ADS)

    Chen, Weiping P.; Wang, Dongning N.; Xu, Ben; Wang, Zhaokun K.; Zhao, Chun-Liu

    2017-05-01

    We demonstrate an optical Fabry-Perot interferometer fiber tip sensor based on a glass microsphere glued at the etched end of a multimode fiber. The fiber device is miniature and robust, with a convenient reflection mode of operation, a high temperature sensitivity of 202.6 pm/°C within the range from 5°C to 90°C, a good refractive index sensitivity of ˜119 nm/RIU within the range from 1.331 to 1.38, and a gas pressure sensitivity of 0.19 dB/MPa.

  18. Development of Silicon-substrate Based Fabry-Perot Etalons for far-IR Astrophysics

    NASA Astrophysics Data System (ADS)

    Stacey, Gordon

    We propose to design, construct and test silicon-substrate-based (SSB) mirrors necessary for high performance Fabry-Perot interferometers (FPIs) to be used in the 25-40 um mid-IR band. These mirrors will be fabricated from silicon wafers that are anti-reflection coated (ARC) by micromachining an artificial dielectric meta-material on one side, and depositing optimized gold-metalized patterns on the other. Two mirrors with the metalized surfaces facing one-another form the Fabry-Perot cavity, also known as the FPI etalon. The exterior surfaces of the silicon mirrors are anti-reflection coated for both good transmission in the science band, and to prevent unwanted parasitic FPI cavities from forming between the four surfaces (one anti-reflection coated, one metalized for each mirror) of the FPI etalon. The mirrors will be tested within a Miniature Cryogenic Scanning Fabry-Perot (MCSF) that we have designed through support of a previous NASA grant (NNX09AB95G). This design is based on our long experience in constructing and using scanning FPI in the mid-IR to submm range, and fits within test-beds we have on hand that are suitable for both warm and cold tests. The key technologies are the ARC and tuned mirrors that are enabled by silicon nano-machining techniques. The creation of these SSB mirrors promises greatly improved performance over previous versions of mid-IR to submm-band FPIs that are based on mirrors made from free-standing metal mesh stretched over support rings. Performance is improved both structurally and in terms of sensitivity, and is measured as the product of the cavity finesse times transmission. Our electromagnetic modeling suggests that SSB mirrors will improve this product by a factor of 2 over the best free standing mesh etalons available. This translates into a factor of sqrt(2) improvement in sensitivity per etalon, or a full factor of 2 when used in a tandem (dual etalon) FPI spectrometer. The SSB improvements are due to both the stiff (~ 0

  19. Development of a parallel demodulation system used for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors.

    PubMed

    Jiang, Junfeng; Liu, Tiegen; Zhang, Yimo; Liu, Lina; Zha, Ying; Zhang, Fan; Wang, Yunxin; Long, Pin

    2006-01-20

    A parallel demodulation system for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is presented, which is based on a Michelson interferometer and combines the methods of low-coherence interference and a Fourier-transform spectrum. The parallel demodulation theory is modeled with Fourier-transform spectrum technology, and a signal separation method with an EFPI and FBG is proposed. The design of an optical path difference scanning and sampling method without a reference light is described. Experiments show that the parallel demodulation system has good spectrum demodulation and low-coherence interference demodulation performance. It can realize simultaneous strain and temperature measurements while keeping the whole system configuration less complex.

  20. Chaotic LIDAR for Naval Applications

    DTIC Science & Technology

    2012-09-30

    experimental output power is shown in the following figure. Fabry-Perot Fiber Laser PD ^^ /--"^ —► -(YDF\\ {SMFV X FBG 1 0 r utput FBG 70 60 3...Right: Output power versus pump power. (PD: Pump Diode; FBG : Fiber Braggs Grating; YDF: Ytterbium Doped Fiber; SMF: Single Mode Fiber.) Preamplifier

  1. Development of ultrastable filters and lasers for solar seismology

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Kunski, R.; Cohn, R. F.

    1986-01-01

    The Stable Solar Analyzer is a recently developed instrument for the measurement of solar magnetic fields and surface velocities that is being employed at the U.S. National Solar Observatory to study the subsurface convection cells of the sun and the structure of surface and subsurface magnetic fields. The Analyzer is expected to ultimately be flown aboard such spacecraft as the ESA/NASA Solar and Heliospheric Observatory. This instrument is based on a crystalline lithium niobate Fabry-Perot filter that is used in conjunction with a stabilized laser that furnishes an absolute wavelength reference; this laser Fabry-Perot combination has achieved wavelength stabilities of the order of 2 parts in 10 to the 10th, over a six-hour interval.

  2. Mesopause Winds and OH Intensities at Mid-Latitudes-Fabry-Perot Interferometer Observations of the OH Emission at 8430 A from Bear Lake Observatory

    DTIC Science & Technology

    1993-01-01

    73 1 5.1 The Fabry-Perot Interferometer ............................................................ 73 5.1.1. The Scanning Mirror System...instrument to view the sky aided by a mirror system, and a Plexiglas dome cover protects the instrument and electronics from the elements. I Because the...sections describe the individual components of the instrument at Bear Lake and refer to Figure 19. I 5.1.1. The Scanning Mirror System The scanning

  3. Parallelised photoacoustic signal acquisition using a Fabry-Perot sensor and a camera-based interrogation scheme

    NASA Astrophysics Data System (ADS)

    Saeb Gilani, T.; Villringer, C.; Zhang, E.; Gundlach, H.; Buchmann, J.; Schrader, S.; Laufer, J.

    2018-02-01

    Tomographic photoacoustic (PA) images acquired using a Fabry-Perot (FP) based scanner offer high resolution and image fidelity but can result in long acquisition times due to the need for raster scanning. To reduce the acquisition times, a parallelised camera-based PA signal detection scheme is developed. The scheme is based on using a sCMOScamera and FPI sensors with high homogeneity of optical thickness. PA signals were acquired using the camera-based setup and the signal to noise ratio (SNR) was measured. A comparison of the SNR of PA signal detected using 1) a photodiode in a conventional raster scanning detection scheme and 2) a sCMOS camera in parallelised detection scheme is made. The results show that the parallelised interrogation scheme has the potential to provide high speed PA imaging.

  4. Wavelet phase extracting demodulation algorithm based on scale factor for optical fiber Fabry-Perot sensing.

    PubMed

    Zhang, Baolin; Tong, Xinglin; Hu, Pan; Guo, Qian; Zheng, Zhiyuan; Zhou, Chaoran

    2016-12-26

    Optical fiber Fabry-Perot (F-P) sensors have been used in various on-line monitoring of physical parameters such as acoustics, temperature and pressure. In this paper, a wavelet phase extracting demodulation algorithm for optical fiber F-P sensing is first proposed. In application of this demodulation algorithm, search range of scale factor is determined by estimated cavity length which is obtained by fast Fourier transform (FFT) algorithm. Phase information of each point on the optical interference spectrum can be directly extracted through the continuous complex wavelet transform without de-noising. And the cavity length of the optical fiber F-P sensor is calculated by the slope of fitting curve of the phase. Theorical analysis and experiment results show that this algorithm can greatly reduce the amount of computation and improve demodulation speed and accuracy.

  5. Fabry-Perot resonators with transverse coupling on SOI using loop mirrors

    NASA Astrophysics Data System (ADS)

    Saber, Md Ghulam; Abadía, Nicolás; Wang, Yun; Plant, David V.

    2018-05-01

    A novel integrated transversely coupled Fabry-Perot resonator using loop mirrors as the end reflectors are demonstrated via simulations and experiments on the silicon-on-insulator (SOI) platform. The resonator is formed by connecting two loop mirrors to the two output ports of a directional coupler to form the resonant cavity and utilizing the other two ports as the input and the output. Depending on which two ports of the directional coupler are mirrored, two configurations of the resonator can be achieved. The impacts of varying the cavity length and the coupling coefficient of the directional coupler on the output characteristics of the resonators are analyzed. A Q-factor of 28086 and an extinction ratio of 10.04 dB with an insertion loss of 1.9 dB is achieved experimentally for a 1038 μm cavity length and an extinction ratio of 18.14 dB and a Q-factor of 5120 with an insertion loss of 2.12 dB is obtained for a cavity length of 376 μm. The reported resonator offers additional freedom to tune the spectral characteristics.

  6. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    NASA Astrophysics Data System (ADS)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  7. Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Yu, Qingxu; Zhou, Xinlei

    2011-03-01

    Pressure sensors based on fiber-optic extrinsic Fabry-Perot interferometer (EFPI) have been extensively applied in various industrial and biomedical fields. In this paper, some key improvements of EFPI-based pressure sensors such as the controlled thermal bonding technique, diaphragm-based EFPI sensors, and white light interference technology have been reviewed. Recent progress on signal demodulation method and applications of EFPI-based pressure sensors has been introduced. Signal demodulation algorithms based on the cross correlation and mean square error (MSE) estimation have been proposed for retrieving the cavity length of EFPI. Absolute measurement with a resolution of 0.08 nm over large dynamic range has been carried out. For downhole monitoring, an EFPI and a fiber Bragg grating (FBG) cascade multiplexing fiber-optic sensor system has been developed, which can operate in temperature 300 °C with a good long-term stability and extremely low temperature cross-sensitivity. Diaphragm-based EFPI pressure sensors have been successfully used for low pressure and acoustic wave detection. Experimental results show that a sensitivity of 31 mV/Pa in the frequency range of 100 Hz to 12.7 kHz for aeroacoustic wave detection has been obtained.

  8. Distributed Feedback Laser Based on Single Crystal Perovskite

    NASA Astrophysics Data System (ADS)

    Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-06-01

    We demonstrate a single crystal perovskite based, with grating-structured photoresist on top, highly polarized distributed feedback laser. A lower laser threshold than the Fabry-Perot mode lasers from the same single crystal CH3NH3PbBr3 microplate was obtained. Single crystal CH3NH3PbBr3 microplates was synthesized with one-step solution processed precipitation method. Once the photoresist on top of the microplate was patterned with electron beam, the device was realized. This one-step fabrication process utilized the advantage of single crystal to the greatest extend. The ultra-low defect density in single crystalline microplate offer an opportunity for lower threshold lasing action compare with poly-crystal perovskite films. In the experiment, the lasing action based on the distributed feedback grating design was found with lower threshold and higher intensity than the Fabry-Perot mode lasers supported by the flat facets of the same microplate.

  9. Single and tandem Fabry-Perot etalons as solar background filters for lidar.

    PubMed

    McKay, J A

    1999-09-20

    Atmospheric lidar is difficult in daylight because of sunlight scattered into the receiver field of view. In this research methods for the design and performance analysis of Fabry-Perot etalons as solar background filters are presented. The factor by which the signal to background ratio is enhanced is defined as a measure of the performance of the etalon as a filter. Equations for evaluating this parameter are presented for single-, double-, and triple-etalon filter systems. The role of reflective coupling between etalons is examined and shown to substantially reduce the contributions of the second and third etalons to the filter performance. Attenuators placed between the etalons can improve the filter performance, at modest cost to the signal transmittance. The principal parameter governing the performance of the etalon filters is the etalon defect finesse. Practical limitations on etalon plate smoothness and parallelism cause the defect finesse to be relatively low, especially in the ultraviolet, and this sets upper limits to the capability of tandem etalon filters to suppress the solar background at tolerable cost to the signal.

  10. Fabry-Perot Observations of Comet Hale-Bopp H_2O(+) Velocity Fields

    NASA Astrophysics Data System (ADS)

    Roesler, F. L.; Klinglesmith, D. A., III; Scherb, F.; Mierkiewicz, E. J.; Oliversen, R. J.

    1997-07-01

    We have obtained Doppler-sliced images of H_2O(+) emission from Comet Hale-Bopp, using a 15-cm, dual-etalon, Fabry-Perot/CCD imaging spectrometer at the McMath-Pierce 0.8-meter west auxiliary telescope of the National Solar Observatory on Kitt Peak. The 6-arcmin field of view was centered on the comet nucleus, and the spectral resolution was 0.4 Angstroms (20km/sec). The observations consisted of ``data cubes,'' i.e., a sequence of images of the 6158 Angstroms emission doublet at velocity steps of 12.5 or 25km/sec, covering a range from -75km/sec to +75km/sec in the comet reference frame. We were able to follow the comet for 1 to 1(1/_2) hours each clear night. We obtained useable data cubes on at least ten nights between February 25 and April 16. These data are being examined to investigate the comet-solar wind interaction. We will present both still images and time-lapse movies showing sequences of ion velocities and accelerations on the plane of the sky.

  11. Measuring optical fiber length by use of a short-pulse optical fiber ring laser in a self-injection seeding scheme.

    PubMed

    Wang, Yi-Ping; Wang, Dong Ning; Jin, Wei

    2006-09-01

    A method for measuring the length of an optical fiber by use of an optical fiber ring laser pulse source is proposed and demonstrated. The key element of the optical fiber ring laser is a gain-switched Fabry-Perot laser diode operated in a self-injection seeding scheme. This method is especially suitable for measuring a medium or long fiber, and a resolution of 0.1 m is experimentally achieved. The measurement is implemented by accurately determining the pulse frequency that can maximize the output power of the fiber ring laser. The measurement results depend only on the refractive index of the fiber corresponding to this single wavelength, instead of the group index of the fiber, which represents a great advantage over both optical time-domain reflectometry and optical low-coherence reflectometry methods.

  12. First Light from Triple-Etalon Fabry-Perot Interferometer for Atmospheric OI Airglow (6300 A)

    NASA Astrophysics Data System (ADS)

    Watchorn, S.; Noto, J.; Pedersen, T.; Betremieux, Y.; Migliozzi, M.; Kerr, R. B.

    2006-05-01

    Scientific Solutions, Inc. (SSI) has developed a triple-etalon Fabry-Perot interferometer (FPI) to observe neutral winds in the ionosphere by measuring neutral oxygen (O I) emission at 630.0 nm during the day. This instrument is to be deployed in the SSI airglow building at the Cerro Tololo observatory (30.17S 70.81W) in Chile, in support of the Comm/Nav Outage Forecast System (C/NOFS) project. Post-deployment observation will be made in conjunction with two other Clemson University Fabry-Perots in Peru, creating a longitudinal chain of interferometers for thermospheric observations. These instruments will make autonomous day and night observations of thermospheric dynamics. Instruments of this type can be constructed for a global chain of autonomous airglow observatories. The FPI presented in this talk consists of three independently pressure-controlled etalons, fed collimated light by a front optical train headed by an all-sky lens with a 160-degree field of view. It can be controlled remotely via a web-based service which allows any internet-connected computer to mimic the control computer at the instrument site. In fall 2005, the SSI system was first assembled at the Millstone Hill Observatory in Westford, Massachusetts, and made day and evening observations. It was then moved to the High-frequency Active Auroral Research Project (HAARP) site in Gakona, Alaska, to participate in joint optical/ionospheric heating campaigns. Additionally, natural airglow observations were made, both locally and remotely via the internet from Massachusetts. The Millstone and HAARP observations with two etalons yielded strong 630-nm atmospheric Fraunhofer absorption lines, with some suggestion of the Ring effect. By modeling the atmospheric absorption line as the constant times the corresponding solar absorption -- itself modeled as a Gaussian plus a polynomial -- the absorption feature is subtracted, leaving only the emission feature. Software ring-summing tools developed at the

  13. A 10Gbps optical burst switching network incorporating ultra-fast (5ns) wavelength switched tunable laser sources

    NASA Astrophysics Data System (ADS)

    Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter

    2017-11-01

    This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.

  14. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Beard, P. C.; Mills, T. N.

    1996-02-01

    Theoretical and experimental aspects of an extrinsic optical-fiber ultrasound sensor are described. The sensor is based on a thin transparent polymer film acting as a low-finesse Fabry-Perot cavity that is mounted at the end of a multimode optical fiber. Performance was found to be comparable with that of a piezoelectric polyvinylidene difluoride-membrane (PVDF) hydrophone with a sensitivity of 61 mV/MPa, an acoustic noise floor of 2.3 KPa over a 25-MHz bandwidth, and a frequency response to 25 MHz. The wideband-sensitive response and design flexibility of the concept suggests that it may find application as an alternative to piezoelectric devices for the detection and measurement of ultrasound.

  15. Cryogenic mechanisms for scanning and interchange of the Fabry-Perot interferometers in the ISO long wavelength spectrometer

    NASA Technical Reports Server (NTRS)

    Davis, G. R.; Furniss, I.; Patrick, T. J.; Sidey, R. C.; Towlson, W. A.

    1991-01-01

    The Infrared Space Observatory (ISO) is an ESA cornerstone mission for infrared astronomy. Schedules for launch in 1993, its four scientific instruments will provide unprecedented sensitivity and spectral resolution at wavelengths which are inaccessible using ground-based techniques. One of these, the Long Wavelength Spectrometer (LWS), will operate in the 45 to 180 micron region (Emery et. al., 1985) and features two Fabry-Perot interferometers mounted on an interchange mechanism. The entire payload module of the spacecraft, comprising the 60 cm telescope and the four focal plane instruments, is maintained at 2 to 4 K by an onboard supply of liquid helium. The mechanical design and testing of the cryogenic interferometer and interchange mechanisms are described.

  16. Development of Ultrasonic and Fabry-Perot Interferometer for Non-Destruction Inspection of Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1998-01-01

    Fabry-Perot Interferometer (FPI) sensor detection system was continued and refined modifications were made in the data acquisition and evaluation process during the last year. The ultrasonic and FPI detection system was improved from one to multiple sensor detectors. Physical models were developed to understand the physical phenomenon of this work. Multilayered flawed samples were fabricated for inspection by a prototype ultrasonic and FPI detection. Experimental data was verified with simulated results. Undergraduate students that were associated with this research gained valuable knowledge from this experience. This was a learning process helping students to understand the importance of research and its application to solve important technological problems. As a result of our students exposure to this research two and planning to continue this type of research work in graduate school. A prototype instrument package was laboratory tested an actual airframe structure for documentation purposes.

