Damage Tolerance of Sandwich Plates with Debonded Face Sheets
NASA Technical Reports Server (NTRS)
Avery, John L., III; Sankar, Bhavani V.
1998-01-01
Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.
Graphite/Cyanate Ester Face Sheets for Adaptive Optics
NASA Technical Reports Server (NTRS)
Bennett, Harold; Shaffer, Joseph; Romeo, Robert
2008-01-01
It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of the order of a millimeter, that would satisfy the requirements for use in adaptive optics.
The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows
NASA Technical Reports Server (NTRS)
Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)
2002-01-01
A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.
Method of laminating structural members
NASA Technical Reports Server (NTRS)
Heier, W. C. (Inventor)
1974-01-01
A laminate is obtained by providing a lightweight core material, such as a honeycombed plastic or metal, within the cavity defined by an annular mold cavity frame. Face sheets, which are to be bonded to the core material, are provided on opposite sides of the frame and extend over the frame, thus sealing the core material in the cavity. An adhesive is provided between the core material and the face sheets and the combined thickness of the core material and adhesive is a close fit within the opposed face sheets. A gas tight seal, such as an O-ring gasket, is provided between the frame and the face sheet members to form a gas tight cavity between the face sheet members and the frame. External heat and pressure are used to bond the face sheets to the core material. Gas pressure is introduced into the sealed cavity to minimize out-gasing of the adhesive.
Finite Element Modeling of the Buckling Response of Sandwich Panels
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.
2002-01-01
A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.
Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai
2015-12-01
Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets. Electronic supplementary information (ESI) available: Additional experimental information, and SEM images of Cu EPD films. See DOI: 10.1039/c5nr06599b
Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.
2009-01-01
The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by the choice of constituents, varying fiber tow sizes and constituent part ratios. This structural concept provides high strength and stiffness at low density 1.06 g/cm3 in panels tested. Varieties of face sheet constructions are possible, including variations in fiber type and weave geometry. The integrated structures possible with this composite could eliminate the need for non-load-bearing thermal protection systems on top of a structural component. The back sheet can readily be integrated to substructures through the incorporation of ribs. This would eliminate weight and cost for aerospace missions.
Inert Welding/Brazing Gas Filters and Dryers
NASA Technical Reports Server (NTRS)
Goudy, Jerry
2009-01-01
The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heat-flux environments (150 W/sq cm) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading-edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same "pick" location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by the choice of constituents, varying fiber tow sizes and constituent part ratios. This structural concept provides high strength and stiffness at low density 1.06 g/cu cm in panels tested. Varieties of face sheet constructions are possible, including variations in fiber type and weave geometry. The integrated structures possible with this composite could eliminate the need for non-load-bearing thermal protection systems on top of a structural component. The back sheet can readily be integrated to substructures through the incorporation of ribs. This would eliminate weight and cost for aerospace missions.
Drag Measurements of Porous Plate Acoustic Liners
NASA Technical Reports Server (NTRS)
Wolter, John D.
2005-01-01
This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.
Damage Tolerance of Sandwich Plates With Debonded Face Sheets
NASA Technical Reports Server (NTRS)
Sankar, Bhavani V.
2001-01-01
A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.
Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine
NASA Astrophysics Data System (ADS)
Coroneos, Rula M.; Gorla, Rama Subba Reddy
2012-09-01
This paper addresses the structural analysis and optimization of a composite sandwich ply lay-up of a NASA baseline solid metallic fan blade comparable to a future Boeing 737 MAX aircraft engine. Sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replaces the original baseline solid metallic fan model made of Titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized where as the overall blade thickness is held fixed in order not to alter the original airfoil geometry. Weight reduction is taken as the objective function by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.
NASA Astrophysics Data System (ADS)
Gambaro, Carla; Lertora, Enrico; Mandolfino, Chiara
2016-10-01
Fiber Reinforced Polymer (FRP) sandwich panels are increasing their application as structural and non-structural components in all kinds of construction. By varying the material and thickness of core and face sheets, it is possible to obtain sandwich structures with different properties and performance. In particular, their advantages as lightweight and high mechanical properties make them extremely suitable for the transport industry. One of the most critical aspects regarding composite materials for engineering application is their performance after hygrothermal aging. The panels used in this study are composed of low density core, made by thermosetting resin foam with microspheres and glass fibers rolled until obtaining the required thickness, and two face sheets of the same material but realized in high density. In this study, the authors focused on the bending behaviour of this kind of sandwich panel, as received and after severe aging cycles.
Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine
NASA Technical Reports Server (NTRS)
Coroneos, Rula M.
2012-01-01
This report addresses the structural analysis and optimization of a composite fan blade sized for a large aircraft engine. An existing baseline solid metallic fan blade was used as a starting point to develop a hybrid honeycomb sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replacing the original baseline solid metallic fan model made of titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements, a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized whereas the overall blade thickness is held fixed so as to not alter the original airfoil geometry. Weight is taken as the objective function to be minimized by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Hagaman, J. A.
1979-01-01
The results of a series of tests of graphite-polyimide honeycomb sandwich panels are presented. The panels were 1.22 m long, 0.508 m wide, and approximately 13.3 m thick. The face sheets were a T-300/PMR-15 fabric in a quasi-isotropic layup and were 0.279 mm thick. The core was Hexcel HRH 327-3/16 - 4.0 glass reinforced polyimide honeycomb, 12.7 mm thick. Three panels were used in the test: one was cut into smaller pieces for testing as beam, compression, and shear specimens; a second panel was used for plate bending tests; the third panel was used for in-plane stability tests. Presented are the experimental results of four point bending tests, short block compression tests, core transverse shear modulus, three point bending tests, vibration tests, plate bending tests, and panel stability tests. The results of the first three tests are used to predict the results of some of the other tests. The predictions and experimental results are compared, and the agreement is quite good.
NASA Technical Reports Server (NTRS)
Chen, Zhi M.; Krueger, Ronald; Rinker, Martin
2015-01-01
Typical damage modes in light honeycomb sandwich structures include face sheet/core disbonding and core fracture, both of which can pose a threat to the structural integrity of a component. These damage modes are of particular interest to aviation certification authorities since several in-service occurrences, such as rudder structural failure and other control surface malfunctions, have been attributed to face sheet/core disbonding. Extensive studies have shown that face sheet/core disbonding and core fracture can lead to damage propagation caused by internal pressure changes in the core. The increasing use of composite sandwich construction in aircraft applications makes it vitally important to understand the effect of ground-air-ground (GAG) cycles and conditions such as maneuver and gust loads on face sheet/core disbonding. The objective of the present study was to use a fracture mechanics based approach developed earlier to evaluate the loading at the disbond front caused by ground-air-ground pressurization and in-plane loading. A honeycomb sandwich panel containing a circular disbond at one face sheet/core interface was modeled with three-dimensional (3D) solid finite elements. The disbond was modeled as a discrete discontinuity and the strain energy release rate along the disbond front was computed using the Virtual Crack Closure Technique (VCCT). Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed. The commercial finite element analysis software, Abaqus/Standard, was used for the analyses. The recursive pressure-deformation coupling problem was solved by representing the entrapped air in the honeycomb cells as filled cavities in Abaqus/Standard. The results show that disbond size, face sheet thickness and core thickness are important parameters that determine crack tip loading at the disbond front. Further, the pressure-deformation coupling was found to have an important load decreasing effect [6]. In this paper, a detailed problem description is provided first. Second, the analysis methodology is presented. The fracture mechanics approach used is described and the specifics of the finite element model, including the fluid-filled cavities, are introduced. Third, the initial model verification and validation are discussed. Fourth, the findings from a closely related earlier study [6] are summarized. These findings provided the basis for the current investigation. Fifth, an aircraft ascent scenario from 0 to 12192 m (0 to 40000 ft) is considered and the resulting crack tip loading at the disbond front is determined. In-plane loading to simulate maneuvers and gust conditions are also considered. Sixth, the results are shown for a curved panel, which was used to simulate potential fuselage applications. Finally, a brief summary of observations is presented and recommendations for improvement are provided.
Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels
NASA Technical Reports Server (NTRS)
Raj, S. V.; Ghosn, L. J.
2007-01-01
A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.
2012-01-01
Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kg/sq m (3.1 lb/cu ft (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.
2012-01-01
Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kilograms per square meters (3.1 pounds per cubic feet (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.
Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design
NASA Technical Reports Server (NTRS)
Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.
2004-01-01
The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.
NASA Astrophysics Data System (ADS)
Ghassemi, Aazam; Yazdani, Mostafa; Hedayati, Mohamad
2017-12-01
In this work, based on the First Order Shear Deformation Theory (FSDT), an attempt is made to explore the applicability and accuracy of the Generalized Differential Quadrature Method (GDQM) for bending analysis of composite sandwich plates under static loading. Comparative studies of the bending behavior of composite sandwich plates are made between two types of boundary conditions for different cases. The effects of fiber orientation, ratio of thickness to length of the plate, the ratio of thickness of core to thickness of the face sheet are studied on the transverse displacement and moment resultants. As shown in this study, the role of the core thickness in deformation of these plates can be reversed by the stiffness of the core in comparison with sheets. The obtained graphs give very good results due to optimum design of sandwich plates. In Comparison with existing solutions, fast convergent rates and high accuracy results can be achieved by the GDQ method.
NASA Astrophysics Data System (ADS)
Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team
2015-06-01
Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).
NASA Astrophysics Data System (ADS)
Afshin, M.; Sadighi, M.; Shakeri, M.
2010-12-01
In the present study, the static response of cylindrical sandwich panels with a flexible core is investigated. The face sheets are considered as composite laminates with a cross-ply lay-up and the core as a flexible elastic medium. The flexibility of the low-strength core leads to high stress concentrations in terms of peeling stresses between the face sheets and the core at edges of the sandwich panel. To take into account the compressibility of the core and to determine the free-edge stresses of sandwich structures accurately, the Reddy layerwise theory (LWT) is used in this paper. The paper outlines the mathematical formulation, along with a numerical study, of a cylindrical sandwich panel with two simply supported and two free edges under a transverse load. The formulation includes the derivation of field equations along with boundary conditions. A Levy-type solution procedure is performed to determine the distributions of stresses and strains. In the numerical study, first a comparison is made with results from the commercial finite-element software ANSYS to verify the LWT results. Finally, a parametric study is conducted, and the effect caused by varying different parameters, such as the radii of curvature and the core to face sheet thickness ratio, on the results are investigated. The results obtained demonstrate a good agreement between LWT and FEM solutions and show increasing interlaminar stresses in the free edge of the sandwich panel
NASA Astrophysics Data System (ADS)
Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha
2015-10-01
Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Min, James B.; Raj, Sai V.; Lerch, Bradley A.; Holland, Frederic A., Jr.
2004-01-01
The goal of this project at the NASA Glenn Research Center is to provide fan materials that are safer, weigh less, and cost less than the currently used titanium alloy or polymer matrix composite fans. The proposed material system is a sandwich fan construction made up of thin solid face sheets and a lightweight metal foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by the foam layer. The resulting structure has a high stiffness and lighter weight in comparison to the solid facesheet material alone. The face sheets carry the applied in-plane and bending loads (ref. 1). The metal foam core must resist the transverse shear and transverse normal loads, as well as keep the facings supported and working as a single unit. Metal foams have ranges of mechanical properties, such as light weight, impact resistance, and vibration suppression (ref. 2), which makes them more suitable for use in lightweight fan structures. Metal foams have been available for decades (refs. 3 and 4), but the difficulties in the original processes and high costs have prevented their widespread use. However, advances in production techniques and cost reduction have created a new interest in this class of materials (ref. 5). The material chosen for the face sheet and the metal foam for this study was the aerospace-grade stainless steel 17-4PH. This steel was chosen because of its attractive mechanical properties and the ease with which it can be made through the powder metallurgy process (ref. 6). The advantages of a metal foam core, in comparison to a typical honeycomb core, are material isotropy and the ease of forming complex geometries, such as fan blades. A section of a 17-4PH sandwich structure is shown in the following photograph. Part of process of designing any blade is to determine the natural frequencies of the particular blade shape. A designer needs to predict the resonance frequencies of a new blade design to properly identify a useful operating range. Operating a blade at or near the resonance frequencies leads to high-cycle fatigue, which ultimately limits the blade's durability and life. So the aim of this study is to determine the variation of the resonance frequencies for an idealized sandwich blade as a function of its face-sheet thickness, core thickness, and foam density. The finite element method is used to determine the natural frequencies for an idealized rectangular sandwich blade. The proven Lanczos method (ref. 7) is used in the study to extract the natural frequency.
Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III (Inventor); Lundgren, Eric C. (Inventor)
2016-01-01
Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.
Systems, Apparatuses, and Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures
NASA Technical Reports Server (NTRS)
Smeltzer, III, Stanley S. (Inventor); Lundgren, Eric C. (Inventor)
2014-01-01
Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.
NASA Astrophysics Data System (ADS)
Yan, Peng; Li, Zhiwei; Li, Fei; Yang, Yuande; Hao, Weifeng; Bao, Feng
2018-03-01
We report on a successful application of the horizontal-to-vertical spectral ratio (H / V) method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0) related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure ice sheet thickness in Antarctica.
Cryogenic Test Results of Hextek Mirror
NASA Technical Reports Server (NTRS)
Hadaway, James; Stahl, H. Philip; Eng, Ron; Hogue, William
2004-01-01
A 250 mm diameter lightweight borosilicate mirror has been interferometrically tested from room-temperature down to 30 K at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The minor blank was manufactured by Hextek Corporation using a high-temperature gas fusion process and was then polished at MSFC. It is a sandwich-type mirror consisting of a thin face-sheet (approx.1.5 mm thick), a core structure (20 mm thick, approx.43 mm diameter cells, & 0.5-1.2 mm thick walls), and a thin back-sheet (3 mm thick). The mirror has a 2500 mm spherical radius-of- curvature @/lo). The areal density is 14 kg/sq m. The mirror was tested in the 1 m x 2 m chamber using an Instantaneous Phase Interferometer (PI) from ADE Phase Shift Technologies. The mirror was tested twice. The first test measured the change in surface figure from ambient to 30 K and the repeatability of the change. An attempt was then made by QED Technologies to cryo-figure the mirror using magnetorheological finishing. The second test measured the effectiveness of the cryo- figuring. This paper will describe the test goals, the test instrumentation, and the test results for these cryogenic tests.
Nonaerodynamic sabot stripper for research gas gun
NASA Astrophysics Data System (ADS)
Mock, W., Jr.; Holt, W. H.
1994-07-01
A nonaerodynamic sabot stripper has been designed and implemented for use with a 40.00-mm smooth bore research gas gun. The stripper consists of several metal parts to stop and contain the sabot while allowing the carried object to pass unhindered through it. The single-piece sabot is stopped by impacting replaceable layers of 19-mm-thick aluminum and steel plates and 3.2-mm-thick rubber sheets. The metal plates and rubber sheets have 25.4- and 31.8-mm diam holes, respectively, for passage of the carried object. The sabot stripper is located 230 mm from the muzzle of the gas gun and is aligned before each shot using a special metal fixture that is inserted into the gun muzzle. Cubes measuring 12.7 mm have been launched in a flat-faced orientation. Targets consisting of 76.2 mm×76.2 mm plates of various thicknesses are positioned in an assembly that attaches to the sabot stripper and is located 57 mm behind it. The velocity range for the experiments was from 0.61 to 0.94 km/s.
Horizontal electromagnetic casting of thin metal sheets
Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.
1987-01-01
Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.
Horizontal electromagnetic casting of thin metal sheets
Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.
1988-01-01
Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.
NASA Astrophysics Data System (ADS)
Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir
2018-03-01
Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.
NASA Astrophysics Data System (ADS)
Shimizu, K.; Shinohara, I.; Fujimoto, M.
2016-12-01
Two-dimensional kinetic simulations of compression of thick current sheets are performed to see how it can lead to triggering of explosive magnetic reconnection. The current sheet under study is simply in a Harris-like anti-paralell and symmetric geometry. A one-dimensional pre-study shows that the compression is more effective to make the plasma anisotropy than to thin the current sheet width. When the lobe magnetic field is amplified by a factor of 2, the plasma temperature anisotropy inside the current sheet reaches 2 but the current sheet thickness is reduced only by 1/sqrt(2). If a current sheet thickness needs to be comparable to the ion inertial scale for reconnection triggering take place, as is widely and frequently mentioned in the research community, the initial thickness cannot be more than a few ion scale for reconnection to set-in. On the other hand, the temperature anisotropy of 2 can be significant for the triggering problem. Two-dimensional simulations show explosive magnetic reconnection to take place even when the initial current sheet thickness more than an order of magnitude thicker than the ion scale, indicating the resilient triggering drive supplied by the temperature anisotropy. We also discuss how the reconnection triggering capability of the temperature anisotropy boosted tearing mode for thick current sheets compares with the instabilities in the plane orthogonal to the reconnecting field.
Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness
NASA Astrophysics Data System (ADS)
Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.
2016-02-01
Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.
Damage Detection and Impact Testing on Laminated and Sandwich Composite Panels
NASA Technical Reports Server (NTRS)
Hughes, Derke R.; Craft, William J.; Schulz, Mark J.; Naser, Ahmad S.; Martin, William N.
1998-01-01
This research investigates health monitoring of sandwich shell composites to determine if the Transmittance Functions (TF) are effective in determining the present of damage. The health monitoring test was conducted on the sandwich plates before and after low velocity impacts using the health monitoring technique given in TFs are a NDE (Nondestructive Evaluation) technique that utilizes the ratios of cross-spectrums to auto-spectrums between two response points on the sandwich composites. The test for transmittance was conducted on the same density foam core throughout the experiment. The test specimens were 17.8 cm by 25.4 cm in dimension. The external sheets (face sheets) were created from graphite/epoxy laminate with dimension of 1.58 mm thick. The polymethacrylide (Rohacell) foam core was 12.7 mm thick. These samples experienced a transformation in the TF that was considered the low velocity impact damage. The low velocity damage was observed in the TFs for the sandwich composites.
NASA Technical Reports Server (NTRS)
Staskus, J. V.; Berkopec, F. D.
1979-01-01
Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.
Experimental investigation of springback in air bending process
NASA Astrophysics Data System (ADS)
Alhammadi, Aysha; Rafique, Hafsa; Alkaabi, Meera; Abu Qudeiri, Jaber
2018-03-01
Bending processes is one of the important processes in sheet metal forming. One of the challenge that faces the air bending process is springback, which happens due to the elastic recovery during unloading stage. An accurate analysis of springback during the bending process is crucial to achieve a required bend angle. This paper will investigate the springback experimentally by changing many parameters such as tested material, die opening, thickness, etc. and finding its effect on the value of springback. Additionally, the paper will investigate the effect of loading time at the end of loading stage on the springback by proposing a multistage bending technique (MBT). In MBT, the loading will stop during loading stage just before the end of this stage and it will restart again shortly after. In this study, three sheet metals with different thickness will be examined, namely stainless steel, aluminium and brass. Artificial neural network (ANN) will be utilized to develop a prediction model to predict springback based on the experimental results.
Code of Federal Regulations, 2011 CFR
2011-04-01
... to the balance sheets of issuers of face-amount certificates. 210.6-06 Section 210.6-06 Commodity and... balance sheets of issuers of face-amount certificates. Balance sheets filed by issuers of face-amount... balances. 3. Receivables. (a) State separately amounts receivable from (1) sales of investments; (2...
Code of Federal Regulations, 2010 CFR
2010-04-01
... to the balance sheets of issuers of face-amount certificates. 210.6-06 Section 210.6-06 Commodity and... balance sheets of issuers of face-amount certificates. Balance sheets filed by issuers of face-amount... balances. 3. Receivables. (a) State separately amounts receivable from (1) sales of investments; (2...
Synthesis of nanometre-thick MoO3 sheets
NASA Astrophysics Data System (ADS)
Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.
2010-03-01
The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.
Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design
NASA Technical Reports Server (NTRS)
Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.
2004-01-01
The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.
Lightweight, Rack-Mountable Composite Cold Plate/Shelves
NASA Technical Reports Server (NTRS)
Hurlbert, Kathryn M.; Ruemmele, Warren; Nguyen, Hai D.; Andish, Kambiz; McCalley, Sean
2004-01-01
Rack-mountable composite-material structural components that would serve as both shelves and cold plates for removing heat from electronic or other equipment mounted on the shelves have been proposed as lightweight alternatives to all-metal cold plate/shelves now in use. A proposed cold plate/shelf would include a highly thermally conductive face sheet containing oriented graphite fibers bonded to an aluminum honeycomb core, plus an extruded stainless-steel substructure containing optimized flow passages for a cooling fluid, and an inlet and outlet that could be connected to standard manifold sections. To maximize heat-transfer efficiency, the extruded stainless-steel substructure would be connected directly to the face sheet. On the basis of a tentative design, the proposed composite cold plate/shelf would weigh about 38 percent less than does an all-aluminum cold plate in use or planned for use in some spacecraft and possibly aircraft. Although weight is a primary consideration, the tentative design offers the additional benefit of reduction of thickness to half that of the all-aluminum version.
Buckling and stretching of thin viscous sheets
NASA Astrophysics Data System (ADS)
O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich
2016-11-01
Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.
Recent Shuttle Post Flight MMOD Inspection Highlights
NASA Technical Reports Server (NTRS)
Hyed, James L.; Christiansen, Eric L.; Lear, Dana M.; Herrin, Jason S.
2009-01-01
Post flight inspections on the Space Shuttle Atlantis conducted after the STS-11.5 mission revealed a 0.11 inch (2.8 mm) hole in the outer face sheet of the starboard payload bay door radiator panel #4. The payload bay door radiators in this region are 0.5 inch (12.7 mm) thick aluminum honeycomb with 0.011 in (0.279 mm) thick aluminum face sheets topped with 0.005 in (0.127 mm) silver-Teflon tape. Inner face sheet damage included a 0.267 in (6.78 mm) long through crack with measureable deformation in the area of 0.2 in (5.1 mm). There was also a 0.031 in (0.787 nun) diameter hole in the rear face sheet. A large approximately l in (25 mm) diameter region of honeycomb was also destroyed. Since the radiators are located on the inside of the shuttle payload bay doors which are closed during ascent and reentry, the damage could only have occurred during the on-orbit portion of the mission. During the August 2007 STS-118 mission to the International Space Station, a micro-meteoroid or orbital debris (MMOD) particle impacted and completely penetrated one of shuttle Endeavour's radiator panels and the underlying thermal control system (TCS) blanket, leaving deposits on (but no damage to) the payload bay door. While it is not unusual for shuttle orbiters to be impacted by small MMOD particles, the damage from this impact is larger than any previously seen on the shuttle radiator panels. One of the largest impacts ever observed on a crew module window occurred during the November 2008 STS-126 mission to the International Space Station. Damage to the window was documented by the crew on orbit. Post flight inspection revealed a 0.4 in (10.8 mm) crater in the window pane, with a depth of 0.03 in (0.76 mm). The window pane was replaced due to the damage caused by this impact. Analysis performed on residue contained in dental mold impressions taken of the site indicated that a meteoroid particle produced this large damage site. The post flight inspection after the subsequent mission, STS-119 in March of 2009, produced a large MMOD impact feature in a wing leading edge reinforced carbon-carbon panel. The crater measured 0.18 in (4.5 nun) in diameter and was nearly 0.037 in (0.93 nun) deep. The thickness of the silicon carbide coating that protects the carbon substrate is nominally 0.02 in (0.5 nun) to 0.04 in (1 mm), making this a significant impact into the RCC. The damage occurred on the upper surface of the panel, which experiences lower heat loads on re-entry. This poster will document the data collected from the impact sites and will include results of the Scanning Electron Microscope/Energy Dispersive X-ray (SEM/EDX) analysis. Evidence will be presented that suggests a source of the impacts.
NASA Technical Reports Server (NTRS)
Ko, William L.
1996-01-01
Mechanical and thermal buckling behavior of monolithic and metal-matrix composite hat-stiffened panels were investigated. The panels have three types of face-sheet geometry: Flat face sheet, microdented face sheet, and microbulged face sheet. The metal-matrix composite panels have three types of face-sheet layups, each of which is combined with various types of hat composite layups. Finite-element method was used in the eigenvalue extractions for both mechanical and thermal buckling. The thermal buckling analysis required both eigenvalue and material property iterations. Graphical methods of the dual iterations are shown. The mechanical and thermal buckling strengths of the hat-stiffened panels with different face-sheet geometry are compared. It was found that by just microdenting or microbulging of the face sheet, the axial, shear, and thermal buckling strengths of both types of hat-stiffened panels could be enhanced considerably. This effect is more conspicuous for the monolithic panels. For the metal-matrix composite panels, the effect of fiber orientations on the panel buckling strengths was investigated in great detail, and various composite layup combinations offering, high panel buckling strengths are presented. The axial buckling strength of the metal-matrix panel was sensitive to the change of hat fiber orientation. However, the lateral, shear, and thermal buckling strengths were insensitive to the change of hat fiber orientation.
Impact verification of space suit design for space station
NASA Technical Reports Server (NTRS)
Fish, Richard H.
1987-01-01
The ballistic limits of single sheet and double sheet structures made of 6061 T6 Aluminum of 1.8 mm and larger nominal thickness were investigated for projectiles of 1.5 mm diameter fired in the Vertical Gun Range Test Facility and NASA Ames Research Center. The hole diameters and sheet deformation behavior were studied for various ratios of sheet spacing to projectile diameter. The results indicate that for projectiles of less than 1.5 mm diameter the ballistic limit exceeds the nominal 10 km/sec orbital debris encounter velocity, if a single-sheet suit of 1.8 mm thickness is behind a single bumper sheet of 1 mm thickness spaced 12.5 mm apart.
