Adaboost multi-view face detection based on YCgCr skin color model
NASA Astrophysics Data System (ADS)
Lan, Qi; Xu, Zhiyong
2016-09-01
Traditional Adaboost face detection algorithm uses Haar-like features training face classifiers, whose detection error rate is low in the face region. While under the complex background, the classifiers will make wrong detection easily to the background regions with the similar faces gray level distribution, which leads to the error detection rate of traditional Adaboost algorithm is high. As one of the most important features of a face, skin in YCgCr color space has good clustering. We can fast exclude the non-face areas through the skin color model. Therefore, combining with the advantages of the Adaboost algorithm and skin color detection algorithm, this paper proposes Adaboost face detection algorithm method that bases on YCgCr skin color model. Experiments show that, compared with traditional algorithm, the method we proposed has improved significantly in the detection accuracy and errors.
A robust human face detection algorithm
NASA Astrophysics Data System (ADS)
Raviteja, Thaluru; Karanam, Srikrishna; Yeduguru, Dinesh Reddy V.
2012-01-01
Human face detection plays a vital role in many applications like video surveillance, managing a face image database, human computer interface among others. This paper proposes a robust algorithm for face detection in still color images that works well even in a crowded environment. The algorithm uses conjunction of skin color histogram, morphological processing and geometrical analysis for detecting human faces. To reinforce the accuracy of face detection, we further identify mouth and eye regions to establish the presence/absence of face in a particular region of interest.
Face detection assisted auto exposure: supporting evidence from a psychophysical study
NASA Astrophysics Data System (ADS)
Jin, Elaine W.; Lin, Sheng; Dharumalingam, Dhandapani
2010-01-01
Face detection has been implemented in many digital still cameras and camera phones with the promise of enhancing existing camera functions (e.g. auto exposure) and adding new features to cameras (e.g. blink detection). In this study we examined the use of face detection algorithms in assisting auto exposure (AE). The set of 706 images, used in this study, was captured using Canon Digital Single Lens Reflex cameras and subsequently processed with an image processing pipeline. A psychophysical study was performed to obtain optimal exposure along with the upper and lower bounds of exposure for all 706 images. Three methods of marking faces were utilized: manual marking, face detection algorithm A (FD-A), and face detection algorithm B (FD-B). The manual marking method found 751 faces in 426 images, which served as the ground-truth for face regions of interest. The remaining images do not have any faces or the faces are too small to be considered detectable. The two face detection algorithms are different in resource requirements and in performance. FD-A uses less memory and gate counts compared to FD-B, but FD-B detects more faces and has less false positives. A face detection assisted auto exposure algorithm was developed and tested against the evaluation results from the psychophysical study. The AE test results showed noticeable improvement when faces were detected and used in auto exposure. However, the presence of false positives would negatively impact the added benefit.
Face detection and eyeglasses detection for thermal face recognition
NASA Astrophysics Data System (ADS)
Zheng, Yufeng
2012-01-01
Thermal face recognition becomes an active research direction in human identification because it does not rely on illumination condition. Face detection and eyeglasses detection are necessary steps prior to face recognition using thermal images. Infrared light cannot go through glasses and thus glasses will appear as dark areas in a thermal image. One possible solution is to detect eyeglasses and to exclude the eyeglasses areas before face matching. In thermal face detection, a projection profile analysis algorithm is proposed, where region growing and morphology operations are used to segment the body of a subject; then the derivatives of two projections (horizontal and vertical) are calculated and analyzed to locate a minimal rectangle of containing the face area. Of course, the searching region of a pair of eyeglasses is within the detected face area. The eyeglasses detection algorithm should produce either a binary mask if eyeglasses present, or an empty set if no eyeglasses at all. In the proposed eyeglasses detection algorithm, block processing, region growing, and priori knowledge (i.e., low mean and variance within glasses areas, the shapes and locations of eyeglasses) are employed. The results of face detection and eyeglasses detection are quantitatively measured and analyzed using the manually defined ground truths (for both face and eyeglasses). Our experimental results shown that the proposed face detection and eyeglasses detection algorithms performed very well in contrast with the predefined ground truths.
Enhancement of Fast Face Detection Algorithm Based on a Cascade of Decision Trees
NASA Astrophysics Data System (ADS)
Khryashchev, V. V.; Lebedev, A. A.; Priorov, A. L.
2017-05-01
Face detection algorithm based on a cascade of ensembles of decision trees (CEDT) is presented. The new approach allows detecting faces other than the front position through the use of multiple classifiers. Each classifier is trained for a specific range of angles of the rotation head. The results showed a high rate of productivity for CEDT on images with standard size. The algorithm increases the area under the ROC-curve of 13% compared to a standard Viola-Jones face detection algorithm. Final realization of given algorithm consist of 5 different cascades for frontal/non-frontal faces. One more thing which we take from the simulation results is a low computational complexity of CEDT algorithm in comparison with standard Viola-Jones approach. This could prove important in the embedded system and mobile device industries because it can reduce the cost of hardware and make battery life longer.
Face pose tracking using the four-point algorithm
NASA Astrophysics Data System (ADS)
Fung, Ho Yin; Wong, Kin Hong; Yu, Ying Kin; Tsui, Kwan Pang; Kam, Ho Chuen
2017-06-01
In this paper, we have developed an algorithm to track the pose of a human face robustly and efficiently. Face pose estimation is very useful in many applications such as building virtual reality systems and creating an alternative input method for the disabled. Firstly, we have modified a face detection toolbox called DLib for the detection of a face in front of a camera. The detected face features are passed to a pose estimation method, known as the four-point algorithm, for pose computation. The theory applied and the technical problems encountered during system development are discussed in the paper. It is demonstrated that the system is able to track the pose of a face in real time using a consumer grade laptop computer.
High precision automated face localization in thermal images: oral cancer dataset as test case
NASA Astrophysics Data System (ADS)
Chakraborty, M.; Raman, S. K.; Mukhopadhyay, S.; Patsa, S.; Anjum, N.; Ray, J. G.
2017-02-01
Automated face detection is the pivotal step in computer vision aided facial medical diagnosis and biometrics. This paper presents an automatic, subject adaptive framework for accurate face detection in the long infrared spectrum on our database for oral cancer detection consisting of malignant, precancerous and normal subjects of varied age group. Previous works on oral cancer detection using Digital Infrared Thermal Imaging(DITI) reveals that patients and normal subjects differ significantly in their facial thermal distribution. Therefore, it is a challenging task to formulate a completely adaptive framework to veraciously localize face from such a subject specific modality. Our model consists of first extracting the most probable facial regions by minimum error thresholding followed by ingenious adaptive methods to leverage the horizontal and vertical projections of the segmented thermal image. Additionally, the model incorporates our domain knowledge of exploiting temperature difference between strategic locations of the face. To our best knowledge, this is the pioneering work on detecting faces in thermal facial images comprising both patients and normal subjects. Previous works on face detection have not specifically targeted automated medical diagnosis; face bounding box returned by those algorithms are thus loose and not apt for further medical automation. Our algorithm significantly outperforms contemporary face detection algorithms in terms of commonly used metrics for evaluating face detection accuracy. Since our method has been tested on challenging dataset consisting of both patients and normal subjects of diverse age groups, it can be seamlessly adapted in any DITI guided facial healthcare or biometric applications.
Toward automated face detection in thermal and polarimetric thermal imagery
NASA Astrophysics Data System (ADS)
Gordon, Christopher; Acosta, Mark; Short, Nathan; Hu, Shuowen; Chan, Alex L.
2016-05-01
Visible spectrum face detection algorithms perform pretty reliably under controlled lighting conditions. However, variations in illumination and application of cosmetics can distort the features used by common face detectors, thereby degrade their detection performance. Thermal and polarimetric thermal facial imaging are relatively invariant to illumination and robust to the application of makeup, due to their measurement of emitted radiation instead of reflected light signals. The objective of this work is to evaluate a government off-the-shelf wavelet based naïve-Bayes face detection algorithm and a commercial off-the-shelf Viola-Jones cascade face detection algorithm on face imagery acquired in different spectral bands. New classifiers were trained using the Viola-Jones cascade object detection framework with preprocessed facial imagery. Preprocessing using Difference of Gaussians (DoG) filtering reduces the modality gap between facial signatures across the different spectral bands, thus enabling more correlated histogram of oriented gradients (HOG) features to be extracted from the preprocessed thermal and visible face images. Since the availability of training data is much more limited in the thermal spectrum than in the visible spectrum, it is not feasible to train a robust multi-modal face detector using thermal imagery alone. A large training dataset was constituted with DoG filtered visible and thermal imagery, which was subsequently used to generate a custom trained Viola-Jones detector. A 40% increase in face detection rate was achieved on a testing dataset, as compared to the performance of a pre-trained/baseline face detector. Insights gained in this research are valuable in the development of more robust multi-modal face detectors.
Hardware-software face detection system based on multi-block local binary patterns
NASA Astrophysics Data System (ADS)
Acasandrei, Laurentiu; Barriga, Angel
2015-03-01
Face detection is an important aspect for biometrics, video surveillance and human computer interaction. Due to the complexity of the detection algorithms any face detection system requires a huge amount of computational and memory resources. In this communication an accelerated implementation of MB LBP face detection algorithm targeting low frequency, low memory and low power embedded system is presented. The resulted implementation is time deterministic and uses a customizable AMBA IP hardware accelerator. The IP implements the kernel operations of the MB-LBP algorithm and can be used as universal accelerator for MB LBP based applications. The IP employs 8 parallel MB-LBP feature evaluators cores, uses a deterministic bandwidth, has a low area profile and the power consumption is ~95 mW on a Virtex5 XC5VLX50T. The resulted implementation acceleration gain is between 5 to 8 times, while the hardware MB-LBP feature evaluation gain is between 69 and 139 times.
A Fuzzy Aproach For Facial Emotion Recognition
NASA Astrophysics Data System (ADS)
Gîlcă, Gheorghe; Bîzdoacă, Nicu-George
2015-09-01
This article deals with an emotion recognition system based on the fuzzy sets. Human faces are detected in images with the Viola - Jones algorithm and for its tracking in video sequences we used the Camshift algorithm. The detected human faces are transferred to the decisional fuzzy system, which is based on the variable fuzzyfication measurements of the face: eyebrow, eyelid and mouth. The system can easily determine the emotional state of a person.
What makes a cell face-selective: the importance of contrast
Ohayon, Shay; Freiwald, Winrich A; Tsao, Doris Y
2012-01-01
Summary Faces are robustly detected by computer vision algorithms that search for characteristic coarse contrast features. Here, we investigated whether face-selective cells in the primate brain exploit contrast features as well. We recorded from face-selective neurons in macaque inferotemporal cortex, while presenting a face-like collage of regions whose luminances were changed randomly. Modulating contrast combinations between regions induced activity changes ranging from no response to a response greater than that to a real face in 50% of cells. The critical stimulus factor determining response magnitude was contrast polarity, e.g., nose region brighter than left eye. Contrast polarity preferences were consistent across cells, suggesting a common computational strategy across the population, and matched features used by computer vision algorithms for face detection. Furthermore, most cells were tuned both for contrast polarity and for the geometry of facial features, suggesting cells encode information useful both for detection and recognition. PMID:22578507
Robust Face Detection from Still Images
2014-01-01
significant change in false acceptance rates. Keywords— face detection; illumination; skin color variation; Haar-like features; OpenCV I. INTRODUCTION... OpenCV and an algorithm which used histogram equalization. The test is performed against 17 subjects under 576 viewing conditions from the extended Yale...original OpenCV algorithm proved the least accurate, having a hit rate of only 75.6%. It also had the lowest FAR but only by a slight margin at 25.2
Real-time detection with AdaBoost-svm combination in various face orientation
NASA Astrophysics Data System (ADS)
Fhonna, R. P.; Nasution, M. K. M.; Tulus
2018-03-01
Most of the research has used algorithm AdaBoost-SVM for face detection. However, to our knowledge so far there is no research has been facing detection on real-time data with various orientations using the combination of AdaBoost and Support Vector Machine (SVM). Characteristics of complex and diverse face variations and real-time data in various orientations, and with a very complex application will slow down the performance of the face detection system this becomes a challenge in this research. Face orientation performed on the detection system, that is 900, 450, 00, -450, and -900. This combination method is expected to be an effective and efficient solution in various face orientations. The results showed that the highest average detection rate is on the face detection oriented 00 and the lowest detection rate is in the face orientation 900.
The feasibility test of state-of-the-art face detection algorithms for vehicle occupant detection
NASA Astrophysics Data System (ADS)
Makrushin, Andrey; Dittmann, Jana; Vielhauer, Claus; Langnickel, Mirko; Kraetzer, Christian
2010-01-01
Vehicle seat occupancy detection systems are designed to prevent the deployment of airbags at unoccupied seats, thus avoiding the considerable cost imposed by the replacement of airbags. Occupancy detection can also improve passenger comfort, e.g. by activating air-conditioning systems. The most promising development perspectives are seen in optical sensing systems which have become cheaper and smaller in recent years. The most plausible way to check the seat occupancy by occupants is the detection of presence and location of heads, or more precisely, faces. This paper compares the detection performances of the three most commonly used and widely available face detection algorithms: Viola- Jones, Kienzle et al. and Nilsson et al. The main objective of this work is to identify whether one of these systems is suitable for use in a vehicle environment with variable and mostly non-uniform illumination conditions, and whether any one face detection system can be sufficient for seat occupancy detection. The evaluation of detection performance is based on a large database comprising 53,928 video frames containing proprietary data collected from 39 persons of both sexes and different ages and body height as well as different objects such as bags and rearward/forward facing child restraint systems.
Face verification system for Android mobile devices using histogram based features
NASA Astrophysics Data System (ADS)
Sato, Sho; Kobayashi, Kazuhiro; Chen, Qiu
2016-07-01
This paper proposes a face verification system that runs on Android mobile devices. In this system, facial image is captured by a built-in camera on the Android device firstly, and then face detection is implemented using Haar-like features and AdaBoost learning algorithm. The proposed system verify the detected face using histogram based features, which are generated by binary Vector Quantization (VQ) histogram using DCT coefficients in low frequency domains, as well as Improved Local Binary Pattern (Improved LBP) histogram in spatial domain. Verification results with different type of histogram based features are first obtained separately and then combined by weighted averaging. We evaluate our proposed algorithm by using publicly available ORL database and facial images captured by an Android tablet.
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2016-05-01
We have developed a new way for detection and tracking of human full-body and body-parts with color (intensity) patch morphological segmentation and adaptive thresholding for security surveillance cameras. An adaptive threshold scheme has been developed for dealing with body size changes, illumination condition changes, and cross camera parameter changes. Tests with the PETS 2009 and 2014 datasets show that we can obtain high probability of detection and low probability of false alarm for full-body. Test results indicate that our human full-body detection method can considerably outperform the current state-of-the-art methods in both detection performance and computational complexity. Furthermore, in this paper, we have developed several methods using color features for detection and tracking of human body-parts (arms, legs, torso, and head, etc.). For example, we have developed a human skin color sub-patch segmentation algorithm by first conducting a RGB to YIQ transformation and then applying a Subtractive I/Q image Fusion with morphological operations. With this method, we can reliably detect and track human skin color related body-parts such as face, neck, arms, and legs. Reliable body-parts (e.g. head) detection allows us to continuously track the individual person even in the case that multiple closely spaced persons are merged. Accordingly, we have developed a new algorithm to split a merged detection blob back to individual detections based on the detected head positions. Detected body-parts also allow us to extract important local constellation features of the body-parts positions and angles related to the full-body. These features are useful for human walking gait pattern recognition and human pose (e.g. standing or falling down) estimation for potential abnormal behavior and accidental event detection, as evidenced with our experimental tests. Furthermore, based on the reliable head (face) tacking, we have applied a super-resolution algorithm to enhance the face resolution for improved human face recognition performance.
False match elimination for face recognition based on SIFT algorithm
NASA Astrophysics Data System (ADS)
Gu, Xuyuan; Shi, Ping; Shao, Meide
2011-06-01
The SIFT (Scale Invariant Feature Transform) is a well known algorithm used to detect and describe local features in images. It is invariant to image scale, rotation and robust to the noise and illumination. In this paper, a novel method used for face recognition based on SIFT is proposed, which combines the optimization of SIFT, mutual matching and Progressive Sample Consensus (PROSAC) together and can eliminate the false matches of face recognition effectively. Experiments on ORL face database show that many false matches can be eliminated and better recognition rate is achieved.
Live face detection based on the analysis of Fourier spectra
NASA Astrophysics Data System (ADS)
Li, Jiangwei; Wang, Yunhong; Tan, Tieniu; Jain, Anil K.
2004-08-01
Biometrics is a rapidly developing technology that is to identify a person based on his or her physiological or behavioral characteristics. To ensure the correction of authentication, the biometric system must be able to detect and reject the use of a copy of a biometric instead of the live biometric. This function is usually termed "liveness detection". This paper describes a new method for live face detection. Using structure and movement information of live face, an effective live face detection algorithm is presented. Compared to existing approaches, which concentrate on the measurement of 3D depth information, this method is based on the analysis of Fourier spectra of a single face image or face image sequences. Experimental results show that the proposed method has an encouraging performance.
Matsugu, Masakazu; Mori, Katsuhiko; Mitari, Yusuke; Kaneda, Yuji
2003-01-01
Reliable detection of ordinary facial expressions (e.g. smile) despite the variability among individuals as well as face appearance is an important step toward the realization of perceptual user interface with autonomous perception of persons. We describe a rule-based algorithm for robust facial expression recognition combined with robust face detection using a convolutional neural network. In this study, we address the problem of subject independence as well as translation, rotation, and scale invariance in the recognition of facial expression. The result shows reliable detection of smiles with recognition rate of 97.6% for 5600 still images of more than 10 subjects. The proposed algorithm demonstrated the ability to discriminate smiling from talking based on the saliency score obtained from voting visual cues. To the best of our knowledge, it is the first facial expression recognition model with the property of subject independence combined with robustness to variability in facial appearance.
Algorithms for the detection of chewing behavior in dietary monitoring applications
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Helal, Abdelsalam; Mendez-Vasquez, Andres
2009-08-01
The detection of food consumption is key to the implementation of successful behavior modification in support of dietary monitoring and therapy, for example, during the course of controlling obesity, diabetes, or cardiovascular disease. Since the vast majority of humans consume food via mastication (chewing), we have designed an algorithm that automatically detects chewing behaviors in surveillance video of a person eating. Our algorithm first detects the mouth region, then computes the spatiotemporal frequency spectrum of a small perioral region (including the mouth). Spectral data are analyzed to determine the presence of periodic motion that characterizes chewing. A classifier is then applied to discriminate different types of chewing behaviors. Our algorithm was tested on seven volunteers, whose behaviors included chewing with mouth open, chewing with mouth closed, talking, static face presentation (control case), and moving face presentation. Early test results show that the chewing behaviors induce a temporal frequency peak at 0.5Hz to 2.5Hz, which is readily detected using a distance-based classifier. Computational cost is analyzed for implementation on embedded processing nodes, for example, in a healthcare sensor network. Complexity analysis emphasizes the relationship between the work and space estimates of the algorithm, and its estimated error. It is shown that chewing detection is possible within a computationally efficient, accurate, and subject-independent framework.
Energy conservation using face detection
NASA Astrophysics Data System (ADS)
Deotale, Nilesh T.; Kalbande, Dhananjay R.; Mishra, Akassh A.
2011-10-01
Computerized Face Detection, is concerned with the difficult task of converting a video signal of a person to written text. It has several applications like face recognition, simultaneous multiple face processing, biometrics, security, video surveillance, human computer interface, image database management, digital cameras use face detection for autofocus, selecting regions of interest in photo slideshows that use a pan-and-scale and The Present Paper deals with energy conservation using face detection. Automating the process to a computer requires the use of various image processing techniques. There are various methods that can be used for Face Detection such as Contour tracking methods, Template matching, Controlled background, Model based, Motion based and color based. Basically, the video of the subject are converted into images are further selected manually for processing. However, several factors like poor illumination, movement of face, viewpoint-dependent Physical appearance, Acquisition geometry, Imaging conditions, Compression artifacts makes Face detection difficult. This paper reports an algorithm for conservation of energy using face detection for various devices. The present paper suggests Energy Conservation can be done by Detecting the Face and reducing the brightness of complete image and then adjusting the brightness of the particular area of an image where the face is located using histogram equalization.
2015-01-01
Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications. PMID:26267377
Near-infrared face recognition utilizing open CV software
NASA Astrophysics Data System (ADS)
Sellami, Louiza; Ngo, Hau; Fowler, Chris J.; Kearney, Liam M.
2014-06-01
Commercially available hardware, freely available algorithms, and authors' developed software are synergized successfully to detect and recognize subjects in an environment without visible light. This project integrates three major components: an illumination device operating in near infrared (NIR) spectrum, a NIR capable camera and a software algorithm capable of performing image manipulation, facial detection and recognition. Focusing our efforts in the near infrared spectrum allows the low budget system to operate covertly while still allowing for accurate face recognition. In doing so a valuable function has been developed which presents potential benefits in future civilian and military security and surveillance operations.
Tsao, Doris Y.
2009-01-01
Faces are among the most informative stimuli we ever perceive: Even a split-second glimpse of a person's face tells us their identity, sex, mood, age, race, and direction of attention. The specialness of face processing is acknowledged in the artificial vision community, where contests for face recognition algorithms abound. Neurological evidence strongly implicates a dedicated machinery for face processing in the human brain, to explain the double dissociability of face and object recognition deficits. Furthermore, it has recently become clear that macaques too have specialized neural machinery for processing faces. Here we propose a unifying hypothesis, deduced from computational, neurological, fMRI, and single-unit experiments: that what makes face processing special is that it is gated by an obligatory detection process. We will clarify this idea in concrete algorithmic terms, and show how it can explain a variety of phenomena associated with face processing. PMID:18558862
NASA Astrophysics Data System (ADS)
Jelen, Lukasz; Kobel, Joanna; Podbielska, Halina
2003-11-01
This paper discusses the possibility of exploiting of the tennovision registration and artificial neural networks for facial recognition systems. A biometric system that is able to identify people from thermograms is presented. To identify a person we used the Eigenfaces algorithm. For the face detection in the picture the backpropagation neural network was designed. For this purpose thermograms of 10 people in various external conditions were studies. The Eigenfaces algorithm calculated an average face and then the set of characteristic features for each studied person was produced. The neural network has to detect the face in the image before it actually can be identified. We used five hidden layers for that purpose. It was shown that the errors in recognition depend on the feature extraction, for low quality pictures the error was so high as 30%. However, for pictures with a good feature extraction the results of proper identification higher then 90%, were obtained.
Simple Common Plane contact detection algorithm for FE/FD methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev, O
2006-07-19
Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact detection algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles in the original CP method. The method does not require iterations. It is very robust and easy to implement both in 2D and 3D case.
Framework for objective evaluation of privacy filters
NASA Astrophysics Data System (ADS)
Korshunov, Pavel; Melle, Andrea; Dugelay, Jean-Luc; Ebrahimi, Touradj
2013-09-01
Extensive adoption of video surveillance, affecting many aspects of our daily lives, alarms the public about the increasing invasion into personal privacy. To address these concerns, many tools have been proposed for protection of personal privacy in image and video. However, little is understood regarding the effectiveness of such tools and especially their impact on the underlying surveillance tasks, leading to a tradeoff between the preservation of privacy offered by these tools and the intelligibility of activities under video surveillance. In this paper, we investigate this privacy-intelligibility tradeoff objectively by proposing an objective framework for evaluation of privacy filters. We apply the proposed framework on a use case where privacy of people is protected by obscuring faces, assuming an automated video surveillance system. We used several popular privacy protection filters, such as blurring, pixelization, and masking and applied them with varying strengths to people's faces from different public datasets of video surveillance footage. Accuracy of face detection algorithm was used as a measure of intelligibility (a face should be detected to perform a surveillance task), and accuracy of face recognition algorithm as a measure of privacy (a specific person should not be identified). Under these conditions, after application of an ideal privacy protection tool, an obfuscated face would be visible as a face but would not be correctly identified by the recognition algorithm. The experiments demonstrate that, in general, an increase in strength of privacy filters under consideration leads to an increase in privacy (i.e., reduction in recognition accuracy) and to a decrease in intelligibility (i.e., reduction in detection accuracy). Masking also shows to be the most favorable filter across all tested datasets.
Friends with Faces: How Social Networks Can Enhance Face Recognition and Vice Versa
NASA Astrophysics Data System (ADS)
Mavridis, Nikolaos; Kazmi, Wajahat; Toulis, Panos
The "friendship" relation, a social relation among individuals, is one of the primary relations modeled in some of the world's largest online social networking sites, such as "FaceBook." On the other hand, the "co-occurrence" relation, as a relation among faces appearing in pictures, is one that is easily detectable using modern face detection techniques. These two relations, though appearing in different realms (social vs. visual sensory), have a strong correlation: faces that co-occur in photos often belong to individuals who are friends. Using real-world data gathered from "Facebook," which were gathered as part of the "FaceBots" project, the world's first physical face-recognizing and conversing robot that can utilize and publish information on "Facebook" was established. We present here methods as well as results for utilizing this correlation in both directions. Both algorithms for utilizing knowledge of the social context for faster and better face recognition are given, as well as algorithms for estimating the friendship network of a number of individuals given photos containing their faces. The results are quite encouraging. In the primary example, doubling of the recognition accuracy as well as a sixfold improvement in speed is demonstrated. Various improvements, interesting statistics, as well as an empirical investigation leading to predictions of scalability to much bigger data sets are discussed.
Global Binary Continuity for Color Face Detection With Complex Background
NASA Astrophysics Data System (ADS)
Belavadi, Bhaskar; Mahendra Prashanth, K. V.; Joshi, Sujay S.; Suprathik, N.
2017-08-01
In this paper, we propose a method to detect human faces in color images, with complex background. The proposed algorithm makes use of basically two color space models, specifically HSV and YCgCr. The color segmented image is filled uniformly with a single color (binary) and then all unwanted discontinuous lines are removed to get the final image. Experimental results on Caltech database manifests that the purported model is able to accomplish far better segmentation for faces of varying orientations, skin color and background environment.
Real-time driver fatigue detection based on face alignment
NASA Astrophysics Data System (ADS)
Tao, Huanhuan; Zhang, Guiying; Zhao, Yong; Zhou, Yi
2017-07-01
The performance and robustness of fatigue detection largely decrease if the driver with glasses. To address this issue, this paper proposes a practical driver fatigue detection method based on face alignment at 3000 FPS algorithm. Firstly, the eye regions of the driver are localized by exploiting 6 landmarks surrounding each eye. Secondly, the HOG features of the extracted eye regions are calculated and put into SVM classifier to recognize the eye state. Finally, the value of PERCLOS is calculated to determine whether the driver is drowsy or not. An alarm will be generated if the eye is closed for a specified period of time. The accuracy and real-time on testing videos with different drivers demonstrate that the proposed algorithm is robust and obtain better accuracy for driver fatigue detection compared with some previous method.
Joint Transform Correlation for face tracking: elderly fall detection application
NASA Astrophysics Data System (ADS)
Katz, Philippe; Aron, Michael; Alfalou, Ayman
2013-03-01
In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.
Baldewijns, Greet; Debard, Glen; Mertes, Gert; Vanrumste, Bart; Croonenborghs, Tom
2016-03-01
Fall incidents are an important health hazard for older adults. Automatic fall detection systems can reduce the consequences of a fall incident by assuring that timely aid is given. The development of these systems is therefore getting a lot of research attention. Real-life data which can help evaluate the results of this research is however sparse. Moreover, research groups that have this type of data are not at liberty to share it. Most research groups thus use simulated datasets. These simulation datasets, however, often do not incorporate the challenges the fall detection system will face when implemented in real-life. In this Letter, a more realistic simulation dataset is presented to fill this gap between real-life data and currently available datasets. It was recorded while re-enacting real-life falls recorded during previous studies. It incorporates the challenges faced by fall detection algorithms in real life. A fall detection algorithm from Debard et al. was evaluated on this dataset. This evaluation showed that the dataset possesses extra challenges compared with other publicly available datasets. In this Letter, the dataset is discussed as well as the results of this preliminary evaluation of the fall detection algorithm. The dataset can be downloaded from www.kuleuven.be/advise/datasets.
NASA Astrophysics Data System (ADS)
Iqtait, M.; Mohamad, F. S.; Mamat, M.
2018-03-01
Biometric is a pattern recognition system which is used for automatic recognition of persons based on characteristics and features of an individual. Face recognition with high recognition rate is still a challenging task and usually accomplished in three phases consisting of face detection, feature extraction, and expression classification. Precise and strong location of trait point is a complicated and difficult issue in face recognition. Cootes proposed a Multi Resolution Active Shape Models (ASM) algorithm, which could extract specified shape accurately and efficiently. Furthermore, as the improvement of ASM, Active Appearance Models algorithm (AAM) is proposed to extracts both shape and texture of specified object simultaneously. In this paper we give more details about the two algorithms and give the results of experiments, testing their performance on one dataset of faces. We found that the ASM is faster and gains more accurate trait point location than the AAM, but the AAM gains a better match to the texture.
Text extraction from images in the wild using the Viola-Jones algorithm
NASA Astrophysics Data System (ADS)
Saabna, Raid M.; Zingboim, Eran
2018-04-01
Text Localization and extraction is an important issue in modern applications of computer vision. Applications such as reading and translating texts in the wild or from videos are among the many applications that can benefit results of this field. In this work, we adopt the well-known Viola-Jones algorithm to enable text extraction and localization from images in the wild. The Viola-Jones is an efficient, and a fast image-processing algorithm originally used for face detection. Based on some resemblance between text and face detection tasks in the wild, we have modified the viola-jones to detect regions of interest where text may be localized. In the proposed approach, some modification to the HAAR like features and a semi-automatic process of data set generating and manipulation were presented to train the algorithm. A process of sliding windows with different sizes have been used to scan the image for individual letters and letter clusters existence. A post processing step is used in order to combine the detected letters into words and to remove false positives. The novelty of the presented approach is using the strengths of a modified Viola-Jones algorithm to identify many different objects representing different letters and clusters of similar letters and later combine them into words of varying lengths. Impressive results were obtained on the ICDAR contest data sets.
Image preprocessing study on KPCA-based face recognition
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Dehua
2015-12-01
Face recognition as an important biometric identification method, with its friendly, natural, convenient advantages, has obtained more and more attention. This paper intends to research a face recognition system including face detection, feature extraction and face recognition, mainly through researching on related theory and the key technology of various preprocessing methods in face detection process, using KPCA method, focuses on the different recognition results in different preprocessing methods. In this paper, we choose YCbCr color space for skin segmentation and choose integral projection for face location. We use erosion and dilation of the opening and closing operation and illumination compensation method to preprocess face images, and then use the face recognition method based on kernel principal component analysis method for analysis and research, and the experiments were carried out using the typical face database. The algorithms experiment on MATLAB platform. Experimental results show that integration of the kernel method based on PCA algorithm under certain conditions make the extracted features represent the original image information better for using nonlinear feature extraction method, which can obtain higher recognition rate. In the image preprocessing stage, we found that images under various operations may appear different results, so as to obtain different recognition rate in recognition stage. At the same time, in the process of the kernel principal component analysis, the value of the power of the polynomial function can affect the recognition result.
Hole Feature on Conical Face Recognition for Turning Part Model
NASA Astrophysics Data System (ADS)
Zubair, A. F.; Abu Mansor, M. S.
2018-03-01
Computer Aided Process Planning (CAPP) is the bridge between CAD and CAM and pre-processing of the CAD data in the CAPP system is essential. For CNC turning part, conical faces of part model is inevitable to be recognised beside cylindrical and planar faces. As the sinus cosines of the cone radius structure differ according to different models, face identification in automatic feature recognition of the part model need special intention. This paper intends to focus hole on feature on conical faces that can be detected by CAD solid modeller ACIS via. SAT file. Detection algorithm of face topology were generated and compared. The study shows different faces setup for similar conical part models with different hole type features. Three types of holes were compared and different between merge faces and unmerge faces were studied.
Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis
Peng, Zhenyun; Zhang, Yaohui
2014-01-01
Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying. PMID:24592182
DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D.
Shuvaev, Sergey A; Lazutkin, Alexander A; Kedrov, Alexander V; Anokhin, Konstantin V; Enikolopov, Grigori N; Koulakov, Alexei A
2017-01-01
Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software.
Automatic Detection of Frontal Face Midline by Chain-coded Merlin-Farber Hough Trasform
NASA Astrophysics Data System (ADS)
Okamoto, Daichi; Ohyama, Wataru; Wakabayashi, Tetsushi; Kimura, Fumitaka
We propose a novel approach for detection of the facial midline (facial symmetry axis) from a frontal face image. The facial midline has several applications, for instance reducing computational cost required for facial feature extraction (FFE) and postoperative assessment for cosmetic or dental surgery. The proposed method detects the facial midline of a frontal face from an edge image as the symmetry axis using the Merlin-Faber Hough transformation. And a new performance improvement scheme for midline detection by MFHT is present. The main concept of the proposed scheme is suppression of redundant vote on the Hough parameter space by introducing chain code representation for the binary edge image. Experimental results on the image dataset containing 2409 images from FERET database indicate that the proposed algorithm can improve the accuracy of midline detection from 89.9% to 95.1 % for face images with different scales and rotation.
Collision detection for spacecraft proximity operations
NASA Technical Reports Server (NTRS)
Vaughan, Robin M.; Bergmann, Edward V.; Walker, Bruce K.
1991-01-01
A new collision detection algorithm has been developed for use when two spacecraft are operating in the same vicinity. The two spacecraft are modeled as unions of convex polyhedra, where the resulting polyhedron many be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. Contacts between the vertices, faces, and edges of the polyhedra representing the two spacecraft are shown to occur when the value of one or more of a set of functions is zero. The collision detection algorithm is then formulated as a search for the zeros (roots) of these functions. Special properties of the functions for the assumed relative trajectory are exploited to expedite the zero search. The new algorithm is the first algorithm that can solve the collision detection problem exactly for relative motion with constant angular velocity. This is a significant improvement over models of rotational motion used in previous collision detection algorithms.
A Viola-Jones based hybrid face detection framework
NASA Astrophysics Data System (ADS)
Murphy, Thomas M.; Broussard, Randy; Schultz, Robert; Rakvic, Ryan; Ngo, Hau
2013-12-01
Improvements in face detection performance would benefit many applications. The OpenCV library implements a standard solution, the Viola-Jones detector, with a statistically boosted rejection cascade of binary classifiers. Empirical evidence has shown that Viola-Jones underdetects in some instances. This research shows that a truncated cascade augmented by a neural network could recover these undetected faces. A hybrid framework is constructed, with a truncated Viola-Jones cascade followed by an artificial neural network, used to refine the face decision. Optimally, a truncation stage that captured all faces and allowed the neural network to remove the false alarms is selected. A feedforward backpropagation network with one hidden layer is trained to discriminate faces based upon the thresholding (detection) values of intermediate stages of the full rejection cascade. A clustering algorithm is used as a precursor to the neural network, to group significant overlappings. Evaluated on the CMU/VASC Image Database, comparison with an unmodified OpenCV approach shows: (1) a 37% increase in detection rates if constrained by the requirement of no increase in false alarms, (2) a 48% increase in detection rates if some additional false alarms are tolerated, and (3) an 82% reduction in false alarms with no reduction in detection rates. These results demonstrate improved face detection and could address the need for such improvement in various applications.
A multi-view face recognition system based on cascade face detector and improved Dlib
NASA Astrophysics Data System (ADS)
Zhou, Hongjun; Chen, Pei; Shen, Wei
2018-03-01
In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.
Research on facial expression simulation based on depth image
NASA Astrophysics Data System (ADS)
Ding, Sha-sha; Duan, Jin; Zhao, Yi-wu; Xiao, Bo; Wang, Hao
2017-11-01
Nowadays, face expression simulation is widely used in film and television special effects, human-computer interaction and many other fields. Facial expression is captured by the device of Kinect camera .The method of AAM algorithm based on statistical information is employed to detect and track faces. The 2D regression algorithm is applied to align the feature points. Among them, facial feature points are detected automatically and 3D cartoon model feature points are signed artificially. The aligned feature points are mapped by keyframe techniques. In order to improve the animation effect, Non-feature points are interpolated based on empirical models. Under the constraint of Bézier curves we finish the mapping and interpolation. Thus the feature points on the cartoon face model can be driven if the facial expression varies. In this way the purpose of cartoon face expression simulation in real-time is came ture. The experiment result shows that the method proposed in this text can accurately simulate the facial expression. Finally, our method is compared with the previous method. Actual data prove that the implementation efficiency is greatly improved by our method.
A study on facial expressions recognition
NASA Astrophysics Data System (ADS)
Xu, Jingjing
2017-09-01
In terms of communication, postures and facial expressions of such feelings like happiness, anger and sadness play important roles in conveying information. With the development of the technology, recently a number of algorithms dealing with face alignment, face landmark detection, classification, facial landmark localization and pose estimation have been put forward. However, there are a lot of challenges and problems need to be fixed. In this paper, a few technologies have been concluded and analyzed, and they all relate to handling facial expressions recognition and poses like pose-indexed based multi-view method for face alignment, robust facial landmark detection under significant head pose and occlusion, partitioning the input domain for classification, robust statistics face formalization.
Robust 3D face landmark localization based on local coordinate coding.
Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Maybank, Stephen J
2014-12-01
In the 3D facial animation and synthesis community, input faces are usually required to be labeled by a set of landmarks for parameterization. Because of the variations in pose, expression and resolution, automatic 3D face landmark localization remains a challenge. In this paper, a novel landmark localization approach is presented. The approach is based on local coordinate coding (LCC) and consists of two stages. In the first stage, we perform nose detection, relying on the fact that the nose shape is usually invariant under the variations in the pose, expression, and resolution. Then, we use the iterative closest points algorithm to find a 3D affine transformation that aligns the input face to a reference face. In the second stage, we perform resampling to build correspondences between the input 3D face and the training faces. Then, an LCC-based localization algorithm is proposed to obtain the positions of the landmarks in the input face. Experimental results show that the proposed method is comparable to state of the art methods in terms of its robustness, flexibility, and accuracy.
Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions
Maruthapillai, Vasanthan; Murugappan, Murugappan
2016-01-01
In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject’s face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject’s face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network. PMID:26859884
Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions.
Maruthapillai, Vasanthan; Murugappan, Murugappan
2016-01-01
In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.
Enhancing the performance of cooperative face detector by NFGS
NASA Astrophysics Data System (ADS)
Yesugade, Snehal; Dave, Palak; Srivastava, Srinkhala; Das, Apurba
2015-07-01
Computerized human face detection is an important task of deformable pattern recognition in today's world. Especially in cooperative authentication scenarios like ATM fraud detection, attendance recording, video tracking and video surveillance, the accuracy of the face detection engine in terms of accuracy, memory utilization and speed have been active areas of research for the last decade. The Haar based face detection or SIFT and EBGM based face recognition systems are fairly reliable in this regard. But, there the features are extracted in terms of gray textures. When the input is a high resolution online video with a fairly large viewing area, Haar needs to search for face everywhere (say 352×250 pixels) and every time (e.g., 30 FPS capture all the time). In the current paper we have proposed to address both the aforementioned scenarios by a neuro-visually inspired method of figure-ground segregation (NFGS) [5] to result in a two-dimensional binary array from gray face image. The NFGS would identify the reference video frame in a low sampling rate and updates the same with significant change of environment like illumination. The proposed algorithm would trigger the face detector only when appearance of a new entity is encountered into the viewing area. To address the detection accuracy, classical face detector would be enabled only in a narrowed down region of interest (RoI) as fed by the NFGS. The act of updating the RoI would be done in each frame online with respect to the moving entity which in turn would improve both FR (False Rejection) and FA (False Acceptance) of the face detection system.
Audio-video feature correlation: faces and speech
NASA Astrophysics Data System (ADS)
Durand, Gwenael; Montacie, Claude; Caraty, Marie-Jose; Faudemay, Pascal
1999-08-01
This paper presents a study of the correlation of features automatically extracted from the audio stream and the video stream of audiovisual documents. In particular, we were interested in finding out whether speech analysis tools could be combined with face detection methods, and to what extend they should be combined. A generic audio signal partitioning algorithm as first used to detect Silence/Noise/Music/Speech segments in a full length movie. A generic object detection method was applied to the keyframes extracted from the movie in order to detect the presence or absence of faces. The correlation between the presence of a face in the keyframes and of the corresponding voice in the audio stream was studied. A third stream, which is the script of the movie, is warped on the speech channel in order to automatically label faces appearing in the keyframes with the name of the corresponding character. We naturally found that extracted audio and video features were related in many cases, and that significant benefits can be obtained from the joint use of audio and video analysis methods.
NASA Astrophysics Data System (ADS)
Nawir, Mukrimah; Amir, Amiza; Lynn, Ong Bi; Yaakob, Naimah; Badlishah Ahmad, R.
2018-05-01
The rapid growth of technologies might endanger them to various network attacks due to the nature of data which are frequently exchange their data through Internet and large-scale data that need to be handle. Moreover, network anomaly detection using machine learning faced difficulty when dealing the involvement of dataset where the number of labelled network dataset is very few in public and this caused many researchers keep used the most commonly network dataset (KDDCup99) which is not relevant to employ the machine learning (ML) algorithms for a classification. Several issues regarding these available labelled network datasets are discussed in this paper. The aim of this paper to build a network anomaly detection system using machine learning algorithms that are efficient, effective and fast processing. The finding showed that AODE algorithm is performed well in term of accuracy and processing time for binary classification towards UNSW-NB15 dataset.
NASA Astrophysics Data System (ADS)
Nair, Binu M.; Diskin, Yakov; Asari, Vijayan K.
2012-10-01
We present an autonomous system capable of performing security check routines. The surveillance machine, the Clearpath Husky robotic platform, is equipped with three IP cameras with different orientations for the surveillance tasks of face recognition, human activity recognition, autonomous navigation and 3D reconstruction of its environment. Combining the computer vision algorithms onto a robotic machine has given birth to the Robust Artificial Intelligencebased Defense Electro-Robot (RAIDER). The end purpose of the RAIDER is to conduct a patrolling routine on a single floor of a building several times a day. As the RAIDER travels down the corridors off-line algorithms use two of the RAIDER's side mounted cameras to perform a 3D reconstruction from monocular vision technique that updates a 3D model to the most current state of the indoor environment. Using frames from the front mounted camera, positioned at the human eye level, the system performs face recognition with real time training of unknown subjects. Human activity recognition algorithm will also be implemented in which each detected person is assigned to a set of action classes picked to classify ordinary and harmful student activities in a hallway setting.The system is designed to detect changes and irregularities within an environment as well as familiarize with regular faces and actions to distinguish potentially dangerous behavior. In this paper, we present the various algorithms and their modifications which when implemented on the RAIDER serves the purpose of indoor surveillance.
Facial detection using deep learning
NASA Astrophysics Data System (ADS)
Sharma, Manik; Anuradha, J.; Manne, H. K.; Kashyap, G. S. C.
2017-11-01
In the recent past, we have observed that Facebook has developed an uncanny ability to recognize people in photographs. Previously, we had to tag people in photos by clicking on them and typing their name. Now as soon as we upload a photo, Facebook tags everyone on its own. Facebook can recognize faces with 98% accuracy which is pretty much as good as humans can do. This technology is called Face Detection. Face detection is a popular topic in biometrics. We have surveillance cameras in public places for video capture as well as security purposes. The main advantages of this algorithm over other are uniqueness and approval. We need speed and accuracy to identify. But face detection is really a series of several related problems: First, look at a picture and find all the faces in it. Second, focus on each face and understand that even if a face is turned in a weird direction or in bad lighting, it is still the same person. Third select features which can be used to identify each face uniquely like size of the eyes, face etc. Finally, compare these features to data we have to find the person name. As a human, your brain is wired to do all of this automatically and instantly. In fact, humans are too good at recognizing faces. Computers are not capable of this kind of high-level generalization, so we must teach them how to do each step in this process separately. The growth of face detection is largely driven by growing applications such as credit card verification, surveillance video images, authentication for banking and security system access.
Ding, Liya; Martinez, Aleix M
2010-11-01
The appearance-based approach to face detection has seen great advances in the last several years. In this approach, we learn the image statistics describing the texture pattern (appearance) of the object class we want to detect, e.g., the face. However, this approach has had limited success in providing an accurate and detailed description of the internal facial features, i.e., eyes, brows, nose, and mouth. In general, this is due to the limited information carried by the learned statistical model. While the face template is relatively rich in texture, facial features (e.g., eyes, nose, and mouth) do not carry enough discriminative information to tell them apart from all possible background images. We resolve this problem by adding the context information of each facial feature in the design of the statistical model. In the proposed approach, the context information defines the image statistics most correlated with the surroundings of each facial component. This means that when we search for a face or facial feature, we look for those locations which most resemble the feature yet are most dissimilar to its context. This dissimilarity with the context features forces the detector to gravitate toward an accurate estimate of the position of the facial feature. Learning to discriminate between feature and context templates is difficult, however, because the context and the texture of the facial features vary widely under changing expression, pose, and illumination, and may even resemble one another. We address this problem with the use of subclass divisions. We derive two algorithms to automatically divide the training samples of each facial feature into a set of subclasses, each representing a distinct construction of the same facial component (e.g., closed versus open eyes) or its context (e.g., different hairstyles). The first algorithm is based on a discriminant analysis formulation. The second algorithm is an extension of the AdaBoost approach. We provide extensive experimental results using still images and video sequences for a total of 3,930 images. We show that the results are almost as good as those obtained with manual detection.
Detecting Visually Observable Disease Symptoms from Faces.
Wang, Kuan; Luo, Jiebo
2016-12-01
Recent years have witnessed an increasing interest in the application of machine learning to clinical informatics and healthcare systems. A significant amount of research has been done on healthcare systems based on supervised learning. In this study, we present a generalized solution to detect visually observable symptoms on faces using semi-supervised anomaly detection combined with machine vision algorithms. We rely on the disease-related statistical facts to detect abnormalities and classify them into multiple categories to narrow down the possible medical reasons of detecting. Our method is in contrast with most existing approaches, which are limited by the availability of labeled training data required for supervised learning, and therefore offers the major advantage of flagging any unusual and visually observable symptoms.
Kasturi, Rangachar; Goldgof, Dmitry; Soundararajan, Padmanabhan; Manohar, Vasant; Garofolo, John; Bowers, Rachel; Boonstra, Matthew; Korzhova, Valentina; Zhang, Jing
2009-02-01
Common benchmark data sets, standardized performance metrics, and baseline algorithms have demonstrated considerable impact on research and development in a variety of application domains. These resources provide both consumers and developers of technology with a common framework to objectively compare the performance of different algorithms and algorithmic improvements. In this paper, we present such a framework for evaluating object detection and tracking in video: specifically for face, text, and vehicle objects. This framework includes the source video data, ground-truth annotations (along with guidelines for annotation), performance metrics, evaluation protocols, and tools including scoring software and baseline algorithms. For each detection and tracking task and supported domain, we developed a 50-clip training set and a 50-clip test set. Each data clip is approximately 2.5 minutes long and has been completely spatially/temporally annotated at the I-frame level. Each task/domain, therefore, has an associated annotated corpus of approximately 450,000 frames. The scope of such annotation is unprecedented and was designed to begin to support the necessary quantities of data for robust machine learning approaches, as well as a statistically significant comparison of the performance of algorithms. The goal of this work was to systematically address the challenges of object detection and tracking through a common evaluation framework that permits a meaningful objective comparison of techniques, provides the research community with sufficient data for the exploration of automatic modeling techniques, encourages the incorporation of objective evaluation into the development process, and contributes useful lasting resources of a scale and magnitude that will prove to be extremely useful to the computer vision research community for years to come.
A Comparative Survey of Methods for Remote Heart Rate Detection From Frontal Face Videos
Wang, Chen; Pun, Thierry; Chanel, Guillaume
2018-01-01
Remotely measuring physiological activity can provide substantial benefits for both the medical and the affective computing applications. Recent research has proposed different methodologies for the unobtrusive detection of heart rate (HR) using human face recordings. These methods are based on subtle color changes or motions of the face due to cardiovascular activities, which are invisible to human eyes but can be captured by digital cameras. Several approaches have been proposed such as signal processing and machine learning. However, these methods are compared with different datasets, and there is consequently no consensus on method performance. In this article, we describe and evaluate several methods defined in literature, from 2008 until present day, for the remote detection of HR using human face recordings. The general HR processing pipeline is divided into three stages: face video processing, face blood volume pulse (BVP) signal extraction, and HR computation. Approaches presented in the paper are classified and grouped according to each stage. At each stage, algorithms are analyzed and compared based on their performance using the public database MAHNOB-HCI. Results found in this article are limited on MAHNOB-HCI dataset. Results show that extracted face skin area contains more BVP information. Blind source separation and peak detection methods are more robust with head motions for estimating HR. PMID:29765940
Pornographic information of Internet views detection method based on the connected areas
NASA Astrophysics Data System (ADS)
Wang, Huibai; Fan, Ajie
2017-01-01
Nowadays online porn video broadcasting and downloading is very popular. In view of the widespread phenomenon of Internet pornography, this paper proposed a new method of pornographic video detection based on connected areas. Firstly, decode the video into a serious of static images and detect skin color on the extracted key frames. If the area of skin color reaches a certain threshold, use the AdaBoost algorithm to detect the human face. Judge the connectivity of the human face and the large area of skin color to determine whether detect the sensitive area finally. The experimental results show that the method can effectively remove the non-pornographic videos contain human who wear less. This method can improve the efficiency and reduce the workload of detection.
Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods.