  17. Development of a tunable Fabry-Perot interferometer UV camera for monitoring sulfur dioxide emissions

    NASA Astrophysics Data System (ADS)

    Tamminen, J.; Kujanpää, J.; Ojanen, H.; Saari, H.; Näkki, I.; Tukiainen, S.; Kyrölä, E.

    2017-12-01

    We present a novel UV camera for sulfur dioxide emission monitoring.The camera is equipped with a piezo-actuated Fabry-Perot interferometer allowing thefilter transmission to be tuned to match the differential absorption features ofsulfur dioxide in the wavelength region 305-320 nm. The differential absorption structuresare exploited to reduce the interfering effects of weakly wavelength dependent absorbers, suchas aerosols and black carbon, present in the exhaust gas. A data processing algorithm basedon two air gaps of the filter is presented allowing collection of a sufficient signal-to-noise ratio fordetecting sulfur dioxide in the ship plumes even in the designated emission control areas, such as the Baltic Seawhere the sulfur content limit of fuel oil is 0.1 %. First field tests performed inLänsisatama harbour, Helsinki Finland, indicate that sulfur dioxide can be detectedin ship plumes. The camera is light-weight and can be mounted to a drone.

  18. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    PubMed Central

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  19. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-10-29

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding.

  20. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    NASA Astrophysics Data System (ADS)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  1. A Micro Bubble Structure Based Fabry-Perot Optical Fiber Strain Sensor with High Sensitivity and Low-Cost Characteristics.

    PubMed

    Yan, Lu; Gui, Zhiguo; Wang, Guanjun; An, Yongquan; Gu, Jinyu; Zhang, Meiqin; Liu, Xinglin; Wang, Zhibin; Wang, Gao; Jia, Pinggang

    2017-03-09

    A high-sensitivity, low-cost, ultrathin, hollow fiber micro bubble structure was proposed; such a bubble can be used to develop a high-sensitivity strain sensor based on a Fabry-Perot interferometer (FPI). The micro bubble is fabricated at the fiber tip by splicing a glass tube to a single mode fiber (SMF) and then the glass tube is filled with gas in order to expand and form a micro bubble. The sensitivity of the strain sensor with a cavity length of about 155 μm and a bubble wall thickness of about 6 μm was measured to be up to 8.14 pm/μϵ.

  2. Long-wavelength emission in photo-pumped GaAs{sub 1−x}Bi{sub x} laser with low temperature dependence of lasing wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuyuki, Takuma; Yoshioka, Ryo; Yoshida, Kenji

    2013-11-11

    This study demonstrates long-wavelength emission of up to 1204 nm in photo-pumped GaAs{sub 1−x}Bi{sub x} lasers grown by molecular beam epitaxy under low temperature conditions. The characteristic temperature (T{sub 0}) between 20 and 80 °C in the GaAs{sub 1−x}Bi{sub x} lasers with Al{sub 0.3}Ga{sub 0.7}As electron blocking layer is approximately 100 K, which is larger than that of the typical 1.3-μm InGaAsP Fabry-Perot laser diodes (FP-LDs; T{sub 0} = 66 K). The temperature coefficient of the lasing wavelength is approximately 40% of that of InGaAsP FP-LDs.

  3. Microcomputer control of infrared detector arrays used in direct imaging and in Fabry-Perot spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossano, G.S.

    1989-02-01

    A microcomputer based data acquisition system has been developed for astronomical observing with two-dimensional infrared detector arrays operating at high pixel rates. The system is based on a 16-bit 8086/8087 microcomputer operating at 10 MHz. Data rates of up to 560,000 pixels/sec from arrays of up to 4096 elements are supported using the microcomputer system alone. A hardware co-adder the authors are developing permits data accumulation at rates of up to 1.67 million pixels/sec in both staring and chopped data acquisition modes. The system has been used for direct imaging and for data acquisition in a Fabry-Perot Spectrometer developed bymore » NRL. The hardware is operated using interactive software which supports the several available modes of data acquisition, and permits data display and reduction during observing sessions.« less

  4. The helium 10830 A line in early-type stars - An atlas of Fabry-Perot scans

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.; Frank, Z. A.; Packard, M. L.; Saunders, B. A.

    1982-01-01

    Representative profiles of He I 10830 A in 65 early-type (O6-A1) stars over a wide range of luminosity are presented. The atlas scans were obtained using the Vaughan Fabry-Perot interferometer on the C. E. K. Mees 0.6 m and KPNO 0.9 m telescopes and usually cover a range of plus or minus 15 A at 1 A resolution with sampling distances between 0.5 A and 2 A depending on the photometer integration time required to reach reasonable Poisson counting statistics. The majority of the scans show very shallow, broad features which do not agree with plane-parallel NLTE model atmosphere calculations of the 10830 line by Auer and Mihalas (1972). Difficulties connected with previous theoretical studies of this line are briefly discussed, and suggestions for possible future modifications to the theory are made.

  5. Optoelectronics for Optically Controlled Phased-Array Systems

    DTIC Science & Technology

    1991-11-01

    Equation (1) holds for a Fabry - Perot (FP) laser as well as a DFB laser. Furthermore, gain clamping requires that hg(n)+ ( I - h)g(n,) - g,, (2) 4-2 where...and (3.) gain-lever, with a low-Q Fabry - Perot inserted before detector. Care was taken to ensure that the DC photocurrents were nearly identical in all...operating the laser cw and scanning the Fabry - Perot . The results are shown in Fig. 4(a) and (b). In these plots, the three curves are slightly offset

  6. Fabry-Perot Observations of [OI]6300, Hα, H-Beta, and NH2 Emissions from Comet Hyakutake C/1996B2

    NASA Astrophysics Data System (ADS)

    Scherb, F.; Roesler, F. L.; Tufte, S.; Haffner, M.

    1996-05-01

    During the period 16-23 March 1996, observations of Comet Hyakutake were carried out with the new WHAM facility at the University of Wisconsin Pine Bluff Observatory, near Madison. WHAM is a second-generation double-Fabry-Perot/CCD spectrometer that is more than ten times as efficient as our previous large-aperture Fabry-Perot instruments. Specifications of WHAM in the spectral mode are: a 1-degree field of view (FOV) on the sky, 10 km/sec velocity resolution, 200 km/sec range, and 20 sigma detection of a 1-Rayleigh H-alpha emission line in about 30 seconds. WHAM can also operate in a mode in which an image of an emission source over a 1-degree FOV can be obtained at a spectral resolution of about 10 km/sec. Spectra of cometary [OI]6300, H-alpha, H-beta, and NH2 emissions were obtained with the FOV centered on the comet head and also located 3/4 degree sunward of the comet head, repectively. This was the first time that cometary H-beta emission has been detected. Images of cometary [OI]6300 and NH2 emissions were obtained with the FOV centered on the comet head. The interpretation of these observations using coma gas dynamic and photochemical models yields values of the H2O production rate from both the [OI]6300 and H-alpha data. Comparison of the cometary H-alpha and H-beta intensities provides unique ground-based information on the EUV solar Lyman-beta and Lyman-gamma emission lines. These results will be presented.

  7. A Large Aperture Fabry-Perot Tunable Filter Based On Micro Opto Electromechanical Systems Technology

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matt; Mott, Brent; Powell, Dan; Barclay, Rich; Hsieh, Wen-Ting

    2002-01-01

    A research and development effort sponsored by the NASA Goddard Spaceflight Center (GSFC) is focused on applying Micro Opto Electromechanical Systems (MOEMS) technology to create a miniature Fabry-Perot tunable etalon for space and ground-based near infrared imaging spectrometer applications. Unlike previous devices developed for small-aperture telecommunications systems, the GSFC research is directed toward a novel 12 - 40 mm aperture for astrophysical studies, including emission line imaging of galaxies and nebulae, and multi-spectral redshift surveys in the 1.1 - 2.3 micron wavelength region. The MOEMS design features integrated electrostatic scanning of the 11-micron optical gap, and capacitance micrometry for closed loop control of parallelism within a 10-nm tolerance. The low thermal mass and inertia inherent in MOEMS devices allows for rapid cooling to the proposed 30 K operating temperature, and high frequency response. Achieving the proposed 6-nm aperture flatness (with an effective finesse of 50) represents the primary technical challenge in the current 12-mm prototype.

  8. Investigation of baseline measurement resolution of a Si plate-based extrinsic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    Measurement of a wafer thickness is of a great value for fabrication and interrogation of MEMS/MOEMS devices, as well as conventional optical fiber sensors. In the current paper we investigate the abilities of the wavelength-scanning interferometry techniques for registering the baseline of an extrinsic fiber Fabry-Perot interferometer (EFPI) with the cavity formed by the two sides of a silicon plate. In order to enhance the resolution, an improved signal processing algorithm was developed. Various experiments, including contact and non-contact measurement of a silicon wafer thickness were performed, with the achieved resolutions from 10 to 20 pm. This enables one to use the described approach for high-precision measurement of geometric parameters of micro electro (electro-optic) mechanical systems for their characterization, utilization in sensing tasks and fabrication control. An ability of a Si plate-based EFPI interrogated by the developed technique to capture temperature variations of about 4 mK was demonstrated.

  9. MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing.

    PubMed

    Pang, Cheng; Bae, Hyungdae; Gupta, Ashwani; Bryden, Kenneth; Yu, Miao

    2013-09-23

    We present a micro-electro-mechanical systems (MEMS) based Fabry-Perot (FP) sensor along with an optical system-on-a-chip (SOC) interrogator for simultaneous pressure and temperature sensing. The sensor employs a simple structure with an air-backed silicon membrane cross-axially bonded to a 45° polished optical fiber. This structure renders two cascaded FP cavities, enabling simultaneous pressure and temperature sensing in close proximity along the optical axis. The optical SOC consists of a broadband source, a MEMS FP tunable filter, a photodetector, and the supporting circuitry, serving as a miniature spectrometer for retrieving the two FP cavity lengths. Within the measured pressure and temperature ranges, experimental results demonstrate that the sensor exhibits a good linear response to external pressure and temperature changes.

  10. Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms

    DOE PAGES

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    2016-03-04

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  11. Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements.

    PubMed

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Yang; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-20

    A shock wave (SW) is characterized as a large pressure fluctuation that typically lasts only a few milliseconds. On the battlefield, SWs pose a serious threat to soldiers who are exposed to explosions, which may lead to blast-induced traumatic brain injuries. SWs can also be used beneficially and have been applied to a variety of medical treatments due to their unique interaction with tissues and cells. Consequently, it is important to have sensors that can quantify SW dynamics in order to better understand the physical interaction between body tissue and the incident acoustic wave. In this paper, the ultrafast fiber-optic sensor based on the Fabry-Perot interferometric principle was designed and four such sensors were fabricated to quantify a blast event within different media, simultaneously. The compact design of the fiber-optic sensor allows for a high degree of spatial resolution when capturing the wavefront of the traveling SW. Several blast event experiments were conducted within different media (e.g., air, rubber membrane, and water) to evaluate the sensor's performance. This research revealed valuable knowledge for further study of SW behavior and SW-related applications.

  12. Nonlinear Spectroscopy.

    DTIC Science & Technology

    1985-03-20

    Finally, the (linear) .response of a Fabry - Perot cavity to a phase modulated light wave is considered because of its relevance to phase locking a laser...prepared and therefore doesn’t contribute. This effect provides the remaining factor of two. IV. FABRY - PEROT We now calculate the response of a plane...mirror Fabry - Perot cavity to a phase-modulated laser beam. This linear problem, which contrasts with the nonlinear atomic case, is the basis of an

  13. Laser Diode Ignition (LDI)

    NASA Technical Reports Server (NTRS)

    Kass, William J.; Andrews, Larry A.; Boney, Craig M.; Chow, Weng W.; Clements, James W.; Merson, John A.; Salas, F. Jim; Williams, Randy J.; Hinkle, Lane R.

    1994-01-01

    This paper reviews the status of the Laser Diode Ignition (LDI) program at Sandia National Labs. One watt laser diodes have been characterized for use with a single explosive actuator. Extensive measurements of the effect of electrostatic discharge (ESD) pulses on the laser diode optical output have been made. Characterization of optical fiber and connectors over temperature has been done. Multiple laser diodes have been packaged to ignite multiple explosive devices and an eight element laser diode array has been recently tested by igniting eight explosive devices at predetermined 100 ms intervals.

  14. Short-pulse controlled optical switch using external cavity based single mode Fabry-Pérot laser diode.

    PubMed

    Nakarmi, Bikash; Hoai, Tran Quoc; Won, Yong-Hyub; Zhang, Xuping

    2014-06-30

    We propose and demonstrate a novel scheme for short pulse controlled all-optical switch using external cavity based single mode Fabry- Pérot laser diode (SMFP-LD). The proposed scheme consists of control unit and switching unit as two essential blocks. The basic principle of the proposed scheme is the optical bistability property of SMFP-LD for the control unit and the suppression of the dominant beam of SMFP-LD with injection locking for the switching unit. We also present the analysis of hysteresis width and rising/falling time with change in wavelength detuning which helps to find the optimum wavelength detuning value and power of light beams at different stages of the proposed scheme that gives wide input dynamic power range, high ON/OFF contrast ratio, and low rising/falling time. Input data of 10 Gb/s Non Return to Zero (NRZ) signal is switched at output ports depending upon the control signal generated by the control unit, which comprises of optical SR latch. Output waveforms, clear eye diagrams with extinction ratio of about 11 dB, rising/falling time of about 30 ps and 40 ps, and bit error rate (BER) are measured to validate proposed scheme. No noise floor is observed at output ports up to BER of 10-(12) and the maximum power penalty recorded is about 1.7 dB at a BER of 10-(9) which shows good performance of the proposed short pulse controlled optical switch using SMFP-LDs.

  15. Selective reflection by deteriorated phase accumulation in Fabry-Perot cavity with aperiodic metallic nanomesh entry windows

    NASA Astrophysics Data System (ADS)

    Sun, Tianyi; Guo, Chuanfei; Kempa, Krzysztof; Ren, Zhifeng

    2014-03-01

    A Fabry-Perot reflection filter, consisting of semi-transparent metal and dielectric layers on opaque metals, is featured by selective absorption determined by the phase difference of waves from the two interfaces. In such systems, semi-transparency is usually realized by layers of reflective metals thinner than the penetration depth of the light. Here we present a filter cavity with entry windows not made of traditional thin layers, but of aperiodic metallic random nanomeshes thicker than the penetration depth, fabricated by grain boundary lithography. It is shown that due to the deteriorated phase caused by the interface between the random nanomesh and the dielectric layer, the width and location of the resonances can be tuned by metallic coverage. Further experiments show that this phenomenon can be used in designing aperiodic plasmonic metamaterial structures for visible and infrared applications.

  16. Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.

  17. Discrete mode lasers for communications applications

    NASA Astrophysics Data System (ADS)

    Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.

    2009-02-01

    The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.

  18. Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor.

    PubMed

    Wang, Xue; Wang, Shuang; Jiang, Junfeng; Liu, Kun; Zhang, Xuezhi; Xiao, Mengnan; Xiao, Hai; Liu, Tiegen

    2017-12-11

    We introduce a simple residual pressure self-measurement method for the Fabry-Perot (F-P) cavity of optical MEMS pressure sensor. No extra installation is required and the structure of the sensor is unchanged. In the method, the relationship between residual pressure and external pressure under the same diaphragm deflection condition at different temperatures is analyzed by using the deflection formula of the circular plate with clamped edges and the ideal gas law. Based on this, the residual pressure under the flat condition can be obtained by pressure scanning process and calculation process. We carried out the experiment to compare the residual pressures of two batches MEMS sensors fabricated by two kinds of bonding process. The measurement result indicates that our approach is reliable enough for the measurement.

  19. Narrow-band Imagery with the Goddard Fabry-Perot: Probing the Epoch of Active Accretion for PMS Stars

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.; Grady, C.; Endres, M.; Williger, G.

    2006-01-01

    The STIS coronagraphic imaging sample of I'MS stars was surveyed with the Goddard Fabry-Perot (GFP) interferometer to determine what fraction of the stars drive jets, whether there is any difference in behavior for a group of intermediate-mass stars as compared with T Tauri stars, and to search for evolutionary effects. Compared to broad band imaging, the FGP achieves an emission-line nebulosity-to-star contrast gain of between 500 and 3000. To date, we have detected jets associated with classical T Tauri stars spanning a factor of 280 in mass accretion rate in approximately 50% of the STIS coronagraphic imaging sample. We also detected jets or Herbig-HARO knots associated with 5 Herbig Ae stars, all younger than 8 Myr, for a detection fraction which is smaller than the T Tauri survey.