NASA Astrophysics Data System (ADS)
Kalejs, J. P.
1994-01-01
Mobil Solar Energy Corporation currently practices a unique crystal growth technology for producing crystalline silicon sheet, which is then cut with lasers into wafers. The wafers are processed into solar cells and incorporated into modules for photovoltaic applications. The silicon sheet is produced using a method known as Edge-defined Film-fed growth (EFG), in the form of hollow eight-sided polygons (octagons) with 10 cm faces. These are grown to lengths of 5 meters and thickness of 300 microns, with continuous melt replenishment, in compact furnaces designed to operate at a high sheet area production area of 135 sq cm/min. The present Photovoltaic Manufacturing Technology (PVMaT) three-year program seeks to advance the manufacturing line capabilities of the Mobil Solar crystal growth and cutting technologies. If successful, these advancements will provide significant reductions in already low silicon raw material usage, improve process productivity, laser cutting throughput and yield, and so lower both individual wafer cost and the cost of module production. This report summarizes the significant technical improvements in EFG technology achieved in Phase 1 of this program. Technical results are reported for each of the three main program areas: (1) thin octagon growth (crystal growth) -- to reduce the thickness of the octagon to an interim goal of 250 microns during Phase 1, with an ultimate goal of achieving 200 micron thicknesses; (2) laser cutting -- to improve the laser cutting process, so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and (3) process control and product specification -- to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheetsmore » (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.« less
12 CFR 615.5212 - Credit conversion factors-off-balance sheet items.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Credit conversion factors-off-balance sheet... Credit conversion factors—off-balance sheet items. (a) The face amount of an off-balance sheet item is generally incorporated into risk-weighted assets in two steps. For most off-balance sheet items, the face...
12 CFR 615.5212 - Credit conversion factors-off-balance sheet items.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Credit conversion factors-off-balance sheet... Credit conversion factors—off-balance sheet items. (a) The face amount of an off-balance sheet item is generally incorporated into risk-weighted assets in two steps. For most off-balance sheet items, the face...
NASA Technical Reports Server (NTRS)
Bogorad, Alexander (Inventor); Bowman, Jr., Charles K. (Inventor); Meder, Martin G. (Inventor); Dottore, Frank A. (Inventor)
1994-01-01
An RF-transparent sunshield membrane covers an antenna reflector such as a parabolic dish. The blanket includes a single dielectric sheet of polyimide film 1/2-mil thick. The surface of the film facing away from the reflector is coated with a transparent electrically conductive coating such as vapor-deposited indium-tin oxide. The surface of the film facing the reflector is reinforced by an adhesively attached polyester or glass mesh, which in turn is coated with a white paint. In a particular embodiment of the invention, polyurethane paint is used. In another embodiment of the invention, a layer of paint primer is applied to the mesh under a silicone paint, and the silicone paint is cured after application for several days at room temperature to enhance adhesion to the primer.
NASA Astrophysics Data System (ADS)
Crozier, J. A.; Karlstrom, L.; Yang, K.
2017-12-01
Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream profiles, as a function of location on the GIS (hence ice thickness and background melt rate) using spectral techniques to quantify longitudinal stream profiles. This work should provide a predictive guide for which processes are responsible for ice sheet topography scales from several m (DEM resolution) up to several ice thicknesses.
Cooling arrangement for a superconducting coil
Herd, K.G.; Laskaris, E.T.
1998-06-30
A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.
Model-based cartilage thickness measurement in the submillimeter range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streekstra, G. J.; Strackee, S. D.; Maas, M.
2007-09-15
Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness wasmore » varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical sections. We present a method that yields virtually unbiased thickness estimates of cartilage layers in the submillimeter range. The good agreement of thickness estimates from CT images with estimates from anatomical sections is promising for clinical application of the method in cartilage integrity staging of the wrist and the ankle.« less
Deep drawability of Ti/resin/Ti laminated sheet
NASA Astrophysics Data System (ADS)
Hardada, Yasunroi; Hattori, Shuji
2017-10-01
Aiming to enhance functionality of titanium cup, the formability of titanium/resin/titanium laminated sheet by deep drawing was investigated. Although pure titanium has excellent corrosion resistance, the density of titanium is higher than that of light metals, such as aluminum and magnesium. Part of the titanium cup made of resin allows for weight reduction of the cup. Furthermore, the clad cup is more likely to have heat retention and protection against vibration characteristics. In the experiment, the materials were pure titanium and polycarbonate. The initial thickness of the sheet was 0.2 to 0.5 mm in thickness. A total plate thickness of the blank was 1.0 to 1.5 mm in thickness. The blank diameter is 70 mm. The laminated sheet was constituted by interposing resin between two titanium sheets. Each sheet in stacked condition was not joined each other. In the deep drawing process, the laminated sheet was employed and a flat sheet blank was formed into a circle by a punch. For the prevention of seizure in contact area between a drawing tool and titanium, titanium blank was treated by oxide coating. By this method, the fresh and clean titanium is not in direct contact with the die during the forming due to the existence of the oxide layer. The deep drawing was carried out to investigate the formability. The laminated sheet was successfully drawn without the cracks. The section of the drawn cup was observed to examine a formability of the resin sheet. The reduction rate of the thickness was less than 10%. It was found that the titanium/resin/titanium clad cup was successfully drawn.
Nearly Seamless Vacuum-Insulated Boxes
NASA Technical Reports Server (NTRS)
Stepanian, Christopher J.; Ou, Danny; Hu, Xiangjun
2010-01-01
A design concept, and a fabrication process that would implement the design concept, have been proposed for nearly seamless vacuum-insulated boxes that could be the main structural components of a variety of controlled-temperature containers, including common household refrigerators and insulating containers for shipping foods. In a typical case, a vacuum-insulated box would be shaped like a rectangular parallelepiped conventional refrigerator box having five fully closed sides and a hinged door on the sixth side. Although it is possible to construct the five-closed-side portion of the box as an assembly of five unitary vacuum-insulated panels, it is not desirable to do so because the relatively high thermal conductances of the seams between the panels would contribute significant amounts of heat leakage, relative to the leakage through the panels themselves. In contrast, the proposal would make it possible to reduce heat leakage by constructing the five-closed-side portion of the box plus the stationary portion (if any) of the sixth side as a single, seamless unit; the only remaining seam would be the edge seal around the door. The basic cross-sectional configuration of each side of a vacuum-insulated box according to the proposal would be that of a conventional vacuum-insulated panel: a low-density, porous core material filling a partially evacuated space between face sheets. However, neither the face sheets nor the core would be conventional. The face sheets would be opposite sides of a vacuum bag. The core material would be a flexible polymer-modified silica aerogel of the type described in Silica/Polymer and Silica/Polymer/Fiber Composite Aero - gels (MSC-23736) in this issue of NASA Tech Briefs. As noted in that article, the stiffness of this core material against compression is greater than that of prior aerogels. This is an important advantage because it translates to greater retention of thickness and, hence, of insulation performance when pressure is applied across the thickness, in particular, when the space between the face sheets is evacuated, causing the core material to be squeezed between the face sheets by atmospheric pressure. Fabrication of a typical vacuum-insulated box according to the proposal would begin with fabrication of a cross-shaped polymer-modified aerogel blanket. The dimensions of the cross would be chosen so that (1) the central rectangular portion of the cross would form the core for the back of the box and (2) the arms of the cross could be folded 90 from the back plane to form the cores of the adjacent four sides of the box. Optionally, the blanket could include tabs for joining the folded sides of the blanket along mating edges and tabs that could serve as hinges for the door. Vacuum bags in the form of similar five-sided boxes would be made of a suitable polymeric film, one bag to fit the outer core surface, the other to fit the inner core surface. By use of commercially available film-sealing equipment, these box-shaped bags would be seamed together to form a single vacuum bag encasing the box-shaped core. Also, a one-way valve would be sealed to the bag. Through this valve, the interior of the bag would be evacuated to a pressure between 1 and 10 torr (approximately between 0.13 and 1.3 kPa). The polymer-modified aerogel core material is known to perform well as a thermal insulator in such a partial vacuum.
Code of Federal Regulations, 2010 CFR
2010-01-01
... corrosion. (f) Compliance with the criteria for fireproof materials or components must be shown as follows... this section: (1) Stainless steel sheet, 0.015 inch thick. (2) Mild steel sheet (coated with aluminum or otherwise protected against corrosion) 0.018 inch thick. (3) Terne plate, 0.018 inch thick. (4...
Thermal casting process for the preparation of anisotropic membranes and the resultant membrane
Caneba, Gerard T. M.; Soong, David S.
1987-01-01
A method for providing anisotropic polymer membranes from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.
Thermal casting process for the preparation of membranes
Caneba, G.T.M.; Soong, D.S.
1985-07-10
Disclosed is a method for providing anisotropic polymer membrane from a binary polymer/solvent solution using a thermal inversion process. A homogeneous binary solution is cast onto a support and cooled in such a way as to provide a differential in cooling rate across the thickness of the resulting membrane sheet. Isotropic or anisotropic structures of selected porosities can be produced, depending on the initial concentration of polymer in the selected solvent and on the extent of the differential in cooling rate. This differential results in a corresponding gradation in pore size. The method may be modified to provide a working skin by applying a rapid, high-temperature pulse to redissolve a predetermined thickness of the membrane at one of its faces and then freezing the entire structure.
Airborne Tomographic Swath Ice Sounding Processing System
NASA Technical Reports Server (NTRS)
Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken
2013-01-01
Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.
Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure
NASA Astrophysics Data System (ADS)
Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar
2017-05-01
This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material and has more strength. By the power press used as forming method we fabricate the honey comb core and stacking the sheets with adhesive as epoxy resin or laser beam welding and sandwich structure will form with two face sheets. Then the specimen is taken to be tested to know the flexural behaviour by the flexural test as 3 point and 4 pont bend test. After testing of two different tests then we get the force vs displacement curve by this we can know the maximum force and by loading configurations and its displacement or deflection then we can calculate flexural stiffness and core shear modulus by the variation of three parameters. Our ultimate aim is to achieve maximum strength by minimum weight.
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P.
1992-01-01
Calculations are presented of the coefficient of thermal expansion (CTE) of the radius of curvature of the reflector face sheets made of a quasi-isotropic composite. It is shown that, upon cooling, the change of the CTE of the focal distance of the mirror is equal to that of the radius of the curvature of the reflector face sheet. The CTE of the radius of the curvature of a quasi-isotropic composite face sheet depends on both the in-plane and the out-of-plane CTEs. The zero in-plane CTE of a face sheet does not guarantee mirrors with no focal length changes.
Device for reducing vehicle aerodynamic resistance
Graham, Sean C.
2006-03-07
A device for reducing vehicle aerodynamic resistance for vehicles having a generally rectangular flat front face comprising a plurality of load bearing struts of a predetermined size attached to the flat front face adjacent the sides and top thereof, a pair of pliable opposing flat sheets having an outside edge portion attached to the flat front face adjacent the sides thereof and an upper edge with a predetermined curve; the opposing flat sheets being bent and attached to the struts to form effective curved airfoil shapes, and a top pliable flat sheet disposed adjacent the top of the flat front face and having predetermined curved side edges, which, when the top sheet is bent and attached to the struts to form an effective curved airfoil shape, mate with the curved upper edges of the opposing sheets to complete the aerodynamic device.
Challenges faced by ice sheet projections: lessons from the SeaRISE effort
NASA Astrophysics Data System (ADS)
Nowicki, S.
2013-12-01
Projecting the future evolution of the Greenland and Antarctic ice sheets is a problem of enormous societal importance, as ice sheet influence our future sea levels. This crucial issue is however a non trivial task, as demonstrated by the Sea level Response to Ice Sheet Evolution (SeaRISE) effort: prescribing simple external forcings to a group of ice sheet models results in a spread in responses. Understanding the source of the diversity in the model results is therefore crucial in order to reduce the uncertainty in the projection. Just as in any future climate simulation, the analysis presented here demonstrates that the model spread in the SeaRISE effort is due to a number of factors. First is the problem of obtaining an initial configuration for the projection. The two commonly used methods, interglacial spin-up or data assimilation, have both advantages and drawbacks, and will affect the determination of fields that cannot be measured (such as basal slipperiness). Second is the uncertainty in actual observations, which includes but is not limited to surface mass balance, basal topography, ice thickness, and surface velocities. An additional issue with these observations is that they can be transient quantities which are not measured at the same time, but ice sheet models require them to be simultaneous. Third is the uncertainty in the models' physics and discretization, which is limited by our understanding (or lack of understanding) of crucial processes that often occur at subgrid scale relative to the resolution used by continental ice sheet models, and thus require parameterization. Grounding line migration and sliding laws are such an example. Fourth is the determination of the future forcing scenarios and their implementation as the external forcing. Unfortunately, as demonstrated in this analysis, all ice sheet models face these limitations to some degree, so that it is extremely difficult to identify a set of models and projections that should be trusted in preference to others. One model might be more suitable for assessing the impact of a warmer atmosphere because of its initialization procedure, but its deficiencies in capturing grounding line migration, for example, might make its projections for oceanic forcing unreliable. More work is thus required to evaluate individual ice sheet models' skills in projection, but this crucial and challenging task is left for future studies.
NASA Astrophysics Data System (ADS)
Nyrkova, I. A.; Semenov, A. N.; Aggeli, A.; Boden, N.
2000-10-01
The problem of fibril (fibre) formation in chiral systems is explored theoretically being supported by experiments on synthetic de novo 11-mer peptide forming self-assembled -sheet tapes. Experimental data unambiguously indicate that the tapes form fibrils of nearly monodisperse thickness ca. 8-10 nm. Fibril formation and stabilisation are attributed to inter-tape face-to-face attraction and their intrinsic twist, correspondingly. The proposed theory is capable of predicting the fibril aggregation number and its equilibrium twist in terms of molecular parameters of the primary tapes. The suggested novel mechanism of twist stabilisation of finite aggregates (fibrils) is different to the well-known stabilisation of micelles in amphiphilic systems, and it is likely to explain the formation and stability of fibrils in a wide variety of systems including proteinaceous amyloid fibres, sickle-cell hemoglobin fibres responsible for HbS anemia, corkscrew threads found in chromonics in the presence of chiral additives and native cellulose microfibrillar crystallites. The theory also makes it possible to extract the basic molecular parameters of primary tapes (inter-tape attraction energy, helical twist step, elastic moduli) from the experimental data.
Ballistic Resistance of Honeycomb Sandwich Panels under In-Plane High-Velocity Impact
Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs. PMID:24187526
Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.
Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.
Eddy current thickness measurement apparatus
Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.
2015-06-16
A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.
Calendering and Rolling of Viscoplastic Materials: Theory and Experiments
NASA Astrophysics Data System (ADS)
Mitsoulis, E.; Sofou, S.; Muliawan, E. B.; Hatzikiriakos, S. G.
2007-04-01
The calendering and rolling processes are used in a wide variety of industries for the production of rolled sheets or films of specific thickness and final appearance. The acquired final sheet thickness depends mainly on the rheological properties of the material. Materials which have been used in the present study are foodstuff (such as mozzarella cheese and flour-water dough) used in food processing. These materials are rheologically viscoplastic, obeying the Herschel-Bulkley model. The results give the final sheet thickness and the torque as a function of the roll speed. Theoretical analysis based on the Lubrication Approximation Theory (LAT) shows that LAT is a good predictive tool for calendering, where the sheet thickness is very small compared with the roll size. However, in rolling where this is not true, LAT does not hold, and a 2-D analysis is necessary.
Double-Lap Shear Test For Honeycomb Core
NASA Technical Reports Server (NTRS)
Nettles, Alan T.; Hodge, Andrew J.
1992-01-01
Double-lap test measures shear strength of panel made of honeycomb core with 8-ply carbon-fiber/epoxy face sheets. Developed to overcome three principal disadvantages of prior standard single-lap shear test: specimen had to be more than 17 in. long; metal face sheets had to be used; and test introduced torque, with consequent bending and peeling of face sheets and spurious tensile or compressive loading of honeycomb.
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Hoffman, Eric K.
1998-01-01
The suitability of using transient liquid phase (TLP) bonding to fabricate honeycomb core sandwich panels with Ti-14Al-21Nb (wt%) titanium aluminide (T3Al) face sheets for high-temperature hypersonic vehicle applications was evaluated. Three titanium alloy honeycomb cores and one Ti3Al alloy honeycomb core were investigated. Edgewise compression (EWC) and flatwise tension (FWT) tests on honeycomb core sandwich specimens and tensile tests of the face sheet material were conducted at temperatures ranging from room temperature to 1500 F. EWC tests indicated that the honeycomb cores and diffusion bonded joints were able to stabilize the face sheets up to and beyond the face sheet compressive yield strength for all temperatures investigated. The specimens with the T3Al honeycomb core produced the highest FWT strengths at temperatures above 1000 F. Tensile tests indicated that TLP processing conditions resulted in decreases in ductility of the Ti-14Al-21Nb face sheets. Microstructural examination showed that the side of the face sheets to which the filler metals had been applied was transformed from equiaxed alpha2 grains to coarse plates of alpha2 with intergranular Beta. Fractographic examination of the tensile specimens showed that this transformed region was dominated by brittle fracture.
Niyama, Kouhei; Ide, Naoto; Onoue, Kaori; Okabe, Takahiro; Wakitani, Shigeyuki; Takagi, Mutsumi
2011-09-01
The combination of a β-tricalcium phosphate (βTCP) block with a scaffold-free chondrocyte sheet formed by the centrifugation of chondrocytes in a well was investigated with the aim of constructing an osteochondral-like structure. Human and porcine articular cartilage chondrocytes were respectively centrifuged in a 96-well plate or cell culture insert (0.32 cm(2)) that was set in a 24-well plate, cultivated in the respective vessel for 3 weeks, and the cell sheets were harvested. In some cases, a cylindrical βTCP block (diameter 5 mm, height 3 mm) was placed on the sheet on days 1-7. The sheet size, cell number, and sulfated glycosaminoglycan accumulation were determined. The use of a 96-well plate for not suspension but adhesion culture and the initial centrifugation of a well containing cells were crucial to obtaining a uniformly thick cell sheet. The glycosaminoglycan density of the harvested cell sheet was comparable to that of the pellet culture. An inoculum cell number of more than 31 × 10(5) cells tended to result in a curved cell sheet. Culture involving 18.6 × 10(5) cells and the 96-well plate for adhesion culture showed no curving of the cell sheet (thickness of 0.85 mm), and these were found to be the best of the culture conditions tested. The timing of the addition of a βTCP block to the cell sheet (1-7 days) markedly affected the balance between the thickness of cell sheet parts on and in the βTCP block. Centrifugation and subsequent cultivation of chondrocytes (18.6 × 10(5) cells) in a 96-well plate for adhesion culture led to the production of a scaffold-free cartilage-like cell sheet with a thickness of 0.85 mm. A combined osteochondral-like structure was produced by putting a βTCP block on the cell sheet. The thickness of the cell sheet on the βTCP block and the binding strength between the cell sheet and the βTCP block could be optimized by adjusting the inoculum cell number and timing of βTCP block addition.
NASA Astrophysics Data System (ADS)
Oniki, Takahiro; Khajornrungruang, Panart; Suzuki, Keisuke
2017-07-01
We suggest that a transparency resin sheet with low refractive index can be applied to the measurement of a silicon dioxide (SiO2) film on a silicon wafer under wet condition for a film thickness measurement system on chemical mechanical polishing (CMP). By adjusting the refractive indices of the resin sheet and water, stable measurements of the SiO2 film can be expected, irrespective of slurry film thickness fluctuation because it has robustness against the slurry film. This result indicates that the transparency resin sheet with low refractive index is a useful for monitoring system of CMP.
Mattingly, J.T.
1962-09-25
A lightweight neutron shielding structure comprises a honeycomb core which is filled with a neutron absorbing powder. The honeycomb core is faced with parallel planar facing sheets to form a lightweight rigid unit. Suitable absorber powders are selected from among the following: B, B/sub 4/C, B/sub 2/O/ sub 3/, CaB/sub 6/, Li/sub 2/CO3, LiOH, LiBO/sub 2/, Li/s ub 2/O. The facing sheets are constructed of a neutron moderating material, so that fast neutrons will be moderated while traversing the facing sheets, and ultimately be absorbed by the absorber powder in the honeycomb. Beryllium is a preferred moderator material for use in the facing sheets. The advantage of the structure is that it combines the rigidity and light weight of a honeycomb construction with the neutron absorption properties of boron and lithium. (AEC)
The Promiscuity of [beta]-Strand Pairing Allows for Rational Design of [beta]-Sheet Face Inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makabe, Koki; Koide, Shohei
2009-06-17
Recent studies suggest the dominant role of main-chain H-bond formation in specifying {beta}-sheet topology. Its essentially sequence-independent nature implies a large degree of freedom in designing {beta}-sheet-based nanomaterials. Here we show rational design of {beta}-sheet face inversions by incremental deletions of {beta}-strands from the single-layer {beta}-sheet of Borrelia outer surface protein A. We show that a {beta}-sheet structure can be maintained when a large number of native contacts are removed and that one can design large-scale conformational transitions of a {beta}-sheet such as face inversion by exploiting the promiscuity of strand-strand interactions. High-resolution X-ray crystal structures confirmed the success ofmore » the design and supported the importance of main-chain H-bonds in determining {beta}-sheet topology. This work suggests a simple but effective strategy for designing and controlling nanomaterials based on {beta}-rich peptide self-assemblies.« less
Abe, Keisuke; Takahashi, Hidekazu; Churei, Hiroshi; Iwasaki, Naohiko; Ueno, Toshiaki
2013-02-01
Experimental materials incorporating fiberglass cloth were used to develop a thin and lightweight face guard (FG). This study aims to evaluate the effect of fiberglass reinforcement on the flexural and shock absorption properties compared with conventional thermoplastic materials. Four commercial 3.2-mm and 1.6-mm medical splint materials (Aquaplast, Polyform, Co-polymer, and Erkodur) and two experimental materials were examined for use in FGs. The experimental materials were prepared by embedding two or four sheets of a plain woven fiberglass cloth on both surfaces of 1.5-mm Aquaplast. The flexural strength and flexural modulus were determined using a three-point bending test. The shock absorption properties were evaluated for a 5200-N impact load using the first peak intensity with a load cell system and the maximum stress with a film sensor system. The flexural strength (74.6 MPa) and flexural modulus (6.3 GPa) of the experimental material with four sheets were significantly greater than those of the 3.2-mm commercial specimens, except for the flexural strength of one product. The first peak intensity (515 N) and maximum stress (2.2 MPa) of the experimental material with four sheets were significantly lower than those of the commercial 3.2-mm specimens, except for one product for each property. These results suggest that the thickness and weight of the FG can be reduced using the experimental fiber-reinforced material. © 2012 John Wiley & Sons A/S.
Choi, Ji Suk; Kim, Jae Dong; Yoon, Hyun Soo
2013-01-01
The human placenta, a complex organ, which facilitates exchange between the fetus and the mother, contains abundant extracellular matrix (ECM) components and well-preserved endogenous growth factors. In this study, we designed a new dermal substitute from human placentas for full-thickness wound healing. Highly porous, decellularized ECM sheets were fabricated from human placentas via homogenization, centrifugation, chemical and enzymatic treatments, molding, and freeze-drying. The physical structure and biological composition of human placenta-derived ECM sheets dramatically supported the regeneration of full-thickness wound in vivo. At the early stage, the ECM sheet efficiently absorbed wound exudates and tightly attached to the wound surface. Four weeks after implantation, the wound was completely closed, epidermic cells were well arranged and the bilayer structure of the epidermis and dermis was restored. Moreover, hair follicles and microvessels were newly formed in the ECM sheet-implanted wounds. Overall, the ECM sheet produced a dermal substitute with similar cellular organization to that of normal skin. These results suggest that human placenta-derived ECM sheets provide a microenvironment favorable to the growth and differentiation of cells, and positive modulate the healing of full-thickness wounds. PMID:22891853
Analysis and design of composite slab by varying different parameters
NASA Astrophysics Data System (ADS)
Lambe, Kedar; Siddh, Sharda
2018-03-01
Composite deck slabs are in demand because of its faster, lighter and economical construction work. Composite slab consists of cold formed deck profiled sheet and concrete either lightweight or normal. Investigation of shear behaviour of the composite slab is very complex. Shear bond strength depends on the various parameter such as a shape of sheeting, a thickness of the sheet, type of embossment and its frequency of use, shear stiffener or intermediate stiffener, type of load, an arrangement of load, length of shear span, the thickness of concrete and support friction etc. In present study finite element analysis is carried out with ABAQUS 6.13, a simply supported composite slab is considered for the investigation of the shear bond behaviour of the composite slab by considering variation in three different parameters, the shape of a sheet, thickness of sheet and shear span. Different shear spans of two different shape of cold formed deck profiled sheet i.e. with intermediate stiffeners and without intermediate stiffeners are considered with two different thicknesses (0.8 mm and 1.2 mm) for simulation. In present work, simulation of models has done for static loading with 20 mm mesh size is considered.