Kong, Xiangyi; Gong, Shun; Su, Lijuan; Howard, Newton; Kong, Yanguo
2018-01-01
Automatic early detection of acromegaly is theoretically possible from facial photographs, which can lessen the prevalence and increase the cure probability. In this study, several popular machine learning algorithms were used to train a retrospective development dataset consisting of 527 acromegaly patients and 596 normal subjects. We firstly used OpenCV to detect the face bounding rectangle box, and then cropped and resized it to the same pixel dimensions. From the detected faces, locations of facial landmarks which were the potential clinical indicators were extracted. Frontalization was then adopted to synthesize frontal facing views to improve the performance. Several popular machine learning methods including LM, KNN, SVM, RT, CNN, and EM were used to automatically identify acromegaly from the detected facial photographs, extracted facial landmarks, and synthesized frontal faces. The trained models were evaluated using a separate dataset, of which half were diagnosed as acromegaly by growth hormone suppression test. The best result of our proposed methods showed a PPV of 96%, a NPV of 95%, a sensitivity of 96% and a specificity of 96%. Artificial intelligence can automatically early detect acromegaly with a high sensitivity and specificity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Cyber Vigilance: The Human Factor
2016-10-21
88ABW-2014-5661; American Intelligence Journal 14. Cyber-defenders face lengthy, repetitive work assignments with few critical signals and little...research is inadvisable. To understand this unique domain, we asked participants to perform a simulated cybersecurity task, searching for attack...detection. To avoid this, IDS detection algorithms are purposely liberal, broadly flagging any activity that resembles a known American Intelligence
NASA Astrophysics Data System (ADS)
Gao, Simon S.; Liu, Li; Bailey, Steven T.; Flaxel, Christina J.; Huang, David; Li, Dengwang; Jia, Yali
2016-07-01
Quantification of choroidal neovascularization (CNV) as visualized by optical coherence tomography angiography (OCTA) may have importance clinically when diagnosing or tracking disease. Here, we present an automated algorithm to quantify the vessel skeleton of CNV as vessel length. Initial segmentation of the CNV on en face angiograms was achieved using saliency-based detection and thresholding. A level set method was then used to refine vessel edges. Finally, a skeleton algorithm was applied to identify vessel centerlines. The algorithm was tested on nine OCTA scans from participants with CNV and comparisons of the algorithm's output to manual delineation showed good agreement.
Video face recognition against a watch list
NASA Astrophysics Data System (ADS)
Abbas, Jehanzeb; Dagli, Charlie K.; Huang, Thomas S.
2007-10-01
Due to a large increase in the video surveillance data recently in an effort to maintain high security at public places, we need more robust systems to analyze this data and make tasks like face recognition a realistic possibility in challenging environments. In this paper we explore a watch-list scenario where we use an appearance based model to classify query faces from low resolution videos into either a watch-list or a non-watch-list face. We then use our simple yet a powerful face recognition system to recognize the faces classified as watch-list faces. Where the watch-list includes those people that we are interested in recognizing. Our system uses simple feature machine algorithms from our previous work to match video faces against still images. To test our approach, we match video faces against a large database of still images obtained from a previous work in the field from Yahoo News over a period of time. We do this matching in an efficient manner to come up with a faster and nearly real-time system. This system can be incorporated into a larger surveillance system equipped with advanced algorithms involving anomalous event detection and activity recognition. This is a step towards more secure and robust surveillance systems and efficient video data analysis.
A smart technique for attendance system to recognize faces through parallelism
NASA Astrophysics Data System (ADS)
Prabhavathi, B.; Tanuja, V.; Madhu Viswanatham, V.; Rajashekhara Babu, M.
2017-11-01
Major part of recognising a person is face with the help of image processing techniques we can exploit the physical features of a person. In the old approach method that is used in schools and colleges it is there that the professor calls the student name and then the attendance for the students marked. Here in paper want to deviate from the old approach and go with the new approach by using techniques that are there in image processing. In this paper we presenting spontaneous presence for students in classroom. At first classroom image has been in use and after that image is kept in data record. For the images that are stored in the database we apply system algorithm which includes steps such as, histogram classification, noise removal, face detection and face recognition methods. So by using these steps we detect the faces and then compare it with the database. The attendance gets marked automatically if the system recognizes the faces.
Correlation based efficient face recognition and color change detection
NASA Astrophysics Data System (ADS)
Elbouz, M.; Alfalou, A.; Brosseau, C.; Alam, M. S.; Qasmi, S.
2013-01-01
Identifying the human face via correlation is a topic attracting widespread interest. At the heart of this technique lies the comparison of an unknown target image to a known reference database of images. However, the color information in the target image remains notoriously difficult to interpret. In this paper, we report a new technique which: (i) is robust against illumination change, (ii) offers discrimination ability to detect color change between faces having similar shape, and (iii) is specifically designed to detect red colored stains (i.e. facial bleeding). We adopt the Vanderlugt correlator (VLC) architecture with a segmented phase filter and we decompose the color target image using normalized red, green, and blue (RGB), and hue, saturation, and value (HSV) scales. We propose a new strategy to effectively utilize color information in signatures for further increasing the discrimination ability. The proposed algorithm has been found to be very efficient for discriminating face subjects with different skin colors, and those having color stains in different areas of the facial image.
From tiger to panda: animal head detection.
Zhang, Weiwei; Sun, Jian; Tang, Xiaoou
2011-06-01
Robust object detection has many important applications in real-world online photo processing. For example, both Google image search and MSN live image search have integrated human face detector to retrieve face or portrait photos. Inspired by the success of such face filtering approach, in this paper, we focus on another popular online photo category--animal, which is one of the top five categories in the MSN live image search query log. As a first attempt, we focus on the problem of animal head detection of a set of relatively large land animals that are popular on the internet, such as cat, tiger, panda, fox, and cheetah. First, we proposed a new set of gradient oriented feature, Haar of Oriented Gradients (HOOG), to effectively capture the shape and texture features on animal head. Then, we proposed two detection algorithms, namely Bruteforce detection and Deformable detection, to effectively exploit the shape feature and texture feature simultaneously. Experimental results on 14,379 well labeled animals images validate the superiority of the proposed approach. Additionally, we apply the animal head detector to improve the image search result through text based online photo search result filtering.
Face detection in color images using skin color, Laplacian of Gaussian, and Euler number
NASA Astrophysics Data System (ADS)
Saligrama Sundara Raman, Shylaja; Kannanedhi Narasimha Sastry, Balasubramanya Murthy; Subramanyam, Natarajan; Senkutuvan, Ramya; Srikanth, Radhika; John, Nikita; Rao, Prateek
2010-02-01
In this a paper, a feature based approach to face detection has been proposed using an ensemble of algorithms. The method uses chrominance values and edge features to classify the image as skin and nonskin regions. The edge detector used for this purpose is Laplacian of Gaussian (LoG) which is found to be appropriate when images having multiple faces with noise in them. Eight connectivity analysis of these regions will segregate them as probable face or nonface. The procedure is made more robust by identifying local features within these skin regions which include number of holes, percentage of skin and the golden ratio. The method proposed has been tested on color face images of various races obtained from different sources and its performance is found to be encouraging as the color segmentation cleans up almost all the complex facial features. The result obtained has a calculated accuracy of 86.5% on a test set of 230 images.
Tsinganos, Panagiotis; Skodras, Athanassios
2018-02-14
In the context of the ageing global population, researchers and scientists have tried to find solutions to many challenges faced by older people. Falls, the leading cause of injury among elderly, are usually severe enough to require immediate medical attention; thus, their detection is of primary importance. To this effect, many fall detection systems that utilize wearable and ambient sensors have been proposed. In this study, we compare three newly proposed data fusion schemes that have been applied in human activity recognition and fall detection. Furthermore, these algorithms are compared to our recent work regarding fall detection in which only one type of sensor is used. The results show that fusion algorithms differ in their performance, whereas a machine learning strategy should be preferred. In conclusion, the methods presented and the comparison of their performance provide useful insights into the problem of fall detection.
NASA Astrophysics Data System (ADS)
Lemoff, Brian E.; Martin, Robert B.; Sluch, Mikhail; Kafka, Kristopher M.; McCormick, William; Ice, Robert
2013-06-01
The capability to positively and covertly identify people at a safe distance, 24-hours per day, could provide a valuable advantage in protecting installations, both domestically and in an asymmetric warfare environment. This capability would enable installation security officers to identify known bad actors from a safe distance, even if they are approaching under cover of darkness. We will describe an active-SWIR imaging system being developed to automatically detect, track, and identify people at long range using computer face recognition. The system illuminates the target with an eye-safe and invisible SWIR laser beam, to provide consistent high-resolution imagery night and day. SWIR facial imagery produced by the system is matched against a watch-list of mug shots using computer face recognition algorithms. The current system relies on an operator to point the camera and to review and interpret the face recognition results. Automation software is being developed that will allow the system to be cued to a location by an external system, automatically detect a person, track the person as they move, zoom in on the face, select good facial images, and process the face recognition results, producing alarms and sharing data with other systems when people are detected and identified. Progress on the automation of this system will be presented along with experimental night-time face recognition results at distance.
Image-Based 3D Face Modeling System
NASA Astrophysics Data System (ADS)
Park, In Kyu; Zhang, Hui; Vezhnevets, Vladimir
2005-12-01
This paper describes an automatic system for 3D face modeling using frontal and profile images taken by an ordinary digital camera. The system consists of four subsystems including frontal feature detection, profile feature detection, shape deformation, and texture generation modules. The frontal and profile feature detection modules automatically extract the facial parts such as the eye, nose, mouth, and ear. The shape deformation module utilizes the detected features to deform the generic head mesh model such that the deformed model coincides with the detected features. A texture is created by combining the facial textures augmented from the input images and the synthesized texture and mapped onto the deformed generic head model. This paper provides a practical system for 3D face modeling, which is highly automated by aggregating, customizing, and optimizing a bunch of individual computer vision algorithms. The experimental results show a highly automated process of modeling, which is sufficiently robust to various imaging conditions. The whole model creation including all the optional manual corrections takes only 2[InlineEquation not available: see fulltext.]3 minutes.
Fusing face-verification algorithms and humans.
O'Toole, Alice J; Abdi, Hervé; Jiang, Fang; Phillips, P Jonathon
2007-10-01
It has been demonstrated recently that state-of-the-art face-recognition algorithms can surpass human accuracy at matching faces over changes in illumination. The ranking of algorithms and humans by accuracy, however, does not provide information about whether algorithms and humans perform the task comparably or whether algorithms and humans can be fused to improve performance. In this paper, we fused humans and algorithms using partial least square regression (PLSR). In the first experiment, we applied PLSR to face-pair similarity scores generated by seven algorithms participating in the Face Recognition Grand Challenge. The PLSR produced an optimal weighting of the similarity scores, which we tested for generality with a jackknife procedure. Fusing the algorithms' similarity scores using the optimal weights produced a twofold reduction of error rate over the most accurate algorithm. Next, human-subject-generated similarity scores were added to the PLSR analysis. Fusing humans and algorithms increased the performance to near-perfect classification accuracy. These results are discussed in terms of maximizing face-verification accuracy with hybrid systems consisting of multiple algorithms and humans.
A Survey on Sentiment Classification in Face Recognition
NASA Astrophysics Data System (ADS)
Qian, Jingyu
2018-01-01
Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.
Undercut feature recognition for core and cavity generation
NASA Astrophysics Data System (ADS)
Yusof, Mursyidah Md; Salman Abu Mansor, Mohd
2018-01-01
Core and cavity is one of the important components in injection mould where the quality of the final product is mostly dependent on it. In the industry, with years of experience and skill, mould designers commonly use commercial CAD software to design the core and cavity which is time consuming. This paper proposes an algorithm that detect possible undercut features and generate the core and cavity. Two approaches are presented; edge convexity and face connectivity approach. The edge convexity approach is used to recognize undercut features while face connectivity is used to divide the faces into top and bottom region.
Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min
2018-06-25
Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.
Error Rates in Users of Automatic Face Recognition Software
White, David; Dunn, James D.; Schmid, Alexandra C.; Kemp, Richard I.
2015-01-01
In recent years, wide deployment of automatic face recognition systems has been accompanied by substantial gains in algorithm performance. However, benchmarking tests designed to evaluate these systems do not account for the errors of human operators, who are often an integral part of face recognition solutions in forensic and security settings. This causes a mismatch between evaluation tests and operational accuracy. We address this by measuring user performance in a face recognition system used to screen passport applications for identity fraud. Experiment 1 measured target detection accuracy in algorithm-generated ‘candidate lists’ selected from a large database of passport images. Accuracy was notably poorer than in previous studies of unfamiliar face matching: participants made over 50% errors for adult target faces, and over 60% when matching images of children. Experiment 2 then compared performance of student participants to trained passport officers–who use the system in their daily work–and found equivalent performance in these groups. Encouragingly, a group of highly trained and experienced “facial examiners” outperformed these groups by 20 percentage points. We conclude that human performance curtails accuracy of face recognition systems–potentially reducing benchmark estimates by 50% in operational settings. Mere practise does not attenuate these limits, but superior performance of trained examiners suggests that recruitment and selection of human operators, in combination with effective training and mentorship, can improve the operational accuracy of face recognition systems. PMID:26465631
Adaptive skin detection based on online training
NASA Astrophysics Data System (ADS)
Zhang, Ming; Tang, Liang; Zhou, Jie; Rong, Gang
2007-11-01
Skin is a widely used cue for porn image classification. Most conventional methods are off-line training schemes. They usually use a fixed boundary to segment skin regions in the images and are effective only in restricted conditions: e.g. good lightness and unique human race. This paper presents an adaptive online training scheme for skin detection which can handle these tough cases. In our approach, skin detection is considered as a classification problem on Gaussian mixture model. For each image, human face is detected and the face color is used to establish a primary estimation of skin color distribution. Then an adaptive online training algorithm is used to find the real boundary between skin color and background color in current image. Experimental results on 450 images showed that the proposed method is more robust in general situations than the conventional ones.
Collision detection for spacecraft proximity operations. Ph.D. Thesis - MIT
NASA Technical Reports Server (NTRS)
Vaughan, Robin M.
1987-01-01
The development of a new collision detection algorithm to be used when two spacecraft are operating in the same vicinity is described. The two spacecraft are modeled as unions of convex polyhedra, where the polyhedron resulting from the union may be either convex or nonconvex. The relative motion of the two spacecraft is assumed to be such that one vehicle is moving with constant linear and angular velocity with respect to the other. The algorithm determines if a collision is possible and, if so, predicts the time when the collision will take place. The theoretical basis for the new collision detection algorithm is the C-function formulation of the configuration space approach recently introduced by researchers in robotics. Three different types of C-functions are defined that model the contacts between the vertices, edges, and faces of the polyhedra representing the two spacecraft. The C-functions are shown to be transcendental functions of time for the assumed trajectory of the moving spacecraft. The capabilities of the new algorithm are demonstrated for several example cases.
Liu, Wenbo; Li, Ming; Yi, Li
2016-08-01
The atypical face scanning patterns in individuals with Autism Spectrum Disorder (ASD) has been repeatedly discovered by previous research. The present study examined whether their face scanning patterns could be potentially useful to identify children with ASD by adopting the machine learning algorithm for the classification purpose. Particularly, we applied the machine learning method to analyze an eye movement dataset from a face recognition task [Yi et al., 2016], to classify children with and without ASD. We evaluated the performance of our model in terms of its accuracy, sensitivity, and specificity of classifying ASD. Results indicated promising evidence for applying the machine learning algorithm based on the face scanning patterns to identify children with ASD, with a maximum classification accuracy of 88.51%. Nevertheless, our study is still preliminary with some constraints that may apply in the clinical practice. Future research should shed light on further valuation of our method and contribute to the development of a multitask and multimodel approach to aid the process of early detection and diagnosis of ASD. Autism Res 2016, 9: 888-898. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
iFER: facial expression recognition using automatically selected geometric eye and eyebrow features
NASA Astrophysics Data System (ADS)
Oztel, Ismail; Yolcu, Gozde; Oz, Cemil; Kazan, Serap; Bunyak, Filiz
2018-03-01
Facial expressions have an important role in interpersonal communications and estimation of emotional states or intentions. Automatic recognition of facial expressions has led to many practical applications and became one of the important topics in computer vision. We present a facial expression recognition system that relies on geometry-based features extracted from eye and eyebrow regions of the face. The proposed system detects keypoints on frontal face images and forms a feature set using geometric relationships among groups of detected keypoints. Obtained feature set is refined and reduced using the sequential forward selection (SFS) algorithm and fed to a support vector machine classifier to recognize five facial expression classes. The proposed system, iFER (eye-eyebrow only facial expression recognition), is robust to lower face occlusions that may be caused by beards, mustaches, scarves, etc. and lower face motion during speech production. Preliminary experiments on benchmark datasets produced promising results outperforming previous facial expression recognition studies using partial face features, and comparable results to studies using whole face information, only slightly lower by ˜ 2.5 % compared to the best whole face facial recognition system while using only ˜ 1 / 3 of the facial region.
Identifying People with Soft-Biometrics at Fleet Week
2013-03-01
onboard sensors. This included: Color Camera: Located in the right eye, Octavia stored 640x480 RGB images at ~4 Hz from a Point Grey Firefly camera. A...Face Detection The Fleet Week experiments demonstrated the potential of soft biometrics for recognition, but all of the existing algorithms currently
Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios
2013-08-01
Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.
Using false colors to protect visual privacy of sensitive content
NASA Astrophysics Data System (ADS)
Ćiftçi, Serdar; Korshunov, Pavel; Akyüz, Ahmet O.; Ebrahimi, Touradj
2015-03-01
Many privacy protection tools have been proposed for preserving privacy. Tools for protection of visual privacy available today lack either all or some of the important properties that are expected from such tools. Therefore, in this paper, we propose a simple yet effective method for privacy protection based on false color visualization, which maps color palette of an image into a different color palette, possibly after a compressive point transformation of the original pixel data, distorting the details of the original image. This method does not require any prior face detection or other sensitive regions detection and, hence, unlike typical privacy protection methods, it is less sensitive to inaccurate computer vision algorithms. It is also secure as the look-up tables can be encrypted, reversible as table look-ups can be inverted, flexible as it is independent of format or encoding, adjustable as the final result can be computed by interpolating the false color image with the original using different degrees of interpolation, less distracting as it does not create visually unpleasant artifacts, and selective as it preserves better semantic structure of the input. Four different color scales and four different compression functions, one which the proposed method relies, are evaluated via objective (three face recognition algorithms) and subjective (50 human subjects in an online-based study) assessments using faces from FERET public dataset. The evaluations demonstrate that DEF and RBS color scales lead to the strongest privacy protection, while compression functions add little to the strength of privacy protection. Statistical analysis also shows that recognition algorithms and human subjects perceive the proposed protection similarly
Nika, Varvara; Babyn, Paul; Zhu, Hongmei
2014-07-01
Automatic change detection methods for identifying the changes of serial MR images taken at different times are of great interest to radiologists. The majority of existing change detection methods in medical imaging, and those of brain images in particular, include many preprocessing steps and rely mostly on statistical analysis of magnetic resonance imaging (MRI) scans. Although most methods utilize registration software, tissue classification remains a difficult and overwhelming task. Recently, dictionary learning techniques are being used in many areas of image processing, such as image surveillance, face recognition, remote sensing, and medical imaging. We present an improved version of the EigenBlockCD algorithm, named the EigenBlockCD-2. The EigenBlockCD-2 algorithm performs an initial global registration and identifies the changes between serial MR images of the brain. Blocks of pixels from a baseline scan are used to train local dictionaries to detect changes in the follow-up scan. We use PCA to reduce the dimensionality of the local dictionaries and the redundancy of data. Choosing the appropriate distance measure significantly affects the performance of our algorithm. We examine the differences between [Formula: see text] and [Formula: see text] norms as two possible similarity measures in the improved EigenBlockCD-2 algorithm. We show the advantages of the [Formula: see text] norm over the [Formula: see text] norm both theoretically and numerically. We also demonstrate the performance of the new EigenBlockCD-2 algorithm for detecting changes of MR images and compare our results with those provided in the recent literature. Experimental results with both simulated and real MRI scans show that our improved EigenBlockCD-2 algorithm outperforms the previous methods. It detects clinical changes while ignoring the changes due to the patient's position and other acquisition artifacts.
Peteye detection and correction
NASA Astrophysics Data System (ADS)
Yen, Jonathan; Luo, Huitao; Tretter, Daniel
2007-01-01
Redeyes are caused by the camera flash light reflecting off the retina. Peteyes refer to similar artifacts in the eyes of other mammals caused by camera flash. In this paper we present a peteye removal algorithm for detecting and correcting peteye artifacts in digital images. Peteye removal for animals is significantly more difficult than redeye removal for humans, because peteyes can be any of a variety of colors, and human face detection cannot be used to localize the animal eyes. In many animals, including dogs and cats, the retina has a special reflective layer that can cause a variety of peteye colors, depending on the animal's breed, age, or fur color, etc. This makes the peteye correction more challenging. We have developed a semi-automatic algorithm for peteye removal that can detect peteyes based on the cursor position provided by the user and correct them by neutralizing the colors with glare reduction and glint retention.
Gender classification system in uncontrolled environments
NASA Astrophysics Data System (ADS)
Zeng, Pingping; Zhang, Yu-Jin; Duan, Fei
2011-01-01
Most face analysis systems available today perform mainly on restricted databases of images in terms of size, age, illumination. In addition, it is frequently assumed that all images are frontal and unconcealed. Actually, in a non-guided real-time supervision, the face pictures taken may often be partially covered and with head rotation less or more. In this paper, a special system supposed to be used in real-time surveillance with un-calibrated camera and non-guided photography is described. It mainly consists of five parts: face detection, non-face filtering, best-angle face selection, texture normalization, and gender classification. Emphases are focused on non-face filtering and best-angle face selection parts as well as texture normalization. Best-angle faces are figured out by PCA reconstruction, which equals to an implicit face alignment and results in a huge increase of the accuracy for gender classification. Dynamic skin model and a masked PCA reconstruction algorithm are applied to filter out faces detected in error. In order to fully include facial-texture and shape-outline features, a hybrid feature that is a combination of Gabor wavelet and PHoG (pyramid histogram of gradients) was proposed to equitable inner texture and outer contour. Comparative study on the effects of different non-face filtering and texture masking methods in the context of gender classification by SVM is reported through experiments on a set of UT (a company name) face images, a large number of internet images and CAS (Chinese Academy of Sciences) face database. Some encouraging results are obtained.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru
2008-03-01
Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Using Distance Sensors to Perform Collision Avoidance Maneuvres on Uav Applications
NASA Astrophysics Data System (ADS)
Raimundo, A.; Peres, D.; Santos, N.; Sebastião, P.; Souto, N.
2017-08-01
The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. "Sense and Avoid" algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a Light Detection and Ranging (LiDAR), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk's flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station and UAV are made via Wi-Fi or cellular third or fourth generation (3G/4G). Some tests were made in order to evaluate the "Sense and Avoid" algorithm's overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and "Brake" mode on a real outdoor, proving its concepts.
Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S; Cutler, Barbara M; Shain, William; Roysam, Badrinath
2010-03-01
This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8 x speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1-1.6) voxels per mesh face for peak signal-to-noise ratios from (110-28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively.
A Method for Counting Moving People in Video Surveillance Videos
NASA Astrophysics Data System (ADS)
Conte, Donatello; Foggia, Pasquale; Percannella, Gennaro; Tufano, Francesco; Vento, Mario
2010-12-01
People counting is an important problem in video surveillance applications. This problem has been faced either by trying to detect people in the scene and then counting them or by establishing a mapping between some scene feature and the number of people (avoiding the complex detection problem). This paper presents a novel method, following this second approach, that is based on the use of SURF features and of an [InlineEquation not available: see fulltext.]-SVR regressor provide an estimate of this count. The algorithm takes specifically into account problems due to partial occlusions and to perspective. In the experimental evaluation, the proposed method has been compared with the algorithm by Albiol et al., winner of the PETS 2009 contest on people counting, using the same PETS 2009 database. The provided results confirm that the proposed method yields an improved accuracy, while retaining the robustness of Albiol's algorithm.
NASA Astrophysics Data System (ADS)
Dinges, David F.; Venkataraman, Sundara; McGlinchey, Eleanor L.; Metaxas, Dimitris N.
2007-02-01
Astronauts are required to perform mission-critical tasks at a high level of functional capability throughout spaceflight. Stressors can compromise their ability to do so, making early objective detection of neurobehavioral problems in spaceflight a priority. Computer optical approaches offer a completely unobtrusive way to detect distress during critical operations in space flight. A methodology was developed and a study completed to determine whether optical computer recognition algorithms could be used to discriminate facial expressions during stress induced by performance demands. Stress recognition from a facial image sequence is a subject that has not received much attention although it is an important problem for many applications beyond space flight (security, human-computer interaction, etc.). This paper proposes a comprehensive method to detect stress from facial image sequences by using a model-based tracker. The image sequences were captured as subjects underwent a battery of psychological tests under high- and low-stress conditions. A cue integration-based tracking system accurately captured the rigid and non-rigid parameters of different parts of the face (eyebrows, lips). The labeled sequences were used to train the recognition system, which consisted of generative (hidden Markov model) and discriminative (support vector machine) parts that yield results superior to using either approach individually. The current optical algorithm methods performed at a 68% accuracy rate in an experimental study of 60 healthy adults undergoing periods of high-stress versus low-stress performance demands. Accuracy and practical feasibility of the technique is being improved further with automatic multi-resolution selection for the discretization of the mask, and automated face detection and mask initialization algorithms.
Dorninger, Peter; Pfeifer, Norbert
2008-01-01
Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects. PMID:27873931
Tools for Protecting the Privacy of Specific Individuals in Video
NASA Astrophysics Data System (ADS)
Chen, Datong; Chang, Yi; Yan, Rong; Yang, Jie
2007-12-01
This paper presents a system for protecting the privacy of specific individuals in video recordings. We address the following two problems: automatic people identification with limited labeled data, and human body obscuring with preserved structure and motion information. In order to address the first problem, we propose a new discriminative learning algorithm to improve people identification accuracy using limited training data labeled from the original video and imperfect pairwise constraints labeled from face obscured video data. We employ a robust face detection and tracking algorithm to obscure human faces in the video. Our experiments in a nursing home environment show that the system can obtain a high accuracy of people identification using limited labeled data and noisy pairwise constraints. The study result indicates that human subjects can perform reasonably well in labeling pairwise constraints with the face masked data. For the second problem, we propose a novel method of body obscuring, which removes the appearance information of the people while preserving rich structure and motion information. The proposed approach provides a way to minimize the risk of exposing the identities of the protected people while maximizing the use of the captured data for activity/behavior analysis.
Robust and Blind 3D Mesh Watermarking in Spatial Domain Based on Faces Categorization and Sorting
NASA Astrophysics Data System (ADS)
Molaei, Amir Masoud; Ebrahimnezhad, Hossein; Sedaaghi, Mohammad Hossein
2016-06-01
In this paper, a 3D watermarking algorithm in spatial domain is presented with blind detection. In the proposed method, a negligible visual distortion is observed in host model. Initially, a preprocessing is applied on the 3D model to make it robust against geometric transformation attacks. Then, a number of triangle faces are determined as mark triangles using a novel systematic approach in which faces are categorized and sorted robustly. In order to enhance the capability of information retrieval by attacks, block watermarks are encoded using Reed-Solomon block error-correcting code before embedding into the mark triangles. Next, the encoded watermarks are embedded in spherical coordinates. The proposed method is robust against additive noise, mesh smoothing and quantization attacks. Also, it is stout next to geometric transformation, vertices and faces reordering attacks. Moreover, the proposed algorithm is designed so that it is robust against the cropping attack. Simulation results confirm that the watermarked models confront very low distortion if the control parameters are selected properly. Comparison with other methods demonstrates that the proposed method has good performance against the mesh smoothing attacks.
Human face detection using motion and color information
NASA Astrophysics Data System (ADS)
Kim, Yang-Gyun; Bang, Man-Won; Park, Soon-Young; Choi, Kyoung-Ho; Hwang, Jeong-Hyun
2008-02-01
In this paper, we present a hardware implementation of a face detector for surveillance applications. To come up with a computationally cheap and fast algorithm with minimal memory requirement, motion and skin color information are fused successfully. More specifically, a newly appeared object is extracted first by comparing average Hue and Saturation values of background image and a current image. Then, the result of skin color filtering of the current image is combined with the result of a newly appeared object. Finally, labeling is performed to locate a true face region. The proposed system is implemented on Altera Cyclone2 using Quartus II 6.1 and ModelSim 6.1. For hardware description language (HDL), Verilog-HDL is used.
On the performances of computer vision algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.
2012-01-01
Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.
Locality constrained joint dynamic sparse representation for local matching based face recognition.
Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun
2014-01-01
Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.
Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM
NASA Astrophysics Data System (ADS)
Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin
2013-07-01
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
Unconstrained face detection and recognition based on RGB-D camera for the visually impaired
NASA Astrophysics Data System (ADS)
Zhao, Xiangdong; Wang, Kaiwei; Yang, Kailun; Hu, Weijian
2017-02-01
It is highly important for visually impaired people (VIP) to be aware of human beings around themselves, so correctly recognizing people in VIP assisting apparatus provide great convenience. However, in classical face recognition technology, faces used in training and prediction procedures are usually frontal, and the procedures of acquiring face images require subjects to get close to the camera so that frontal face and illumination guaranteed. Meanwhile, labels of faces are defined manually rather than automatically. Most of the time, labels belonging to different classes need to be input one by one. It prevents assisting application for VIP with these constraints in practice. In this article, a face recognition system under unconstrained environment is proposed. Specifically, it doesn't require frontal pose or uniform illumination as required by previous algorithms. The attributes of this work lie in three aspects. First, a real time frontal-face synthesizing enhancement is implemented, and frontal faces help to increase recognition rate, which is proved with experiment results. Secondly, RGB-D camera plays a significant role in our system, from which both color and depth information are utilized to achieve real time face tracking which not only raises the detection rate but also gives an access to label faces automatically. Finally, we propose to use neural networks to train a face recognition system, and Principal Component Analysis (PCA) is applied to pre-refine the input data. This system is expected to provide convenient help for VIP to get familiar with others, and make an access for them to recognize people when the system is trained enough.
Tracking Algorithm of Multiple Pedestrians Based on Particle Filters in Video Sequences
Liu, Yun; Wang, Chuanxu; Zhang, Shujun; Cui, Xuehong
2016-01-01
Pedestrian tracking is a critical problem in the field of computer vision. Particle filters have been proven to be very useful in pedestrian tracking for nonlinear and non-Gaussian estimation problems. However, pedestrian tracking in complex environment is still facing many problems due to changes of pedestrian postures and scale, moving background, mutual occlusion, and presence of pedestrian. To surmount these difficulties, this paper presents tracking algorithm of multiple pedestrians based on particle filters in video sequences. The algorithm acquires confidence value of the object and the background through extracting a priori knowledge thus to achieve multipedestrian detection; it adopts color and texture features into particle filter to get better observation results and then automatically adjusts weight value of each feature according to current tracking environment. During the process of tracking, the algorithm processes severe occlusion condition to prevent drift and loss phenomena caused by object occlusion and associates detection results with particle state to propose discriminated method for object disappearance and emergence thus to achieve robust tracking of multiple pedestrians. Experimental verification and analysis in video sequences demonstrate that proposed algorithm improves the tracking performance and has better tracking results. PMID:27847514
Kernel-Based Sensor Fusion With Application to Audio-Visual Voice Activity Detection
NASA Astrophysics Data System (ADS)
Dov, David; Talmon, Ronen; Cohen, Israel
2016-12-01
In this paper, we address the problem of multiple view data fusion in the presence of noise and interferences. Recent studies have approached this problem using kernel methods, by relying particularly on a product of kernels constructed separately for each view. From a graph theory point of view, we analyze this fusion approach in a discrete setting. More specifically, based on a statistical model for the connectivity between data points, we propose an algorithm for the selection of the kernel bandwidth, a parameter, which, as we show, has important implications on the robustness of this fusion approach to interferences. Then, we consider the fusion of audio-visual speech signals measured by a single microphone and by a video camera pointed to the face of the speaker. Specifically, we address the task of voice activity detection, i.e., the detection of speech and non-speech segments, in the presence of structured interferences such as keyboard taps and office noise. We propose an algorithm for voice activity detection based on the audio-visual signal. Simulation results show that the proposed algorithm outperforms competing fusion and voice activity detection approaches. In addition, we demonstrate that a proper selection of the kernel bandwidth indeed leads to improved performance.
Face sketch recognition based on edge enhancement via deep learning
NASA Astrophysics Data System (ADS)
Xie, Zhenzhu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong
2017-11-01
In this paper,we address the face sketch recognition problem. Firstly, we utilize the eigenface algorithm to convert a sketch image into a synthesized sketch face image. Subsequently, considering the low-level vision problem in synthesized face sketch image .Super resolution reconstruction algorithm based on CNN(convolutional neural network) is employed to improve the visual effect. To be specific, we uses a lightweight super-resolution structure to learn a residual mapping instead of directly mapping the feature maps from the low-level space to high-level patch representations, which making the networks are easier to optimize and have lower computational complexity. Finally, we adopt LDA(Linear Discriminant Analysis) algorithm to realize face sketch recognition on synthesized face image before super resolution and after respectively. Extensive experiments on the face sketch database(CUFS) from CUHK demonstrate that the recognition rate of SVM(Support Vector Machine) algorithm improves from 65% to 69% and the recognition rate of LDA(Linear Discriminant Analysis) algorithm improves from 69% to 75%.What'more,the synthesized face image after super resolution can not only better describer image details such as hair ,nose and mouth etc, but also improve the recognition accuracy effectively.
Signal detection using support vector machines in the presence of ultrasonic speckle
NASA Astrophysics Data System (ADS)
Kotropoulos, Constantine L.; Pitas, Ioannis
2002-04-01
Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images and we assess thoroughly their lesion detection ability. We demonstrate that trained support vector machines with a Radial Basis Function kernel segment satisfactorily (unseen) ultrasound B-mode images as well as clinical ultrasonic images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paone, Jeffrey R; Bolme, David S; Ferrell, Regina Kay
Keeping a driver focused on the road is one of the most critical steps in insuring the safe operation of a vehicle. The Strategic Highway Research Program 2 (SHRP2) has over 3,100 recorded videos of volunteer drivers during a period of 2 years. This extensive naturalistic driving study (NDS) contains over one million hours of video and associated data that could aid safety researchers in understanding where the driver s attention is focused. Manual analysis of this data is infeasible, therefore efforts are underway to develop automated feature extraction algorithms to process and characterize the data. The real-world nature, volume,more » and acquisition conditions are unmatched in the transportation community, but there are also challenges because the data has relatively low resolution, high compression rates, and differing illumination conditions. A smaller dataset, the head pose validation study, is available which used the same recording equipment as SHRP2 but is more easily accessible with less privacy constraints. In this work we report initial head pose accuracy using commercial and open source face pose estimation algorithms on the head pose validation data set.« less
NASA Astrophysics Data System (ADS)
Kyrkou, Christos; Theocharides, Theocharis
2016-07-01
Object detection is a major step in several computer vision applications and a requirement for most smart camera systems. Recent advances in hardware acceleration for real-time object detection feature extensive use of reconfigurable hardware [field programmable gate arrays (FPGAs)], and relevant research has produced quite fascinating results, in both the accuracy of the detection algorithms as well as the performance in terms of frames per second (fps) for use in embedded smart camera systems. Detecting objects in images, however, is a daunting task and often involves hardware-inefficient steps, both in terms of the datapath design and in terms of input/output and memory access patterns. We present how a visual-feature-directed search cascade composed of motion detection, depth computation, and edge detection, can have a significant impact in reducing the data that needs to be examined by the classification engine for the presence of an object of interest. Experimental results on a Spartan 6 FPGA platform for face detection indicate data search reduction of up to 95%, which results in the system being able to process up to 50 1024×768 pixels images per second with a significantly reduced number of false positives.
Non-contact detection of cardiac rate based on visible light imaging device
NASA Astrophysics Data System (ADS)
Zhu, Huishi; Zhao, Yuejin; Dong, Liquan
2012-10-01
We have developed a non-contact method to detect human cardiac rate at a distance. This detection is based on the general lighting condition. Using the video signal of human face region captured by webcam, we acquire the cardiac rate based on the PhotoPlethysmoGraphy theory. In this paper, the cardiac rate detecting method is mainly in view of the blood's different absorptivities of the lights various wavelengths. Firstly, we discompose the video signal into RGB three color signal channels and choose the face region as region of interest to take average gray value. Then, we draw three gray-mean curves on each color channel with time as variable. When the imaging device has good fidelity of color, the green channel signal shows the PhotoPlethysmoGraphy information most clearly. But the red and blue channel signals can provide more other physiological information on the account of their light absorptive characteristics of blood. We divide red channel signal by green channel signal to acquire the pulse wave. With the passband from 0.67Hz to 3Hz as a filter of the pulse wave signal and the frequency spectrum superimposed algorithm, we design frequency extracted algorithm to achieve the cardiac rate. Finally, we experiment with 30 volunteers, containing different genders and different ages. The results of the experiments are all relatively agreeable. The difference is about 2bmp. Through the experiment, we deduce that the PhotoPlethysmoGraphy theory based on visible light can also be used to detect other physiological information.
Qualitative Event-Based Diagnosis: Case Study on the Second International Diagnostic Competition
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Roychoudhury, Indranil
2010-01-01
We describe a diagnosis algorithm entered into the Second International Diagnostic Competition. We focus on the first diagnostic problem of the industrial track of the competition in which a diagnosis algorithm must detect, isolate, and identify faults in an electrical power distribution testbed and provide corresponding recovery recommendations. The diagnosis algorithm embodies a model-based approach, centered around qualitative event-based fault isolation. Faults produce deviations in measured values from model-predicted values. The sequence of these deviations is matched to those predicted by the model in order to isolate faults. We augment this approach with model-based fault identification, which determines fault parameters and helps to further isolate faults. We describe the diagnosis approach, provide diagnosis results from running the algorithm on provided example scenarios, and discuss the issues faced, and lessons learned, from implementing the approach
A GPU-paralleled implementation of an enhanced face recognition algorithm
NASA Astrophysics Data System (ADS)
Chen, Hao; Liu, Xiyang; Shao, Shuai; Zan, Jiguo
2013-03-01
Face recognition algorithm based on compressed sensing and sparse representation is hotly argued in these years. The scheme of this algorithm increases recognition rate as well as anti-noise capability. However, the computational cost is expensive and has become a main restricting factor for real world applications. In this paper, we introduce a GPU-accelerated hybrid variant of face recognition algorithm named parallel face recognition algorithm (pFRA). We describe here how to carry out parallel optimization design to take full advantage of many-core structure of a GPU. The pFRA is tested and compared with several other implementations under different data sample size. Finally, Our pFRA, implemented with NVIDIA GPU and Computer Unified Device Architecture (CUDA) programming model, achieves a significant speedup over the traditional CPU implementations.
Technology survey on video face tracking
NASA Astrophysics Data System (ADS)
Zhang, Tong; Gomes, Herman Martins
2014-03-01
With the pervasiveness of monitoring cameras installed in public areas, schools, hospitals, work places and homes, video analytics technologies for interpreting these video contents are becoming increasingly relevant to people's lives. Among such technologies, human face detection and tracking (and face identification in many cases) are particularly useful in various application scenarios. While plenty of research has been conducted on face tracking and many promising approaches have been proposed, there are still significant challenges in recognizing and tracking people in videos with uncontrolled capturing conditions, largely due to pose and illumination variations, as well as occlusions and cluttered background. It is especially complex to track and identify multiple people simultaneously in real time due to the large amount of computation involved. In this paper, we present a survey on literature and software that are published or developed during recent years on the face tracking topic. The survey covers the following topics: 1) mainstream and state-of-the-art face tracking methods, including features used to model the targets and metrics used for tracking; 2) face identification and face clustering from face sequences; and 3) software packages or demonstrations that are available for algorithm development or trial. A number of publically available databases for face tracking are also introduced.
Motion correction for improved estimation of heart rate using a visual spectrum camera
NASA Astrophysics Data System (ADS)
Tarbox, Elizabeth A.; Rios, Christian; Kaur, Balvinder; Meyer, Shaun; Hirt, Lauren; Tran, Vy; Scott, Kaitlyn; Ikonomidou, Vasiliki
2017-05-01
Heart rate measurement using a visual spectrum recording of the face has drawn interest over the last few years as a technology that can have various health and security applications. In our previous work, we have shown that it is possible to estimate the heart beat timing accurately enough to perform heart rate variability analysis for contactless stress detection. However, a major confounding factor in this approach is the presence of movement, which can interfere with the measurements. To mitigate the effects of movement, in this work we propose the use of face detection and tracking based on the Karhunen-Loewe algorithm in order to counteract measurement errors introduced by normal subject motion, as expected during a common seated conversation setting. We analyze the requirements on image acquisition for the algorithm to work, and its performance under different ranges of motion, changes of distance to the camera, as well and the effect of illumination changes due to different positioning with respect to light sources on the acquired signal. Our results suggest that the effect of face tracking on visual-spectrum based cardiac signal estimation depends on the amplitude of the motion. While for larger-scale conversation-induced motion it can significantly improve estimation accuracy, with smaller-scale movements, such as the ones caused by breathing or talking without major movement errors in facial tracking may interfere with signal estimation. Overall, employing facial tracking is a crucial step in adapting this technology to real-life situations with satisfactory results.
Face recognition system for set-top box-based intelligent TV.
Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Park, Kang Ryoung
2014-11-18
Despite the prevalence of smart TVs, many consumers continue to use conventional TVs with supplementary set-top boxes (STBs) because of the high cost of smart TVs. However, because the processing power of a STB is quite low, the smart TV functionalities that can be implemented in a STB are very limited. Because of this, negligible research has been conducted regarding face recognition for conventional TVs with supplementary STBs, even though many such studies have been conducted with smart TVs. In terms of camera sensors, previous face recognition systems have used high-resolution cameras, cameras with high magnification zoom lenses, or camera systems with panning and tilting devices that can be used for face recognition from various positions. However, these cameras and devices cannot be used in intelligent TV environments because of limitations related to size and cost, and only small, low cost web-cameras can be used. The resulting face recognition performance is degraded because of the limited resolution and quality levels of the images. Therefore, we propose a new face recognition system for intelligent TVs in order to overcome the limitations associated with low resource set-top box and low cost web-cameras. We implement the face recognition system using a software algorithm that does not require special devices or cameras. Our research has the following four novelties: first, the candidate regions in a viewer's face are detected in an image captured by a camera connected to the STB via low processing background subtraction and face color filtering; second, the detected candidate regions of face are transmitted to a server that has high processing power in order to detect face regions accurately; third, in-plane rotations of the face regions are compensated based on similarities between the left and right half sub-regions of the face regions; fourth, various poses of the viewer's face region are identified using five templates obtained during the initial user registration stage and multi-level local binary pattern matching. Experimental results indicate that the recall; precision; and genuine acceptance rate were about 95.7%; 96.2%; and 90.2%, respectively.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kakinuma, Ryutaru; Moriyama, Noriyuki
2009-02-01
Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. To overcome these problems, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The functions to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and "Success in login" effective. As a result, patients' private information is protected. We can share the screen of Web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with workstation. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
The review and results of different methods for facial recognition
NASA Astrophysics Data System (ADS)
Le, Yifan
2017-09-01
In recent years, facial recognition draws much attention due to its wide potential applications. As a unique technology in Biometric Identification, facial recognition represents a significant improvement since it could be operated without cooperation of people under detection. Hence, facial recognition will be taken into defense system, medical detection, human behavior understanding, etc. Several theories and methods have been established to make progress in facial recognition: (1) A novel two-stage facial landmark localization method is proposed which has more accurate facial localization effect under specific database; (2) A statistical face frontalization method is proposed which outperforms state-of-the-art methods for face landmark localization; (3) It proposes a general facial landmark detection algorithm to handle images with severe occlusion and images with large head poses; (4) There are three methods proposed on Face Alignment including shape augmented regression method, pose-indexed based multi-view method and a learning based method via regressing local binary features. The aim of this paper is to analyze previous work of different aspects in facial recognition, focusing on concrete method and performance under various databases. In addition, some improvement measures and suggestions in potential applications will be put forward.
Finger tips detection for two handed gesture recognition
NASA Astrophysics Data System (ADS)
Bhuyan, M. K.; Kar, Mithun Kumar; Neog, Debanga Raj
2011-10-01
In this paper, a novel algorithm is proposed for fingertips detection in view of two-handed static hand pose recognition. In our method, finger tips of both hands are detected after detecting hand regions by skin color-based segmentation. At first, the face is removed in the image by using Haar classifier and subsequently, the regions corresponding to the gesturing hands are isolated by a region labeling technique. Next, the key geometric features characterizing gesturing hands are extracted for two hands. Finally, for all possible/allowable finger movements, a probabilistic model is developed for pose recognition. Proposed method can be employed in a variety of applications like sign language recognition and human-robot-interactions etc.
NASA Astrophysics Data System (ADS)
Ali, A.; Jakubowski, M.; Greuner, H.; Böswirth, B.; Moncada, V.; Sitjes, A. Puig; Neu, R.; Pedersen, T. S.; the W7-X Team
2017-12-01
One of the aims of stellarator Wendelstein 7-X (W7-X), is to investigate steady state operation, for which power exhaust is an important issue. The predominant fraction of the energy lost from the confined plasma region will be absorbed by an island divertors, which is designed for 10 {{MWm}}-2 steady state operation. In order to protect the divertor targets from overheating, 10 state-of-the-art infrared endoscopes will be installed at W7-X. In this work, we present the experimental results obtained at the high heat flux test facility GLADIS (Garching LArge DIvertor Sample test facility in IPP Garching) [1] during tests of a new plasma facing components (PFCs) protection algorithm designed for W7-X. The GLADIS device is equipped with two ion beams that can generate a heat load in the range from 3 MWm-2 to 55 MWm-2. The algorithms developed at W7-X to detect defects and hot spots are based on the analysis of surface temperature evolution and are adapted to work in near real-time. The aim of this work was to test the near real-time algorithms in conditions close to those expected in W7-X. The experiments were performed on W7-X pre-series tiles to detect CFC/Cu delaminations. For detection of surface layers, carbon fiber composite (CFC) blocks from the divertor of the Wendelstein 7-AS stellarator were used to observe temporal behavior of fully developed surface layers. These layers of re-deposited materials, like carbon, boron, oxygen and iron, were formed during the W7-AS operation. A detailed analysis of the composition and their thermal response to high heat fluxes (HHF) are described in [2]. The experiments indicate that the automatic detection of critical events works according to W7-X PFC protection requirements.
ERIC Educational Resources Information Center
Osler, James Edward
2016-01-01
This paper provides a novel instructional methodology that is a unique E-Learning engineered "4A Metric Algorithm" designed to conceptually address the four main challenges faced by 21st century students, who are tempted to cheat in a myriad of higher education settings (face to face, hybrid, and online). The algorithmic online…
Face recognition algorithm using extended vector quantization histogram features.
Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu
2018-01-01
In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.
NASA Astrophysics Data System (ADS)
Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas
2016-03-01
Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhleh, Luay
I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbialmore » genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.« less
Driver face tracking using semantics-based feature of eyes on single FPGA
NASA Astrophysics Data System (ADS)
Yu, Ying-Hao; Chen, Ji-An; Ting, Yi-Siang; Kwok, Ngaiming
2017-06-01
Tracking driver's face is one of the essentialities for driving safety control. This kind of system is usually designed with complicated algorithms to recognize driver's face by means of powerful computers. The design problem is not only about detecting rate but also from parts damages under rigorous environments by vibration, heat, and humidity. A feasible strategy to counteract these damages is to integrate entire system into a single chip in order to achieve minimum installation dimension, weight, power consumption, and exposure to air. Meanwhile, an extraordinary methodology is also indispensable to overcome the dilemma of low-computing capability and real-time performance on a low-end chip. In this paper, a novel driver face tracking system is proposed by employing semantics-based vague image representation (SVIR) for minimum hardware resource usages on a FPGA, and the real-time performance is also guaranteed at the same time. Our experimental results have indicated that the proposed face tracking system is viable and promising for the smart car design in the future.
MOD06 Optical and Microphysical Retrievals
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Arnold, G. T.; Dinsick, J.; Gatebe, C. K.; Gray, M. A.; Hubanks, P. A.; Moody, E. G.; Wind, B.; Wind, G.
2003-01-01
Major efforts over the past six months included: (1) submission of MOD06 Optical and Microphysical Retrieval recompetition proposal, (2) delivery of a MODIS Atmosphere Level-3 update, (3) delivery of the MODIS Atmosphere s new combined Level-2 product, (4) development of an above-cloud precipitable water research algorithm and a multi-layer cloud detection algorithm, (5) continued development of a Fortran 90 version of the retrieval code for use with MAS as well as operational MODIS processing, (6) preliminary analysis of CRYSTAL-FACE field experiment in July 2002, (7) continued analysis of data obtained during the SAFARI 2000 dry season campaign in southern Africa, and the Arctic FIRE-ACE experiment.
NASA Astrophysics Data System (ADS)
Yasuda, Muneki; Sakurai, Tetsuharu; Tanaka, Kazuyuki
Restricted Boltzmann machines (RBMs) are bipartite structured statistical neural networks and consist of two layers. One of them is a layer of visible units and the other one is a layer of hidden units. In each layer, any units do not connect to each other. RBMs have high flexibility and rich structure and have been expected to applied to various applications, for example, image and pattern recognitions, face detections and so on. However, most of computational models in RBMs are intractable and often belong to the class of NP-hard problem. In this paper, in order to construct a practical learning algorithm for them, we employ the Kullback-Leibler Importance Estimation Procedure (KLIEP) to RBMs, and give a new scheme of practical approximate learning algorithm for RBMs based on the KLIEP.