  20. Wide field of view spectroscopy using Fabry-Perot Interferometers

    NASA Astrophysics Data System (ADS)

    Nikoleyczik, Jonathan

    We present a high resolution spectrometer consisting of dual solid Fabry-Perot Interferometers (FPIs). This work is intended to be an all inclusive documentation of the instrument including discussion of the design of this instrument, the methods used in data reduction, and the analysis of these data. Each FPI is made of a single piece of L-BBH2 glass which has a high index of refraction n 2.07 with a thickness on the order of 100 mum. Each is then coated with partially reflective mirrors to create a resonant cavity and thus achieve a spectral resolution of R 30,000. Running the FPIs in tandem reduces the overlapping orders and allows for a much wider free spectral range and higher contrast. We will also discuss the properties of the FPIs which we have measured. This includes the tuning of the FPIs which is achieved by adjusting the temperature and thus changing the FPI gap and the refractive index of the material. The spectrometer then moves spatially in order to get spectral information at every point in the field of view. We select spectral lines for further analysis and create maps of the line depths across the field. Using this technique we are able to measure the fluorescence of chlorophyll in plants and attempt to observe zodiacal light. In the chlorophyll analysis we are able to detect chlorophyll fluorescence using the line depth in a plant using the sky as a reference solar spectrum. This instrument has possible applications in either a cubesat or aerial observations to measure bulk plant activity over large areas.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxberg, Brendan; Plotkin-Swing, Benjamin; Gupta, Subhadeep

    We report on a device to electronically stabilize the optical injection lock of a semiconductor diode laser. Our technique uses as discriminator the peak height of the laser’s transmission signal on a scanning Fabry-Perot cavity and feeds back to the diode current, thereby maintaining maximum optical power in the injected mode. A two-component feedback algorithm provides constant optimization of the injection lock, keeping it robust to slow thermal drifts and allowing fast recovery from sudden failures such as temporary occlusion of the injection beam. We demonstrate the successful performance of our stabilization method in a diode laser setup at 399more » nm used for laser cooling of Yb atoms. The device eases the requirements on passive stabilization and can benefit any diode laser injection lock application, particularly those where several such locks are employed.« less

  2. GHGSat-D: Greenhouse gas plume imaging and quantification from space using a Fabry-Perot imaging spectrometer

    NASA Astrophysics Data System (ADS)

    McKeever, J.; Durak, B. O. A.; Gains, D.; Jervis, D.; Varon, D. J.; Germain, S.; Sloan, J. J.

    2017-12-01

    GHGSat, Inc. has launched the first satellite designed to detect and quantify greenhouse gas emissions from individual industrial sites. Our demonstration satellite GHGSat-D or "CLAIRE" was launched in June 2016. It weighs less than 15 kg and its primary instrument is a miniaturized Fabry-Perot imaging spectrometer with spectral resolution on the order of 0.1 nm. The spectral bandpass is 1635-1670 nm, giving the instrument access to absorption bands of both CO2 and CH4. Our system is based on targeted observations rather than global coverage, and our spatial imaging resolution is a key differentiator. Specifically, with a ground sampling distance of <50 m within a 12 km field of view, we are able to spatially resolve the increased column densities associated with individual emission plumes. For a given emission rate and wind speed the magnitude of the local excess column increases approximately linearly as pixel resolution decreases. Consequently, at GHGSat's resolution the total column can exceed local background by well over 10% for many industrial sites with strong but realistic emission rates. GHGSat uses a novel measurement and retrievals concept where the emitter site of interest is captured in a sequence of 150-200 overlapping two-dimensional images. The combined effect of the Fabry-Perot resonator and the scrolling scene gives a different spectral sampling of each surface location in every image. While our data processing toolchain does not produce a conventional hyperspectral dataset, it does yield a spectral decomposition of the spatially resolved signal that is compared to a model that includes atmospheric radiative transfer and the instrument's pixel-dependent spectral responsivity. Our presentation will describe the instrument design, concept of operations and retrievals approach. We will also present images and results from GHGSat-D at different processing levels, including high-resolution column density retrievals. An observation of the degassing

  3. Frequency-Modulated Microwave Photonic Links with Direct Detection: Review and Theory

    DTIC Science & Technology

    2010-12-15

    create large amounts of signal distortion. Alternatives to MZIs have been pro- posed, including Fabry - Perot interferometers, ber Bragg gratings (FBGs...multiplexed, analog signals for applications in cable television distribution. Experimental results for a Fabry - Perot discriminated, FM subcarrier...multiplexed system were presented by [17]. An array of optical frequency modulated DFB lasers and a Fabry - Perot discriminator were used to transmit and

  4. Nondestructive and in situ determination of graphene layers using optical fiber Fabry-Perot interference

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Gan, Xin; Lv, Ruitao; Fan, Shangchun

    2017-02-01

    Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry-Perot (F-P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F-P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µm inner diameter by van der Waals interactions to construct micro F-P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F-P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F-P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials.

  5. Influence of fiber bending on wavelength demodulation of fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-14

    In practical applications of fiber optic sensors based on Fabry-Perot interferometers (FPIs), the lead-in optical fiber often experiences dynamic or static bending due to environmental perturbations or limited installation space. Bending introduces wavelength-dependent losses to the sensors, which can cause erroneous readings for sensors based on wavelength demodulation interrogation. Here, we investigate the bending-induced wavelength shift (BIWS) to sensors based on FPIs. Partially explicit expressions of BIWSs for the reflection fringe peaks and valleys have been derived for sensors based on low-finesse FPI. The theoretical model predicts these findings: 1) provided that a fringe peak experiences the same modulation slope by bending losses with a fringe valley, BIWSs for the peak and valley have opposite signs and the BIWS for the valley has a smaller absolute value; 2) BIWS is a linear function of the length of the bending section; 3) a FPI with higher visibility and longer optical path length is more resistant to the influence of bending. Experiments have been carried out and the results agree well with the theoretical predictions.

  6. Electrically tunable infrared filter based on a cascaded liquid-crystal Fabry-Perot for spectral imaging detection.

    PubMed

    Lin, Jiuning; Tong, Qing; Lei, Yu; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2017-03-01

    An electrically tunable infrared (IR) filter based on a key cascaded liquid-crystal Fabry-Perot (C-LC-FP) working in the wavelength range of 3-5 μm is presented. The C-LC-FP is constructed by closely stacking two FP microcavities with different depths of 12 and 15 μm and fully filled by nematic LC materials. Through continuous wavelength selection of both microcavities, radiation with a high transmittance and narrow bandwidth can pass through the filter. According to the electrically controlled birefringence characteristics of nematic LC molecules, the transmission spectrum can be shifted through applying a dual voltage signal over the C-LC-FP. Compared with common LC-FPs with a single microcavity, the C-LC-FP demonstrates better transmittance peak morphology and spectral selection performance. To be more specific, the number and the shifted scope of the IR transmission peak can be decreased and widened, respectively.

  7. Photodetector based on Vernier-Enhanced Fabry-Perot Interferometers with a Photo-Thermal Coating

    PubMed Central

    Chen, George Y.; Wu, Xuan; Liu, Xiaokong; Lancaster, David G.; Monro, Tanya M.; Xu, Haolan

    2017-01-01

    We present a new type of fiber-coupled photodetector with a thermal-based optical sensor head, which enables it to operate even in the presence of strong electro-magnetic interference and in electrically sensitive environments. The optical sensor head consists of three cascaded Fabry-Perot interferometers. The end-face surface is coated with copper-oxide micro-particles embedded in hydrogel, which is a new photo-thermal coating that can be readily coated on many different surfaces. Under irradiation, photons are absorbed by the photo-thermal coating, and are converted into heat, changing the optical path length of the probing light and induces a resonant wavelength shift. For white-light irradiation, the photodetector exhibits a power sensitivity of 760 pm/mW, a power detection limit of 16.4 μW (i.e. specific detectivity of 2.2 × 105 cm.√Hz/W), and an optical damage threshold of ~100 mW or ~800 mW/cm2. The response and recovery times are 3.0 s (~90% of change within 100 ms) and 16.0 s respectively. PMID:28139745

  8. High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry-Perot cavities.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-01

    The paradox between a large dynamic range and a high resolution commonly exists in nearly all kinds of sensors. Here, we propose a fiber-optic thermometer based on dual Fabry-Perot interferometers (FPIs) made from the same material (silicon), but with different cavity lengths, which enables unambiguous recognition of the dense fringes associated with the thick FPI over the free-spectral range determined by the thin FPI. Therefore, the sensor combines the large dynamic range of the thin FPI and the high resolution of the thick FPI. To verify this new concept, a sensor with one 200 μm thick silicon FPI cascaded by another 10 μm thick silicon FPI was fabricated. A temperature range of -50°C to 130°C and a resolution of 6.8×10-3°C were demonstrated using a simple average wavelength tracking demodulation. Compared to a sensor with only the thick silicon FPI, the dynamic range of the hybrid sensor was more than 10 times larger. Compared to a sensor with only the thin silicon FPI, the resolution of the hybrid sensor was more than 18 times higher.

  9. Microelectromechanical systems-based visible-near infrared Fabry-Perot tunable filters using quartz substrate

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam; Tan, Songsheng; Zander, Dennis R.

    2012-07-01

    There is a need to develop miniature optical tunable filters for small hyperspectral imagers. We plan to develop a number of miniature Fabry-Perot tunable filters (FPTFs) using microelectromechanical systems (MEMS) technology, each operating over a different wavelength region, to cover spectral regions from the visible to the longwave infrared (IR). Use of a MEMS-based FPTF as a dispersive element will reduce the size, weight, and power requirements of hyperspectral imagers and make them less expensive. A key requirement for such a filter is a large optical aperture. Recently, we succeeded in fabricating FPTFs with a 6 mm optical aperture operating in the visible to near IR spectral region (400 to 800 nm) using commercially available thin quartz wafers as the substrate. The FPTF design contains one fixed silver (Ag) mirror and one electrostatically movable Ag mirror, each grown on a quartz substrate with a low total thickness variation. Gold (Au) bumps are used to control the initial air gap distance between the two mirrors, and Au-Au bonding is used to bond the device. We describe material selection, device design, modeling, fabrication, interferometric, and spectral characterizations.

  10. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    PubMed

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  11. Asymmetric quantum well broadband thyristor laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wang, Jiaqi; Yu, Hongyan; Zhou, Xuliang; Chen, Weixi; Li, Zhaosong; Wang, Wei; Ding, Ying; Pan, Jiaoqing

    2017-11-01

    A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry-Perot (FP) ridge-waveguide laser shows an S-shape I-V characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ-10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure. Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.

  12. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  13. Ultrathin Organic Solar Cells with a Power Conversion Efficiency of Over ≈13.0%, Based on the Spatial Corrugation of the Metal Electrode-Cathode Fabry-Perot Cavity.

    PubMed

    In, Sungjun; Park, Namkyoo

    2018-04-01

    The application of nanophotonic structures for organic solar cells (OSCs) is quite popular and successful, and has led to increased optical absorption, better spectral overlap with solar irradiances, and improved charge collection. Significant improvements in the power conversion efficiency (PCE) have also been reported, exceeding 11%. Nonetheless, with the given material properties of OSCs with low optical absorption, narrow spectrum, short transport length of carriers, and nonuniform photocarrier generations resulting from the nanophotonic structure, the PCE of single-junction OSCs has been stagnant over the past few years, at a barrier of 12%. Here, an ultrathin inverted OSC structure with the highest efficiency of ≈13.0%, while being made from widely used organic materials, is demonstrated. By introducing a smooth spatial corrugation to the vertical plasmonic cavity enclosing the active layer, in-plane propagation modes and hybridized Fabry-Perot cavity modes inside the corrugated cavity are derived to achieve an ultralow Q , uniform coverage of optical absorption, in addition to uniform photocarrier generation and transport. As the first demonstration of ultra-broadband absorption with the introduction of spatial corrugation to the ultrathin metal film electrode-cathode Fabry-Perot cavity, future applications of the same concept in other light-harvesting devices utilizing different materials and structures are expected.

  14. A comparison of Doppler lidar wind sensors for Earth-orbit global measurement applications

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1985-01-01

    Now, there are four Doppler lidar configurations which are being promoted for the measurement of tropospheric winds: (1) the coherent CO2 Lidar, operating in the 9 micrometer region using a pulsed, atmospheric pressure CO2 gas discharge laser transmitter, and heterodyne detection; (2) the coherent Neodymium doped YAG or Glass Lidar, operating at 1.06 micrometers, using flashlamp or diode laser optical pumping of the solid state laser medium, and heterodyne detection; (3) the Neodymium doped YAG/Glass Lidar, operating at the doubled frequency (at 530 nm wavelength), again using flashlamp or diode laser pumping of the laser transmitter, and using a high resolution tandem Fabry-Perot filter and direct detection; and (4) the Raman shifted Xenon Chloride Lidar, operating at 350 nm wavelength, using a pulsed, atmospheric pressure XeCl gas discharge laser transmitter at 308 nm, Raman shifted in a high pressure hydrogen cell to 350 nm in order to avoid strong stratospheric ozone absorption, also using a high resolution tandem Fabry-Perot filter and direct detection. Comparisons of these four systems can include many factors and tradeoffs. The major portion of this comparison is devoted to efficiency. Efficiency comparisons are made by estimating the number of transmitted photons required for a single pulse wind velocity estimate of + or - 1 m/s accuracy in the middle troposphere, from an altitude of 800 km, which is assured to be reasonable for a polar orbiting platform.

  15. Linearly chirped tapered fiber-Bragg-grating-based Fabry-Perot cavity and its application in simultaneous strain and temperature measurement.

    PubMed

    Markowski, Konrad; Jędrzejewski, Kazimierz; Marzęcki, Michał; Osuch, Tomasz

    2017-04-01

    A novel concept of a Fabry-Perot (F-P) cavity composed of two linearly chirped fiber Bragg gratings written in a thermally fused fiber taper is presented. Both chirped gratings are written in counter-directional chirp configuration, where chirps resulting from the optical fiber taper profile and linearly increasing grating periods cancel each other out, forming a high-quality F-P resonator. A new strain-sensing mechanism is proposed in the presented structure, which is based on strain-induced detuning of the F-P resonator. Due to the different strain and temperature responses of the cavity, the resonator can be used for the simultaneous measurement of these physical quantities, or it can be used as a temperature-independent strain sensor.

  16. High frequency ultrasound imaging using Fabry-Perot optical etalon

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R.; O'Donnell, M.

    2005-04-01

    Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon

  17. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-06

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity. 2 figs.

  18. Gas laser with dual plasma mixing

    DOEpatents

    Pinnaduwage, Lal A.

    1999-01-01

    A gas laser includes an enclosure forming a first chamber, a second chamber and a lasing chamber which communicates through a first opening to the first chamber and through a second opening to the second chamber. The lasing chamber has a pair of reflectors defining a Fabry-Perot cavity. Separate inlets enable different gases to be introduced into the first and second chambers. A first cathode within the first chamber is provided to produce positive ions which travel into the lasing chamber and a second cathode of a pin-hollow type within the second chamber is provided to produce negative ions which travel into the lasing chamber. A third inlet introduces a molecular gas into the lasing chamber, where the molecular gas becomes excited by the positive and negative ions and emits light which lases in the Fabry-Perot cavity.

  19. Acceleration Strain Transducer with Increased Sensitivity

    DTIC Science & Technology

    2009-09-22

    utilizing a fiber laser sensor. The fiber laser accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity...fiber laser or a distributed feedback fiber laser. In a Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber...designs can produce the same type of signal. A receiver 26 receives the phase shifted signal. Receiver 26 is capable of demodulating and detecting

  20. Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Ze-Jian; Hu, De-Jiao; Gao, Fu-Hua; Hou, Yi-Dong

    2016-08-01

    The circular dichroism (CD) signal of a two-dimensional (2D) chiral meta-surface is usually weak, where the difference between the transmitted (or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry-Perot type resonance, which interacts with the localized surface plasmonic resonance (LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc. Project supported by the National Natural Science Foundation of China (Grant No. 61377054).

  1. A miniaturized laser-Doppler-system in the ear canal

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Gerhardt, U.; Kupper, C.; Manske, E.; Witte, H.

    2013-03-01

    Gathering vibrational data from the human middle ear is quite difficult. To this date the well-known acoustic probe is used to estimate audiometric parameters, e.g. otoacoustic emissions, wideband reflectance and the measurement of the stapedius reflex. An acoustic probe contains at least one microphone and one loudspeaker. The acoustic parameter determination of the ear canal is essential for the comparability of test-retest measurement situations. Compared to acoustic tubes, the ear canal wall cannot be described as a sound hard boundary. Sound energy is partly absorbed by the ear canal wall. In addition the ear canal features a complex geometric shape (Stinson and Lawton1). Those conditions are one reason for the inter individual variability in input impedance measurement data of the tympanic membrane. The method of Laser-Doppler-Vibrometry is well described in literature. Using this method, the surface velocity of vibrating bodies can be determined contact-free. Conventional Laser-Doppler-Systems (LDS) for auditory research are mounted on a surgical microscope. Assuming a free line of view to the ear drum, the handling of those laser-systems is complicated. We introduce the concept of a miniaturized vibrometer which is supposed to be applied directly in the ear canal for contact-free measurement of the tympanic membrane surface vibration. The proposed interferometer is based on a Fabry-Perot etalon with a DFB laser diode as light source. The fiber-based Fabry-Perot-interferometer is characterized by a reduced size, compared to e.g. Michelson-, or Mach-Zehnder-Systems. For the determination of the phase difference in the interferometer, a phase generated carrier was used. To fit the sensor head in the ear canal, the required shape of the probe was generated by means of the geometrical data of 70 ear molds. The suggested prototype is built up by a singlemode optical fiber with a GRIN-lens, acting as a fiber collimator. The probe has a diameter of 1.8 mm and a

  2. Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Lesh, J. R.

    1989-01-01

    Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.

  3. Hybrid single mode lasers fabricated using Si/SiO2/SiON micromachined platforms

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Mansour, K.

    2003-01-01

    We have devised a hybridization scheme that, given suitable Fabri-Perot (F-P) ain medium, allows us to fabricate small, mechanically robust single frequency lasers in a wide spectral range, limited only by the transparency of the SiON material.

  4. Performance limitations of a white light extrinsic Fabry-Perot interferometric displacement sensor

    NASA Astrophysics Data System (ADS)

    Moro, Erik A.; Todd, Michael D.; Puckett, Anthony D.