Chen, Lei; Xing, Qi; Zhai, Qiyi; Tahtinen, Mitchell; Zhou, Fei; Chen, Lili; Xu, Yingbin; Qi, Shaohai; Zhao, Feng
2017-01-01
Split thickness skin graft (STSG) implantation is one of the standard therapies for full thickness wound repair when full thickness autologous skin grafts (FTG) or skin flap transplants are inapplicable. Combined transplantation of STSG with dermal substitute could enhance its therapeutic effects but the results remain unsatisfactory due to insufficient blood supply at early stages, which causes graft necrosis and fibrosis. Human mesenchymal stem cell (hMSC) sheets are capable of accelerating the wound healing process. We hypothesized that pre-vascularized hMSC sheets would further improve regeneration by providing more versatile angiogenic factors and pre-formed microvessels. In this work, in vitro cultured hMSC cell sheets (HCS) and pre-vascularized hMSC cell sheets (PHCS) were implanted in a rat full thickness skin wound model covered with an autologous STSG. Results demonstrated that the HCS and the PHCS implantations significantly reduced skin contraction and improved cosmetic appearance relative to the STSG control group. The PHCS group experienced the least hemorrhage and necrosis, and lowest inflammatory cell infiltration. It also induced the highest neovascularization in early stages, which established a robust blood micro-circulation to support grafts survival and tissue regeneration. Moreover, the PHCS grafts preserved the largest amount of skin appendages, including hair follicles and sebaceous glands, and developed the smallest epidermal thickness. The superior therapeutic effects seen in PHCS groups were attributed to the elevated presence of growth factors and cytokines in the pre-vascularized cell sheet, which exerted a beneficial paracrine signaling during wound repair. Hence, the strategy of combining STSG with PHCS implantation appears to be a promising approach in regenerative treatment of full thickness skin wounds.
Stock, Greg M.; Martel, Stephen J.; Collins, Brian D.; Harp, Edwin L.
2012-01-01
Progressive rock-fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high-resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15-month-long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock-fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls.
Design data for brazed Rene 41 honeycomb sandwich
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Arnquist, J.; Koetje, E. L.; Esposito, J. J.; Lindsay, V. E. J.; Swegle, A. R.
1981-01-01
Strength data, creep data and residual strength data after cyclic thermal exposure were obtained at temperatures from 78 K to 1144 K (-320 F to 1600 F). The influences of face thickness, core depth, core gage, cell size and thermal/stress exposure conditions on the mechanical design properties were investigated. A braze alloy and process was developed that is adequate to fully develop the strength of the honeycomb core while simultaneously solution treating and aging the Rene 41 fact sheets. New test procedures and test specimen configurations were developed to avoid excessive thermal stresses during cyclic thermal exposure.
SU-F-T-550: Radiochromic Plastic Thin Sheet Dosimeter: Initial Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, K; Adamovics, J
Purpose: Thin sheets, of a high sensitivity formulation of radiochromic dosimeter, Presage were prepared and evaluated for optical readout. Methods: Sheets of radiochromic polyurethane, 12 cm long, 10 cm wide and 0.2 cm thick were prepared with leuco crystal violet as the reporter molecule. Sample transmission was evaluated at a wavelength of 590 nm with in-house constructed instruments: optical cone beam laser CT scanner, fixed and scanning spot densitometers. Sample sequential irradiations to a total dose of 40 Gy were conducted with a modified, Theratron 60, cobalt radiotherapy machine at dose rates of 1 or 0.25 Gy per minute. Exposuremore » to ambient and readout light was minimized to limit background photochromic signals. Samples were stored at 4°C. Optical activity was assessed from linearly polarized transmission images. Comparison sensitivity measurements with EBT3 film were conducted. Results: Samples were transparent, smooth and pale purple before irradiation. Radiochromic reaction was completed in less than 5 minutes. A linear dose response with a sensitivity of 0.5 cm-1Gy-1 was observed. Micrometer measurements found sheet thickness variations up to 20%. Uniform dose, 2 Gy attenuation images, correlated with local sheet thicknesses. Comparable measurements with EBT3 film were 3 times more sensitive at 1 Gy but above 15 Gy, EBT3 film had lower sensitivity than 0.2 cm thick Presage sheet dosimeter due to its non-linear response. Conclusion: Dose sensitivity provided a 10% decrease in transmission for a 1 Gy dose. Improvements in mold design are expected to allow production of sheets with less than 5% variation in thickness. Above, 10 Gy, Presage sheet dosimeter performance expected to exceed EBT3 film based on linearity, sensitivity, transparency and smoothness of samples. J Adamovics is owner of Heuris Inc.« less
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
2007-01-01
This informal report summarizes the development and the design specifications of a recessed nomex core honeycomb panel in fulfillment of the deliverable in Task Order 13RBE, Revision 10, Subtask 17. The honeycomb panel, with 0.020-inch thick aluminum face sheets, has 0.016-inch thick aluminum patches applied to twenty-five, 6 by 6 inch, quarter inch thick recessed cores. A 10 dB higher transmission loss over the frequency range 250 - 1000 Hz was predicted by a MSC/NASTRAN finite element model when compared with the transmission loss of the base nomex core honeycomb panel. The static displacement, due to a unit force applied at either the core or recessed core area, was of the same order of magnitude as the static displacement of the base honeycomb panel when exposed to the same unit force. The mass of the new honeycomb design is 5.1% more than the base honeycomb panel. A physical model was constructed and is being tested.
APPLIED ORIGAMI. Origami of thick panels.
Chen, Yan; Peng, Rui; You, Zhong
2015-07-24
Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures. Copyright © 2015, American Association for the Advancement of Science.
System and method of adjusting the equilibrium temperature of an inductively-heated susceptor
Matsen, Marc R; Negley, Mark A; Geren, William Preston
2015-02-24
A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.
NASA Astrophysics Data System (ADS)
Tang, H. P.; Wang, J.; Song, C. N.; Liu, N.; Jia, L.; Elambasseril, J.; Qian, M.
2017-03-01
Sheet (0.41-4.80 mm thick) or thin plate structures commonly exist in additively manufactured Ti-6Al-4V components for load-bearing applications. A batch of 64 Ti-6Al-4V sheet samples with dimensions of 210/180 mm × 42 mm × 3 mm have been additively manufactured by selective electron beam melting (SEBM). A comprehensive assessment was then made of their density, surface flatness, microstructure, and mechanical properties in both as-built and hot isostatically pressed conditions, including the influence of the hot isostatic pressing (HIP) temperature. In particular, standard long tensile (156 mm long, 2 mm thick) and fatigue (206 mm long, 2 mm thick) test sheet samples were used for assessment. As-built SEBM Ti-6Al-4V sheet samples with machined surfaces fully satisfied the minimum tensile property requirements for mill-annealed TIMETAL Ti-6Al-4V sheet products, whereas HIP-processed samples (2 mm thick) with machined surfaces achieved a high cycle fatigue (HCF) strength of 625 MPa (R = 0.06, 107 cycles), similar to mill-annealed Ti-6Al-4V (500-700 MPa). The unflatness was limited to 0.2 mm in both the as-built and HIP-processed conditions. A range of other revealing observations was discussed for the additive manufacturing of the Ti-6Al-4V sheet structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen
In collisionless magnetic reconnection, electron current sheets (ECS) with thickness of the order of an electron inertial length form embedded inside ion current sheets with thickness of the order of an ion inertial length. These ECS's are susceptible to a variety of instabilities which have the potential to affect the reconnection rate and/or the structure of reconnection. We carry out a three dimensional linear eigen mode stability analysis of electron shear flow driven instabilities of an electron scale current sheet using an electron-magnetohydrodynamic plasma model. The linear growth rate of the fastest unstable mode was found to drop with themore » thickness of the ECS. We show how the nature of the instability depends on the thickness of the ECS. As long as the half-thickness of the ECS is close to the electron inertial length, the fastest instability is that of a translational symmetric two-dimensional (no variations along flow direction) tearing mode. For an ECS half thickness sufficiently larger or smaller than the electron inertial length, the fastest mode is not a tearing mode any more and may have finite variations along the flow direction. Therefore, the generation of plasmoids in a nonlinear evolution of ECS is likely only when the half-thickness is close to an electron inertial length.« less
NASA Astrophysics Data System (ADS)
Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Li, Huijun; Godbole, Ajit; Kong, Charlie
2018-06-01
The roll bonding technique is one of the most widely used methods to produce metal laminate sheets. Such sheets offer interesting research opportunities for both scientists and engineers. In this paper, we report on an experimental investigation of the 'thickness effect' during laminate rolling for the first time. Using a four-high multifunction rolling mill, Cu/Al/Cu laminate sheets were fabricated with a range of thicknesses (16, 40, 70 and 130 μm) of the Al layer. The thickness of the Cu sheets was a constant 300 μm. After rolling, TEM images show good bonding quality between the Cu and Al layers. However, there are many nanoscale pores in the Al layer. The fraction of nanoscale pores in the Al layer increases with a reduction in the Al layer thickness. The finite element method was used to simulate the Cu/Al/Cu rolling process. The simulation results reveal the effect of the Al layer thickness on the deformation characteristics of the Cu/Al/Cu laminate. Finally, we propose that the size effect of the Al layer thickness during Cu/Al/Cu laminate rolling may offer a method to fabricate 'nanoporous' Al sandwich laminate foils. Such foils can be used in electromagnetic shielding of electrical devices and noisy shielding of building.
Dynamic Harris current sheet thickness from Cluster current density and plasma measurements
NASA Technical Reports Server (NTRS)
Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; McPherron, R. L.; Weygand, J. M.; Balogh, A.; Reme, H.; Kistler, L. M.
2005-01-01
We use the first accurate measurements of current densities in the plasma sheet to calculate the half-thickness and position of the current sheet as a function of time. Our technique assumes a Harris current sheet model, which is parameterized by lobe magnetic field B(o), current sheet half-thickness h, and current sheet position z(sub o). Cluster measurements of magnetic field, current density, and plasma pressure are used to infer the three parameters as a function of time. We find that most long timescale (6-12 hours) current sheet crossings observed by Cluster cannot be described by a static Harris current sheet with a single set of parameters B(sub o), h, and z(sub o). Noting the presence of high-frequency fluctuations that appear to be superimposed on lower frequency variations, we average over running 6-min intervals and use the smoothed data to infer the parameters h(t) and z(sub o)(t), constrained by the pressure balance lobe magnetic field B(sub o)(t). Whereas this approach has been used in previous studies, the spatial gnuhen& now provided by the Cluster magnetometers were unavailable or not well constrained in earlier studies. We place the calculated hdf&cknessa in a magnetospheric context by examining the change in thickness with substorm phase for three case study events and 21 events in a superposed epoch analysis. We find that the inferred half-thickness in many cases reflects the nominal changes experienced by the plasma sheet during substorms (i.e., thinning during growth phase, thickening following substorm onset). We conclude with an analysis of the relative contribution of (Delta)B(sub z)/(Delta)X to the cross-tail current density during substorms. We find that (Delta)B(sub z)/(Delta)X can contribute a significant portion of the cross-tail c m n t around substorm onset.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1975-01-01
A study of the relation between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties depend primarily on the grain aspect ratio and sheet thickness. In general, the strength properties increased with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures. A threshold stress for creep appears to exist. Even small amounts of prior creep deformation at elevated temperatures can produce severe creep damage.
Prediction of thickness distribution of thermoformed multilayer ABS/PMMA sheets
NASA Astrophysics Data System (ADS)
Jobey, Caroline; Allanic, Nadine; Mousseau, Pierre; Deterre, Rémi
2016-10-01
In thermoforming, one of the main difficulties is to avoid the presence of weak thickness in the most deformed zones. After the heating stage, a bubbling step, leading to a first rate of deformation, is often used. In this work, we assess how the initial bubbling deformation can be controlled in order to obtain a homogeneous final thickness of the product. Experiments are performed on a multilayer sheet product. An industrial mould, corresponding to a casing of a non-licensed car, was adapted on a lab thermoformer. After presenting experimental thermal profiles of the multilayer sheets measured during the heating stage, a first geometric model is investigated to predict the thickness distribution. Numerical results are compared with measurements.
Magnetic Configurations of the Tilted Current Sheets and Dynamics of Their Flapping in Magnetotail
NASA Astrophysics Data System (ADS)
Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.
2009-04-01
Based on multiple spacecraft measurements, the geometrical structures of tilted current sheet and tail flapping waves have been analyzed and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the magnetic equatorial plane, while the tilted current sheet may lean severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, its half thickness is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail thick current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1RE, while the neutral sheet may be very thin, with its half thickness being several tenths ofRE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45
Hydration of non-polar anti-parallel β-sheets
NASA Astrophysics Data System (ADS)
Urbic, Tomaz; Dias, Cristiano L.
2014-04-01
In this work we focus on anti-parallel β-sheets to study hydration of side chains and polar groups of the backbone using all-atom molecular dynamics simulations. We show that: (i) water distribution around the backbone does not depend significantly on amino acid sequence, (ii) more water molecules are found around oxygen than nitrogen atoms of the backbone, and (iii) water molecules around nitrogen are highly localized in the planed formed by peptide backbones. To study hydration around side chains we note that anti-parallel β-sheets exhibit two types of cross-strand pairing: Hydrogen-Bond (HB) and Non-Hydrogen-Bond (NHB) pairing. We show that distributions of water around alanine, leucine, and valine side chains are very different at HB compared to NHB faces. For alanine pairs, the space between side chains has a higher concentration of water if residues are located in the NHB face of the β-sheet as opposed to the HB face. For leucine residues, the HB face is found to be dry while the space between side chains at the NHB face alternates between being occupied and non-occupied by water. Surprisingly, for valine residues the NHB face is dry, whereas the HB face is occupied by water. We postulate that these differences in water distribution are related to context dependent propensities observed for β-sheets.
Hydration of non-polar anti-parallel β-sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urbic, Tomaz; Dias, Cristiano L., E-mail: cld@njit.edu
2014-04-28
In this work we focus on anti-parallel β-sheets to study hydration of side chains and polar groups of the backbone using all-atom molecular dynamics simulations. We show that: (i) water distribution around the backbone does not depend significantly on amino acid sequence, (ii) more water molecules are found around oxygen than nitrogen atoms of the backbone, and (iii) water molecules around nitrogen are highly localized in the planed formed by peptide backbones. To study hydration around side chains we note that anti-parallel β-sheets exhibit two types of cross-strand pairing: Hydrogen-Bond (HB) and Non-Hydrogen-Bond (NHB) pairing. We show that distributions ofmore » water around alanine, leucine, and valine side chains are very different at HB compared to NHB faces. For alanine pairs, the space between side chains has a higher concentration of water if residues are located in the NHB face of the β-sheet as opposed to the HB face. For leucine residues, the HB face is found to be dry while the space between side chains at the NHB face alternates between being occupied and non-occupied by water. Surprisingly, for valine residues the NHB face is dry, whereas the HB face is occupied by water. We postulate that these differences in water distribution are related to context dependent propensities observed for β-sheets.« less
NASA Astrophysics Data System (ADS)
Qayyum, Sajid; Hayat, Tasawar; Alsaedi, Ahmed
Nonlinear thermal radiation and chemical reaction in magnetohydrodynamic (MHD) flow of third grade nanofluid over a stretching sheet with variable thickness are addressed. Heat generation/absorption and nonlinear convection are considered. The sheet moves with nonlinear velocity. Sheet is convectively heated. In addition zero mass flux condition for nanoparticle concentration is imposed. Results for velocity, temperature, concentration, skin friction and local Nusselt number are presented and examined. It is found that velocity and boundary layer thickness are increasing for Reynolds number. Temperature is a increasing function of the heat generation/absorption parameter while it causes a decrease in the heat transfer rate. Moreover effect of Brownian motion and chemical reaction on the concentration are quite reverse.
Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate
NASA Astrophysics Data System (ADS)
Mehar, Kulmani; Panda, Subrata Kumar
2018-03-01
In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.
Pagano, Timothy S.; Terry, David B.; Ingram, Arlynn W.
1986-01-01
Seven sheets of map data comprise this geohydrologic report. Sheet 1, surficial geology, illustrates the distribution of: open water areas; artificial fill; made land; urban land; alluvial silt and sand; alluvial sand and gravel; peat, marl, muck and clay; lake silt and/or clay; delta sand and gravel; beach sand and gravel; outwash sand and gravel; ice contact sand and ground; thick till cover bedrock; and thin till over bedrock over the Baldwinsville Area. Sheet 2, geologic sections, shows the layering of the aforementioned components below the surface layer. Sheet 3 illustrates the water infiltration of soil zone. Sheet 4 depicts the aquifer thickness. Sheet 5 illustrates the potentiometric surface, and Sheet 6 the well yield. Finally, Sheet 7 shows the land use in the region, specifically: industrial and extractive; commercial and services; transportation; farmland; forestland; residential; open public land; and water and wetlands. (Lantz-PTT)
Micro hot embossing for high-aspect-ratio structure with materials flow enhancement by polymer sheet
NASA Astrophysics Data System (ADS)
Murakoshi, Yoichi; Shan, Xue-Chuan; Sano, Toshio; Takahashi, Masaharu; Maeda, Ryutaro
2004-04-01
Nano imprinting or Nano embossing process have been introduced to fabricate semiconductor, optical device and Micro Electro Mechanical Systems (MEMS) and the Nano Electro Mechanical Systems (NEMS) to reduce the fabrication cost. In our previous paper, micro hot embossing of Polycarbonate (PC) and Polyetheretherketone (PEEK) for optical switch with 8x8 mirrors was reported. The PC and PEEK sheets were embossed at elevated temperature with an embossing machine designed for the MEMS. In the application, the mirrors on the optical switch had some defects, such as slump, sticking and step at side of the mirror, due to embossing process and process conditions. These defects are attributed to the poor materials flow of plastics into the e Ni mold cavity of complicate shape with different aspect ratio. Therefore, the micro hot embossing is optimized in this paper with PTFE sheet to enhance the materials flow. In this paper, the PC and the PEEK sheets, thickness of 300um, are embossed at elevated temperature with the hot embossing machine with a Nickel mold. To control material flow of the PC or the PEEK sheets, Polytetrafluoroethylene (PTFE) sheet, the thickness of 100um, is placed on the PC or the PEEK sheets at elevated temperature. Mirror shape was transferred with better fidelity on the PC and PEEK sheet, and the thickness of cantilever became thinner than previous embossed structure without the PTFE. Especially, the mirror height and the thickness of cantilever on the PC have been improved at lower embossing temperature.
Vacuum forming of thermoplastic sheet results in low-cost investment casting patterns
NASA Technical Reports Server (NTRS)
Clarke, A. E., Jr.
1964-01-01
Vacuum forming of a sheet of thermoplastic material around a mandrel conforming to the shape of the finished object provides a pattern for an investment mold. The thickness of the metal part is determined by the thickness of the plastic pattern.
Injection Characteristics of Non-Swirling and Swirling Annular Liquid Sheets
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Ibrahim, E. A.; McKinney, T. R.
2004-01-01
A simplified mathematical model, based on body-fitted coordinates, is formulated to study the evolution of non-swirling and swirling liquid sheet emanated from an annular nozzle in a quiescent surrounding medium. The model provides predictions of sheet trajectory, thickness and velocity at various liquid mass flow rates and liquid-swirler angles. It is found that a non-swirling annular sheet converges toward its centerline and assumes a bell shape as it moves downstream from the nozzle. The bell radius, and length are more pronounced at higher liquid mass flow rates. The thickness of the non-swirling annular sheet increases while its stream-wise velocity decreases with an increase in mass flow rate. The introduction of swirl results in the formation of a diverging hollow-cone sheet. The hollow-cone divergence from its centerline is enhanced by an increase in liquid mass flow rate or liquid-swirler angle. The hollow- cone sheet its radius, curvature and stream-wise velocity increase while its thickness and tangential velocity decrease as a result of increasing the mass flow rate or liquid-swirler angle. The present results are compared with previous studies and conclusions are drawn.
Screen printed silver top electrode for efficient inverted organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min
2015-10-15
Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinitymore » and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.« less
Development, testing, and numerical modeling of a foam sandwich biocomposite
NASA Astrophysics Data System (ADS)
Chachra, Ricky
This study develops a novel sandwich composite material using plant based materials for potential use in nonstructural building applications. The face sheets comprise woven hemp fabric and a sap based epoxy, while the core comprises castor oil based foam with waste rice hulls as reinforcement. Mechanical properties of the individual materials are tested in uniaxial compression and tension for the foam and hemp, respectively. The sandwich composite is tested in 3 point bending. Flexural results are compared to a finite element model developed in the commercial software Abaqus, and the validated model is then used to investigate alternate sandwich geometries. Sandwich model responses are compared to existing standards for nonstructural building panels, showing that the novel material is roughly half the strength of equally thick drywall. When space limitations are not an issue, a double thickness sandwich biocomposite is found to be a structurally acceptable replacement for standard gypsum drywall.
Ju, Jong Il; Ko, Jung-Moon; Kim, So Hyeon; Baek, Ju Yeoul; Cha, Hyeon-Cheol; Lee, Sang Hoon
2006-08-01
In plant cell culture, the delivery of nutrition and gas (mainly oxygen) to the cells is the most important factor for viability. In this paper, we propose a polydimethylsiloxane (PDMS)-based microculture system that is designed to have good aeration. PDMS is known to have excellent air permeability, and through the experimental method, we investigated the relation between the degree of air delivery and the thickness of the PDMS sheet covering the culture chamber. We determined the proper thickness of the cover sheet, and cultured protoplasts of Nicotiana tabacum in a culture chamber covered with a PDMS sheet having thickness of 400 microm. The cells were successfully divided, and lived well inside the culture chamber for 10 days. In addition, protoplasts were cultured inside the culture chambers covered with the cover glass and the PDMS sheet, respectively, and the microcolonies were formed well inside the PDMS covered chamber after 10 days.
Generation and characterization of ultrathin free-flowing liquid sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koralek, Jake D.; Kim, Jongjin B.; Bruza, Petr
The physics and chemistry of liquid solutions play a central role in science, and our understanding of life on Earth. Unfortunately, key tools for interrogating aqueous systems, such as infrared and soft X-ray spectroscopy, cannot readily be applied because of strong absorption in water. Here we use gas-dynamic forces to generate free-flowing, sub-micron, liquid sheets which are two orders of magnitude thinner than anything previously reported. Optical, infrared, and X-ray spectroscopies are used to characterize the sheets, which are found to be tunable in thickness from over 1 μm down to less than 20 nm, which corresponds to fewer thanmore » 100 water molecules thick. At this thickness, aqueous sheets can readily transmit photons across the spectrum, leading to potentially transformative applications in infrared, X-ray, electron spectroscopies and beyond. Lastly, the ultrathin sheets are stable for days in vacuum, and we demonstrate their use at free-electron laser and synchrotron light sources.« less
3D single-molecule super-resolution microscopy with a tilted light sheet.
Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E
2018-01-09
Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.
Generation and characterization of ultrathin free-flowing liquid sheets
Koralek, Jake D.; Kim, Jongjin B.; Bruza, Petr; ...
2018-04-10
The physics and chemistry of liquid solutions play a central role in science, and our understanding of life on Earth. Unfortunately, key tools for interrogating aqueous systems, such as infrared and soft X-ray spectroscopy, cannot readily be applied because of strong absorption in water. Here we use gas-dynamic forces to generate free-flowing, sub-micron, liquid sheets which are two orders of magnitude thinner than anything previously reported. Optical, infrared, and X-ray spectroscopies are used to characterize the sheets, which are found to be tunable in thickness from over 1 μm down to less than 20 nm, which corresponds to fewer thanmore » 100 water molecules thick. At this thickness, aqueous sheets can readily transmit photons across the spectrum, leading to potentially transformative applications in infrared, X-ray, electron spectroscopies and beyond. Lastly, the ultrathin sheets are stable for days in vacuum, and we demonstrate their use at free-electron laser and synchrotron light sources.« less
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.; Noebe, Ronald D.; Revilock, Duane M.
2003-01-01
The ballistic impact resistance of hybrid composite sandwich structures was evaluated with the ultimate goal of developing new materials or structures for potential gas turbine engine fan containment applications. The sandwich structures investigated consisted of GLARE-5 laminates as face sheets with lightweight cellular metallic materials such as honeycomb, foam, and lattice block as a core material. The impact resistance of these hybrid sandwich structures was compared to GLARE-5 laminates and 2024-T3 Al sheet, which were tested as a function of areal weight (material thickness). The GLARE-5 laminates exhibited comparable impact properties to that of 2024-T3 Al at low areal weights, even though there were significant differences in the static tensile properties of these materials. The GLARE-5, however, did have a greater ballistic limit than straight aluminum sheet at higher areal weights. Furthermore, there is up to a 25% advantage in ballistic limit for the GLARE-5/foam sandwich structures compared to straight 2024-T3 Al. But no advantage in ballistic limit was observed between any of the hybrid sandwich structures and thicker versions of GLARE-5. Recommendations for future work are provided, based on these preliminary data.
Craterlike structures on the laser cut surface
NASA Astrophysics Data System (ADS)
Shulyatyev, V. B.; Orishich, A. M.
2017-10-01
Analysis of the laser cut surface morphology remain topical. It is related with the fact that the surface roughness is the main index of the cut quality. The present paper deals with the experimental study of the relatively unstudied type of defects on the laser cut surface, dimples, or craters. According to the measurement results, amount of craters per unit of the laser cut surface area rises as the sheet thickness rises. The crater diameter rises together with the sheet thickness and distance from the upper sheet edge. The obtained data permit concluding that the defects like craters are observed predominantly in the case of thick sheets. The results agree with the hypothesis of crater formation as impact structures resulting from the melt drops getting on the cut channel walls upon separation from the cut front by the gas flow.