Software Piracy Detection Model Using Ant Colony Optimization Algorithm
NASA Astrophysics Data System (ADS)
Astiqah Omar, Nor; Zakuan, Zeti Zuryani Mohd; Saian, Rizauddin
2017-06-01
Internet enables information to be accessible anytime and anywhere. This scenario creates an environment whereby information can be easily copied. Easy access to the internet is one of the factors which contribute towards piracy in Malaysia as well as the rest of the world. According to a survey conducted by Compliance Gap BSA Global Software Survey in 2013 on software piracy, found out that 43 percent of the software installed on PCs around the world was not properly licensed, the commercial value of the unlicensed installations worldwide was reported to be 62.7 billion. Piracy can happen anywhere including universities. Malaysia as well as other countries in the world is faced with issues of piracy committed by the students in universities. Piracy in universities concern about acts of stealing intellectual property. It can be in the form of software piracy, music piracy, movies piracy and piracy of intellectual materials such as books, articles and journals. This scenario affected the owner of intellectual property as their property is in jeopardy. This study has developed a classification model for detecting software piracy. The model was developed using a swarm intelligence algorithm called the Ant Colony Optimization algorithm. The data for training was collected by a study conducted in Universiti Teknologi MARA (Perlis). Experimental results show that the model detection accuracy rate is better as compared to J48 algorithm.
Tracking and recognition face in videos with incremental local sparse representation model
NASA Astrophysics Data System (ADS)
Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang
2013-10-01
This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.
NASA Astrophysics Data System (ADS)
Lee, Feifei; Kotani, Koji; Chen, Qiu; Ohmi, Tadahiro
2010-02-01
In this paper, a fast search algorithm for MPEG-4 video clips from video database is proposed. An adjacent pixel intensity difference quantization (APIDQ) histogram is utilized as the feature vector of VOP (video object plane), which had been reliably applied to human face recognition previously. Instead of fully decompressed video sequence, partially decoded data, namely DC sequence of the video object are extracted from the video sequence. Combined with active search, a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by total 15 hours of video contained of TV programs such as drama, talk, news, etc. to search for given 200 MPEG-4 video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 2 % in drama and news categories are achieved, which are more accurately and robust than conventional fast video search algorithm.
Wong, Brian J F; Karimi, Koohyar; Devcic, Zlatko; McLaren, Christine E; Chen, Wen-Pin
2008-06-01
The objectives of this study were to: 1) determine if a genetic algorithm in combination with morphing software can be used to evolve more attractive faces; and 2) evaluate whether this approach can be used as a tool to define or identify the attributes of the ideal attractive face. Basic research study incorporating focus group evaluations. Digital images were acquired of 250 female volunteers (18-25 y). Randomly selected images were used to produce a parent generation (P) of 30 synthetic faces using morphing software. Then, a focus group of 17 trained volunteers (18-25 y) scored each face on an attractiveness scale ranging from 1 (unattractive) to 10 (attractive). A genetic algorithm was used to select 30 new pairs from the parent generation, and these were morphed using software to produce a new first generation (F1) of faces. The F1 faces were scored by the focus group, and the process was repeated for a total of four iterations of the algorithm. The algorithm mimics natural selection by using the attractiveness score as the selection pressure; the more attractive faces are more likely to morph. All five generations (P-F4) were then scored by three focus groups: a) surgeons (n = 12), b) cos-metology students (n = 44), and c) undergraduate students (n = 44). Morphometric measurements were made of 33 specific features on each of the 150 synthetic faces, and correlated with attractiveness scores using univariate and multivariate analysis. The average facial attractiveness scores increased with each generation and were 3.66 (+0.60), 4.59 (+/-0.73), 5.50 (+/-0.62), 6.23 (+/-0.31), and 6.39 (+/-0.24) for P and F1-F4 generations, respectively. Histograms of attractiveness score distributions show a significant shift in the skew of each curve toward more attractive faces with each generation. Univariate analysis identified nasal width, eyebrow arch height, and lip thickness as being significantly correlated with attractiveness scores. Multivariate analysis identified a similar collection of morphometric measures. No correlation with more commonly accepted measures such as the length facial thirds or fifths were identified. When images are examined as a montage (by generation), clear distinct trends are identified: oval shaped faces, distinct arched eyebrows, and full lips predominate. Faces evolve to approximate the guidelines suggested by classical canons. F3 and F4 generation faces look profoundly similar. The statistical and qualitative analysis indicates that the algorithm and methodology succeeds in generating successively more attractive faces. The use of genetic algorithms in combination with a morphing software and traditional focus-group derived attractiveness scores can be used to evolve attractive synthetic faces. We have demonstrated that the evolution of attractive faces can be mimicked in software. Genetic algorithms and morphing provide a robust alternative to traditional approaches rooted in comparing attractiveness scores with a series of morphometric measurements in human subjects.
Learning optimal embedded cascades.
Saberian, Mohammad Javad; Vasconcelos, Nuno
2012-10-01
The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Smartphones as image processing systems for prosthetic vision.
Zapf, Marc P; Matteucci, Paul B; Lovell, Nigel H; Suaning, Gregg J
2013-01-01
The feasibility of implants for prosthetic vision has been demonstrated by research and commercial organizations. In most devices, an essential forerunner to the internal stimulation circuit is an external electronics solution for capturing, processing and relaying image information as well as extracting useful features from the scene surrounding the patient. The capabilities and multitude of image processing algorithms that can be performed by the device in real-time plays a major part in the final quality of the prosthetic vision. It is therefore optimal to use powerful hardware yet to avoid bulky, straining solutions. Recent publications have reported of portable single-board computers fast enough for computationally intensive image processing. Following the rapid evolution of commercial, ultra-portable ARM (Advanced RISC machine) mobile devices, the authors investigated the feasibility of modern smartphones running complex face detection as external processing devices for vision implants. The role of dedicated graphics processors in speeding up computation was evaluated while performing a demanding noise reduction algorithm (image denoising). The time required for face detection was found to decrease by 95% from 2.5 year old to recent devices. In denoising, graphics acceleration played a major role, speeding up denoising by a factor of 18. These results demonstrate that the technology has matured sufficiently to be considered as a valid external electronics platform for visual prosthetic research.
Change detection of medical images using dictionary learning techniques and PCA
NASA Astrophysics Data System (ADS)
Nika, Varvara; Babyn, Paul; Zhu, Hongmei
2014-03-01
Automatic change detection methods for identifying the changes of serial MR images taken at different times are of great interest to radiologists. The majority of existing change detection methods in medical imaging, and those of brain images in particular, include many preprocessing steps and rely mostly on statistical analysis of MRI scans. Although most methods utilize registration software, tissue classification remains a difficult and overwhelming task. Recently, dictionary learning techniques are used in many areas of image processing, such as image surveillance, face recognition, remote sensing, and medical imaging. In this paper we present the Eigen-Block Change Detection algorithm (EigenBlockCD). It performs local registration and identifies the changes between consecutive MR images of the brain. Blocks of pixels from baseline scan are used to train local dictionaries that are then used to detect changes in the follow-up scan. We use PCA to reduce the dimensionality of the local dictionaries and the redundancy of data. Choosing the appropriate distance measure significantly affects the performance of our algorithm. We examine the differences between L1 and L2 norms as two possible similarity measures in the EigenBlockCD. We show the advantages of L2 norm over L1 norm theoretically and numerically. We also demonstrate the performance of the EigenBlockCD algorithm for detecting changes of MR images and compare our results with those provided in recent literature. Experimental results with both simulated and real MRI scans show that the EigenBlockCD outperforms the previous methods. It detects clinical changes while ignoring the changes due to patient's position and other acquisition artifacts.
NASA Astrophysics Data System (ADS)
Maas, Christian; Schmalzl, Jörg
2013-08-01
Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.
Detection of hypercholesterolemia using hyperspectral imaging of human skin
NASA Astrophysics Data System (ADS)
Milanic, Matija; Bjorgan, Asgeir; Larsson, Marcus; Strömberg, Tomas; Randeberg, Lise L.
2015-07-01
Hypercholesterolemia is characterized by high blood levels of cholesterol and is associated with increased risk of atherosclerosis and cardiovascular disease. Xanthelasma is a subcutaneous lesion appearing in the skin around the eyes. Xanthelasma is related to hypercholesterolemia. Identifying micro-xanthelasma can thereforeprovide a mean for early detection of hypercholesterolemia and prevent onset and progress of disease. The goal of this study was to investigate spectral and spatial characteristics of hypercholesterolemia in facial skin. Optical techniques like hyperspectral imaging (HSI) might be a suitable tool for such characterization as it simultaneously provides high resolution spatial and spectral information. In this study a 3D Monte Carlo model of lipid inclusions in human skin was developed to create hyperspectral images in the spectral range 400-1090 nm. Four lesions with diameters 0.12-1.0 mm were simulated for three different skin types. The simulations were analyzed using three algorithms: the Tissue Indices (TI), the two layer Diffusion Approximation (DA), and the Minimum Noise Fraction transform (MNF). The simulated lesions were detected by all methods, but the best performance was obtained by the MNF algorithm. The results were verified using data from 11 volunteers with known cholesterol levels. The face of the volunteers was imaged by a LCTF system (400- 720 nm), and the images were analyzed using the previously mentioned algorithms. The identified features were then compared to the known cholesterol levels of the subjects. Significant correlation was obtained for the MNF algorithm only. This study demonstrates that HSI can be a promising, rapid modality for detection of hypercholesterolemia.
Wong, Brian J. F.; Karmi, Koohyar; Devcic, Zlatko; McLaren, Christine E.; Chen, Wen-Pin
2013-01-01
Objectives The objectives of this study were to: 1) determine if a genetic algorithm in combination with morphing software can be used to evolve more attractive faces; and 2) evaluate whether this approach can be used as a tool to define or identify the attributes of the ideal attractive face. Study Design Basic research study incorporating focus group evaluations. Methods Digital images were acquired of 250 female volunteers (18–25 y). Randomly selected images were used to produce a parent generation (P) of 30 synthetic faces using morphing software. Then, a focus group of 17 trained volunteers (18–25 y) scored each face on an attractiveness scale ranging from 1 (unattractive) to 10 (attractive). A genetic algorithm was used to select 30 new pairs from the parent generation, and these were morphed using software to produce a new first generation (F1) of faces. The F1 faces were scored by the focus group, and the process was repeated for a total of four iterations of the algorithm. The algorithm mimics natural selection by using the attractiveness score as the selection pressure; the more attractive faces are more likely to morph. All five generations (P-F4) were then scored by three focus groups: a) surgeons (n = 12), b) cosmetology students (n = 44), and c) undergraduate students (n = 44). Morphometric measurements were made of 33 specific features on each of the 150 synthetic faces, and correlated with attractiveness scores using univariate and multivariate analysis. Results The average facial attractiveness scores increased with each generation and were 3.66 (+0.60), 4.59 (±0.73), 5.50 (±0.62), 6.23 (±0.31), and 6.39 (±0.24) for P and F1–F4 generations, respectively. Histograms of attractiveness score distributions show a significant shift in the skew of each curve toward more attractive faces with each generation. Univariate analysis identified nasal width, eyebrow arch height, and lip thickness as being significantly correlated with attractiveness scores. Multivariate analysis identified a similar collection of morphometric measures. No correlation with more commonly accepted measures such as the length facial thirds or fifths were identified. When images are examined as a montage (by generation), clear distinct trends are identified: oval shaped faces, distinct arched eyebrows, and full lips predominate. Faces evolve to approximate the guidelines suggested by classical canon. F3 and F4 generation faces look profoundly similar. The statistical and qualitative analysis indicates that the algorithm and methodology succeeds in generating successively more attractive faces. Conclusions The use of genetic algorithms in combination with a morphing software and traditional focus-group derived attractiveness scores can be used to evolve attractive synthetic faces. We have demonstrated that the evolution of attractive faces can be mimicked in software. Genetic algorithms and morphing provide a robust alternative to traditional approaches rooted in comparing attractiveness scores with a series of morphometric measurements in human subjects. PMID:18401273
Human emotion detector based on genetic algorithm using lip features
NASA Astrophysics Data System (ADS)
Brown, Terrence; Fetanat, Gholamreza; Homaifar, Abdollah; Tsou, Brian; Mendoza-Schrock, Olga
2010-04-01
We predicted human emotion using a Genetic Algorithm (GA) based lip feature extractor from facial images to classify all seven universal emotions of fear, happiness, dislike, surprise, anger, sadness and neutrality. First, we isolated the mouth from the input images using special methods, such as Region of Interest (ROI) acquisition, grayscaling, histogram equalization, filtering, and edge detection. Next, the GA determined the optimal or near optimal ellipse parameters that circumvent and separate the mouth into upper and lower lips. The two ellipses then went through fitness calculation and were followed by training using a database of Japanese women's faces expressing all seven emotions. Finally, our proposed algorithm was tested using a published database consisting of emotions from several persons. The final results were then presented in confusion matrices. Our results showed an accuracy that varies from 20% to 60% for each of the seven emotions. The errors were mainly due to inaccuracies in the classification, and also due to the different expressions in the given emotion database. Detailed analysis of these errors pointed to the limitation of detecting emotion based on the lip features alone. Similar work [1] has been done in the literature for emotion detection in only one person, we have successfully extended our GA based solution to include several subjects.
Automatic red eye correction and its quality metric
NASA Astrophysics Data System (ADS)
Safonov, Ilia V.; Rychagov, Michael N.; Kang, KiMin; Kim, Sang Ho
2008-01-01
The red eye artifacts are troublesome defect of amateur photos. Correction of red eyes during printing without user intervention and making photos more pleasant for an observer are important tasks. The novel efficient technique of automatic correction of red eyes aimed for photo printers is proposed. This algorithm is independent from face orientation and capable to detect paired red eyes as well as single red eyes. The approach is based on application of 3D tables with typicalness levels for red eyes and human skin tones and directional edge detection filters for processing of redness image. Machine learning is applied for feature selection. For classification of red eye regions a cascade of classifiers including Gentle AdaBoost committee from Classification and Regression Trees (CART) is applied. Retouching stage includes desaturation, darkening and blending with initial image. Several versions of approach implementation using trade-off between detection and correction quality, processing time, memory volume are possible. The numeric quality criterion of automatic red eye correction is proposed. This quality metric is constructed by applying Analytic Hierarchy Process (AHP) for consumer opinions about correction outcomes. Proposed numeric metric helped to choose algorithm parameters via optimization procedure. Experimental results demonstrate high accuracy and efficiency of the proposed algorithm in comparison with existing solutions.
Design of DroDeASys (Drowsy Detection and Alarming System)
NASA Astrophysics Data System (ADS)
Juvale, Hrishikesh B.; Mahajan, Anant S.; Bhagwat, Ashwin A.; Badiger, Vishal T.; Bhutkar, Ganesh D.; Dhabe, Priyadarshan S.; Dhore, Manikrao L.
The paper discusses the Drowsy Detection & Alarming System that has been developed, using a non-intrusive approach. The system is basically developed to detect drivers dozing at the wheel at night time driving. The system uses a small infra-red night vision camera that points directly towards the driver`s face and monitors the driver`s eyes in order to detect fatigue. In such a case when fatigue is detected, a warning signal is issued to alert the driver. This paper discusses the algorithms that have been used to detect drowsiness. The decision whether the driver is dozing or not is taken depending on whether the eyes are open for a specific number of frames. If the eyes are found to be closed for a certain number of consecutive frames then the driver is alerted with an alarm.
NASA Astrophysics Data System (ADS)
Huang, Jian; Yuen, Pong C.; Chen, Wen-Sheng; Lai, J. H.
2005-05-01
Many face recognition algorithms/systems have been developed in the last decade and excellent performances have also been reported when there is a sufficient number of representative training samples. In many real-life applications such as passport identification, only one well-controlled frontal sample image is available for training. Under this situation, the performance of existing algorithms will degrade dramatically or may not even be implemented. We propose a component-based linear discriminant analysis (LDA) method to solve the one training sample problem. The basic idea of the proposed method is to construct local facial feature component bunches by moving each local feature region in four directions. In this way, we not only generate more samples with lower dimension than the original image, but also consider the face detection localization error while training. After that, we propose a subspace LDA method, which is tailor-made for a small number of training samples, for the local feature projection to maximize the discrimination power. Theoretical analysis and experiment results show that our proposed subspace LDA is efficient and overcomes the limitations in existing LDA methods. Finally, we combine the contributions of each local component bunch with a weighted combination scheme to draw the recognition decision. A FERET database is used for evaluating the proposed method and results are encouraging.
Vision-based in-line fabric defect detection using yarn-specific shape features
NASA Astrophysics Data System (ADS)
Schneider, Dorian; Aach, Til
2012-01-01
We develop a methodology for automatic in-line flaw detection in industrial woven fabrics. Where state of the art detection algorithms apply texture analysis methods to operate on low-resolved ({200 ppi) image data, we describe here a process flow to segment single yarns in high-resolved ({1000 ppi) textile images. Four yarn shape features are extracted, allowing a precise detection and measurement of defects. The degree of precision reached allows a classification of detected defects according to their nature, providing an innovation in the field of automatic fabric flaw detection. The design has been carried out to meet real time requirements and face adverse conditions caused by loom vibrations and dirt. The entire process flow is discussed followed by an evaluation using a database with real-life industrial fabric images. This work pertains to the construction of an on-loom defect detection system to be used in manufacturing practice.
NASA Astrophysics Data System (ADS)
Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.
2014-06-01
The study in this paper belongs to a more general research of discovering facial sub-clusters in different ethnicity face databases. These new sub-clusters along with other metadata (such as race, sex, etc.) lead to a vector for each face in the database where each vector component represents the likelihood of participation of a given face to each cluster. This vector is then used as a feature vector in a human identification and tracking system based on face and other biometrics. The first stage in this system involves a clustering method which evaluates and compares the clustering results of five different clustering algorithms (average, complete, single hierarchical algorithm, k-means and DIGNET), and selects the best strategy for each data collection. In this paper we present the comparative performance of clustering results of DIGNET and four clustering algorithms (average, complete, single hierarchical and k-means) on fabricated 2D and 3D samples, and on actual face images from various databases, using four different standard metrics. These metrics are the silhouette figure, the mean silhouette coefficient, the Hubert test Γ coefficient, and the classification accuracy for each clustering result. The results showed that, in general, DIGNET gives more trustworthy results than the other algorithms when the metrics values are above a specific acceptance threshold. However when the evaluation results metrics have values lower than the acceptance threshold but not too low (too low corresponds to ambiguous results or false results), then it is necessary for the clustering results to be verified by the other algorithms.
Cross-modal face recognition using multi-matcher face scores
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2015-05-01
The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.
Hyperspectral face recognition with spatiospectral information fusion and PLS regression.
Uzair, Muhammad; Mahmood, Arif; Mian, Ajmal
2015-03-01
Hyperspectral imaging offers new opportunities for face recognition via improved discrimination along the spectral dimension. However, it poses new challenges, including low signal-to-noise ratio, interband misalignment, and high data dimensionality. Due to these challenges, the literature on hyperspectral face recognition is not only sparse but is limited to ad hoc dimensionality reduction techniques and lacks comprehensive evaluation. We propose a hyperspectral face recognition algorithm using a spatiospectral covariance for band fusion and partial least square regression for classification. Moreover, we extend 13 existing face recognition techniques, for the first time, to perform hyperspectral face recognition.We formulate hyperspectral face recognition as an image-set classification problem and evaluate the performance of seven state-of-the-art image-set classification techniques. We also test six state-of-the-art grayscale and RGB (color) face recognition algorithms after applying fusion techniques on hyperspectral images. Comparison with the 13 extended and five existing hyperspectral face recognition techniques on three standard data sets show that the proposed algorithm outperforms all by a significant margin. Finally, we perform band selection experiments to find the most discriminative bands in the visible and near infrared response spectrum.
Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S.; Wilson, David J.; Huang, David; Li, Dengwang; Jia, Yali
2017-01-01
Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution. PMID:29296475
Wang, Zhuo; Camino, Acner; Zhang, Miao; Wang, Jie; Hwang, Thomas S; Wilson, David J; Huang, David; Li, Dengwang; Jia, Yali
2017-12-01
Diabetic retinopathy is a pathology where microvascular circulation abnormalities ultimately result in photoreceptor disruption and, consequently, permanent loss of vision. Here, we developed a method that automatically detects photoreceptor disruption in mild diabetic retinopathy by mapping ellipsoid zone reflectance abnormalities from en face optical coherence tomography images. The algorithm uses a fuzzy c-means scheme with a redefined membership function to assign a defect severity level on each pixel and generate a probability map of defect category affiliation. A novel scheme of unsupervised clustering optimization allows accurate detection of the affected area. The achieved accuracy, sensitivity and specificity were about 90% on a population of thirteen diseased subjects. This method shows potential for accurate and fast detection of early biomarkers in diabetic retinopathy evolution.
Badal-Valero, Elena; Alvarez-Jareño, José A; Pavía, Jose M
2018-01-01
This paper is based on the analysis of the database of operations from a macro-case on money laundering orchestrated between a core company and a group of its suppliers, 26 of which had already been identified by the police as fraudulent companies. In the face of a well-founded suspicion that more companies have perpetrated criminal acts and in order to make better use of what are very limited police resources, we aim to construct a tool to detect money laundering criminals. We combine Benford's Law and machine learning algorithms (logistic regression, decision trees, neural networks, and random forests) to find patterns of money laundering criminals in the context of a real Spanish court case. After mapping each supplier's set of accounting data into a 21-dimensional space using Benford's Law and applying machine learning algorithms, additional companies that could merit further scrutiny are flagged up. A new tool to detect money laundering criminals is proposed in this paper. The tool is tested in the context of a real case. Copyright © 2017 Elsevier B.V. All rights reserved.
Alternative face models for 3D face registration
NASA Astrophysics Data System (ADS)
Salah, Albert Ali; Alyüz, Neşe; Akarun, Lale
2007-01-01
3D has become an important modality for face biometrics. The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a one-to-all registration approach, which means each new facial surface is registered to all faces in the gallery, at a great computational cost. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. Going one step further, we propose that using a couple of well-selected AFMs can trade-off computation time with accuracy. Drawing on cognitive justifications, we propose to employ category-specific alternative average face models for registration, which is shown to increase the accuracy of the subsequent recognition. We inspect thin-plate spline (TPS) and iterative closest point (ICP) based registration schemes under realistic assumptions on manual or automatic landmark detection prior to registration. We evaluate several approaches for the coarse initialization of ICP. We propose a new algorithm for constructing an AFM, and show that it works better than a recent approach. Finally, we perform simulations with multiple AFMs that correspond to different clusters in the face shape space and compare these with gender and morphology based groupings. We report our results on the FRGC 3D face database.
Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.
Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd
2016-05-01
Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rose, Jake; Martin, Michael; Bourlai, Thirimachos
2014-06-01
In law enforcement and security applications, the acquisition of face images is critical in producing key trace evidence for the successful identification of potential threats. The goal of the study is to demonstrate that steroid usage significantly affects human facial appearance and hence, the performance of commercial and academic face recognition (FR) algorithms. In this work, we evaluate the performance of state-of-the-art FR algorithms on two unique face image datasets of subjects before (gallery set) and after (probe set) steroid (or human growth hormone) usage. For the purpose of this study, datasets of 73 subjects were created from multiple sources found on the Internet, containing images of men and women before and after steroid usage. Next, we geometrically pre-processed all images of both face datasets. Then, we applied image restoration techniques on the same face datasets, and finally, we applied FR algorithms in order to match the pre-processed face images of our probe datasets against the face images of the gallery set. Experimental results demonstrate that only a specific set of FR algorithms obtain the most accurate results (in terms of the rank-1 identification rate). This is because there are several factors that influence the efficiency of face matchers including (i) the time lapse between the before and after image pre-processing and restoration face photos, (ii) the usage of different drugs (e.g. Dianabol, Winstrol, and Decabolan), (iii) the usage of different cameras to capture face images, and finally, (iv) the variability of standoff distance, illumination and other noise factors (e.g. motion noise). All of the previously mentioned complicated scenarios make clear that cross-scenario matching is a very challenging problem and, thus, further investigation is required.
Enhanced facial texture illumination normalization for face recognition.
Luo, Yong; Guan, Ye-Peng
2015-08-01
An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.
Anti Theft Mechanism Through Face recognition Using FPGA
NASA Astrophysics Data System (ADS)
Sundari, Y. B. T.; Laxminarayana, G.; Laxmi, G. Vijaya
2012-11-01
The use of vehicle is must for everyone. At the same time, protection from theft is also very important. Prevention of vehicle theft can be done remotely by an authorized person. The location of the car can be found by using GPS and GSM controlled by FPGA. In this paper, face recognition is used to identify the persons and comparison is done with the preloaded faces for authorization. The vehicle will start only when the authorized personís face is identified. In the event of theft attempt or unauthorized personís trial to drive the vehicle, an MMS/SMS will be sent to the owner along with the location. Then the authorized person can alert the security personnel for tracking and catching the vehicle. For face recognition, a Principal Component Analysis (PCA) algorithm is developed using MATLAB. The control technique for GPS and GSM is developed using VHDL over SPTRAN 3E FPGA. The MMS sending method is written in VB6.0. The proposed application can be implemented with some modifications in the systems wherever the face recognition or detection is needed like, airports, international borders, banking applications etc.
Unified framework for automated iris segmentation using distantly acquired face images.
Tan, Chun-Wei; Kumar, Ajay
2012-09-01
Remote human identification using iris biometrics has high civilian and surveillance applications and its success requires the development of robust segmentation algorithm to automatically extract the iris region. This paper presents a new iris segmentation framework which can robustly segment the iris images acquired using near infrared or visible illumination. The proposed approach exploits multiple higher order local pixel dependencies to robustly classify the eye region pixels into iris or noniris regions. Face and eye detection modules have been incorporated in the unified framework to automatically provide the localized eye region from facial image for iris segmentation. We develop robust postprocessing operations algorithm to effectively mitigate the noisy pixels caused by the misclassification. Experimental results presented in this paper suggest significant improvement in the average segmentation errors over the previously proposed approaches, i.e., 47.5%, 34.1%, and 32.6% on UBIRIS.v2, FRGC, and CASIA.v4 at-a-distance databases, respectively. The usefulness of the proposed approach is also ascertained from recognition experiments on three different publicly available databases.
Multirotor micro air vehicle autonomous landing system based on image markers recognition
NASA Astrophysics Data System (ADS)
Skoczylas, Marcin; Gadomer, Lukasz; Walendziuk, Wojciech
2017-08-01
In this paper the idea of an autonomic drone landing system which bases on different markers detection, is presented. The issue of safe autonomic drone landing is one of the major aspects connected with drone missions. The idea of the proposed system is to detect the landing place, marked with an image called marker, using one of the image recognition algorithms, and heading during the landing procedure to this place. Choosing the proper marker, which allows the greatest quality of the recognition system, is the main problem faced in this paper. Seven markers are tested and compared. The achieved results are described and discussed.
Recognizing Disguised Faces: Human and Machine Evaluation
Dhamecha, Tejas Indulal; Singh, Richa; Vatsa, Mayank; Kumar, Ajay
2014-01-01
Face verification, though an easy task for humans, is a long-standing open research area. This is largely due to the challenging covariates, such as disguise and aging, which make it very hard to accurately verify the identity of a person. This paper investigates human and machine performance for recognizing/verifying disguised faces. Performance is also evaluated under familiarity and match/mismatch with the ethnicity of observers. The findings of this study are used to develop an automated algorithm to verify the faces presented under disguise variations. We use automatically localized feature descriptors which can identify disguised face patches and account for this information to achieve improved matching accuracy. The performance of the proposed algorithm is evaluated on the IIIT-Delhi Disguise database that contains images pertaining to 75 subjects with different kinds of disguise variations. The experiments suggest that the proposed algorithm can outperform a popular commercial system and evaluates them against humans in matching disguised face images. PMID:25029188
De la Torre, Fernando; Chu, Wen-Sheng; Xiong, Xuehan; Vicente, Francisco; Ding, Xiaoyu; Cohn, Jeffrey
2016-01-01
Within the last 20 years, there has been an increasing interest in the computer vision community in automated facial image analysis algorithms. This has been driven by applications in animation, market research, autonomous-driving, surveillance, and facial editing among others. To date, there exist several commercial packages for specific facial image analysis tasks such as facial expression recognition, facial attribute analysis or face tracking. However, free and easy-to-use software that incorporates all these functionalities is unavailable. This paper presents IntraFace (IF), a publicly-available software package for automated facial feature tracking, head pose estimation, facial attribute recognition, and facial expression analysis from video. In addition, IFincludes a newly develop technique for unsupervised synchrony detection to discover correlated facial behavior between two or more persons, a relatively unexplored problem in facial image analysis. In tests, IF achieved state-of-the-art results for emotion expression and action unit detection in three databases, FERA, CK+ and RU-FACS; measured audience reaction to a talk given by one of the authors; and discovered synchrony for smiling in videos of parent-infant interaction. IF is free of charge for academic use at http://www.humansensing.cs.cmu.edu/intraface/. PMID:27346987
De la Torre, Fernando; Chu, Wen-Sheng; Xiong, Xuehan; Vicente, Francisco; Ding, Xiaoyu; Cohn, Jeffrey
2015-05-01
Within the last 20 years, there has been an increasing interest in the computer vision community in automated facial image analysis algorithms. This has been driven by applications in animation, market research, autonomous-driving, surveillance, and facial editing among others. To date, there exist several commercial packages for specific facial image analysis tasks such as facial expression recognition, facial attribute analysis or face tracking. However, free and easy-to-use software that incorporates all these functionalities is unavailable. This paper presents IntraFace (IF), a publicly-available software package for automated facial feature tracking, head pose estimation, facial attribute recognition, and facial expression analysis from video. In addition, IFincludes a newly develop technique for unsupervised synchrony detection to discover correlated facial behavior between two or more persons, a relatively unexplored problem in facial image analysis. In tests, IF achieved state-of-the-art results for emotion expression and action unit detection in three databases, FERA, CK+ and RU-FACS; measured audience reaction to a talk given by one of the authors; and discovered synchrony for smiling in videos of parent-infant interaction. IF is free of charge for academic use at http://www.humansensing.cs.cmu.edu/intraface/.
Efficient parallel implementation of active appearance model fitting algorithm on GPU.
Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou
2014-01-01
The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures.
Efficient Parallel Implementation of Active Appearance Model Fitting Algorithm on GPU
Wang, Jinwei; Ma, Xirong; Zhu, Yuanping; Sun, Jizhou
2014-01-01
The active appearance model (AAM) is one of the most powerful model-based object detecting and tracking methods which has been widely used in various situations. However, the high-dimensional texture representation causes very time-consuming computations, which makes the AAM difficult to apply to real-time systems. The emergence of modern graphics processing units (GPUs) that feature a many-core, fine-grained parallel architecture provides new and promising solutions to overcome the computational challenge. In this paper, we propose an efficient parallel implementation of the AAM fitting algorithm on GPUs. Our design idea is fine grain parallelism in which we distribute the texture data of the AAM, in pixels, to thousands of parallel GPU threads for processing, which makes the algorithm fit better into the GPU architecture. We implement our algorithm using the compute unified device architecture (CUDA) on the Nvidia's GTX 650 GPU, which has the latest Kepler architecture. To compare the performance of our algorithm with different data sizes, we built sixteen face AAM models of different dimensional textures. The experiment results show that our parallel AAM fitting algorithm can achieve real-time performance for videos even on very high-dimensional textures. PMID:24723812
Face verification with balanced thresholds.
Yan, Shuicheng; Xu, Dong; Tang, Xiaoou
2007-01-01
The process of face verification is guided by a pre-learned global threshold, which, however, is often inconsistent with class-specific optimal thresholds. It is, hence, beneficial to pursue a balance of the class-specific thresholds in the model-learning stage. In this paper, we present a new dimensionality reduction algorithm tailored to the verification task that ensures threshold balance. This is achieved by the following aspects. First, feasibility is guaranteed by employing an affine transformation matrix, instead of the conventional projection matrix, for dimensionality reduction, and, hence, we call the proposed algorithm threshold balanced transformation (TBT). Then, the affine transformation matrix, constrained as the product of an orthogonal matrix and a diagonal matrix, is optimized to improve the threshold balance and classification capability in an iterative manner. Unlike most algorithms for face verification which are directly transplanted from face identification literature, TBT is specifically designed for face verification and clarifies the intrinsic distinction between these two tasks. Experiments on three benchmark face databases demonstrate that TBT significantly outperforms the state-of-the-art subspace techniques for face verification.
Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera
Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.
2008-01-01
A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt’s macular dystrophy and retinitis pigmentosa. PMID:17429482
Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera
NASA Astrophysics Data System (ADS)
Xue, Bai; Choi, Stacey S.; Doble, Nathan; Werner, John S.
2007-05-01
A fast and efficient method for quantifying photoreceptor density in images obtained with an en-face flood-illuminated adaptive optics (AO) imaging system is described. To improve accuracy of cone counting, en-face images are analyzed over extended areas. This is achieved with two separate semiautomated algorithms: (1) a montaging algorithm that joins retinal images with overlapping common features without edge effects and (2) a cone density measurement algorithm that counts the individual cones in the montaged image. The accuracy of the cone density measurement algorithm is high, with >97% agreement for a simulated retinal image (of known density, with low contrast) and for AO images from normal eyes when compared with previously reported histological data. Our algorithms do not require spatial regularity in cone packing and are, therefore, useful for counting cones in diseased retinas, as demonstrated for eyes with Stargardt's macular dystrophy and retinitis pigmentosa.
VidCat: an image and video analysis service for personal media management
NASA Astrophysics Data System (ADS)
Begeja, Lee; Zavesky, Eric; Liu, Zhu; Gibbon, David; Gopalan, Raghuraman; Shahraray, Behzad
2013-03-01
Cloud-based storage and consumption of personal photos and videos provides increased accessibility, functionality, and satisfaction for mobile users. One cloud service frontier that is recently growing is that of personal media management. This work presents a system called VidCat that assists users in the tagging, organization, and retrieval of their personal media by faces and visual content similarity, time, and date information. Evaluations for the effectiveness of the copy detection and face recognition algorithms on standard datasets are also discussed. Finally, the system includes a set of application programming interfaces (API's) allowing content to be uploaded, analyzed, and retrieved on any client with simple HTTP-based methods as demonstrated with a prototype developed on the iOS and Android mobile platforms.
Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine
NASA Astrophysics Data System (ADS)
Lawi, Armin; Sya'Rani Machrizzandi, M.
2018-03-01
Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.
NASA Astrophysics Data System (ADS)
Hongbei, WANG; Xiaoqian, CUI; Yuanbo, LI; Mengge, ZHAO; Shuhua, LI; Guangnan, LUO; Hongbin, DING
2018-03-01
The laser speckle interferometry approach provides the possibility of an in situ optical non-contacted measurement for the surface morphology of plasma facing components (PFCs), and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm. A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST. The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image. The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.
Parallel processing considerations for image recognition tasks
NASA Astrophysics Data System (ADS)
Simske, Steven J.
2011-01-01
Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.
DeitY-TU face database: its design, multiple camera capturing, characteristics, and evaluation
NASA Astrophysics Data System (ADS)
Bhowmik, Mrinal Kanti; Saha, Kankan; Saha, Priya; Bhattacharjee, Debotosh
2014-10-01
The development of the latest face databases is providing researchers different and realistic problems that play an important role in the development of efficient algorithms for solving the difficulties during automatic recognition of human faces. This paper presents the creation of a new visual face database, named the Department of Electronics and Information Technology-Tripura University (DeitY-TU) face database. It contains face images of 524 persons belonging to different nontribes and Mongolian tribes of north-east India, with their anthropometric measurements for identification. Database images are captured within a room with controlled variations in illumination, expression, and pose along with variability in age, gender, accessories, make-up, and partial occlusion. Each image contains the combined primary challenges of face recognition, i.e., illumination, expression, and pose. This database also represents some new features: soft biometric traits such as mole, freckle, scar, etc., and facial anthropometric variations that may be helpful for researchers for biometric recognition. It also gives an equivalent study of the existing two-dimensional face image databases. The database has been tested using two baseline algorithms: linear discriminant analysis and principal component analysis, which may be used by other researchers as the control algorithm performance score.
Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis
Fang, Shiaofen; McLaughlin, Jason; Fang, Jiandong; Huang, Jeffrey; Autti-Rämö, Ilona; Fagerlund, Åse; Jacobson, Sandra W.; Robinson, Luther K.; Hoyme, H. Eugene; Mattson, Sarah N.; Riley, Edward; Zhou, Feng; Ward, Richard; Moore, Elizabeth S.; Foroud, Tatiana
2012-01-01
Objectives Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. Methods A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. Results An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Conclusion Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces. PMID:18713153
Face recognition using tridiagonal matrix enhanced multivariance products representation
NASA Astrophysics Data System (ADS)
Ã-zay, Evrim Korkmaz
2017-01-01
This study aims to retrieve face images from a database according to a target face image. For this purpose, Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) is taken into consideration. TMEMPR is a recursive algorithm based on Enhanced Multivariance Products Representation (EMPR). TMEMPR decomposes a matrix into three components which are a matrix of left support terms, a tridiagonal matrix of weight parameters for each recursion, and a matrix of right support terms, respectively. In this sense, there is an analogy between Singular Value Decomposition (SVD) and TMEMPR. However TMEMPR is a more flexible algorithm since its initial support terms (or vectors) can be chosen as desired. Low computational complexity is another advantage of TMEMPR because the algorithm has been constructed with recursions of certain arithmetic operations without requiring any iteration. The algorithm has been trained and tested with ORL face image database with 400 different grayscale images of 40 different people. TMEMPR's performance has been compared with SVD's performance as a result.
Driver Distraction Using Visual-Based Sensors and Algorithms.
Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén
2016-10-28
Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed.
Driver Distraction Using Visual-Based Sensors and Algorithms
Fernández, Alberto; Usamentiaga, Rubén; Carús, Juan Luis; Casado, Rubén
2016-01-01
Driver distraction, defined as the diversion of attention away from activities critical for safe driving toward a competing activity, is increasingly recognized as a significant source of injuries and fatalities on the roadway. Additionally, the trend towards increasing the use of in-vehicle information systems is critical because they induce visual, biomechanical and cognitive distraction and may affect driving performance in qualitatively different ways. Non-intrusive methods are strongly preferred for monitoring distraction, and vision-based systems have appeared to be attractive for both drivers and researchers. Biomechanical, visual and cognitive distractions are the most commonly detected types in video-based algorithms. Many distraction detection systems only use a single visual cue and therefore, they may be easily disturbed when occlusion or illumination changes appear. Moreover, the combination of these visual cues is a key and challenging aspect in the development of robust distraction detection systems. These visual cues can be extracted mainly by using face monitoring systems but they should be completed with more visual cues (e.g., hands or body information) or even, distraction detection from specific actions (e.g., phone usage). Additionally, these algorithms should be included in an embedded device or system inside a car. This is not a trivial task and several requirements must be taken into account: reliability, real-time performance, low cost, small size, low power consumption, flexibility and short time-to-market. The key points for the development and implementation of sensors to carry out the detection of distraction will also be reviewed. This paper shows a review of the role of computer vision technology applied to the development of monitoring systems to detect distraction. Some key points considered as both future work and challenges ahead yet to be solved will also be addressed. PMID:27801822
Artificial Intelligence in Medical Practice: The Question to the Answer?
Miller, D Douglas; Brown, Eric W
2018-02-01
Computer science advances and ultra-fast computing speeds find artificial intelligence (AI) broadly benefitting modern society-forecasting weather, recognizing faces, detecting fraud, and deciphering genomics. AI's future role in medical practice remains an unanswered question. Machines (computers) learn to detect patterns not decipherable using biostatistics by processing massive datasets (big data) through layered mathematical models (algorithms). Correcting algorithm mistakes (training) adds to AI predictive model confidence. AI is being successfully applied for image analysis in radiology, pathology, and dermatology, with diagnostic speed exceeding, and accuracy paralleling, medical experts. While diagnostic confidence never reaches 100%, combining machines plus physicians reliably enhances system performance. Cognitive programs are impacting medical practice by applying natural language processing to read the rapidly expanding scientific literature and collate years of diverse electronic medical records. In this and other ways, AI may optimize the care trajectory of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical errors, and improve subject enrollment into clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.
Clustering Millions of Faces by Identity.
Otto, Charles; Wang, Dayong; Jain, Anil K
2018-02-01
Given a large collection of unlabeled face images, we address the problem of clustering faces into an unknown number of identities. This problem is of interest in social media, law enforcement, and other applications, where the number of faces can be of the order of hundreds of million, while the number of identities (clusters) can range from a few thousand to millions. To address the challenges of run-time complexity and cluster quality, we present an approximate Rank-Order clustering algorithm that performs better than popular clustering algorithms (k-Means and Spectral). Our experiments include clustering up to 123 million face images into over 10 million clusters. Clustering results are analyzed in terms of external (known face labels) and internal (unknown face labels) quality measures, and run-time. Our algorithm achieves an F-measure of 0.87 on the LFW benchmark (13 K faces of 5,749 individuals), which drops to 0.27 on the largest dataset considered (13 K faces in LFW + 123M distractor images). Additionally, we show that frames in the YouTube benchmark can be clustered with an F-measure of 0.71. An internal per-cluster quality measure is developed to rank individual clusters for manual exploration of high quality clusters that are compact and isolated.
A causal relationship between face-patch activity and face-detection behavior.
Sadagopan, Srivatsun; Zarco, Wilbert; Freiwald, Winrich A
2017-04-04
The primate brain contains distinct areas densely populated by face-selective neurons. One of these, face-patch ML, contains neurons selective for contrast relationships between face parts. Such contrast-relationships can serve as powerful heuristics for face detection. However, it is unknown whether neurons with such selectivity actually support face-detection behavior. Here, we devised a naturalistic face-detection task and combined it with fMRI-guided pharmacological inactivation of ML to test whether ML is of critical importance for real-world face detection. We found that inactivation of ML impairs face detection. The effect was anatomically specific, as inactivation of areas outside ML did not affect face detection, and it was categorically specific, as inactivation of ML impaired face detection while sparing body and object detection. These results establish that ML function is crucial for detection of faces in natural scenes, performing a critical first step on which other face processing operations can build.
Membership-degree preserving discriminant analysis with applications to face recognition.
Yang, Zhangjing; Liu, Chuancai; Huang, Pu; Qian, Jianjun
2013-01-01
In pattern recognition, feature extraction techniques have been widely employed to reduce the dimensionality of high-dimensional data. In this paper, we propose a novel feature extraction algorithm called membership-degree preserving discriminant analysis (MPDA) based on the fisher criterion and fuzzy set theory for face recognition. In the proposed algorithm, the membership degree of each sample to particular classes is firstly calculated by the fuzzy k-nearest neighbor (FKNN) algorithm to characterize the similarity between each sample and class centers, and then the membership degree is incorporated into the definition of the between-class scatter and the within-class scatter. The feature extraction criterion via maximizing the ratio of the between-class scatter to the within-class scatter is applied. Experimental results on the ORL, Yale, and FERET face databases demonstrate the effectiveness of the proposed algorithm.
Webcam mouse using face and eye tracking in various illumination environments.
Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng
2005-01-01
Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.
Wang, Zhuo; Camino, Acner; Hagag, Ahmed M; Wang, Jie; Weleber, Richard G; Yang, Paul; Pennesi, Mark E; Huang, David; Li, Dengwang; Jia, Yali
2018-05-01
Optical coherence tomography (OCT) can demonstrate early deterioration of the photoreceptor integrity caused by inherited retinal degeneration diseases (IRDs). A machine learning method based on random forests was developed to automatically detect continuous areas of preserved ellipsoid zone structure (an easily recognizable part of the photoreceptors on OCT) in 16 eyes of patients with choroideremia (a type of IRD). Pseudopodial extensions protruding from the preserved ellipsoid zone areas are detected separately by a local active contour routine. The algorithm is implemented on en face images with minimum segmentation requirements, only needing delineation of the Bruch's membrane, thus evading the inaccuracies and technical challenges associated with automatic segmentation of the ellipsoid zone in eyes with severe retinal degeneration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yoo, Sung-Hoon; Oh, Sung-Kwun; Pedrycz, Witold
2015-09-01
In this study, we propose a hybrid method of face recognition by using face region information extracted from the detected face region. In the preprocessing part, we develop a hybrid approach based on the Active Shape Model (ASM) and the Principal Component Analysis (PCA) algorithm. At this step, we use a CCD (Charge Coupled Device) camera to acquire a facial image by using AdaBoost and then Histogram Equalization (HE) is employed to improve the quality of the image. ASM extracts the face contour and image shape to produce a personal profile. Then we use a PCA method to reduce dimensionality of face images. In the recognition part, we consider the improved Radial Basis Function Neural Networks (RBF NNs) to identify a unique pattern associated with each person. The proposed RBF NN architecture consists of three functional modules realizing the condition phase, the conclusion phase, and the inference phase completed with the help of fuzzy rules coming in the standard 'if-then' format. In the formation of the condition part of the fuzzy rules, the input space is partitioned with the use of Fuzzy C-Means (FCM) clustering. In the conclusion part of the fuzzy rules, the connections (weights) of the RBF NNs are represented by four kinds of polynomials such as constant, linear, quadratic, and reduced quadratic. The values of the coefficients are determined by running a gradient descent method. The output of the RBF NNs model is obtained by running a fuzzy inference method. The essential design parameters of the network (including learning rate, momentum coefficient and fuzzification coefficient used by the FCM) are optimized by means of Differential Evolution (DE). The proposed P-RBF NNs (Polynomial based RBF NNs) are applied to facial recognition and its performance is quantified from the viewpoint of the output performance and recognition rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Elbouz, Marwa; Alfalou, Ayman; Brosseau, Christian
2011-06-01
Home automation is being implemented into more and more domiciles of the elderly and disabled in order to maintain their independence and safety. For that purpose, we propose and validate a surveillance video system, which detects various posture-based events. One of the novel points of this system is to use adapted Vander-Lugt correlator (VLC) and joint-transfer correlator (JTC) techniques to make decisions on the identity of a patient and his three-dimensional (3-D) positions in order to overcome the problem of crowd environment. We propose a fuzzy logic technique to get decisions on the subject's behavior. Our system is focused on the goals of accuracy, convenience, and cost, which in addition does not require any devices attached to the subject. The system permits one to study and model subject responses to behavioral change intervention because several levels of alarm can be incorporated according different situations considered. Our algorithm performs a fast 3-D recovery of the subject's head position by locating eyes within the face image and involves a model-based prediction and optical correlation techniques to guide the tracking procedure. The object detection is based on (hue, saturation, value) color space. The system also involves an adapted fuzzy logic control algorithm to make a decision based on information given to the system. Furthermore, the principles described here are applicable to a very wide range of situations and robust enough to be implementable in ongoing experiments.
Zulkifley, Mohd Asyraf; Moran, Bill; Rawlinson, David
2012-01-01
Foreground detection has been used extensively in many applications such as people counting, traffic monitoring and face recognition. However, most of the existing detectors can only work under limited conditions. This happens because of the inability of the detector to distinguish foreground and background pixels, especially in complex situations. Our aim is to improve the robustness of foreground detection under sudden and gradual illumination change, colour similarity issue, moving background and shadow noise. Since it is hard to achieve robustness using a single model, we have combined several methods into an integrated system. The masked grey world algorithm is introduced to handle sudden illumination change. Colour co-occurrence modelling is then fused with the probabilistic edge-based background modelling. Colour co-occurrence modelling is good in filtering moving background and robust to gradual illumination change, while an edge-based modelling is used for solving a colour similarity problem. Finally, an extended conditional random field approach is used to filter out shadow and afterimage noise. Simulation results show that our algorithm performs better compared to the existing methods, which makes it suitable for higher-level applications.
24/7 security system: 60-FPS color EMCCD camera with integral human recognition
NASA Astrophysics Data System (ADS)
Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.
2007-04-01
An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.
Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms.
Phillips, P Jonathon; Yates, Amy N; Hu, Ying; Hahn, Carina A; Noyes, Eilidh; Jackson, Kelsey; Cavazos, Jacqueline G; Jeckeln, Géraldine; Ranjan, Rajeev; Sankaranarayanan, Swami; Chen, Jun-Cheng; Castillo, Carlos D; Chellappa, Rama; White, David; O'Toole, Alice J
2018-06-12
Achieving the upper limits of face identification accuracy in forensic applications can minimize errors that have profound social and personal consequences. Although forensic examiners identify faces in these applications, systematic tests of their accuracy are rare. How can we achieve the most accurate face identification: using people and/or machines working alone or in collaboration? In a comprehensive comparison of face identification by humans and computers, we found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test. Individual performance on the test varied widely. On the same test, four deep convolutional neural networks (DCNNs), developed between 2015 and 2017, identified faces within the range of human accuracy. Accuracy of the algorithms increased steadily over time, with the most recent DCNN scoring above the median of the forensic facial examiners. Using crowd-sourcing methods, we fused the judgments of multiple forensic facial examiners by averaging their rating-based identity judgments. Accuracy was substantially better for fused judgments than for individuals working alone. Fusion also served to stabilize performance, boosting the scores of lower-performing individuals and decreasing variability. Single forensic facial examiners fused with the best algorithm were more accurate than the combination of two examiners. Therefore, collaboration among humans and between humans and machines offers tangible benefits to face identification accuracy in important applications. These results offer an evidence-based roadmap for achieving the most accurate face identification possible. Copyright © 2018 the Author(s). Published by PNAS.
Face recognition algorithm based on Gabor wavelet and locality preserving projections
NASA Astrophysics Data System (ADS)
Liu, Xiaojie; Shen, Lin; Fan, Honghui
2017-07-01
In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.
A 2D range Hausdorff approach to 3D facial recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Mark William; Russ, Trina Denise; Little, Charles Quentin
2004-11-01
This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and templatemore » datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.« less
Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Daniel; Hansen, Clifford W.
Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less
Face recognition using total margin-based adaptive fuzzy support vector machines.