    2012-06-01

    Non-contacting interferometric fiber optic sensors offer a minimally invasive, high-accuracy means of measuring a structure's kinematic response to loading. The performance of interferometric sensors is often dictated by the technique employed for demodulating the kinematic measurand of interest from phase in the observed optical signal. In this paper a white-light extrinsic Fabry-Perot interferometer is implemented, offering robust displacement sensing performance. Displacement data is extracted from an estimate of the power spectral density, calculated from the interferometer's received optical power measured as a function of optical transmission frequency, and the sensor's performance is dictated by the details surrounding the implementation of this power spectral density estimation. One advantage of this particular type of interferometric sensor is that many of its control parameters (e.g., frequency range, frequency sampling density, sampling rate, etc.) may be chosen to so that the sensor satisfies application-specific performance needs in metrics such as bandwidth, axial displacement range, displacement resolution, and accuracy. A suite of user-controlled input values is investigated for estimating the spectrum of power versus wavelength data, and the relationships between performance metrics and input parameters are described in an effort to characterize the sensor's operational performance limitations. This work has been approved by Los Alamos National Laboratory for unlimited public release (LA-UR 12-01512).

  5. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement

    PubMed Central

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.

    2014-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0–10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153

  6. A high-transmission liquid-crystal Fabry-Perot infrared filter for electrically tunable spectral imaging detection

    NASA Astrophysics Data System (ADS)

    Liu, Zhonglun; Xin, Zhaowei; Long, Huabao; Wei, Dong; Dai, Wanwan; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng

    2018-02-01

    Previous studies have presented the usefulness of typical liquid-crystal Fabry-Perot (LC-FP) infrared filters for spectral imaging detection. Yet, their infrared transmission performances still remain to improve or even rise. In this paper, we propose a new type of electrically tunable LC-FP infrared filter to solve the problem above. The key component of the device is a FP resonant cavity composed of two parallel plane mirrors, in which the zinc selenide (ZnSe) materials with a very high transmittance in the mid-long-wavelength infrared regions are used as the electrode substrates and a layer of nano-aluminum (Al) film, which is directly contacted with liquid-crystal materials, is chosen to make high reflective mirrors as well as the electrodes. Particularly, it should be noted that the directional layer made up of ployimide (PI) used previously is removed. The experiment results indicate that the filter can reduce the absorption of infrared wave remarkably, and thus highlight a road to effectively improve the infrared transmittance ability.

  7. Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings.

    PubMed

    Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji

    2015-07-01

    Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. High-sensitivity and large-dynamic-range refractive index sensors employing weak composite Fabry-Perot cavities.

    PubMed

    Chen, Pengcheng; Shu, Xuewen; Cao, Haoran; Sugden, Kate

    2017-08-15

    Most sensors face a common trade-off between high sensitivity and a large dynamic range. We demonstrate here an all-fiber refractometer based on a dual-cavity Fabry-Perot interferometer (FPI) that possesses the advantage of both high sensitivity and a large dynamic range. Since the two composite cavities have a large cavity length difference, one can observe both fine and coarse fringes, which correspond to the long cavity and the short cavity, respectively. The short-cavity FPI and the use of an intensity demodulation method mean that the individual fine fringe dips correspond to a series of quasi-continuous highly sensitive zones for refractive index measurement. By calculating the parameters of the composite FPI, we find that the range of the ultra-sensitive zones can be considerably adjusted to suit the end requirements. The experimental trends are in good agreement with the theoretical predictions. The co-existence of high sensitivity and a large dynamic range in a composite FPI is of great significance to practical RI measurements.

  9. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  10. Interaction of NGC 2276 with the NGC 2300 group - Fabry-Perot observations of the H-alpha velocity field

    NASA Technical Reports Server (NTRS)

    Gruendl, Robert A.; Vogel, Stuart N.; Davis, David S.; Mulchaey, John S.

    1993-01-01

    We report kinematic observations of H-alpha emission from the spiral galaxy NGC 2276 obtained with a Fabry-Perot Camera. The 'bow shock' appearance and enhanced star formation in NGC 2276 have been attributed by Mulchaey et al. (1993) to a ram-pressure interaction with the dense IGM detected in ROSAT observations of the NGC 2300 group of galaxies. Along the 'bow shock' limb of the galaxy, we observe strong H-alpha emission and significant kinematic perturbations located immediately interior to an abrupt decrease in the scale length of the optical disk. Although ram-pressure forces may be important in the evolution of the outer gaseous disk, the peculiar kinematics and the truncation in the stellar disk are difficult to explain in a ram-pressure model; a more likely cause is tidal interaction, probably with the elliptical galaxy NGC 2300.

  11. HCPCF-based in-line fiber Fabry-Perot refractometer and high sensitivity signal processing method

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Geng, Xiangyi; Song, Furong

    2017-12-01

    An in-line fiber Fabry-Perot interferometer (FPI) based on the hollow-core photonic crystal fiber (HCPCF) for refractive index (RI) measurement is proposed in this paper. The FPI is formed by splicing both ends of a short section of the HCPCF to single mode fibers (SMFs) and cleaving the SMF pigtail to a proper length. The RI response of the sensor is analyzed theoretically and demonstrated experimentally. The results show that the FPI sensor has linear response to external RI and good repeatability. The sensitivity calculated from the maximum fringe contrast is -136 dB/RIU. A new spectrum differential integration (SDI) method for signal processing is also presented in this study. In this method, the RI is obtained from the integrated intensity of the absolute difference between the interference spectrum and its smoothed spectrum. The results show that the sensitivity obtained from the integrated intensity is about -1.34×105 dB/RIU. Compared with the maximum fringe contrast method, the new SDI method can provide the higher sensitivity, better linearity, improved reliability, and accuracy, and it's also convenient for automatic and fast signal processing in real-time monitoring of RI.

  12. Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application.

    PubMed

    Liang, Hao; Jia, Pinggang; Liu, Jia; Fang, Guocheng; Li, Zhe; Hong, Yingping; Liang, Ting; Xiong, Jijun

    2018-03-28

    A diaphragm-free fiber-optic Fabry-Perot (FP) interferometric gas pressure sensor is designed and experimentally verified in this paper. The FP cavity was fabricated by inserting a well-cut fiber Bragg grating (FBG) and hollow silica tube (HST) from both sides into a silica casing. The FP cavity length between the ends of the SMF and HST changes with the gas density. Using temperature decoupling method to improve the accuracy of the pressure sensor in high temperature environments. An experimental system for measuring the pressure under different temperatures was established to verify the performance of the sensor. The pressure sensitivity of the FP gas pressure sensor is 4.28 nm/MPa with a high linear pressure response over the range of 0.1-0.7 MPa, and the temperature sensitivity is 14.8 pm/°C under the range of 20-800 °C. The sensor has less than 1.5% non-linearity at different temperatures by using temperature decoupling method. The simple fabrication and low-cost will help sensor to maintain the excellent features required by pressure measurement in high temperature applications.

  13. Characterization and Dynamic Analysis of Long-Cavity Multi-Section Gain- Levered Quantum-Dot Lasers

    DTIC Science & Technology

    2013-03-01

    test setup .................................................................... 8 Figure 5: Comparison of a FabryPerot and distributed feedback...for example FabryPerot and distributed-feedback designs), with each possessing advantages and disadvantages that will be discussed in detail in...contrast to FabryPerot cavities (two discrete mirrors) that result in lasing over multiple longitudinal modes supported by the cavity. Figure 5 shows

  14. A Near IR Fabry-Perot Interferometer for Wide Field, Low Resolution Hyperspectral Imaging on the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.

    2000-01-01

    We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.

  15. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    PubMed

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring.

  16. Topical Meeting on Picosecond Electronics and Optoelectronics: A Digest of Technical Papers Presented at the Topical Meeting on Picosecond Electronics and Optoelectronics Held at Incline Village, Nevada on March 13-15, 1985.

    DTIC Science & Technology

    1985-03-15

    noise are decreased by -10 dB by injection. Fabry - Perot spectra suggest a stabilisation of the optical spectrum as well. The noise is caused by...pump beam such that one of the Fabry - Perot transmission peaks is on the low-frequency side of the exciton resonance. The pump beam creates carriers...originally transmitting, the application of the pump shifts the Fabry - Perot peak away from the laser wavelength causing the transmission to decrease

  17. Acceleration Strain Transducer

    DTIC Science & Technology

    2007-11-05

    accelerometer 10 includes a fiber laser 12. Fiber laser 12 can be either a Fabry - Perot type cavity fiber laser or a distributed feedback fiber laser. In a... Fabry - Perot type fiber laser, the laser cavity is a length of erbium- doped optical fiber with a Bragg grating written in the fiber core at either end of...the phase shifted signal. Receiver 26 is capable of demodulating and detecting the signal from the fiber laser by various methods well known in the

  18. High-power direct-diode laser successes

    NASA Astrophysics Data System (ADS)

    Haake, John M.; Zediker, Mark S.

    2004-06-01

    Direct diode laser will become much more prevalent in the solar system of manufacturing due to their high efficiency, small portable size, unique beam profiles, and low ownership costs. There has been many novel applications described for high power direct diode laser [HPDDL] systems but few have been implemented in extreme production environments due to diode and diode system reliability. We discuss several novel applications in which the HPDDL have been implemented and proven reliable and cost-effective in production environments. These applications are laser hardening/surface modification, laser wire feed welding and laser paint stripping. Each of these applications uniquely tests the direct diode laser systems capabilities and confirms their reliability in production environments. A comparison of the advantages direct diode laser versus traditional industrial lasers such as CO2 and Nd:YAG and non-laser technologies such a RF induction, and MIG welders for each of these production applications is presented.

  19. Unclassified Publications of Lincoln Laboratory, 1 January - 31 December 1991. Volume 17

    DTIC Science & Technology

    1991-12-31

    FIBER OPTIC ANALOG LINK MS-9183 MS-8873 FABRY - PEROT LASER FIBER OPTIC APPLICATIONS JA-6656 JA-6686 FABRY - PEROT SCANNING FIBER OPTIC LINK JA-6567 MS...8532, MS-9353 FABRY - PEROT SPECTRUM ANALYZER FIBER OPTICS TECHNOLOGY JA-6682 JA-6458 FAR-FIELD BEAM DIVERGENCE FIELD EFFECT TRANSISTORS JA-6505 JA-6662...8734 JA-6604, JA-6680 CRAMER-RAO LOWER BOUND DELAY LINES JA-6461 MS-8890 CROSS-CORRELATION DEMODULATION MS-8734 TR-91 0 CROSSLINK DEPOSITION METHODS JA

  20. Solvent-free fluidic organic dye lasers.

    PubMed

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-06

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors.

  1. Semiconductor laser-based optoelectronics oscillators

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak

    1998-08-01

    We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.

  2. The Kinematics of Globular Clusters Measured with a Fabry Perot: the Inner 0.7' of M15 and 47 TUC

    NASA Astrophysics Data System (ADS)

    Gebhardt, K.; Pryor, C.; Williams, T. B.; Hesser, J. E.

    1992-12-01

    We are using the Rutgers Imaging Fabry Perot Interferometer on the CTIO 4m telescope to study the kinematics of globular clusters. The etalon has a resolution of 0.7 Angstroms at 5900 Angstroms (FWHM), which equals the broadening caused by a velocity dispersion of 15 \\kms. We take a series of images, spaced at about 0.25 Angstroms, covering a strong absorption line (one of the Na D lines or a Ca triplet line) to produce a short spectrum at each pixel. The Fabry Perot field of view is about 4.5 square arcmin, but, due to the parabolic variation of wavelength with radius in the field, we get good coverage of the absorption line out to about 0.7' from the center with 15 exposures. If conditions are not photometric, we can normalize the images by using the stars on the edge of the field that are in the continuum. The information in these frames can be exploited in several ways. Measuring the brightness in each frame of every identifiable star yields stellar spectra and thus velocities. We use DAOPHOT II (Stetson, P.B. 1987 (Pub. A.S.P., 99, 191)) to do this. DAOPHOT can also subtract most of the light of the brighter stars and produce frames of residual cluster light, from which we can get the spectra of the integrated light. The broadening of the line in the spectrum of the diffuse light yields, in principle, the velocity dispersion of the underlying fainter stars, particularly near the cusp center. We present our results from two runs for the clusters M15 and 47 Tuc. We confirm the inward increase in the velocity dispersion of M15 previously measured by Peterson, R.C., Seitzer, P. and Cudworth, K.M. 1989 (Ap. J., 347, 251), but our dispersion estimates are smaller than theirs. Our measured dispersion for 25 stars within the 0.2' of the cluster center is 10 \\kms, 5 \\kms smaller than the value found by Peterson et.al..

  3. Fiber-optic extrinsic Fabry-Perot interferometer strain sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation.

    PubMed

    Schmidt, M; Werther, B; Fuerstenau, N; Matthias, M; Melz, T

    2001-04-09

    A fiber-optic extrinsic Fabry-Perot interferometer strain sensor (EFPI-S) of ls = 2.5 cm sensor length using three-wavelength digital phase demodulation is demonstrated to exhibit <50 pm displacement resolution (<2nm/m strain resolution) when measuring the cross expansion of a PZT-ceramic plate. The sensing (single-mode downlead-) and reflecting fibers are fused into a 150/360 microm capillary fiber where the fusion points define the sensor length. Readout is performed using an improved version of the previously described three-wavelength digital phase demodulation method employing an arctan-phase stepping algorithm. In the resent experiments the strain sensitivity was varied via the mapping of the arctan - lookup table to the 16-Bit DA-converter range from 188.25 k /V (6 Volt range 1130 k ) to 11.7 k /Volt (range 70 k ).

  4. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2011-09-13

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  5. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Spadaccini, Christopher M [Oakland, CA

    2012-06-12

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  6. Laser diode package with enhanced cooling

    DOEpatents

    Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M

    2012-06-26

    A laser diode package assembly includes a reservoir filled with a fusible metal in close proximity to a laser diode. The fusible metal absorbs heat from the laser diode and undergoes a phase change from solid to liquid during the operation of the laser. The metal absorbs heat during the phase transition. Once the laser diode is turned off, the liquid metal cools off and resolidifies. The reservoir is designed such that that the liquid metal does not leave the reservoir even when in liquid state. The laser diode assembly further includes a lid with one or more fin structures that extend into the reservoir and are in contact with the metal in the reservoir.

  7. Advances in Fabry-Perot and tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2017-05-01

    Quantum cascade lasers (QCLs) are becoming mature infrared emitting devices that convert electrical power directly into optical power and generate laser radiation in the mid wave infrared (MWIR) and long wave infrared (LWIR) regions. These lasers operate at room temperature in the 3.5 μm to >12.0 μm region. QCLs operate at longer wavelengths into the terahertz region; however, these require some level of cryogenic cooling. Nonetheless, QCLs are the only solid-state sources that convert electrical power into optical power directly in these spectral regions. Three critical advances have contributed to the broad range of applications of QCLs, since their first demonstration in 1994 [1]. The first of these was the utilization of two phonon resonance for deexcitation of electrons from the lower lasing level [2]; the second is the utilization of epi-down mounting with hard solder of QCLs for practical applications [3]; and the third is the invention of nonresonant extraction for deexciting electrons from the lower laser level and simultaneously removing constraints on QCL structure design for extending high power room temperature operation to a broad range of wavelengths [4]. Although QCLs generate CW radiation at room temperature at wavelengths ranging from 3.5 μm to <12.0 μm, two spectral regions are very important for a broad range of applications. These are the first and the second atmospheric transmission windows from 3.5 μm to 5.0 μm and from 8.0 μm to 12.0 μm, respectively. Both of these windows (except for the spectral region near 4.2 μm, which is dominated by the infrared absorption from atmospheric carbon dioxide) are relatively free from atmospheric absorption and have a range of applications that involve long distance propagation.

  8. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    PubMed

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-06

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  9. Compact Fiber-Parametric Devices for Biophotonics Applications

    DTIC Science & Technology

    2012-03-01

    coming in the fiber from the pump overlap temporally and spatially with the pulses fed back from a Fabry -Perot cavity (Sharping, 2010). Fiber optical...Some laser systems such as the Nd:YAG system used in this study, uses a Fabry -Perot cavity in which two mirrors are arranged parallel to one another... Fabry -Perot cavity formed between one end of the PCF and a metallic mirror (M3). The output coupler is a short-pass dielectric (SPD) or a long-pass

  10. Ultra-High Aggregate Bandwidth Two-Dimensional Multiple-Wavelength Diode Laser Arrays

    DTIC Science & Technology

    1994-04-09

    surface temperature across the wafer during the growth of the cavity spacer region using the fact that the molecular beam epitaxy (MBE) growth of GaAs...substrate surface temperature across the wafer during the growth of the cavity spacer region. Using the fact that, during an molecular beam epitaxy (MBE...K. Bacher and J.S. Harris, "Periodically Induced Mode Shift in Vertical Cavity Fabry Perot Etalons Grown by Molecular Beam Epitaxy ," to be presented

  11. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities

    NASA Astrophysics Data System (ADS)

    Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo

    2018-05-01

    In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.

  12. Diode lasers: From laboratory to industry

    NASA Astrophysics Data System (ADS)

    Nasim, Hira; Jamil, Yasir

    2014-03-01

    The invention of first laser in 1960 triggered the discovery of several new families of lasers. A rich interplay of different lasing materials resulted in a far better understanding of the phenomena particularly linked with atomic and molecular spectroscopy. Diode lasers have gone through tremendous developments on the forefront of applied physics that have shown novel ways to the researchers. Some interesting attributes of the diode lasers like cost effectiveness, miniature size, high reliability and relative simplicity of use make them good candidates for utilization in various practical applications. Diode lasers are being used by a variety of professionals and in several spectroscopic techniques covering many areas of pure and applied sciences. Diode lasers have revolutionized many fields like optical communication industry, medical science, trace gas monitoring, studies related to biology, analytical chemistry including elemental analysis, war fare studies etc. In this paper the diode laser based technologies and measurement techniques ranging from laboratory research to automated field and industry have been reviewed. The application specific developments of diode lasers and various methods of their utilization particularly during the last decade are discussed comprehensively. A detailed snapshot of the current state of the art diode laser applications is given along with a detailed discussion on the upcoming challenges.