Micrometer-thickness liquid sheet jets flowing in vacuum
NASA Astrophysics Data System (ADS)
Galinis, Gediminas; Strucka, Jergus; Barnard, Jonathan C. T.; Braun, Avi; Smith, Roland A.; Marangos, Jon P.
2017-08-01
Thin liquid sheet jet flows in vacuum provide a new platform for performing experiments in the liquid phase, for example X-ray spectroscopy. Micrometer thickness, high stability, and optical flatness are the key characteristics required for successful exploitation of these targets. A novel strategy for generating sheet jets in vacuum is presented in this article. Precision nozzles were designed and fabricated using high resolution (0.2 μm) 2-photon 3D printing and generated 1.49 ± 0.04 μm thickness, stable, and <λ /20-flat jets in isopropanol under normal atmosphere and under vacuum at 5 × 10-1 mbar. The thin sheet technology also holds great promise for advancing the fields of high harmonic generation in liquids, laser acceleration of ions as well as other fields requiring precision and high repetition rate targets.
Comparison of bursting pressure results of LPG tank using experimental and finite element method.
Aksoley, M Egemen; Ozcelik, Babur; Bican, Ismail
2008-03-01
In this study, the resistance of liquefied-petroleum gas (LPG) tanks produced from carbon steel sheet metal of different thicknesses has been investigated by bursting pressure experiments and non-linear Finite Element Method (FEM) method by increasing internal pressure values. The designs of LPG tanks produced from sheet metal to be used at the study have been realized by analytical calculations made taking into consideration of related standards. Bursting pressure tests have been performed that were inclined to decreasing the sheet thickness of LPG tanks used in industry. It has been shown that the LPG tanks can be produced in compliance with the standards when the sheet thickness is lowered from 3 to 2.8mm. The FEM results have displayed close values with the bursting results obtained from the experiments.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1993-01-01
Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.
A novel closed cell culture device for fabrication of corneal epithelial cell sheets.
Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu
2015-11-01
Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.
Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets
NASA Astrophysics Data System (ADS)
Deconto, R. M.; Pollard, D.
2017-12-01
New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100, implying that physically plausible upper limits on future sea-level rise might need to be reconsidered.
NASA Astrophysics Data System (ADS)
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-05-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
NASA Astrophysics Data System (ADS)
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-04-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
Rapid solution casting under vacuum of very thick sheets of a segmented polyurethane elastomer
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Moacanin, J.
1981-01-01
A technique has been developed for rapidly casting from solution under vacuum smooth, bubble-free, clear-white and uniformly thick (about 0.20 cm) sheets of a segmented polyurethane elastomer. The casting is carried out from dimethylformamide solutions inside temperature-controlled air-circulated ovens in order to minimize the establishment of thermal gradients throughout the casting solution. The technique produces quality sheets in 9 days, compared with 40-45 days for an inferior film produced in open pans.
An Approximate Solution to the Plastic Indentation of Circular Sandwich Panels
NASA Astrophysics Data System (ADS)
Xie, Z.
2018-05-01
The plastic indentation response of circular sandwich panels loaded by the flat end of a cylinder is investigated employing a velocity field model. Using the principles of virtual velocities and minimum work, an expression for the indenter load in relation to the indenter displacement and displacement field of the deformed face sheet is derived. The analytical solutions obtained are in good agreement with those found by simulations using the ABAQUS code. The radial tensile strain of the deformed face sheet and the ratio of energy absorption rate of the core to that of the face sheet are discussed.
Cell sheet-based tissue engineering for fabricating 3-dimensional heart tissues.
Shimizu, Tatsuya
2014-01-01
In addition to stem cell biology, tissue engineering is an essential research field for regenerative medicine. In contrast to cell injection, bioengineered tissue transplantation minimizes cell loss and has the potential to repair tissue defects. A popular approach is scaffold-based tissue engineering, which utilizes a biodegradable polymer scaffold for seeding cells; however, new techniques of cell sheet-based tissue engineering have been developed. Cell sheets are harvested from temperature-responsive culture dishes by simply lowering the temperature. Monolayer or stacked cell sheets are transplantable directly onto damaged tissues and cell sheet transplantation has already been clinically applied. Cardiac cell sheet stacking produces pulsatile heart tissue; however, lack of vasculature limits the viable tissue thickness to 3 layers. Multistep transplantation of triple-layer cardiac cell sheets cocultured with endothelial cells has been used to form thick vascularized cardiac tissue in vivo. Furthermore, in vitro functional blood vessel formation within 3-dimensional (3D) tissues has been realized by successfully imitating in vivo conditions. Triple-layer cardiac cell sheets containing endothelial cells were layered on vascular beds and the constructs were media-perfused using novel bioreactor systems. Interestingly, cocultured endothelial cells migrate into the vascular beds and form perfusable blood vessels. An in vitro multistep procedure has also enabled the fabrication of thick, vascularized heart tissues. Cell sheet-based tissue engineering has revealed great potential to fabricate 3D cardiac tissues and should contribute to future treatment of severe heart diseases and human tissue model production.
Radar Thickness Measurements over the Southern Part of the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Chuah, Teong Sek; Gogineni, Siva Prasad; Allen, Christopher; Wohletz, Brad; Wong, Y. C.; Ng, P. Y.; Ajayi, E.
1996-01-01
We performed ice thickness measurements over the southern part of the Greenland ice sheet during June and July 1993. We used an airborne coherent radar depth sounder for these measurements. The radar was operated from a NASA P-3 aircraft equipped with GPS receivers. Radar data were collected in conjunction with laser altimeter and microwave altimeter measurements of ice surface elevation. This report provides radio echograms and thickness profiles from data collected during 1993.
Reynolds, Richard J.
2002-01-01
The hydrogeology of a 135-square-mile area centered at Waverly, N.Y. and Sayre, Pa. is summarized in a set of five maps and a sheet of geologic sections, all at 1:24,000 scale, that depict locations of wells and test holes (sheet 1), surficial geology (sheet 2), altitude of the water table (sheet 3), saturated thickness of the surficial aquifer (sheet 4), thickness of the lacustrine confining unit (sheet 5), and geologic sections (sheet 6). The valley-fill deposits that form the aquifer system in the Waverly-Sayre area occupy an area of approximately 30 square miles, within the valleys of the Susquehanna River, Chemung River, and Cayuta Creek.The saturated thickness of the surficial aquifer, which consists of alluvium, valley-train outwash, and underlying ice-contact deposits, ranges from zero to 90 feet and is greatest in areas where (1) the outwash is underlain by ice-contact sand and gravel or (2) the outwash is overlain by alluvium and alluvial fans. Estimated transmissivity of the surficial aquifer ranges from 5,600 to 100,270 feet squared per day, and estimated hydraulic conductivity ranges from 50 feet per day for ice-contact deposits to 1,300 feet per day for well-sorted, valley-train outwash.The surficial aquifer is underlain by deposits of lacustrine sand, silt, and clay in the main valleys; these deposits reach thicknesses of as much as 150 ft and form a thick confining unit. Beneath the lacustrine silt and clay confining unit is a thin, discontinuous sand and gravel aquifer whose thickness averages 5 feet but may be as much as 30 feet locally. This confined aquifer supplies many domestic well in the area; yields average about 22 gallons per minute for 6-inch-diameter, open-ended wells. Average annual recharge to the aquifer system is estimated to be approximately 52.5 Mgal/d (million gallons per day), of which 29.7 Mgal/d is from direct precipitation, 7.6 Mgal/d is from unchanneled upland runoff that infiltrates the stratified drift along the valley wall, and 15.2 Mgal/d is from infiltration from tributary streams on the valley floor.
The dynamics and shapes of a viscous sheet spreading on a moving liquid bath
NASA Astrophysics Data System (ADS)
Sebilleau, J.; Lebon, L.; Limat, L.; Quartier, L.; Receveur, M.
2010-10-01
We investigate the shape and dynamics of a floating viscous sheet formed by a jet falling on a static or moving bath under partial wetting conditions. For a static bath, the viscous sheet has a circular shape and spreads with a uniform thickness that is surprisingly larger than the static Langmuir equilibrium thickness. This thickening effect seems to be linked to a peculiarity of the oil used for the bath, which is in situation of total wetting on the sheet surface, and climbs the sheet a bit like a macroscopic "precursor film" that increases dissipation at the sheet perimeter. For a moving bath, the viscous sheet evolves from an ellipse to a ribbon, a transient remarkable pear shape being observed between these two states. A simple kinematic model of advection of the spreading sheet by the bath predicts very well the characteristics of the ribbon regime. Convected sheets whose shape is reminiscent of pendant drops in 2D are also observed at higher bath velocity, with interesting pinch off phenomena.
NASA Technical Reports Server (NTRS)
Atchison, C S; Miller, James A
1942-01-01
Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.
Comparison of face types in Chinese women using three-dimensional computed tomography.
Zhou, Rong-Rong; Zhao, Qi-Ming; Liu, Miao
2015-04-01
This study compared inverted triangle and square faces of 21 young Chinese Han women (18-25 years old) using three-dimensional computed tomography images retrieved from a records database. In this study, 11 patients had inverted triangle faces and 10 had square faces. The anatomic features were examined and compared. There were significant differences in lower face width, lower face height, masseter thickness, middle/lower face width ratio, and lower face width/height ratio between the two facial types (p < 0.01). Lower face width was positively correlated with masseter thickness and negatively correlated with gonial angle. Lower face height was positively correlated with gonial angle and negatively correlated with masseter thickness, and gonial angle was negatively correlated with masseter thickness. In young Chinese Han women, inverted triangle faces and square faces differ significantly in masseter thickness and lower face height. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Ice-coupled wave propagation across an abrupt change in ice rigidity, density, or thickness
NASA Astrophysics Data System (ADS)
Barrett, Murray D.; Squire, Vernon A.
1996-09-01
The model of Fox and Squire [1990, 1991, 1994], which discusses the oblique propagation of surface gravity waves from the open sea into an ice sheet of constant thickness and properties, is augmented to include propagation across an abrupt transition of properties within a continuous ice sheet or across two dissimilar ice sheets that abut one another but are free to move independently. Rigidity, thickness, and/or density may change across the transition, allowing, for example, the modeling of ice-coupled waves into, across, and out of refrozen leads and polynyas, across cracks, and through coherent pressure ridges. Reflection and transmission behavior is reported for various changes in properties under both types of transition conditions.
Resin film infusion mold tooling and molding method
NASA Technical Reports Server (NTRS)
Burgess, Roger (Inventor); Grossheim, Brian (Inventor); Mouradian, Karbis (Inventor); Thrash, Patrick J. (Inventor)
1999-01-01
A mold apparatus and method for resin film infusion molding including an outer mold tool having a facing sheet adapted to support a resin film and preform assembly. The facing sheet includes attachment features extending therefrom. An inner mold tool is positioned on the facing sheet to enclose the resin film and preform assembly for resin film infusion molding. The inner mold tool includes a plurality of mandrels positioned for engagement with the resin film and preform assembly. Each mandrel includes a slot formed therein. A plurality of locating bars cooperate with the slots and with the attachment features for locating the mandrels longitudinally on the outer mold tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku
A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness andmore » shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.« less
Brown, Timothy A.; Dunning, Charles P.; Sharpe, Jennifer B.
2000-01-01
The report series will enable investigators involved in site-specific studies within the subcrop area to understand the regional geologic framework of the unit and to find additional reference sources. This report consists of four sheets that show the altitude (sheet 1), depth from land surface (sheet 2), total thickness (sheet 3), and location of altitude data (sheet 4) of the lithologic units that constitute the Galena-Platteville bedrock unit within the subcrop area. The sheets also show major known geologic features within the Galena-Platteville study area in Illinois and Wisconsin. A geographic information system (GIS) was used to generate data layers (coverages) from point data and from published and unpublished contour maps at various scales and detail. Standard GIS procedures were used to change the coverages into the maps shown on the sheets presented in this report. A list of references for the data used to prepare the maps is provided.
Ignition of Fuel Vapors Beneath Titanium Aircraft Skins Exposed to Lightning
NASA Technical Reports Server (NTRS)
Kosvic, T. C.; Helgeson, N. L.; Gerstein, M.
1971-01-01
Hot-spot and puncture ignition of fuel vapors by simulated lightning discharges was studied experimentally. The influences of skin coating, skin structure, discharge polarity, skin thickness, discharge current level, and current duration were measured and interpreted. Ignition thresholds are reported for titanium alloy constructed as sheets, sheets coated with sealants, and sandwich skins. Results indicated that the ignition threshold charge transfer for coated sheets, honeycomb, and truss skins is respectively about 200%, 400%, 800% that of bare alloy sheet of .102 cm (.040 in.)-thickness. It was found that hot-spot ignition can occur well after termination of the arc, and that sandwich materials allow ignition only if punctured.
A useful method to overcome the difficulties of applying silicone gel sheet on irregular surfaces.
Grella, Roberto; Nicoletti, Gianfranco; D'Ari, Antonio; Romanucci, Vincenza; Santoro, Mariangela; D'Andrea, Francesco
2015-04-01
To date, silicone gel and silicone occlusive plates are the most useful and effective treatment options for hypertrophic scars (surgical and traumatic). Use of silicone sheeting has also been demonstrated to be effective in the treatment of minor keloids in association with corticosteroid intralesional infiltration. In our practice, we encountered four problems: maceration, rashes, pruritus and infection. Not all patients are able to tolerate the cushion, especially children, and certain anatomical regions as the face and the upper chest are not easy to dress for obvious social, psychological and aesthetic reasons. In other anatomical regions, it is also difficult to obtain adequate compression and occlusion of the scar. To overcome such problems of applying silicone gel sheeting, we tested the use of liquid silicone gel (LSG) in the treatment of 18 linear hypertrophic scars (HS group) and 12 minor keloids (KS group) as an alternative to silicone gel sheeting or cushion. Objective parameters (volume, thickness and colour) and subjective symptoms such as pain and pruritus were examined. Evaluations were made when the therapy started and after 30, 90 and 180 days of follow-up. After 90 days of treatment with silicone gel alone (two applications daily), HS group showed a significant improvement in terms of volume decrease, reduced inflammation and redness and improved elasticity. In conclusion, on the basis of our clinical data, we find LSG to be a useful method to overcome the difficulties of applying silicone gel sheeting on irregular surface. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Experimental investigation of the stability of a moving radial liquid sheet
NASA Astrophysics Data System (ADS)
Paramati, Manjula; Tirumkudulu, Mahesh
2013-11-01
Experiments were conducted to understand the stability of moving radial liquid sheets formed by the head-on impingement of two co-linear water jets using laser induced fluorescence technique (LIF). Acoustic sinusoidal fluctuations were introduced at the jet impingement point and we measured the displacement of the center line of the liquid sheet (sinuous mode) and the thickness variation (varicose mode) of the disturbed liquid sheet. Our experiments show that the sinuous disturbances grow as they are convected outward in the radial direction even in the smooth regime (We < 800). In the absence of the acoustic forcing, the measured thickness has the expected 1/r dependence. Interestingly, we were unable to detect any thickness variation about the pre-stimulus values in the presence of acoustic forcing suggesting that the variation in the thickness is lower than the resolution of the technique (+/- 1 μm). The growth rates of the sinuous mode determined from the wave envelope matches with the prediction of a recent theory by Tirumkudulu and Paramati (Communicated to Phys. Of Fluids, 2013) which accounts for the inertia of the liquid phase and the surface tension force in a radial liquid sheet while neglecting the inertial effects due to the surrounding gas phase. The authors acknowledge the financial assistance from Indo-French Center for Pro- motion of Advanced Research and also Indian institute of technology Bombay.
Polycrystalline silicon sheets for solar cells by the spinning method
NASA Astrophysics Data System (ADS)
Maeda, Y.; Yokoyama, T.; Hide, I.
1984-03-01
A new method has been developed in which polycrystalline silicon sheets are formed directly from molten silicon on a spinning wheel. The sheet is 5 cm x 5 cm, 0.1-0.5 mm thick, and made at a rate of four sheets per 15 s; power conversion rate of a solar cell assembled with these silicon sheets is more than 10 percent.
Microstructural and Mechanical Study of Press Hardening of Thick Boron Steel Sheet
NASA Astrophysics Data System (ADS)
Pujante, J.; Garcia-Llamas, E.; Golling, S.; Casellas, D.
2017-09-01
Press hardening has become a staple in the production of automotive safety components, due to the combination of high mechanical properties and form complexity it offers. However, the use of press hardened components has not spread to the truck industry despite the advantages it confers, namely affordable weight reduction without the use of exotic materials, would be extremely attractive for this sector. The main reason for this is that application of press hardened components in trucks implies adapting the process to the manufacture of thick sheet metal. This introduces an additional layer of complexity, mainly due to the thermal gradients inside the material resulting in though-thickness differences in austenitization and cooling, potentially resulting in complex microstructure and gradient of mechanical properties. This work presents a preliminary study on the press hardening of thick boron steel sheet. First of all, the evolution of the sheet metal during austenitization is studied by means of dilatometry tests and by analysing the effect of furnace dwell time on grain size. Afterwards, material cooled using different cooling strategies, and therefore different effective cooling rates, is studied in terms of microstructure and mechanical properties. Initial results from finite element simulation are compared to experimental results, focusing on the phase composition in through thickness direction. Results show that industrial-equivalent cooling conditions do not lead to gradient microstructures, even in extreme scenarios involving asymmetrical cooling.
Foam Core Shielding for Spacecraft
NASA Technical Reports Server (NTRS)
Adams, Marc
2007-01-01
A foam core shield (FCS) system is now being developed to supplant multilayer insulation (MLI) systems heretofore installed on spacecraft for thermal management and protection against meteoroid impacts. A typical FCS system consists of a core sandwiched between a face sheet and a back sheet. The core can consist of any of a variety of low-to-medium-density polymeric or inorganic foams chosen to satisfy application-specific requirements regarding heat transfer and temperature. The face sheet serves to shock and thereby shatter incident meteoroids, and is coated on its outer surface to optimize its absorptance and emittance for regulation of temperature. The back sheet can be dimpled to minimize undesired thermal contact with the underlying spacecraft component and can be metallized on the surface facing the component to optimize its absorptance and emittance. The FCS systems can perform better than do MLI systems, at lower mass and lower cost and with greater volumetric efficiency.
Inferring Ice Thickness from a Glacier Dynamics Model and Multiple Surface Datasets.
NASA Astrophysics Data System (ADS)
Guan, Y.; Haran, M.; Pollard, D.
2017-12-01
The future behavior of the West Antarctic Ice Sheet (WAIS) may have a major impact on future climate. For instance, ice sheet melt may contribute significantly to global sea level rise. Understanding the current state of WAIS is therefore of great interest. WAIS is drained by fast-flowing glaciers which are major contributors to ice loss. Hence, understanding the stability and dynamics of glaciers is critical for predicting the future of the ice sheet. Glacier dynamics are driven by the interplay between the topography, temperature and basal conditions beneath the ice. A glacier dynamics model describes the interactions between these processes. We develop a hierarchical Bayesian model that integrates multiple ice sheet surface data sets with a glacier dynamics model. Our approach allows us to (1) infer important parameters describing the glacier dynamics, (2) learn about ice sheet thickness, and (3) account for errors in the observations and the model. Because we have relatively dense and accurate ice thickness data from the Thwaites Glacier in West Antarctica, we use these data to validate the proposed approach. The long-term goal of this work is to have a general model that may be used to study multiple glaciers in the Antarctic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilka, J. A.; Park, J.; Sampson, K. C.
The creation of thin SrTiO3 crystals from (001)-oriented SrTiO3 bulk single crystals using focused ion beam milling techniques yields sheets with submicron thickness and arbitrary orientation within the (001) plane. Synchrotron x-ray nanodiffraction rocking curve widths of these SrTiO3 sheets are less than 0.02 degrees, less than a factor of two larger than bulk SrTiO3, making these crystals suitable substrates for epitaxial thin film growth. The change in the rocking curve width is sufficiently small that we deduce that dislocations are not introduced into the SrTiO3 sheets. Observed lattice distortions are consistent with a low concentration of point defects.
Solid-state and fusion resistance spot welding of TD-NiCr sheet
NASA Technical Reports Server (NTRS)
Moore, T. J.
1973-01-01
By using specially processed TD-NiCr sheet in both 0.4-mm (0.015-in.) and 1.6-mm (0.062-in.) thicknesses and carefully selected welding procedures, solid state resistance spot welds were produced which, after postheating at 1200 C, were indistinguishable from the parent material. Stress-rupture shear tests of single-spot lap joints in 0.4-mm (0.015-in.) thick sheet showed that these welds were as strong as the parent material. Similar results were obtained in tensile-shear tests at room temperature and 1100 C and in fatigue tests. Conventional fusion spot welds in commercial sheet were unsatisfactory because of poor stress-rupture shear properties resulting from metallurgical damage to the parent material.
Development of lightweight graphite/polyimide honeycomb. Phase 1: Materials selection
NASA Technical Reports Server (NTRS)
Poesch, J. G.
1971-01-01
The materials selected for the production of extremely lightweight honeycomb sandwich panels are discussed. The resin selected for the first core and face sheet fabrication was Monsanto RS6234 polyimide. The fiber selected for core manufacture was Hercules HT-S, and for face sheets, Hercules HM-S; these selections are discussed.
High-speed non-contact measuring apparatus for gauging the thickness of moving sheet material
Grann, Eric B.; Holcomb, David E.
2000-01-01
An optical measurement apparatus is provided for measuring the thickness of a moving sheet material (18). The apparatus has a pair of optical measurement systems (21, 31) attached to opposing surfaces (14, 16) of a rigid support structure (10). A pair of high-power laser diodes (20,30) and a pair of photodetector arrays (22,32) are attached to the opposing surfaces. Light emitted from the laser diodes is reflected off of the sheet material surfaces (17, 19) and received by the respective photodetector arrays. An associated method for implementing the apparatus is also provided.
46 CFR 119.440 - Independent fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
...] Steel or iron5 6 1.90 (0.0747) [MSG 14] 2.66 (0.1046) [MSG 12] 4.55 (0.1793) [MSG 7] Aluminum 7 B209...,” which was established by the act of March 3, 1892 (15 U.S.C. 206), for sheet and plate iron and steel... thicknesses. The letters “MSG” stand for “Manufacturers' Standard Gage” for sheet steel thickness. 2 Tanks...
NASA Astrophysics Data System (ADS)
Li, J.; Medley, B.; Neumann, T.; Smith, B. E.; Luthcke, S. B.; Zwally, H. J.
2016-12-01
Surface mass balance (SMB) data are essential in the derivation of ice sheet mass balance. This is because ice sheet mass change consists of short-term and long-term variations. The short-term variations are directly given by the SMB data. For altimetry based ice sheet mass balance studies, these short-term mass changes are converted to firn thickness changes by using a firn densification-elevation model, and then the variations are subtracted from the altimetry measurements to give the long-term ice thickness changes that are associated with the density of ice. So far various SMB data sets such as ERA-Interim, RACMO and MERRA are available and some have been widely used in large number of ice sheet mass balance studies. However theses data sets exhibit the clear discrepancies in both random and systematic manner. In this study, we use our time dependent firn densification- elevation model, driven by the SMB data from MERRA-2, RACMO2.3 and ERA-Int for the period of 1982-2015 and the temperature variations from AVHRR for the same period to examine the corresponding firn thickness variations and the impacts to the mass changes over the Greenland ice sheet. The model was initialized with the1980's climate. Our results show that the relative smaller (centimeter level) differences in the firn thickness driven by the different data set occur at the early stage (1980's) of the model run. As the time progressing, the discrepancies between the SMB data sets accumulate, and the corresponding firn thickness differences quickly become larger with the value > 2m at the end of the period. Although the overall rates for the whole period driven by each of the three data sets are small ranging -0.2 - 0.2 cm a-1 (-3.0-2.7 Gt a-1), the decadal rates can vary greatly with magnitude > 3 cm a-1 and the impact to the Greenland mass change exceeds 30 Gt a-1.
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.
2015-12-01
We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during the last 40 years. Through the use of ISSM, we examine possible mechanism explaining the observed changes. The improved understanding gained through this research will contribute better projections of future ice loss from this most vulnerable region of the GrIS.
Skiving stacked sheets of paper into test paper for rapid and multiplexed assay
Yang, Mingzhu; Zhang, Wei; Yang, Junchuan; Hu, Binfeng; Cao, Fengjing; Zheng, Wenshu; Chen, Yiping; Jiang, Xingyu
2017-01-01
This paper shows that stacked sheets of paper preincubated with different biological reagents and skiving them into uniform test paper sheets allow mass manufacturing of multiplexed immunoassay devices and simultaneous detection of multiplex targets that can be read out by a barcode scanner. The thickness of one sheet of paper can form the width of a module for the barcode; when stacked, these sheets of paper can form a series of barcodes representing the targets, depending on the color contrast provided by a colored precipitate of an immunoassay. The uniform thickness of sheets of paper allows high-quality signal readout. The manufacturing method allows highly efficient fabrication of the materials and substrates for a straightforward assay of targets that range from drugs of abuse to biomarkers of blood-transmitted infections. In addition, as a novel alternative to the conventional point-of-care testing method, the paper-based barcode assay system can provide highly efficient, accurate, and objective diagnoses. PMID:29214218
Using Diffusion Bonding in Making Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Sager, Frank E.