Liu, Yi-Hung; Chen, Yen-Ting
2007-01-01
This paper presents a new classifier called total margin-based adaptive fuzzy support vector machines (TAF-SVM) that deals with several problems that may occur in support vector machines (SVMs) when applied to the face recognition. The proposed TAF-SVM not only solves the overfitting problem resulted from the outlier with the approach of fuzzification of the penalty, but also corrects the skew of the optimal separating hyperplane due to the very imbalanced data sets by using different cost algorithm. In addition, by introducing the total margin algorithm to replace the conventional soft margin algorithm, a lower generalization error bound can be obtained. Those three functions are embodied into the traditional SVM so that the TAF-SVM is proposed and reformulated in both linear and nonlinear cases. By using two databases, the Chung Yuan Christian University (CYCU) multiview and the facial recognition technology (FERET) face databases, and using the kernel Fisher's discriminant analysis (KFDA) algorithm to extract discriminating face features, experimental results show that the proposed TAF-SVM is superior to SVM in terms of the face-recognition accuracy. The results also indicate that the proposed TAF-SVM can achieve smaller error variances than SVM over a number of tests such that better recognition stability can be obtained.
A simplified Suomi NPP VIIRS dust detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan
2017-11-01
Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.
Data Products From Particle Detectors On-Board NOAA's Newest Space Weather Monitor
NASA Astrophysics Data System (ADS)
Kress, B. T.; Rodriguez, J. V.; Onsager, T. G.
2017-12-01
NOAA's newest Geostationary Operational Environmental Satellite, GOES-16, was launched on 19 November 2016. Instrumentation on-board GOES-16 includes the new Space Environment In-Situ Suite (SEISS), which has been collecting data since 8 January 2017. SEISS is composed of five magnetospheric particle sensor units: an electrostatic analyzer for measuring 30 eV - 30 keV ions and electrons (MPS-LO), a high energy particle sensor (MPS-HI) that measures keV to MeV electrons and protons, east and west facing Solar and Galactic Proton Sensor (SGPS) units with 13 differential channels between 1-500 MeV, and an Energetic Heavy Ion Sensor (EHIS) that measures 30 species of heavy ions (He-Ni) in five energy bands in the 10-200 MeV/nuc range. Measurement of low energy magnetospheric particles by MPS-LO and heavy ions by EHIS are new capabilities not previously flown on the GOES system. Real-time data from GOES-16 will support space weather monitoring and first-principles space weather modeling by NOAA's Space Weather Prediction Center (SWPC). Space weather level 2+ data products under development at NOAA's National Centers for Environmental Information (NCEI) include the Solar Energetic Particle (SEP) Event Detection algorithm. Legacy components of the SEP event detection algorithm (currently produced by SWPC) include the Solar Radiation Storm Scales. New components will include, e.g., event fluences. New level 2+ data products also include the SEP event Linear Energy Transfer (LET) Algorithm, for transforming energy spectra from EHIS into LET spectra, and the Density and Temperature Moments and Spacecraft Charging algorithm. The moments and charging algorithm identifies electron and ion signatures of spacecraft surface (frame) charging in the MPS-LO fluxes. Densities and temperatures from MPS-LO will also be used to support a magnetopause crossing detection algorithm. The new data products will provide real-time indicators of potential radiation hazards for the satellite community and data for future studies of space weather effects. This presentation will include an overview of these algorithms and examples of their performance during recent co-rotation interaction region (CIR) associated radiation belt enhancements and a solar particle event on 14-15 July 2017.
Multi-texture local ternary pattern for face recognition
NASA Astrophysics Data System (ADS)
Essa, Almabrok; Asari, Vijayan
2017-05-01
In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.
Wang, Shu-Fan; Lai, Shang-Hong
2011-10-01
Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.
Impaired face detection may explain some but not all cases of developmental prosopagnosia.
Dalrymple, Kirsten A; Duchaine, Brad
2016-05-01
Developmental prosopagnosia (DP) is defined by severe face recognition difficulties due to the failure to develop the visual mechanisms for processing faces. The two-process theory of face recognition (Morton & Johnson, 1991) implies that DP could result from a failure of an innate face detection system; this failure could prevent an individual from then tuning higher-level processes for face recognition (Johnson, 2005). Work with adults indicates that some individuals with DP have normal face detection whereas others are impaired. However, face detection has not been addressed in children with DP, even though their results may be especially informative because they have had less opportunity to develop strategies that could mask detection deficits. We tested the face detection abilities of seven children with DP. Four were impaired at face detection to some degree (i.e. abnormally slow, or failed to find faces) while the remaining three children had normal face detection. Hence, the cases with impaired detection are consistent with the two-process account suggesting that DP could result from a failure of face detection. However, the cases with normal detection implicate a higher-level origin. The dissociation between normal face detection and impaired identity perception also indicates that these abilities depend on different neurocognitive processes. © 2015 John Wiley & Sons Ltd.
Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S
2003-01-01
In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).
Chaotic Image Encryption of Regions of Interest
NASA Astrophysics Data System (ADS)
Xiao, Di; Fu, Qingqing; Xiang, Tao; Zhang, Yushu
Since different regions of an image have different importance, therefore only the important information of the image regions, which the users are really interested in, needs to be encrypted and protected emphatically in some special multimedia applications. However, the regions of interest (ROI) are always some irregular parts, such as the face and the eyes. Assuming the bulk data in transmission without being damaged, we propose a chaotic image encryption algorithm for ROI. ROI with irregular shapes are chosen and detected arbitrarily. Then the chaos-based image encryption algorithm with scrambling, S-box and diffusion parts is used to encrypt the ROI. Further, the whole image is compressed with Huffman coding. At last, a message authentication code (MAC) of the compressed image is generated based on chaotic maps. The simulation results show that the encryption algorithm has a good security level and can resist various attacks. Moreover, the compression method improves the storage and transmission efficiency to some extent, and the MAC ensures the integrity of the transmission data.
Greater sensitivity of the cortical face processing system to perceptually-equated face detection
Maher, S.; Ekstrom, T.; Tong, Y.; Nickerson, L.D.; Frederick, B.; Chen, Y.
2015-01-01
Face detection, the perceptual capacity to identify a visual stimulus as a face before probing deeper into specific attributes (such as its identity or emotion), is essential for social functioning. Despite the importance of this functional capacity, face detection and its underlying brain mechanisms are not well understood. This study evaluated the roles that the cortical face processing system, which is identified largely through studying other aspects of face perception, play in face detection. Specifically, we used functional magnetic resonance imaging (fMRI) to examine the activations of the fusifom face area (FFA), occipital face area (OFA) and superior temporal sulcus (STS) when face detection was isolated from other aspects of face perception and when face detection was perceptually-equated across individual human participants (n=20). During face detection, FFA and OFA were significantly activated, even for stimuli presented at perceptual-threshold levels, whereas STS was not. During tree detection, however, FFA and OFA were responsive only for highly salient (i.e., high contrast) stimuli. Moreover, activation of FFA during face detection predicted a significant portion of the perceptual performance levels that were determined psychophysically for each participant. This pattern of result indicates that FFA and OFA have a greater sensitivity to face detection signals and selectively support the initial process of face vs. non-face object perception. PMID:26592952
Semisupervised kernel marginal Fisher analysis for face recognition.
Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun
2013-01-01
Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.
Recognizing Age-Separated Face Images: Humans and Machines
Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel
2014-01-01
Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components - facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario. PMID:25474200
Recognizing age-separated face images: humans and machines.
Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel
2014-01-01
Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components--facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario.
The wide window of face detection.
Hershler, Orit; Golan, Tal; Bentin, Shlomo; Hochstein, Shaul
2010-08-20
Faces are detected more rapidly than other objects in visual scenes and search arrays, but the cause for this face advantage has been contested. In the present study, we found that under conditions of spatial uncertainty, faces were easier to detect than control targets (dog faces, clocks and cars) even in the absence of surrounding stimuli, making an explanation based only on low-level differences unlikely. This advantage improved with eccentricity in the visual field, enabling face detection in wider visual windows, and pointing to selective sparing of face detection at greater eccentricities. This face advantage might be due to perceptual factors favoring face detection. In addition, the relative face advantage is greater under flanked than non-flanked conditions, suggesting an additional, possibly attention-related benefit enabling face detection in groups of distracters.
NASA Astrophysics Data System (ADS)
Zhao, Yiqun; Wang, Zhihui
2015-12-01
The Internet of things (IOT) is a kind of intelligent networks which can be used to locate, track, identify and supervise people and objects. One of important core technologies of intelligent visual internet of things ( IVIOT) is the intelligent visual tag system. In this paper, a research is done into visual feature extraction and establishment of visual tags of the human face based on ORL face database. Firstly, we use the principal component analysis (PCA) algorithm for face feature extraction, then adopt the support vector machine (SVM) for classifying and face recognition, finally establish a visual tag for face which is already classified. We conducted a experiment focused on a group of people face images, the result show that the proposed algorithm have good performance, and can show the visual tag of objects conveniently.
Can we match ultraviolet face images against their visible counterparts?
NASA Astrophysics Data System (ADS)
Narang, Neeru; Bourlai, Thirimachos; Hornak, Lawrence A.
2015-05-01
In law enforcement and security applications, the acquisition of face images is critical in producing key trace evidence for the successful identification of potential threats. However, face recognition (FR) for face images captured using different camera sensors, and under variable illumination conditions, and expressions is very challenging. In this paper, we investigate the advantages and limitations of the heterogeneous problem of matching ultra violet (from 100 nm to 400 nm in wavelength) or UV, face images against their visible (VIS) counterparts, when all face images are captured under controlled conditions. The contributions of our work are three-fold; (i) We used a camera sensor designed with the capability to acquire UV images at short-ranges, and generated a dual-band (VIS and UV) database that is composed of multiple, full frontal, face images of 50 subjects. Two sessions were collected that span over the period of 2 months. (ii) For each dataset, we determined which set of face image pre-processing algorithms are more suitable for face matching, and, finally, (iii) we determined which FR algorithm better matches cross-band face images, resulting in high rank-1 identification rates. Experimental results show that our cross spectral matching (the heterogeneous problem, where gallery and probe sets consist of face images acquired in different spectral bands) algorithms achieve sufficient identification performance. However, we also conclude that the problem under study, is very challenging, and it requires further investigation to address real-world law enforcement or military applications. To the best of our knowledge, this is first time in the open literature the problem of cross-spectral matching of UV against VIS band face images is being investigated.
Formulating face verification with semidefinite programming.
Yan, Shuicheng; Liu, Jianzhuang; Tang, Xiaoou; Huang, Thomas S
2007-11-01
This paper presents a unified solution to three unsolved problems existing in face verification with subspace learning techniques: selection of verification threshold, automatic determination of subspace dimension, and deducing feature fusing weights. In contrast to previous algorithms which search for the projection matrix directly, our new algorithm investigates a similarity metric matrix (SMM). With a certain verification threshold, this matrix is learned by a semidefinite programming approach, along with the constraints of the kindred pairs with similarity larger than the threshold, and inhomogeneous pairs with similarity smaller than the threshold. Then, the subspace dimension and the feature fusing weights are simultaneously inferred from the singular value decomposition of the derived SMM. In addition, the weighted and tensor extensions are proposed to further improve the algorithmic effectiveness and efficiency, respectively. Essentially, the verification is conducted within an affine subspace in this new algorithm and is, hence, called the affine subspace for verification (ASV). Extensive experiments show that the ASV can achieve encouraging face verification accuracy in comparison to other subspace algorithms, even without the need to explore any parameters.
Multi-microphone adaptive array augmented with visual cueing.
Gibson, Paul L; Hedin, Dan S; Davies-Venn, Evelyn E; Nelson, Peggy; Kramer, Kevin
2012-01-01
We present the development of an audiovisual array that enables hearing aid users to converse with multiple speakers in reverberant environments with significant speech babble noise where their hearing aids do not function well. The system concept consists of a smartphone, a smartphone accessory, and a smartphone software application. The smartphone accessory concept is a multi-microphone audiovisual array in a form factor that allows attachment to the back of the smartphone. The accessory will also contain a lower power radio by which it can transmit audio signals to compatible hearing aids. The smartphone software application concept will use the smartphone's built in camera to acquire images and perform real-time face detection using the built-in face detection support of the smartphone. The audiovisual beamforming algorithm uses the location of talking targets to improve the signal to noise ratio and consequently improve the user's speech intelligibility. Since the proposed array system leverages a handheld consumer electronic device, it will be portable and low cost. A PC based experimental system was developed to demonstrate the feasibility of an audiovisual multi-microphone array and these results are presented.
Comans, Tracy A; Nguyen, Kim-Huong; Mulhern, Brendan; Corlis, Megan; Li, Li; Welch, Alyssa; Kurrle, Susan E; Rowen, Donna; Moyle, Wendy; Kularatna, Sanjeewa; Ratcliffe, Julie
2018-01-01
Introduction Generic instruments for assessing health-related quality of life may lack the sensitivity to detect changes in health specific to certain conditions, such as dementia. The Quality of Life in Alzheimer’s Disease (QOL-AD) is a widely used and well-validated condition-specific instrument for assessing health-related quality of life for people living with dementia, but it does not enable the calculation of quality-adjusted life years, the basis of cost utility analysis. This study will generate a preference-based scoring algorithm for a health state classification system -the Alzheimer’s Disease Five Dimensions (AD-5D) derived from the QOL-AD. Methods and analysis Discrete choice experiments with duration (DCETTO) and best–worst scaling health state valuation tasks will be administered to a representative sample of 2000 members of the Australian general population via an online survey and to 250 dementia dyads (250 people with dementia and their carers) via face-to-face interview. A multinomial (conditional) logistic framework will be used to analyse responses and produce the utility algorithm for the AD-5D. Ethics and dissemination The algorithms developed will enable prospective and retrospective economic evaluation of any treatment or intervention targeting people with dementia where the QOL-AD has been administered and will be available online. Results will be disseminated through journals that publish health economics articles and through professional conferences. This study has ethical approval. PMID:29358437
Building test data from real outbreaks for evaluating detection algorithms.
Texier, Gaetan; Jackson, Michael L; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method-ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals.
Building test data from real outbreaks for evaluating detection algorithms
Texier, Gaetan; Jackson, Michael L.; Siwe, Leonel; Meynard, Jean-Baptiste; Deparis, Xavier; Chaudet, Herve
2017-01-01
Benchmarking surveillance systems requires realistic simulations of disease outbreaks. However, obtaining these data in sufficient quantity, with a realistic shape and covering a sufficient range of agents, size and duration, is known to be very difficult. The dataset of outbreak signals generated should reflect the likely distribution of authentic situations faced by the surveillance system, including very unlikely outbreak signals. We propose and evaluate a new approach based on the use of historical outbreak data to simulate tailored outbreak signals. The method relies on a homothetic transformation of the historical distribution followed by resampling processes (Binomial, Inverse Transform Sampling Method—ITSM, Metropolis-Hasting Random Walk, Metropolis-Hasting Independent, Gibbs Sampler, Hybrid Gibbs Sampler). We carried out an analysis to identify the most important input parameters for simulation quality and to evaluate performance for each of the resampling algorithms. Our analysis confirms the influence of the type of algorithm used and simulation parameters (i.e. days, number of cases, outbreak shape, overall scale factor) on the results. We show that, regardless of the outbreaks, algorithms and metrics chosen for the evaluation, simulation quality decreased with the increase in the number of days simulated and increased with the number of cases simulated. Simulating outbreaks with fewer cases than days of duration (i.e. overall scale factor less than 1) resulted in an important loss of information during the simulation. We found that Gibbs sampling with a shrinkage procedure provides a good balance between accuracy and data dependency. If dependency is of little importance, binomial and ITSM methods are accurate. Given the constraint of keeping the simulation within a range of plausible epidemiological curves faced by the surveillance system, our study confirms that our approach can be used to generate a large spectrum of outbreak signals. PMID:28863159
Syphilis testing practices in the Americas.
Trinh, Thuy T; Kamb, Mary L; Luu, Minh; Ham, D Cal; Perez, Freddy
2017-09-01
To present the findings of the Pan American Health Organization's 2014 survey on syphilis testing policies and practices in the Americas. Representatives of national/regional reference and large, lower-level laboratories from 35 member states were invited to participate. A semi-structured, electronically administered questionnaire collected data on syphilis tests, algorithms, equipment/commodities, challenges faced and basic quality assurance (QA) strategies employed (i.e. daily controls, standard operating procedures, technician training, participating in external QA programmes, on-site evaluations). The 69 participating laboratories from 30 (86%) member states included 41 (59%) national/regional reference and 28 (41%) lower-level laboratories. Common syphilis tests conducted were the rapid plasma reagin (RPR) (62% of surveyed laboratories), venereal disease research laboratory (VDRL) (54%), fluorescent treponemal antibody absorption (FTA-ABS) (41%) and Treponema pallidum haemagglutination assay (TPHA) (32%). Only three facilities reported using direct detection methods, and 28 (41% overall, 32% of lower-level facilities) used rapid tests. Most laboratories (62%) used only traditional testing algorithms (non-treponemal screening and treponemal confirmatory testing); however, 12% used only a reverse sequence algorithm (treponemal test first), and 14% employed both algorithms. Another nine (12%) laboratories conducted only one type of serologic test. Although most reference (97%) and lower-level (89%) laboratories used at least one QA strategy, only 16% reported using all five basic strategies. Commonly reported challenges were stock-outs of essential reagents or commodities (46%), limited staff training (73%) and insufficient equipment (39%). Many reference and clinical laboratories in the Americas face challenges in conducting appropriate syphilis testing and in ensuring quality of testing. © 2017 John Wiley & Sons Ltd The Pan-American Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.
Pongakkasira, Kaewmart; Bindemann, Markus
2015-04-01
Human face detection might be driven by skin-coloured face-shaped templates. To explore this idea, this study compared the detection of faces for which the natural height-to-width ratios were preserved with distorted faces that were stretched vertically or horizontally. The impact of stretching on detection performance was not obvious when faces were equated to their unstretched counterparts in terms of their height or width dimension (Experiment 1). However, stretching impaired detection when the original and distorted faces were matched for their surface area (Experiment 2), and this was found with both vertically and horizontally stretched faces (Experiment 3). This effect was evident in accuracy, response times, and also observers' eye movements to faces. These findings demonstrate that height-to-width ratios are an important component of the cognitive template for face detection. The results also highlight important differences between face detection and face recognition. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pose invariant face recognition: 3D model from single photo
NASA Astrophysics Data System (ADS)
Napoléon, Thibault; Alfalou, Ayman
2017-02-01
Face recognition is widely studied in the literature for its possibilities in surveillance and security. In this paper, we report a novel algorithm for the identification task. This technique is based on an optimized 3D modeling allowing to reconstruct faces in different poses from a limited number of references (i.e. one image by class/person). Particularly, we propose to use an active shape model to detect a set of keypoints on the face necessary to deform our synthetic model with our optimized finite element method. Indeed, in order to improve our deformation, we propose a regularization by distances on graph. To perform the identification we use the VanderLugt correlator well know to effectively address this task. On the other hand we add a difference of Gaussian filtering step to highlight the edges and a description step based on the local binary patterns. The experiments are performed on the PHPID database enhanced with our 3D reconstructed faces of each person with an azimuth and an elevation ranging from -30° to +30°. The obtained results prove the robustness of our new method with 88.76% of good identification when the classic 2D approach (based on the VLC) obtains just 44.97%.
Comparison of human and algorithmic target detection in passive infrared imagery
NASA Astrophysics Data System (ADS)
Weber, Bruce A.; Hutchinson, Meredith
2003-09-01
We have designed an experiment that compares the performance of human observers and a scale-insensitive target detection algorithm that uses pixel level information for the detection of ground targets in passive infrared imagery. The test database contains targets near clutter whose detectability ranged from easy to very difficult. Results indicate that human observers detect more "easy-to-detect" targets, and with far fewer false alarms, than the algorithm. For "difficult-to-detect" targets, human and algorithm detection rates are considerably degraded, and algorithm false alarms excessive. Analysis of detections as a function of observer confidence shows that algorithm confidence attribution does not correspond to human attribution, and does not adequately correlate with correct detections. The best target detection score for any human observer was 84%, as compared to 55% for the algorithm for the same false alarm rate. At 81%, the maximum detection score for the algorithm, the same human observer had 6 false alarms per frame as compared to 29 for the algorithm. Detector ROC curves and observer-confidence analysis benchmarks the algorithm and provides insights into algorithm deficiencies and possible paths to improvement.
Slow Growth of a Crack with Contacting Faces in a Viscoelastic Body
NASA Astrophysics Data System (ADS)
Selivanov, M. F.
2017-11-01
An algorithm for solving the problem of slow growth of a mode I crack with a zone of partial contact of the faces is proposed. The algorithm is based on a crack model with a cohesive zone, an iterative method of finding a solution for the elastic opening displacement, and elasto-viscoelastic analogy, which makes it possible to describe the time-dependent opening displacement in Boltzmann-Volterra form. A deformation criterion with a constant critical opening displacement and cohesive strength during quasistatic crack growth is used. The algorithm was numerically illustrated for tensile loading at infinity and two concentrated forces symmetric about the crack line that cause the crack faces to contact. When the crack propagates, the contact zone disappears and its dynamic growth begins.
Integrating image quality in 2nu-SVM biometric match score fusion.
Vatsa, Mayank; Singh, Richa; Noore, Afzel
2007-10-01
This paper proposes an intelligent 2nu-support vector machine based match score fusion algorithm to improve the performance of face and iris recognition by integrating the quality of images. The proposed algorithm applies redundant discrete wavelet transform to evaluate the underlying linear and non-linear features present in the image. A composite quality score is computed to determine the extent of smoothness, sharpness, noise, and other pertinent features present in each subband of the image. The match score and the corresponding quality score of an image are fused using 2nu-support vector machine to improve the verification performance. The proposed algorithm is experimentally validated using the FERET face database and the CASIA iris database. The verification performance and statistical evaluation show that the proposed algorithm outperforms existing fusion algorithms.
Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems.
Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar
2015-07-23
The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other.
Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems
Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar
2015-01-01
The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other. PMID:26213932
From scores to face templates: a model-based approach.
Mohanty, Pranab; Sarkar, Sudeep; Kasturi, Rangachar
2007-12-01
Regeneration of templates from match scores has security and privacy implications related to any biometric authentication system. We propose a novel paradigm to reconstruct face templates from match scores using a linear approach. It proceeds by first modeling the behavior of the given face recognition algorithm by an affine transformation. The goal of the modeling is to approximate the distances computed by a face recognition algorithm between two faces by distances between points, representing these faces, in an affine space. Given this space, templates from an independent image set (break-in) are matched only once with the enrolled template of the targeted subject and match scores are recorded. These scores are then used to embed the targeted subject in the approximating affine (non-orthogonal) space. Given the coordinates of the targeted subject in the affine space, the original template of the targeted subject is reconstructed using the inverse of the affine transformation. We demonstrate our ideas using three, fundamentally different, face recognition algorithms: Principal Component Analysis (PCA) with Mahalanobis cosine distance measure, Bayesian intra-extrapersonal classifier (BIC), and a feature-based commercial algorithm. To demonstrate the independence of the break-in set with the gallery set, we select face templates from two different databases: Face Recognition Grand Challenge (FRGC) and Facial Recognition Technology (FERET) Database (FERET). With an operational point set at 1 percent False Acceptance Rate (FAR) and 99 percent True Acceptance Rate (TAR) for 1,196 enrollments (FERET gallery), we show that at most 600 attempts (score computations) are required to achieve a 73 percent chance of breaking in as a randomly chosen target subject for the commercial face recognition system. With similar operational set up, we achieve a 72 percent and 100 percent chance of breaking in for the Bayesian and PCA based face recognition systems, respectively. With three different levels of score quantization, we achieve 69 percent, 68 percent and 49 percent probability of break-in, indicating the robustness of our proposed scheme to score quantization. We also show that the proposed reconstruction scheme has 47 percent more probability of breaking in as a randomly chosen target subject for the commercial system as compared to a hill climbing approach with the same number of attempts. Given that the proposed template reconstruction method uses distinct face templates to reconstruct faces, this work exposes a more severe form of vulnerability than a hill climbing kind of attack where incrementally different versions of the same face are used. Also, the ability of the proposed approach to reconstruct actual face templates of the users increases privacy concerns in biometric systems.
NASA Astrophysics Data System (ADS)
Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko
2006-03-01
A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.
Familiarity facilitates feature-based face processing.
Visconti di Oleggio Castello, Matteo; Wheeler, Kelsey G; Cipolli, Carlo; Gobbini, M Ida
2017-01-01
Recognition of personally familiar faces is remarkably efficient, effortless and robust. We asked if feature-based face processing facilitates detection of familiar faces by testing the effect of face inversion on a visual search task for familiar and unfamiliar faces. Because face inversion disrupts configural and holistic face processing, we hypothesized that inversion would diminish the familiarity advantage to the extent that it is mediated by such processing. Subjects detected personally familiar and stranger target faces in arrays of two, four, or six face images. Subjects showed significant facilitation of personally familiar face detection for both upright and inverted faces. The effect of familiarity on target absent trials, which involved only rejection of unfamiliar face distractors, suggests that familiarity facilitates rejection of unfamiliar distractors as well as detection of familiar targets. The preserved familiarity effect for inverted faces suggests that facilitation of face detection afforded by familiarity reflects mostly feature-based processes.
a Review on State-Of Face Recognition Approaches
NASA Astrophysics Data System (ADS)
Mahmood, Zahid; Muhammad, Nazeer; Bibi, Nargis; Ali, Tauseef
Automatic Face Recognition (FR) presents a challenging task in the field of pattern recognition and despite the huge research in the past several decades; it still remains an open research problem. This is primarily due to the variability in the facial images, such as non-uniform illuminations, low resolution, occlusion, and/or variation in poses. Due to its non-intrusive nature, the FR is an attractive biometric modality and has gained a lot of attention in the biometric research community. Driven by the enormous number of potential application domains, many algorithms have been proposed for the FR. This paper presents an overview of the state-of-the-art FR algorithms, focusing their performances on publicly available databases. We highlight the conditions of the image databases with regard to the recognition rate of each approach. This is useful as a quick research overview and for practitioners as well to choose an algorithm for their specified FR application. To provide a comprehensive survey, the paper divides the FR algorithms into three categories: (1) intensity-based, (2) video-based, and (3) 3D based FR algorithms. In each category, the most commonly used algorithms and their performance is reported on standard face databases and a brief critical discussion is carried out.
A robust correspondence matching algorithm of ground images along the optic axis
NASA Astrophysics Data System (ADS)
Jia, Fengman; Kang, Zhizhong
2013-10-01
Facing challenges of nontraditional geometry, multiple resolutions and the same features sensed from different angles, there are more difficulties of robust correspondence matching for ground images along the optic axis. A method combining SIFT algorithm and the geometric constraint of the ratio of coordinate differences between image point and image principal point is proposed in this paper. As it can provide robust matching across a substantial range of affine distortion addition of change in 3D viewpoint and noise, we use SIFT algorithm to tackle the problem of image distortion. By analyzing the nontraditional geometry of ground image along the optic axis, this paper derivates that for one correspondence pair, the ratio of distances between image point and image principal point in an image pair should be a value not far from 1. Therefore, a geometric constraint for gross points detection is formed. The proposed approach is tested with real image data acquired by Kodak. The results show that with SIFT and the proposed geometric constraint, the robustness of correspondence matching on the ground images along the optic axis can be effectively improved, and thus prove the validity of the proposed algorithm.
Consistent detection and identification of individuals in a large camera network
NASA Astrophysics Data System (ADS)
Colombo, Alberto; Leung, Valerie; Orwell, James; Velastin, Sergio A.
2007-10-01
In the wake of an increasing number of terrorist attacks, counter-terrorism measures are now a main focus of many research programmes. An important issue for the police is the ability to track individuals and groups reliably through underground stations, and in the case of post-event analysis, to be able to ascertain whether specific individuals have been at the station previously. While there exist many motion detection and tracking algorithms, the reliable deployment of them in a large network is still ongoing research. Specifically, to track individuals through multiple views, on multiple levels and between levels, consistent detection and labelling of individuals is crucial. In view of these issues, we have developed a change detection algorithm to work reliably in the presence of periodic movements, e.g. escalators and scrolling advertisements, as well as a content-based retrieval technique for identification. The change detection technique automatically extracts periodically varying elements in the scene using Fourier analysis, and constructs a Markov model for the process. Training is performed online, and no manual intervention is required, making this system suitable for deployment in large networks. Experiments on real data shows significant improvement over existing techniques. The content-based retrieval technique uses MPEG-7 descriptors to identify individuals. Given the environment under which the system operates, i.e. at relatively low resolution, this approach is suitable for short timescales. For longer timescales, other forms of identification such as gait, or if the resolution allows, face recognition, will be required.
CRISPR Detection From Short Reads Using Partial Overlap Graphs.
Ben-Bassat, Ilan; Chor, Benny
2016-06-01
Clustered regularly interspaced short palindromic repeats (CRISPR) are structured regions in bacterial and archaeal genomes, which are part of an adaptive immune system against phages. CRISPRs are important for many microbial studies and are playing an essential role in current gene editing techniques. As such, they attract substantial research interest. The exponential growth in the amount of bacterial sequence data in recent years enables the exploration of CRISPR loci in more and more species. Most of the automated tools that detect CRISPR loci rely on fully assembled genomes. However, many assemblers do not handle repetitive regions successfully. The first tool to work directly on raw sequence data is Crass, which requires reads that are long enough to contain two copies of the same repeat. We present a method to identify CRISPR repeats from raw sequence data of short reads. The algorithm is based on an observation differentiating CRISPR repeats from other types of repeats, and it involves a series of partial constructions of the overlap graph. This enables us to avoid many of the difficulties that assemblers face, as we merely aim to identify the repeats that belong to CRISPR loci. A preliminary implementation of the algorithm shows good results and detects CRISPR repeats in cases where other existing tools fail to do so.
Bridging the semantic gap in sports
NASA Astrophysics Data System (ADS)
Li, Baoxin; Errico, James; Pan, Hao; Sezan, M. Ibrahim
2003-01-01
One of the major challenges facing current media management systems and the related applications is the so-called "semantic gap" between the rich meaning that a user desires and the shallowness of the content descriptions that are automatically extracted from the media. In this paper, we address the problem of bridging this gap in the sports domain. We propose a general framework for indexing and summarizing sports broadcast programs. The framework is based on a high-level model of sports broadcast video using the concept of an event, defined according to domain-specific knowledge for different types of sports. Within this general framework, we develop automatic event detection algorithms that are based on automatic analysis of the visual and aural signals in the media. We have successfully applied the event detection algorithms to different types of sports including American football, baseball, Japanese sumo wrestling, and soccer. Event modeling and detection contribute to the reduction of the semantic gap by providing rudimentary semantic information obtained through media analysis. We further propose a novel approach, which makes use of independently generated rich textual metadata, to fill the gap completely through synchronization of the information-laden textual data with the basic event segments. An MPEG-7 compliant prototype browsing system has been implemented to demonstrate semantic retrieval and summarization of sports video.
Visual Persons Behavior Diary Generation Model based on Trajectories and Pose Estimation
NASA Astrophysics Data System (ADS)
Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li
2018-03-01
The behavior pattern of persons was the important output of the surveillance analysis. This paper focus on the generation model of visual person behavior diary. The pipeline includes the person detection, tracking, and the person behavior classify. This paper adopts the deep convolutional neural model YOLO (You Only Look Once)V2 for person detection module. Multi person tracking was based on the detection framework. The Hungarian assignment algorithm was used to the matching. The person appearance model was integrated by HSV color model and Hash code model. The person object motion was estimated by the Kalman Filter. The multi objects were matching with exist tracklets through the appearance and motion location distance by the Hungarian assignment method. A long continuous trajectory for one person was get by the spatial-temporal continual linking algorithm. And the face recognition information was used to identify the trajectory. The trajectories with identification information can be used to generate the visual diary of person behavior based on the scene context information and person action estimation. The relevant modules are tested in public data sets and our own capture video sets. The test results show that the method can be used to generate the visual person behavior pattern diary with certain accuracy.
LoBue, Vanessa; Matthews, Kaleigh; Harvey, Teresa; Thrasher, Cat
2014-02-01
For decades, researchers have documented a bias for the rapid detection of angry faces in adult, child, and even infant participants. However, despite the age of the participant, the facial stimuli used in all of these experiments were schematic drawings or photographs of adult faces. The current research is the first to examine the detection of both child and adult emotional facial expressions. In our study, 3- to 5-year-old children and adults detected angry, sad, and happy faces among neutral distracters. The depicted faces were of adults or of other children. As in previous work, children detected angry faces more quickly than happy and neutral faces overall, and they tended to detect the faces of other children more quickly than the faces of adults. Adults also detected angry faces more quickly than happy and sad faces even when the faces depicted child models. The results are discussed in terms of theoretical implications for the development of a bias for threat in detection. Copyright © 2013 Elsevier Inc. All rights reserved.
Wavelet decomposition based principal component analysis for face recognition using MATLAB
NASA Astrophysics Data System (ADS)
Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish
2016-03-01
For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.
Quest Hierarchy for Hyperspectral Face Recognition
2011-03-01
numerous face recognition algorithms available, several very good literature surveys are available that include Abate [29], Samal [110], Kong [18], Zou...Perception, Japan (January 1994). [110] Samal , Ashok and P. Iyengar, Automatic Recognition and Analysis of Human Faces and Facial Expressions: A Survey
A video-based real-time adaptive vehicle-counting system for urban roads.
Liu, Fei; Zeng, Zhiyuan; Jiang, Rong
2017-01-01
In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios.
A video-based real-time adaptive vehicle-counting system for urban roads
2017-01-01
In developing nations, many expanding cities are facing challenges that result from the overwhelming numbers of people and vehicles. Collecting real-time, reliable and precise traffic flow information is crucial for urban traffic management. The main purpose of this paper is to develop an adaptive model that can assess the real-time vehicle counts on urban roads using computer vision technologies. This paper proposes an automatic real-time background update algorithm for vehicle detection and an adaptive pattern for vehicle counting based on the virtual loop and detection line methods. In addition, a new robust detection method is introduced to monitor the real-time traffic congestion state of road section. A prototype system has been developed and installed on an urban road for testing. The results show that the system is robust, with a real-time counting accuracy exceeding 99% in most field scenarios. PMID:29135984
Switch failure diagnosis based on inductor current observation for boost converters
NASA Astrophysics Data System (ADS)
Jamshidpour, E.; Poure, P.; Saadate, S.
2016-09-01
Face to the growing number of applications using DC-DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC-DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC-DC boost converter with one redundant switch.
Functional Fault Modeling of a Cryogenic System for Real-Time Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Lewis, Mark; Oostdyk, Rebecca; Perotti, Jose
2009-01-01
When setting out to model and/or simulate a complex mechanical or electrical system, a modeler is faced with a vast array of tools, software, equations, algorithms and techniques that may individually or in concert aid in the development of the model. Mature requirements and a well understood purpose for the model may considerably shrink the field of possible tools and algorithms that will suit the modeling solution. Is the model intended to be used in an offline fashion or in real-time? On what platform does it need to execute? How long will the model be allowed to run before it outputs the desired parameters? What resolution is desired? Do the parameters need to be qualitative or quantitative? Is it more important to capture the physics or the function of the system in the model? Does the model need to produce simulated data? All these questions and more will drive the selection of the appropriate tools and algorithms, but the modeler must be diligent to bear in mind the final application throughout the modeling process to ensure the model meets its requirements without needless iterations of the design. The purpose of this paper is to describe the considerations and techniques used in the process of creating a functional fault model of a liquid hydrogen (LH2) system that will be used in a real-time environment to automatically detect and isolate failures.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru
2007-03-01
Multislice CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multislice CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. Moreover, we have provided diagnostic assistance methods to medical screening specialists by using a lung cancer screening algorithm built into mobile helical CT scanner for the lung cancer mass screening done in the region without the hospital. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system.
Efficient search for a face by chimpanzees (Pan troglodytes).
Tomonaga, Masaki; Imura, Tomoko
2015-07-16
The face is quite an important stimulus category for human and nonhuman primates in their social lives. Recent advances in comparative-cognitive research clearly indicate that chimpanzees and humans process faces in a special manner; that is, using holistic or configural processing. Both species exhibit the face-inversion effect in which the inverted presentation of a face deteriorates their perception and recognition. Furthermore, recent studies have shown that humans detect human faces among non-facial objects rapidly. We report that chimpanzees detected chimpanzee faces among non-facial objects quite efficiently. This efficient search was not limited to own-species faces. They also found human adult and baby faces--but not monkey faces--efficiently. Additional testing showed that a front-view face was more readily detected than a profile, suggesting the important role of eye-to-eye contact. Chimpanzees also detected a photograph of a banana as efficiently as a face, but a further examination clearly indicated that the banana was detected mainly due to a low-level feature (i.e., color). Efficient face detection was hampered by an inverted presentation, suggesting that configural processing of faces is a critical element of efficient face detection in both species. This conclusion was supported by a simple simulation experiment using the saliency model.
Efficient search for a face by chimpanzees (Pan troglodytes)
Tomonaga, Masaki; Imura, Tomoko
2015-01-01
The face is quite an important stimulus category for human and nonhuman primates in their social lives. Recent advances in comparative-cognitive research clearly indicate that chimpanzees and humans process faces in a special manner; that is, using holistic or configural processing. Both species exhibit the face-inversion effect in which the inverted presentation of a face deteriorates their perception and recognition. Furthermore, recent studies have shown that humans detect human faces among non-facial objects rapidly. We report that chimpanzees detected chimpanzee faces among non-facial objects quite efficiently. This efficient search was not limited to own-species faces. They also found human adult and baby faces-but not monkey faces-efficiently. Additional testing showed that a front-view face was more readily detected than a profile, suggesting the important role of eye-to-eye contact. Chimpanzees also detected a photograph of a banana as efficiently as a face, but a further examination clearly indicated that the banana was detected mainly due to a low-level feature (i.e., color). Efficient face detection was hampered by an inverted presentation, suggesting that configural processing of faces is a critical element of efficient face detection in both species. This conclusion was supported by a simple simulation experiment using the saliency model. PMID:26180944
Efficient human face detection in infancy.
Jakobsen, Krisztina V; Umstead, Lindsey; Simpson, Elizabeth A
2016-01-01
Adults detect conspecific faces more efficiently than heterospecific faces; however, the development of this own-species bias (OSB) remains unexplored. We tested whether 6- and 11-month-olds exhibit OSB in their attention to human and animal faces in complex visual displays with high perceptual load (25 images competing for attention). Infants (n = 48) and adults (n = 43) passively viewed arrays containing a face among 24 non-face distractors while we measured their gaze with remote eye tracking. While OSB is typically not observed until about 9 months, we found that, already by 6 months, human faces were more likely to be detected, were detected more quickly (attention capture), and received longer looks (attention holding) than animal faces. These data suggest that 6-month-olds already exhibit OSB in face detection efficiency, consistent with perceptual attunement. This specialization may reflect the biological importance of detecting conspecific faces, a foundational ability for early social interactions. © 2015 Wiley Periodicals, Inc.
A Support System for the Electric Appliance Control Using Pose Recognition
NASA Astrophysics Data System (ADS)
Kawano, Takuya; Yamamoto, Kazuhiko; Kato, Kunihito; Hongo, Hitoshi
In this paper, we propose an electric appliance control support system for aged and bedridden people using pose recognition. We proposed a pose recognition system that distinguishes between seven poses of the user on the bed. First, the face and arm regions of the user are detected by using the skin color. Our system focuses a recognition region surrounding the face region. Next, the higher order local autocorrelation features within the region are extracted. The linear discriminant analysis creates the coefficient matrix that can optimally distinguish among training data from the seven poses. Our algorithm can recognize the seven poses even if the subject wears different clothes and slightly shifts or slants on the bed. From the experimental results, our system achieved an accuracy rate of over 99 %. Then, we show that it possibles to construct one of a user-friendly system.
Fast 3D NIR systems for facial measurement and lip-reading
NASA Astrophysics Data System (ADS)
Brahm, Anika; Ramm, Roland; Heist, Stefan; Rulff, Christian; Kühmstedt, Peter; Notni, Gunther
2017-05-01
Structured-light projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. In particular, there is a great demand for accurate and fast 3D scans of human faces or facial regions of interest in medicine, safety, face modeling, games, virtual life, or entertainment. New developments of facial expression detection and machine lip-reading can be used for communication tasks, future machine control, or human-machine interactions. In such cases, 3D information may offer more detailed information than 2D images which can help to increase the power of current facial analysis algorithms. In this contribution, we present new 3D sensor technologies based on three different methods of near-infrared projection technologies in combination with a stereo vision setup of two cameras. We explain the optical principles of an NIR GOBO projector, an array projector and a modified multi-aperture projection method and compare their performance parameters to each other. Further, we show some experimental measurement results of applications where we realized fast, accurate, and irritation-free measurements of human faces.
Student Facing Dashboards: One Size Fits All?
ERIC Educational Resources Information Center
Teasley, Stephanie D.
2017-01-01
This emerging technology report reviews a new development in educational technology, student-facing dashboards, which provide comparative performance feedback to students calculated by Learning Analytics-based algorithms on data generated from university students' use of educational technology. Instructor- and advisor-facing dashboards emerged as…
Chew, Avenell L.; Lamey, Tina; McLaren, Terri; De Roach, John
2016-01-01
Purpose To present en face optical coherence tomography (OCT) images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities. Methods En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory) and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering)) were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO) and microperimetry. Results Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE) pathology due to segmentation error at the level of Bruch’s membrane (BM). Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities. Conclusions Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis. PMID:27959968
Searching for differences in race: is there evidence for preferential detection of other-race faces?
Lipp, Ottmar V; Terry, Deborah J; Smith, Joanne R; Tellegen, Cassandra L; Kuebbeler, Jennifer; Newey, Mareka
2009-06-01
Previous research has suggested that like animal and social fear-relevant stimuli, other-race faces (African American) are detected preferentially in visual search. Three experiments using Chinese or Indonesian faces as other-race faces yielded the opposite pattern of results: faster detection of same-race faces among other-race faces. This apparently inconsistent pattern of results was resolved by showing that Asian and African American faces are detected preferentially in tasks that have small stimulus sets and employ fixed target searches. Asian and African American other-race faces are found slower among Caucasian face backgrounds if larger stimulus sets are used in tasks with a variable mapping of stimulus to background or target. Thus, preferential detection of other-race faces was not found under task conditions in which preferential detection of animal and social fear-relevant stimuli is evident. Although consistent with the view that same-race faces are processed in more detail than other-race faces, the current findings suggest that other-race faces do not draw attention preferentially.
Wang, Peiyu; Li, Zhencheng; Pei, Yongmao
2018-04-16
An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.
Uyghur face recognition method combining 2DDCT with POEM
NASA Astrophysics Data System (ADS)
Yi, Lihamu; Ya, Ermaimaiti
2017-11-01
In this paper, in light of the reduced recognition rate and poor robustness of Uyghur face under illumination and partial occlusion, a Uyghur face recognition method combining Two Dimension Discrete Cosine Transform (2DDCT) with Patterns Oriented Edge Magnitudes (POEM) was proposed. Firstly, the Uyghur face images were divided into 8×8 block matrix, and the Uyghur face images after block processing were converted into frequency-domain status using 2DDCT; secondly, the Uyghur face images were compressed to exclude non-sensitive medium frequency parts and non-high frequency parts, so it can reduce the feature dimensions necessary for the Uyghur face images, and further reduce the amount of computation; thirdly, the corresponding POEM histograms of the Uyghur face images were obtained by calculating the feature quantity of POEM; fourthly, the POEM histograms were cascaded together as the texture histogram of the center feature point to obtain the texture features of the Uyghur face feature points; finally, classification of the training samples was carried out using deep learning algorithm. The simulation experiment results showed that the proposed algorithm further improved the recognition rate of the self-built Uyghur face database, and greatly improved the computing speed of the self-built Uyghur face database, and had strong robustness.
Basu, Partha; Meheus, Filip; Chami, Youssef; Hariprasad, Roopa; Zhao, Fanghui; Sankaranarayanan, Rengaswamy
2017-07-01
Management algorithms for screen-positive women in cervical cancer prevention programs have undergone substantial changes in recent years. The WHO strongly recommends human papillomavirus (HPV) testing for primary screening, if affordable, or if not, then visual inspection with acetic acid (VIA), and promotes treatment directly following screening through the screen-and-treat approach (one or two clinic visits). While VIA-positive women can be offered immediate ablative treatment based on certain eligibility criteria, HPV-positive women need to undergo subsequent VIA to determine their eligibility. Simpler ablative methods of treatment such as cryotherapy and thermal coagulation have been demonstrated to be effective and to have excellent safety profiles, and these have become integral parts of new management algorithms. The challenges faced by low-resource countries are many and include, from the management perspective, identifying an affordable point-of-care HPV detection test, minimizing over-treatment, and installing an effective information system to ensure high compliance to treatment and follow-up. © 2017 The Authors. International Journal of Gynecology & Obstetrics published by John Wiley & Sons Ltd on behalf of International Federation of Gynecology and Obstetrics.
NASA Astrophysics Data System (ADS)
Tsagkrasoulis, Dimosthenis; Hysi, Pirro; Spector, Tim; Montana, Giovanni
2017-04-01
The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins. Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements, yielding accurate heritability maps of the human face (www.heritabilitymaps.info).
A modified active appearance model based on an adaptive artificial bee colony.
Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali
2014-01-01
Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.
Face Recognition Using Local Quantized Patterns and Gabor Filters
NASA Astrophysics Data System (ADS)
Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.
2015-05-01
The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.
Comans, Tracy A; Nguyen, Kim-Huong; Mulhern, Brendan; Corlis, Megan; Li, Li; Welch, Alyssa; Kurrle, Susan E; Rowen, Donna; Moyle, Wendy; Kularatna, Sanjeewa; Ratcliffe, Julie
2018-01-21
Generic instruments for assessing health-related quality of life may lack the sensitivity to detect changes in health specific to certain conditions, such as dementia. The Quality of Life in Alzheimer's Disease (QOL-AD) is a widely used and well-validated condition-specific instrument for assessing health-related quality of life for people living with dementia, but it does not enable the calculation of quality-adjusted life years, the basis of cost utility analysis. This study will generate a preference-based scoring algorithm for a health state classification system -the Alzheimer's Disease Five Dimensions (AD-5D) derived from the QOL-AD. Discrete choice experiments with duration (DCE TTO ) and best-worst scaling health state valuation tasks will be administered to a representative sample of 2000 members of the Australian general population via an online survey and to 250 dementia dyads (250 people with dementia and their carers) via face-to-face interview. A multinomial (conditional) logistic framework will be used to analyse responses and produce the utility algorithm for the AD-5D. The algorithms developed will enable prospective and retrospective economic evaluation of any treatment or intervention targeting people with dementia where the QOL-AD has been administered and will be available online. Results will be disseminated through journals that publish health economics articles and through professional conferences. This study has ethical approval. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Appearance-based face recognition and light-fields.
Gross, Ralph; Matthews, Iain; Baker, Simon
2004-04-01
Arguably the most important decision to be made when developing an object recognition algorithm is selecting the scene measurements or features on which to base the algorithm. In appearance-based object recognition, the features are chosen to be the pixel intensity values in an image of the object. These pixel intensities correspond directly to the radiance of light emitted from the object along certain rays in space. The set of all such radiance values over all possible rays is known as the plenoptic function or light-field. In this paper, we develop a theory of appearance-based object recognition from light-fields. This theory leads directly to an algorithm for face recognition across pose that uses as many images of the face as are available, from one upwards. All of the pixels, whichever image they come from, are treated equally and used to estimate the (eigen) light-field of the object. The eigen light-field is then used as the set of features on which to base recognition, analogously to how the pixel intensities are used in appearance-based face and object recognition.
People counting in classroom based on video surveillance
NASA Astrophysics Data System (ADS)
Zhang, Quanbin; Huang, Xiang; Su, Juan
2014-11-01
Currently, the switches of the lights and other electronic devices in the classroom are mainly relied on manual control, as a result, many lights are on while no one or only few people in the classroom. It is important to change the current situation and control the electronic devices intelligently according to the number and the distribution of the students in the classroom, so as to reduce the considerable waste of electronic resources. This paper studies the problem of people counting in classroom based on video surveillance. As the camera in the classroom can not get the full shape contour information of bodies and the clear features information of faces, most of the classical algorithms such as the pedestrian detection method based on HOG (histograms of oriented gradient) feature and the face detection method based on machine learning are unable to obtain a satisfied result. A new kind of dual background updating model based on sparse and low-rank matrix decomposition is proposed in this paper, according to the fact that most of the students in the classroom are almost in stationary state and there are body movement occasionally. Firstly, combining the frame difference with the sparse and low-rank matrix decomposition to predict the moving areas, and updating the background model with different parameters according to the positional relationship between the pixels of current video frame and the predicted motion regions. Secondly, the regions of moving objects are determined based on the updated background using the background subtraction method. Finally, some operations including binarization, median filtering and morphology processing, connected component detection, etc. are performed on the regions acquired by the background subtraction, in order to induce the effects of the noise and obtain the number of people in the classroom. The experiment results show the validity of the algorithm of people counting.
BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices
NASA Astrophysics Data System (ADS)
Janse van Rensburg, E. J.; Rechnitzer, A.
2011-04-01
In this paper, the elementary moves of the BFACF-algorithm (Aragão de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragão de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
Correction of rotational distortion for catheter-based en face OCT and OCT angiography
Ahsen, Osman O.; Lee, Hsiang-Chieh; Giacomelli, Michael G.; Wang, Zhao; Liang, Kaicheng; Tsai, Tsung-Han; Potsaid, Benjamin; Mashimo, Hiroshi; Fujimoto, James G.