  13. Measuring THz QCL feedback using an integrated monolithic transceiver.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael Clement

    2010-08-01

    THz quantum cascade lasers are of interest for use as solid-state local-oscillators in THz heterodyne receiver systems, especially for frequencies exceeding 2 THz and for use with non-cryogenic mixers which require mW power levels. Among other criteria, to be a good local oscillator, the laser must have a narrow linewidth and excellent frequency stability. Recent phase locking measurements of THz QCLs to high harmonics of microwave frequency reference sources as high as 2.7 THz demonstrate that the linewidth and frequency stability of QCLs can be more than adequate. Most reported THz receivers employing QCLs have used discrete source and detectormore » components coupled via mechanically aligned free-space quasioptics. Unfortunately, retroreflections of the laser off of the detecting element can lead to deleterious feedback effects. Using a monolithically integrated transceiver with a Schottky diode monolithically integrated into a THz QCL, we have begun to explore the sensitivity of the laser performance to feedback due to retroreflections of the THz laser radiation. The transceiver allows us to monitor the beat frequency between internal Fabry-Perot modes of the QCL or between a QCL mode and external radiation incident on the transceiver. When some of the power from a free running Fabry-Perot type QCL is retroreflected with quasi-static optics we observe frequency pulling, mode splitting and chaos. Given the lack of calibrated frequency sources with sufficient stability and power to phase lock a QCL above a couple THz, attempts have been made to lock the absolute laser frequency by locking the beat frequency of a multimoded laser. We have phase locked the beat frequency between Fabry-Perot modes to an {approx}13 GHz microwave reference source with a linewidth less than 1 Hz, but did not see any improvment in stability of the absolute frequency of the laser. In this case, when some laser power is retroreflected back into the laser, the absolute frequency can be

  14. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    PubMed

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field.

  15. CIV Polarization Measurements using a Vacuum Ultraviolet Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    West, Edward; Gary, G. Allen; Cirtain, Jonathan; David, John; Kobayashi, Ken; Pietraszewski, Chris

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry-P rot Interferometer that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry P rot.

  16. Enhanced vbasis laser diode package

    DOEpatents

    Deri, Robert J.; Chen, Diana; Bayramian, Andy; Freitas, Barry; Kotovsky, Jack

    2014-08-19

    A substrate having an upper surface and a lower surface is provided. The substrate includes a plurality of v-grooves formed in the upper surface. Each v-groove includes a first side and a second side perpendicular to the first side. A laser diode bar assembly is disposed within each of the v-grooves and attached to the first side. The laser diode bar assembly includes a first adhesion layer disposed on the first side of the v-groove, a metal plate attached to the first adhesion layer, a second adhesion layer disposed over the metal plate, and a laser diode bar attached to the second adhesion layer. The laser diode bar has a coefficient of thermal expansion (CTE) substantially similar to that of the metal plate.

  17. Fibre optic sensors for temperature and pressure monitoring in laser ablation: experiments on ex-vivo animal model

    NASA Astrophysics Data System (ADS)

    Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh B.; Poeggel, Sven; Adilzhan, Abzal; Aliakhmet, Kamilla; Silvestri, Sergio; Leen, Gabriel; Lewis, Elfed

    2016-05-01

    Optical fibre sensors have been applied to perform biophysical measurement in ex-vivo laser ablation (LA), on pancreas animal phantom. Experiments have been performed using Fibre Bragg Grating (FBG) arrays for spatially resolved temperature detection, and an all-glass Extrinsic Fabry-Perot Interferometer (EFPI) for pressure measurement. Results using a Nd:YAG laser source as ablation device, are presented and discussed.

  18. Pump Diode Characterization for an Unstable Diode-Pumped Alkali Laser Resonator

    DTIC Science & Technology

    2013-03-01

    2003. Petersen, A., and R. Lane, Second harmonic operation of diode-pumped Rb vapor lasers , Proc. of SPIE, 7005, 2008. Siegman , A. E., Lasers ...University Science Books, Sausalito, CA, 1986. Siegman , A. E., Defining, measuring and optimizing laser beam quality, Proc. of SPIE, 1868, 1993. Steck, D...PUMP DIODE CHARACTERIZATION FOR AN UNSTABLE DIODE-PUMPED ALKALI LASER RESONATOR THESIS Chad T. Taguba, Master Sergeant, USAF AFIT-ENP-13-M-33

  19. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  20. Transurethral vaporesection of prostate: diode laser or thulium laser?

    PubMed

    Tan, Xinji; Zhang, Xiaobo; Li, Dongjie; Chen, Xiong; Dai, Yuanqing; Gu, Jie; Chen, Mingquan; Hu, Sheng; Bai, Yao; Ning, Yu

    2018-05-01

    This study compared the safety and effectiveness of the diode laser and thulium laser during prostate transurethral vaporesection for treating benign prostate hyperplasia (BPH). We retrospectively analyzed 205 patients with BPH who underwent a diode laser or thulium laser technique for prostate transurethral vaporesection from June 2016 to June 2017 and who were followed up for 3 months. Baseline characteristics of the patients, perioperative data, postoperative outcomes, and complications were compared. We also assessed the International Prostate Symptom Score (IPSS), quality of life (QoL), maximum flow rate (Q max ), average flow rate (AFR), and postvoid residual volume (PVR) at 1 and 3 months postoperatively to evaluate the functional improvement of each group. There were no significant differences between the diode laser and thulium laser groups related to age, prostate volume, operative time, postoperative hospital stays, hospitalization costs, or perioperative data. The catheterization time was 3.5 ± 0.8 days for the diode laser group and 4.7 ± 1.8 days for the thulium laser group (p < 0.05). Each group had dramatic improvements in IPSS, QoL, Q max , AFR, and PVR compared with the preoperative values (p < 0.05), although there were no significant differences between the two groups. Use of both diode laser and thulium laser contributes to safe, effective transurethral vaporesection in patients with symptomatic BPH. Diode laser, however, is better than thulium laser for prostate transurethral vaporesection because of its shorter catheterization time. The choice of surgical approach is more important than the choice of laser types during clinical decision making for transurethral laser prostatectomy.

  1. Qualification of Laser Diode Arrays for Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance of Quasi-CW, High-power, laser diode arrays under extended use is presented. We report the optical power over several hundred million pulse operation and the effect of power cycling and temperature cycling of the laser diode arrays. Data on the initial characterization of the devices is also presented.

  2. A tunable erbium-doped fiber ring laser with power-equalized output

    NASA Astrophysics Data System (ADS)

    Yeh, Chien-Hung; Lin, Ming-Ching; Chi, Sien

    2006-12-01

    We propose and demonstrate a tunable erbium-based fiber ring laser with power-equalized output. When a mode-restricting intracavity fiber Fabry-Perot tunable filter (FFP-TF) is combined, the proposed resonator can guarantee a tunable laser oscillation. This proposed laser can obtain the flatter lasing wavelength in an effectively operating range of 1533.3 to 1574.6 nm without any other operating mechanism. Moreover, the performances of the output power, wavelength tuning range, and side-mode suppression ratio (SMSR) were studied.

  3. Molecular laser stabilization for LISA

    NASA Astrophysics Data System (ADS)

    Halloin, Hubert; Acef, Ouali; Argence, Berengere; Jeannin, Olivier; Prat, Pierre; de Vismes, Eden; Plagnol, Eric; Brillet, Alain; Mondin, Linda; Berthon, Jacques; Turazza, Oscar

    2017-11-01

    The expected performance of LISA relies on two main technical challenges: the ability for the spacecrafts to precisely follow the free-flying masses and the outstanding precision of the phase shift measurement. This latter constraint requires frequency stabilized lasers and efficient numerical algorithms to account for the redundant, delayed noise propagation, thus cancelling laser phase noise by many orders of magnitude (TDI methods). Recently involved in the technical developments for LISA, the goal of our team at APC (France) is to contribute on these two subjects: frequency reference for laser stabilization and benchtop simulation of the interferometer. In the present design of LISA, two stages of laser stabilization are used (not accounting for the "post-processed" TDI algorithm): laser pre-stabilization on a frequency reference and lock on the ultra stable distance between spacecrafts (arm-locking). While the foreseen (and deeply studied) laser reference consists of a Fabry-Perot cavity, other techniques may be suitable for LISA or future metrology missions. In particular, locking to a molecular reference (namely iodine in the case of the LISA Nd:YAG laser) is an interesting alternative. It offers the required performance with very good long-term stability (absolute frequency reference) though the reference can be slightly tuned to account for arm-locking. This technique is currently being investigated by our team and optimized for LISA (compactness, vacuum compatibility, ease of use and initialization, etc.). A collaboration with a French laboratory (the SYRTE) had been started aiming to study a second improved technique consisting in inserting the iodine cell in a Fabry-Perot cavity. Ongoing results and prospects to increase the performance of the system are presented in the present article.

  4. Fabry-Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads

    NASA Astrophysics Data System (ADS)

    Khater, A.; Saim, L.; Tigrine, R.; Ghader, D.

    2018-06-01

    We propose thermodynamically stable systems of ultrathin lamellar bcc Ni nanostructures between bcc Fe leads, sbnd Fe[Ni(n)]Fesbnd , based on the available literature for bcc Ni overlayers on Fe(001) surfaces, and establish the necessary criteria for their structural and ferromagnetic order, for thicknesses n ≤ 6 bcc Ni monatomic layers. The system is globally ferromagnetic. A theoretical model is presented to investigate and understand the ballistic coherent scattering of Fe spin-waves, incident from the leads, at the ferromagnetic bcc Ni nanostructure. The Nisbnd Ni and Nisbnd Fe exchange are computed using the Ising effective field theory (EFT), and the magnetic ground state of the system is constructed in the Heisenberg representation. We compute the spin-wave eigenmodes localized on the bcc Ni nanostructure, using the phase field matching theory (PFMT), illustrating the effects of symmetry breaking on the confinement of localized spin excitations. The reflection and transmission scattering properties of spin-waves incident from the Fe leads, across the embedded Ni nanostructures are investigated within the framework of the same PFMT methodology. A highly refined Fabry-Perot magnonic ballistic coherent transmission spectra is observed for these sbnd Fe[Ni(n)]Fesbnd systems.

  5. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation

    NASA Astrophysics Data System (ADS)

    Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong

    2018-04-01

    We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.

  6. Fiber Laser Development for LISA

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.

    2009-01-01

    We have developed a linearly-polarized Ytterbium-doped fiber ring laser with single longitudinal-mode output at 1064nm for LISA and other space applications. Single longitudinal-mode selection was achieved by using a fiber Bragg grating (FBG) and a fiber Fabry-Perot (FFP). The FFP also serves as a frequency-reference within our ring laser. Our laser exhibits comparable low frequency and intensity noise to Non-Planar Ring Oscillator (NPRO). By using a fiber-coupled phase modulator as a frequency actuator, the laser frequency can be electro-optically tuned at a rate of 100kHz. It appears that our fiber ring laser is promising for space applications where robustness of fiber optics is desirable.

  7. Fiber-optic extrinsic Fabry-Perot vibration-isolated interferometer for use in absolute gravity meters.

    PubMed

    Canuteson, E L; Zumberge, M

    1996-07-01

    In an absolute gravity meter, a laser interferometer measures the position of a test mass that is falling ina vacuum. The calculated value of gravity is the average acceleration of the mass during a set ofdrops. Since systematic accelerations of the optical system will bias the measured value of gravity,various interferometer geometries have been implemented in the past to isolate the optical system fromground motion. We have developed and tested a low-finesse fiber-optic extrinsic Fabry-Perotinterferometer that is fixed to the mass of a critically damped seismometer in which the effects ofsystematic ground motion and acoustic vibrations are reduced.

  8. Ground-Based Fabry-Perot Interferometry of the Terrestrial Nightglow with a Bare Charge-Coupled Device: Remote Field Site Deployment

    NASA Technical Reports Server (NTRS)

    Niciejewski, Rick; Killeen, Timothy L.; Turnbull, Matthew

    1994-01-01

    The application of Fabry-Perot interferometers (FPIs) to the study of upper atmosphere thermodynamics has largely been restricted by the very low light levels in the terrestrial airglow as well as the limited range in wavelength of photomultiplier tube (PMT) technology. During the past decade, the development of the scientific grade charge-coupled device (CCD) has progressed to the stage in which this detector has become the logical replacement for the PMT. Small fast microcomputers have made it possible to "upgrade" our remote field sites with bare CCDs and not only retain the previous capabilities of the existing FPls but expand the data coverage in both temporal and wavelength domains. The problems encountered and the solutions applied to the deployment of a bare CCD, with data acquisition and image reduction techniques, are discussed. Sample geophysical data determined from the FPI fringe profiles are shown for our stations at Peach Mountain, Michigan, and Watson Lake, Yukon Territory.

  9. Tunable Heterodyne Receiver from 100 Micron to 1,000 Micron for Airborne Observations

    NASA Technical Reports Server (NTRS)

    Roeser, H. P.; Wattenbach, R.; Vanderwal, P.

    1984-01-01

    Interest in high resolution spectrometers for the submillimeter wavelength range from 100 micron to 1,000 micron is mostly stimulated by molecular spectroscopy in radioastronomy and atmospheric physics, and by plasma diagnostic experiments. Schottky diodes in waveguide mixer technology and InSb-hot electron bolometers are successfully used in the 0.5 to a few millimeter range whereas tandem Fabry-Perot spectrometers combined with photoconductive detectors (Ge:Sb and Ge:Ga) are used for the 100 micron range. Recent research on heterodyne spectrometers, with Schottky diodes in an open structure mixer and a molecular laser as local oscillators, which can be used over the whole wavelength range is summarized.

  10. Schlieren with a laser diode source

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Franke, J. M.

    1981-01-01

    The use of a laser diode as a light source for a schlieren system designed to study phase objects such as a wind-tunnel flow is explored. A laser diode schlieren photograph and a white light schlieren photograph (zirconium arc source) are presented for comparison. The laser diode has increased sensitivity, compared with light schlieren, without appreciable image degradiation, and is an acceptable source for schlieren flow visualization.

  11. Laser diode technology for coherent communications

    NASA Technical Reports Server (NTRS)

    Channin, D. J.; Palfrey, S. L.; Toda, M.

    1989-01-01

    The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.

  12. Measurement of laser quantum frequency fluctuations using a Pound-Drever stabilization system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.J.; Mussche, P.L.; Siegman, A.E.

    1994-06-01

    The authors describe a method for measuring the frequency fluctuation spectrum of a laser oscillator, especially the weak noise contributions in the wings of the spectrum, and apply this method to confirm the existence of large excess quantum frequency fluctuations in a laser oscillator using an unstable optical resonator. The measurement apparatus uses the Pound-Drever technique, which employs an RF phase modulator and a Fabry-Perot cavity to produce a sensitive high-speed frequency discrimination signal. The authors show that this signal can also be used to measure the quantum noise contributions to the frequency spectrum of a laser oscillator. Experimental measurementsmore » on a miniature diode-pumped Nd:YAG laser using a stable optical cavity closely match the predictions of the usual Schawlow-Townes theory, while the frequency fluctuations in a nearly identical laser employing an unstable optical resonator are approximately 1,300 times larger. These much larger fluctuations arise in part from the larger output coupling and cavity bandwidth of the unstable cavity, but they also appear to confirm a predicted excess spontaneous emission factor (Petermann excess noise factor) of [approx]180 times arising from the nonorthogonal transverse mode properties of the unstable cavity.« less

  13. The waveguide laser - A review

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1976-01-01

    The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.

  14. Quasi-CW Laser Diode Bar Life Tests

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Krainak, Michael A.; Dallas, Joseph L.

    1997-01-01

    NASA's Goddard Space Flight Center is developing technology for satellite-based, high peak power, LIDAR transmitters requiring 3-5 years of reliable operation. Semi-conductor laser diodes provide high efficiency pumping of solid state lasers with the promise of long-lived, reliable operation. 100-watt quasi- CW laser diode bars have been baselined for the next generation laser altimeters. Multi-billion shot lifetimes are required. The authors have monitored the performance of several diodes for billions of shots and investigated operational modes for improving diode lifetime.

  15. Efficient, diode-laser-pumped, diode-laser-seeded, high-peak-power Nd:YLF regenerative amplifier.

    PubMed

    Selker, M D; Afzal, R S; Dallas, J L; Yu, A W

    1994-04-15

    Optical amplification of 11 orders of magnitude in a microlens-collimated, diode-laser-pumped regenerative amplifier has been demonstrated. The amplifier was seeded with 20-ps pulses from an FM mode-locked oscillator and with 0.9-ns pulses from a modulated diode laser. Seed pulses from both sources were amplified to energies exceeding 2.5 mJ. With the thermoelectric coolers and the Pockels cell electronics neglected, the diode-seeded system exhibited an electrical-to-optical efficiency of 2.2%.

  16. Diode pumped solid-state laser oscillators for spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  17. Digital control of diode laser for atmospheric spectroscopy

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Rutledge, C. W. (Inventor)

    1985-01-01

    A system is described for remote absorption spectroscopy of trace species using a diode laser tunable over a useful spectral region of 50 to 200 cm(-1) by control of diode laser temperature over range from 15 K to 100 K, and tunable over a smaller region of typically 0.1 to 10 cm(-1) by control of the diode laser current over a range from 0 to 2 amps. Diode laser temperature and current set points are transmitted to the instrument in digital form and stored in memory for retrieval under control of a microprocessor during measurements. The laser diode current is determined by a digital to analog converter through a field effect transistor for a high degree of ambient temperature stability, while the laser diode temperature is determined by set points entered into a digital to analog converter under control of the microprocessor. Temperature of the laser diode is sensed by a sensor diode to provide negative feedback to the temperature control circuit that responds to the temperature control digital to analog converter.