2003-01-01
A technique for the fabrication of piezoelectric actuators that generate acceptably large forces and deflections at relatively low applied voltages involves the stacking and diffusion bonding of multiple thin piezoelectric layers coated with film electrodes. The present technique stands in contrast to an older technique in which the layers are bonded chemically, by use of urethane or epoxy agents. The older chemical-bonding technique entails several disadvantages, including the following: It is difficult to apply the bonding agents to the piezoelectric layers. It is difficult to position the layers accurately and without making mistakes. There is a problem of disposal of hazardous urethane and epoxy wastes. The urethane and epoxy agents are nonpiezoelectric materials. As such, they contribute to the thickness of a piezoelectric laminate without contributing to its performance; conversely, for a given total thickness, the performance of the laminate is below that of a unitary piezoelectric plate of the same thickness. The figure depicts some aspects of the fabrication of a laminated piezoelectric actuator by the present diffusion- bonding technique. First, stock sheets of the piezoelectric material are inspected and tested. Next, the hole pattern shown in the figure is punched into the sheets. Alternatively, if the piezoelectric material is not a polymer, then the holes are punched in thermoplastic films. Then both faces of each punched piezoelectric sheet or thermoplastic film are coated with a silver-ink electrode material by use of a silkscreen printer. The electrode and hole patterns are designed for minimal complexity and minimal waste of material. After a final electrical test, all the coated piezoelectric layers (or piezoelectric layers and coated thermoplastic films) are stacked in an alignment jig, which, in turn, is placed in a curved press for the diffusion-bonding process. In this process, the stack is pressed and heated at a specified curing temperature and pressure for a specified curing time. The pressure, temperature, and time depend on the piezoelectric material selected. At the end of the diffusion-bonding process, the resulting laminated piezoelectric actuator is tested to verify the adequacy of the mechanical output as a function of an applied DC voltage.
Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2005-02-15
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
Ultrathin Optical Panel And A Method Of Making An Ultrathin Optical Panel.
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2005-05-17
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
Ultrathin optical panel and a method of making an ultrathin optical panel
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2003-02-11
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
Ultrathin optical panel and a method of making an ultrathin optical panel
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2001-10-09
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated with a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
Ultrathin optical panel and a method of making an ultrathin optical panel
Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Veligdan, James T.
2002-01-01
An ultrathin optical panel, and a method of producing an ultrathin optical panel, are disclosed, including stacking a plurality of glass sheets, which sheets may be coated With a transparent cladding substance or may be uncoated, fastening together the plurality of stacked coated glass sheets using an epoxy or ultraviolet adhesive, applying uniform pressure to the stack, curing the stack, sawing the stack to form an inlet face on a side of the stack and an outlet face on an opposed side of the stack, bonding a coupler to the inlet face of the stack, and fastening the stack, having the coupler bonded thereto, within a rectangular housing having an open front which is aligned with the outlet face, the rectangular housing having therein a light generator which is optically aligned with the coupler. The light generator is preferably placed parallel to and proximate with the inlet face, thereby allowing for a reduction in the depth of the housing.
In Vitro Engineering of Vascularized Tissue Surrogates
Sakaguchi, Katsuhisa; Shimizu, Tatsuya; Horaguchi, Shigeto; Sekine, Hidekazu; Yamato, Masayuki; Umezu, Mitsuo; Okano, Teruo
2013-01-01
In vitro scaling up of bioengineered tissues is known to be limited by diffusion issues, specifically a lack of vasculature. Here, we report a new strategy for preserving cell viability in three-dimensional tissues using cell sheet technology and a perfusion bioreactor having collagen-based microchannels. When triple-layer cardiac cell sheets are incubated within this bioreactor, endothelial cells in the cell sheets migrate to vascularize in the collagen gel, and finally connect with the microchannels. Medium readily flows into the cell sheets through the microchannels and the newly developed capillaries, while the cardiac construct shows simultaneous beating. When additional triple-layer cell sheets are repeatedly layered, new multi-layer construct spontaneously integrates and the resulting construct becomes a vascularized thick tissue. These results confirmed our method to fabricate in vitro vascularized tissue surrogates that overcomes engineered-tissue thickness limitations. The surrogates promise new therapies for damaged organs as well as new in vitro tissue models. PMID:23419835
Method and system for sensing and identifying foreign particles in a gaseous environment
NASA Technical Reports Server (NTRS)
Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor)
2008-01-01
An optical method and system sense and identify a foreign particle in a gaseous environment. A light source generates light. An electrically-conductive sheet has an array of holes formed through the sheet. Each hole has a diameter that is less than one quarter of the light's wavelength. The sheet is positioned relative to the light source such that the light is incident on one face of the sheet. An optical detector is positioned adjacent the sheet's opposing face and is spaced apart therefrom such that a gaseous environment is adapted to be disposed there between. Alterations in the light pattern detected by the optical detector indicate the presence of a foreign particle in the holes or on the sheet, while a laser induced fluorescence (LIF) signature associated with the foreign particle indicates the identity of the foreign particle.
Development and Evaluation of Stitched Sandwich Panels
NASA Technical Reports Server (NTRS)
Stanley, Larry E.; Adams, Daniel O.; Reeder, James R. (Technical Monitor)
2001-01-01
This study explored the feasibility and potential benefits provided by the addition of through-the-thickness reinforcement to sandwich structures. Through-the-thickness stitching is proposed to increase the interlaminar strength and damage tolerance of composite sandwich structures. A low-cost, out-of-autoclave processing method was developed to produce composite sandwich panels with carbon fiber face sheets, a closed-cell foam core, and through-the-thickness Kevlar stitching. The sandwich panels were stitched in a dry preform state, vacuum bagged, and infiltrated using Vacuum Assisted Resin Transfer Molding (VARTM) processing. For comparison purposes, unstitched sandwich panels were produced using the same materials and manufacturing methodology. Test panels were produced initially at the University of Utah and later at NASA Langley Research Center. Four types of mechanical tests were performed: flexural testing, flatwise tensile testing, core shear testing, and edgewise compression testing. Drop-weight impact testing followed by specimen sectioning was performed to characterize the damage resistance of stitched sandwich panels. Compression after impact (CAI) testing was performed to evaluate the damage tolerance of the sandwich panels. Results show significant increases in the flexural stiffness and strength, out-of-plane tensile strength, core shear strength, edgewise compression strength, and compression-after-impact strength of stitched sandwich structures.
Topical Silicone Sheet Application in the Treatment of Hypertrophic Scars and Keloids.
Westra, Iris; Pham, Hth; Niessen, Frank B
2016-10-01
Objective: Since the early 1980s, topical silicone sheets have been used in the treatment of hypertrophic scars and keloids.This study aimed to determine the optimal duration and application of these sheets. Design: multi-centered therapeutic study. Setting and participants: A total of 224 patients were included in this study; 205 patients with hypertrophic scars and 19 patients with keloids. Patients received treatment with a topical silicone sheet. Treated scars varied in age, ranging from two weeks to 62 years and treatment time ranged from one month to 16 months. Assessment of the scars was performed by the use of standardized study forms and digital photography. Measurements: Skin therapists objectively assessed the scars on its color, thickness, and elasticity. Patients themselves subjectively assessed their perception of their scar and their experience with the usage of the topical silicone sheet. Results: After applying the topical silicone sheet, all scars, regardless of type of scar and maturity, improved significantly in color, thickness, and elasticity. Conclusion: In this study, treatment with the topical silicone sheet showed significant improvement on both hypertrophic scars and keloids. Best results were reached when the silicone sheet was applied at least four hours per day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hongmei, E-mail: hmchen@just.edu.cn; Zang, Qianhao; Yu, Hui
2015-08-15
Twin roll cast (designated as TRC in short) ZK60 magnesium alloy strip with 3.5 mm thickness was used in this paper. The TRC ZK60 strip was multi-pass rolled at different temperatures, intermediate annealing heat treatment was performed when the thickness of the strip changed from 3.5 mm to 1 mm, and then continued to be rolled until the thickness reached to 0.5 mm. The effect of intermediate annealing during rolling process on microstructure, texture and room temperature mechanical properties of TRC ZK60 strip was studied by using OM, TEM, XRD and electronic universal testing machine. The introduction of intermediate annealingmore » can contribute to recrystallization in the ZK60 sheet which was greatly deformed, and help to reduce the stress concentration generated in the rolling process. Microstructure uniformity and mechanical properties of the ZK60 alloy sheet were also improved; in particular, the room temperature elongation was greatly improved. When the TRC ZK60 strip was rolled at 300 °C and 350 °C, the room temperature elongation of the rolled sheet with 0.5 mm thickness which was intermediate annealed during the rolling process was increased by 95% and 72% than that of no intermediate annealing, respectively. - Highlights: • Intermediate annealing was introduced during hot rolling process of twin roll cast ZK60 alloy. • Intermediate annealing can contribute to recrystallization and reduce the stress concentration in the deformed ZK60 sheet. • Microstructure uniformity and mechanical properties of the ZK60 sheet were improved, in particular, the room temperature elongation. • The elongation of the rolled ZK60 sheet after intermediate annealed was increased by 95% and 72% than that of no intermediate annealing.« less
Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle
NASA Astrophysics Data System (ADS)
Willeit, M.; Ganopolski, A.
2015-09-01
Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.
Development of lightweight graphite/polyimide sandwich panels, phases 3, 4 and 5
NASA Technical Reports Server (NTRS)
Merlette, J. B.
1972-01-01
Work performed in the last three phases of the program included: (1) face sheet processing; (2) honeycomb core manufacture; (3) face sheet-to-core bonding development; and (4) sandwich panel fabrication and testing. Resin cure studies were a major portion of this effort since processing problems traced to the polyimide matrix resin had to be resolved before quality core and face sheets could be fabricated. Honeycomb core fabrication and testing were conducted by Hexcel Corporation. A total of four graphite/polyimide resin composite cores were fabricated, tested, and reported. Two sandwich panels weighing .48 and .58 lb/sq ft, respectively were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.
17 CFR 210.5-02 - Balance sheets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.5-02... Balance sheets. The purpose of this rule is to indicate the various line items and certain additional... face of the balance sheets or related notes filed for the persons to whom this article pertains (see...
17 CFR 210.9-03 - Balance sheets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.9-03... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Bank Holding Companies § 210.9-03 Balance sheets... face of the balance sheets or in the notes thereto. Assets 1. Cash and due from banks. The amounts in...
17 CFR 210.9-03 - Balance sheets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Balance sheets. 210.9-03... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Bank Holding Companies § 210.9-03 Balance sheets... face of the balance sheets or in the notes thereto. Assets 1. Cash and due from banks. The amounts in...
17 CFR 210.7-03 - Balance sheets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Balance sheets. 210.7-03... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Insurance Companies § 210.7-03 Balance sheets. (a... otherwise permitted by the Commission, should appear on the face of the balance sheets and in the notes...
17 CFR 210.7-03 - Balance sheets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Balance sheets. 210.7-03... 1940, AND ENERGY POLICY AND CONSERVATION ACT OF 1975 Insurance Companies § 210.7-03 Balance sheets. (a... otherwise permitted by the Commission, should appear on the face of the balance sheets and in the notes...
17 CFR 210.5-02 - Balance sheets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Balance sheets. 210.5-02... Balance sheets. The purpose of this rule is to indicate the various line items and certain additional... face of the balance sheets or related notes filed for the persons to whom this article pertains (see...
NASA Astrophysics Data System (ADS)
Domrin, V. I.; Malova, H. V.; Popov, V. Yu.
2018-04-01
A numerical model is developed that allows tracing the time evolution of a current sheet from a relatively thick current configuration with isotropic distributions of the pressure and temperature in an extremely thin current sheet, which plays a key role in geomagnetic processes. Such a configuration is observed in the Earth's magnetotail in the stage preceding a large-scale geomagnetic disturbance (substorm). Thin current sheets are reservoirs of the free energy released during geomagnetic disturbances. The time evolution of the components of the pressure tensor caused by changes in the structure of the current sheet is investigated. It is shown that the pressure tensor in the current sheet evolves in two stages. In the first stage, a current sheet with a thickness of eight to ten proton Larmor radii forms. This stage is characterized by the plasma drift toward the current sheet and the Earth and can be described in terms of the Chu-Goldberger-Low approximation. In the second stage, an extremely thin current sheet with an anisotropic plasma pressure tensor forms, due to which the system is maintained in an equilibrium state. Estimates of the characteristic time of the system evolution agree with available experimental data.
Schröter, Tobias J.; Johnson, Shane B.; John, Kerstin; Santi, Peter A.
2011-01-01
We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. PMID:22254177
An experimental study on particle effects in liquid sheets
NASA Astrophysics Data System (ADS)
Sauret, Alban; Troger, Anthony; Jop, Pierre
2017-06-01
Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law for suspensions cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient particle-laden liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film and the atomization process. We highlight that the presence of particles modifies the thickness and stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.
Analysis of hot forming of a sheet metal component made of advanced high strength steel
NASA Astrophysics Data System (ADS)
Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat
2013-05-01
To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.
Boosting protein stability with the computational design of β-sheet surfaces.
Kim, Doo Nam; Jacobs, Timothy M; Kuhlman, Brian
2016-03-01
β-sheets often have one face packed against the core of the protein and the other facing solvent. Mutational studies have indicated that the solvent-facing residues can contribute significantly to protein stability, and that the preferred amino acid at each sequence position is dependent on the precise structure of the protein backbone and the identity of the neighboring amino acids. This suggests that the most advantageous methods for designing β-sheet surfaces will be approaches that take into account the multiple energetic factors at play including side chain rotamer preferences, van der Waals forces, electrostatics, and desolvation effects. Here, we show that the protein design software Rosetta, which models these energetic factors, can be used to dramatically increase protein stability by optimizing interactions on the surfaces of small β-sheet proteins. Two design variants of the β-sandwich protein from tenascin were made with 7 and 14 mutations respectively on its β-sheet surfaces. These changes raised the thermal midpoint for unfolding from 45°C to 64°C and 74°C. Additionally, we tested an empirical approach based on increasing the number of potential salt bridges on the surfaces of the β-sheets. This was not a robust strategy for increasing stability, as three of the four variants tested were unfolded. © 2016 The Protein Society.
Interior view of the Sheet Metal Shop showing the roof ...
Interior view of the Sheet Metal Shop showing the roof trusses and corrugated metal roof covering, view facing northwest - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI
Design of Tools for Press-countersinking or Dimpling 0.040-inch-thick-24S-T Sheet
NASA Technical Reports Server (NTRS)
Templin, R L; Fogwell, J W
1942-01-01
A set of dimpling tools was designed for 0.040-inch 24S-T sheet and flush-type rivets 1/8 inch in diameter with 100 degree countersunk heads. The dimples produced under different conditions of pressure, sheet thickness, and drill diameter are presented as cross-sectional photographs magnified 20 times. The most satisfactory values for the dimpling tools were found to be: maximum punch diameter, 0.231 inch; maximum die diameter, 0.223 inch; maximum mandrel diameter, 0.128 inch; dimple angle, 100 degree; punch springback angle, 1 1/2 degree; and die springback angle, 2 degree.
Translation by anisotropic peeling or fracturing in elastic media
NASA Astrophysics Data System (ADS)
Zheng, Zhong; Lister, John; Neufeld, Jerome
2017-11-01
The influence of rock anisotropy on the direction of hydraulic fracturing is an important open question. Two canonical systems have been proposed to investigate the fundamental aspects of such fluid-structure interaction problems: (i) Fluid injection and fracturing into an infinite elastic matrix (e.g., solid gelatin) and (ii) Fluid invasion and peeling beneath a deforming elastic sheet (e.g., bending plate). We investigate the second system and impose a non-uniform prewetting film thickness beneath the elastic sheet. We notice that while the bulk of the elastic sheet retains the static blister shape, a non-uniform prewetting film thickness can cause a horizontal translation of the blister. In particular, for a step jump in prewetting film thickness, asymptotic analysis indicates that, under constant fluid injection, the horizontal translation follows a t 7 / 17 time dependence in cartesian coordinates, and the prefactor of power-law translation depends on the ratio of the distinct prewetting film thicknesses on either side. We also provide numerical and experimental evidence demonstrating anisotropic blister evolution. This can be thought of as a model system for fluid-driven fracturing where the non-uniform prewetting film thickness mimics heterogeneity in material toughness.
Iida, Shoko; Takushima, Akihiko; Ohura, Norihiko; Sato, Suguru; Kurita, Masakazu; Harii, Kiyonori
2013-08-01
Although bleaching treatment using all-trans retinoic acid (RA) and hydroquinone (HQ) improves epidermal melanosis, the application of two medications and the irritant dermatitis induced by RA inconvenience patients. To overcome these problems, we developed a silicone sheet containing RA and HQ. To compare the efficacy of a silicone sheet containing RA and HQ with that of conventional bleaching treatment. Silicone sheets containing 1% RA and 5% HQ were applied at night during the bleaching phase of 4 weeks, followed by application of sheets containing 5% HQ during the healing phase of 4 weeks. Hemifacial epidermal melanosis, for which the sheets were applied, was compared with a contralateral face which was treated conventionally using RA and HQ. Twenty-four Japanese women who were enrolled in this study and followed up for more than 6 months were analyzed. RA/HQ sheets improved epidermal melanosis, as did the conventional bleaching method, but irritant dermatitis occurred less in patients treated using silicone sheets. RA/HQ sheets, which are easily applied to face skin, can improve epidermal melanosis to the same extent as conventional bleaching. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets
NASA Astrophysics Data System (ADS)
Wittlinger, Gérard; Farra, Véronique
2015-03-01
We analyze seismic data from broadband stations located on the Antarctic and Greenland ice sheets to determine polar ice seismic velocities. P-to-S converted waves at the ice/rock interface and inside the ice sheets and their multiples (the P-receiver functions) are used to estimate in-situ P-wave velocity (Vp) and P-to-S velocity ratio (Vp/Vs) of polar ice. We find that the polar ice sheets have a two-layer structure; an upper layer of variable thickness (about 2/3 of the total thickness) with seismic velocities close to the standard ice values, and a lower layer of approximately constant thickness with standard Vp but ∼25% smaller Vs. The lower layer ceiling corresponds approximately to the -30 °C isotherm. Synthetic modeling of P-receiver functions shows that strong seismic anisotropy and low vertical S velocity are needed in the lower layer. The seismic anisotropy results from the preferred orientation of ice crystal c-axes toward the vertical. The low vertical S velocity may be due to the presence of unfrozen liquids resulting from premelting at grain joints and/or melting of chemical solutions buried in the ice. The strongly preferred ice crystal orientation fabric and the unfrozen fluids may facilitate polar ice sheet basal flow.
NASA Astrophysics Data System (ADS)
Mastrogiacomo, G.; Moretti, M.; Owen, G.; Spalluto, L.
2012-08-01
Soft-sediment deformation structures crop out in the Upper Cretaceous carbonate succession in Porto Selvaggio cove in the western Salento peninsula, Apulian foreland, southern Italy. The deformed interval is about 13 m thick and occurs between shallow-water limestones and dolostones formed in peritidal and shallow subtidal environments. It comprises well-bedded grey mudstones interlayered with dark grey laminated microbioclastic wackestones characterized by couplets of closely spaced dark and bright laminae marked by the parallel orientation of calcareous microbioclasts and thin-shelled bivalves. The low biological diversity, scarcity of burrowing biota, and presence of a well preserved fish fauna provide evidence of anoxic conditions occurring in morphological depressions within the platform, and a stagnant, stratified water body affected by weak bottom currents, indicating the sudden development of a localised and short-lived intraplatform basin. Two soft-sediment deformation horizons (slump sheets) separated by undeformed limestones with similar facies occur in this part of the succession. The lower, thicker slump sheet (1.0-1.3 m thick) contains asymmetric and box folds. Well-developed décollement surfaces (locally containing thick brecciated zones) cut the folds, forming small-scale thrust-sheets and indicating mixed plastic to brittle behaviour. The upper, thinner slump sheet (0.25-0.35 m thick) contains only asymmetric folds, indicating plastic behaviour only. The differences in deformation style are attributed to differences in facies. Measurements of fold-axis orientations in the slump sheets show that they moved in similar directions, recording the development of a local, gently dipping palaeoslope. Autogenic (internal) trigger mechanisms are ruled out by a detailed consideration of facies. The slump sheets were triggered by allogenic, tectonic effects, either the weakening of sediment by seismic activity or the tectonically induced steepening of slopes, or a combination of both. Tectonically induced steepening is consistent with localised and sudden vertical facies changes related to the creation of an intraplatform basin. The occurrence of slump sheets in carbonate platform successions is unusual since carbonate platforms are normally associated with shelves or low-angle ramps.
Hole expansion test of third generation steels
NASA Astrophysics Data System (ADS)
Agirre, Julen; Mendiguren, Joseba; Galdos, Lander; de Argandoña, Eneko Sáenz
2017-10-01
The trend towards the implementation of new materials in the chassis of the automobiles is considerably making more complex the manufacturing of the components that built it up. In this scenario materials with higher strengths and lower formabilities are daily faced by tool makers and component producers what reduces the process windows and makes the forming processes to be in the limits of the materials. One of the concerns that tool makers must face during the definition of the tools is the expansion ratios that the holes in the sheet may reach before producing a breakage due to the stretching of the material (also known as edge cracks). For the characterization of such limits, a standard test, the hole expansion test, can be applied so that the limits of the material are known. At the present study, hole expansion tests of a third generation steel, Fortiform1050 with a thickness of 1.2 millimeters have been carried out and compared them to a mild steel, DX54D with a thickness of 0.6 millimeters. A comparison for each material in terms of technology used to punch the hole, mechanical punching vs laser cutting has also been conducted. In addition, the measurement technique (online measurement vs offline measurement) followed in the Hole Expansion Ratio (HER) identification has also been analyzed. Finally, differences between both materials and techniques are presented.
Fluid-Structure Interaction of Channel Driven Cavity Flow
2016-06-01
3 32 ") thick neoprene rubber sheet. The sheet was bonded to the acrylic using 3M Scotch- Weld Neoprene High Performance Rubber and Gasket Adhesive...TABLES Table 1. Natural Frequencies of the 0.5 mm (0.02”) Thick Aluminum Plate ..........19 Table 2. Mean Normalized Strains...1300. A bead of 100% silicone was applied on the bond to prevent water from infiltrating the adhesive. The 3M Scotch- Weld 1300 adhesive kept the
Scaling results for the liquid sheet radiator
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Calfo, Frederick D.
1989-01-01
Surface tension forces at the edges of a thin liquid (approx 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = 23.5 cm, length = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is low temperature (300-400 K) candidate for a liquid sheet radiator (LSR), is greater than 0.8 for sheet thicknesses greater than 100 micrometers.
NASA Astrophysics Data System (ADS)
Kim, Sun-Tae; Park, Yong-Gwon; Kim, Sung-Soo
2008-04-01
Magnetic and dielectric loss are systematically controlled by using iron flake powders with various initial sizes (7 μm and 70 μm) as the absorbent fillers in the rubber matrix, and their noise absorbing characteristics have been investigated as a function of frequency and sheet thickness. Flake iron particles were prepared by the mechanical forging of spherical powders using an attrition mill. Composite sheets (thickness=0.2 mm-1.0 mm) were prepared with a mixture of iron particles and silicone rubber. Attaching the composite sheets to a microstrip line of 50 Ω, a network analyzer was used to measure the reflection and transmission parameters (S11 and S21, respectively). A nearly constant value of S11 (about -10 dB) was observed, irrespective of particle size. However, S21 is strongly dependent upon initial particle size. For the composites of 7 μm particles (with high magnetic loss), S21 is reduced below -20 dB in the frequency range of 1 GHz to 10 GHz, and the corresponding bandwidth of noise absorption is not so greatly diminished by reducing the sheet thickness as low as 0.2 mm. For the composites of 70 μm particles (with high dielectric loss), however, the bandwidth is greatly reduced with a decrease in sheet thickness. It is concluded that the attenuation of conduction noise through the microstrip line is primarily controlled by the magnetic loss of the iron particles due to strong magnetic field around the microstrip line.
Observations on the relationship of structure to the mechanical properties of thin TD-NiCr sheet
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.
1976-01-01
A study of the relationship between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties are dependent on grain aspect ratio and sheet thickness. In general, the strength properties increase with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures (not less than 1144 K). Significant creep damage as determined by subsequent tensile testing at room temperature occurs after very small amounts (less than 0.1%) of prior creep deformation over the temperature range 1144-1477 K. A threshold stress for creep appears to exist. Creep exposure below the threshold stress at T not less than 1366 K results in almost full retention of room temperature tensile properties.
Dynamic of particle-laden liquid sheet
NASA Astrophysics Data System (ADS)
Sauret, Alban; Jop, Pierre; Troger, Anthony
2016-11-01
Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin liquid films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient free liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film as a function of time and the atomization process. We highlight that the presence of particles modifies the thickness and the stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.
Antarctic ice-sheet loss driven by basal melting of ice shelves.
Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L
2012-04-25
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.
NASA Technical Reports Server (NTRS)
Davidson, M. E.
1985-01-01
Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.
Two-dimensional potential double layers and discrete auroras
NASA Technical Reports Server (NTRS)
Kan, J. R.; Lee, L. C.; Akasofu, S.-I.
1979-01-01
This paper is concerned with the formation of the acceleration region for electrons which produce the visible auroral arc and with the formation of the inverted V precipitation region. The former is embedded in the latter, and both are associated with field-aligned current sheets carried by plasma sheet electrons. It is shown that an electron current sheet driven from the plasma sheet into the ionosphere leads to the formation of a two-dimensional potential double layer. For a current sheet of a thickness less than the proton gyrodiameter solutions are obtained in which the field-aligned potential drop is distributed over a length much greater than the Debye length. For a current sheet of a thickness much greater than the proton gyrodiameter solutions are obtained in which the potential drop is confined to a distance on the order of the Debye length. The electric field in the two-dimensional double-layer model is the zeroth-order field inherent to the current sheet configuration, in contrast to those models in which the electric field is attributed to the first-order field due to current instabilities or turbulences. The maximum potential in the two-dimensional double-layer models is on the order of the thermal energy of plasma sheet protons, which ranges from 1 to 10 keV.