2015-01-01
We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm. PMID:25361133
NASA Astrophysics Data System (ADS)
Bentaieb, Samia; Ouamri, Abdelaziz; Nait-Ali, Amine; Keche, Mokhtar
2018-01-01
We propose and evaluate a three-dimensional (3D) face recognition approach that applies the speeded up robust feature (SURF) algorithm to the depth representation of shape index map, under real-world conditions, using only a single gallery sample for each subject. First, the 3D scans are preprocessed, then SURF is applied on the shape index map to find interest points and their descriptors. Each 3D face scan is represented by keypoints descriptors, and a large dictionary is built from all the gallery descriptors. At the recognition step, descriptors of a probe face scan are sparsely represented by the dictionary. A multitask sparse representation classification is used to determine the identity of each probe face. The feasibility of the approach that uses the SURF algorithm on the shape index map for face identification/authentication is checked through an experimental investigation conducted on Bosphorus, University of Milano Bicocca, and CASIA 3D datasets. It achieves an overall rank one recognition rate of 97.75%, 80.85%, and 95.12%, respectively, on these datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polese, Luigi Gentile; Brackney, Larry
An image-based occupancy sensor includes a motion detection module that receives and processes an image signal to generate a motion detection signal, a people detection module that receives the image signal and processes the image signal to generate a people detection signal, a face detection module that receives the image signal and processes the image signal to generate a face detection signal, and a sensor integration module that receives the motion detection signal from the motion detection module, receives the people detection signal from the people detection module, receives the face detection signal from the face detection module, and generatesmore » an occupancy signal using the motion detection signal, the people detection signal, and the face detection signal, with the occupancy signal indicating vacancy or occupancy, with an occupancy indication specifying that one or more people are detected within the monitored volume.« less
Barbosa, Jocelyn; Lee, Kyubum; Lee, Sunwon; Lodhi, Bilal; Cho, Jae-Gu; Seo, Woo-Keun; Kang, Jaewoo
2016-03-12
Facial palsy or paralysis (FP) is a symptom that loses voluntary muscles movement in one side of the human face, which could be very devastating in the part of the patients. Traditional methods are solely dependent to clinician's judgment and therefore time consuming and subjective in nature. Hence, a quantitative assessment system becomes apparently invaluable for physicians to begin the rehabilitation process; and to produce a reliable and robust method is challenging and still underway. We introduce a novel approach for a quantitative assessment of facial paralysis that tackles classification problem for FP type and degree of severity. Specifically, a novel method of quantitative assessment is presented: an algorithm that extracts the human iris and detects facial landmarks; and a hybrid approach combining the rule-based and machine learning algorithm to analyze and prognosticate facial paralysis using the captured images. A method combining the optimized Daugman's algorithm and Localized Active Contour (LAC) model is proposed to efficiently extract the iris and facial landmark or key points. To improve the performance of LAC, appropriate parameters of initial evolving curve for facial features' segmentation are automatically selected. The symmetry score is measured by the ratio between features extracted from the two sides of the face. Hybrid classifiers (i.e. rule-based with regularized logistic regression) were employed for discriminating healthy and unhealthy subjects, FP type classification, and for facial paralysis grading based on House-Brackmann (H-B) scale. Quantitative analysis was performed to evaluate the performance of the proposed approach. Experiments show that the proposed method demonstrates its efficiency. Facial movement feature extraction on facial images based on iris segmentation and LAC-based key point detection along with a hybrid classifier provides a more efficient way of addressing classification problem on facial palsy type and degree of severity. Combining iris segmentation and key point-based method has several merits that are essential for our real application. Aside from the facial key points, iris segmentation provides significant contribution as it describes the changes of the iris exposure while performing some facial expressions. It reveals the significant difference between the healthy side and the severe palsy side when raising eyebrows with both eyes directed upward, and can model the typical changes in the iris region.
Abdulqader Hussein, Ahmed; Rahman, Tharek A.; Leow, Chee Yen
2015-01-01
Localization is an apparent aspect of a wireless sensor network, which is the focus of much interesting research. One of the severe conditions that needs to be taken into consideration is localizing a mobile target through a dispersed sensor network in the presence of physical barrier attacks. These attacks confuse the localization process and cause location estimation errors. Range-based methods, like the received signal strength indication (RSSI), face the major influence of this kind of attack. This paper proposes a solution based on a combination of multi-frequency multi-power localization (C-MFMPL) and step function multi-frequency multi-power localization (SF-MFMPL), including the fingerprint matching technique and lateration, to provide a robust and accurate localization technique. In addition, this paper proposes a grid coloring algorithm to detect the signal hole map in the network, which refers to the attack-prone regions, in order to carry out corrective actions. The simulation results show the enhancement and robustness of RSS localization performance in the face of log normal shadow fading effects, besides the presence of physical barrier attacks, through detecting, filtering and eliminating the effect of these attacks. PMID:26690159
Hussein, Ahmed Abdulqader; Rahman, Tharek A; Leow, Chee Yen
2015-12-04
Localization is an apparent aspect of a wireless sensor network, which is the focus of much interesting research. One of the severe conditions that needs to be taken into consideration is localizing a mobile target through a dispersed sensor network in the presence of physical barrier attacks. These attacks confuse the localization process and cause location estimation errors. Range-based methods, like the received signal strength indication (RSSI), face the major influence of this kind of attack. This paper proposes a solution based on a combination of multi-frequency multi-power localization (C-MFMPL) and step function multi-frequency multi-power localization (SF-MFMPL), including the fingerprint matching technique and lateration, to provide a robust and accurate localization technique. In addition, this paper proposes a grid coloring algorithm to detect the signal hole map in the network, which refers to the attack-prone regions, in order to carry out corrective actions. The simulation results show the enhancement and robustness of RSS localization performance in the face of log normal shadow fading effects, besides the presence of physical barrier attacks, through detecting, filtering and eliminating the effect of these attacks.
GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.
Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim
2016-08-01
In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.
Driver fatigue detection based on eye state.
Lin, Lizong; Huang, Chao; Ni, Xiaopeng; Wang, Jiawen; Zhang, Hao; Li, Xiao; Qian, Zhiqin
2015-01-01
Nowadays, more and more traffic accidents occur because of driver fatigue. In order to reduce and prevent it, in this study, a calculation method using PERCLOS (percentage of eye closure time) parameter characteristics based on machine vision was developed. It determined whether a driver's eyes were in a fatigue state according to the PERCLOS value. The overall workflow solutions included face detection and tracking, detection and location of the human eye, human eye tracking, eye state recognition, and driver fatigue testing. The key aspects of the detection system incorporated the detection and location of human eyes and driver fatigue testing. The simplified method of measuring the PERCLOS value of the driver was to calculate the ratio of the eyes being open and closed with the total number of frames for a given period. If the eyes were closed more than the set threshold in the total number of frames, the system would alert the driver. Through many experiments, it was shown that besides the simple detection algorithm, the rapid computing speed, and the high detection and recognition accuracies of the system, the system was demonstrated to be in accord with the real-time requirements of a driver fatigue detection system.
Towards cross-lingual alerting for bursty epidemic events.
Collier, Nigel
2011-10-06
Online news reports are increasingly becoming a source for event-based early warning systems that detect natural disasters. Harnessing the massive volume of information available from multilingual newswire presents as many challanges as opportunities due to the patterns of reporting complex spatio-temporal events. In this article we study the problem of utilising correlated event reports across languages. We track the evolution of 16 disease outbreaks using 5 temporal aberration detection algorithms on text-mined events classified according to disease and outbreak country. Using ProMED reports as a silver standard, comparative analysis of news data for 13 languages over a 129 day trial period showed improved sensitivity, F1 and timeliness across most models using cross-lingual events. We report a detailed case study analysis for Cholera in Angola 2010 which highlights the challenges faced in correlating news events with the silver standard. The results show that automated health surveillance using multilingual text mining has the potential to turn low value news into high value alerts if informed choices are used to govern the selection of models and data sources. An implementation of the C2 alerting algorithm using multilingual news is available at the BioCaster portal http://born.nii.ac.jp/?page=globalroundup.
Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs
Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.
2014-01-01
A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692
NASA Astrophysics Data System (ADS)
Lakshmi, A.; Faheema, A. G. J.; Deodhare, Dipti
2016-05-01
Pedestrian detection is a key problem in night vision processing with a dozen of applications that will positively impact the performance of autonomous systems. Despite significant progress, our study shows that performance of state-of-the-art thermal image pedestrian detectors still has much room for improvement. The purpose of this paper is to overcome the challenge faced by the thermal image pedestrian detectors, which employ intensity based Region Of Interest (ROI) extraction followed by feature based validation. The most striking disadvantage faced by the first module, ROI extraction, is the failed detection of cloth insulted parts. To overcome this setback, this paper employs an algorithm and a principle of region growing pursuit tuned to the scale of the pedestrian. The statistics subtended by the pedestrian drastically vary with the scale and deviation from normality approach facilitates scale detection. Further, the paper offers an adaptive mathematical threshold to resolve the problem of subtracting the background while extracting cloth insulated parts as well. The inherent false positives of the ROI extraction module are limited by the choice of good features in pedestrian validation step. One such feature is curvelet feature, which has found its use extensively in optical images, but has as yet no reported results in thermal images. This has been used to arrive at a pedestrian detector with a reduced false positive rate. This work is the first venture made to scrutinize the utility of curvelet for characterizing pedestrians in thermal images. Attempt has also been made to improve the speed of curvelet transform computation. The classification task is realized through the use of the well known methodology of Support Vector Machines (SVMs). The proposed method is substantiated with qualified evaluation methodologies that permits us to carry out probing and informative comparisons across state-of-the-art features, including deep learning methods, with six standard and in-house databases. With reference to deep learning, our algorithm exhibits comparable performance. More important is that it has significant lower requirements in terms of compute power and memory, thus making it more relevant for depolyment in resource constrained platforms with significant size, weight and power constraints.
Seeing Objects as Faces Enhances Object Detection.
Takahashi, Kohske; Watanabe, Katsumi
2015-10-01
The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness.
Seeing Objects as Faces Enhances Object Detection
Watanabe, Katsumi
2015-01-01
The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness. PMID:27648219
A comparison of algorithms for inference and learning in probabilistic graphical models.
Frey, Brendan J; Jojic, Nebojsa
2005-09-01
Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence, largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and prediction of gene function, it is even more exciting that researchers are on the verge of introducing systems that can perform large-scale combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based probability models and their associated inference and learning algorithms. We review exact techniques and various approximate, computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm ("loopy" belief propagation). We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors and performances of the techniques using a unifying cost function, free energy.
Song, Yingchao; Luo, Haibo; Ma, Junkai; Hui, Bin; Chang, Zheng
2018-04-01
Sky detection plays an essential role in various computer vision applications. Most existing sky detection approaches, being trained on ideal dataset, may lose efficacy when facing unfavorable conditions like the effects of weather and lighting conditions. In this paper, a novel algorithm for sky detection in hazy images is proposed from the perspective of probing the density of haze. We address the problem by an image segmentation and a region-level classification. To characterize the sky of hazy scenes, we unprecedentedly introduce several haze-relevant features that reflect the perceptual hazy density and the scene depth. Based on these features, the sky is separated by two imbalance SVM classifiers and a similarity measurement. Moreover, a sky dataset (named HazySky) with 500 annotated hazy images is built for model training and performance evaluation. To evaluate the performance of our method, we conducted extensive experiments both on our HazySky dataset and the SkyFinder dataset. The results demonstrate that our method performs better on the detection accuracy than previous methods, not only under hazy scenes, but also under other weather conditions.
Song, Yingchao; Luo, Haibo; Ma, Junkai; Hui, Bin; Chang, Zheng
2018-01-01
Sky detection plays an essential role in various computer vision applications. Most existing sky detection approaches, being trained on ideal dataset, may lose efficacy when facing unfavorable conditions like the effects of weather and lighting conditions. In this paper, a novel algorithm for sky detection in hazy images is proposed from the perspective of probing the density of haze. We address the problem by an image segmentation and a region-level classification. To characterize the sky of hazy scenes, we unprecedentedly introduce several haze-relevant features that reflect the perceptual hazy density and the scene depth. Based on these features, the sky is separated by two imbalance SVM classifiers and a similarity measurement. Moreover, a sky dataset (named HazySky) with 500 annotated hazy images is built for model training and performance evaluation. To evaluate the performance of our method, we conducted extensive experiments both on our HazySky dataset and the SkyFinder dataset. The results demonstrate that our method performs better on the detection accuracy than previous methods, not only under hazy scenes, but also under other weather conditions. PMID:29614778
Linear feature detection algorithm for astronomical surveys - I. Algorithm description
NASA Astrophysics Data System (ADS)
Bektešević, Dino; Vinković, Dejan
2017-11-01
Computer vision algorithms are powerful tools in astronomical image analyses, especially when automation of object detection and extraction is required. Modern object detection algorithms in astronomy are oriented towards detection of stars and galaxies, ignoring completely the detection of existing linear features. With the emergence of wide-field sky surveys, linear features attract scientific interest as possible trails of fast flybys of near-Earth asteroids and meteors. In this work, we describe a new linear feature detection algorithm designed specifically for implementation in big data astronomy. The algorithm combines a series of algorithmic steps that first remove other objects (stars and galaxies) from the image and then enhance the line to enable more efficient line detection with the Hough algorithm. The rate of false positives is greatly reduced thanks to a step that replaces possible line segments with rectangles and then compares lines fitted to the rectangles with the lines obtained directly from the image. The speed of the algorithm and its applicability in astronomical surveys are also discussed.
A novel automatic segmentation workflow of axial breast DCE-MRI
NASA Astrophysics Data System (ADS)
Besbes, Feten; Gargouri, Norhene; Damak, Alima; Sellami, Dorra
2018-04-01
In this paper we propose a novel process of a fully automatic breast tissue segmentation which is independent from expert calibration and contrast. The proposed algorithm is composed by two major steps. The first step consists in the detection of breast boundaries. It is based on image content analysis and Moore-Neighbour tracing algorithm. As a processing step, Otsu thresholding and neighbors algorithm are applied. Then, the external area of breast is removed to get an approximated breast region. The second preprocessing step is the delineation of the chest wall which is considered as the lowest cost path linking three key points; These points are located automatically at the breast. They are respectively, the left and right boundary points and the middle upper point placed at the sternum region using statistical method. For the minimum cost path search problem, we resolve it through Dijkstra algorithm. Evaluation results reveal the robustness of our process face to different breast densities, complex forms and challenging cases. In fact, the mean overlap between manual segmentation and automatic segmentation through our method is 96.5%. A comparative study shows that our proposed process is competitive and faster than existing methods. The segmentation of 120 slices with our method is achieved at least in 20.57+/-5.2s.
An efficient parallel termination detection algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, A. H.; Crivelli, S.; Jessup, E. R.
2004-05-27
Information local to any one processor is insufficient to monitor the overall progress of most distributed computations. Typically, a second distributed computation for detecting termination of the main computation is necessary. In order to be a useful computational tool, the termination detection routine must operate concurrently with the main computation, adding minimal overhead, and it must promptly and correctly detect termination when it occurs. In this paper, we present a new algorithm for detecting the termination of a parallel computation on distributed-memory MIMD computers that satisfies all of those criteria. A variety of termination detection algorithms have been devised. Ofmore » these, the algorithm presented by Sinha, Kale, and Ramkumar (henceforth, the SKR algorithm) is unique in its ability to adapt to the load conditions of the system on which it runs, thereby minimizing the impact of termination detection on performance. Because their algorithm also detects termination quickly, we consider it to be the most efficient practical algorithm presently available. The termination detection algorithm presented here was developed for use in the PMESC programming library for distributed-memory MIMD computers. Like the SKR algorithm, our algorithm adapts to system loads and imposes little overhead. Also like the SKR algorithm, ours is tree-based, and it does not depend on any assumptions about the physical interconnection topology of the processors or the specifics of the distributed computation. In addition, our algorithm is easier to implement and requires only half as many tree traverses as does the SKR algorithm. This paper is organized as follows. In section 2, we define our computational model. In section 3, we review the SKR algorithm. We introduce our new algorithm in section 4, and prove its correctness in section 5. We discuss its efficiency and present experimental results in section 6.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orton, Elizabeth J., E-mail: eorton@physics.carleton.ca; Kemp, Robert A. de; Glenn Wells, R.
2014-10-15
Purpose: Myocardial perfusion imaging (MPI) is used for diagnosis and prognosis of coronary artery disease. When MPI studies are performed with positron emission tomography (PET) and the radioactive tracer rubidium-82 chloride ({sup 82}Rb), a small but non-negligible fraction of studies (∼10%) suffer from extracardiac interference: high levels of tracer uptake in structures adjacent to the heart which mask the true cardiac tracer uptake. At present, there are no clinically available options for automated detection or correction of this problem. This work presents an algorithm that detects and classifies the severity of extracardiac interference in {sup 82}Rb PET MPI images andmore » reports the accuracy and failure rate of the method. Methods: A set of 200 {sup 82}Rb PET MPI images were reviewed by a trained nuclear cardiologist and interference severity reported on a four-class scale, from absent to severe. An automated algorithm was developed that compares uptake at the external border of the myocardium to three thresholds, separating the four interference severity classes. A minimum area of interference was required, and the search region was limited to that facing the stomach wall and spleen. Maximizing concordance (Cohen’s Kappa) and minimizing failure rate for the set of 200 clinician-read images were used to find the optimal population-based constants defining search limit and minimum area parameters and the thresholds for the algorithm. Tenfold stratified cross-validation was used to find optimal thresholds and report accuracy measures (sensitivity, specificity, and Kappa). Results: The algorithm was capable of detecting interference with a mean [95% confidence interval] sensitivity/specificity/Kappa of 0.97 [0.94, 1.00]/0.82 [0.66, 0.98]/0.79 [0.65, 0.92], and a failure rate of 1.0% ± 0.2%. The four-class overall Kappa was 0.72 [0.64, 0.81]. Separation of mild versus moderate-or-greater interference was performed with good accuracy (sensitivity/specificity/Kappa = 0.92 [0.86, 0.99]/0.86 [0.71, 1.00]/0.78 [0.64, 0.92]), while separation of moderate versus severe interference severity classes showed reduced sensitivity/Kappa but little change in specificity (sensitivity/specificity/Kappa = 0.83 [0.77, 0.88]/0.82 [0.77, 0.88]/0.65 [0.60, 0.70]). Specificity was greater than sensitivity for all interference classes. Algorithm execution time was <1 min. Conclusions: The algorithm produced here has a low failure rate and high accuracy for detection of extracardiac interference in {sup 82}Rb PET MPI scans. It provides a fast, reliable, automated method for assessing severity of extracardiac interference.« less
Millennial Filipino Student Engagement Analyzer Using Facial Feature Classification
NASA Astrophysics Data System (ADS)
Manseras, R.; Eugenio, F.; Palaoag, T.
2018-03-01
Millennials has been a word of mouth of everybody and a target market of various companies nowadays. In the Philippines, they comprise one third of the total population and most of them are still in school. Having a good education system is important for this generation to prepare them for better careers. And a good education system means having quality instruction as one of the input component indicators. In a classroom environment, teachers use facial features to measure the affect state of the class. Emerging technologies like Affective Computing is one of today’s trends to improve quality instruction delivery. This, together with computer vision, can be used in analyzing affect states of the students and improve quality instruction delivery. This paper proposed a system of classifying student engagement using facial features. Identifying affect state, specifically Millennial Filipino student engagement, is one of the main priorities of every educator and this directed the authors to develop a tool to assess engagement percentage. Multiple face detection framework using Face API was employed to detect as many student faces as possible to gauge current engagement percentage of the whole class. The binary classifier model using Support Vector Machine (SVM) was primarily set in the conceptual framework of this study. To achieve the most accuracy performance of this model, a comparison of SVM to two of the most widely used binary classifiers were tested. Results show that SVM bested RandomForest and Naive Bayesian algorithms in most of the experiments from the different test datasets.
A biologically inspired neural network model to transformation invariant object recognition
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz
2007-09-01
Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to perform a successful recognition task in general. Further, the residual critic error in DHP is generally smaller than that of HDP, and DHP achieves a 100% success rate more frequently than HDP for individual objects/subjects. On the other hand, HDP is more robust than the DHP as far as success rate across the database is concerned when applied in a stochastic and uncertain environment, and the computational time involved in DHP is more.
A Method of Face Detection with Bayesian Probability
NASA Astrophysics Data System (ADS)
Sarker, Goutam
2010-10-01
The objective of face detection is to identify all images which contain a face, irrespective of its orientation, illumination conditions etc. This is a hard problem, because the faces are highly variable in size, shape lighting conditions etc. Many methods have been designed and developed to detect faces in a single image. The present paper is based on one `Appearance Based Method' which relies on learning the facial and non facial features from image examples. This in its turn is based on statistical analysis of examples and counter examples of facial images and employs Bayesian Conditional Classification Rule to detect the probability of belongingness of a face (or non-face) within an image frame. The detection rate of the present system is very high and thereby the number of false positive and false negative detection is substantially low.
Radar Detection of Marine Mammals
2011-09-30
BFT-BPT algorithm for use with our radar data. This track - before - detect algorithm had been effective in enhancing small but persistent signatures in...will be possible with the detect before track algorithm. 4 We next evaluated the track before detect algorithm, the BFT-BPT, on the CEDAR data
How anaesthesiologists understand difficult airway guidelines-an interview study.
Knudsen, Kati; Pöder, Ulrika; Nilsson, Ulrica; Högman, Marieann; Larsson, Anders; Larsson, Jan
2017-11-01
In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. A qualitative phenomenographic design was chosen to explore anaesthesiologists' views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts' consensus, a set of scientifically based guidelines for handling the difficult airway. The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently.
Performances of the New Real Time Tsunami Detection Algorithm applied to tide gauges data
NASA Astrophysics Data System (ADS)
Chierici, F.; Embriaco, D.; Morucci, S.
2017-12-01
Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection (TDA) based on the real-time tide removal and real-time band-pass filtering of seabed pressure time series acquired by Bottom Pressure Recorders. The TDA algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. In this work we present the performance of the TDA algorithm applied to tide gauge data. We have adapted the new tsunami detection algorithm and the Monte Carlo test methodology to tide gauges. Sea level data acquired by coastal tide gauges in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event generated by Tohoku earthquake on March 11th 2011, using data recorded by several tide gauges scattered all over the Pacific area.
Managing Network Partitions in Structured P2P Networks
NASA Astrophysics Data System (ADS)
Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif
Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.
Tian, Xiaochun; Chen, Jiabin; Han, Yongqiang; Shang, Jianyu; Li, Nan
2016-01-01
Zero velocity update (ZUPT) plays an important role in pedestrian navigation algorithms with the premise that the zero velocity interval (ZVI) should be detected accurately and effectively. A novel adaptive ZVI detection algorithm based on a smoothed pseudo Wigner–Ville distribution to remove multiple frequencies intelligently (SPWVD-RMFI) is proposed in this paper. The novel algorithm adopts the SPWVD-RMFI method to extract the pedestrian gait frequency and to calculate the optimal ZVI detection threshold in real time by establishing the function relationships between the thresholds and the gait frequency; then, the adaptive adjustment of thresholds with gait frequency is realized and improves the ZVI detection precision. To put it into practice, a ZVI detection experiment is carried out; the result shows that compared with the traditional fixed threshold ZVI detection method, the adaptive ZVI detection algorithm can effectively reduce the false and missed detection rate of ZVI; this indicates that the novel algorithm has high detection precision and good robustness. Furthermore, pedestrian trajectory positioning experiments at different walking speeds are carried out to evaluate the influence of the novel algorithm on positioning precision. The results show that the ZVI detected by the adaptive ZVI detection algorithm for pedestrian trajectory calculation can achieve better performance. PMID:27669266
Novel face-detection method under various environments
NASA Astrophysics Data System (ADS)
Jing, Min-Quan; Chen, Ling-Hwei
2009-06-01
We propose a method to detect a face with different poses under various environments. On the basis of skin color information, skin regions are first extracted from an input image. Next, the shoulder part is cut out by using shape information and the head part is then identified as a face candidate. For a face candidate, a set of geometric features is applied to determine if it is a profile face. If not, then a set of eyelike rectangles extracted from the face candidate and the lighting distribution are used to determine if the face candidate is a nonprofile face. Experimental results show that the proposed method is robust under a wide range of lighting conditions, different poses, and races. The detection rate for the HHI face database is 93.68%. For the Champion face database, the detection rate is 95.15%.
A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony
Othman, Zulaiha Ali
2014-01-01
Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition. PMID:25165748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmagarmid, A.K.
The availability of distributed data bases is directly affected by the timely detection and resolution of deadlocks. Consequently, mechanisms are needed to make deadlock detection algorithms resilient to failures. Presented first is a centralized algorithm that allows transactions to have multiple requests outstanding. Next, a new distributed deadlock detection algorithm (DDDA) is presented, using a global detector (GD) to detect global deadlocks and local detectors (LDs) to detect local deadlocks. This algorithm essentially identifies transaction-resource interactions that m cause global (multisite) deadlocks. Third, a deadlock detection algorithm utilizing a transaction-wait-for (TWF) graph is presented. It is a fully disjoint algorithmmore » that allows multiple outstanding requests. The proposed algorithm can achieve improved overall performance by using multiple disjoint controllers coupled with the two-phase property while maintaining the simplicity of centralized schemes. Fourth, an algorithm that combines deadlock detection and avoidance is given. This algorithm uses concurrent transaction controllers and resource coordinators to achieve maximum distribution. The language of CSP is used to describe this algorithm. Finally, two efficient deadlock resolution protocols are given along with some guidelines to be used in choosing a transaction for abortion.« less
Discriminating Projections for Estimating Face Age in Wild Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokola, Ryan A; Bolme, David S; Ricanek, Karl
2014-01-01
We introduce a novel approach to estimating the age of a human from a single uncontrolled image. Current face age estimation algorithms work well in highly controlled images, and some are robust to changes in illumination, but it is usually assumed that images are close to frontal. This bias is clearly seen in the datasets that are commonly used to evaluate age estimation, which either entirely or mostly consist of frontal images. Using pose-specific projections, our algorithm maps image features into a pose-insensitive latent space that is discriminative with respect to age. Age estimation is then performed using a multi-classmore » SVM. We show that our approach outperforms other published results on the Images of Groups dataset, which is the only age-related dataset with a non-trivial number of off-axis face images, and that we are competitive with recent age estimation algorithms on the mostly-frontal FG-NET dataset. We also experimentally demonstrate that our feature projections introduce insensitivity to pose.« less
Constrained Metric Learning by Permutation Inducing Isometries.
Bosveld, Joel; Mahmood, Arif; Huynh, Du Q; Noakes, Lyle
2016-01-01
The choice of metric critically affects the performance of classification and clustering algorithms. Metric learning algorithms attempt to improve performance, by learning a more appropriate metric. Unfortunately, most of the current algorithms learn a distance function which is not invariant to rigid transformations of images. Therefore, the distances between two images and their rigidly transformed pair may differ, leading to inconsistent classification or clustering results. We propose to constrain the learned metric to be invariant to the geometry preserving transformations of images that induce permutations in the feature space. The constraint that these transformations are isometries of the metric ensures consistent results and improves accuracy. Our second contribution is a dimension reduction technique that is consistent with the isometry constraints. Our third contribution is the formulation of the isometry constrained logistic discriminant metric learning (IC-LDML) algorithm, by incorporating the isometry constraints within the objective function of the LDML algorithm. The proposed algorithm is compared with the existing techniques on the publicly available labeled faces in the wild, viewpoint-invariant pedestrian recognition, and Toy Cars data sets. The IC-LDML algorithm has outperformed existing techniques for the tasks of face recognition, person identification, and object classification by a significant margin.
Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas.
Liu, Yanpeng; Li, Yibin; Ma, Xin; Song, Rui
2017-03-29
In the pattern recognition domain, deep architectures are currently widely used and they have achieved fine results. However, these deep architectures make particular demands, especially in terms of their requirement for big datasets and GPU. Aiming to gain better results without deep networks, we propose a simplified algorithm framework using fusion features extracted from the salient areas of faces. Furthermore, the proposed algorithm has achieved a better result than some deep architectures. For extracting more effective features, this paper firstly defines the salient areas on the faces. This paper normalizes the salient areas of the same location in the faces to the same size; therefore, it can extracts more similar features from different subjects. LBP and HOG features are extracted from the salient areas, fusion features' dimensions are reduced by Principal Component Analysis (PCA) and we apply several classifiers to classify the six basic expressions at once. This paper proposes a salient areas definitude method which uses peak expressions frames compared with neutral faces. This paper also proposes and applies the idea of normalizing the salient areas to align the specific areas which express the different expressions. As a result, the salient areas found from different subjects are the same size. In addition, the gamma correction method is firstly applied on LBP features in our algorithm framework which improves our recognition rates significantly. By applying this algorithm framework, our research has gained state-of-the-art performances on CK+ database and JAFFE database.
Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis.
Yang, Chao; He, Zengyou; Yu, Weichuan
2009-01-06
In mass spectrometry (MS) based proteomic data analysis, peak detection is an essential step for subsequent analysis. Recently, there has been significant progress in the development of various peak detection algorithms. However, neither a comprehensive survey nor an experimental comparison of these algorithms is yet available. The main objective of this paper is to provide such a survey and to compare the performance of single spectrum based peak detection methods. In general, we can decompose a peak detection procedure into three consequent parts: smoothing, baseline correction and peak finding. We first categorize existing peak detection algorithms according to the techniques used in different phases. Such a categorization reveals the differences and similarities among existing peak detection algorithms. Then, we choose five typical peak detection algorithms to conduct a comprehensive experimental study using both simulation data and real MALDI MS data. The results of comparison show that the continuous wavelet-based algorithm provides the best average performance.
Facial Asymmetry-Based Age Group Estimation: Role in Recognizing Age-Separated Face Images.
Sajid, Muhammad; Taj, Imtiaz Ahmad; Bajwa, Usama Ijaz; Ratyal, Naeem Iqbal
2018-04-23
Face recognition aims to establish the identity of a person based on facial characteristics. On the other hand, age group estimation is the automatic calculation of an individual's age range based on facial features. Recognizing age-separated face images is still a challenging research problem due to complex aging processes involving different types of facial tissues, skin, fat, muscles, and bones. Certain holistic and local facial features are used to recognize age-separated face images. However, most of the existing methods recognize face images without incorporating the knowledge learned from age group estimation. In this paper, we propose an age-assisted face recognition approach to handle aging variations. Inspired by the observation that facial asymmetry is an age-dependent intrinsic facial feature, we first use asymmetric facial dimensions to estimate the age group of a given face image. Deeply learned asymmetric facial features are then extracted for face recognition using a deep convolutional neural network (dCNN). Finally, we integrate the knowledge learned from the age group estimation into the face recognition algorithm using the same dCNN. This integration results in a significant improvement in the overall performance compared to using the face recognition algorithm alone. The experimental results on two large facial aging datasets, the MORPH and FERET sets, show that the proposed age group estimation based on the face recognition approach yields superior performance compared to some existing state-of-the-art methods. © 2018 American Academy of Forensic Sciences.
High-Velocity Clouds in M 83 and M 51
NASA Astrophysics Data System (ADS)
Miller, E. D.; Bregman, J. N.
2005-06-01
Various scenarios have been proposed to explain the origin of the Galactic high-velocity clouds, predicting different distances and implying widely varying properties for the Galaxy's gaseous halo. To eliminate the difficulties of studying the Galactic halo from within, we have embarked on a program to study anomalous neutral gas in external galaxies, and here we present the results for two nearby, face-on spiral galaxies, M 83 and M 51. Significant amounts of anomalous-velocity H I are detected in deep VLA 21-cm observations, including an extended, slowly rotating disk and several discrete H I clouds. Our detection algorithm reaches a limiting H I source mass of 7×105 M⊙, and it allows for detailed statistical analysis of the false detection rate. We use this to place limits on the HVC mass distributions in these galaxies and the Milky Way; if the HVC populations are similar, then the Galacto-centric HVC distances must be less than about 25 kpc.
How anaesthesiologists understand difficult airway guidelines—an interview study
Knudsen, Kati; Nilsson, Ulrica; Larsson, Anders; Larsson, Jan
2017-01-01
Background In the practice of anaesthesia, clinical guidelines that aim to improve the safety of airway procedures have been developed. The aim of this study was to explore how anaesthesiologists understand or conceive of difficult airway management algorithms. Methods A qualitative phenomenographic design was chosen to explore anaesthesiologists’ views on airway algorithms. Anaesthesiologists working in three hospitals were included. Individual face-to-face interviews were conducted. Results Four different ways of understanding were identified, describing airway algorithms as: (A) a law-like rule for how to act in difficult airway situations; (B) a cognitive aid, an action plan for difficult airway situations; (C) a basis for developing flexible, personal action plans for the difficult airway; and (D) the experts’ consensus, a set of scientifically based guidelines for handling the difficult airway. Conclusions The interviewed anaesthesiologists understood difficult airway management guidelines/algorithms very differently. PMID:29299973
Detection of emotional faces: salient physical features guide effective visual search.
Calvo, Manuel G; Nummenmaa, Lauri
2008-08-01
In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent, surprised and disgusted faces was found both under upright and inverted display conditions. Inversion slowed down the detection of these faces less than that of others (fearful, angry, and sad). Accordingly, the detection advantage involves processing of featural rather than configural information. The facial features responsible for the detection advantage are located in the mouth rather than the eye region. Computationally modeled visual saliency predicted both attentional orienting and detection. Saliency was greatest for the faces (happy) and regions (mouth) that were fixated earlier and detected faster, and there was close correspondence between the onset of the modeled saliency peak and the time at which observers initially fixated the faces. The authors conclude that visual saliency of specific facial features--especially the smiling mouth--is responsible for facilitated initial orienting, which thus shortens detection. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Chen, Wenfeng; Liu, Chang Hong; Nakabayashi, Kazuyo
2012-01-01
Recent research has shown that the presence of a task-irrelevant attractive face can induce a transient diversion of attention from a perceptual task that requires covert deployment of attention to one of the two locations. However, it is not known whether this spontaneous appraisal for facial beauty also modulates attention in change detection among multiple locations, where a slower, and more controlled search process is simultaneously affected by the magnitude of a change and the facial distinctiveness. Using the flicker paradigm, this study examines how spontaneous appraisal for facial beauty affects the detection of identity change among multiple faces. Participants viewed a display consisting of two alternating frames of four faces separated by a blank frame. In half of the trials, one of the faces (target face) changed to a different person. The task of the participant was to indicate whether a change of face identity had occurred. The results showed that (1) observers were less efficient at detecting identity change among multiple attractive faces relative to unattractive faces when the target and distractor faces were not highly distinctive from one another; and (2) it is difficult to detect a change if the new face is similar to the old. The findings suggest that attractive faces may interfere with the attention-switch process in change detection. The results also show that attention in change detection was strongly modulated by physical similarity between the alternating faces. Although facial beauty is a powerful stimulus that has well-demonstrated priority, its influence on change detection is easily superseded by low-level image similarity. The visual system appears to take a different approach to facial beauty when a task requires resource-demanding feature comparisons.
NASA Astrophysics Data System (ADS)
Bal, A.; Alam, M. S.; Aslan, M. S.
2006-05-01
Often sensor ego-motion or fast target movement causes the target to temporarily go out of the field-of-view leading to reappearing target detection problem in target tracking applications. Since the target goes out of the current frame and reenters at a later frame, the reentering location and variations in rotation, scale, and other 3D orientations of the target are not known thus complicating the detection algorithm has been developed using Fukunaga-Koontz Transform (FKT) and distance classifier correlation filter (DCCF). The detection algorithm uses target and background information, extracted from training samples, to detect possible candidate target images. The detected candidate target images are then introduced into the second algorithm, DCCF, called clutter rejection module, to determine the target coordinates are detected and tracking algorithm is initiated. The performance of the proposed FKT-DCCF based target detection algorithm has been tested using real-world forward looking infrared (FLIR) video sequences.
Dense-HOG-based drift-reduced 3D face tracking for infant pain monitoring
NASA Astrophysics Data System (ADS)
Saeijs, Ronald W. J. J.; Tjon A Ten, Walther E.; de With, Peter H. N.
2017-03-01
This paper presents a new algorithm for 3D face tracking intended for clinical infant pain monitoring. The algorithm uses a cylinder head model and 3D head pose recovery by alignment of dynamically extracted templates based on dense-HOG features. The algorithm includes extensions for drift reduction, using re-registration in combination with multi-pose state estimation by means of a square-root unscented Kalman filter. The paper reports experimental results on videos of moving infants in hospital who are relaxed or in pain. Results show good tracking behavior for poses up to 50 degrees from upright-frontal. In terms of eye location error relative to inter-ocular distance, the mean tracking error is below 9%.
NASA Astrophysics Data System (ADS)
Moradi, Saed; Moallem, Payman; Sabahi, Mohamad Farzan
2018-03-01
False alarm rate and detection rate are still two contradictory metrics for infrared small target detection in an infrared search and track system (IRST), despite the development of new detection algorithms. In certain circumstances, not detecting true targets is more tolerable than detecting false items as true targets. Hence, considering background clutter and detector noise as the sources of the false alarm in an IRST system, in this paper, a false alarm aware methodology is presented to reduce false alarm rate while the detection rate remains undegraded. To this end, advantages and disadvantages of each detection algorithm are investigated and the sources of the false alarms are determined. Two target detection algorithms having independent false alarm sources are chosen in a way that the disadvantages of the one algorithm can be compensated by the advantages of the other one. In this work, multi-scale average absolute gray difference (AAGD) and Laplacian of point spread function (LoPSF) are utilized as the cornerstones of the desired algorithm of the proposed methodology. After presenting a conceptual model for the desired algorithm, it is implemented through the most straightforward mechanism. The desired algorithm effectively suppresses background clutter and eliminates detector noise. Also, since the input images are processed through just four different scales, the desired algorithm has good capability for real-time implementation. Simulation results in term of signal to clutter ratio and background suppression factor on real and simulated images prove the effectiveness and the performance of the proposed methodology. Since the desired algorithm was developed based on independent false alarm sources, our proposed methodology is expandable to any pair of detection algorithms which have different false alarm sources.
ERIC Educational Resources Information Center
Saltan, Fatih
2017-01-01
Online Algorithm Visualization (OAV) is one of the recent developments in the instructional technology field that aims to help students handle difficulties faced when they begin to learn programming. This study aims to investigate the effect of online algorithm visualization on students' achievement in the introduction to programming course. To…
Multisensor-based human detection and tracking for mobile service robots.
Bellotto, Nicola; Hu, Huosheng
2009-02-01
One of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In this paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based leg detection using the onboard laser range finder (LRF). The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to also be very discriminative in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera, and the information is fused to the legs' position using a sequential implementation of unscented Kalman filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments.
NASA Astrophysics Data System (ADS)
Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen
2017-06-01
Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.
Development of an Autonomous Face Recognition Machine.
1986-12-08
This approach, like Baron’s, would be a very time consuming task. The problem of locating a face in Bromley’s work was the least complex of the three...top level design and the development and design decisions that were made in developing the Autonomous Face Recognition Machine (AFRM). The chapter is...images within a digital image. The second sectio examines the algorithm used in performing face recognition. The decision to divide the development
Face liveness detection using shearlet-based feature descriptors
NASA Astrophysics Data System (ADS)
Feng, Litong; Po, Lai-Man; Li, Yuming; Yuan, Fang
2016-07-01
Face recognition is a widely used biometric technology due to its convenience but it is vulnerable to spoofing attacks made by nonreal faces such as photographs or videos of valid users. The antispoof problem must be well resolved before widely applying face recognition in our daily life. Face liveness detection is a core technology to make sure that the input face is a live person. However, this is still very challenging using conventional liveness detection approaches of texture analysis and motion detection. The aim of this paper is to propose a feature descriptor and an efficient framework that can be used to effectively deal with the face liveness detection problem. In this framework, new feature descriptors are defined using a multiscale directional transform (shearlet transform). Then, stacked autoencoders and a softmax classifier are concatenated to detect face liveness. We evaluated this approach using the CASIA Face antispoofing database and replay-attack database. The experimental results show that our approach performs better than the state-of-the-art techniques following the provided protocols of these databases, and it is possible to significantly enhance the security of the face recognition biometric system. In addition, the experimental results also demonstrate that this framework can be easily extended to classify different spoofing attacks.
Face liveness detection for face recognition based on cardiac features of skin color image
NASA Astrophysics Data System (ADS)
Suh, Kun Ha; Lee, Eui Chul
2016-07-01
With the growth of biometric technology, spoofing attacks have been emerged a threat to the security of the system. Main spoofing scenarios in the face recognition system include the printing attack, replay attack, and 3D mask attack. To prevent such attacks, techniques that evaluating liveness of the biometric data can be considered as a solution. In this paper, a novel face liveness detection method based on cardiac signal extracted from face is presented. The key point of proposed method is that the cardiac characteristic is detected in live faces but not detected in non-live faces. Experimental results showed that the proposed method can be effective way for determining printing attack or 3D mask attack.
Jeppesen, J; Beniczky, S; Fuglsang Frederiksen, A; Sidenius, P; Johansen, P
2017-07-01
Earlier studies have shown that short term heart rate variability (HRV) analysis of ECG seems promising for detection of epileptic seizures. A precise and accurate automatic R-peak detection algorithm is a necessity in a real-time, continuous measurement of HRV, in a portable ECG device. We used the portable CE marked ePatch® heart monitor to record the ECG of 14 patients, who were enrolled in the videoEEG long term monitoring unit for clinical workup of epilepsy. Recordings of the first 7 patients were used as training set of data for the R-peak detection algorithm and the recordings of the last 7 patients (467.6 recording hours) were used to test the performance of the algorithm. We aimed to modify an existing QRS-detection algorithm to a more precise R-peak detection algorithm to avoid the possible jitter Qand S-peaks can create in the tachogram, which causes error in short-term HRVanalysis. The proposed R-peak detection algorithm showed a high sensitivity (Se = 99.979%) and positive predictive value (P+ = 99.976%), which was comparable with a previously published QRS-detection algorithm for the ePatch® ECG device, when testing the same dataset. The novel R-peak detection algorithm designed to avoid jitter has very high sensitivity and specificity and thus is a suitable tool for a robust, fast, real-time HRV-analysis in patients with epilepsy, creating the possibility for real-time seizure detection for these patients.
Rooijakkers, Michiel; Rabotti, Chiara; Bennebroek, Martijn; van Meerbergen, Jef; Mischi, Massimo
2011-01-01
Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however still unfeasible due to the computational complexity of noise robust solutions. In this paper an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, while increasing the R-peak detection quality compared to existing R-peak detection schemes. Validation of the algorithm is performed on two manually annotated datasets, the MIT/BIH Arrhythmia database and an in-house abdominal database. Both R-peak detection quality and computational complexity are compared to state-of-the-art algorithms as described in the literature. With a detection error rate of 0.22% and 0.12% on the MIT/BIH Arrhythmia and in-house databases, respectively, the quality of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.
Multiview face detection based on position estimation over multicamera surveillance system
NASA Astrophysics Data System (ADS)
Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh
2012-02-01
In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.
Robust vehicle detection in different weather conditions: Using MIPM
Menéndez, José Manuel; Jiménez, David
2018-01-01
Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions. PMID:29513664
DEEPEN: A negation detection system for clinical text incorporating dependency relation into NegEx
Mehrabi, Saeed; Krishnan, Anand; Sohn, Sunghwan; Roch, Alexandra M; Schmidt, Heidi; Kesterson, Joe; Beesley, Chris; Dexter, Paul; Schmidt, C. Max; Liu, Hongfang; Palakal, Mathew
2018-01-01
In Electronic Health Records (EHRs), much of valuable information regarding patients’ conditions is embedded in free text format. Natural language processing (NLP) techniques have been developed to extract clinical information from free text. One challenge faced in clinical NLP is that the meaning of clinical entities is heavily affected by modifiers such as negation. A negation detection algorithm, NegEx, applies a simplistic approach that has been shown to be powerful in clinical NLP. However, due to the failure to consider the contextual relationship between words within a sentence, NegEx fails to correctly capture the negation status of concepts in complex sentences. Incorrect negation assignment could cause inaccurate diagnosis of patients’ condition or contaminated study cohorts. We developed a negation algorithm called DEEPEN to decrease NegEx’s false positives by taking into account the dependency relationship between negation words and concepts within a sentence using Stanford dependency parser. The system was developed and tested using EHR data from Indiana University (IU) and it was further evaluated on Mayo Clinic dataset to assess its generalizability. The evaluation results demonstrate DEEPEN, which incorporates dependency parsing into NegEx, can reduce the number of incorrect negation assignment for patients with positive findings, and therefore improve the identification of patients with the target clinical findings in EHRs. PMID:25791500
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou
2006-03-01
Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.
NASA Technical Reports Server (NTRS)
Britt, Charles L.; Bracalente, Emedio M.
1992-01-01
The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.
Automated facial attendance logger for students
NASA Astrophysics Data System (ADS)
Krithika, L. B.; Kshitish, S.; Kishore, M. R.
2017-11-01
From the past two decades, various spheres of activity are in the aspect of ‘Face recognition’ as an essential tool. The complete series of actions of face recognition is composed of 3 stages: Face Detection, Feature Extraction and Recognition. In this paper, we make an effort to put forth a new application of face recognition and detection in education. The proposed system scans the classroom and detects the face of the students in class and matches the scanned face with the templates that is available in the database and updates the attendance of the respective students.
Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.
Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen
2014-01-01
Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.
Machine Learning Methods for Attack Detection in the Smart Grid.
Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent
2016-08-01
Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.
Low-complexity R-peak detection for ambulatory fetal monitoring.
Rooijakkers, Michael J; Rabotti, Chiara; Oei, S Guid; Mischi, Massimo
2012-07-01
Non-invasive fetal health monitoring during pregnancy is becoming increasingly important because of the increasing number of high-risk pregnancies. Despite recent advances in signal-processing technology, which have enabled fetal monitoring during pregnancy using abdominal electrocardiogram (ECG) recordings, ubiquitous fetal health monitoring is still unfeasible due to the computational complexity of noise-robust solutions. In this paper, an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, without reducing the R-peak detection performance compared to the existing R-peak detection schemes. Validation of the algorithm is performed on three manually annotated datasets. With a detection error rate of 0.23%, 1.32% and 9.42% on the MIT/BIH Arrhythmia and in-house maternal and fetal databases, respectively, the detection rate of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.
A joint swarm intelligence algorithm for multi-user detection in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Hu, Fengye; Du, Dakun; Zhang, Peng; Wang, Zhijun
2014-11-01
In the multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system, traditional multi-user detection (MUD) algorithms that usually used to suppress multiple access interference are difficult to balance system detection performance and the complexity of the algorithm. To solve this problem, this paper proposes a joint swarm intelligence algorithm called Ant Colony and Particle Swarm Optimisation (AC-PSO) by integrating particle swarm optimisation (PSO) and ant colony optimisation (ACO) algorithms. According to simulation results, it has been shown that, with low computational complexity, the MUD for the MIMO-OFDM system based on AC-PSO algorithm gains comparable MUD performance with maximum likelihood algorithm. Thus, the proposed AC-PSO algorithm provides a satisfactory trade-off between computational complexity and detection performance.
A new real-time tsunami detection algorithm
NASA Astrophysics Data System (ADS)
Chierici, F.; Embriaco, D.; Pignagnoli, L.
2016-12-01
Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection based on the real-time tide removal and real-time band-pass filtering of sea-bed pressure recordings. The algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability, at low computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. Pressure data sets acquired by Bottom Pressure Recorders in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event which occurred at Haida Gwaii on October 28th, 2012 using data recorded by the Bullseye underwater node of Ocean Networks Canada. The algorithm successfully ran for test purpose in year-long missions onboard the GEOSTAR stand-alone multidisciplinary abyssal observatory, deployed in the Gulf of Cadiz during the EC project NEAREST and on NEMO-SN1 cabled observatory deployed in the Western Ionian Sea, operational node of the European research infrastructure EMSO.
Detection of vehicle parts based on Faster R-CNN and relative position information
NASA Astrophysics Data System (ADS)
Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong
2018-03-01
Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.
Brain shaving: adaptive detection for brain PET data
NASA Astrophysics Data System (ADS)
Grecchi, Elisabetta; Doyle, Orla M.; Bertoldo, Alessandra; Pavese, Nicola; Turkheimer, Federico E.
2014-05-01
The intricacy of brain biology is such that the variation of imaging end-points in health and disease exhibits an unpredictable range of spatial distributions from the extremely localized to the very diffuse. This represents a challenge for the two standard approaches to analysis, the mass univariate and the multivariate that exhibit either strong specificity but not as good sensitivity (the former) or poor specificity and comparatively better sensitivity (the latter). In this work, we develop an analytical methodology for positron emission tomography that operates an extraction (‘shaving’) of coherent patterns of signal variation while maintaining control of the type I error. The methodology operates two rotations on the image data, one local using the wavelet transform and one global using the singular value decomposition. The control of specificity is obtained by using the gap statistic that selects, within each eigenvector, a subset of significantly coherent elements. Face-validity of the algorithm is demonstrated using a paradigmatic data-set with two radiotracers, [11C]-raclopride and [11C]-(R)-PK11195, measured on the same Huntington's disease patients, a disorder with a genetic based diagnosis. The algorithm is able to detect the two well-known separate but connected processes of dopamine neuronal loss (localized in the basal ganglia) and neuroinflammation (diffusive around the whole brain). These processes are at the two extremes of the distributional envelope, one being very sparse and the latter being perfectly Gaussian and they are not adequately detected by the univariate and the multivariate approaches.