  18. New Broadband LIDAR for Greenhouse Carbon Dioxide Gas Sensing in the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena; Heaps, William S.; Huang,Wen

    2011-01-01

    We present demonstration of a novel broadband lidar technique capable of dealing with the atmospherically induced variations in CO2 absorption using a Fabry-Perot based detector and a broadband laser. The Fabry-Perot solid etalon in the receiver part is tuned to match the wavelength of several CO2 absorption lines simultaneously. The broadband technique tremendously reduces the requirement for source wavelength stability, instead putting this responsibility on the Fabry- Perot based receiver. The instrument technology we are developing has a clear pathway to space and realistic potential to become a robust, low risk space measurement system.

  19. Optimization of a Fabry-Perot Q-switch fiber optic laser

    NASA Astrophysics Data System (ADS)

    Armas Rivera, Ivan; Beltrán Pérez, Georgina; Kuzin, Evgene; Castillo Mixcóatl, Juan; Muñoz Aguirre, Severino

    2013-11-01

    Optical fiber Q-Switch lasers have been used in a variety of application areas in science as well as in industry owing to their multiple characteristics. A possible application is that owing to their high output power they can be used as pumping sources for supercontinuum generation. Such source can be employed in optical coherence tomography (OCT) focused to dermatology. Therefore it is important to develop sources with emission wavelength that are not injurious to human skin. In the present work erbium doped fiber (EDF) was used owing that its emission wavelength (1550 nm) is adequate for this purpose. The most efficient way of achieving high power in a Q-Switch laser is optimizing all the parameters involved in the pulses generation, such as pumping power, active medium length and modulation frequency. The results show that using a fiber length of 7 meters is possible to get 10 μJ of energy, a peak power of 140 W, an average power of 27.5mW with temporal widths of 500 ns. The laser uses an acousto-optic device to modulate the internal loses inside the cavity. As highly reflecting mirrors, a Sagnac Interferometer and a Fiber Bragg Grating was employed.

  20. Qualification and Selection of Flight Diode Lasers for Space Applications

    NASA Technical Reports Server (NTRS)

    Liebe, Carl C.; Dillon, Robert P.; Gontijo, Ivair; Forouhar, Siamak; Shapiro, Andrew A.; Cooper, Mark S.; Meras, Patrick L.

    2010-01-01

    The reliability and lifetime of laser diodes is critical to space missions. The Nuclear Spectroscopic Telescope Array (NuSTAR) mission includes a metrology system that is based upon laser diodes. An operational test facility has been developed to qualify and select, by mission standards, laser diodes that will survive the intended space environment and mission lifetime. The facility is situated in an electrostatic discharge (ESD) certified clean-room and consist of an enclosed temperature-controlled stage that can accommodate up to 20 laser diodes. The facility is designed to characterize a single laser diode, in addition to conducting laser lifetime testing on up to 20 laser diodes simultaneously. A standard laser current driver is used to drive a single laser diode. Laser diode current, voltage, power, and wavelength are measured for each laser diode, and a method of selecting the most adequate laser diodes for space deployment is implemented. The method consists of creating histograms of laser threshold currents, powers at a designated current, and wavelengths at designated power. From these histograms, the laser diodes that illustrate a performance that is outside the normal are rejected and the remaining lasers are considered spaceborne candidates. To perform laser lifetime testing, the facility is equipped with 20 custom laser drivers that were designed and built by California Institute of Technology specifically to drive NuSTAR metrology lasers. The laser drivers can be operated in constant-current mode or alternating-current mode. Situated inside the enclosure, in front of the laser diodes, are 20 power-meter heads to record laser power throughout the duration of lifetime testing. Prior to connecting a laser diode to the current source for characterization and lifetime testing, a background program is initiated to collect current, voltage, and resistance. This backstage data collection enables the operational test facility to have full laser diode

  1. The Beam Characteristics of High Power Diode Laser Stack

    NASA Astrophysics Data System (ADS)

    Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan

    2018-03-01

    Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.

  2. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  3. Measurements on the He-Ne laser lines near 633 nm

    NASA Astrophysics Data System (ADS)

    Steinhaus, David W.

    1983-09-01

    The red line from an inexpensive He-Ne laser is made up of several closely spaced lines. To separate these lines very high spectral resolution is required. This apparatus requirement can be met by a simple modification of a student Fabry-Perot interferometer. Laboratory measurements can then be made to verify the expected number, spacing, and polarization of these lines during a single afternoon laboratory session.

  4. Arbitrary waveform generator to improve laser diode driver performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulkerson, Jr, Edward Steven

    2015-11-03

    An arbitrary waveform generator modifies the input signal to a laser diode driver circuit in order to reduce the overshoot/undershoot and provide a "flat-top" signal to the laser diode driver circuit. The input signal is modified based on the original received signal and the feedback from the laser diode by measuring the actual current flowing in the laser diode after the original signal is applied to the laser diode.

  5. Diode Laser Ear Piercing: A Novel Technique.

    PubMed

    Suseela, Bibilash Babu; Babu, Preethitha; Chittoria, Ravi Kumar; Mohapatra, Devi Prasad

    2016-01-01

    Earlobe piercing is a common office room procedure done by a plastic surgeon. Various methods of ear piercing have been described. In this article, we describe a novel method of laser ear piercing using the diode laser. An 18-year-old female patient underwent an ear piercing using a diode laser with a power of 2.0 W in continuous mode after topical local anaesthetic and pre-cooling. The diode laser was fast, safe, easy to use and highly effective way of ear piercing. The advantages we noticed while using the diode laser over conventional methods were more precision, minimal trauma with less chances of hypertrophy and keloids, no bleeding with coagulation effect of laser, less time taken compared to conventional method and less chance of infection due to thermal heat effect of laser.

  6. Diode Laser for Laryngeal Surgery: a Systematic Review.

    PubMed

    Arroyo, Helena Hotz; Neri, Larissa; Fussuma, Carina Yuri; Imamura, Rui

    2016-04-01

    Introduction The diode laser has been frequently used in the management of laryngeal disorders. The portability and functional diversity of this tool make it a reasonable alternative to conventional lasers. However, whether diode laser has been applied in transoral laser microsurgery, the ideal parameters, outcomes, and adverse effects remain unclear. Objective The main objective of this systematic review is to provide a reliable evaluation of the use of diode laser in laryngeal diseases, trying to clarify its ideal parameters in the larynx, as well as its outcomes and complications. Data Synthesis We included eleven studies in the final analysis. From the included articles, we collected data on patient and lesion characteristics, treatment (diode laser's parameters used in surgery), and outcomes related to the laser surgery performed. Only two studies were prospective and there were no randomized controlled trials. Most of the evidence suggests that the diode laser can be a useful tool for treatment of different pathologies in the larynx. In this sense, the parameters must be set depending on the goal (vaporization, section, or coagulation) and the clinical problem. The literature lacks studies on the ideal parameters of the diode laser in laryngeal surgery. The available data indicate that diode laser is a useful tool that should be considered in laryngeal surgeries. Thus, large, well-designed studies correlated with diode compared with other lasers are needed to better estimate its effects.

  7. Diode Laser for Laryngeal Surgery: a Systematic Review

    PubMed Central

    Arroyo, Helena Hotz; Neri, Larissa; Fussuma, Carina Yuri; Imamura, Rui

    2016-01-01

    Introduction The diode laser has been frequently used in the management of laryngeal disorders. The portability and functional diversity of this tool make it a reasonable alternative to conventional lasers. However, whether diode laser has been applied in transoral laser microsurgery, the ideal parameters, outcomes, and adverse effects remain unclear. Objective The main objective of this systematic review is to provide a reliable evaluation of the use of diode laser in laryngeal diseases, trying to clarify its ideal parameters in the larynx, as well as its outcomes and complications. Data Synthesis We included eleven studies in the final analysis. From the included articles, we collected data on patient and lesion characteristics, treatment (diode laser's parameters used in surgery), and outcomes related to the laser surgery performed. Only two studies were prospective and there were no randomized controlled trials. Most of the evidence suggests that the diode laser can be a useful tool for treatment of different pathologies in the larynx. In this sense, the parameters must be set depending on the goal (vaporization, section, or coagulation) and the clinical problem. Conclusion: The literature lacks studies on the ideal parameters of the diode laser in laryngeal surgery. The available data indicate that diode laser is a useful tool that should be considered in laryngeal surgeries. Thus, large, well-designed studies correlated with diode compared with other lasers are needed to better estimate its effects. PMID:27096024

  8. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities

    NASA Astrophysics Data System (ADS)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-09-01

    Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.

  9. An efficient hexagonal switched beam antenna structure based on Fabry-Perot cavity leaky-wave antenna

    NASA Astrophysics Data System (ADS)

    Aymen El Cafsi, Mohamed; Nedil, Mourad; Osman, Lotfi; Gharsallah, Ali

    2015-11-01

    A novel design of switched beam antenna (SBA) system based on Fabry-Perot cavity leaky-wave antenna (FPC LWA) is designed and fabricated for base station operating in the unlicensed ISM central frequency band at 5.8 GHz of the wireless local area network (WLAN) standard. The proposed SBA is designed with hexagonal shape of FPC LWA Arrays in order to get 360° of coverage. The single element of FPC LWA array is composed of a patch antenna and covered by a Partially Reflective Surface (PRS), which is composed of a Metal Strip Grating and printed on a high permittivity Superstrate. First, the Transmission Line Model of FPC LWA is introduced to analyse and calculate the far-field components in E- and H planes by using the Transverse Equivalent Network. This approach is then compared with other full wave's commercial software such as Ansoft HFSS and CST Microwave Studio. Second, a parametric study is performed to evaluate the effect of the angle formed by the two successive FPC LWA on the radiation efficiency of the activate sector. To examine the performance of the proposed SBA, experimental prototype was fabricated and measured. As a result, multiple orthogonal beams (six beams) of 10 dBi of gain with low Side Lobes Level and 360° of coverage are produced. This SBA structure is suitable for WLAN communication systems.

  10. Fiber Grating Coupled Light Source Capable of Tunable, Single Frequency Operation

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A. (Inventor); Duerksen, Gary L. (Inventor)

    2001-01-01

    Fiber Bragg grating coupled light sources can achieve tunable single-frequency (single axial and lateral spatial mode) operation by correcting for a quadratic phase variation in the lateral dimension using an aperture stop. The output of a quasi-monochromatic light source such as a Fabry Perot laser diode is astigmatic. As a consequence of the astigmatism, coupling geometries that accommodate the transverse numerical aperture of the laser are defocused in the lateral dimension, even for apsherical optics. The mismatch produces the quadratic phase variation in the feedback along the lateral axis at the facet of the laser that excites lateral modes of higher order than the TM(sub 00). Because the instability entails excitation of higher order lateral submodes, single frequency operation also is accomplished by using fiber Bragg gratings whose bandwidth is narrower than the submode spacing. This technique is particularly pertinent to the use of lensed fiber gratings in lieu of discrete coupling optics. Stable device operation requires overall phase match between the fed-back signal and the laser output. The fiber Bragg grating acts as a phase-preserving mirror when the Bragg condition is met precisely. The phase-match condition is maintained throughout the fiber tuning range by matching the Fabry-Perot axial mode wavelength to the passband center wavelength of the Bragg grating.

  11. Optical modulation from an electro-optic polymer based hybrid Fabry-Perot etalon using transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Zhang, Hongxi; DeRose, Christopher T.; Norwood, Robert A.; Fallahi, Mahmoud; Luo, Jingdong; Jen, Alex K.-Y.; Liu, Boyang; Ho, Seng-Tiong; Peyghambarian, Nasser

    2007-02-01

    Fabry-Perot etalons using electro-optic (EO) organic materials can be used for devices such as tunable filters and spatial light modulators (SLM's) for wavelength division multiplexing (WDM) communication systems 1-5 and ultrafast imaging systems. For these applications the SLM's need to have: (i) low insertion loss, (ii) high speed operation, and (iii) large modulation depth with low drive voltage. Recently, there have been three developments which together can enhance the SLM performance to a higher level. First, low loss distributed Bragg reflector (DBR) mirrors are now used in SLM's to replace thin metal mirrors, resulting in reduced transmission loss, high reflectivity (>99%) and high finesse. Second, EO polymer materials have shown excellent properties for wide bandwidth optical modulation for information technology due to their fabrication flexibility, compatibility with high speed operation, and large EO coefficients at telecommunication wavelengths. For instance, the EO polymer AJL8/APC (AJL8: nonlinear optical chromophore, and APC: amorphous polycarbonate has recently been incorporated into waveguide modulators and achieved good performance for optical modulation. Finally, very low loss transparent conducting oxide (TCO) electrodes have drawn increasing attention for applications in optoelectronic devices. Here we will address how the low loss indium oxide (In IIO 3) electrodes with an absorption coefficient ~1000/cm and conductivity ~204 S/cm can help improve the modulation performance of EO polymer Fabry-Pérot étalons using the advanced electro-optic (EO) polymer material (AJL8/APC). A hybrid etalon structure with one highly conductive indium tin oxide (ITO) electrode outside the etalon cavity and one low-absorption In IIO 3 electrode inside etalon cavity has been demonstrated. High finesse (~234), improved effective applied voltage ratio (~0.25), and low insertion loss (~4 dB) have been obtained. A 10 dB isolation ratio and ~10% modulation depth at

  12. Laser Gyro Theory Extension.

    DTIC Science & Technology

    1980-12-01

    A 60 Kiz. A scanning Fabry - Perot etalon was used to measure the frequency spectrum. I -.8 -.4 0 .4 .8 n(O/sec) a 4-mode (expt) / 2-mode(expt) / -- 4...light from one mode into the counter- rotating one is Doppler shifted. In summary, a two-mode ring laser gyro has two counter- Fig. 4. The demodulated ...input rate so that the locking Fig. 4 shows the demodulated beat note versus rotation rate region is avoided. The rotation rate measurement then depends

  13. Diode laser application in soft tissue oral surgery.

    PubMed

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. The diode laser can be used as a modality for oral soft tissue surgery.

  14. Diode Laser Application in Soft Tissue Oral Surgery

    PubMed Central

    Azma, Ehsan; Safavi, Nassimeh

    2013-01-01

    Introduction: Diode laser with wavelengths ranging from 810 to 980 nm in a continuous or pulsed mode was used as a possible instrument for soft tissue surgery in the oral cavity. Discussion: Diode laser is one of laser systems in which photons are produced by electric current with wavelengths of 810, 940 and 980nm. The application of diode laser in soft tissue oral surgery has been evaluated from a safety point of view, for facial pigmentation and vascular lesions and in oral surgery excision; for example frenectomy, epulis fissuratum and fibroma. The advantages of laser application are that it provides relatively bloodless surgical and post surgical courses with minimal swelling and scarring. We used diode laser for excisional biopsy of pyogenic granuloma and gingival pigmentation. Conclusion: The diode laser can be used as a modality for oral soft tissue surgery PMID:25606331

  15. Laser-diode-pumped 1319-nm monolithic non-planar ring single-frequency laser

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Gao, Chunqing; Zhao, Yan; Yang, Suhui; Wei, Guanghui; 2, Dongmei Hong

    2003-10-01

    Single-frequency 1319-nm laser was obtained by using a laser-diode-pumped monolithic Nd:YAG crystal with a non-planar ring oscillator (NPRO). When the NPRO laser was pumped by an 800-?m fiber coupled laser diode, the output power of the single-frequency 1319-nm laser was 220 mW, and the slope efficiency was 16%. With a 100-1m fiber coupled diode laser pumped, 99-mW single-frequency 1319-nm laser was obtained with a slope efficiency of 29%.

  16. Fiber Fabry-Perot Force Sensor with Small Volume and High Performance for Assessing Fretting Damage of Steam Generator Tubes

    PubMed Central

    Huang, Peijian; Wang, Ning; Li, Junying; Zhu, Yong; Zhang, Jie

    2017-01-01

    Measuring the radial collision force between the steam generator tube (SGT) and the tube support plate (TSP) is essential to assess the fretting damage of the SGT. In order to measure the radial collision force, a novel miniaturized force sensor based on fiber Fabry-Perot (F-P) was designed, and the principle and characteristics of the sensor were analyzed in detail. Then, the F-P force sensor was successfully fabricated and calibrated, and the overall dimensions of the encapsulated fiber F-P sensor were 17 mm × 5 mm × 3 mm (L × W × H). The sensor works well in humid, high pressure (10 MPa), high temperature (350 °C), and vibration (40 kHz) environments. Finally, the F-P force sensors were installed in a 1:1 steam generator test loop, and the radial collision force signals between the SGT and the TSP were obtained. The experiments indicated that the F-P sensor with small volume and high performance could help in assessing the fretting damage of the steam generator tubes. PMID:29236087

  17. Characteristics of a fiber-optical Fabry-Perot interferometric acoustic sensor based on an improved phase-generated carrier-demodulation mechanism

    NASA Astrophysics Data System (ADS)

    Mao, Xuefeng; Tian, Xiaoran; Zhou, Xinlei; Yu, Qingxu

    2015-04-01

    The characteristics of a fiber-optic Fabry-Perot interferometric acoustic sensor are investigated. An improved phase-generator carrier-demodulation mechanism is proposed for obtaining a high harmonic suppression ratio and stability of the demodulation results. A gold-coated polyethylene terephthalate membrane is used as the sensing diaphragm. By optimizing the parameters and the demodulation algorithm, the signal-to-noise ratio (SNR) and distortion ratio of 50.3 dB and the total harmonic distortion of 0.1% at 114 dB sound pressure level (SPL) (@ 1 kHz) are achieved, respectively. The sensor shows good temperature stability; the variation of the response is within 0.6 dB as the temperature changes from -10°C to 50°C. A sensitivity of 40 mV/Pa at 1 kHz and a frequency response range of 100 Hz to 12.5 kHz are reached, respectively. The SNR of the system is 60 dB (Re. 94 dB SPL). The sensor may be applied to photoacoustic spectrometers as a high-performance acoustic sensor.