Clinical effectiveness and safety of collagen sheet for dorsal augmentation in rhinoplasty.
Chang, Chul; Kong, Won Kyoung
2014-09-01
In Asian rhinoplasty, dorsal augmentation often requires the use of alloplastic materials because sufficient amounts of autograft are difficult to harvest. Given considerations of aesthetics, costs, and the characteristics of the oriental nose, silicone or Gore-Tex is commonly used when augmenting the nasal dorsum to a great extent. Such materials can often result in postoperative complications and foreign-body sensations. Moreover, extrusion or visualization of the implant may occur because of thinning of the skin over time. Permacol collagen implants are specifically indicated for soft tissue reinforcement and repair of the head and face in plastic and reconstructive surgery. The handling versatility of the flexible collagen sheet allows it to be layered over itself until the requisite thickness and desired shape are obtained. A total of 50 patients who underwent nasal augmentation rhinoplasty between December 2007 and May 2011 were observed for at least 24 months. Depending on the nasal dorsum, we layered the collagen sheet up to a maximum of 4 times and we have not seen any case of severe resorption or overcorrection in the nasal configuration. Collagen implant material is safe for use in select rhinoplasty patients because of its low complication rate, as shown in our series. It could therefore be considered as a useful alternative when reconstruction is problematic because of the low quality or lack of available autologous grafts.
Matsuda, Hidetoshi; Kitamura, Nobuto; Kurokawa, Takayuki; Arakaki, Kazunobu; Gong, Jian Ping; Kanaya, Fuminori; Yasuda, Kazunori
2013-01-31
A double-network (DN) gel, which is composed of poly(2-acrylamido-2-methylpropanesulfonic acid) and poly(N,N'-dimethyl acrylamide), can induce hyaline cartilage regeneration in vivo in a large osteochondral defect. The purpose of this study was to clarify the influence of the thickness of the implanted DN gel on the induction ability of hyaline cartilage regeneration. Thirty-eight mature rabbits were used in this study. We created an osteochondral defect having a diameter of 4.3-mm in the patellofemoral joint. The knees were randomly divided into 4 groups (Group I: 0.5-mm thick gel, Group II: 1.0-mm thick gel, Group III: 5.0-mm thick gel, and Group IV: untreated control). Animals in each group were further divided into 3 sub-groups depending on the gel implant position (2.0-, 3.0-, or 4.0-mm depth from the articular surface) in the defect. The regenerated tissues were evaluated with the Wayne's gross and histological grading scales and real time PCR analysis of the cartilage marker genes at 4 weeks. According to the total Wayne's score, when the depth of the final vacant space was set at 2.0 mm, the scores in Groups I, II, and III were significantly greater than that Group IV (p<0.05), although there were no significant differences between Groups I and IV at a 3.0-mm deep vacant space. The expression levels of type-2 collagen in Groups II and III were significantly higher (p<0.05) than that in Group IV. The 1.0-mm thick DN gel sheet had the same ability to induce hyaline cartilage regeneration as the 5.0-mm thick DN gel plug. However, the induction ability of the 0.5-mm thick sheet was significantly lower when compared with the 1.0-mm thick gel sheet. The 1.0-mm DN gel sheet is a promising device to establish a cell-free cartilage regeneration strategy that minimizes bone loss from the gel implantation.
Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A
2012-01-01
We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America
Flammability Characteristics of Fiber Reinforced Composite Materials
1990-08-01
Thick Vertical Sheet of Kevlar/Phenolio-PVB ( Owens - Corning $pall Liner), MTL A4) 3 12 Chemical Heat Release Rate During Fire Propagation for a 40 0.61 m...Long, 0.10 m Wide and 3 mm Thick Vertical Sheet of S-2/Phenolic ( Owens - Corning ), MTL #5) 13 Chemical Heac Release Rate During Fire Propagation for 41...Materials T eohnology Laboratory (AKTL) by Owens - Corning Corporation; 3. NTL #3: S-2 fiberglabs/polyestel’, flame retardant, prepreg, formulated for
Method of fabricating a uranium-bearing foil
Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN
2012-04-24
Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.
Improved damage tolerance of titanium by adhesive lamination
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1982-01-01
Basic damage tolerance properties of Ti-6A1-4V titanium plate can be improved by laminating thin sheets of titanium with adhesives. Compact tension and center cracked tension specimens made from thick plate, thin sheet, and laminated plate (six plies of thin sheet) were tested. The fracture toughness of the laminated plate was 39 percent higher than the monolithic plate. The laminated plate's through the thickness crack growth rate was about 20 percent less than that of the monolithic plate. The damage tolerance life of the surface cracked laminate was 6 to over 15 times the life of a monolithic specimen. A simple method of predicting crack growth in a crack ply of a laminate is presented.
Fire protection covering for small diameter missiles
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Sawko, P. M. (Inventor)
1979-01-01
Flexible intumescent protection sheeting of unusually uniform thickness were prepared from epoxy-polysulfide compositions, containing microfibers and the ammonium salt of 1,4-nitroaniline-2-sulfonic acid, as disclosed in U.S. Pat. No. 3,663,464, except that an ammonium salt particle size in the order of 5 to 8 microns and a fiber size of about 1/128th inch in length and 3 to 5 microns in diameter were found critical to obtain the required density of 1.46 to 1.50 g/cc. The insulation sheeting was prepared by a continuous process involving vacuum mixing, calendering, and curing under very strict conditions which depend to some extent upon the thickness of the sheet produced.
NASA Technical Reports Server (NTRS)
Holden, S. C.
1976-01-01
Multiblade slurry sawing is used to slice 10 cm diameter silicon ingots into wafers 0.024 cm thick using 0.050 cm of silicon per slice (0.026 cm kerf loss). Total slicing time is less than twenty hours, and 143 slices are produced simultaneously. Productivity (slice area per hour per blade) is shown as a function or blade load and thickness, and abrasive size. Finer abrasive slurries cause a reduction in slice productivity, and thin blades cause a reduction of wafer accuracy. Sawing induced surface damage is found to extend 18 microns into the wafer.
NASA Technical Reports Server (NTRS)
Phillips, Edward P.
1997-01-01
An experimental study was conducted to determine the effects of combined bending and membrane cyclic stresses on the fatigue crack growth behavior of aluminum sheet material. The materials used in the tests were 0.040-in.- thick 2024-T3 alclad and 0.090-in.-thick 2024-T3 bare sheet. In the tests, the membrane stresses were applied as a constant amplitude loading at a stress ratio (minimum to maximum stress) of 0.02, and the bending stresses were applied as a constant amplitude deflection in phase with the membrane stresses. Tests were conducted at ratios of bending to membrane stresses (B/M) of 0, 0.75, and 1.50. The general trends of the results were for larger effects of bending for the higher B/M ratios, the lower membrane stresses, and the thicker material. The addition of cyclic bending stresses to a test with cyclic membrane stresses had only a small effect on the growth rates of through-thickness cracks in the thin material, but had a significant effect on the crack growth rates of through-thickness cracks in the thick material. Adding bending stresses to a test had the most effect on the initiation and early growth of cracks and had less effect on the growth of long through-thickness cracks.
van der Pauw's Theorem on Sheet Resistance
ERIC Educational Resources Information Center
Bolt, Michael
2017-01-01
The sheet resistance of a conducting material of uniform thickness is analogous to the resistivity of a solid material and provides a measure of electrical resistance. In 1958, L. J. van der Pauw found an effective method for computing sheet resistance that requires taking two electrical measurements from four points on the edge of a simply…
Large-scale experimental observations of sheet flow on a sandbar under skewed-asymmetric waves
NASA Astrophysics Data System (ADS)
Mieras, Ryan S.; Puleo, Jack A.; Anderson, Dylan; Cox, Daniel T.; Hsu, Tian-Jian
2017-06-01
A novel large wave flume experiment was conducted on a fixed, barred beach with a sediment pit on the sandbar, allowing for the isolation of small-scale bed response to large-scale forcing. Concurrent measurements of instantaneous sheet layer sediment concentration profiles and near-bed velocity profiles were obtained on a sandbar for the first time. Two sediment distributions were used with median grain diameters, d50, of 0.17 and 0.27 mm. Sheet flow occurred primarily under wave crests, where sheet thickness increased with increasing wave height. A proportionality constant, Λ, was used to relate maximum Shields parameter to maximum sheet thickness (normalized by d50), with bed shear stress computed using the quadratic drag law. An enhanced sheet layer thickness was apparent for the smaller sediment experiments (Λ = 18.7), when directly compared to closed-conduit oscillatory flow tunnel data (Λ = 10.6). However, Λ varied significantly (5 < Λ < 31) depending on the procedure used to estimate grain roughness, ks, and wave friction factor, fw. Three models for ks were compared (keeping the model for fw fixed): constant ks = 2.5d50, and two expressions dependent on flow intensity, derived from steady and oscillatory sheet flow experiments. Values of ks/d50 varied by two orders of magnitude and exhibited an inverse relationship with Λ, where Λ ˜ 30 for ks/d50 of O(1) while Λ ˜ 5 for ks/d50 of O(100). Two expressions for fw were also tested (with the steady flow-based model for ks), yielding a difference of 69% (Λ ˜ 13 versus Λ ˜ 22).
Large-Scale Survey of the Structure of the Dayside Magnetopause by MMS
NASA Astrophysics Data System (ADS)
Paschmann, G.; Haaland, S. E.; Phan, T. D.; Sonnerup, B. U. Ö.; Burch, J. L.; Torbert, R. B.; Gershman, D. J.; Dorelli, J. C.; Giles, B. L.; Pollock, C.; Saito, Y.; Lavraud, B.; Russell, C. T.; Strangeway, R. J.; Baumjohann, W.; Fuselier, S. A.
2018-03-01
This paper describes the generation and initial utilization of a database containing 80 vector and scalar quantities, for a total of 8,670 magnetopause and magnetosheath current sheet crossings by MMS1, using plasma and magnetic field data from the Fast Plasma Investigation, Fluxgate Magnetometer, and Hot Plasma Composition Analyzer instruments, augmented by solar wind and interplanetary magnetic field data from CDAWeb. Based on a determination of the current sheet width, measured and calculated vector and scalar quantities are stored for the two sides of the current sheet and for selected times within the current sheet. The only manual operations were the classification of the current sheets according to the type of boundary, the character of the magnetic field transition, and the quality of the current sheet fit. To characterize the database, histograms of selected key quantities are presented. We then give the statistics for the duration, motion, and thicknesses of the magnetopause current sheet, using single-spacecraft techniques for the determination of the normal velocities, obtaining median results of 12.9 s, 38.5 km/s, and 705.4 km, respectively. When scaled to the ion inertial length, the median thickness became 12.6; there were no thicknesses less than one. Next, we apply the Walén relation to find crossings that are rotational discontinuities and thus may indicate ongoing magnetic reconnection. For crossings where the velocities in the outflow region exceed the velocity on the magnetosheath side by at least 250 km/s, 47% meet our rotational discontinuity criteria. If we require the outflow to exceed 250 km/s along the L direction, then the percentage rises to 68%.
2007-02-01
fabrication of dense thin sheets of gamma titanium aluminide . Polarized light microscopy revealed a fine-grained microstructure but a few isolated...HIPed (near-gamma) microstructure occurred. 15. SUBJECT TERMS gamma titanium aluminide , thin sheet, tape casting, hot isostatic pressing 16...sheets (250–300 μm thick) of gamma titanium aluminide (γ-TiAl). Polarized light microscopy revealed a fine-grained microstructure (average grain
Unveiling the Antarctic subglacial landscape.
NASA Astrophysics Data System (ADS)
Warner, Roland; Roberts, Jason
2010-05-01
Better knowledge of the subglacial landscape of Antarctica is vital to reducing uncertainties regarding prediction of the evolution of the ice sheet. These uncertainties are associated with bedrock geometry for ice sheet dynamics, including possible marine ice sheet instabilities and subglacial hydrological pathways (e.g. Wright et al., 2008). Major collaborative aerogeophysics surveys motivated by the International Polar Year (e.g. ICECAP and AGAP), and continuing large scale radar echo sounding campaigns (ICECAP and NASA Ice Bridge) are significantly improving the coverage. However, the vast size of Antarctica and logistic difficulties mean that data gaps persist, and ice thickness data remains spatially inhomogeneous. The physics governing large scale ice sheet flow enables ice thickness, and hence bedrock topography, to be inferred from knowledge of ice sheet surface topography and considerations of ice sheet mass balance, even in areas with sparse ice thickness measurements (Warner and Budd, 2000). We have developed a robust physically motivated interpolation scheme, based on these methods, and used it to generate a comprehensive map of Antarctic bedrock topography, using along-track ice thickness data assembled for the BEDMAP project (Lythe et al., 2001). This approach reduces ice thickness biases, compared to traditional inverse distance interpolation schemes which ignore the information available from considerations of ice sheet flow. In addition, the use of improved balance fluxes, calculated using a Lagrangian scheme, eliminates the grid orientation biases in ice fluxes associated with finite difference methods (Budd and Warner, 1996, Le Brocq et al., 2006). The present map was generated using a recent surface DEM (Bamber et al., 2009, Griggs and Bamber, 2009) and accumulation distribution (van de Berg et al., 2006). Comparing our results with recent high resolution regional surveys gives confidence that all major subglacial topographic features are revealed by this approach, and we advocate its consideration in future ice thickness data syntheses. REFERENCES Budd, W.F., and R.C. Warner, 1996. A computer scheme for rapid calculations of balance-flux distributions. Annals of Glaciology 23, 21-27. Bamber, J.L., J.L. Gomez Dans and J.A. Griggs, 2009. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data. Part I: Data and methods. The Cryosphere 3 (2), 101-111. Griggs, J.A., and J.L. Bamber, 2009. A new digital elevation model of Antarctica derived from combined radar and laser altimetry data. Part II: Validation and error estimates, The Cryosphere, 3(2), 113-123. Le Brocq, A.M., A.J. Payne and M.J. Siegert, 2006. West Antarctic balance calculations: Impact of flux-routing algorithm, smoothing algorithm and topography. Computers and Geosciences 23(10): 1780-1795. Lythe, M. B., D.G. Vaughan, and the BEDMAP Consortium 2001, BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. of Geophys. Res., 106(B6),11,335-11,351. van de Berg, W.J., M.R. van den Broeke, C.H. Reijmer, and E. van Meijgaard, 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model, J. Geophys. Res., 111, D11104,doi:10.1029/2005JD006495. Warner, R.C., and W.F. Budd, 2000. Derivation of ice thickness and bedrock topography in data-gap regions over Antarctica, Annals of Glaciology, 31, 191-197. Wright, A.P., M.J. Siegert, A.M. Le Brocq, and D.B. Gore, 2008. High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes, Geophys. Res. Lett., 35, L17504, doi:10.1029/2008GL034937.
NASA Technical Reports Server (NTRS)
McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.
2011-01-01
A compression after impact study has been conducted to determine the residual strength of three sandwich panel constructions with two types of thin glass fiber reinforced polymer face-sheets and two hexagonal honeycomb Nomex core densities. Impact testing is conducted to first determine the characteristics of damage resulting from various impact energy levels. Two modes of failure are found during compression after impact tests with the density of the core precipitating the failure mode present for a given specimen. A finite element analysis is presented for prediction of the residual compressive strength of the impacted specimens. The analysis includes progressive damage modeling in the face-sheets. Preliminary analysis results were similar to the experimental results; however, a higher fidelity core material model is expected to improve the correlation.
NASA Astrophysics Data System (ADS)
Cassanelli, James P.; Head, James W.
2016-06-01
Recent modeling studies of the early Mars climate predict a predominantly cold climate, characterized by the formation of regional ice sheets across the highland areas of Mars. Formation of the predicted "icy highlands" ice sheets is coincident with a peak in the volcanic flux of Mars involving the emplacement of the Late Noachian - Early Hesperian ridged plains unit. We explore the relationship between the predicted early Mars "icy highlands" ice sheets, and the extensive early flood volcanism to gain insight into the surface conditions prevalent during the Late Noachian to Early Hesperian transition period. Using Hesperia Planum as a type area, we develop an ice sheet lava heating and loading model. We quantitatively assess the thermal and melting processes involved in the lava heating and loading process following the chronological sequence of lava emplacement. We test a broad range of parameters to thoroughly constrain the lava heating and loading process and outline predictions for the formation of resulting geological features. We apply the theoretical model to a study area within the Hesperia Planum region and assess the observed geology against predictions derived from the ice sheet lava heating and loading model. Due to the highly cratered nature of the Noachian highlands terrain onto which the volcanic plains were emplaced, we predict highly asymmetrical lava loading conditions. Crater interiors are predicted to accumulate greater thicknesses of lava over more rapid timescales, while in the intercrater plains, lava accumulation occurs over longer timescales and does not reach great thicknesses. We find that top-down melting due to conductive heat transfer from supraglacial lava flows is generally limited when the emplaced lava flows are less than ∼10 m thick, but is very significant at lava flow thicknesses of ∼100 m or greater. We find that bottom-up cryosphere and ice sheet melting is most likely to occur within crater interiors where lavas accumulate to a sufficient thickness to raise the ice-melting isotherm to the base of the superposed lavas. In these locations, if lava accumulation occurs rapidly, bottom-up melting of the ice sheet can continue, or begin, after lava accumulation has completed in a process we term "deferred melting". Subsurface mass loss through melting of the buried ice sheets is predicted to cause substantial subsidence in the superposed lavas, leading to the formation of associated collapse features including fracture systems, depressions, surface faulting and folding, wrinkle-ridge formation, and chaos terrain. In addition, if meltwater generated from the lava heating and loading process becomes trapped at the lava flow margins due to the presence of impermeable confining units, large highly pressurized episodic flooding events could occur. Examination of the study area reveals geological features which are generally consistent with those predicted to form as a result of the ice sheet lava heating and loading process, suggesting the presence of surface snow and ice during the Late Noachian to Early Hesperian period.
Design Optimization and Analysis of a Composite Honeycomb Intertank
NASA Technical Reports Server (NTRS)
Finckenor, Jeff; Spurrier, Mile
1999-01-01
Intertanks, the structure between tanks of launch vehicles, are prime candidates for weight reduction of rockets. This paper discusses the optimization and detailed follow up analysis and testing of a 96 in. diameter, 77 in. tall intertank. The structure has composite face sheets with an aluminum honeycomb core. The ends taper to a thick built up laminate for a double lap bolted splice joint interface. It is made in 8 full length panels joined with bonded double lap joints. The nominal load is 4000 lb/in. Optimization is by Genetic Algorithm and minimizes weight by varying core thickness, number and orientation of acreage and buildup plies, and the size, number and spacing of bolts. A variety of design cases were run with populations up to 2000 and chromosomes as long as 150 bits. Constraints were buckling; face stresses (normal, shear, wrinkling and dimpling); bolt stress; and bolt hole stresses (bearing, net tension, wedge splitting, shear out and tension/shear out). Analysis is by a combination of elasticity solutions and empirical data. After optimization, a series of coupon tests were performed in conjunction with a rigorous analysis involving a variety of finite element models. This analysis and testing resulted in several small changes to the optimized design. The equation used for hole bearing strength was found to be inadequate, resulting in thicker ends. The core thickness increased 0.05", and potting compound was added in the taper to strengthen the facesheet bond. The intertank has undergone a 250,000 lb limit load test and been mated with a composite liquid hydrogen tank. The tank/intertank unit is being installed in a test stand where it will see 200 thermal/load cycles. Afterwards the intertank will be demated and loaded in compression to failure.
Scaling results for the Liquid Sheet Radiator (LSR)
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Calfo, Frederick D.
1989-01-01
Surface tension forces at the edges of a thin liquid (approx. 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = W = 23.5 cm, length = L approx. = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is a low temperature (300 to 400K) candidate for a liquid sheet radiator (LSR), is greater than .8 for sheet thicknesses greater than 100 micrometers.
Numerical analysis of tailored sheets to improve the quality of components made by SPIF
NASA Astrophysics Data System (ADS)
Gagliardi, Francesco; Ambrogio, Giuseppina; Cozza, Anna; Pulice, Diego; Filice, Luigino
2018-05-01
In this paper, the authors pointed out a study on the profitable combination of forming techniques. More in detail, the attention has been put on the combination of the single point incremental forming (SPIF) and, generally, speaking, of an additional process that can lead to a material thickening on the initial blank considering the local thinning which the sheets undergo at. Focalizing the attention of the research on the excessive thinning of parts made by SPIF, a hybrid approach can be thought as a viable solution to reduce the not homogeneous thickness distribution of the sheet. In fact, the basic idea is to work on a blank previously modified by a deformation step performed, for instance, by forming, additive or subtractive processes. To evaluate the effectiveness of this hybrid solution, a FE numerical model has been defined to analyze the thickness variation on tailored sheets incrementally formed optimizing the material distribution according to the shape to be manufactured. Simulations based on the explicit formulation have been set up for the model implementation. The mechanical properties of the sheet material have been taken in literature and a frustum of cone as benchmark profile has been considered for the performed analysis. The outcomes of numerical model have been evaluated in terms of both maximum thinning and final thickness distribution. The feasibility of the proposed approach will be deeply detailed in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, C; Kim, J; Park, S
Purpose: Photon beams with energy higher than 10 MV interact with metal material in the primary barriers, where lead or steel have been widely used, neutrons can be generated. Monte Carlo simulations were performed to simulate the production of photoneutrons and the neutron shielding effect. Methods: For two photon beam energies, 15 MV and 18 MV, we simulated to strike metal sheets (steel and lead), and the ambient dose equivalents were calculated at the isocenter (in the patient plane) while delivering 1 Gy to the patient. For these cases, the thickness of the neutron shielding materials (Borated polyethylene (BPE) andmore » concrete) were simulated to reduce the patient exposure by neutron doses. Results: When 18 MV photons interact with the metal sheets in the primary barrier, the evaluated neutron doses at the isocenter inside the treatment vault were 48.7 µSv and 7.3 µSv for lead and steel, respectively. In case of 15 MV photons, the calculated neutron doses were 18.6 µSv and 0.6 µSv for lead and steel, respectively. The neutron dose delivered to the patient can be reduced to negligible levels by including a 10 cm thick sheet of BPE or 22 cm thick sheet of concrete. Conclusion: When bunker shielding is designed with a primary barrier including a metal sheet inside the wall for a high energy machine, proper neutron shielding should be constructed to avoid undesirable extra dose.« less
Detection of defects in formed sheet metal using medial axis transformation
NASA Astrophysics Data System (ADS)
Murmu, Naresh C.; Velgan, Roman
2003-05-01
In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.
NASA Astrophysics Data System (ADS)
Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.
2018-02-01
To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.
Testing of Shelter Design and Industrial Hardening Concepts at the MILL RACE Event.
1982-01-01
built. The upgrading consisted of the application of 2-in. thick sheets of expanded polystyrene to the exterior of each of the test walls to be upgraded...was covered with 1-in. thick sheets of expanded polystyrene prior to backfilling (Figure 6-4), and the interior was shored, floor to ceiling, with two...deformations in the vault, despite the fact that no structural upgrading options (shores, or roof cover of expanded polystyrene ) were installed. Thus
NASA Astrophysics Data System (ADS)
Qin, Huaili; Yang, Guang; Kuang, Shan; Wang, Qiang; Liu, Jingjing; Zhang, Xiaomin; Li, Cancan; Han, Zhiwei; Li, Yuanjing
2018-02-01
The present project will adopt the principle and technology of X-ray imaging to quickly measure the mass thickness (wherein the mass thickness of the item =density of the item × thickness of the item) of the irradiated items and thus to determine whether the packaging size and inside location of the item will meet the requirements for treating thickness upon electron beam irradiation processing. The development of algorithm of X-ray mass thickness detector as well as the prediction of dose distribution have been completed. The development of the algorithm was based on the X-ray attenuation. 4 standard modules, Al sheet, Al ladders, PMMA sheet and PMMA ladders, were selected for the algorithm development. The algorithm was optimized until the error between tested mass thickness and standard mass thickness was less than 5%. Dose distribution of all energy (1-10 MeV) for each mass thickness was obtained using Monte-carlo method and used for the analysis of dose distribution, which provides the information of whether the item will be penetrated or not, as well as the Max. dose, Min. dose and DUR of the whole item.
Hydraulic Model Study of Port Huron Ice Control Structure,
1982-11-01
thickness for Lake Huron, Alpena , M ichigan, data...measurements was Alpena , Michigan. The following table summarizes these monthly values in terms of degree days. The solid ice sheet thickness for a...ice thickness for Lake Huron, Alpena , Michigan, data. Freezing degree days Cumulative Ice thickness CDays FDys , ’C Day) E CF Day) () (ft) Jan 277
Selectable light-sheet uniformity using tuned axial scanning
Duocastella, Martí; Arnold, Craig B.; Puchalla, Jason
2016-01-01
Light-sheet fluorescence microscopy (LSFM) is an optical sectioning technique capable of rapid three-dimensional (3D) imaging of a wide range of specimens with reduced phototoxicity and superior background rejection. However, traditional light-sheet generation approaches based on elliptical or circular Gaussian beams suffer an inherent trade-off between light-sheet thickness and area over which this thickness is preserved. Recently, an increase in light-sheet uniformity was demonstrated using rapid biaxial Gaussian beam scanning along the lateral and beam propagation directions. Here we apply a similar scanning concept to an elliptical beam generated by a cylindrical lens. In this case, only z-scanning of the elliptical beam is required and hence experimental implementation of the setup can be simplified. We introduce a simple dimensionless uniformity statistic to better characterize scanned light-sheets and experimentally demonstrate custom tailored uniformities up to a factor of 5 higher than those of un-scanned elliptical beams. This technique offers a straightforward way to generate and characterize a custom illumination profile that provides enhanced utilization of the detector dynamic range and field of view, opening the door to faster and more efficient 2D and 3D imaging. PMID:28132409
Evaluation of Skin Friction Drag for Liner Applications in Aircraft
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.