The correlation study of parallel feature extractor and noise reduction approaches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewi, Deshinta Arrova; Sundararajan, Elankovan; Prabuwono, Anton Satria
2015-05-15
This paper presents literature reviews that show variety of techniques to develop parallel feature extractor and finding its correlation with noise reduction approaches for low light intensity images. Low light intensity images are normally displayed as darker images and low contrast. Without proper handling techniques, those images regularly become evidences of misperception of objects and textures, the incapability to section them. The visual illusions regularly clues to disorientation, user fatigue, poor detection and classification performance of humans and computer algorithms. Noise reduction approaches (NR) therefore is an essential step for other image processing steps such as edge detection, image segmentation,more » image compression, etc. Parallel Feature Extractor (PFE) meant to capture visual contents of images involves partitioning images into segments, detecting image overlaps if any, and controlling distributed and redistributed segments to extract the features. Working on low light intensity images make the PFE face challenges and closely depend on the quality of its pre-processing steps. Some papers have suggested many well established NR as well as PFE strategies however only few resources have suggested or mentioned the correlation between them. This paper reviews best approaches of the NR and the PFE with detailed explanation on the suggested correlation. This finding may suggest relevant strategies of the PFE development. With the help of knowledge based reasoning, computational approaches and algorithms, we present the correlation study between the NR and the PFE that can be useful for the development and enhancement of other existing PFE.« less
Methods for artifact detection and removal from scalp EEG: A review.
Islam, Md Kafiul; Rastegarnia, Amir; Yang, Zhi
2016-11-01
Electroencephalography (EEG) is the most popular brain activity recording technique used in wide range of applications. One of the commonly faced problems in EEG recordings is the presence of artifacts that come from sources other than brain and contaminate the acquired signals significantly. Therefore, much research over the past 15 years has focused on identifying ways for handling such artifacts in the preprocessing stage. However, this is still an active area of research as no single existing artifact detection/removal method is complete or universal. This article presents an extensive review of the existing state-of-the-art artifact detection and removal methods from scalp EEG for all potential EEG-based applications and analyses the pros and cons of each method. First, a general overview of the different artifact types that are found in scalp EEG and their effect on particular applications are presented. In addition, the methods are compared based on their ability to remove certain types of artifacts and their suitability in relevant applications (only functional comparison is provided not performance evaluation of methods). Finally, the future direction and expected challenges of current research is discussed. Therefore, this review is expected to be helpful for interested researchers who will develop and/or apply artifact handling algorithm/technique in future for their applications as well as for those willing to improve the existing algorithms or propose a new solution in this particular area of research. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Cascaded face alignment via intimacy definition feature
NASA Astrophysics Data System (ADS)
Li, Hailiang; Lam, Kin-Man; Chiu, Man-Yau; Wu, Kangheng; Lei, Zhibin
2017-09-01
Recent years have witnessed the emerging popularity of regression-based face aligners, which directly learn mappings between facial appearance and shape-increment manifolds. We propose a random-forest based, cascaded regression model for face alignment by using a locally lightweight feature, namely intimacy definition feature. This feature is more discriminative than the pose-indexed feature, more efficient than the histogram of oriented gradients feature and the scale-invariant feature transform feature, and more compact than the local binary feature (LBF). Experimental validation of our algorithm shows that our approach achieves state-of-the-art performance when testing on some challenging datasets. Compared with the LBF-based algorithm, our method achieves about twice the speed, 20% improvement in terms of alignment accuracy and saves an order of magnitude on memory requirement.
Raghunathan, Shriram; Gupta, Sumeet K; Markandeya, Himanshu S; Roy, Kaushik; Irazoqui, Pedro P
2010-10-30
Implantable neural prostheses that deliver focal electrical stimulation upon demand are rapidly emerging as an alternate therapy for roughly a third of the epileptic patient population that is medically refractory. Seizure detection algorithms enable feedback mechanisms to provide focally and temporally specific intervention. Real-time feasibility and computational complexity often limit most reported detection algorithms to implementations using computers for bedside monitoring or external devices communicating with the implanted electrodes. A comparison of algorithms based on detection efficacy does not present a complete picture of the feasibility of the algorithm with limited computational power, as is the case with most battery-powered applications. We present a two-dimensional design optimization approach that takes into account both detection efficacy and hardware cost in evaluating algorithms for their feasibility in an implantable application. Detection features are first compared for their ability to detect electrographic seizures from micro-electrode data recorded from kainate-treated rats. Circuit models are then used to estimate the dynamic and leakage power consumption of the compared features. A score is assigned based on detection efficacy and the hardware cost for each of the features, then plotted on a two-dimensional design space. An optimal combination of compared features is used to construct an algorithm that provides maximal detection efficacy per unit hardware cost. The methods presented in this paper would facilitate the development of a common platform to benchmark seizure detection algorithms for comparison and feasibility analysis in the next generation of implantable neuroprosthetic devices to treat epilepsy. Copyright © 2010 Elsevier B.V. All rights reserved.
2018-01-01
ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a
The Effect of Early Visual Deprivation on the Development of Face Detection
ERIC Educational Resources Information Center
Mondloch, Catherine J.; Segalowitz, Sidney J.; Lewis, Terri L.; Dywan, Jane; Le Grand, Richard; Maurer, Daphne
2013-01-01
The expertise of adults in face perception is facilitated by their ability to rapidly detect that a stimulus is a face. In two experiments, we examined the role of early visual input in the development of face detection by testing patients who had been treated as infants for bilateral congenital cataract. Experiment 1 indicated that, at age 9 to…
A multifaceted independent performance analysis of facial subspace recognition algorithms.
Bajwa, Usama Ijaz; Taj, Imtiaz Ahmad; Anwar, Muhammad Waqas; Wang, Xuan
2013-01-01
Face recognition has emerged as the fastest growing biometric technology and has expanded a lot in the last few years. Many new algorithms and commercial systems have been proposed and developed. Most of them use Principal Component Analysis (PCA) as a base for their techniques. Different and even conflicting results have been reported by researchers comparing these algorithms. The purpose of this study is to have an independent comparative analysis considering both performance and computational complexity of six appearance based face recognition algorithms namely PCA, 2DPCA, A2DPCA, (2D)(2)PCA, LPP and 2DLPP under equal working conditions. This study was motivated due to the lack of unbiased comprehensive comparative analysis of some recent subspace methods with diverse distance metric combinations. For comparison with other studies, FERET, ORL and YALE databases have been used with evaluation criteria as of FERET evaluations which closely simulate real life scenarios. A comparison of results with previous studies is performed and anomalies are reported. An important contribution of this study is that it presents the suitable performance conditions for each of the algorithms under consideration.
Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.; Schultz, Peter F.; George, John S.
2015-07-28
An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using a combinatorial algorithm.
Olson, Eric J.
2013-06-11
An apparatus, program product, and method that run an algorithm on a hardware based processor, generate a hardware error as a result of running the algorithm, generate an algorithm output for the algorithm, compare the algorithm output to another output for the algorithm, and detect the hardware error from the comparison. The algorithm is designed to cause the hardware based processor to heat to a degree that increases the likelihood of hardware errors to manifest, and the hardware error is observable in the algorithm output. As such, electronic components may be sufficiently heated and/or sufficiently stressed to create better conditions for generating hardware errors, and the output of the algorithm may be compared at the end of the run to detect a hardware error that occurred anywhere during the run that may otherwise not be detected by traditional methodologies (e.g., due to cooling, insufficient heat and/or stress, etc.).
Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks
NASA Astrophysics Data System (ADS)
Ren, Shengwei; Zhang, Li; Zhang, Shibing
2016-10-01
Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.
Lining seam elimination algorithm and surface crack detection in concrete tunnel lining
NASA Astrophysics Data System (ADS)
Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling
2016-11-01
Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.
A community detection algorithm based on structural similarity
NASA Astrophysics Data System (ADS)
Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu
2017-09-01
In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.
Detection of dominant flow and abnormal events in surveillance video
NASA Astrophysics Data System (ADS)
Kwak, Sooyeong; Byun, Hyeran
2011-02-01
We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.
Golan, Tal; Bentin, Shlomo; DeGutis, Joseph M; Robertson, Lynn C; Harel, Assaf
2014-02-01
Expertise in face recognition is characterized by high proficiency in distinguishing between individual faces. However, faces also enjoy an advantage at the early stage of basic-level detection, as demonstrated by efficient visual search for faces among nonface objects. In the present study, we asked (1) whether the face advantage in detection is a unique signature of face expertise, or whether it generalizes to other objects of expertise, and (2) whether expertise in face detection is intrinsically linked to expertise in face individuation. We compared how groups with varying degrees of object and face expertise (typical adults, developmental prosopagnosics [DP], and car experts) search for objects within and outside their domains of expertise (faces, cars, airplanes, and butterflies) among a variable set of object distractors. Across all three groups, search efficiency (indexed by reaction time slopes) was higher for faces and airplanes than for cars and butterflies. Notably, the search slope for car targets was considerably shallower in the car experts than in nonexperts. Although the mean face slope was slightly steeper among the DPs than in the other two groups, most of the DPs' search slopes were well within the normative range. This pattern of results suggests that expertise in object detection is indeed associated with expertise at the subordinate level, that it is not specific to faces, and that the two types of expertise are distinct facilities. We discuss the potential role of experience in bridging between low-level discriminative features and high-level naturalistic categories.
Quantum machine learning for quantum anomaly detection
NASA Astrophysics Data System (ADS)
Liu, Nana; Rebentrost, Patrick
2018-04-01
Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.
A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony; Munoz, Cesar
2015-01-01
In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.
Health management system for rocket engines
NASA Technical Reports Server (NTRS)
Nemeth, Edward
1990-01-01
The functional framework of a failure detection algorithm for the Space Shuttle Main Engine (SSME) is developed. The basic algorithm is based only on existing SSME measurements. Supplemental measurements, expected to enhance failure detection effectiveness, are identified. To support the algorithm development, a figure of merit is defined to estimate the likelihood of SSME criticality 1 failure modes and the failure modes are ranked in order of likelihood of occurrence. Nine classes of failure detection strategies are evaluated and promising features are extracted as the basis for the failure detection algorithm. The failure detection algorithm provides early warning capabilities for a wide variety of SSME failure modes. Preliminary algorithm evaluation, using data from three SSME failures representing three different failure types, demonstrated indications of imminent catastrophic failure well in advance of redline cutoff in all three cases.
Clustering analysis of moving target signatures
NASA Astrophysics Data System (ADS)
Martone, Anthony; Ranney, Kenneth; Innocenti, Roberto
2010-04-01
Previously, we developed a moving target indication (MTI) processing approach to detect and track slow-moving targets inside buildings, which successfully detected moving targets (MTs) from data collected by a low-frequency, ultra-wideband radar. Our MTI algorithms include change detection, automatic target detection (ATD), clustering, and tracking. The MTI algorithms can be implemented in a real-time or near-real-time system; however, a person-in-the-loop is needed to select input parameters for the clustering algorithm. Specifically, the number of clusters to input into the cluster algorithm is unknown and requires manual selection. A critical need exists to automate all aspects of the MTI processing formulation. In this paper, we investigate two techniques that automatically determine the number of clusters: the adaptive knee-point (KP) algorithm and the recursive pixel finding (RPF) algorithm. The KP algorithm is based on a well-known heuristic approach for determining the number of clusters. The RPF algorithm is analogous to the image processing, pixel labeling procedure. Both algorithms are used to analyze the false alarm and detection rates of three operational scenarios of personnel walking inside wood and cinderblock buildings.
NASA Astrophysics Data System (ADS)
Shih, Chihhsiong
2005-01-01
Two efficient workflow are developed for the reconstruction of a 3D full color building model. One uses a point wise sensing device to sample an unknown object densely and attach color textures from a digital camera separately. The other uses an image based approach to reconstruct the model with color texture automatically attached. The point wise sensing device reconstructs the CAD model using a modified best view algorithm that collects the maximum number of construction faces in one view. The partial views of the point clouds data are then glued together using a common face between two consecutive views. Typical overlapping mesh removal and coarsening procedures are adapted to generate a unified 3D mesh shell structure. A post processing step is then taken to combine the digital image content from a separate camera with the 3D mesh shell surfaces. An indirect uv mapping procedure first divide the model faces into groups within which every face share the same normal direction. The corresponding images of these faces in a group is then adjusted using the uv map as a guidance. The final assembled image is then glued back to the 3D mesh to present a full colored building model. The result is a virtual building that can reflect the true dimension and surface material conditions of a real world campus building. The image based modeling procedure uses a commercial photogrammetry package to reconstruct the 3D model. A novel view planning algorithm is developed to guide the photos taking procedure. This algorithm successfully generate a minimum set of view angles. The set of pictures taken at these view angles can guarantee that each model face shows up at least in two of the pictures set and no more than three. The 3D model can then be reconstructed with minimum amount of labor spent in correlating picture pairs. The finished model is compared with the original object in both the topological and dimensional aspects. All the test cases show exact same topology and reasonably low dimension error ratio. Again proving the applicability of the algorithm.
Multi-object Detection and Discrimination Algorithms
2015-03-26
with an algorithm similar to a depth-‐first search . This stage of the algorithm is O(CN). From...Multi-object Detection and Discrimination Algorithms This document contains an overview of research and work performed and published at the University...of Florida from October 1, 2009 to October 31, 2013 pertaining to proposal 57306CS: Multi-object Detection and Discrimination Algorithms
Video Shot Boundary Detection Using QR-Decomposition and Gaussian Transition Detection
NASA Astrophysics Data System (ADS)
Amiri, Ali; Fathy, Mahmood
2010-12-01
This article explores the problem of video shot boundary detection and examines a novel shot boundary detection algorithm by using QR-decomposition and modeling of gradual transitions by Gaussian functions. Specifically, the authors attend to the challenges of detecting gradual shots and extracting appropriate spatiotemporal features that affect the ability of algorithms to efficiently detect shot boundaries. The algorithm utilizes the properties of QR-decomposition and extracts a block-wise probability function that illustrates the probability of video frames to be in shot transitions. The probability function has abrupt changes in hard cut transitions, and semi-Gaussian behavior in gradual transitions. The algorithm detects these transitions by analyzing the probability function. Finally, we will report the results of the experiments using large-scale test sets provided by the TRECVID 2006, which has assessments for hard cut and gradual shot boundary detection. These results confirm the high performance of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Braiek, A.; Adili, A.; Albouchi, F.; Karkri, M.; Ben Nasrallah, S.
2016-06-01
The aim of this work is to simultaneously identify the conductive and radiative parameters of a semitransparent sample using a photothermal method associated with an inverse problem. The identification of the conductive and radiative proprieties is performed by the minimization of an objective function that represents the errors between calculated temperature and measured signal. The calculated temperature is obtained from a theoretical model built with the thermal quadrupole formalism. Measurement is obtained in the rear face of the sample whose front face is excited by a crenel of heat flux. For identification procedure, a genetic algorithm is developed and used. The genetic algorithm is a useful tool in the simultaneous estimation of correlated or nearly correlated parameters, which can be a limiting factor for the gradient-based methods. The results of the identification procedure show the efficiency and the stability of the genetic algorithm to simultaneously estimate the conductive and radiative properties of clear glass.
Fast and accurate image recognition algorithms for fresh produce food safety sensing
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin; Kang, Sukwon; Lefcourt, Alan M.
2011-06-01
This research developed and evaluated the multispectral algorithms derived from hyperspectral line-scan fluorescence imaging under violet LED excitation for detection of fecal contamination on Golden Delicious apples. The algorithms utilized the fluorescence intensities at four wavebands, 680 nm, 684 nm, 720 nm, and 780 nm, for computation of simple functions for effective detection of contamination spots created on the apple surfaces using four concentrations of aqueous fecal dilutions. The algorithms detected more than 99% of the fecal spots. The effective detection of feces showed that a simple multispectral fluorescence imaging algorithm based on violet LED excitation may be appropriate to detect fecal contamination on fast-speed apple processing lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paiton, Dylan M.; Kenyon, Garrett T.; Brumby, Steven P.
An approach to detecting objects in an image dataset may combine texture/color detection, shape/contour detection, and/or motion detection using sparse, generative, hierarchical models with lateral and top-down connections. A first independent representation of objects in an image dataset may be produced using a color/texture detection algorithm. A second independent representation of objects in the image dataset may be produced using a shape/contour detection algorithm. A third independent representation of objects in the image dataset may be produced using a motion detection algorithm. The first, second, and third independent representations may then be combined into a single coherent output using amore » combinatorial algorithm.« less
Gas leak detection in infrared video with background modeling
NASA Astrophysics Data System (ADS)
Zeng, Xiaoxia; Huang, Likun
2018-03-01
Background modeling plays an important role in the task of gas detection based on infrared video. VIBE algorithm is a widely used background modeling algorithm in recent years. However, the processing speed of the VIBE algorithm sometimes cannot meet the requirements of some real time detection applications. Therefore, based on the traditional VIBE algorithm, we propose a fast prospect model and optimize the results by combining the connected domain algorithm and the nine-spaces algorithm in the following processing steps. Experiments show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Salamatova, T.; Zhukov, V.
2017-02-01
The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.
NASA Astrophysics Data System (ADS)
Zhu, Zhe
2017-08-01
The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection.
Challenges facing developers of CAD/CAM models that seek to predict human working postures
NASA Astrophysics Data System (ADS)
Wiker, Steven F.
2005-11-01
This paper outlines the need for development of human posture prediction models for Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) design applications in product, facility and work design. Challenges facing developers of posture prediction algorithms are presented and discussed.
Li, Jun; Liu, Jiangang; Liang, Jimin; Zhang, Hongchuan; Zhao, Jizheng; Rieth, Cory A.; Huber, David E.; Li, Wu; Shi, Guangming; Ai, Lin; Tian, Jie; Lee, Kang
2013-01-01
To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis. PMID:20423709
NASA Astrophysics Data System (ADS)
Weber, Bruce A.
2005-07-01
We have performed an experiment that compares the performance of human observers with that of a robust algorithm for the detection of targets in difficult, nonurban forward-looking infrared imagery. Our purpose was to benchmark the comparison and document performance differences for future algorithm improvement. The scale-insensitive detection algorithm, used as a benchmark by the Night Vision Electronic Sensors Directorate for algorithm evaluation, employed a combination of contrastlike features to locate targets. Detection receiver operating characteristic curves and observer-confidence analyses were used to compare human and algorithmic responses and to gain insight into differences. The test database contained ground targets, in natural clutter, whose detectability, as judged by human observers, ranged from easy to very difficult. In general, as compared with human observers, the algorithm detected most of the same targets, but correlated confidence with correct detections poorly and produced many more false alarms at any useful level of performance. Though characterizing human performance was not the intent of this study, results suggest that previous observational experience was not a strong predictor of human performance, and that combining individual human observations by majority vote significantly reduced false-alarm rates.
SA-SOM algorithm for detecting communities in complex networks
NASA Astrophysics Data System (ADS)
Chen, Luogeng; Wang, Yanran; Huang, Xiaoming; Hu, Mengyu; Hu, Fang
2017-10-01
Currently, community detection is a hot topic. This paper, based on the self-organizing map (SOM) algorithm, introduced the idea of self-adaptation (SA) that the number of communities can be identified automatically, a novel algorithm SA-SOM of detecting communities in complex networks is proposed. Several representative real-world networks and a set of computer-generated networks by LFR-benchmark are utilized to verify the accuracy and the efficiency of this algorithm. The experimental findings demonstrate that this algorithm can identify the communities automatically, accurately and efficiently. Furthermore, this algorithm can also acquire higher values of modularity, NMI and density than the SOM algorithm does.
Adapting Local Features for Face Detection in Thermal Image.
Ma, Chao; Trung, Ngo Thanh; Uchiyama, Hideaki; Nagahara, Hajime; Shimada, Atsushi; Taniguchi, Rin-Ichiro
2017-11-27
A thermal camera captures the temperature distribution of a scene as a thermal image. In thermal images, facial appearances of different people under different lighting conditions are similar. This is because facial temperature distribution is generally constant and not affected by lighting condition. This similarity in face appearances is advantageous for face detection. To detect faces in thermal images, cascade classifiers with Haar-like features are generally used. However, there are few studies exploring the local features for face detection in thermal images. In this paper, we introduce two approaches relying on local features for face detection in thermal images. First, we create new feature types by extending Multi-Block LBP. We consider a margin around the reference and the generally constant distribution of facial temperature. In this way, we make the features more robust to image noise and more effective for face detection in thermal images. Second, we propose an AdaBoost-based training method to get cascade classifiers with multiple types of local features. These feature types have different advantages. In this way we enhance the description power of local features. We did a hold-out validation experiment and a field experiment. In the hold-out validation experiment, we captured a dataset from 20 participants, comprising 14 males and 6 females. For each participant, we captured 420 images with 10 variations in camera distance, 21 poses, and 2 appearances (participant with/without glasses). We compared the performance of cascade classifiers trained by different sets of the features. The experiment results showed that the proposed approaches effectively improve the performance of face detection in thermal images. In the field experiment, we compared the face detection performance in realistic scenes using thermal and RGB images, and gave discussion based on the results.
Accurate visible speech synthesis based on concatenating variable length motion capture data.
Ma, Jiyong; Cole, Ron; Pellom, Bryan; Ward, Wayne; Wise, Barbara
2006-01-01
We present a novel approach to synthesizing accurate visible speech based on searching and concatenating optimal variable-length units in a large corpus of motion capture data. Based on a set of visual prototypes selected on a source face and a corresponding set designated for a target face, we propose a machine learning technique to automatically map the facial motions observed on the source face to the target face. In order to model the long distance coarticulation effects in visible speech, a large-scale corpus that covers the most common syllables in English was collected, annotated and analyzed. For any input text, a search algorithm to locate the optimal sequences of concatenated units for synthesis is desrcribed. A new algorithm to adapt lip motions from a generic 3D face model to a specific 3D face model is also proposed. A complete, end-to-end visible speech animation system is implemented based on the approach. This system is currently used in more than 60 kindergarten through third grade classrooms to teach students to read using a lifelike conversational animated agent. To evaluate the quality of the visible speech produced by the animation system, both subjective evaluation and objective evaluation are conducted. The evaluation results show that the proposed approach is accurate and powerful for visible speech synthesis.
A novel adaptive, real-time algorithm to detect gait events from wearable sensors.
Chia Bejarano, Noelia; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Monticone, Marco; Ferrante, Simona
2015-05-01
A real-time, adaptive algorithm based on two inertial and magnetic sensors placed on the shanks was developed for gait-event detection. For each leg, the algorithm detected the Initial Contact (IC), as the minimum of the flexion/extension angle, and the End Contact (EC) and the Mid-Swing (MS), as minimum and maximum of the angular velocity, respectively. The algorithm consisted of calibration, real-time detection, and step-by-step update. Data collected from 22 healthy subjects (21 to 85 years) walking at three self-selected speeds were used to validate the algorithm against the GaitRite system. Comparable levels of accuracy and significantly lower detection delays were achieved with respect to other published methods. The algorithm robustness was tested on ten healthy subjects performing sudden speed changes and on ten stroke subjects (43 to 89 years). For healthy subjects, F1-scores of 1 and mean detection delays lower than 14 ms were obtained. For stroke subjects, F1-scores of 0.998 and 0.944 were obtained for IC and EC, respectively, with mean detection delays always below 31 ms. The algorithm accurately detected gait events in real time from a heterogeneous dataset of gait patterns and paves the way for the design of closed-loop controllers for customized gait trainings and/or assistive devices.
Imaging the eye fundus with real-time en-face spectral domain optical coherence tomography
Bradu, Adrian; Podoleanu, Adrian Gh.
2014-01-01
Real-time display of processed en-face spectral domain optical coherence tomography (SD-OCT) images is important for diagnosis. However, due to many steps of data processing requirements, such as Fast Fourier transformation (FFT), data re-sampling, spectral shaping, apodization, zero padding, followed by software cut of the 3D volume acquired to produce an en-face slice, conventional high-speed SD-OCT cannot render an en-face OCT image in real time. Recently we demonstrated a Master/Slave (MS)-OCT method that is highly parallelizable, as it provides reflectivity values of points at depth within an A-scan in parallel. This allows direct production of en-face images. In addition, the MS-OCT method does not require data linearization, which further simplifies the processing. The computation in our previous paper was however time consuming. In this paper we present an optimized algorithm that can be used to provide en-face MS-OCT images much quicker. Using such an algorithm we demonstrate around 10 times faster production of sets of en-face OCT images than previously obtained as well as simultaneous real-time display of up to 4 en-face OCT images of 200 × 200 pixels2 from the fovea and the optic nerve of a volunteer. We also demonstrate 3D and B-scan OCT images obtained from sets of MS-OCT C-scans, i.e. with no FFT and no intermediate step of generation of A-scans. PMID:24761303
An algorithm for calculating minimum Euclidean distance between two geographic features
NASA Astrophysics Data System (ADS)
Peuquet, Donna J.
1992-09-01
An efficient algorithm is presented for determining the shortest Euclidean distance between two features of arbitrary shape that are represented in quadtree form. These features may be disjoint point sets, lines, or polygons. It is assumed that the features do not overlap. Features also may be intertwined and polygons may be complex (i.e. have holes). Utilizing a spatial divide-and-conquer approach inherent in the quadtree data model, the basic rationale is to narrow-in on portions of each feature quickly that are on a facing edge relative to the other feature, and to minimize the number of point-to-point Euclidean distance calculations that must be performed. Besides offering an efficient, grid-based alternative solution, another unique and useful aspect of the current algorithm is that is can be used for rapidly calculating distance approximations at coarser levels of resolution. The overall process can be viewed as a top-down parallel search. Using one list of leafcode addresses for each of the two features as input, the algorithm is implemented by successively dividing these lists into four sublists for each descendant quadrant. The algorithm consists of two primary phases. The first determines facing adjacent quadrant pairs where part or all of the two features are separated between the two quadrants, respectively. The second phase then determines the closest pixel-level subquadrant pairs within each facing quadrant pair at the lowest level. The key element of the second phase is a quick estimate distance heuristic for further elimination of locations that are not as near as neighboring locations.
Kruskal-Wallis-based computationally efficient feature selection for face recognition.
Ali Khan, Sajid; Hussain, Ayyaz; Basit, Abdul; Akram, Sheeraz
2014-01-01
Face recognition in today's technological world, and face recognition applications attain much more importance. Most of the existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute to representing face. In order to eliminate those redundant features, computationally efficient algorithm is used to select the more discriminative face features. Extracted features are then passed to classification step. In the classification step, different classifiers are ensemble to enhance the recognition accuracy rate as single classifier is unable to achieve the high accuracy. Experiments are performed on standard face database images and results are compared with existing techniques.
NASA Astrophysics Data System (ADS)
Guidang, Excel Philip B.; Llanda, Christopher John R.; Palaoag, Thelma D.
2018-03-01
Face Detection Technique as a strategy in controlling a multimedia instructional material was implemented in this study. Specifically, it achieved the following objectives: 1) developed a face detection application that controls an embedded mother-tongue-based instructional material for face-recognition configuration using Python; 2) determined the perceptions of the students using the Mutt Susan’s student app review rubric. The study concludes that face detection technique is effective in controlling an electronic instructional material. It can be used to change the method of interaction of the student with an instructional material. 90% of the students perceived the application to be a great app and 10% rated the application to be good.
AdaBoost-based algorithm for network intrusion detection.
Hu, Weiming; Hu, Wei; Maybank, Steve
2008-04-01
Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.
Corner detection and sorting method based on improved Harris algorithm in camera calibration
NASA Astrophysics Data System (ADS)
Xiao, Ying; Wang, Yonghong; Dan, Xizuo; Huang, Anqi; Hu, Yue; Yang, Lianxiang
2016-11-01
In traditional Harris corner detection algorithm, the appropriate threshold which is used to eliminate false corners is selected manually. In order to detect corners automatically, an improved algorithm which combines Harris and circular boundary theory of corners is proposed in this paper. After detecting accurate corner coordinates by using Harris algorithm and Forstner algorithm, false corners within chessboard pattern of the calibration plate can be eliminated automatically by using circular boundary theory. Moreover, a corner sorting method based on an improved calibration plate is proposed to eliminate false background corners and sort remaining corners in order. Experiment results show that the proposed algorithms can eliminate all false corners and sort remaining corners correctly and automatically.
Nestor, Adrian; Vettel, Jean M; Tarr, Michael J
2013-11-01
What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.
QRS Detection Algorithm for Telehealth Electrocardiogram Recordings.
Khamis, Heba; Weiss, Robert; Xie, Yang; Chang, Chan-Wei; Lovell, Nigel H; Redmond, Stephen J
2016-07-01
QRS detection algorithms are needed to analyze electrocardiogram (ECG) recordings generated in telehealth environments. However, the numerous published QRS detectors focus on clean clinical data. Here, a "UNSW" QRS detection algorithm is described that is suitable for clinical ECG and also poorer quality telehealth ECG. The UNSW algorithm generates a feature signal containing information about ECG amplitude and derivative, which is filtered according to its frequency content and an adaptive threshold is applied. The algorithm was tested on clinical and telehealth ECG and the QRS detection performance is compared to the Pan-Tompkins (PT) and Gutiérrez-Rivas (GR) algorithm. For the MIT-BIH Arrhythmia database (virtually artifact free, clinical ECG), the overall sensitivity (Se) and positive predictivity (+P) of the UNSW algorithm was >99%, which was comparable to PT and GR. When applied to the MIT-BIH noise stress test database (clinical ECG with added calibrated noise) after artifact masking, all three algorithms had overall Se >99%, and the UNSW algorithm had higher +P (98%, p < 0.05) than PT and GR. For 250 telehealth ECG records (unsupervised recordings; dry metal electrodes), the UNSW algorithm had 98% Se and 95% +P which was superior to PT (+P: p < 0.001) and GR (Se and +P: p < 0.001). This is the first study to describe a QRS detection algorithm for telehealth data and evaluate it on clinical and telehealth ECG with superior results to published algorithms. The UNSW algorithm could be used to manage increasing telehealth ECG analysis workloads.
Lo, L Y; Cheng, M Y
2017-06-01
Detection of angry and happy faces is generally found to be easier and faster than that of faces expressing emotions other than anger or happiness. This can be explained by the threatening account and the feature account. Few empirical studies have explored the interaction between these two accounts which are seemingly, but not necessarily, mutually exclusive. The present studies hypothesised that prominent facial features are important in facilitating the detection process of both angry and happy expressions; yet the detection of happy faces was more facilitated by the prominent features than angry faces. Results confirmed the hypotheses and indicated that participants reacted faster to the emotional expressions with prominent features (in Study 1) and the detection of happy faces was more facilitated by the prominent feature than angry faces (in Study 2). The findings are compatible with evolutionary speculation which suggests that the angry expression is an alarming signal of potential threats to survival. Compared to the angry faces, the happy faces need more salient physical features to obtain a similar level of processing efficiency. © 2015 International Union of Psychological Science.
NASA Astrophysics Data System (ADS)
Kassim, Muhammad Fuad bin; Norzali Haji Mohd, Mohd
2017-08-01
Technology is all about helping people, which created a new opportunity to take serious action in managing their health care. Moreover, Obesity continues to be a serious public health concern in the Malaysia and continuing to rise. Obesity has been a serious health concern among people. Nearly half of Malaysian people overweight. Most of dietary approach is not tracking and detecting the right calorie intake for weight loss, but currently used tools such as food diaries require users to manually record and track the food calories, making them difficult for daily use. We will be developing a new tool that counts the food intake bite by monitoring hand gesture and face jaw motion movement of caloric intake. The Bite count method showed a good significant that can lead to a successful weight loss by simply monitoring the bite taken during eating. The device used was Kinect Xbox One which used a depth camera to detect the motion on person hand and face during food intake. Previous studies showed that most of the method used to count bite device is worn type. The recent trend is now going towards non-wearable devices due to the difficulty when wearing devices and it has high false alarm ratio. The proposed system gets data from the Kinect that will be monitoring the hand and face gesture of the user while eating. Then, the gesture of hand and face data is sent to the microcontroller board to recognize and start counting bite taken by the user. The system recognizes the patterns of bite taken from user by following the algorithm of basic eating type either using hand or chopstick. This system can help people who are trying to follow a proper way to reduce overweight or eating disorders by monitoring their meal intake and controlling eating rate.
Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.
Latha, Indu; Reichenbach, Stephen E; Tao, Qingping
2011-09-23
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.
Bio-ALIRT biosurveillance detection algorithm evaluation.
Siegrist, David; Pavlin, J
2004-09-24
Early detection of disease outbreaks by a medical biosurveillance system relies on two major components: 1) the contribution of early and reliable data sources and 2) the sensitivity, specificity, and timeliness of biosurveillance detection algorithms. This paper describes an effort to assess leading detection algorithms by arranging a common challenge problem and providing a common data set. The objectives of this study were to determine whether automated detection algorithms can reliably and quickly identify the onset of natural disease outbreaks that are surrogates for possible terrorist pathogen releases, and do so at acceptable false-alert rates (e.g., once every 2-6 weeks). Historic de-identified data were obtained from five metropolitan areas over 23 months; these data included International Classification of Diseases, Ninth Revision (ICD-9) codes related to respiratory and gastrointestinal illness syndromes. An outbreak detection group identified and labeled two natural disease outbreaks in these data and provided them to analysts for training of detection algorithms. All outbreaks in the remaining test data were identified but not revealed to the detection groups until after their analyses. The algorithms established a probability of outbreak for each day's counts. The probability of outbreak was assessed as an "actual" alert for different false-alert rates. The best algorithms were able to detect all of the outbreaks at false-alert rates of one every 2-6 weeks. They were often able to detect for the same day human investigators had identified as the true start of the outbreak. Because minimal data exists for an actual biologic attack, determining how quickly an algorithm might detect such an attack is difficult. However, application of these algorithms in combination with other data-analysis methods to historic outbreak data indicates that biosurveillance techniques for analyzing syndrome counts can rapidly detect seasonal respiratory and gastrointestinal illness outbreaks. Further research is needed to assess the value of electronic data sources for predictive detection. In addition, simulations need to be developed and implemented to better characterize the size and type of biologic attack that can be detected by current methods by challenging them under different projected operational conditions.
A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm.
Pandit, Diptangshu; Zhang, Li; Liu, Chengyu; Chattopadhyay, Samiran; Aslam, Nauman; Lim, Chee Peng
2017-06-01
Detection of the R-peak pertaining to the QRS complex of an ECG signal plays an important role for the diagnosis of a patient's heart condition. To accurately identify the QRS locations from the acquired raw ECG signals, we need to handle a number of challenges, which include noise, baseline wander, varying peak amplitudes, and signal abnormality. This research aims to address these challenges by developing an efficient lightweight algorithm for QRS (i.e., R-peak) detection from raw ECG signals. A lightweight real-time sliding window-based Max-Min Difference (MMD) algorithm for QRS detection from Lead II ECG signals is proposed. Targeting to achieve the best trade-off between computational efficiency and detection accuracy, the proposed algorithm consists of five key steps for QRS detection, namely, baseline correction, MMD curve generation, dynamic threshold computation, R-peak detection, and error correction. Five annotated databases from Physionet are used for evaluating the proposed algorithm in R-peak detection. Integrated with a feature extraction technique and a neural network classifier, the proposed ORS detection algorithm has also been extended to undertake normal and abnormal heartbeat detection from ECG signals. The proposed algorithm exhibits a high degree of robustness in QRS detection and achieves an average sensitivity of 99.62% and an average positive predictivity of 99.67%. Its performance compares favorably with those from the existing state-of-the-art models reported in the literature. In regards to normal and abnormal heartbeat detection, the proposed QRS detection algorithm in combination with the feature extraction technique and neural network classifier achieves an overall accuracy rate of 93.44% based on an empirical evaluation using the MIT-BIH Arrhythmia data set with 10-fold cross validation. In comparison with other related studies, the proposed algorithm offers a lightweight adaptive alternative for R-peak detection with good computational efficiency. The empirical results indicate that it not only yields a high accuracy rate in QRS detection, but also exhibits efficient computational complexity at the order of O(n), where n is the length of an ECG signal. Copyright © 2017 Elsevier B.V. All rights reserved.
Models for IP/MPLS routing performance: convergence, fast reroute, and QoS impact
NASA Astrophysics Data System (ADS)
Choudhury, Gagan L.
2004-09-01
We show how to model the black-holing and looping of traffic during an Interior Gateway Protocol (IGP) convergence event at an IP network and how to significantly improve both the convergence time and packet loss duration through IGP parameter tuning and algorithmic improvement. We also explore some congestion avoidance and congestion control algorithms that can significantly improve stability of networks in the face of occasional massive control message storms. Specifically we show the positive impacts of prioritizing Hello and Acknowledgement packets and slowing down LSA generation and retransmission generation on detecting congestion in the network. For some types of video, voice signaling and circuit emulation applications it is necessary to reduce traffic loss durations following a convergence event to below 100 ms and we explore that using Fast Reroute algorithms based on Multiprotocol Label Switching Traffic Engineering (MPLS-TE) that effectively bypasses IGP convergence. We explore the scalability of primary and backup MPLS-TE tunnels where MPLS-TE domain is in the backbone-only or edge-to-edge. We also show how much extra backbone resource is needed to support Fast Reroute and how can that be reduced by taking advantage of Constrained Shortest Path (CSPF) routing of MPLS-TE and by reserving less than 100% of primary tunnel bandwidth during Fast Reroute.
Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity
NASA Astrophysics Data System (ADS)
Zhang, Ling; Yin, Jian-qin; Lin, Jia-ben; Feng, Zhi-quan; Zhou, Jin
2017-07-01
Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space-time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space-time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.
STREAMFINDER - I. A new algorithm for detecting stellar streams
NASA Astrophysics Data System (ADS)
Malhan, Khyati; Ibata, Rodrigo A.
2018-07-01
We have designed a powerful new algorithm to detect stellar streams in an automated and systematic way. The algorithm, which we call the STREAMFINDER, is well suited for finding dynamically cold and thin stream structures that may lie along any simple or complex orbits in Galactic stellar surveys containing any combination of positional and kinematic information. In the present contribution, we introduce the algorithm, lay out the ideas behind it, explain the methodology adopted to detect streams, and detail its workings by running it on a suite of simulations of mock Galactic survey data of similar quality to that expected from the European Space Agency/Gaia mission. We show that our algorithm is able to detect even ultra-faint stream features lying well below previous detection limits. Tests show that our algorithm will be able to detect distant halo stream structures >10° long containing as few as ˜15 members (ΣG ˜ 33.6 mag arcsec-2) in the Gaia data set.
Distributed learning automata-based algorithm for community detection in complex networks
NASA Astrophysics Data System (ADS)
Khomami, Mohammad Mehdi Daliri; Rezvanian, Alireza; Meybodi, Mohammad Reza
2016-03-01
Community structure is an important and universal topological property of many complex networks such as social and information networks. The detection of communities of a network is a significant technique for understanding the structure and function of networks. In this paper, we propose an algorithm based on distributed learning automata for community detection (DLACD) in complex networks. In the proposed algorithm, each vertex of network is equipped with a learning automation. According to the cooperation among network of learning automata and updating action probabilities of each automaton, the algorithm interactively tries to identify high-density local communities. The performance of the proposed algorithm is investigated through a number of simulations on popular synthetic and real networks. Experimental results in comparison with popular community detection algorithms such as walk trap, Danon greedy optimization, Fuzzy community detection, Multi-resolution community detection and label propagation demonstrated the superiority of DLACD in terms of modularity, NMI, performance, min-max-cut and coverage.
An Improved Harmonic Current Detection Method Based on Parallel Active Power Filter
NASA Astrophysics Data System (ADS)
Zeng, Zhiwu; Xie, Yunxiang; Wang, Yingpin; Guan, Yuanpeng; Li, Lanfang; Zhang, Xiaoyu
2017-05-01
Harmonic detection technology plays an important role in the applications of active power filter. The accuracy and real-time performance of harmonic detection are the precondition to ensure the compensation performance of Active Power Filter (APF). This paper proposed an improved instantaneous reactive power harmonic current detection algorithm. The algorithm uses an improved ip -iq algorithm which is combined with the moving average value filter. The proposed ip -iq algorithm can remove the αβ and dq coordinate transformation, decreasing the cost of calculation, simplifying the extraction process of fundamental components of load currents, and improving the detection speed. The traditional low-pass filter is replaced by the moving average filter, detecting the harmonic currents more precisely and quickly. Compared with the traditional algorithm, the THD (Total Harmonic Distortion) of the grid currents is reduced from 4.41% to 3.89% for the simulations and from 8.50% to 4.37% for the experiments after the improvement. The results show the proposed algorithm is more accurate and efficient.
A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test
NASA Astrophysics Data System (ADS)
Becker, D.; Cain, S.
Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.
Fast hierarchical knowledge-based approach for human face detection in color images
NASA Astrophysics Data System (ADS)
Jiang, Jun; Gong, Jie; Zhang, Guilin; Hu, Ruolan
2001-09-01
This paper presents a fast hierarchical knowledge-based approach for automatically detecting multi-scale upright faces in still color images. The approach consists of three levels. At the highest level, skin-like regions are determinated by skin model, which is based on the color attributes hue and saturation in HSV color space, as well color attributes red and green in normalized color space. In level 2, a new eye model is devised to select human face candidates in segmented skin-like regions. An important feature of the eye model is that it is independent of the scale of human face. So it is possible for finding human faces in different scale with scanning image only once, and it leads to reduction the computation time of face detection greatly. In level 3, a human face mosaic image model, which is consistent with physical structure features of human face well, is applied to judge whether there are face detects in human face candidate regions. This model includes edge and gray rules. Experiment results show that the approach has high robustness and fast speed. It has wide application perspective at human-computer interactions and visual telephone etc.
Han, Zhaoying; Thornton-Wells, Tricia A.; Dykens, Elisabeth M.; Gore, John C.; Dawant, Benoit M.
2014-01-01
Deformation Based Morphometry (DBM) is a widely used method for characterizing anatomical differences across groups. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a DBM atlas. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithms on group differences that may be uncovered through DBM. In this study, we compared group atlas creation and DBM results obtained with five well-established non-rigid registration algorithms using thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Bases Algorithm (ABA); (2) The Image Registration Toolkit (IRTK); (3) The FSL Nonlinear Image Registration Tool (FSL); (4) The Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. Results indicate that the choice of algorithm has little effect on the creation of group atlases. However, regions of differences between groups detected with DBM vary from algorithm to algorithm both qualitatively and quantitatively. The unique nature of the data set used in this study also permits comparison of visible anatomical differences between the groups and regions of difference detected by each algorithm. Results show that the interpretation of DBM results is difficult. Four out of the five algorithms we have evaluated detect bilateral differences between the two groups in the insular cortex, the basal ganglia, orbitofrontal cortex, as well as in the cerebellum. These correspond to differences that have been reported in the literature and that are visible in our samples. But our results also show that some algorithms detect regions that are not detected by the others and that the extent of the detected regions varies from algorithm to algorithm. These results suggest that using more than one algorithm when performing DBM studies would increase confidence in the results. Properties of the algorithms such as the similarity measure they maximize and the regularity of the deformation fields, as well as the location of differences detected with DBM, also need to be taken into account in the interpretation process. PMID:22459439
NASA Technical Reports Server (NTRS)
Gedney, Stephen D.; Lansing, Faiza
1993-01-01
The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.
A Region Tracking-Based Vehicle Detection Algorithm in Nighttime Traffic Scenes
Wang, Jianqiang; Sun, Xiaoyan; Guo, Junbin
2013-01-01
The preceding vehicles detection technique in nighttime traffic scenes is an important part of the advanced driver assistance system (ADAS). This paper proposes a region tracking-based vehicle detection algorithm via the image processing technique. First, the brightness of the taillights during nighttime is used as the typical feature, and we use the existing global detection algorithm to detect and pair the taillights. When the vehicle is detected, a time series analysis model is introduced to predict vehicle positions and the possible region (PR) of the vehicle in the next frame. Then, the vehicle is only detected in the PR. This could reduce the detection time and avoid the false pairing between the bright spots in the PR and the bright spots out of the PR. Additionally, we present a thresholds updating method to make the thresholds adaptive. Finally, experimental studies are provided to demonstrate the application and substantiate the superiority of the proposed algorithm. The results show that the proposed algorithm can simultaneously reduce both the false negative detection rate and the false positive detection rate.
Expert system constant false alarm rate processor
NASA Astrophysics Data System (ADS)
Baldygo, William J., Jr.; Wicks, Michael C.
1993-10-01
The requirements for high detection probability and low false alarm probability in modern wide area surveillance radars are rarely met due to spatial variations in clutter characteristics. Many filtering and CFAR detection algorithms have been developed to effectively deal with these variations; however, any single algorithm is likely to exhibit excessive false alarms and intolerably low detection probabilities in a dynamically changing environment. A great deal of research has led to advances in the state of the art in Artificial Intelligence (AI) and numerous areas have been identified for application to radar signal processing. The approach suggested here, discussed in a patent application submitted by the authors, is to intelligently select the filtering and CFAR detection algorithms being executed at any given time, based upon the observed characteristics of the interference environment. This approach requires sensing the environment, employing the most suitable algorithms, and applying an appropriate multiple algorithm fusion scheme or consensus algorithm to produce a global detection decision.
Toward an Objective Enhanced-V Detection Algorithm
NASA Technical Reports Server (NTRS)
Moses, John F.; Brunner,Jason C.; Feltz, Wayne F.; Ackerman, Steven A.; Moses, John F.; Rabin, Robert M.
2007-01-01
The area of coldest cloud tops above thunderstorms sometimes has a distinct V or U shape. This pattern, often referred to as an "enhanced-V signature, has been observed to occur during and preceding severe weather. This study describes an algorithmic approach to objectively detect overshooting tops, temperature couplets, and enhanced-V features with observations from the Geostationary Operational Environmental Satellite and Low Earth Orbit data. The methodology consists of temperature, temperature difference, and distance thresholds for the overshooting top and temperature couplet detection parts of the algorithm and consists of cross correlation statistics of pixels for the enhanced-V detection part of the algorithm. The effectiveness of the overshooting top and temperature couplet detection components of the algorithm is examined using GOES and MODIS image data for case studies in the 2003-2006 seasons. The main goal is for the algorithm to be useful for operations with future sensors, such as GOES-R.
Ales, Justin M.; Farzin, Faraz; Rossion, Bruno; Norcia, Anthony M.
2012-01-01
We introduce a sensitive method for measuring face detection thresholds rapidly, objectively, and independently of low-level visual cues. The method is based on the swept parameter steady-state visual evoked potential (ssVEP), in which a stimulus is presented at a specific temporal frequency while parametrically varying (“sweeping”) the detectability of the stimulus. Here, the visibility of a face image was increased by progressive derandomization of the phase spectra of the image in a series of equally spaced steps. Alternations between face and fully randomized images at a constant rate (3/s) elicit a robust first harmonic response at 3 Hz specific to the structure of the face. High-density EEG was recorded from 10 human adult participants, who were asked to respond with a button-press as soon as they detected a face. The majority of participants produced an evoked response at the first harmonic (3 Hz) that emerged abruptly between 30% and 35% phase-coherence of the face, which was most prominent on right occipito-temporal sites. Thresholds for face detection were estimated reliably in single participants from 15 trials, or on each of the 15 individual face trials. The ssVEP-derived thresholds correlated with the concurrently measured perceptual face detection thresholds. This first application of the sweep VEP approach to high-level vision provides a sensitive and objective method that could be used to measure and compare visual perception thresholds for various object shapes and levels of categorization in different human populations, including infants and individuals with developmental delay. PMID:23024355
ERIC Educational Resources Information Center
Becker, D. Vaughn; Anderson, Uriah S.; Mortensen, Chad R.; Neufeld, Samantha L.; Neel, Rebecca
2011-01-01
Is it easier to detect angry or happy facial expressions in crowds of faces? The present studies used several variations of the visual search task to assess whether people selectively attend to expressive faces. Contrary to widely cited studies (e.g., Ohman, Lundqvist, & Esteves, 2001) that suggest angry faces "pop out" of crowds, our review of…
Talbot, Thomas R; Schaffner, William; Bloch, Karen C; Daniels, Titus L; Miller, Randolph A
2011-01-01
Objective The authors evaluated algorithms commonly used in syndromic surveillance for use as screening tools to detect potentially clonal outbreaks for review by infection control practitioners. Design Study phase 1 applied four aberrancy detection algorithms (CUSUM, EWMA, space-time scan statistic, and WSARE) to retrospective microbiologic culture data, producing a list of past candidate outbreak clusters. In phase 2, four infectious disease physicians categorized the phase 1 algorithm-identified clusters to ascertain algorithm performance. In phase 3, project members combined the algorithms to create a unified screening system and conducted a retrospective pilot evaluation. Measurements The study calculated recall and precision for each algorithm, and created precision-recall curves for various methods of combining the algorithms into a unified screening tool. Results Individual algorithm recall and precision ranged from 0.21 to 0.31 and from 0.053 to 0.29, respectively. Few candidate outbreak clusters were identified by more than one algorithm. The best method of combining the algorithms yielded an area under the precision-recall curve of 0.553. The phase 3 combined system detected all infection control-confirmed outbreaks during the retrospective evaluation period. Limitations Lack of phase 2 reviewers' agreement indicates that subjective expert review was an imperfect gold standard. Less conservative filtering of culture results and alternate parameter selection for each algorithm might have improved algorithm performance. Conclusion Hospital outbreak detection presents different challenges than traditional syndromic surveillance. Nevertheless, algorithms developed for syndromic surveillance have potential to form the basis of a combined system that might perform clinically useful hospital outbreak screening. PMID:21606134
A framework for cognitive monitoring using computer game interactions.
Jimison, Holly B; Pavel, Misha; Bissell, Payton; McKanna, James
2007-01-01
Many countries are faced with a rapidly increasing economic and social challenge of caring for their elderly population. Cognitive issues are at the forefront of the list of concerns. People over the age of 75 are at risk for medically related cognitive decline and confusion, and the early detection of cognitive problems would allow for more effective clinical intervention. However, standard cognitive assessments are not diagnostically sensitive and are performed infrequently. To address these issues, we have developed a set of adaptive computer games to monitor cognitive performance in a home environment. Assessment algorithms for various aspects of cognition are embedded in the games. The monitoring of these metrics allows us to detect within subject trends over time, providing a method for the early detection of cognitive decline. In addition, the real-time information on cognitive state is used to adapt the user interface to the needs of the individual user. In this paper we describe the software architecture and methodology for monitoring cognitive performance using data from natural computer interactions in a home setting.