  18. Nonimaging concentrators for diode-pumped slab lasers

    NASA Astrophysics Data System (ADS)

    Lacovara, Philip; Gleckman, Philip L.; Holman, Robert L.; Winston, Roland

    1991-10-01

    Diode-pumped slab lasers require concentrators for high-average power operation. We detail the properties of diode lasers and slab lasers which set the concentration requirements and the concentrator design methodologies that are used, and describe some concentrator designs used in high-average power slab lasers at Lincoln Laboratory.

  19. High power diode and solid state lasers

    NASA Astrophysics Data System (ADS)

    Eichler, H. J.; Fritsche, H.; Lux, O.; Strohmaier, S. G.

    2017-01-01

    Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.

  20. Fully utilizing high power diode lasers by synergizing diode laser light sources and beam shaping micro-optics

    NASA Astrophysics Data System (ADS)

    Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng

    2018-02-01

    High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.

  1. Passive Optical Locking Techniques for Diode Lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Quan

    1995-01-01

    Most current diode-based nonlinear frequency converters utilize electronic frequency locking techniques. However, this type of locking technique typically involves very complex electronics, and suffers the 'power-drop' problem. This dissertation is devoted to the development of an all-optical passive locking technique that locks the diode laser frequency to the external cavity resonance stably without using any kind of electronic servo. The amplitude noise problem associated with the strong optical locking has been studied. Single-mode operation of a passively locked single-stripe diode with an amplitude stability better than 1% has been achieved. This passive optical locking technique applies to broad-area diodes as well as single-stripe diodes, and can be easily used to generate blue light. A schematic of a milliwatt level blue laser based on the single-stripe diode locking technique has been proposed. A 120 mW 467 nm blue laser has been built using the tapered amplifier locking technique. In addition to diode-based blue lasers, this passive locking technique has applications in nonlinear frequency conversions, resonant spectroscopy, particle counter devices, telecommunications, and medical devices.

  2. A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs

    NASA Astrophysics Data System (ADS)

    Lee, Kwanil; Lee, Sang Bae; Lee, Ju Han; Han, Young-Geun; Mun, Sil-Gu; Lee, Sang-Mook; Lee, Chang-Hee

    2007-04-01

    We propose and experimentally demonstrate a novel protection scheme for wavelength-division-multiplexed passive optical network (WDM-PON) employing colorless optical transceivers. The proposed network employs 2 × N arrayed waveguide grating (AWG) to utilize its routing characteristics. The colorless operation is achieved by using wavelength-locked Fabry-Perot laser diodes (FP-LDs) injected with spectrum-sliced amplified spontaneous emission (ASE) light. The experimental results show that the restoration can be achieved within 8 ms against the feeder fiber fault and the power penalty introduced by the restoration process is negligible.

  3. Prototype laser-diode-pumped solid state laser transmitters

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.

    1989-01-01

    Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.

  4. Next generation diode lasers with enhanced brightness

    NASA Astrophysics Data System (ADS)

    Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.

    2018-02-01

    High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).

  5. High temperature semiconductor diode laser pumps for high energy laser applications

    NASA Astrophysics Data System (ADS)

    Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel

    2018-02-01

    Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.

  6. The Adjunctive Soft-Tissue Diode Laser in Orthodontics.

    PubMed

    Borzabadi-Farahani, Ali

    2017-04-01

    Lasers are a relatively new addition to the orthodontist's armamentarium. This article reviews the fundamental basic science of available soft-tissue lasers, with an emphasis on diode lasers, and discusses various adjunct applications of the diode laser for soft-tissue orthodontic procedures. Diode lasers function by cutting with an initiated hot tip and produce minimal to no interaction with healthy dental hard tissue, making them suitable for soft-tissue procedures. The contact cutting mode provides enhanced bloodless site visibility and facility to perform delicate soft tissue procedures, which is important in areas with difficult access. Such adjunctive uses include laser gingivectomy to improve oral hygiene or bracket positioning, esthetic laser gingival recontouring, and laser exposure of superficially impacted teeth. Selected cases treated with a 940-nm indium-gallium-arsenide-phosphide (InGaAsP) diode laser will be presented.

  7. High-power laser diodes at various wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emanuel, M.A.

    High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.

  8. Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.

    2008-01-01

    A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.

  9. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  10. 1047 nm laser diode master oscillator Nd:YLF power amplifier laser system

    NASA Technical Reports Server (NTRS)

    Yu, A. W.; Krainak, M. A.; Unger, G. L.

    1993-01-01

    A master oscillator power amplifier (MOPA) laser transmitter system at 1047 nm wavelength using a semiconductor laser diode and a diode pumped solid state (Nd:YLF) laser (DPSSL) amplifier is described. A small signal gain of 23 dB, a near diffraction limited beam, 1 Gbit/s modulation rates and greater than 0.6 W average power are achieved. This MOPA laser has the advantage of amplifying the modulation signal from the laser diode master oscillator (MO) with no signal degradation.

  11. Quantum Noise in Laser Diodes

    NASA Technical Reports Server (NTRS)

    Giacobino, E.; Marin, F.; Bramati, A.; Jost, V.; Poizat, J. Ph.; Roch, J.-F.; Grangier, P.; Zhang, T.-C.

    1996-01-01

    We have investigated the intensity noise of single mode laser diodes, either free-running or using different types of line narrowing techniques at room temperature. We have measured an intensity squeezing of 1.2 dB with grating-extended cavity lasers and 1.4 dB with injection locked lasers (respectively 1.6 dB and 2.3 dB inferred at the laser output). We have observed that the intensity noise of a free-running nominally single mode laser diode results from a cancellation effect between large anti-correlated fluctuations of the main mode and of weak longitudinal side modes. Reducing the side modes by line narrowing techniques results in intensity squeezing.

  12. Four channel Laser Firing Unit using laser diodes

    NASA Technical Reports Server (NTRS)

    Rosner, David, Sr.; Spomer, Edwin, Sr.

    1994-01-01

    This paper describes the accomplishments and status of PS/EDD's (Pacific Scientific/Energy Dynamics Division) internal research and development effort to prototype and demonstrate a practical four channel laser firing unit (LFU) that uses laser diodes to initiate pyrotechnic events. The LFU individually initiates four ordnance devices using the energy from four diode lasers carried over the fiber optics. The LFU demonstrates end-to-end optical built in test (BIT) capabilities. Both Single Fiber Reflective BIT and Dual Fiber Reflective BIT approaches are discussed and reflection loss data is presented. This paper includes detailed discussions of the advantages and disadvantages of both BIT approaches, all-fire and no-fire levels, and BIT detection levels. The following topics are also addressed: electronic control and BIT circuits, fiber optic sizing and distribution, and an electromechanical shutter type safe/arm device. This paper shows the viability of laser diode initiation systems and single fiber BIT for typing military applications.

  13. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers

    NASA Astrophysics Data System (ADS)

    Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz

    2012-03-01

    TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.

  14. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  15. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  16. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  17. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.

    PubMed

    Su, Hao; Shang, Weijian; Li, Gang; Patel, Niravkumar; Fischer, Gregory S

    2017-08-01

    This paper presents a surgical master-slave teleoperation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. The slave robot consists of a piezoelectrically actuated 6-degree-of-freedom (DOF) robot for needle placement with an integrated fiber optic force sensor (1-DOF axial force measurement) using the Fabry-Perot interferometry (FPI) sensing principle; it is configured to operate inside the bore of the MRI scanner during imaging. By leveraging the advantages of pneumatic and piezoelectric actuation in force and position control respectively, we have designed a pneumatically actuated master robot (haptic device) with strain gauge based force sensing that is configured to operate the slave from within the scanner room during imaging. The slave robot follows the insertion motion of the haptic device while the haptic device displays the needle insertion force as measured by the FPI sensor. Image interference evaluation demonstrates that the telesurgery system presents a signal to noise ratio reduction of less than 17% and less than 1% geometric distortion during simultaneous robot motion and imaging. Teleoperated needle insertion and rotation experiments were performed to reach 10 targets in a soft tissue-mimicking phantom with 0.70 ± 0.35 mm Cartesian space error.

  18. Surface stress sensor based on MEMS Fabry-Perot interferometer with high wavelength selectivity for label-free biosensing

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshiaki; Hizawa, Takeshi; Misawa, Nobuo; Taki, Miki; Sawada, Kazuaki; Takahashi, Kazuhiro

    2018-05-01

    We have developed a surface stress sensor based on a microelectromechanical Fabry-Perot interferometer with high wavelength selectivity by using Au half-mirrors, for highly sensitive label-free biosensing. When the target molecule is adsorbed by the antigen-antibody reaction onto a movable membrane with a thin Au film, which acts as an upper mirror of the optical interferometer, the amount of deflection of the movable membrane deflected by the change in surface stress can be detected with high sensitivity. To improve the signal at the small membrane deflection region of this biosensor resulting in detection of low concentration molecules, by integrating 50 nm-thick Au half-mirrors, the wavelength selectivity of the optical interferometer has been successfully improved 6.6 times. Furthermore, the peak shift in the reflection spectrum due to the adsorption of bovine serum albumin (BSA) antigen with a concentration of 10 ng ml-l by the antigen-antibody reaction was spectroscopically measured on the fabricated optical interferometer, and the deflection amount of the movable membrane after 10 min treatment was 2.4 times larger than that of nonspecific adsorption with the avidin molecules. This result indicated that the proposed sensor can be used for selective detection of low-concentration target antigen molecules.

  19. Near real-time analysis of extrinsic Fabry-Perot interferometric sensors under damped vibration using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Dua, Rohit; Watkins, Steve E.

    2009-03-01

    Strain analysis due to vibration can provide insight into structural health. An Extrinsic Fabry-Perot Interferometric (EFPI) sensor under vibrational strain generates a non-linear modulated output. Advanced signal processing techniques, to extract important information such as absolute strain, are required to demodulate this non-linear output. Past research has employed Artificial Neural Networks (ANN) and Fast Fourier Transforms (FFT) to demodulate the EFPI sensor for limited conditions. These demodulation systems could only handle variations in absolute value of strain and frequency of actuation during a vibration event. This project uses an ANN approach to extend the demodulation system to include the variation in the damping coefficient of the actuating vibration, in a near real-time vibration scenario. A computer simulation provides training and testing data for the theoretical output of the EFPI sensor to demonstrate the approaches. FFT needed to be performed on a window of the EFPI output data. A small window of observation is obtained, while maintaining low absolute-strain prediction errors, heuristically. Results are obtained and compared from employing different ANN architectures including multi-layered feedforward ANN trained using Backpropagation Neural Network (BPNN), and Generalized Regression Neural Networks (GRNN). A two-layered algorithm fusion system is developed and tested that yields better results.

  20. Disruptive laser diode source for embedded LIDAR sensors

    NASA Astrophysics Data System (ADS)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-02-01

    Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources

  1. WDM Nanoscale Laser Diodes for Si Photonic Interconnects

    DTIC Science & Technology

    2016-07-25

    mounting on silicon. The nanoscale VCSELs can achieve small optical modes and present a compact laser diode that is also robust. In this work we have used...Distribution Unlimited UU UU UU UU 25-07-2016 1-Feb-2012 31-Dec-2015 Final Report: WDM Nanoscale Laser Diodes for Si Photonic Interconnects The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 VCSEL, optical interconnect, laser diode , semiconductor laser, microcavity REPORT DOCUMENTATION

  2. Respiratory complications after diode-laser-assisted tonsillotomy.

    PubMed

    Fischer, Miloš; Horn, Iris-Susanne; Quante, Mirja; Merkenschlager, Andreas; Schnoor, Jörg; Kaisers, Udo X; Dietz, Andreas; Kluba, Karsten

    2014-08-01

    Children with certain risk factors, such as comorbidities or severe obstructive sleep apnea syndrome (OSAS) are known to require extended postoperative monitoring after adenotonsillectomy. However, there are no recommendations available for diode-laser-assisted tonsillotomy. A retrospective chart review of 96 children who underwent diode-laser-assisted tonsillotomy (07/2011-06/2013) was performed. Data for general and sleep apnea history, power of the applied diode-laser (λ = 940 nm), anesthesia parameters, the presence of postoperative respiratory complications and postoperative healing were evaluated. After initially uncomplicated diode-laser-assisted tonsillotomy, an adjustment of post-anesthesia care was necessary in 16 of 96 patients due to respiratory failure. Respiratory complications were more frequent in younger children (3.1 vs. 4.0 years, p = 0.049, 95 % CI -1.7952 to -0.0048) and in children who suffered from nocturnal apneas (OR = 5.00, p < 0.01, 95 % CI 1.4780-16.9152) or who suffered from relevant comorbidities (OR = 4.84, p < 0.01, 95 % CI 1.5202-15.4091). Moreover, a diode-laser power higher than 13 W could be identified as a risk factor for the occurrence of a postoperative oropharyngeal edema (OR = 3.45, p < 0.01, 95 % CI 1.3924-8.5602). Postoperative respiratory complications should not be underestimated in children with sleep-disordered breathing (SDB). Therefore, children with SDB, children with comorbidities or children younger than 3 years should be considered "at risk" and children with confirmed moderate to severe OSAS should be referred to a PICU following diode-laser-assisted tonsillotomy. We recommend a reduced diode-laser power (<13 W) to reduce oropharyngeal edema.

  3. Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues

    NASA Astrophysics Data System (ADS)

    Beard, Paul C.; Mills, Timothy N.

    1995-02-01

    Theoretical and experimental aspects of an extrinsic Fabry-Perot optical fiber ultrasound sensor for use in a photoacoustic-guided laser angioplasty system are described. The sensor has been characterized using laser generated thermoelastic waves as a source of wideband ultrasound. A system sensitivity of 25 mV/MPa and an acoustic noise floor of 2 Pa/Hz1/2 are reported using a transparent polymer film as the sensing element. The system demonstrates the required bandwidth for sensing thermoelastic waves containing frequency components up to 20 MHz.

  4. Short range laser obstacle detector. [for surface vehicles using laser diode array

    NASA Technical Reports Server (NTRS)

    Kuriger, W. L. (Inventor)

    1973-01-01

    A short range obstacle detector for surface vehicles is described which utilizes an array of laser diodes. The diodes operate one at a time, with one diode for each adjacent azimuth sector. A vibrating mirror a short distance above the surface provides continuous scanning in elevation for all azimuth sectors. A diode laser is synchronized with the vibrating mirror to enable one diode laser to be fired, by pulses from a clock pulse source, a number of times during each elevation scan cycle. The time for a given pulse of light to be reflected from an obstacle and received is detected as a measure of range to the obstacle.

  5. High brightness diode lasers controlled by volume Bragg gratings

    NASA Astrophysics Data System (ADS)

    Glebov, Leonid

    2017-02-01

    Volume Bragg gratings (VBGs) recorded in photo-thermo-refractive (PTR) glass are holographic optical elements that are effective spectral and angular filters withstanding high power laser radiation. Reflecting VBGs are narrow-band spectral filters while transmitting VBGs are narrow-band angular filters. The use of these optical elements in external resonators of semiconductor lasers enables extremely resonant feedback that provides dramatic spectral and angular narrowing of laser diodes radiation without significant power and efficiency penalty. Spectral narrowing of laser diodes by reflecting VBGs demonstrated in wide spectral region from near UV to 3 μm. Commercially available VBGs have spectral width ranged from few nanometers to few tens of picometers. Efficient spectral locking was demonstrated for edge emitters (single diodes, bars, modules, and stacks), vertical cavity surface emitting lasers (VCSELs), grating coupled surface emitting lasers (GCSELs), and interband cascade lasers (ICLs). The use of multiplexed VBGs provides multiwavelength emission from a single emitter. Spectrally locked semiconductor lasers demonstrated CW power from milliwatts to a kilowatt. Angular narrowing by transmitting VBGs enables single transverse mode emission from wide aperture diode lasers having resonators with great Fresnel numbers. This feature provides close to diffraction limit divergence along a slow axis of wide stripe edge emitters. Radiation exchange between lasers by means of spatially profiled or multiplexed VBGs enables coherent combining of diode lasers. Sequence of VBGs or multiplexed VBGs enable spectral combining of spectrally narrowed diode lasers or laser modules. Thus the use of VBGs for diode lasers beam control provides dramatic increase of brightness.

  6. Microwave Fiber-Optics Delay Line.

    DTIC Science & Technology

    1980-01-01

    frequency response. We observed the anticipated modulation resonance and its dependence on the dc bias level. However, we did not have a scanning Fabry - Perot ...could not be determined accurately because a scanning Fabry - Perot was not available. However, from the various experimental observations and the rise time...Hitachi HLP-2400U BH laser and a Rockwell heterojunction photodiode o. ......... 26 11 Demodulated rf power versus detector dc photocurrent

  7. Amplitude Noise Reduction of Ion Lasers with Optical Feedback

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2011-01-01

    A reduction in amplitude noise on the output of a multi-mode continuous-wave Ar-ion laser was previously demonstrated when a fraction of the output power was retroreflected back into the laser cavity. This result was reproduced in the present work and a Fabry-Perot etalon was used to monitor the longitudinal mode structure of the laser. A decrease in the number of operating longitudinal cavity modes was observed simultaneously with the introduction of the optical feedback and the onset of the amplitude noise reduction. The noise reduction is a result of a reduced number of lasing modes, resulting in less mode beating and amplitude fluctuations of the laser output power.