2016-01-01
A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.
A Novel and Functional Single-Layer Sheet of ZnSe
Zhou, Jia; Sumpter, Bobby G.; Kent, Paul R. C.; ...
2014-12-23
In this Communication, we report a novel singlelayer sheet of ZnSe, with a three-atomic thickness, which demonstrates a strong quantum confinement effect by exhibiting a large blue shift of 2.0 eV in its absorption edge relative to the zinc blende (ZB) bulk phase. Theoretical optical absorbance shows that the largest absorption of this ultrathin single-layer sheet of ZnSe occurs at a wavelength similar to its four-atom-thick doublelayer counterpart but with higher photoabsorption efficiency, suggesting a superior behavior on incident photon-to-current conversion efficiency for solar water splitting, among other potential applications. The results presented herein for ZnSe may be generalized tomore » other group II-VI analogues.« less
Atomically thin two-dimensional organic-inorganic hybrid perovskites
NASA Astrophysics Data System (ADS)
Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong
2015-09-01
Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.
Kou, Kuang-Yang; Huang, Yu-En; Chen, Chien-Hsun; Feng, Shih-Wei
2016-01-01
The interplay of surface texture, strain relaxation, absorbance, grain size, and sheet resistance in textured, boron-doped ZnO (ZnO@B), transparent conductive oxide (TCO) materials of different thicknesses used for thin film, solar cell applications is investigated. The residual strain induced by the lattice mismatch and the difference in the thermal expansion coefficient for thicker ZnO@B is relaxed, leading to an increased surface texture, stronger absorbance, larger grain size, and lower sheet resistance. These experimental results reveal the optical and material characteristics of the TCO layer, which could be useful for enhancing the performance of solar cells through an optimized TCO layer.
Overview of Boiler House and Sheet Metal and Electrical Shops ...
Overview of Boiler House and Sheet Metal and Electrical Shops Building (center - with single large chimney), note the monitor on the original section of the Boiler House Building, view facing north - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI
Universal Rim Thickness in Unsteady Sheet Fragmentation.
Wang, Y; Dandekar, R; Bustos, N; Poulain, S; Bourouiba, L
2018-05-18
Unsteady fragmentation of a fluid bulk into droplets is important for epidemiology as it governs the transport of pathogens from sneezes and coughs, or from contaminated crops in agriculture. It is also ubiquitous in industrial processes such as paint, coating, and combustion. Unsteady fragmentation is distinct from steady fragmentation on which most theoretical efforts have been focused thus far. We address this gap by studying a canonical unsteady fragmentation process: the breakup from a drop impact on a finite surface where the drop fluid is transferred to a free expanding sheet of time-varying properties and bounded by a rim of time-varying thickness. The continuous rim destabilization selects the final spray droplets, yet this process remains poorly understood. We combine theory with advanced image analysis to study the unsteady rim destabilization. We show that, at all times, the rim thickness is governed by a local instantaneous Bond number equal to unity, defined with the instantaneous, local, unsteady rim acceleration. This criterion is found to be robust and universal for a family of unsteady inviscid fluid sheet fragmentation phenomena, from impacts of drops on various surface geometries to impacts on films. We discuss under which viscous and viscoelastic conditions the criterion continues to govern the unsteady rim thickness.
Universal Rim Thickness in Unsteady Sheet Fragmentation
NASA Astrophysics Data System (ADS)
Wang, Y.; Dandekar, R.; Bustos, N.; Poulain, S.; Bourouiba, L.
2018-05-01
Unsteady fragmentation of a fluid bulk into droplets is important for epidemiology as it governs the transport of pathogens from sneezes and coughs, or from contaminated crops in agriculture. It is also ubiquitous in industrial processes such as paint, coating, and combustion. Unsteady fragmentation is distinct from steady fragmentation on which most theoretical efforts have been focused thus far. We address this gap by studying a canonical unsteady fragmentation process: the breakup from a drop impact on a finite surface where the drop fluid is transferred to a free expanding sheet of time-varying properties and bounded by a rim of time-varying thickness. The continuous rim destabilization selects the final spray droplets, yet this process remains poorly understood. We combine theory with advanced image analysis to study the unsteady rim destabilization. We show that, at all times, the rim thickness is governed by a local instantaneous Bond number equal to unity, defined with the instantaneous, local, unsteady rim acceleration. This criterion is found to be robust and universal for a family of unsteady inviscid fluid sheet fragmentation phenomena, from impacts of drops on various surface geometries to impacts on films. We discuss under which viscous and viscoelastic conditions the criterion continues to govern the unsteady rim thickness.
Hypervelocity Impact Behaviour of CFRP-A1/HC Sandwich Panel: Finite-Element Studies
NASA Astrophysics Data System (ADS)
Phadnis, Vaibhav A.; Roy, Anish; Silberschmidt, Vadim V.
2014-06-01
The mechanical response of CFRP-Al/HC (carbon fibre- reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact ( 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by the means of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria and delamination is modelled using cohesive-zone elements. The damage of Al/HC core is assessed on the basis of a Johnson-Cook dynamic failure model while its hydrodynamic response is captured using the Mie- Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing of HC core.
Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel
NASA Astrophysics Data System (ADS)
Phadnis, Vaibhav A.; Silberschmidt, Vadim V.
2015-09-01
The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact (up to 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.
Bismaleimide resins for flame resistant honeycomb sandwich panels
NASA Technical Reports Server (NTRS)
Stenzenberger, H. D.
1978-01-01
Bismaleimide resins are prime candidates for nonflammable aircraft interior panels. Three resin types with different structures and processing characteristics were formulated. Resin M 751 was used to fabricate 100 kg of glass fabric prepregs which were used for the preparation of face sheets for honeycomb sandwich panels. Prepreg characteristics and curing cycles for laminate fabrication are provided. In order to advance beyond the current solvent resin technology for fibre and fabric impregnation, a hot melt solvent-less resin system was prepared and characterized. Preliminary tests were performed to develop a wet bonding process for the fabrication of advanced sandwich honeycomb panels by use of polybismaleimide glass fabric face sheets and polybismaleimide Nomex honeycomb core. B-stage material was used for both the core and the face sheet, providing flatwise tensile properties equivalent to those obtained by the state-of-the-art 3-step process which includes an epoxy adhesive resin.
Modification of β-Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation
2016-01-01
β-Sheet forming peptides have attracted significant interest for the design of hydrogels for biomedical applications. One of the main challenges is the control and understanding of the correlations between peptide molecular structure, the morphology, and topology of the fiber and network formed as well as the macroscopic properties of the hydrogel obtained. In this work, we have investigated the effect that functionalizing these peptides through their hydrophobic face has on their self-assembly and gelation. Our results show that the modification of the hydrophobic face results in a partial loss of the extended β-sheet conformation of the peptide and a significant change in fiber morphology from straight to kinked. As a consequence, the ability of these fibers to associate along their length and form large bundles is reduced. These structural changes (fiber structure and network topology) significantly affect the mechanical properties of the hydrogels (shear modulus and elasticity). PMID:27089379
NASA Technical Reports Server (NTRS)
Rinker, Martin; Krueger, Ronald; Ratcliffe, James
2013-01-01
The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.
Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Parker, F. Raymond
2014-01-01
Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.
Sandstone units of the Lee Formation and related strata in eastern Kentucky
Rice, Charles L.
1984-01-01
Most of the Cumberland Plateau region of southeastern Kentucky is underlain by thick sequences of quartzose sandstone which are assigned for the most part to the Lee Formation. Much new information has been gathered about the Lee and related strata as a result of the cooperative mapping program of the U. S. Geological Survey and the Kentucky Geological Survey between 1960 and 1978. This report summarizes the age, lithology, distribution, sedimentary structures, and stratigraphic relations of the sandstone units of the Lee within and between each of three major outcrop belts in Kentucky: Cumberland Mountain, Pine Mountain, and the Pottsville Escarpment area. The Lee Formation generally has been regarded as Early Pennsylvanian in age and separated from Mississippian strata in Kentucky by an unconformity. However, lithostratigraphic units included in the formation as presently defined are broadly time-transgressive and range in age from Late Mississippian in parts of the Cumberland Mountain outcrop belt to Middle Pennsylvanian in the Pottsville Escarpment area. Members of the Lee intertongue with and grade into the underlying Pennington Formation and overlying Breathitt Formation. Sandstone and conglomeratic sandstone members of the Lee of Mississippian age found only in parts of the Cumberland overthrust sheet are closely associated with marine rocks; Pennsylvanian members are mostly associated with continental coal-bearing strata. Sandstone members of the Lee are mostly quartz rich and range from more than 90 percent to more than 99 percent quartz. They are relatively coarse grained, commonly pebbly, and in places conglomeratic. The units are southwest-trending linear or broadly lobate bodies. The Lee Formation is as much as 1,500 ft thick in the type area in Cumberland Mountain where it has been divided into eight members. The Pinnacle Overlook, Chadwell, White Rocks Sandstone, Middlesboro, Bee Rock Sandstone, and Naese Sandstone Members are mostly quartzose sandstone and conglomerate. The Dark Ridge and Hensley Members are mostly shale, siltstone, thin-bedded silty sandstone, and coal. The lower three of these members, the Pinnacle Overlook, Chadwell, and White Rocks Sandstone, are assigned to the Upper Mississippian Series because they intertongue with marine reddish or greenish shale and siltstone of the Pennington Formation or equivalent strata that contain a Late Mississippian fauna. The overlying quartzose sandstone members of the Lee commonly have coalified plant remains and impressions of plants and are Early to Middle Pennsylvanian in age; they are generally associated with terrestrial shale and siltstone containing coal beds and pinch out eastward into subgraywacke, siltstone, and shale. Although marine members commonly are bimodal, resultant transport directions for both marine and terrestrial members are southwesterly as determined by crossbedding. Thickness variations of the Middlesboro Member in the Cumberland overthrust sheet suggest that it represents tills of at least three major southwesterly trending paleovalleys. Thickness variations of the Bee Rock Sandstone Member east of Rocky Face fault and the combined Bee Rock and Naese Sandstone Members west of Rocky Face fault suggest that these members represent tills of at least two major southwesterly trending paleovalleys. East of Rocky Face fault, the Bee Rock is generally the uppermost member of the Lee; west of the fault, the overlying Naese is at the top. The Naese may range in age from Early to Middle Pennsylvanian and is partly or wholly equivalent to the Rockcastle Sandstone member of the Lee Formation in the area of the Pottsville Escarpment. The Mississippian-Pennsylvanian systemic boundary in the area of the Cumberland overthrust sheet in most places has been placed at an unconformity at the base of the Middlesboro Member; locally it is projected at the base of shales of the underlying Dark Ridge Member or equivalent strata in the Penningto
Energy characteristics of the CO2 laser cutting of thick steel sheets
NASA Astrophysics Data System (ADS)
Orishich, A. M.
2012-01-01
In the present paper the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5-25 mm is studied experimentally. No dross and minimal roughness of the cut surface were chosen as criteria of quality. The paper also studies the possibility to describe the cutting process by the similarity method and as ratios between dimensionless variables. Normalized power W/ktT, normalized velocity Vcb/a (Peclet number) and kerf width have special optimum numb. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. The energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy, heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50-60% in the total contributed energy.
Microchannel laminated mass exchanger and method of making
Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA
2003-03-18
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Microchannel laminated mass exchanger and method of making
Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun
2000-01-01
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
Microchannel laminated mass exchanger and method of making
Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA
2002-03-05
The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.
A mechanism for magnetospheric substorms
NASA Technical Reports Server (NTRS)
Erickson, G. M.; Heinemann, M.
1994-01-01
Energy-principle analysis performed on two-dimensional, self-consistent solutions for magnetospheric convection indicates that the magnetosphere is unstable to isobaric (yet still frozen-in) fluctuations of plasma-sheet flux tubes. Normally, pdV work associated with compression maintains stability of the inward/outward oscillating normal mode. However, if Earth's ionosphere can provide sufficient mass flux, isobaric expansion of flux tubes can occur. The growth of a field-aligned potential drop in the near-Earth, midnight portion of the plasma sheet, associated with upward field-aligned currents responsible for the Harang discontinuity, redistributes plasma along field lines in a manner that destabilizes the normal mode. The growth of this unstable mode results in an out-of-equilibrium situation near the inner edge. When this occurs over a downtail extent comparable to the half-thickness of the plasma sheet, collapse ensues and forces thinning of the plasma sheet whereby conditions favorable to reconnection occur. This scenario for substorm onset is consistent with observed upward fluxes of ions, parallel potential drops, and observations of substorm onset. These observations include near Earth onset, pseudobreakups, the substorm current wedge, and local variations of plasma-sheet thickness.
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; White, K. Alan, III
1987-01-01
A new external flow radiator concept, the liquid sheet radiator (LSR), is introduced. The LSR sheet flow is described and an expression for the length/width (l/w), ratio is presented. A linear dependence of l/w on velocity is predicted that agrees with experimental results. Specific power for the LSR is calculated and is found to be nearly the same as the specific power of a liquid droplet radiator, (LDR). Several sheet thicknesses and widths were experimentally investigated. In no case was the flow found to be unstable.
Local re-acceleration and a modified thick target model of solar flare electrons
NASA Astrophysics Data System (ADS)
Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.
2009-12-01
Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as spatial distribution of atmospheric heating by fast electrons.
Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E
2018-02-01
To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.
Creep-rupture tests of internally pressurized Rene 41 tubes
NASA Technical Reports Server (NTRS)
Gumto, K. H.; Weiss, B.
1972-01-01
Weld-drawn tubes of Rene 41 with 0.935 centimeter outside diameter and 0.064 centimeter wall thickness were tested to failure at temperatures from 1117 to 1233 K and internal helium pressures from 5.5 to 12.4 meganewtons per square meter. Lifetimes ranged from 5 to 2065 hours. The creep-rupture strength of the tubes was 50 percent lower than that of unwelded, thick sheet specimens, and 20 percent lower than that of unwelded, thin sheet specimens. Larson-Miller correlations and photomicrographs of some specimens are presented.
Cortical Thickness in Fusiform Face Area Predicts Face and Object Recognition Performance
McGugin, Rankin W.; Van Gulick, Ana E.; Gauthier, Isabel
2016-01-01
The fusiform face area (FFA) is defined by its selectivity for faces. Several studies have shown that the response of FFA to non-face objects can predict behavioral performance for these objects. However, one possible account is that experts pay more attention to objects in their domain of expertise, driving signals up. Here we show an effect of expertise with non-face objects in FFA that cannot be explained by differential attention to objects of expertise. We explore the relationship between cortical thickness of FFA and face and object recognition using the Cambridge Face Memory Test and Vanderbilt Expertise Test, respectively. We measured cortical thickness in functionally-defined regions in a group of men who evidenced functional expertise effects for cars in FFA. Performance with faces and objects together accounted for approximately 40% of the variance in cortical thickness of several FFA patches. While subjects with a thicker FFA cortex performed better with vehicles, those with a thinner FFA cortex performed better with faces and living objects. The results point to a domain-general role of FFA in object perception and reveal an interesting double dissociation that does not contrast faces and objects, but rather living and non-living objects. PMID:26439272
Atomically thin two-dimensional organic-inorganic hybrid perovskites.
Dou, Letian; Wong, Andrew B; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W; Fu, Anthony; Bischak, Connor G; Ma, Jie; Ding, Tina; Ginsberg, Naomi S; Wang, Lin-Wang; Alivisatos, A Paul; Yang, Peidong
2015-09-25
Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Dias, Kayo Delorenzo Nardi; Scherer, Claiton M. S.
2008-05-01
The Pirambóia Formation comprises an unconformity-bounded aeolian succession essentially composed of three facies associations: aeolian sand sheet, aeolian dune and interdune facies associations. The lower portion of the Pirambóia Formation is characterised by aeolian sand sheet deposits, which are overlain by aeolian dune and interdune strata, hence pointing to an overall increase in sand availability within the paleoerg. The dune and interdune successions can be further subdivided into two distinct stratigraphic intervals in terms of their mean set thickness. Intervals 1 and 2 display mean set thicknesses of 2.9 and 6.19 m, respectively. This increase in the mean set thickness reflects an increase of the angle of climb and/or dune size. In addition to improve the stratigraphic subdivision, the recognition and correlation of intervals with distinct mean set thicknesses provides a tool for reconstructing aeolian erg architecture from drill cores.
Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors
Cui, Shumao; Pu, Haihui; Wells, Spencer A.; ...
2015-10-21
Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO 2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ~10 15 cm -2 for the 4.8-nm-thick PNSmore » when exposed to 20 p.p.b. NO 2 at 300 K. As a result, our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets (<10 nm) and by the effective thickness on gas adsorption for thicker sheets (>10 nm).« less
Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors
NASA Astrophysics Data System (ADS)
Cui, Shumao; Pu, Haihui; Wells, Spencer A.; Wen, Zhenhai; Mao, Shun; Chang, Jingbo; Hersam, Mark C.; Chen, Junhong
2015-10-01
Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ~1015 cm-2 for the 4.8-nm-thick PNS when exposed to 20 p.p.b. NO2 at 300 K. Our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets (<10 nm) and by the effective thickness on gas adsorption for thicker sheets (>10 nm).
Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors
Cui, Shumao; Pu, Haihui; Wells, Spencer A.; Wen, Zhenhai; Mao, Shun; Chang, Jingbo; Hersam, Mark C.; Chen, Junhong
2015-01-01
Two-dimensional (2D) layered materials have attracted significant attention for device applications because of their unique structures and outstanding properties. Here, a field-effect transistor (FET) sensor device is fabricated based on 2D phosphorene nanosheets (PNSs). The PNS sensor exhibits an ultrahigh sensitivity to NO2 in dry air and the sensitivity is dependent on its thickness. A maximum response is observed for 4.8-nm-thick PNS, with a sensitivity up to 190% at 20 parts per billion (p.p.b.) at room temperature. First-principles calculations combined with the statistical thermodynamics modelling predict that the adsorption density is ∼1015 cm−2 for the 4.8-nm-thick PNS when exposed to 20 p.p.b. NO2 at 300 K. Our sensitivity modelling further suggests that the dependence of sensitivity on the PNS thickness is dictated by the band gap for thinner sheets (<10 nm) and by the effective thickness on gas adsorption for thicker sheets (>10 nm). PMID:26486604
Magnetic configurations of the tilted current sheets in magnetotail
NASA Astrophysics Data System (ADS)
Shen, C.; Rong, Z. J.; Li, X.; Dunlop, M.; Liu, Z. X.; Malova, H. V.; Lucek, E.; Carr, C.
2008-11-01
In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1) The magnetic field lines (MFLs) in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2) The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3) In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4) In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur during quiet periods or periods of weak magnetospheric activity.
Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique
NASA Astrophysics Data System (ADS)
Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.
2017-10-01
Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.
Micro-Scale Mechanical Testing of Non-Woven Carbon Nanotube Sheets and Yarns
NASA Technical Reports Server (NTRS)
Magargee, J.; Morestin, F.; Cao, J.; Jones, J. S.
2013-01-01
Non-woven carbon nanotube (CNT) sheets and yarns were tested using a novel micro-scale mechanical testing system. CNT sheets were observed to delaminate during uniaxial testing using an adbesive gripping method, resulting from a higher proportion of load bearing in the outer sheets versus internal sheets and an apparently low interlaminar shear strength. In response to this, a new spool-grip method was used to alleviate non-uniform through-thickness stresses, circumvent premature delamination, and allow the sheet material to sustain a 72% increase in measured tensile strength. Furthermore, tension tests of CNT yarns showed that the yarn-structure was approximaiely 7 times stronger than the sheet structure, owing to a higher degree of CNT alignment in the test direction.
Fact Sheet for Preventing and Detecting PCB Contamination in Used Oil
This fact sheet provides tips on how to reduce the mismanagement of used oil contaminated with PCBs, a recurring issue faced by EPA and states, commercial and municipal used oil collection centers and recyclers.
The effect of thickness on fatigue crack propagation in 7475-T731 aluminum alloy sheet
NASA Technical Reports Server (NTRS)
Daiuto, R. A.; Hillberry, B. M.
1984-01-01
Tests were conducted on three thicknesses of 7475-T731 aluminum alloy sheet to investigate the effect of thickness on fatigue crack propagation under constant amplitude loading conditions and on retardation following a single peak overload. Constant amplitude loading tests were performed at stress ratios of 0.05 and 0.75 to obtain data for conditions with crack closure and without crack closure, respectively. At both stress ratios a thickness effect was clearly evident, with thicker specimens exhibiting higher growth rates in the transition from plane strain to plane stress region. The effect of thickness for a stress ratio of 0.05 corresponded well with the fracturing mode transitions observed on the specimens. A model based on the strain energy release rate which accounted for the fracture mode transition was found to correlate the thickness effects well. The specimens tested at the stress ratio of 0.75 did not make the transition from tensile mode to shear mode, indicating that another mechanism besides crack closure or fracture mode transition was active.
Higher Sensitivity in X-Ray Photography
NASA Technical Reports Server (NTRS)
Buggle, R. N.
1986-01-01
Hidden defects revealed if X-ray energy decreased as exposure progresses. Declining-potential X-ray photography detects fractures in thin metal sheet covered by unbroken sheet of twice thickness. Originally developed to check solder connections on multilayer circuit boards, technique has potential for other nondestructive testing.
Thermal Transport in Self-Assembled Nanostructures
2011-01-01
2:1 smectite clay family which can be exfoliated into large aspect ratio (>1000:1) ~1 nm thick sheets (Figure 4a). Each montmorillonite sheet...measurements. While it was suggested earlier that study of the thermal transport properties of similarly modified smectite clays other than montmorillonite
Numerical and experimental study on multi-pass laser bending of AH36 steel strips
NASA Astrophysics Data System (ADS)
Fetene, Besufekad N.; Kumar, Vikash; Dixit, Uday S.; Echempati, Raghu
2018-02-01
Laser bending is a process of bending of plates, small sized sheets, strips and tubes, in which a moving or stationary laser beam heats the workpiece to achieve the desired curvature due to thermal stresses. Researchers studied the effects of different process parameters related to the laser source, material and workpiece geometry on laser bending of metal sheets. The studies are focused on large sized sheets. The workpiece geometry parameters like sheet thickness, length and width also affect the bend angle considerably. In this work, the effects of width and thickness on multi-pass laser bending of AH36 steel strips were studied experimentally and numerically. Finite element model using ABAQUS® was developed to investigate the size effect on the prediction of the bend angle. Microhardness and flexure tests showed an increase in the flexural strength as well as microhardness in the scanned zone. The microstructures of the bent strips also supported the physical observations.
Springback evaluation of friction stir welded TWB automotive sheets
NASA Astrophysics Data System (ADS)
Kim, Junehyung; Lee, Wonoh; Chung, Kyung-Hwan; Kim, Daeyong; Kim, Chongmin; Okamoto, Kazutaka; Wagoner, R. H.; Chung, Kwansoo
2011-02-01
Springback behavior of automotive friction stir welded TWB (tailor welded blank) sheets was experimentally investigated and the springback prediction capability of the constitutive law was numerically validated. Four automotive sheets, aluminum alloy 6111-T4, 5083-H18, 5083-O and dual-phase DP590 steel sheets, each having one or two different thicknesses, were considered. To represent mechanical properties, the modified Chaboche type combined isotropic-kinematic hardening law was utilized along with the non-quadratic orthogonal anisotropic yield function, Yld2000-2d, while the anisotropy of the weld zone was ignored for simplicity. For numerical simulations, mechanical properties previously characterized [1] were applied. For validation purposes, three springback tests including the unconstrained cylindrical bending, 2-D draw bending and OSU draw-bend tests were carried out. The numerical method performed reasonably well in analyzing all verification tests and it was confirmed that the springback of TWB as well as of base samples is significantly affected by the ratio of the yield stress with respect to Young's modulus and thickness.
Multiple secondary islands formation in nonlinear evolution of double tearing mode simulations
NASA Astrophysics Data System (ADS)
Guo, W.; Ma, J.; Yu, Z.
2017-03-01
A new numerical code solving the conservative perturbed resistive magnetohydrodynamic (MHD) model is developed. Numerical tests of the ideal Kelvin-Helmholtz instability and the resistive double tearing mode (DTM) show its capability in solving linear and nonlinear MHD instabilities. The nonlinear DTM evolution in 2D geometry is numerically investigated with low guiding field B z 0 , short half-distance y 0 between the equilibrium current sheets, and small resistivity η. The interaction of islands on the two initial current sheets may generate an unstable flow driven current sheet with a high length-to-thickness aspect ratio (α), and multiple secondary islands can form. In general, the length-to-thickness aspect ratio α and the number of secondary islands increase with decreasing guide field B z 0 , decreasing half-distance y 0 , and increasing Lundquist number of the flow driven current sheet S L although the dependence may be non-monotonic. The reconnection rate dependence on S L , B z 0 , and y 0 is also investigated.