Evaluation schemes for video and image anomaly detection algorithms
NASA Astrophysics Data System (ADS)
Parameswaran, Shibin; Harguess, Josh; Barngrover, Christopher; Shafer, Scott; Reese, Michael
2016-05-01
Video anomaly detection is a critical research area in computer vision. It is a natural first step before applying object recognition algorithms. There are many algorithms that detect anomalies (outliers) in videos and images that have been introduced in recent years. However, these algorithms behave and perform differently based on differences in domains and tasks to which they are subjected. In order to better understand the strengths and weaknesses of outlier algorithms and their applicability in a particular domain/task of interest, it is important to measure and quantify their performance using appropriate evaluation metrics. There are many evaluation metrics that have been used in the literature such as precision curves, precision-recall curves, and receiver operating characteristic (ROC) curves. In order to construct these different metrics, it is also important to choose an appropriate evaluation scheme that decides when a proposed detection is considered a true or a false detection. Choosing the right evaluation metric and the right scheme is very critical since the choice can introduce positive or negative bias in the measuring criterion and may favor (or work against) a particular algorithm or task. In this paper, we review evaluation metrics and popular evaluation schemes that are used to measure the performance of anomaly detection algorithms on videos and imagery with one or more anomalies. We analyze the biases introduced by these by measuring the performance of an existing anomaly detection algorithm.
Andersson, Richard; Larsson, Linnea; Holmqvist, Kenneth; Stridh, Martin; Nyström, Marcus
2017-04-01
Almost all eye-movement researchers use algorithms to parse raw data and detect distinct types of eye movement events, such as fixations, saccades, and pursuit, and then base their results on these. Surprisingly, these algorithms are rarely evaluated. We evaluated the classifications of ten eye-movement event detection algorithms, on data from an SMI HiSpeed 1250 system, and compared them to manual ratings of two human experts. The evaluation focused on fixations, saccades, and post-saccadic oscillations. The evaluation used both event duration parameters, and sample-by-sample comparisons to rank the algorithms. The resulting event durations varied substantially as a function of what algorithm was used. This evaluation differed from previous evaluations by considering a relatively large set of algorithms, multiple events, and data from both static and dynamic stimuli. The main conclusion is that current detectors of only fixations and saccades work reasonably well for static stimuli, but barely better than chance for dynamic stimuli. Differing results across evaluation methods make it difficult to select one winner for fixation detection. For saccade detection, however, the algorithm by Larsson, Nyström and Stridh (IEEE Transaction on Biomedical Engineering, 60(9):2484-2493,2013) outperforms all algorithms in data from both static and dynamic stimuli. The data also show how improperly selected algorithms applied to dynamic data misestimate fixation and saccade properties.
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima. PMID:28634487
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search.
Huang, Xingwang; Zeng, Xuewen; Han, Rui
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.
Hand motion segmentation against skin colour background in breast awareness applications.
Hu, Yuqin; Naguib, Raouf N G; Todman, Alison G; Amin, Saad A; Al-Omishy, Hassanein; Oikonomou, Andreas; Tucker, Nick
2004-01-01
Skin colour modelling and classification play significant roles in face and hand detection, recognition and tracking. A hand is an essential tool used in breast self-examination, which needs to be detected and analysed during the process of breast palpation. However, the background of a woman's moving hand is her breast that has the same or similar colour as the hand. Additionally, colour images recorded by a web camera are strongly affected by the lighting or brightness conditions. Hence, it is a challenging task to segment and track the hand against the breast without utilising any artificial markers, such as coloured nail polish. In this paper, a two-dimensional Gaussian skin colour model is employed in a particular way to identify a breast but not a hand. First, an input image is transformed to YCbCr colour space, which is less sensitive to the lighting conditions and more tolerant of skin tone. The breast, thus detected by the Gaussian skin model, is used as the baseline or framework for the hand motion. Secondly, motion cues are used to segment the hand motion against the detected baseline. Desired segmentation results have been achieved and the robustness of this algorithm is demonstrated in this paper.
Passman, Rod S; Rogers, John D; Sarkar, Shantanu; Reiland, Jerry; Reisfeld, Erin; Koehler, Jodi; Mittal, Suneet
2017-07-01
Undersensing of premature ventricular beats and low-amplitude R waves are primary causes for inappropriate bradycardia and pause detections in insertable cardiac monitors (ICMs). The purpose of this study was to develop and validate an enhanced algorithm to reduce inappropriately detected bradycardia and pause episodes. Independent data sets to develop and validate the enhanced algorithm were derived from a database of ICM-detected bradycardia and pause episodes in de-identified patients monitored for unexplained syncope. The original algorithm uses an auto-adjusting sensitivity threshold for R-wave sensing to detect tachycardia and avoid T-wave oversensing. In the enhanced algorithm, a second sensing threshold is used with a long blanking and fixed lower sensitivity threshold, looking for evidence of undersensed signals. Data reported includes percent change in appropriate and inappropriate bradycardia and pause detections as well as changes in episode detection sensitivity and positive predictive value with the enhanced algorithm. The validation data set, from 663 consecutive patients, consisted of 4904 (161 patients) bradycardia and 2582 (133 patients) pause episodes, of which 2976 (61%) and 996 (39%) were appropriately detected bradycardia and pause episodes. The enhanced algorithm reduced inappropriate bradycardia and pause episodes by 95% and 47%, respectively, with 1.7% and 0.6% reduction in appropriate episodes, respectively. The average episode positive predictive value improved by 62% (P < .001) for bradycardia detection and by 26% (P < .001) for pause detection, with an average relative sensitivity of 95% (P < .001) and 99% (P = .5), respectively. The enhanced dual sense algorithm for bradycardia and pause detection in ICMs substantially reduced inappropriate episode detection with a minimal reduction in true episode detection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Pürerfellner, Helmut; Sanders, Prashanthan; Sarkar, Shantanu; Reisfeld, Erin; Reiland, Jerry; Koehler, Jodi; Pokushalov, Evgeny; Urban, Luboš; Dekker, Lukas R C
2017-10-03
Intermittent change in p-wave discernibility during periods of ectopy and sinus arrhythmia is a cause of inappropriate atrial fibrillation (AF) detection in insertable cardiac monitors (ICM). To address this, we developed and validated an enhanced AF detection algorithm. Atrial fibrillation detection in Reveal LINQ ICM uses patterns of incoherence in RR intervals and absence of P-wave evidence over a 2-min period. The enhanced algorithm includes P-wave evidence during RR irregularity as evidence of sinus arrhythmia or ectopy to adaptively optimize sensitivity for AF detection. The algorithm was developed and validated using Holter data from the XPECT and LINQ Usability studies which collected surface electrocardiogram (ECG) and continuous ICM ECG over a 24-48 h period. The algorithm detections were compared with Holter annotations, performed by multiple reviewers, to compute episode and duration detection performance. The validation dataset comprised of 3187 h of valid Holter and LINQ recordings from 138 patients, with true AF in 37 patients yielding 108 true AF episodes ≥2-min and 449 h of AF. The enhanced algorithm reduced inappropriately detected episodes by 49% and duration by 66% with <1% loss in true episodes or duration. The algorithm correctly identified 98.9% of total AF duration and 99.8% of total sinus or non-AF rhythm duration. The algorithm detected 97.2% (99.7% per-patient average) of all AF episodes ≥2-min, and 84.9% (95.3% per-patient average) of detected episodes involved AF. An enhancement that adapts sensitivity for AF detection reduced inappropriately detected episodes and duration with minimal reduction in sensitivity. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology
Looser, Christine E; Guntupalli, Jyothi S; Wheatley, Thalia
2013-10-01
More than a decade of research has demonstrated that faces evoke prioritized processing in a 'core face network' of three brain regions. However, whether these regions prioritize the detection of global facial form (shared by humans and mannequins) or the detection of life in a face has remained unclear. Here, we dissociate form-based and animacy-based encoding of faces by using animate and inanimate faces with human form (humans, mannequins) and dog form (real dogs, toy dogs). We used multivariate pattern analysis of BOLD responses to uncover the representational similarity space for each area in the core face network. Here, we show that only responses in the inferior occipital gyrus are organized by global facial form alone (human vs dog) while animacy becomes an additional organizational priority in later face-processing regions: the lateral fusiform gyri (latFG) and right superior temporal sulcus. Additionally, patterns evoked by human faces were maximally distinct from all other face categories in the latFG and parts of the extended face perception system. These results suggest that once a face configuration is perceived, faces are further scrutinized for whether the face is alive and worthy of social cognitive resources.
NASA Astrophysics Data System (ADS)
Muneyasu, Mitsuji; Odani, Shuhei; Kitaura, Yoshihiro; Namba, Hitoshi
On the use of a surveillance camera, there is a case where privacy protection should be considered. This paper proposes a new privacy protection method by automatically degrading the face region in surveillance images. The proposed method consists of ROI coding of JPEG2000 and a face detection method based on template matching. The experimental result shows that the face region can be detected and hidden correctly.
Kamiura, Moto; Sano, Kohei
2017-10-01
The principle of optimism in the face of uncertainty is known as a heuristic in sequential decision-making problems. Overtaking method based on this principle is an effective algorithm to solve multi-armed bandit problems. It was defined by a set of some heuristic patterns of the formulation in the previous study. The objective of the present paper is to redefine the value functions of Overtaking method and to unify the formulation of them. The unified Overtaking method is associated with upper bounds of confidence intervals of expected rewards on statistics. The unification of the formulation enhances the universality of Overtaking method. Consequently we newly obtain Overtaking method for the exponentially distributed rewards, numerically analyze it, and show that it outperforms UCB algorithm on average. The present study suggests that the principle of optimism in the face of uncertainty should be regarded as the statistics-based consequence of the law of large numbers for the sample mean of rewards and estimation of upper bounds of expected rewards, rather than as a heuristic, in the context of multi-armed bandit problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Sub-pattern based multi-manifold discriminant analysis for face recognition
NASA Astrophysics Data System (ADS)
Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen
2018-04-01
In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.
Stride search: A general algorithm for storm detection in high resolution climate data
Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.; ...
2015-09-08
This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less
A novel weld seam detection method for space weld seam of narrow butt joint in laser welding
NASA Astrophysics Data System (ADS)
Shao, Wen Jun; Huang, Yu; Zhang, Yong
2018-02-01
Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.
NASA Astrophysics Data System (ADS)
Mohammad, Fatimah; Ansari, Rashid; Shahidi, Mahnaz
2013-03-01
The visibility and continuity of the inner segment outer segment (ISOS) junction layer of the photoreceptors on spectral domain optical coherence tomography images is known to be related to visual acuity in patients with age-related macular degeneration (AMD). Automatic detection and segmentation of lesions and pathologies in retinal images is crucial for the screening, diagnosis, and follow-up of patients with retinal diseases. One of the challenges of using the classical level-set algorithms for segmentation involves the placement of the initial contour. Manually defining the contour or randomly placing it in the image may lead to segmentation of erroneous structures. It is important to be able to automatically define the contour by using information provided by image features. We explored a level-set method which is based on the classical Chan-Vese model and which utilizes image feature information for automatic contour placement for the segmentation of pathologies in fluorescein angiograms and en face retinal images of the ISOS layer. This was accomplished by exploiting a priori knowledge of the shape and intensity distribution allowing the use of projection profiles to detect the presence of pathologies that are characterized by intensity differences with surrounding areas in retinal images. We first tested our method by applying it to fluorescein angiograms. We then applied our method to en face retinal images of patients with AMD. The experimental results included demonstrate that the proposed method provided a quick and improved outcome as compared to the classical Chan-Vese method in which the initial contour is randomly placed, thus indicating the potential to provide a more accurate and detailed view of changes in pathologies due to disease progression and treatment.
A scale-invariant keypoint detector in log-polar space
NASA Astrophysics Data System (ADS)
Tao, Tao; Zhang, Yun
2017-02-01
The scale-invariant feature transform (SIFT) algorithm is devised to detect keypoints via the difference of Gaussian (DoG) images. However, the DoG data lacks the high-frequency information, which can lead to a performance drop of the algorithm. To address this issue, this paper proposes a novel log-polar feature detector (LPFD) to detect scale-invariant blubs (keypoints) in log-polar space, which, in contrast, can retain all the image information. The algorithm consists of three components, viz. keypoint detection, descriptor extraction and descriptor matching. Besides, the algorithm is evaluated in detecting keypoints from the INRIA dataset by comparing with the SIFT algorithm and one of its fast versions, the speed up robust features (SURF) algorithm in terms of three performance measures, viz. correspondences, repeatability, correct matches and matching score.
CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking
NASA Astrophysics Data System (ADS)
Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.
2017-12-01
We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.
Improvement and implementation for Canny edge detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Tao; Qiu, Yue-hong
2015-07-01
Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.
Automatic target detection using binary template matching
NASA Astrophysics Data System (ADS)
Jun, Dong-San; Sun, Sun-Gu; Park, HyunWook
2005-03-01
This paper presents a new automatic target detection (ATD) algorithm to detect targets such as battle tanks and armored personal carriers in ground-to-ground scenarios. Whereas most ATD algorithms were developed for forward-looking infrared (FLIR) images, we have developed an ATD algorithm for charge-coupled device (CCD) images, which have superior quality to FLIR images in daylight. The proposed algorithm uses fast binary template matching with an adaptive binarization, which is robust to various light conditions in CCD images and saves computation time. Experimental results show that the proposed method has good detection performance.
Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique
NASA Astrophysics Data System (ADS)
Kalinovsky, A.; Liauchuk, V.; Tarasau, A.
2017-05-01
In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.
Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Zheng, Yang; Chen, Xihao; Zhu, Rui
2017-07-01
Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.
NASA Astrophysics Data System (ADS)
Yu, F.; Chen, H.; Tu, K.; Wen, Q.; He, J.; Gu, X.; Wang, Z.
2018-04-01
Facing the monitoring needs of emergency responses to major disasters, combining the disaster information acquired at the first time after the disaster and the dynamic simulation result of the disaster chain evolution process, the overall plan for coordinated planning of spaceborne, airborne and ground observation resources have been designed. Based on the analysis of the characteristics of major disaster observation tasks, the key technologies of spaceborne, airborne and ground collaborative observation project are studied. For different disaster response levels, the corresponding workflow tasks are designed. On the basis of satisfying different types of disaster monitoring demands, the existing multi-satellite collaborative observation planning algorithms are compared, analyzed, and optimized.
Robust automatic line scratch detection in films.
Newson, Alasdair; Almansa, Andrés; Gousseau, Yann; Pérez, Patrick
2014-03-01
Line scratch detection in old films is a particularly challenging problem due to the variable spatiotemporal characteristics of this defect. Some of the main problems include sensitivity to noise and texture, and false detections due to thin vertical structures belonging to the scene. We propose a robust and automatic algorithm for frame-by-frame line scratch detection in old films, as well as a temporal algorithm for the filtering of false detections. In the frame-by-frame algorithm, we relax some of the hypotheses used in previous algorithms in order to detect a wider variety of scratches. This step's robustness and lack of external parameters is ensured by the combined use of an a contrario methodology and local statistical estimation. In this manner, over-detection in textured or cluttered areas is greatly reduced. The temporal filtering algorithm eliminates false detections due to thin vertical structures by exploiting the coherence of their motion with that of the underlying scene. Experiments demonstrate the ability of the resulting detection procedure to deal with difficult situations, in particular in the presence of noise, texture, and slanted or partial scratches. Comparisons show significant advantages over previous work.
Novel dynamic Bayesian networks for facial action element recognition and understanding
NASA Astrophysics Data System (ADS)
Zhao, Wei; Park, Jeong-Seon; Choi, Dong-You; Lee, Sang-Woong
2011-12-01
In daily life, language is an important tool of communication between people. Besides language, facial action can also provide a great amount of information. Therefore, facial action recognition has become a popular research topic in the field of human-computer interaction (HCI). However, facial action recognition is quite a challenging task due to its complexity. In a literal sense, there are thousands of facial muscular movements, many of which have very subtle differences. Moreover, muscular movements always occur simultaneously when the pose is changed. To address this problem, we first build a fully automatic facial points detection system based on a local Gabor filter bank and principal component analysis. Then, novel dynamic Bayesian networks are proposed to perform facial action recognition using the junction tree algorithm over a limited number of feature points. In order to evaluate the proposed method, we have used the Korean face database for model training. For testing, we used the CUbiC FacePix, facial expressions and emotion database, Japanese female facial expression database, and our own database. Our experimental results clearly demonstrate the feasibility of the proposed approach.
Image based book cover recognition and retrieval
NASA Astrophysics Data System (ADS)
Sukhadan, Kalyani; Vijayarajan, V.; Krishnamoorthi, A.; Bessie Amali, D. Geraldine
2017-11-01
In this we are developing a graphical user interface using MATLAB for the users to check the information related to books in real time. We are taking the photos of the book cover using GUI, then by using MSER algorithm it will automatically detect all the features from the input image, after this it will filter bifurcate non-text features which will be based on morphological difference between text and non-text regions. We implemented a text character alignment algorithm which will improve the accuracy of the original text detection. We will also have a look upon the built in MATLAB OCR recognition algorithm and an open source OCR which is commonly used to perform better detection results, post detection algorithm is implemented and natural language processing to perform word correction and false detection inhibition. Finally, the detection result will be linked to internet to perform online matching. More than 86% accuracy can be obtained by this algorithm.
Hazardous gas detection for FTIR-based hyperspectral imaging system using DNN and CNN
NASA Astrophysics Data System (ADS)
Kim, Yong Chan; Yu, Hyeong-Geun; Lee, Jae-Hoon; Park, Dong-Jo; Nam, Hyun-Woo
2017-10-01
Recently, a hyperspectral imaging system (HIS) with a Fourier Transform InfraRed (FTIR) spectrometer has been widely used due to its strengths in detecting gaseous fumes. Even though numerous algorithms for detecting gaseous fumes have already been studied, it is still difficult to detect target gases properly because of atmospheric interference substances and unclear characteristics of low concentration gases. In this paper, we propose detection algorithms for classifying hazardous gases using a deep neural network (DNN) and a convolutional neural network (CNN). In both the DNN and CNN, spectral signal preprocessing, e.g., offset, noise, and baseline removal, are carried out. In the DNN algorithm, the preprocessed spectral signals are used as feature maps of the DNN with five layers, and it is trained by a stochastic gradient descent (SGD) algorithm (50 batch size) and dropout regularization (0.7 ratio). In the CNN algorithm, preprocessed spectral signals are trained with 1 × 3 convolution layers and 1 × 2 max-pooling layers. As a result, the proposed algorithms improve the classification accuracy rate by 1.5% over the existing support vector machine (SVM) algorithm for detecting and classifying hazardous gases.
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
Detection of dechallenge in spontaneous reporting systems: a comparison of Bayes methods.
Banu, A Bazila; Alias Balamurugan, S Appavu; Thirumalaikolundusubramanian, Ponniah
2014-01-01
Dechallenge is a response observed for the reduction or disappearance of adverse drug reactions (ADR) on withdrawal of a drug from a patient. Currently available algorithms to detect dechallenge have limitations. Hence, there is a need to compare available new methods. To detect dechallenge in Spontaneous Reporting Systems, data-mining algorithms like Naive Bayes and Improved Naive Bayes were applied for comparing the performance of the algorithms in terms of accuracy and error. Analyzing the factors of dechallenge like outcome and disease category will help medical practitioners and pharmaceutical industries to determine the reasons for dechallenge in order to take essential steps toward drug safety. Adverse drug reactions of the year 2011 and 2012 were downloaded from the United States Food and Drug Administration's database. The outcome of classification algorithms showed that Improved Naive Bayes algorithm outperformed Naive Bayes with accuracy of 90.11% and error of 9.8% in detecting the dechallenge. Detecting dechallenge for unknown samples are essential for proper prescription. To overcome the issues exposed by Naive Bayes algorithm, Improved Naive Bayes algorithm can be used to detect dechallenge in terms of higher accuracy and minimal error.
Detection of Emotional Faces: Salient Physical Features Guide Effective Visual Search
ERIC Educational Resources Information Center
Calvo, Manuel G.; Nummenmaa, Lauri
2008-01-01
In this study, the authors investigated how salient visual features capture attention and facilitate detection of emotional facial expressions. In a visual search task, a target emotional face (happy, disgusted, fearful, angry, sad, or surprised) was presented in an array of neutral faces. Faster detection of happy and, to a lesser extent,…
Detection and Tracking of Moving Objects with Real-Time Onboard Vision System
NASA Astrophysics Data System (ADS)
Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.
2017-05-01
Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.
Research on improved edge extraction algorithm of rectangular piece
NASA Astrophysics Data System (ADS)
He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu
Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.
Interface of Augmented Reality Game Using Face Tracking and Its Application to Advertising
NASA Astrophysics Data System (ADS)
Lee, Young Jae; Lee, Yong Jae
This paper proposes the face interface method which can be used in recognizing gamer's movements in the real world for application in the cyber space so that we could make three-dimensional space recognition motion-based game. The proposed algorithm is the new face recognition technology which incorporates the strengths of two existing algorithms, CBCH and CAMSHIFT and its validity has been proved through a series of experiments. Moreover, for the purpose of the interdisciplinary studies, concepts of advertising have been introduced into the three-dimensional motion-based game to look into the possible new beneficiary models for the game industry. This kind of attempt may be significant in that it tried to see if the advertising brand when placed in the game could play the role of the game item or quest. The proposed method can provide the basic references for developing motion-based game development.
Deep Convolutional Neural Networks for Classifying Body Constitution Based on Face Image.
Huan, Er-Yang; Wen, Gui-Hua; Zhang, Shi-Jun; Li, Dan-Yang; Hu, Yang; Chang, Tian-Yuan; Wang, Qing; Huang, Bing-Lin
2017-01-01
Body constitution classification is the basis and core content of traditional Chinese medicine constitution research. It is to extract the relevant laws from the complex constitution phenomenon and finally build the constitution classification system. Traditional identification methods have the disadvantages of inefficiency and low accuracy, for instance, questionnaires. This paper proposed a body constitution recognition algorithm based on deep convolutional neural network, which can classify individual constitution types according to face images. The proposed model first uses the convolutional neural network to extract the features of face image and then combines the extracted features with the color features. Finally, the fusion features are input to the Softmax classifier to get the classification result. Different comparison experiments show that the algorithm proposed in this paper can achieve the accuracy of 65.29% about the constitution classification. And its performance was accepted by Chinese medicine practitioners.
Gas flow calculation method of a ramjet engine
NASA Astrophysics Data System (ADS)
Kostyushin, Kirill; Kagenov, Anuar; Eremin, Ivan; Zhiltsov, Konstantin; Shuvarikov, Vladimir
2017-11-01
At the present study calculation methodology of gas dynamics equations in ramjet engine is presented. The algorithm is based on Godunov`s scheme. For realization of calculation algorithm, the system of data storage is offered, the system does not depend on mesh topology, and it allows using the computational meshes with arbitrary number of cell faces. The algorithm of building a block-structured grid is given. Calculation algorithm in the software package "FlashFlow" is implemented. Software package is verified on the calculations of simple configurations of air intakes and scramjet models.
Heterogeneous Vision Data Fusion for Independently Moving Cameras
2010-03-01
target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY
The Malaria System MicroApp: A New, Mobile Device-Based Tool for Malaria Diagnosis.
Oliveira, Allisson Dantas; Prats, Clara; Espasa, Mateu; Zarzuela Serrat, Francesc; Montañola Sales, Cristina; Silgado, Aroa; Codina, Daniel Lopez; Arruda, Mercia Eliane; I Prat, Jordi Gomez; Albuquerque, Jones
2017-04-25
Malaria is a public health problem that affects remote areas worldwide. Climate change has contributed to the problem by allowing for the survival of Anopheles in previously uninhabited areas. As such, several groups have made developing news systems for the automated diagnosis of malaria a priority. The objective of this study was to develop a new, automated, mobile device-based diagnostic system for malaria. The system uses Giemsa-stained peripheral blood samples combined with light microscopy to identify the Plasmodium falciparum species in the ring stage of development. The system uses image processing and artificial intelligence techniques as well as a known face detection algorithm to identify Plasmodium parasites. The algorithm is based on integral image and haar-like features concepts, and makes use of weak classifiers with adaptive boosting learning. The search scope of the learning algorithm is reduced in the preprocessing step by removing the background around blood cells. As a proof of concept experiment, the tool was used on 555 malaria-positive and 777 malaria-negative previously-made slides. The accuracy of the system was, on average, 91%, meaning that for every 100 parasite-infected samples, 91 were identified correctly. Accessibility barriers of low-resource countries can be addressed with low-cost diagnostic tools. Our system, developed for mobile devices (mobile phones and tablets), addresses this by enabling access to health centers in remote communities, and importantly, not depending on extensive malaria expertise or expensive diagnostic detection equipment. ©Allisson Dantas Oliveira, Clara Prats, Mateu Espasa, Francesc Zarzuela Serrat, Cristina Montañola Sales, Aroa Silgado, Daniel Lopez Codina, Mercia Eliane Arruda, Jordi Gomez i Prat, Jones Albuquerque. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 25.04.2017.
NASA Astrophysics Data System (ADS)
Tamimi, E.; Ebadi, H.; Kiani, A.
2017-09-01
Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.
Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham).
Bukar, Ali M; Ugail, Hassan
2017-09-01
Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide. © 2017 American Academy of Forensic Sciences.
Right wing authoritarianism is associated with race bias in face detection
Bret, Amélie; Beffara, Brice; McFadyen, Jessica; Mermillod, Martial
2017-01-01
Racial discrimination can be observed in a wide range of psychological processes, including even the earliest phases of face detection. It remains unclear, however, whether racially-biased low-level face processing is influenced by ideologies, such as right wing authoritarianism or social dominance orientation. In the current study, we hypothesized that socio-political ideologies such as these can substantially predict perceptive racial bias during early perception. To test this hypothesis, 67 participants detected faces within arrays of neutral objects. The faces were either Caucasian (in-group) or North African (out-group) and either had a neutral or angry expression. Results showed that participants with higher self-reported right-wing authoritarianism were more likely to show slower response times for detecting out- vs. in-groups faces. We interpreted our results according to the Dual Process Motivational Model and suggest that socio-political ideologies may foster early racial bias via attentional disengagement. PMID:28692705
An Automated Energy Detection Algorithm Based on Consecutive Mean Excision
2018-01-01
present in the RF spectrum. 15. SUBJECT TERMS RF spectrum, detection threshold algorithm, consecutive mean excision, rank order filter , statistical...Median 4 3.1.9 Rank Order Filter (ROF) 4 3.1.10 Crest Factor (CF) 5 3.2 Statistical Summary 6 4. Algorithm 7 5. Conclusion 8 6. References 9...energy detection algorithm based on morphological filter processing with a semi- disk structure. Adelphi (MD): Army Research Laboratory (US); 2018 Jan
Deficient cortical face-sensitive N170 responses and basic visual processing in schizophrenia.
Maher, S; Mashhoon, Y; Ekstrom, T; Lukas, S; Chen, Y
2016-01-01
Face detection, an ability to identify a visual stimulus as a face, is impaired in patients with schizophrenia. It is unclear whether impaired face processing in this psychiatric disorder results from face-specific domains or stems from more basic visual domains. In this study, we examined cortical face-sensitive N170 response in schizophrenia, taking into account deficient basic visual contrast processing. We equalized visual contrast signals among patients (n=20) and controls (n=20) and between face and tree images, based on their individual perceptual capacities (determined using psychophysical methods). We measured N170, a putative temporal marker of face processing, during face detection and tree detection. In controls, N170 amplitudes were significantly greater for faces than trees across all three visual contrast levels tested (perceptual threshold, two times perceptual threshold and 100%). In patients, however, N170 amplitudes did not differ between faces and trees, indicating diminished face selectivity (indexed by the differential responses to face vs. tree). These results indicate a lack of face-selectivity in temporal responses of brain machinery putatively responsible for face processing in schizophrenia. This neuroimaging finding suggests that face-specific processing is compromised in this psychiatric disorder. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Qi; Melton, Kristin; Lingren, Todd; Kirkendall, Eric S; Hall, Eric; Zhai, Haijun; Ni, Yizhao; Kaiser, Megan; Stoutenborough, Laura; Solti, Imre
2014-01-01
Although electronic health records (EHRs) have the potential to provide a foundation for quality and safety algorithms, few studies have measured their impact on automated adverse event (AE) and medical error (ME) detection within the neonatal intensive care unit (NICU) environment. This paper presents two phenotyping AE and ME detection algorithms (ie, IV infiltrations, narcotic medication oversedation and dosing errors) and describes manual annotation of airway management and medication/fluid AEs from NICU EHRs. From 753 NICU patient EHRs from 2011, we developed two automatic AE/ME detection algorithms, and manually annotated 11 classes of AEs in 3263 clinical notes. Performance of the automatic AE/ME detection algorithms was compared to trigger tool and voluntary incident reporting results. AEs in clinical notes were double annotated and consensus achieved under neonatologist supervision. Sensitivity, positive predictive value (PPV), and specificity are reported. Twelve severe IV infiltrates were detected. The algorithm identified one more infiltrate than the trigger tool and eight more than incident reporting. One narcotic oversedation was detected demonstrating 100% agreement with the trigger tool. Additionally, 17 narcotic medication MEs were detected, an increase of 16 cases over voluntary incident reporting. Automated AE/ME detection algorithms provide higher sensitivity and PPV than currently used trigger tools or voluntary incident-reporting systems, including identification of potential dosing and frequency errors that current methods are unequipped to detect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Onboard Data Processors for Planetary Ice-Penetrating Sounding Radars
NASA Astrophysics Data System (ADS)
Tan, I. L.; Friesenhahn, R.; Gim, Y.; Wu, X.; Jordan, R.; Wang, C.; Clark, D.; Le, M.; Hand, K. P.; Plaut, J. J.
2011-12-01
Among the many concerns faced by outer planetary missions, science data storage and transmission hold special significance. Such missions must contend with limited onboard storage, brief data downlink windows, and low downlink bandwidths. A potential solution to these issues lies in employing onboard data processors (OBPs) to convert raw data into products that are smaller and closely capture relevant scientific phenomena. In this paper, we present the implementation of two OBP architectures for ice-penetrating sounding radars tasked with exploring Europa and Ganymede. Our first architecture utilizes an unfocused processing algorithm extended from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS, Jordan et. al. 2009). Compared to downlinking raw data, we are able to reduce data volume by approximately 100 times through OBP usage. To ensure the viability of our approach, we have implemented, simulated, and synthesized this architecture using both VHDL and Matlab models (with fixed-point and floating-point arithmetic) in conjunction with Modelsim. Creation of a VHDL model of our processor is the principle step in transitioning to actual digital hardware, whether in a FPGA (field-programmable gate array) or an ASIC (application-specific integrated circuit), and successful simulation and synthesis strongly indicate feasibility. In addition, we examined the tradeoffs faced in the OBP between fixed-point accuracy, resource consumption, and data product fidelity. Our second architecture is based upon a focused fast back projection (FBP) algorithm that requires a modest amount of computing power and on-board memory while yielding high along-track resolution and improved slope detection capability. We present an overview of the algorithm and details of our implementation, also in VHDL. With the appropriate tradeoffs, the use of OBPs can significantly reduce data downlink requirements without sacrificing data product fidelity. Through the development, simulation, and synthesis of two different OBP architectures, we have proven the feasibility and efficacy of an OBP for planetary ice-penetrating radars.
Metaphor Identification in Large Texts Corpora
Neuman, Yair; Assaf, Dan; Cohen, Yohai; Last, Mark; Argamon, Shlomo; Howard, Newton; Frieder, Ophir
2013-01-01
Identifying metaphorical language-use (e.g., sweet child) is one of the challenges facing natural language processing. This paper describes three novel algorithms for automatic metaphor identification. The algorithms are variations of the same core algorithm. We evaluate the algorithms on two corpora of Reuters and the New York Times articles. The paper presents the most comprehensive study of metaphor identification in terms of scope of metaphorical phrases and annotated corpora size. Algorithms’ performance in identifying linguistic phrases as metaphorical or literal has been compared to human judgment. Overall, the algorithms outperform the state-of-the-art algorithm with 71% precision and 27% averaged improvement in prediction over the base-rate of metaphors in the corpus. PMID:23658625
A smartphone-based diagnostic platform for rapid detection of Zika, chikungunya, and dengue viruses
Priye, Aashish; Bird, Sara W.; Light, Yooli K.; Ball, Cameron S.; Negrete, Oscar A.; Meagher, Robert J.
2017-01-01
Current multiplexed diagnostics for Zika, dengue, and chikungunya viruses are situated outside the intersection of affordability, high performance, and suitability for use at the point-of-care in resource-limited settings. Consequently, insufficient diagnostic capabilities are a key limitation facing current Zika outbreak management strategies. Here we demonstrate highly sensitive and specific detection of Zika, chikungunya, and dengue viruses by coupling reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with our recently developed quenching of unincorporated amplification signal reporters (QUASR) technique. We conduct reactions in a simple, inexpensive and portable “LAMP box” supplemented with a consumer class smartphone. The entire assembly can be powered by a 5 V USB source such as a USB power bank or solar panel. Our smartphone employs a novel algorithm utilizing chromaticity to analyze fluorescence signals, which improves the discrimination of positive/negative signals by 5-fold when compared to detection with traditional RGB intensity sensors or the naked eye. The ability to detect ZIKV directly from crude human sample matrices (blood, urine, and saliva) demonstrates our device’s utility for widespread clinical deployment. Together, these advances enable our system to host the key components necessary to expand the use of nucleic acid amplification-based detection assays towards point-of-care settings where they are needed most. PMID:28317856
A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye.
Fraiwan, Arwa; Lee, Hankeun; Choi, Seokheun
2016-09-01
Volatile organic compound (VOC) detection is critical for controlling industrial and commercial emissions, environmental monitoring, and public health. Simple, portable, rapid and low-cost VOC sensing platforms offer the benefits of on-site and real-time monitoring anytime and anywhere. The best and most practically useful approaches to monitoring would include equipment-free and power-free detection by the naked eye. In this work, we created a novel, paper-based cantilever sensor array that allows simple and rapid naked-eye VOC detection without the need for power, electronics or readout interface/equipment. This simple VOC detection method was achieved using (i) low-cost paper materials as a substrate and (ii) swellable thin polymers adhered to the paper. Upon exposure to VOCs, the polymer swelling adhered to the paper-based cantilever, inducing mechanical deflection that generated a distinctive composite pattern of the deflection angles for a specific VOC. The angle is directly measured by the naked eye on a 3-D protractor printed on a paper facing the cantilevers. The generated angle patterns are subjected to statistical algorithms (linear discriminant analysis (LDA)) to classify each VOC sample and selectively detect a VOC. We classified four VOC samples with 100% accuracy using LDA. Copyright © 2016 Elsevier B.V. All rights reserved.
Calculus Challenges: An Active Learning Approach
ERIC Educational Resources Information Center
Crawford, Pam; Moseley, Daniel; Nancarrow, Mike; Ward, Erika
2018-01-01
One of the greatest challenges facing students new to calculus is the ability to persevere in the face of failure. Whether the student is choosing an integration technique or a series test, calculus is often the first course in mathematics where the path to the solution is not prescribed in an algorithmic way. At Jacksonville University we…
Quasi-Facial Communication for Online Learning Using 3D Modeling Techniques
ERIC Educational Resources Information Center
Wang, Yushun; Zhuang, Yueting
2008-01-01
Online interaction with 3D facial animation is an alternative way of face-to-face communication for distance education. 3D facial modeling is essential for virtual educational environments establishment. This article presents a novel 3D facial modeling solution that facilitates quasi-facial communication for online learning. Our algorithm builds…
Evolving and Combining Facial Composites: Between-Witness and Within-Witness Morphs Compared
ERIC Educational Resources Information Center
Valentine, Tim; Davis, Josh P.; Thorner, Kate; Solomon, Chris; Gibson, Stuart
2010-01-01
Student participant-witnesses produced 4 composites of unfamiliar faces with a system that uses a genetic algorithm to evolve appearance of artificial faces. Morphs of 4 composites produced by different witnesses (between-witness morphs) were judged better likenesses (Experiment 1) and were more frequently named (Experiment 2) by participants who…
Texture orientation-based algorithm for detecting infrared maritime targets.
Wang, Bin; Dong, Lili; Zhao, Ming; Wu, Houde; Xu, Wenhai
2015-05-20
Infrared maritime target detection is a key technology for maritime target searching systems. However, in infrared maritime images (IMIs) taken under complicated sea conditions, background clutters, such as ocean waves, clouds or sea fog, usually have high intensity that can easily overwhelm the brightness of real targets, which is difficult for traditional target detection algorithms to deal with. To mitigate this problem, this paper proposes a novel target detection algorithm based on texture orientation. This algorithm first extracts suspected targets by analyzing the intersubband correlation between horizontal and vertical wavelet subbands of the original IMI on the first scale. Then the self-adaptive wavelet threshold denoising and local singularity analysis of the original IMI is combined to remove false alarms further. Experiments show that compared with traditional algorithms, this algorithm can suppress background clutter much better and realize better single-frame detection for infrared maritime targets. Besides, in order to guarantee accurate target extraction further, the pipeline-filtering algorithm is adopted to eliminate residual false alarms. The high practical value and applicability of this proposed strategy is backed strongly by experimental data acquired under different environmental conditions.
Investigating prior probabilities in a multiple hypothesis test for use in space domain awareness
NASA Astrophysics Data System (ADS)
Hardy, Tyler J.; Cain, Stephen C.
2016-05-01
The goal of this research effort is to improve Space Domain Awareness (SDA) capabilities of current telescope systems through improved detection algorithms. Ground-based optical SDA telescopes are often spatially under-sampled, or aliased. This fact negatively impacts the detection performance of traditionally proposed binary and correlation-based detection algorithms. A Multiple Hypothesis Test (MHT) algorithm has been previously developed to mitigate the effects of spatial aliasing. This is done by testing potential Resident Space Objects (RSOs) against several sub-pixel shifted Point Spread Functions (PSFs). A MHT has been shown to increase detection performance for the same false alarm rate. In this paper, the assumption of a priori probability used in a MHT algorithm is investigated. First, an analysis of the pixel decision space is completed to determine alternate hypothesis prior probabilities. These probabilities are then implemented into a MHT algorithm, and the algorithm is then tested against previous MHT algorithms using simulated RSO data. Results are reported with Receiver Operating Characteristic (ROC) curves and probability of detection, Pd, analysis.
A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.
Gregoire, John M; Dale, Darren; van Dover, R Bruce
2011-01-01
Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.
Robust crop and weed segmentation under uncontrolled outdoor illumination.
Jeon, Hong Y; Tian, Lei F; Zhu, Heping
2011-01-01
An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA).
Directional templates for real-time detection of coronal axis rotated faces
NASA Astrophysics Data System (ADS)
Perez, Claudio A.; Estevez, Pablo A.; Garate, Patricio
2004-10-01
Real-time face and iris detection on video images has gained renewed attention because of multiple possible applications in studying eye function, drowsiness detection, virtual keyboard interfaces, face recognition, video processing and multimedia retrieval. In this paper, a study is presented on using directional templates in the detection of faces rotated in the coronal axis. The templates are built by extracting the directional image information from the regions of the eyes, nose and mouth. The face position is determined by computing a line integral using the templates over the face directional image. The line integral reaches a maximum when it coincides with the face position. It is shown an improvement in localization selectivity by the increased value in the line integral computed with the directional template. Besides, improvements in the line integral value for face size and face rotation angle was also found through the computation of the line integral using the directional template. Based on these results the new templates should improve selectivity and hence provide the means to restrict computations to a fewer number of templates and restrict the region of search during the face and eye tracking procedure. The proposed method is real time, completely non invasive and was applied with no background limitation and normal illumination conditions in an indoor environment.
Zachariou, Valentinos; Nikas, Christine V; Safiullah, Zaid N; Gotts, Stephen J; Ungerleider, Leslie G
2017-08-01
Human face recognition is often attributed to configural processing; namely, processing the spatial relationships among the features of a face. If configural processing depends on fine-grained spatial information, do visuospatial mechanisms within the dorsal visual pathway contribute to this process? We explored this question in human adults using functional magnetic resonance imaging and transcranial magnetic stimulation (TMS) in a same-different face detection task. Within localized, spatial-processing regions of the posterior parietal cortex, configural face differences led to significantly stronger activation compared to featural face differences, and the magnitude of this activation correlated with behavioral performance. In addition, detection of configural relative to featural face differences led to significantly stronger functional connectivity between the right FFA and the spatial processing regions of the dorsal stream, whereas detection of featural relative to configural face differences led to stronger functional connectivity between the right FFA and left FFA. Critically, TMS centered on these parietal regions impaired performance on configural but not featural face difference detections. We conclude that spatial mechanisms within the dorsal visual pathway contribute to the configural processing of facial features and, more broadly, that the dorsal stream may contribute to the veridical perception of faces. Published by Oxford University Press 2016.
Oginosawa, Yasushi; Kohno, Ritsuko; Honda, Toshihiro; Kikuchi, Kan; Nozoe, Masatsugu; Uchida, Takayuki; Minamiguchi, Hitoshi; Sonoda, Koichiro; Ogawa, Masahiro; Ideguchi, Takeshi; Kizaki, Yoshihisa; Nakamura, Toshihiro; Oba, Kageyuki; Higa, Satoshi; Yoshida, Keiki; Tsunoda, Soichi; Fujino, Yoshihisa; Abe, Haruhiko
2017-08-25
Shocks delivered by implanted anti-tachyarrhythmia devices, even when appropriate, lower the quality of life and survival. The new SmartShock Technology ® (SST) discrimination algorithm was developed to prevent the delivery of inappropriate shock. This prospective, multicenter, observational study compared the rate of inaccurate detection of ventricular tachyarrhythmia using the SST vs. a conventional discrimination algorithm.Methods and Results:Recipients of implantable cardioverter defibrillators (ICD) or cardiac resynchronization therapy defibrillators (CRT-D) equipped with the SST algorithm were enrolled and followed up every 6 months. The tachycardia detection rate was set at ≥150 beats/min with the SST algorithm. The primary endpoint was the time to first inaccurate detection of ventricular tachycardia (VT) with conventional vs. the SST discrimination algorithm, up to 2 years of follow-up. Between March 2012 and September 2013, 185 patients (mean age, 64.0±14.9 years; men, 74%; secondary prevention indication, 49.5%) were enrolled at 14 Japanese medical centers. Inaccurate detection was observed in 32 patients (17.6%) with the conventional, vs. in 19 patients (10.4%) with the SST algorithm. SST significantly lowered the rate of inaccurate detection by dual chamber devices (HR, 0.50; 95% CI: 0.263-0.950; P=0.034). Compared with previous algorithms, the SST discrimination algorithm significantly lowered the rate of inaccurate detection of VT in recipients of dual-chamber ICD or CRT-D.
Boundary Recovery For Delaunay Tetrahedral Meshes Using Local Topological Transformations
Ghadyani, Hamid; Sullivan, John; Wu, Ziji
2009-01-01
Numerous high-quality, volume mesh-generation systems exist. However, no strategy can address all geometry situations without some element qualities being compromised. Many 3D mesh generation algorithms are based on Delaunay tetrahedralization which frequently fails to preserve the input boundary surface topology. For biomedical applications, this surface preservation can be critical as they usually contain multiple material regions of interest coherently connected. In this paper we present an algorithm as a post-processing method that optimizes local regions of compromised element quality and recovers the original boundary surface facets (triangles) regardless of the original mesh generation strategy. The algorithm carves out a small sub-volume in the vicinity of the missing boundary facet or compromised element, creating a cavity. If the task is to recover a surface boundary facet, a natural exit hole in the cavity will be present. This hole is patched with the missing boundary surface face first followed by other patches to seal the cavity. If the task was to improve a compromised region, then the cavity is already sealed. Every triangular facet of the cavity shell is classified as an active face and can be connected to another shell node creating a tetrahedron. In the process the base of the tetrahedron is removed from the active face list and potentially 3 new active faces are created. This methodology is the underpinnings of our last resort method. Each active face can be viewed as the trunk of a tree. An exhaustive breath and depth search will identify all possible tetrahedral combinations to uniquely fill the cavity. We have streamlined this recursive process reducing the time complexity by orders of magnitude. The original surfaces boundaries (internal and external) are fully restored and the quality of compromised regions improved. PMID:20305743
Li, Ye; Whelan, Michael; Hobbs, Leigh; Fan, Wen Qi; Fung, Cecilia; Wong, Kenny; Marchand-Austin, Alex; Badiani, Tina; Johnson, Ian
2016-06-27
In 2014/2015, Public Health Ontario developed disease-specific, cumulative sum (CUSUM)-based statistical algorithms for detecting aberrant increases in reportable infectious disease incidence in Ontario. The objective of this study was to determine whether the prospective application of these CUSUM algorithms, based on historical patterns, have improved specificity and sensitivity compared to the currently used Early Aberration Reporting System (EARS) algorithm, developed by the US Centers for Disease Control and Prevention. A total of seven algorithms were developed for the following diseases: cyclosporiasis, giardiasis, influenza (one each for type A and type B), mumps, pertussis, invasive pneumococcal disease. Historical data were used as baseline to assess known outbreaks. Regression models were used to model seasonality and CUSUM was applied to the difference between observed and expected counts. An interactive web application was developed allowing program staff to directly interact with data and tune the parameters of CUSUM algorithms using their expertise on the epidemiology of each disease. Using these parameters, a CUSUM detection system was applied prospectively and the results were compared to the outputs generated by EARS. The outcome was the detection of outbreaks, or the start of a known seasonal increase and predicting the peak in activity. The CUSUM algorithms detected provincial outbreaks earlier than the EARS algorithm, identified the start of the influenza season in advance of traditional methods, and had fewer false positive alerts. Additionally, having staff involved in the creation of the algorithms improved their understanding of the algorithms and improved use in practice. Using interactive web-based technology to tune CUSUM improved the sensitivity and specificity of detection algorithms.
Text Extraction from Scene Images by Character Appearance and Structure Modeling
Yi, Chucai; Tian, Yingli
2012-01-01
In this paper, we propose a novel algorithm to detect text information from natural scene images. Scene text classification and detection are still open research topics. Our proposed algorithm is able to model both character appearance and structure to generate representative and discriminative text descriptors. The contributions of this paper include three aspects: 1) a new character appearance model by a structure correlation algorithm which extracts discriminative appearance features from detected interest points of character samples; 2) a new text descriptor based on structons and correlatons, which model character structure by structure differences among character samples and structure component co-occurrence; and 3) a new text region localization method by combining color decomposition, character contour refinement, and string line alignment to localize character candidates and refine detected text regions. We perform three groups of experiments to evaluate the effectiveness of our proposed algorithm, including text classification, text detection, and character identification. The evaluation results on benchmark datasets demonstrate that our algorithm achieves the state-of-the-art performance on scene text classification and detection, and significantly outperforms the existing algorithms for character identification. PMID:23316111
Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.
Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu
2017-05-23
This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.
Research on Abnormal Detection Based on Improved Combination of K - means and SVDD
NASA Astrophysics Data System (ADS)
Hao, Xiaohong; Zhang, Xiaofeng
2018-01-01
In order to improve the efficiency of network intrusion detection and reduce the false alarm rate, this paper proposes an anomaly detection algorithm based on improved K-means and SVDD. The algorithm first uses the improved K-means algorithm to cluster the training samples of each class, so that each class is independent and compact in class; Then, according to the training samples, the SVDD algorithm is used to construct the minimum superspheres. The subordinate relationship of the samples is determined by calculating the distance of the minimum superspheres constructed by SVDD. If the test sample is less than the center of the hypersphere, the test sample belongs to this class, otherwise it does not belong to this class, after several comparisons, the final test of the effective detection of the test sample.In this paper, we use KDD CUP99 data set to simulate the proposed anomaly detection algorithm. The results show that the algorithm has high detection rate and low false alarm rate, which is an effective network security protection method.
Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm
NASA Astrophysics Data System (ADS)
Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong
2018-06-01
The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.
Efficient live face detection to counter spoof attack in face recognition systems
NASA Astrophysics Data System (ADS)
Biswas, Bikram Kumar; Alam, Mohammad S.
2015-03-01
Face recognition is a critical tool used in almost all major biometrics based security systems. But recognition, authentication and liveness detection of the face of an actual user is a major challenge because an imposter or a non-live face of the actual user can be used to spoof the security system. In this research, a robust technique is proposed which detects liveness of faces in order to counter spoof attacks. The proposed technique uses a three-dimensional (3D) fast Fourier transform to compare spectral energies of a live face and a fake face in a mathematically selective manner. The mathematical model involves evaluation of energies of selective high frequency bands of average power spectra of both live and non-live faces. It also carries out proper recognition and authentication of the face of the actual user using the fringe-adjusted joint transform correlation technique, which has been found to yield the highest correlation output for a match. Experimental tests show that the proposed technique yields excellent results for identifying live faces.
Reducing false-positive detections by combining two stage-1 computer-aided mass detection algorithms
NASA Astrophysics Data System (ADS)
Bedard, Noah D.; Sampat, Mehul P.; Stokes, Patrick A.; Markey, Mia K.
2006-03-01
In this paper we present a strategy for reducing the number of false-positives in computer-aided mass detection. Our approach is to only mark "consensus" detections from among the suspicious sites identified by different "stage-1" detection algorithms. By "stage-1" we mean that each of the Computer-aided Detection (CADe) algorithms is designed to operate with high sensitivity, allowing for a large number of false positives. In this study, two mass detection methods were used: (1) Heath and Bowyer's algorithm based on the average fraction under the minimum filter (AFUM) and (2) a low-threshold bi-lateral subtraction algorithm. The two methods were applied separately to a set of images from the Digital Database for Screening Mammography (DDSM) to obtain paired sets of mass candidates. The consensus mass candidates for each image were identified by a logical "and" operation of the two CADe algorithms so as to eliminate regions of suspicion that were not independently identified by both techniques. It was shown that by combining the evidence from the AFUM filter method with that obtained from bi-lateral subtraction, the same sensitivity could be reached with fewer false-positives per image relative to using the AFUM filter alone.