  8. Modular package for cooling a laser diode array

    DOEpatents

    Mundinger, David C.; Benett, William J.; Beach, Raymond J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.

  9. Innovative Facet Passivation for High-Brightness Laser Diodes

    DTIC Science & Technology

    2016-02-05

    and anti-reflection (AR) coatings are deposited after cleaving. Edge- emitting laser diodes emit very high optical powers from small emission areas, as...SECURITY CLASSIFICATION OF: The objective of this effort is to increase the power of low fill-factor (20%) laser diode (LD) bars from the present...2012 16-Nov-2015 Approved for Public Release; Distribution Unlimited Final Report: Innovative Facet Passivation for High-Brightness Laser Diodes The

  10. MLRS - A lunar/artificial satellite laser ranging facility at the McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Shelus, P. J.

    1985-01-01

    Experience from lunar and satellite laser ranging experiments carried out at McDonald Observatory has been used to design the McDonald Laser Ranging Station (MLRS). The MLRS is a dual-purpose installation designed to obtain observations from the LAGEOS satellite and lunar targets. The instruments used at the station include a telescope assembly 0.76 meters in diameter; a Q-switched doubled neodymium YAG laser with a pulse rate of three nanoseconds; and a GaAs photodetector with Fabry-Perot interferometric filter. A functional diagram of the system is provided. The operating parameters of the instruments are summarized in a table.

  11. Phase-locked, high power, mid-infrared quantum cascade laser arrays

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Slivken, S.; Razeghi, M.

    2018-04-01

    We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.

  12. Diode lasers optimized in brightness for fiber laser pumping

    NASA Astrophysics Data System (ADS)

    Kelemen, M.; Gilly, J.; Friedmann, P.; Hilzensauer, S.; Ogrodowski, L.; Kissel, H.; Biesenbach, J.

    2018-02-01

    In diode laser applications for fiber laser pumping and fiber-coupled direct diode laser systems high brightness becomes essential in the last years. Fiber coupled modules benefit from continuous improvements of high-power diode lasers on chip level regarding output power, efficiency and beam characteristics resulting in record highbrightness values and increased pump power. To gain high brightness not only output power must be increased, but also near field widths and far field angles have to be below a certain value for higher power levels because brightness is proportional to output power divided by beam quality. While fast axis far fields typically show a current independent behaviour, for broadarea lasers far-fields in the slow axis suffer from a strong current and temperature dependence, limiting the brightness and therefore their use in fibre coupled modules. These limitations can be overcome by carefully optimizing chip temperature, thermal lensing and lateral mode structure by epitaxial and lateral resonator designs and processing. We present our latest results for InGaAs/AlGaAs broad-area single emitters with resonator lengths of 4mm emitting at 976nm and illustrate the improvements in beam quality over the last years. By optimizing the diode laser design a record value of the brightness for broad-area lasers with 4mm resonator length of 126 MW/cm2sr has been demonstrated with a maximum wall-plug efficiency of more than 70%. From these design also pump modules based on 9 mini-bars consisting of 5 emitters each have been realized with 360W pump power.

  13. GaAs laser diode pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Conant, L. C.; Reno, C. W.

    1974-01-01

    A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.

  14. Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai

    2016-10-01

    Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.

  15. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector.

    PubMed

    Cendejas, Richard A; Phillips, Mark C; Myers, Tanya L; Taubman, Matthew S

    2010-12-06

    An external-cavity (EC) quantum cascade (QC) laser using optical feedback from a partial-reflector is reported. With this configuration, the otherwise multi-mode emission of a Fabry-Perot QC laser was made single-mode with optical output powers exceeding 40 mW. A mode-hop free tuning range of 2.46 cm(-1) was achieved by synchronously tuning the EC length and QC laser current. The linewidth of the partial-reflector EC-QC laser was measured for integration times from 100 μs to 4 seconds, and compared to a distributed feedback QC laser. Linewidths as small as 480 kHz were recorded for the EC-QC laser.

  16. Nd:GdVO4 ring laser pumped by laser diodes

    NASA Astrophysics Data System (ADS)

    Hao, E. J.; Li, T.; Wang, Z. D.; Zhang, Y.

    2013-02-01

    The design and operation of a laser diode-pumped Nd:GdVO4 ring laser is described. A composite crystal (Nd:GdVO4/YVO4) with undoped ends is single-end pumped by a fiber-coupled laser diode (LD) at 808 nm. A four-mirror ring cavity is designed to keep the laser operating unidirectionally, which eliminates spatial hole burning in the standing-wave cavity. This laser can operate either as continuous wave (CW) or Q-switched. The single-frequency power obtained was 9.1 W at 1063 nm. Q-switched operation produced 0.23 mJ/pulse at 20 kHz in the fundamental laser.

  17. Highly stable multi-wavelength erbium-doped fiber linear laser based on modal interference

    NASA Astrophysics Data System (ADS)

    Herrera-Piad, L. A.; Jauregui-Vazquez, D.; Lopez-Dieguez, Y.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Sierra-Hernandez, J. M.; Bianchetti, M.; Rojas-Laguna, R.

    2018-03-01

    We report a linear fiber laser cavity based on an all-fiber Fabry-Perot interferometer and bi-tapered optical fiber for multi-wavelength emission generation. Curvature and strain are used to operate the laser system and the number of lines as well, the emission regions are stronger related to the physical effect applied, due to the phase alteration between the multiple fiber optic modes involved. The original laser emissions present zero wavelength variations, minimal power fluctuations and small spacing mode (1 nm). Additionally, a nonlinear fiber was employed trying to improve the performance of the multiple lasing lines. This system offers a low implementation cost, compactness and good laser parameters.

  18. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  19. High Power High Efficiency Diode Laser Stack for Processing

    NASA Astrophysics Data System (ADS)

    Gu, Yuanyuan; Lu, Hui; Fu, Yueming; Cui, Yan

    2018-03-01

    High-power diode lasers based on GaAs semiconductor bars are well established as reliable and highly efficient laser sources. As diode laser is simple in structure, small size, longer life expectancy with the advantages of low prices, it is widely used in the industry processing, such as heat treating, welding, hardening, cladding and so on. Respectively, diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. At this power level, it can have many important applications, such as surgery, welding of polymers, soldering, coatings and surface treatment of metals. But there are some applications, which require much higher power and brightness, e.g. hardening, key hole welding, cutting and metal welding. In addition, High power diode lasers in the military field also have important applications. So all developed countries have attached great importance to high-power diode laser system and its applications. This is mainly due their low performance. In this paper we will introduce the structure and the principle of the high power diode stack.

  20. Understanding the effects of Doppler phenomena in white light Fabry-Perot interferometers for simultaneous position and velocity measurement.

    PubMed

    Moro, Erik A; Todd, Michael D; Puckett, Anthony D

    2012-09-20

    In static tests, low-power (<5 mW) white light extrinsic Fabry-Perot interferometric position sensors offer high-accuracy (μm) absolute measurements of a target's position over large (cm) axial-position ranges, and since position is demodulated directly from phase in the interferogram, these sensors are robust to fluctuations in measured power levels. However, target surface dynamics distort the interferogram via Doppler shifting, introducing a bias in the demodulation process. With typical commercial off-the-shelf hardware, a broadband source centered near 1550 nm, and an otherwise typical setup, the bias may be as large as 50-100 μm for target surface velocities as low as 0.1 mm/s. In this paper, the authors derive a model for this Doppler-induced position bias, relating its magnitude to three swept-filter tuning parameters. Target velocity (magnitude and direction) is calculated using this relationship in conjunction with a phase-diversity approach, and knowledge of the target's velocity is then used to compensate exactly for the position bias. The phase-diversity approach exploits side-by-side measurement signals, transmitted through separate swept filters with distinct tuning parameters, and permits simultaneous measurement of target velocity and target position, thereby mitigating the most fundamental performance limitation that exists on dynamic white light interferometric position sensors.

  1. Spontaneous generation of frequency combs in QD lasers

    NASA Astrophysics Data System (ADS)

    Columbo, Lorenzo Luigi; Bardella, Paolo; Gioannini, Mariangela

    2018-02-01

    We report a systematic analysis of the phenomenon of self-generation of optical frequency combs in single section Fabry-Perot Quantum Dot lasers using a Time Domain Travelling Wave model. We show that the carriers grating due to the standing wave pattern (spatial hole burning) peculiar of Quantum Dots laser and the Four Wave Mixing are the key ingredients to explain spontaneous Optical Frequency Combs in these devices. Our results well agree with recent experimental evidences reported in semiconductor lasers based on Quantum Dots and Quantum Dashes active material and pave the way to the development of a simulation tool for the design of these comb laser sources for innovative applications in the field of high-data rate optical communications.

  2. High-power direct diode laser output by spectral beam combining

    NASA Astrophysics Data System (ADS)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  3. Theory of some laser noise effects.

    NASA Technical Reports Server (NTRS)

    Wang, Y. K.; Lamb, W. E., Jr.

    1973-01-01

    A simple version of the semiclassical theory is applied to the shot effect. Considerations of thermal noise reported by Lamb (1965) are extended to take into account amplitude fluctuations. The laser is considered to be a lossy cavity of the Fabry-Perot type in single-mode operation with a circular frequency driven by an inverted population of active atoms. The electric field is taken to be transverse to the cavity axis. The amplitude and phase are assumed to be slowly varying functions which satisfy two self-consistency equations.

  4. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  5. Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber.

    PubMed

    Tian, Jiajun; Lu, Zejin; Quan, Mingran; Jiao, Yuzhu; Yao, Yong

    2016-09-05

    We report a fast response microfluidic Fabry-Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication.

  6. A New Remote Sensing Filter Radiometer Employing a Fabry-Perot Etalon and a CCD Camera for Column Measurements of Methane in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Huang, W.; Heaps, W. S.

    2012-01-01

    A portable remote sensing system for precision column measurements of methane has been developed, built and tested at NASA GSFC. The sensor covers the spectral range from 1.636 micrometers to 1.646 micrometers, employs an air-gapped Fabry-Perot filter and a CCD camera and has a potential to operate from a variety of platforms. The detector is an XS-1.7-320 camera unit from Xenics Infrared solutions which combines an uncooled InGaAs detector array working up to 1.7 micrometers. Custom software was developed in addition to the graphical user basic interface X-Control provided by the company to help save and process the data. The technique and setup can be used to measure other trace gases in the atmosphere with minimal changes of the etalon and the prefilter. In this paper we describe the calibration of the system using several different approaches.

  7. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  8. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  9. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  10. Overview on new diode lasers for defense applications

    NASA Astrophysics Data System (ADS)

    Neukum, Joerg

    2012-11-01

    Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.

  11. Construction of an Extended Cavity Tunable Diode Laser

    NASA Astrophysics Data System (ADS)

    Deveney, Edward; Metcalf, Harold; Noe, John

    2001-03-01

    A diverse and vast amount of experiments at the forefront of experimental physics typically use diode lasers as an integral part of their arrangement. However, researchers who use unmodified commercially available diode lasers run into several complications. The laser diode that is purchased is often not of the same wavelength as is advertised; thus the researcher’s desired wavelength is not met. Because the semiconductor has such a short external cavity, it is very sensitive to the injection current, changes in room temperature, and has a large linewidth making it harder to tune. To obtain a finely tuned diode laser, temperature and current controlling of the diode laser are used in conjunction with an extended semiconductor cavity. This is achieved by mounting the hermetically sealed assembly atop a thermoelectric cooler, which uses the Peltier effect. Furthermore, the variation of the injection current may be used as an additional control for the wavelength output of the diode. The power range of 70 mW as controlled by the injection current adjusts the wavelength by a span of only 4 nanometers. The extended cavity consists of a diffraction grating adhered to a mirror mount and is used for grating feedback. That in turn is used to reduce the linewidth sufficiently enough in order to provide much better tunability. In the next three weeks, the tunable diode laser will be specifically applied to research in the areas of Second Harmonic Generation in a PPLN Crystal and Saturated Rubidium Spectroscopy. This study was supported in part by NSF grant PHY99-12312.

  12. Narrowband diode laser pump module for pumping alkali vapors.

    PubMed

    Rotondaro, M D; Zhdanov, B V; Shaffer, M K; Knize, R J

    2018-04-16

    We describe a method of line narrowing and frequency-locking a diode laser stack to an alkali atomic line for use as a pump module for Diode Pumped Alkali Lasers. The pump module consists of a 600 W antireflection coated diode laser stack configured to lase using an external cavity. The line narrowing and frequency locking is accomplished by introducing a narrowband polarization filter based on magneto-optical Faraday effect into the external cavity, which selectively transmits only the frequencies that are in resonance with the 6 2 S 1/2 → 6 2 P 3/2 transition of Cs atoms. The resulting pump module has demonstrated that a diode laser stack, which lases with a line width of 3 THz without narrowbanding, can be narrowed to 10 GHz. The line narrowed pump module produced 518 Watts that is 80% of the power generated by the original broadband diode laser stack.

  13. Diode Laser Sensor for Scramjet Inlet

    DTIC Science & Technology

    2010-05-11

    This work presents the development of an oxygen -based diode laser absorption sensor designed to be used in a supersonic combustion ramjet engine inlet...ADFA Abstract This work presents development of an oxygen -based diode laser absorption sensor designed to be used in a supersonic combustion ramjet... sensor needs to use oxygen as the absorbing species, as this is the only option for absorption measurements in inlet air. Oxygen absorption lines

  14. Power Scaling and Frequency Stabilization of an Injection-Locked Laser

    DTIC Science & Technology

    2000-05-01

    In Chapter 4,1 alter the well -documented theory of locking a laser to a Fabry- Perot by performing the PDH error signal derivation in a new manner...the well -documented modulation transfer scheme to lock the frequency-doubled NPRO to a hyperfine component of an electronic transition in I2. 33 I...generally true at very low noise frequencies, well within the feedback loop bandwidth. However, when G0L(V„) « 1 and thus GCL(vn) « 1, Equation 3.9

  15. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    NASA Astrophysics Data System (ADS)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  16. Broadband Lidar Technique for Precision CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Heaps, William S.

    2008-01-01

    Presented are preliminary experimental results, sensitivity measurements and discuss our new CO2 lidar system under development. The system is employing an erbium-doped fiber amplifier (EDFA), superluminescent light emitting diode (SLED) as a source and our previously developed Fabry-Perot interferometer subsystem as a detector part. Global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. The goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission is to significantly enhance the understanding of the role of CO2 in the global carbon cycle. The National Academy of Sciences recommended in its decadal survey that NASA put in orbit a CO2 lidar to satisfy this long standing need. Existing passive sensors suffer from two shortcomings. Their measurement precision can be compromised by the path length uncertainties arising from scattering within the atmosphere. Also passive sensors using sunlight cannot observe the column at night. Both of these difficulties can be ameliorated by lidar techniques. Lidar systems present their own set of problems however. Temperature changes in the atmosphere alter the cross section for individual CO2 absorption features while the different atmospheric pressures encountered passing through the atmosphere broaden the absorption lines. Currently proposed lidars require multiple lasers operating at multiple wavelengths simultaneously in order to untangle these effects. The current goal is to develop an ultra precise, inexpensive new lidar system for precise column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with the newly available high power SLED as the source. This approach reduces the number of individual lasers used in the system from three or more

  17. Ablation of dentin by irradiation of violet diode laser

    NASA Astrophysics Data System (ADS)

    Hatayama, H.; Kato, J.; Akashi, G.; Hirai, Y.; Inoue, A.

    2006-02-01

    Several lasers have been used for clinical treatment in dentistry. Among them, diode lasers are attractive because of their compactness compared with other laser sources. Near-infrared diode lasers have been practically used for cutting soft tissues. Because they penetrate deep to soft tissues, they cause sufficiently thick coagulation layer. However, they aren't suitable for removal of carious dentin because absorption by components in dentin is low. Recently, a violet diode laser with a wavelength of 405nm has been developed. It will be effective for cavity preparation because dentin contains about 20% of collagen whose absorption coefficient at a violet wavelength is larger than that at a near-infrared wavelength. In this paper, we examined cutting performance of the violet diode laser for dentin. To our knowledge, there have been no previous reports on application of a violet laser to dentin ablation. Bovine teeth were irradiated by continuous wave violet diode laser with output powers in a range from 0.4W to 2.4W. The beam diameter on the sample was about 270μm and an irradiation time was one second. We obtained the crater ablated at more than an output power of 0.8W. The depth of crater ranged from 20μm at 0.8W to 90μm at 2.4W. Furthermore, the beam spot with an output power of 1.7W was scanned at a speed of 1mm/second corresponding to movement of a dentist's hand in clinical treatment. Grooves with the depth of more than 50μm were also obtained. From these findings, the violet diode laser has good potential for cavity preparation. Therefore, the violet diode laser may become an effective tool for cavity preparation.

  18. Efficient, frequency-stable laser-diode-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Zhou, B.; Kane, T. J.; Dixon, G. J.; Byer, R. L.

    1985-01-01

    One of the main goals of the study was to demonstrate a low-power efficient Nd:YAG laser oscillator for applications in remote coherent Doppler anemometry. An electrical-to-optical slope efficiency of 6.5 percent has been achieved by using commercially available CW laser diodes of up to 100 mW to pump monolithic Nd:YAG rod lasers. The observed Nd:YAG oscillation threshold is at 2.3 mW of laser-diode output power, i.e., a small fraction of the rated output power. The highest Nd:YAG CW output power reached is 4.4 mW at an overall electrical-to-optical efficiency of 1.5 percent. The frequency jitter is less than 10 kHz in 0.3 s.

  19. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  20. Iodine-stabilized single-frequency green InGaN diode laser.

    PubMed

    Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-01-01

    A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.