A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images
Xu, Songhua; Krauthammer, Michael
2010-01-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper’s key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. In this paper, we demonstrate that a projection histogram-based text detection approach is well suited for text detection in biomedical images, with a performance of F score of .60. The approach performs better than comparable approaches for text detection. Further, we show that the iterative application of the algorithm is boosting overall detection performance. A C++ implementation of our algorithm is freely available through email request for academic use. PMID:20887803
ERIC Educational Resources Information Center
Vrachnos, Euripides; Jimoyiannis, Athanassios
2017-01-01
Developing students' algorithmic and computational thinking is currently a major objective for primary and secondary education in many countries around the globe. Literature suggests that students face at various difficulties in programming processes, because of their mental models about basic programming constructs. Arrays constitute the first…
An E-Learning Environment for Algorithmic: Toward an Active Construction of Skills
ERIC Educational Resources Information Center
Babori, Abdelghani; Fassi, Hicham Fihri; Hariri, Abdellah; Bideq, Mustapha
2016-01-01
Assimilating an algorithmic course is a persistent problem for many undergraduate students. The major problem faced by students is the lack of problem solving ability and flexibility. Therefore, students are generally passive, unmotivated and unable to mobilize all the acquired knowledge (loops, test, variables, etc.) to deal with new encountered…
Investigation on Multiple Algorithms for Multi-Objective Optimization of Gear Box
NASA Astrophysics Data System (ADS)
Ananthapadmanabhan, R.; Babu, S. Arun; Hareendranath, KR; Krishnamohan, C.; Krishnapillai, S.; A, Krishnan
2016-09-01
The field of gear design is an extremely important area in engineering. In this work a spur gear reduction unit is considered. A review of relevant literatures in the area of gear design indicates that compact design of gearbox involves a complicated engineering analysis. This work deals with the simultaneous optimization of the power and dimensions of a gearbox, which are of conflicting nature. The focus is on developing a design space which is based on module, pinion teeth and face-width by using MATLAB. The feasible points are obtained through different multi-objective algorithms using various constraints obtained from different novel literatures. Attention has been devoted in various novel constraints like critical scoring criterion number, flash temperature, minimum film thickness, involute interference and contact ratio. The output from various algorithms like genetic algorithm, fmincon (constrained nonlinear minimization), NSGA-II etc. are compared to generate the best result. Hence, this is a much more precise approach for obtaining practical values of the module, pinion teeth and face-width for a minimum centre distance and a maximum power transmission for any given material.
Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane
2017-06-01
Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
Acoustic change detection algorithm using an FM radio
NASA Astrophysics Data System (ADS)
Goldman, Geoffrey H.; Wolfe, Owen
2012-06-01
The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.
An Algorithm for Pedestrian Detection in Multispectral Image Sequences
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Fedorenko, V. V.
2017-05-01
The growing interest for self-driving cars provides a demand for scene understanding and obstacle detection algorithms. One of the most challenging problems in this field is the problem of pedestrian detection. Main difficulties arise from a diverse appearances of pedestrians. Poor visibility conditions such as fog and low light conditions also significantly decrease the quality of pedestrian detection. This paper presents a new optical flow based algorithm BipedDetet that provides robust pedestrian detection on a single-borad computer. The algorithm is based on the idea of simplified Kalman filtering suitable for realization on modern single-board computers. To detect a pedestrian a synthetic optical flow of the scene without pedestrians is generated using slanted-plane model. The estimate of a real optical flow is generated using a multispectral image sequence. The difference of the synthetic optical flow and the real optical flow provides the optical flow induced by pedestrians. The final detection of pedestrians is done by the segmentation of the difference of optical flows. To evaluate the BipedDetect algorithm a multispectral dataset was collected using a mobile robot.
Infrared small target detection technology based on OpenCV
NASA Astrophysics Data System (ADS)
Liu, Lei; Huang, Zhijian
2013-05-01
Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. In this paper, some basic principles and the implementing flow charts of a series of algorithms for target detection are described. These algorithms are traditional two-frame difference method, improved three-frame difference method, background estimate and frame difference fusion method, and building background with neighborhood mean method. On the foundation of above works, an infrared target detection software platform which is developed by OpenCV and MFC is introduced. Three kinds of tracking algorithms are integrated in this software. In order to explain the software clearly, the framework and the function are described in this paper. At last, the experiments are performed for some real-life IR images. The whole algorithm implementing processes and results are analyzed, and those algorithms for detection targets are evaluated from the two aspects of subjective and objective. The results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.
Infrared small target detection technology based on OpenCV
NASA Astrophysics Data System (ADS)
Liu, Lei; Huang, Zhijian
2013-09-01
Accurate and fast detection of infrared (IR) dim target has very important meaning for infrared precise guidance, early warning, video surveillance, etc. In this paper, some basic principles and the implementing flow charts of a series of algorithms for target detection are described. These algorithms are traditional two-frame difference method, improved three-frame difference method, background estimate and frame difference fusion method, and building background with neighborhood mean method. On the foundation of above works, an infrared target detection software platform which is developed by OpenCV and MFC is introduced. Three kinds of tracking algorithms are integrated in this software. In order to explain the software clearly, the framework and the function are described in this paper. At last, the experiments are performed for some real-life IR images. The whole algorithm implementing processes and results are analyzed, and those algorithms for detection targets are evaluated from the two aspects of subjective and objective. The results prove that the proposed method has satisfying detection effectiveness and robustness. Meanwhile, it has high detection efficiency and can be used for real-time detection.
The relationship between visual search and categorization of own- and other-age faces.
Craig, Belinda M; Lipp, Ottmar V
2018-03-13
Young adult participants are faster to detect young adult faces in crowds of infant and child faces than vice versa. These findings have been interpreted as evidence for more efficient attentional capture by own-age than other-age faces, but could alternatively reflect faster rejection of other-age than own-age distractors, consistent with the previously reported other-age categorization advantage: faster categorization of other-age than own-age faces. Participants searched for own-age faces in other-age backgrounds or vice versa. Extending the finding to different other-age groups, young adult participants were faster to detect young adult faces in both early adolescent (Experiment 1) and older adult backgrounds (Experiment 2). To investigate whether the own-age detection advantage could be explained by faster categorization and rejection of other-age background faces, participants in experiments 3 and 4 also completed an age categorization task. Relatively faster categorization of other-age faces was related to relatively faster search through other-age backgrounds on target absent trials but not target present trials. These results confirm that other-age faces are more quickly categorized and searched through and that categorization and search processes are related; however, this correlational approach could not confirm or reject the contribution of background face processing to the own-age detection advantage. © 2018 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold
2009-04-01
Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.
Kikuchi, Yukiko; Senju, Atsushi; Tojo, Yoshikuni; Osanai, Hiroo; Hasegawa, Toshikazu
2009-01-01
Two experiments investigated attention of children with autism spectrum disorder (ASD) to faces and objects. In both experiments, children (7- to 15-year-olds) detected the difference between 2 visual scenes. Results in Experiment 1 revealed that typically developing children (n = 16) detected the change in faces faster than in objects, whereas children with ASD (n = 16) were equally fast in detecting changes in faces and objects. These results were replicated in Experiment 2 (n = 16 in children with ASD and 22 in typically developing children), which does not require face recognition skill. Results suggest that children with ASD lack an attentional bias toward others' faces, which could contribute to their atypical social orienting.
Wanting Wang; John J. Qu; Xianjun Hao; Yongqiang Liu; William T. Sommers
2006-01-01
Traditional fire detection algorithms mainly rely on hot spot detection using thermal infrared (TIR) channels with fixed or contextual thresholds. Three solar reflectance channels (0.65 μm, 0.86 μm, and 2.1 μm) were recently adopted into the MODIS version 4 contextual algorithm to improve the active fire detection. In the southeastern United...
Spreco, A; Eriksson, O; Dahlström, Ö; Timpka, T
2017-07-01
Methods for the detection of influenza epidemics and prediction of their progress have seldom been comparatively evaluated using prospective designs. This study aimed to perform a prospective comparative trial of algorithms for the detection and prediction of increased local influenza activity. Data on clinical influenza diagnoses recorded by physicians and syndromic data from a telenursing service were used. Five detection and three prediction algorithms previously evaluated in public health settings were calibrated and then evaluated over 3 years. When applied on diagnostic data, only detection using the Serfling regression method and prediction using the non-adaptive log-linear regression method showed acceptable performances during winter influenza seasons. For the syndromic data, none of the detection algorithms displayed a satisfactory performance, while non-adaptive log-linear regression was the best performing prediction method. We conclude that evidence was found for that available algorithms for influenza detection and prediction display satisfactory performance when applied on local diagnostic data during winter influenza seasons. When applied on local syndromic data, the evaluated algorithms did not display consistent performance. Further evaluations and research on combination of methods of these types in public health information infrastructures for 'nowcasting' (integrated detection and prediction) of influenza activity are warranted.
A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Songhua; Krauthammer, Prof. Michael
2010-01-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manuallymore » labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use.« less
NASA Technical Reports Server (NTRS)
Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.
1991-01-01
An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.
Novel 3D Compression Methods for Geometry, Connectivity and Texture
NASA Astrophysics Data System (ADS)
Siddeq, M. M.; Rodrigues, M. A.
2016-06-01
A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.
Breadth-First Search-Based Single-Phase Algorithms for Bridge Detection in Wireless Sensor Networks
Akram, Vahid Khalilpour; Dagdeviren, Orhan
2013-01-01
Wireless sensor networks (WSNs) are promising technologies for exploring harsh environments, such as oceans, wild forests, volcanic regions and outer space. Since sensor nodes may have limited transmission range, application packets may be transmitted by multi-hop communication. Thus, connectivity is a very important issue. A bridge is a critical edge whose removal breaks the connectivity of the network. Hence, it is crucial to detect bridges and take preventions. Since sensor nodes are battery-powered, services running on nodes should consume low energy. In this paper, we propose energy-efficient and distributed bridge detection algorithms for WSNs. Our algorithms run single phase and they are integrated with the Breadth-First Search (BFS) algorithm, which is a popular routing algorithm. Our first algorithm is an extended version of Milic's algorithm, which is designed to reduce the message length. Our second algorithm is novel and uses ancestral knowledge to detect bridges. We explain the operation of the algorithms, analyze their proof of correctness, message, time, space and computational complexities. To evaluate practical importance, we provide testbed experiments and extensive simulations. We show that our proposed algorithms provide less resource consumption, and the energy savings of our algorithms are up by 5.5-times. PMID:23845930
NASA Astrophysics Data System (ADS)
Chen, Xinjia; Lacy, Fred; Carriere, Patrick
2015-05-01
Sequential test algorithms are playing increasingly important roles for quick detecting network intrusions such as portscanners. In view of the fact that such algorithms are usually analyzed based on intuitive approximation or asymptotic analysis, we develop an exact computational method for the performance analysis of such algorithms. Our method can be used to calculate the probability of false alarm and average detection time up to arbitrarily pre-specified accuracy.
Thompson, Laura A; Malloy, Daniel M; Cone, John M; Hendrickson, David L
2010-01-01
We introduce a novel paradigm for studying the cognitive processes used by listeners within interactive settings. This paradigm places the talker and the listener in the same physical space, creating opportunities for investigations of attention and comprehension processes taking place during interactive discourse situations. An experiment was conducted to compare results from previous research using videotaped stimuli to those obtained within the live face-to-face task paradigm. A headworn apparatus is used to briefly display LEDs on the talker's face in four locations as the talker communicates with the participant. In addition to the primary task of comprehending speeches, participants make a secondary task light detection response. In the present experiment, the talker gave non-emotionally-expressive speeches that were used in past research with videotaped stimuli. Signal detection analysis was employed to determine which areas of the face received the greatest focus of attention. Results replicate previous findings using videotaped methods.
Thompson, Laura A.; Malloy, Daniel M.; Cone, John M.; Hendrickson, David L.
2009-01-01
We introduce a novel paradigm for studying the cognitive processes used by listeners within interactive settings. This paradigm places the talker and the listener in the same physical space, creating opportunities for investigations of attention and comprehension processes taking place during interactive discourse situations. An experiment was conducted to compare results from previous research using videotaped stimuli to those obtained within the live face-to-face task paradigm. A headworn apparatus is used to briefly display LEDs on the talker’s face in four locations as the talker communicates with the participant. In addition to the primary task of comprehending speeches, participants make a secondary task light detection response. In the present experiment, the talker gave non-emotionally-expressive speeches that were used in past research with videotaped stimuli. Signal detection analysis was employed to determine which areas of the face received the greatest focus of attention. Results replicate previous findings using videotaped methods. PMID:21113354
Lee, Junghoon; Lee, Joosung; Song, Sangha; Lee, Hyunsook; Lee, Kyoungjoung; Yoon, Youngro
2008-01-01
Automatic detection of suspicious pain regions is very useful in the medical digital infrared thermal imaging research area. To detect those regions, we use the SOFES (Survival Of the Fitness kind of the Evolution Strategy) algorithm which is one of the multimodal function optimization methods. We apply this algorithm to famous diseases, such as a foot of the glycosuria, the degenerative arthritis and the varicose vein. The SOFES algorithm is available to detect some hot spots or warm lines as veins. And according to a hundred of trials, the algorithm is very fast to converge.
Biased normalized cuts for target detection in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Zhang, Xuewen; Dorado-Munoz, Leidy P.; Messinger, David W.; Cahill, Nathan D.
2016-05-01
The Biased Normalized Cuts (BNC) algorithm is a useful technique for detecting targets or objects in RGB imagery. In this paper, we propose modifying BNC for the purpose of target detection in hyperspectral imagery. As opposed to other target detection algorithms that typically encode target information prior to dimensionality reduction, our proposed algorithm encodes target information after dimensionality reduction, enabling a user to detect different targets in interactive mode. To assess the proposed BNC algorithm, we utilize hyperspectral imagery (HSI) from the SHARE 2012 data campaign, and we explore the relationship between the number and the position of expert-provided target labels and the precision/recall of the remaining targets in the scene.
Algorithmic detectability threshold of the stochastic block model
NASA Astrophysics Data System (ADS)
Kawamoto, Tatsuro
2018-03-01
The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.
Jung, Jaehoon; Yoon, Inhye; Paik, Joonki
2016-01-01
This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978
Sokoll, Stefan; Tönnies, Klaus; Heine, Martin
2012-01-01
In this paper we present an algorithm for the detection of spontaneous activity at individual synapses in microscopy images. By employing the optical marker pHluorin, we are able to visualize synaptic vesicle release with a spatial resolution in the nm range in a non-invasive manner. We compute individual synaptic signals from automatically segmented regions of interest and detect peaks that represent synaptic activity using a continuous wavelet transform based algorithm. As opposed to standard peak detection algorithms, we employ multiple wavelets to match all relevant features of the peak. We evaluate our multiple wavelet algorithm (MWA) on real data and assess the performance on synthetic data over a wide range of signal-to-noise ratios.
Automated detection of hospital outbreaks: A systematic review of methods.
Leclère, Brice; Buckeridge, David L; Boëlle, Pierre-Yves; Astagneau, Pascal; Lepelletier, Didier
2017-01-01
Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results.
A service relation model for web-based land cover change detection
NASA Astrophysics Data System (ADS)
Xing, Huaqiao; Chen, Jun; Wu, Hao; Zhang, Jun; Li, Songnian; Liu, Boyu
2017-10-01
Change detection with remotely sensed imagery is a critical step in land cover monitoring and updating. Although a variety of algorithms or models have been developed, none of them can be universal for all cases. The selection of appropriate algorithms and construction of processing workflows depend largely on the expertise of experts about the "algorithm-data" relations among change detection algorithms and the imagery data used. This paper presents a service relation model for land cover change detection by integrating the experts' knowledge about the "algorithm-data" relations into the web-based geo-processing. The "algorithm-data" relations are mapped into a set of web service relations with the analysis of functional and non-functional service semantics. These service relations are further classified into three different levels, i.e., interface, behavior and execution levels. A service relation model is then established using the Object and Relation Diagram (ORD) approach to represent the multi-granularity services and their relations for change detection. A set of semantic matching rules are built and used for deriving on-demand change detection service chains from the service relation model. A web-based prototype system is developed in .NET development environment, which encapsulates nine change detection and pre-processing algorithms and represents their service relations as an ORD. Three test areas from Shandong and Hebei provinces, China with different imagery conditions are selected for online change detection experiments, and the results indicate that on-demand service chains can be generated according to different users' demands.
Árbol, Javier Rodríguez; Perakakis, Pandelis; Garrido, Alba; Mata, José Luis; Fernández-Santaella, M Carmen; Vila, Jaime
2017-03-01
The preejection period (PEP) is an index of left ventricle contractility widely used in psychophysiological research. Its computation requires detecting the moment when the aortic valve opens, which coincides with the B point in the first derivative of impedance cardiogram (ICG). Although this operation has been traditionally made via visual inspection, several algorithms based on derivative calculations have been developed to enable an automatic performance of the task. However, despite their popularity, data about their empirical validation are not always available. The present study analyzes the performance in the estimation of the aortic valve opening of three popular algorithms, by comparing their performance with the visual detection of the B point made by two independent scorers. Algorithm 1 is based on the first derivative of the ICG, Algorithm 2 on the second derivative, and Algorithm 3 on the third derivative. Algorithm 3 showed the highest accuracy rate (78.77%), followed by Algorithm 1 (24.57%) and Algorithm 2 (13.82%). In the automatic computation of PEP, Algorithm 2 resulted in significantly more missed cycles (48.57%) than Algorithm 1 (6.3%) and Algorithm 3 (3.5%). Algorithm 2 also estimated a significantly lower average PEP (70 ms), compared with the values obtained by Algorithm 1 (119 ms) and Algorithm 3 (113 ms). Our findings indicate that the algorithm based on the third derivative of the ICG performs significantly better. Nevertheless, a visual inspection of the signal proves indispensable, and this article provides a novel visual guide to facilitate the manual detection of the B point. © 2016 Society for Psychophysiological Research.
An Improved Vision-based Algorithm for Unmanned Aerial Vehicles Autonomous Landing
NASA Astrophysics Data System (ADS)
Zhao, Yunji; Pei, Hailong
In vision-based autonomous landing system of UAV, the efficiency of target detecting and tracking will directly affect the control system. The improved algorithm of SURF(Speed Up Robust Features) will resolve the problem which is the inefficiency of the SURF algorithm in the autonomous landing system. The improved algorithm is composed of three steps: first, detect the region of the target using the Camshift; second, detect the feature points in the region of the above acquired using the SURF algorithm; third, do the matching between the template target and the region of target in frame. The results of experiment and theoretical analysis testify the efficiency of the algorithm.
Cao, Jianfang; Chen, Lichao; Wang, Min; Tian, Yun
2018-01-01
The Canny operator is widely used to detect edges in images. However, as the size of the image dataset increases, the edge detection performance of the Canny operator decreases and its runtime becomes excessive. To improve the runtime and edge detection performance of the Canny operator, in this paper, we propose a parallel design and implementation for an Otsu-optimized Canny operator using a MapReduce parallel programming model that runs on the Hadoop platform. The Otsu algorithm is used to optimize the Canny operator's dual threshold and improve the edge detection performance, while the MapReduce parallel programming model facilitates parallel processing for the Canny operator to solve the processing speed and communication cost problems that occur when the Canny edge detection algorithm is applied to big data. For the experiments, we constructed datasets of different scales from the Pascal VOC2012 image database. The proposed parallel Otsu-Canny edge detection algorithm performs better than other traditional edge detection algorithms. The parallel approach reduced the running time by approximately 67.2% on a Hadoop cluster architecture consisting of 5 nodes with a dataset of 60,000 images. Overall, our approach system speeds up the system by approximately 3.4 times when processing large-scale datasets, which demonstrates the obvious superiority of our method. The proposed algorithm in this study demonstrates both better edge detection performance and improved time performance.
Leveraging disjoint communities for detecting overlapping community structure
NASA Astrophysics Data System (ADS)
Chakraborty, Tanmoy
2015-05-01
Network communities represent mesoscopic structure for understanding the organization of real-world networks, where nodes often belong to multiple communities and form overlapping community structure in the network. Due to non-triviality in finding the exact boundary of such overlapping communities, this problem has become challenging, and therefore huge effort has been devoted to detect overlapping communities from the network. In this paper, we present PVOC (Permanence based Vertex-replication algorithm for Overlapping Community detection), a two-stage framework to detect overlapping community structure. We build on a novel observation that non-overlapping community structure detected by a standard disjoint community detection algorithm from a network has high resemblance with its actual overlapping community structure, except the overlapping part. Based on this observation, we posit that there is perhaps no need of building yet another overlapping community finding algorithm; but one can efficiently manipulate the output of any existing disjoint community finding algorithm to obtain the required overlapping structure. We propose a new post-processing technique that by combining with any existing disjoint community detection algorithm, can suitably process each vertex using a new vertex-based metric, called permanence, and thereby finds out overlapping candidates with their community memberships. Experimental results on both synthetic and large real-world networks show that PVOC significantly outperforms six state-of-the-art overlapping community detection algorithms in terms of high similarity of the output with the ground-truth structure. Thus our framework not only finds meaningful overlapping communities from the network, but also allows us to put an end to the constant effort of building yet another overlapping community detection algorithm.
NASA Astrophysics Data System (ADS)
Lee, Sangkyu
Illicit trafficking and smuggling of radioactive materials and special nuclear materials (SNM) are considered as one of the most important recent global nuclear threats. Monitoring the transport and safety of radioisotopes and SNM are challenging due to their weak signals and easy shielding. Great efforts worldwide are focused at developing and improving the detection technologies and algorithms, for accurate and reliable detection of radioisotopes of interest in thus better securing the borders against nuclear threats. In general, radiation portal monitors enable detection of gamma and neutron emitting radioisotopes. Passive or active interrogation techniques, present and/or under the development, are all aimed at increasing accuracy, reliability, and in shortening the time of interrogation as well as the cost of the equipment. Equally important efforts are aimed at advancing algorithms to process the imaging data in an efficient manner providing reliable "readings" of the interiors of the examined volumes of various sizes, ranging from cargos to suitcases. The main objective of this thesis is to develop two synergistic algorithms with the goal to provide highly reliable - low noise identification of radioisotope signatures. These algorithms combine analysis of passive radioactive detection technique with active interrogation imaging techniques such as gamma radiography or muon tomography. One algorithm consists of gamma spectroscopy and cosmic muon tomography, and the other algorithm is based on gamma spectroscopy and gamma radiography. The purpose of fusing two detection methodologies per algorithm is to find both heavy-Z radioisotopes and shielding materials, since radionuclides can be identified with gamma spectroscopy, and shielding materials can be detected using muon tomography or gamma radiography. These combined algorithms are created and analyzed based on numerically generated images of various cargo sizes and materials. In summary, the three detection methodologies are fused into two algorithms with mathematical functions providing: reliable identification of radioisotopes in gamma spectroscopy; noise reduction and precision enhancement in muon tomography; and the atomic number and density estimation in gamma radiography. It is expected that these new algorithms maybe implemented at portal scanning systems with the goal to enhance the accuracy and reliability in detecting nuclear materials inside the cargo containers.
Searching Information Sources in Networks
2017-06-14
SECURITY CLASSIFICATION OF: During the course of this project, we made significant progresses in multiple directions of the information detection...result on information source detection on non-tree networks; (2) The development of information source localization algorithms to detect multiple... information sources. The algorithms have provable performance guarantees and outperform existing algorithms in 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND
NASA Astrophysics Data System (ADS)
Gui, Chun; Zhang, Ruisheng; Zhao, Zhili; Wei, Jiaxuan; Hu, Rongjing
In order to deal with stochasticity in center node selection and instability in community detection of label propagation algorithm, this paper proposes an improved label propagation algorithm named label propagation algorithm based on community belonging degree (LPA-CBD) that employs community belonging degree to determine the number and the center of community. The general process of LPA-CBD is that the initial community is identified by the nodes with the maximum degree, and then it is optimized or expanded by community belonging degree. After getting the rough structure of network community, the remaining nodes are labeled by using label propagation algorithm. The experimental results on 10 real-world networks and three synthetic networks show that LPA-CBD achieves reasonable community number, better algorithm accuracy and higher modularity compared with other four prominent algorithms. Moreover, the proposed algorithm not only has lower algorithm complexity and higher community detection quality, but also improves the stability of the original label propagation algorithm.
Handbook on Face Gear Drives with a Spur Involute Pinion
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Egelja, A.; Tan, J.; Chen, D. Y.-D.; Heath, G.
2000-01-01
The use of face gears in power transmission and drive systems has a significant number of benefits. Face gears allow a variety of new transmission arrangements as well as high reduction ratio capability. This leads to drive system weight reduction and improvements in performance. In this work, basic information about the design and analysis of face gear drives is presented. The work considers face gears in mesh with spur involute pinions for both intersecting axes and offset drives. Tooth geometry, kinematics, generation of face gears with localized bearing contact by cutting and grinding, avoidance of tooth undercutting, avoidance of tooth pointing, tooth contact analysis, and algorithms for the simulation of meshing and contact arc all topics which are discussed. In addition, applications of face gear drives are presented. Included are design uses in aerospace applications such as helicopter transmissions, split-torque face gear arrangements, comparisons of face gears with bevel gears, and general design considerations.
Unaware person recognition from the body when face identification fails.
Rice, Allyson; Phillips, P Jonathon; Natu, Vaidehi; An, Xiaobo; O'Toole, Alice J
2013-11-01
How does one recognize a person when face identification fails? Here, we show that people rely on the body but are unaware of doing so. State-of-the-art face-recognition algorithms were used to select images of people with almost no useful identity information in the face. Recognition of the face alone in these cases was near chance level, but recognition of the person was accurate. Accuracy in identifying the person without the face was identical to that in identifying the whole person. Paradoxically, people reported relying heavily on facial features over noninternal face and body features in making their identity decisions. Eye movements indicated otherwise, with gaze duration and fixations shifting adaptively toward the body and away from the face when the body was a better indicator of identity than the face. This shift occurred with no cost to accuracy or response time. Human identity processing may be partially inaccessible to conscious awareness.
QuateXelero: An Accelerated Exact Network Motif Detection Algorithm
Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali
2013-01-01
Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks’ structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498
Anomaly Detection in Large Sets of High-Dimensional Symbol Sequences
NASA Technical Reports Server (NTRS)
Budalakoti, Suratna; Srivastava, Ashok N.; Akella, Ram; Turkov, Eugene
2006-01-01
This paper addresses the problem of detecting and describing anomalies in large sets of high-dimensional symbol sequences. The approach taken uses unsupervised clustering of sequences using the normalized longest common subsequence (LCS) as a similarity measure, followed by detailed analysis of outliers to detect anomalies. As the LCS measure is expensive to compute, the first part of the paper discusses existing algorithms, such as the Hunt-Szymanski algorithm, that have low time-complexity. We then discuss why these algorithms often do not work well in practice and present a new hybrid algorithm for computing the LCS that, in our tests, outperforms the Hunt-Szymanski algorithm by a factor of five. The second part of the paper presents new algorithms for outlier analysis that provide comprehensible indicators as to why a particular sequence was deemed to be an outlier. The algorithms provide a coherent description to an analyst of the anomalies in the sequence, compared to more normal sequences. The algorithms we present are general and domain-independent, so we discuss applications in related areas such as anomaly detection.
Robust Kalman filter design for predictive wind shear detection
NASA Technical Reports Server (NTRS)
Stratton, Alexander D.; Stengel, Robert F.
1991-01-01
Severe, low-altitude wind shear is a threat to aviation safety. Airborne sensors under development measure the radial component of wind along a line directly in front of an aircraft. In this paper, optimal estimation theory is used to define a detection algorithm to warn of hazardous wind shear from these sensors. To achieve robustness, a wind shear detection algorithm must distinguish threatening wind shear from less hazardous gustiness, despite variations in wind shear structure. This paper presents statistical analysis methods to refine wind shear detection algorithm robustness. Computational methods predict the ability to warn of severe wind shear and avoid false warning. Comparative capability of the detection algorithm as a function of its design parameters is determined, identifying designs that provide robust detection of severe wind shear.
Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices.
Gradl, Stefan; Kugler, Patrick; Lohmuller, Clemens; Eskofier, Bjoern
2012-01-01
We developed an application for Android™-based mobile devices that allows real-time electrocardiogram (ECG) monitoring and automated arrhythmia detection by analyzing ECG parameters. ECG data provided by pre-recorded files or acquired live by accessing a Shimmer™ sensor node via Bluetooth™ can be processed and evaluated. The application is based on the Pan-Tompkins algorithm for QRS-detection and contains further algorithm blocks to detect abnormal heartbeats. The algorithm was validated using the MIT-BIH Arrhythmia and MIT-BIH Supraventricular Arrhythmia databases. More than 99% of all QRS complexes were detected correctly by the algorithm. Overall sensitivity for abnormal beat detection was 89.5% with a specificity of 80.6%. The application is available for download and may be used for real-time ECG-monitoring on mobile devices.
Face detection on distorted images using perceptual quality-aware features
NASA Astrophysics Data System (ADS)
Gunasekar, Suriya; Ghosh, Joydeep; Bovik, Alan C.
2014-02-01
We quantify the degradation in performance of a popular and effective face detector when human-perceived image quality is degraded by distortions due to additive white gaussian noise, gaussian blur or JPEG compression. It is observed that, within a certain range of perceived image quality, a modest increase in image quality can drastically improve face detection performance. These results can be used to guide resource or bandwidth allocation in a communication/delivery system that is associated with face detection tasks. A new face detector based on QualHOG features is also proposed that augments face-indicative HOG features with perceptual quality-aware spatial Natural Scene Statistics (NSS) features, yielding improved tolerance against image distortions. The new detector provides statistically significant improvements over a strong baseline on a large database of face images representing a wide range of distortions. To facilitate this study, we created a new Distorted Face Database, containing face and non-face patches from images impaired by a variety of common distortion types and levels. This new dataset is available for download and further experimentation at www.ideal.ece.utexas.edu/˜suriya/DFD/.
Chatlapalli, S; Nazeran, H; Melarkod, V; Krishnam, R; Estrada, E; Pamula, Y; Cabrera, S
2004-01-01
The electrocardiogram (ECG) signal is used extensively as a low cost diagnostic tool to provide information concerning the heart's state of health. Accurate determination of the QRS complex, in particular, reliable detection of the R wave peak, is essential in computer based ECG analysis. ECG data from Physionet's Sleep-Apnea database were used to develop, test, and validate a robust heart rate variability (HRV) signal derivation algorithm. The HRV signal was derived from pre-processed ECG signals by developing an enhanced Hilbert transform (EHT) algorithm with built-in missing beat detection capability for reliable QRS detection. The performance of the EHT algorithm was then compared against that of a popular Hilbert transform-based (HT) QRS detection algorithm. Autoregressive (AR) modeling of the HRV power spectrum for both EHT- and HT-derived HRV signals was achieved and different parameters from their power spectra as well as approximate entropy were derived for comparison. Poincare plots were then used as a visualization tool to highlight the detection of the missing beats in the EHT method After validation of the EHT algorithm on ECG data from the Physionet, the algorithm was further tested and validated on a dataset obtained from children undergoing polysomnography for detection of sleep disordered breathing (SDB). Sensitive measures of accurate HRV signals were then derived to be used in detecting and diagnosing sleep disordered breathing in children. All signal processing algorithms were implemented in MATLAB. We present a description of the EHT algorithm and analyze pilot data for eight children undergoing nocturnal polysomnography. The pilot data demonstrated that the EHT method provides an accurate way of deriving the HRV signal and plays an important role in extraction of reliable measures to distinguish between periods of normal and sleep disordered breathing (SDB) in children.
Algorithm for detection the QRS complexes based on support vector machine
NASA Astrophysics Data System (ADS)
Van, G. V.; Podmasteryev, K. V.
2017-11-01
The efficiency of computer ECG analysis depends on the accurate detection of QRS-complexes. This paper presents an algorithm for QRS complex detection based of support vector machine (SVM). The proposed algorithm is evaluated on annotated standard databases such as MIT-BIH Arrhythmia database. The QRS detector obtained a sensitivity Se = 98.32% and specificity Sp = 95.46% for MIT-BIH Arrhythmia database. This algorithm can be used as the basis for the software to diagnose electrical activity of the heart.
Aiding the Detection of QRS Complex in ECG Signals by Detecting S Peaks Independently.
Sabherwal, Pooja; Singh, Latika; Agrawal, Monika
2018-03-30
In this paper, a novel algorithm for the accurate detection of QRS complex by combining the independent detection of R and S peaks, using fusion algorithm is proposed. R peak detection has been extensively studied and is being used to detect the QRS complex. Whereas, S peaks, which is also part of QRS complex can be independently detected to aid the detection of QRS complex. In this paper, we suggest a method to first estimate S peak from raw ECG signal and then use them to aid the detection of QRS complex. The amplitude of S peak in ECG signal is relatively weak than corresponding R peak, which is traditionally used for the detection of QRS complex, therefore, an appropriate digital filter is designed to enhance the S peaks. These enhanced S peaks are then detected by adaptive thresholding. The algorithm is validated on all the signals of MIT-BIH arrhythmia database and noise stress database taken from physionet.org. The algorithm performs reasonably well even for the signals highly corrupted by noise. The algorithm performance is confirmed by sensitivity and positive predictivity of 99.99% and the detection accuracy of 99.98% for QRS complex detection. The number of false positives and false negatives resulted while analysis has been drastically reduced to 80 and 42 against the 98 and 84 the best results reported so far.
NASA Astrophysics Data System (ADS)
Grieu, Stéphane; Faugeroux, Olivier; Traoré, Adama; Claudet, Bernard; Bodnar, Jean-Luc
2015-01-01
In the present paper, an artificial-intelligence-based approach dealing with the estimation of thermophysical properties is designed and evaluated. This new and "intelligent" approach makes use of photothermal responses obtained when subjecting materials to a light flux. So, the main objective of the present work was to estimate simultaneously both the thermal diffusivity and conductivity of materials, from front-face or rear-face photothermal responses to pseudo random binary signals. To this end, we used side-by-side feedforward neural networks trained with the cascade-correlation algorithm. In addition, computation time was a key point to consider. That is why the developed algorithms are computationally tractable.
Analysis of facial motion patterns during speech using a matrix factorization algorithm
Lucero, Jorge C.; Munhall, Kevin G.
2008-01-01
This paper presents an analysis of facial motion during speech to identify linearly independent kinematic regions. The data consists of three-dimensional displacement records of a set of markers located on a subject’s face while producing speech. A QR factorization with column pivoting algorithm selects a subset of markers with independent motion patterns. The subset is used as a basis to fit the motion of the other facial markers, which determines facial regions of influence of each of the linearly independent markers. Those regions constitute kinematic “eigenregions” whose combined motion produces the total motion of the face. Facial animations may be generated by driving the independent markers with collected displacement records. PMID:19062866
Karayiannis, Nicolaos B; Mukherjee, Amit; Glover, John R; Ktonas, Periklis Y; Frost, James D; Hrachovy, Richard A; Mizrahi, Eli M
2006-04-01
This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.
Sparse modeling applied to patient identification for safety in medical physics applications
NASA Astrophysics Data System (ADS)
Lewkowitz, Stephanie
Every scheduled treatment at a radiation therapy clinic involves a series of safety protocol to ensure the utmost patient care. Despite safety protocol, on a rare occasion an entirely preventable medical event, an accident, may occur. Delivering a treatment plan to the wrong patient is preventable, yet still is a clinically documented error. This research describes a computational method to identify patients with a novel machine learning technique to combat misadministration. The patient identification program stores face and fingerprint data for each patient. New, unlabeled data from those patients are categorized according to the library. The categorization of data by this face-fingerprint detector is accomplished with new machine learning algorithms based on Sparse Modeling that have already begun transforming the foundation of Computer Vision. Previous patient recognition software required special subroutines for faces and different tailored subroutines for fingerprints. In this research, the same exact model is used for both fingerprints and faces, without any additional subroutines and even without adjusting the two hyperparameters. Sparse modeling is a powerful tool, already shown utility in the areas of super-resolution, denoising, inpainting, demosaicing, and sub-nyquist sampling, i.e. compressed sensing. Sparse Modeling is possible because natural images are inherently sparse in some bases, due to their inherent structure. This research chooses datasets of face and fingerprint images to test the patient identification model. The model stores the images of each dataset as a basis (library). One image at a time is removed from the library, and is classified by a sparse code in terms of the remaining library. The Locally Competitive Algorithm, a truly neural inspired Artificial Neural Network, solves the computationally difficult task of finding the sparse code for the test image. The components of the sparse representation vector are summed by ℓ1 pooling, and correct patient identification is consistently achieved 100% over 1000 trials, when either the face data or fingerprint data are implemented as a classification basis. The algorithm gets 100% classification when faces and fingerprints are concatenated into multimodal datasets. This suggests that 100% patient identification will be achievable in the clinal setting.
A novel deep learning algorithm for incomplete face recognition: Low-rank-recovery network.
Zhao, Jianwei; Lv, Yongbiao; Zhou, Zhenghua; Cao, Feilong
2017-10-01
There have been a lot of methods to address the recognition of complete face images. However, in real applications, the images to be recognized are usually incomplete, and it is more difficult to realize such a recognition. In this paper, a novel convolution neural network frame, named a low-rank-recovery network (LRRNet), is proposed to conquer the difficulty effectively inspired by matrix completion and deep learning techniques. The proposed LRRNet first recovers the incomplete face images via an approach of matrix completion with the truncated nuclear norm regularization solution, and then extracts some low-rank parts of the recovered images as the filters. With these filters, some important features are obtained by means of the binaryzation and histogram algorithms. Finally, these features are classified with the classical support vector machines (SVMs). The proposed LRRNet method has high face recognition rate for the heavily corrupted images, especially for the images in the large databases. The proposed LRRNet performs well and efficiently for the images with heavily corrupted, especially in the case of large databases. Extensive experiments on several benchmark databases demonstrate that the proposed LRRNet performs better than some other excellent robust face recognition methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improved space object detection using short-exposure image data with daylight background.
Becker, David; Cain, Stephen
2018-05-10
Space object detection is of great importance in the highly dependent yet competitive and congested space domain. The detection algorithms employed play a crucial role in fulfilling the detection component in the space situational awareness mission to detect, track, characterize, and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator on long-exposure data to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follow a Gaussian distribution. Long-exposure imaging is critical to detection performance in these algorithms; however, for imaging under daylight conditions, it becomes necessary to create a long-exposure image as the sum of many short-exposure images. This paper explores the potential for increasing detection capabilities for small and dim space objects in a stack of short-exposure images dominated by a bright background. The algorithm proposed in this paper improves the traditional stack and average method of forming a long-exposure image by selectively removing short-exposure frames of data that do not positively contribute to the overall signal-to-noise ratio of the averaged image. The performance of the algorithm is compared to a traditional matched filter detector using data generated in MATLAB as well as laboratory-collected data. The results are illustrated on a receiver operating characteristic curve to highlight the increased probability of detection associated with the proposed algorithm.
Pubface: Celebrity face identification based on deep learning
NASA Astrophysics Data System (ADS)
Ouanan, H.; Ouanan, M.; Aksasse, B.
2018-05-01
In this paper, we describe a new real time application called PubFace, which allows to recognize celebrities in public spaces by employs a new pose invariant face recognition deep neural network algorithm with an extremely low error rate. To build this application, we make the following contributions: firstly, we build a novel dataset with over five million faces labelled. Secondly, we fine tuning the deep convolutional neural network (CNN) VGG-16 architecture on our new dataset that we have built. Finally, we deploy this model on the Raspberry Pi 3 model B using the OpenCv dnn module (OpenCV 3.3).
Shadow Detection Based on Regions of Light Sources for Object Extraction in Nighttime Video
Lee, Gil-beom; Lee, Myeong-jin; Lee, Woo-Kyung; Park, Joo-heon; Kim, Tae-Hwan
2017-01-01
Intelligent video surveillance systems detect pre-configured surveillance events through background modeling, foreground and object extraction, object tracking, and event detection. Shadow regions inside video frames sometimes appear as foreground objects, interfere with ensuing processes, and finally degrade the event detection performance of the systems. Conventional studies have mostly used intensity, color, texture, and geometric information to perform shadow detection in daytime video, but these methods lack the capability of removing shadows in nighttime video. In this paper, a novel shadow detection algorithm for nighttime video is proposed; this algorithm partitions each foreground object based on the object’s vertical histogram and screens out shadow objects by validating their orientations heading toward regions of light sources. From the experimental results, it can be seen that the proposed algorithm shows more than 93.8% shadow removal and 89.9% object extraction rates for nighttime video sequences, and the algorithm outperforms conventional shadow removal algorithms designed for daytime videos. PMID:28327515
Obstacle Detection Algorithms for Rotorcraft Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia I.; Huang, Ying; Narasimhamurthy, Anand; Pande, Nitin; Ahumada, Albert (Technical Monitor)
2001-01-01
In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter.
Falls event detection using triaxial accelerometry and barometric pressure measurement.
Bianchi, Federico; Redmond, Stephen J; Narayanan, Michael R; Cerutti, Sergio; Celler, Branko G; Lovell, Nigel H
2009-01-01
A falls detection system, employing a Bluetooth-based wearable device, containing a triaxial accelerometer and a barometric pressure sensor, is described. The aim of this study is to evaluate the use of barometric pressure measurement, as a surrogate measure of altitude, to augment previously reported accelerometry-based falls detection algorithms. The accelerometry and barometric pressure signals obtained from the waist-mounted device are analyzed by a signal processing and classification algorithm to discriminate falls from activities of daily living. This falls detection algorithm has been compared to two existing algorithms which utilize accelerometry signals alone. A set of laboratory-based simulated falls, along with other tasks associated with activities of daily living (16 tests) were performed by 15 healthy volunteers (9 male and 6 female; age: 23.7 +/- 2.9 years; height: 1.74 +/- 0.11 m). The algorithm incorporating pressure information detected falls with the highest sensitivity (97.8%) and the highest specificity (96.7%).
Comparison of algorithms for automatic border detection of melanoma in dermoscopy images
NASA Astrophysics Data System (ADS)
Srinivasa Raghavan, Sowmya; Kaur, Ravneet; LeAnder, Robert
2016-09-01
Melanoma is one of the most rapidly accelerating cancers in the world [1]. Early diagnosis is critical to an effective cure. We propose a new algorithm for more accurately detecting melanoma borders in dermoscopy images. Proper border detection requires eliminating occlusions like hair and bubbles by processing the original image. The preprocessing step involves transforming the RGB image to the CIE L*u*v* color space, in order to decouple brightness from color information, then increasing contrast, using contrast-limited adaptive histogram equalization (CLAHE), followed by artifacts removal using a Gaussian filter. After preprocessing, the Chen-Vese technique segments the preprocessed images to create a lesion mask which undergoes a morphological closing operation. Next, the largest central blob in the lesion is detected, after which, the blob is dilated to generate an image output mask. Finally, the automatically-generated mask is compared to the manual mask by calculating the XOR error [3]. Our border detection algorithm was developed using training and test sets of 30 and 20 images, respectively. This detection method was compared to the SRM method [4] by calculating the average XOR error for each of the two algorithms. Average error for test images was 0.10, using the new algorithm, and 0.99, using SRM method. In comparing the average error values produced by the two algorithms, it is evident that the average XOR error for our technique is lower than the SRM method, thereby implying that the new algorithm detects borders of melanomas more accurately than the SRM algorithm.
Hirai, Masahiro; Muramatsu, Yukako; Mizuno, Seiji; Kurahashi, Naoko; Kurahashi, Hirokazu; Nakamura, Miho
2017-01-01
Individuals with Williams syndrome (WS) exhibit an atypical social phenotype termed hypersociability. One theory accounting for hypersociability presumes an atypical function of the amygdala, which processes fear-related information. However, evidence is lacking regarding the detection mechanisms of fearful faces for individuals with WS. Here, we introduce a visual search paradigm to elucidate the mechanisms for detecting fearful faces by evaluating the search asymmetry; the reaction time when both the target and distractors were swapped was asymmetrical. Eye movements reflect subtle atypical attentional properties, whereas, manual responses are unable to capture atypical attentional profiles toward faces in individuals with WS. Therefore, we measured both eye movements and manual responses of individuals with WS and typically developed children and adults in visual searching for a fearful face among neutral faces or a neutral face among fearful faces. Two task measures, namely reaction time and performance accuracy, were analyzed for each stimulus as well as gaze behavior and the initial fixation onset latency. Overall, reaction times in the WS group and the mentally age-matched control group were significantly longer than those in the chronologically age-matched group. We observed a search asymmetry effect in all groups: when a neutral target facial expression was presented among fearful faces, the reaction times were significantly prolonged in comparison with when a fearful target facial expression was displayed among neutral distractor faces. Furthermore, the first fixation onset latency of eye movement toward a target facial expression showed a similar tendency for manual responses. Although overall responses in detecting fearful faces for individuals with WS are slower than those for control groups, search asymmetry was observed. Therefore, cognitive mechanisms underlying the detection of fearful faces seem to be typical in individuals with WS. This finding is discussed with reference to the amygdala account explaining hypersociability in individuals with WS.
NASA Astrophysics Data System (ADS)
Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane
2017-06-01
Objective. Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. Approach. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. Main results. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. Significance. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
Baldassano, Steven N; Brinkmann, Benjamin H; Ung, Hoameng; Blevins, Tyler; Conrad, Erin C; Leyde, Kent; Cook, Mark J; Khambhati, Ankit N; Wagenaar, Joost B; Worrell, Gregory A; Litt, Brian
2017-06-01
There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata
Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less
NASA Technical Reports Server (NTRS)
Russell, B. Don
1989-01-01
This research concentrated on the application of advanced signal processing, expert system, and digital technologies for the detection and control of low grade, incipient faults on spaceborne power systems. The researchers have considerable experience in the application of advanced digital technologies and the protection of terrestrial power systems. This experience was used in the current contracts to develop new approaches for protecting the electrical distribution system in spaceborne applications. The project was divided into three distinct areas: (1) investigate the applicability of fault detection algorithms developed for terrestrial power systems to the detection of faults in spaceborne systems; (2) investigate the digital hardware and architectures required to monitor and control spaceborne power systems with full capability to implement new detection and diagnostic algorithms; and (3) develop a real-time expert operating system for implementing diagnostic and protection algorithms. Significant progress has been made in each of the above areas. Several terrestrial fault detection algorithms were modified to better adapt to spaceborne power system environments. Several digital architectures were developed and evaluated in light of the fault detection algorithms.
Vehicle tracking using fuzzy-based vehicle detection window with adaptive parameters
NASA Astrophysics Data System (ADS)
Chitsobhuk, Orachat; Kasemsiri, Watjanapong; Glomglome, Sorayut; Lapamonpinyo, Pipatphon
2018-04-01
In this paper, fuzzy-based vehicle tracking system is proposed. The proposed system consists of two main processes: vehicle detection and vehicle tracking. In the first process, the Gradient-based Adaptive Threshold Estimation (GATE) algorithm is adopted to provide the suitable threshold value for the sobel edge detection. The estimated threshold can be adapted to the changes of diverse illumination conditions throughout the day. This leads to greater vehicle detection performance compared to a fixed user's defined threshold. In the second process, this paper proposes the novel vehicle tracking algorithms namely Fuzzy-based Vehicle Analysis (FBA) in order to reduce the false estimation of the vehicle tracking caused by uneven edges of the large vehicles and vehicle changing lanes. The proposed FBA algorithm employs the average edge density and the Horizontal Moving Edge Detection (HMED) algorithm to alleviate those problems by adopting fuzzy rule-based algorithms to rectify the vehicle tracking. The experimental results demonstrate that the proposed system provides the high accuracy of vehicle detection about 98.22%. In addition, it also offers the low false detection rates about 3.92%.
Minami, T; Goto, K; Kitazaki, M; Nakauchi, S
2011-03-10
In humans, face configuration, contour and color may affect face perception, which is important for social interactions. This study aimed to determine the effect of color information on face perception by measuring event-related potentials (ERPs) during the presentation of natural- and bluish-colored faces. Our results demonstrated that the amplitude of the N170 event-related potential, which correlates strongly with face processing, was higher in response to a bluish-colored face than to a natural-colored face. However, gamma-band activity was insensitive to the deviation from a natural face color. These results indicated that color information affects the N170 associated with a face detection mechanism, which suggests that face color is important for face detection. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter
NASA Astrophysics Data System (ADS)
Saad, Omar M.; Shalaby, Ahmed; Samy, Lotfy; Sayed, Mohammed S.
2018-04-01
Precise identification of onset time for an earthquake is imperative in the right figuring of earthquake's location and different parameters that are utilized for building seismic catalogues. P-wave arrival detection of weak events or micro-earthquakes cannot be precisely determined due to background noise. In this paper, we propose a novel approach based on Modified Laplacian of Gaussian (MLoG) filter to detect the onset time even in the presence of very weak signal-to-noise ratios (SNRs). The proposed algorithm utilizes a denoising-filter algorithm to smooth the background noise. In the proposed algorithm, we employ the MLoG mask to filter the seismic data. Afterward, we apply a Dual-threshold comparator to detect the onset time of the event. The results show that the proposed algorithm can detect the onset time for micro-earthquakes accurately, with SNR of -12 dB. The proposed algorithm achieves an onset time picking accuracy of 93% with a standard deviation error of 0.10 s for 407 field seismic waveforms. Also, we compare the results with short and long time average algorithm (STA/LTA) and the Akaike Information Criterion (AIC), and the proposed algorithm outperforms them.
Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination
Jeon, Hong Y.; Tian, Lei F.; Zhu, Heping
2011-01-01
An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA). PMID:22163954
Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio
2014-01-01
The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305