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
49 CFR 107.807 - Approval of non-domestic chemical analyses and tests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... performed; (2) Complete details concerning the dimensions, materials of construction, wall thickness, water... calculations for cylinder wall stress and wall thickness, which may be shown on a drawing or on separate sheets...
NASA Astrophysics Data System (ADS)
Rodrigues, Neil S.; Kulkarni, Varun; Sojka, Paul E.
2014-11-01
While like-on-like doublet impinging jet atomization has been extensively studied in the literature, there is poor agreement between experimentally observed spray characteristics and theoretical predictions (Ryan et al. 1995, Anderson et al. 2006). Recent works (Bremond and Villermaux 2006, Choo and Kang 2007) have introduced a non-uniform jet velocity profile, which lead to a deviation from the standard assumptions for the sheet velocity and the sheet thickness parameter. These works have assumed a parabolic profile to serve as another limit to the traditional uniform jet velocity profile assumption. Incorporating a non-uniform jet velocity profile results in the sheet velocity and the sheet thickness parameter depending on the sheet azimuthal angle. In this work, the 1/7th power-law turbulent velocity profile is assumed to provide a closer match to the flow behavior of jets at high Reynolds and Weber numbers, which correspond to the impact wave regime. Predictions for the maximum wavelength, sheet breakup length, ligament diameter, and drop diameter are compared with experimental observations. The results demonstrate better agreement between experimentally measured values and predictions, compared to previous models. U.S. Army Research Office under the Multi-University Research Initiative Grant Number W911NF-08-1-0171.
Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2003-12-09
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Thermomechanical processing of plasma sprayed intermetallic sheets
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2001-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders
Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.
2000-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
Sheet flow and suspended sediment due to wave groups in a large wave flume
Dohmen-Janssen, C. M.; Hanes, D.M.
2005-01-01
A series of sand bed experiments was carried out in the Large Wave Flume in Hannover, Germany as a component of the SISTEX99 experiment. The experiments focussed on the dynamic sediment response due to wave group forcing over a flat sand bed in order to improve understanding of cross-shore sediment transport mechanisms and determine sediment concentrations, fluxes and net transport rates under these conditions. Sediment concentrations were measured within the sheet flow layer (thickness in the order of 10 grain diameters) and in the suspension region (thickness in the order of centimetres). Within the sheet flow layer, the concentrations are highly coherent with the instantaneous near-bed velocities due to each wave within the wave group. However, in the suspension layer concentrations respond much more slowly to changes in near-bed velocity. At several centimetres above the bed, the suspended sediment concentrations vary on the time scale of the wave group, with a time delay relative to the peak wave within the wave group. The thickness of the sheet flow changes with time. It is strongly coherent with the wave forcing, and is not influenced by the history or sequence of the waves within the group. The velocity of the sediment was also measured within the sheet flow layer some of the time (during the larger wave crests of the group), and the velocity of the fluid was measured at several cm above the sheet flow layer. The grain velocity and concentration estimates can be combined to estimate the sediment flux. The estimates were found to be consistent with previous measurements under monochromatic waves. Under these conditions, without any significant mean current, the sediment flux within the sheet flow layer was found to greatly exceed the sediment flux in the suspension layer. As a result, net transport rates under wave groups are similar to those under monochromatic waves. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajkumar, Goribidanur Rangappa; Krishna, Munishamaih; Narasimhamurthy, Hebbale Narayanrao; Keshavamurthy, Yalanabhalli Channegowda
2017-06-01
The objective of the work was to optimize sheet metal joining parameters such as adhesive material, adhesive thickness, adhesive overlap length and surface roughness for single lap joint of aluminium sheet shear strength using robust design. An orthogonal array, main effect plot, signal-to-noise ratio and analysis of variance were employed to investigate the shear strength of the joints. The statistical result shows vinyl ester is best candidate among other two polymers viz. epoxy and polyester due to its low viscosity value compared to other two polymers. The experiment results shows that the adhesive thickness 0.6 mm, overlap length 50 mm and surface roughness 2.12 µm for obtained maximum shear strength of Al sheet joints. The ANOVA result shows one of the most significant factors is overlap length which affect joint strength in addition to adhesive thickness, adhesive material, and surface roughness. A confirmation test was carried out as the optimal combination of parameters will not match with the any of the experiments in the orthogonal array.
A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals
NASA Astrophysics Data System (ADS)
Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.
2017-03-01
Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.
Zhang, Na; Wang, Taisheng; Wu, Xing; Jiang, Chen; Zhang, Taiming; Jin, Bangkun; Ji, Hengxing; Bai, Wei; Bai, Ruke
2017-07-25
Recently, investigation on two-dimensional (2D) organic polymers has made great progress, and conjugated 2D polymers already play a dynamic role in both academic and practical applications. However, a convenient, noninterfacial approach to obtain single-layer 2D polymers in solution, especially in aqueous media, remains challenging. Herein, we present a facile, highly efficient, and versatile "1D to 2D" strategy for preparation of free-standing single-monomer-thick conjugated 2D polymers in water without any aid. The 2D structure was achieved by taking advantage of the side-by-side self-assembly of a rigid amphiphilic 1D polymer and following topochemical photopolymerization in water. The spontaneous formation of single-layer polymer sheets was driven by synergetic association of the hydrophobic interactions, π-π stacking interactions, and electrostatic repulsion. Both the supramolecular sheets and the covalent sheets were confirmed by spectroscopic analyses and electron microscope techniques. Moreover, in comparison of the supramolecular 2D polymer, the covalent 2D polymer sheets exhibited not only higher mechanical strength but also higher conductivity, which can be ascribed to the conjugated network within the covalent 2D polymer sheets.
Harvey, Andrew C.; Ribich, William A.; Marinaccio, Paul J.; Sawaf, Bernard E.
1987-12-01
A separable fastener system has a first separable member that includes a series of metal hook sheets disposed in stacked relation that defines an array of hook elements on its broad surface. Each hook sheet is a planar metal member of uniform thickness and has a body portion with a series of hook elements formed along one edge of the body. Each hook element includes a stem portion, a deflecting surface portion, and a latch portion. Metal spacer sheets are disposed between the hook sheets and may be varied in thickness and in number to control the density of the hook elements on the broad surface of the first fastener member. The hook and spacer sheets are secured together in stacked relation. A second fastener member has a surface of complementary engaging elements extending along its broad surface which are releasably interengageable with the hook elements of the first fastener member, the deflecting surfaces of the hook elements of the first fastener member tending to deflect hook engaging portions of the second fastener member and the latch portions of the hook elements of the first fastener member engaging portions of the second fastener member in fastening relation.
Thermomechanical processing of HAYNES alloy No. 188 sheet to improve creep strength
NASA Technical Reports Server (NTRS)
Klarstrom, D. L.
1978-01-01
Improvements in the low strain creep strength of HAYNES alloy No. 188 thin gauge sheet by means of thermomechanical processing were developed. Processing methods designed to develop a sheet with strong crystallographic texture after recrystallization and to optimize grain size were principally studied. The effects of thickness-to-grain diameter ratio and prestrain on low strain creep strength were also briefly examined. Results indicate that the most significant improvements were obtained in the sheets having a strong crystallographic texture. The low strain creep strength of the textured sheets was observed to be superior to that of standard production sheets in the 922 K to 1255 K temperature range. Tensile, stress rupture, fabricability, and surface stability properties of the experimental sheets were also measured and compared to property values reported for the baseline production sheets.
Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons
NASA Technical Reports Server (NTRS)
Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.
1986-01-01
The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.
Design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels
NASA Technical Reports Server (NTRS)
Blair, W.; Meaney, J. E., Jr.; Rosenthal, H. A.
1980-01-01
A titanium multiwall thermal protection system panel was designed. The panel is a nine sheet sandwich structure consisting of an upper and lower face sheet; four dimpled sheets, three septum sheets, and clips for attachment to a vehicle structure. An acceptable fabrication process was developed, and the panel design was verified through mechanical and thermal testing of component specimens. A design was completed which takes into consideration fabrication techniques, thermal properties, mechanical properties, and materials availability.
NASA Astrophysics Data System (ADS)
Jay, Anne E.; Marsh, Julian S.; Fluteau, Frédéric; Courtillot, Vincent
2018-02-01
Physical volcanological features are presented for a 710-m-thick section, of the Naude's Nek Pass, within the lower part of the Lesotho remnant of the Karoo Large Igneous Province. The section consists of inflated pāhoehoe lava with thin, impersistent sedimentary interbeds towards the base. There are seven discreet packages of compound and hummocky pāhoehoe lobes containing flow-lobe tumuli, making up approximately 50% of the section. Approximately 45% of the sequence consists of 14 sheet lobes, between 10 and 52-m-thick. The majority of the sheet lobes are in two packages indicating prolonged periods of lava supply capable of producing thick sheet lobes. The other sheet lobes are as individual lobes or pairs, within compound flows, suggesting brief increases in lava supply rate. We suggest, contrary to current belief, that there is no evidence that compound flows are proximal to source and sheet lobes (simple flows) are distal to source and we propose that the presence of flow-lobe tumuli in compound flows could be an indicator that a flow is distal to source. We use detailed, previously published, studies of the Thakurvadi Formation (Deccan Traps) as an example. We show that the length of a lobe and therefore the sections that are `medial or distal to source' are specific to each individual lobe and are dependent on the lava supply of each eruptive event, and as such flow lobe tumuli can be used as an indicator of relative distance from source.
2016-04-01
Processed AZ31 Magnesium Alloy Sheet by Laszlo J Kecskes, Vincent H Hammond, Michael Eichhorst, Norman Herzig, and Lothar Meyer...Angular Extrusion (ECAE)–Processed AZ31 Magnesium Alloy Sheet by Laszlo J Kecskes and Vincent H Hammond Weapons and Materials Research...successfully reduced into 1.5-mm-thick sheets . Two sets of plates, each with a different texture type, were evaluated. Microscopic examination of
Bead Roller, at right, used for preparing flume sheeting (still ...
Bead Roller, at right, used for preparing flume sheeting (still in use, 2004); on left is a pipe cutter. Facing southeast - Childs-Irving Hydroelectric Project, Childs System, Childs Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ
Method of making multilayered titanium ceramic composites
Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.
1998-08-25
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.
Method of making multilayered titanium ceramic composites
Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.
1998-08-25
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.
Method of making multilayered titanium ceramic composites
Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.
1998-01-01
A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.
Method and apparatus for adding electrolyte to a fuel cell stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.V.; English, J.G.
1986-06-24
A process is described for adding electrolyte to a fuel cell stack, the stack comprising sheet-like elements defining a plurality of fuel cell units disposed one atop the other in abutting relationship, the units defining a substantially flat, vertically extending face, each unit including a cell comprising a pair of sheet-like spaced apart gas porous electrodes with a porous matrix layer sandwiched therebetween for retaining electrolyte during cell operation, each unit also including a sheet-like substantially non-porous separator, the separator being sandwiched between the cells of adjacent units. The improvement described here consists of: extending at least one of themore » sheet-like elements of each of a plurality of the fuel cell units outwardly from the stack face to define horizontal tabs disposed one above the other; depositing dilute electrolyte directly from electrolyte supply means upon substantially the full length, parallel to the stack face, of at least the uppermost tab, the tabs being constructed and arranged such that at least a portion of the deposited electrolyte cascades from tab to tab and down the face of the stack, the deposited electrolyte being absorbed by capillary action into the elements of the stack, the step of depositing continuing until all of the electrodes and matrix layers of the stack are fully saturated with the dilute electrolyte; and thereafter evaporating liquid from the saturated elements under controlled conditions of humidity and temperature until the stack has a desired electrolyte volume and electrolyte concentration therein.« less
NASA Astrophysics Data System (ADS)
Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.
2018-05-01
In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.
2015-01-01
Abstract The basic properties of the near‐Earth current sheet from 8 RE to 12 RE were determined based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations from 2007 to 2013. Ampere's law was used to estimate the current density when the locations of two spacecraft were suitable for the calculation. A total of 3838 current density observations were obtained to study the vertical profile. For typical solar wind conditions, the current density near (off) the central plane of the current sheet ranged from 1 to 2 nA/m2 (1 to 8 nA/m2). All the high current densities appeared off the central plane of the current sheet, indicating the formation of a bifurcated current sheet structure when the current density increased above 2 nA/m2. The median profile also showed a bifurcated structure, in which the half thickness was about 3 RE. The distance between the peak of the current density and the central plane of the current sheet was 0.5 to 1 RE. High current densities above 4 nA/m2 were observed in some cases that occurred preferentially during substorms, but they also occurred in quiet times. In contrast to the commonly accepted picture, these high current densities can form without a high solar wind dynamic pressure. In addition, these high current densities can appear in two magnetic configurations: tail‐like and dipolar structures. At least two mechanisms, magnetic flux depletion and new current system formation during the expansion phase, other than plasma sheet compression are responsible for the formation of the bifurcated current sheets. PMID:27722039
Polymer quenched prealloyed metal powder
Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.
2001-01-01
A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor)
1987-01-01
A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.
NASA Technical Reports Server (NTRS)
Rowlette, John J. (Inventor)
1985-01-01
A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.
Film thickness measurement for spiral groove and Rayleigh step lift pad self-acting face seals
NASA Technical Reports Server (NTRS)
Dirusso, E.
1982-01-01
One Rayleigh step lift pad and three spiral groove self-acting face seal configurations were tested to measure film thickness and frictional torque as a function of shaft speed. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17,000 rpm. The measured film thickness was compared with theoretical data from mathematical models. The mathematical models overpredicted the measured film thickness at the lower speeds of the test speed range and underpredicted the measured film thickness at the higher speeds of the test speed range.
Tandara, Andrea A; Mustoe, Thomas A
2008-10-01
Hypertrophic scars can be reduced by the application of silicone dressing; however, the detailed mechanism of silicone action is still unknown. It is known that silicone gel sheets cause a hydration of the epidermal layer of the skin. An in vitro co-culture experiment has shown that hydration of keratinocytes has a suppressive effect on the metabolism of the underlying fibroblasts resulting in reduced collagen deposition. We tested the hypothesis that silicone sheeting in vivo has a beneficial effect on scarring by reducing keratinocyte stimulation, with a resulting decrease in dermal thickness, hence scar hypertrophy. Silicone adhesive gel sheets were applied to scars in our rabbit ear model of hypertrophic scarring 14 days postwounding for a total of 16 days. Scarring was measured in this model by the scar elevation index (SEI), a ratio of the area of newly formed dermis to the area of the dermis of unwounded skin, and the epidermal thickness index (ETI), a ratio of the averaged epidermal height of the scar to the epidermal thickness of normal epidermis. Specific staining [anti-PCNA (proliferating cell nuclear antigen) and Masson trichrome] was performed to reveal differences in scar morphology. SEIs were significantly reduced after silicone gel sheet application versus untreated scars corresponding to a 70% reduction in scar hypertrophy. Total occlusion reduced scar hypertrophy by 80% compared to semi-occlusion. ETIs of untreated scars were increased by more than 100% compared to uninjured skin. Silicone gel treatment significantly reduced epidermal thickness by more than 30%. Our findings demonstrate that 2 weeks of silicone gel application at a very early onset of scarring reduces dermal and epidermal thickness which appears to be due to a reduction in keratinocyte stimulation. Oxygen can be ruled out as a mechanism of action of silicone occlusive treatment. Hydration of the keratinocytes seems to be the key stimulus.
Brintnall-Peterson, Mary; Poehlmann, Julie; Morgan, Kari; Shlafer, Rebecca
2009-04-01
To develop and evaluate a series of web-based fact sheets for grandparents raising grandchildren. The fact sheets focus on child development issues that grandparents may face when raising their grandchildren. The fact sheets were developed using research on attachment theory, child development, and the needs of grandparents raising grandchildren. The fact sheets can be viewed online or downloaded for free. Evaluation data for the fact sheets were gathered using an online survey. Results of the survey revealed that the fact sheets are used by grandparents and professionals. Respondents reported sharing the fact sheets with others and using them for personal use, in support groups, and as a general agency resource. The fact sheet series is a useful way to reach both grandparents and professionals working with this audience in a variety of settings. Modifications to the fact sheet series are suggested to address additional needs of grandparents raising grandchildren.
Basal Freeze-on: An Active Component of Hydrology from the Ice Divide to the Margin
NASA Astrophysics Data System (ADS)
Bell, R. E.; Tinto, K. J.; Abdi, A.; Creyts, T. T.; Wolovick, M.; Das, I.; Ferraccioli, F.; Csatho, B. M.
2012-12-01
Subglacial hydrology is considered a key control of ice sheet dynamics. Here we show that basal freeze-on is a process that can terminate basal hydrologic networks both in the interior of East Antarctica and at the margins of the Greenland Ice Sheet. Basal freeze-on modifies the ice thickness, ice structure, and ice rheology and therefore must be considered in developing accurate understanding of how hydrology interacts with ice dynamics. In East Antarctica, the freeze-on process follows well-defined hydrologic networks within Gamburtsev Mountain valleys. The steep mountain topography strongly controls the routing of the subglacial water. Ice surface slope drives the water up the mountain valleys and freeze-on occurs at the valley heads. Freeze-on ice is characterized by distinct basal radar reflectors that emerge from the hydrologic network. Evidence that these spatially coherent reflectors demark accreted ice is the upward deflection of the overlying internal layers accompanied by thickening of base of the ice sheet. Individual accretion bodies can be 25 km wide across flow, 100 km along flow with average thicknesses of ~500m although the maximum thickness is 1100m. Regional accumulation rates near the accretion sites average 4cm/yr with low ice velocity (1.5 m/yr). The volume of the ice enclosed by the accretion ice reflectors is 45-1064 km3. The accretion occurs beneath 2200-3000m thick ice and has been persistent for at least 50,000yr. Other basal reflectors in northern Greenland appear in radar from NASA's Icebridge mission and CRESIS. To identify freeze-on ice, we use specific criteria: reflectors must originate from the bed, must be spatially continuous from line to line and the meteoric stratigraphy is deflected upward. The absence of coincident gravity anomalies indicates these reflectors define distinct packages of ice rather than frozen sediment or off-nadir subglacial topography. In the Petermann Glacier Catchment, one of the largest in northern Greenland, we have identified 14 distinct basal ice packages over a wide region. The accumulation rate (~17 cm/yr) and ice velocity (~5-200m/yr) are higher than East Antarctica. These accretion bodies are 10-50 km wide, up to 940m thick and can be traced up to 140 km. The volume of the ice enclosed by the accretion ice reflector units is ~70-300 km3. We estimate that the freeze-on process in Petermann has been active for at least 6,000yr. Water has been mapped beneath much of the Greenland ice sheet and adjacent to the inland freeze-on site flat bright reflectors are interpreted as basal water. The onset of fast flow in Petermann Glacier is associated with the development of the thickest unit of freeze-on ice. Other areas of Greenland also have basal freeze-on ice. North of Jakobshavn Isbrae where the ice sheet is ~1000 m thick, evidence exists for a nearly 10 km wide, 200 m thick unit of basal ice in airborne radar. Located close to the site where basal freeze-on outcrops at the ice sheet margin at Pakitsoq, this unit may be the result of freeze-on of water draining from a supraglacial lake. Basal freeze-on is a critical component of subglacial hydrology. The evidence for large scale freeze-on East Antarctica and many areas of Greenland indicates widespread modification of the base of the ice sheet by basal hydrology.
Development of oil canning index model for sheet metal forming products with large curvature
NASA Astrophysics Data System (ADS)
Kim, Honglae; Lee, Seonggi; Murugesan, Mohanraj; Hong, Seokmoo; Lee, Shanghun; Ki, Juncheol; Jung, Hunchul; Kim, Naksoo
2017-09-01
Oil canning is predominantly caused by unequal stretches and heterogeneous stress distributions in steel sheets, which affects the appearance of components and develop noise and vibration problems. This paper proposes the formulation of an Oil canning index (OCI) model that can predict the occurrence of oil canning in the sheet metal. To investigate the influence of material properties, we used electro-galvanized (EGI) and galvanized (GI) steel sheets with different thicknesses and processing conditions. Furthermore, this paper presents an appropriate experimental and numerical procedure for determining the sheet stiffness and indentation properties to evaluate the oil canning results. Experiments were carried out by varying the tensile force over different materials, thicknesses, and bead force. Comparison of the discrete results obtained from these experiments confirmed that the product shape characteristics, such as curvature, have a significant influence on the oil canning occurrence. Based on the results, we propose the new OCI model, which can effectively predict the oil canning occurrence owing to the shape curvature. Verification of the accuracy and usability of our model has been carried out by simulating the experiments that were done with the sheet metal. The authors observed a good agreement between the experimental and numerical results from the model. This research work can be considered as a very effective method for eliminating appearance defects from the automobile products.
Charles W. McMillin
1969-01-01
In Pinus taeda L., burst, breaking length, and sheet density were improved by using fiber refined from wood having long, narrow-diameter tracheids with thick walls. Only narrow-diameter teacheids with thick walls were required to improve tear factor. A theoretical stress analysis revealed that thick-walled cells of small outside diameter fail by...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok
Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.
NASA Astrophysics Data System (ADS)
Sigvant, M.; Falk, J.; Pilthammar, J.
2017-09-01
Dual-Phase (DP) steels are today used in the automotive industry due to its large strength to weight ratio. However, the high strength of DP-steel does have a negative impact on the general formability in sheet metal forming. Unfavourable process conditions in the press shop will, on top of this, reduce the formability of DP-steels even more. This paper addresses the problem of edge fracture in stretch flanges in sheet metal parts made of DP-steel. The experimental part involves tests of ten different DP590 and DP780 steel grades with three different shear cut qualities. The influence on the fracture strain of the sample orientation of the shear cut are also studied by facing the burr away or towards the punch and testing samples with the cut edge parallel with the rolling direction and the transverse direction. The strains are measured with an ARAMIS system in each test, together with punch displacement and punch force. All tests are then simulated with AutoFormplus R7 and the results from these simulations are compared with the experimental results in order to find the appropriate failure strain for each combination of supplier, coating, thickness and shear cut quality.
Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection.
Mertz, Jerome; Kim, Jinhyun
2010-01-01
It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.
Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection
NASA Astrophysics Data System (ADS)
Mertz, Jerome; Kim, Jinhyun
2010-01-01
It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast.
14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING ...
14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING PREPARED TO BE ROLLED INTO SHEETS OF SPECIFIC THICKNESS. COMPONENT PARTS WERE FABRICATED FROM THE METAL SHEETS. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO
Metal-free magnetic conductor substrates for placement-immune antenna assemblies
Eubanks, Travis Wayne; Loui, Hung; McDonald, Jacob Jeremiah
2015-09-29
A magnetic conductor substrate produced for mounting to an antenna includes a sheet of dielectric lattice material having a length, a width and a thickness that is less than the length and less than the width. Within the sheet of dielectric lattice material is disposed an array of dielectric elements.
NASA Astrophysics Data System (ADS)
Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro
2015-02-01
In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.
Large-Amplitude Long-Wave Instability of a Supersonic Shear Layer
NASA Technical Reports Server (NTRS)
Messiter, A. F.
1995-01-01
For sufficiently high Mach numbers, small disturbances on a supersonic vortex sheet are known to grow in amplitude because of slow nonlinear wave steepening. Under the same external conditions, linear theory predicts slow growth of long-wave disturbances to a thin supersonic shear layer. An asymptotic formulation is given here which adds nonzero shear-layer thickness to the weakly nonlinear formulation for a vortex sheet. Spatial evolution is considered, for a spatially periodic disturbance having amplitude of the same order, in Reynolds number, as the shear-layer thickness. A quasi-equilibrium inviscid nonlinear critical layer is found, with effects of diffusion and slow growth appearing through nonsecularity condition. Other limiting cases are also considered, in an attempt to determine a relationship between the vortex-sheet limit and the long-wave limit for a thin shear layer; there appear to be three special limits, corresponding to disturbances of different amplitudes at different locations along the shear layer.
THE APPLICATION OF RADIOISOTOPES IN SHIPBUILDING FOR NONDESTRUCTIVE MATERIAL TESTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, H.
1962-02-01
S>Safety and reliability in shipbuilding require exact testing methods for all materials, such as plates, sheets, rods, cast pieces, welded joints, etc. Non-visible defects in parts exposed to great stress may cause great damages. Since both x-ray and gamma radiography can detect these defects, a choice has to be made between these radiation sources. ln general, for very thick pieces, gamma emitters such as Co/sup 60/ or Ta/sup 182/ are used; for medium thick pieces, gamma emitters, such as Ir/sup 192/ or Cs/sup 137/ are used; for very thin pieces weak gamma emitters, such as Eu/sup 155/ or x raysmore » are used. There is no competition between x rays and gamma rays in nondestructive testing because both methods supplement each other. The tcchnical and economical advantages and disadvantages of both methods are discussed. In shipbuilding, Ir/ sup 192/ has extremely good irradiation qualities for sheets from 6 to 50 mm thick and is superior to the x-ray method for checking welds of sheets of this thickness. However, for materials thicker than 50 mm x rays are useless, and defects in this material must be located with hard gamma emitters, such as Co/ sup 60/. Recently, mobile test stations with radioisotopes were established which are of great value for checking and quality control in shipbuilding at the shipyard. (OID)« less
Li-Tsang, Cecilia W P; Lau, Joy C M; Choi, Jenny; Chan, Chetwyn C C; Jianan, Li
2006-09-01
This study aimed to determine the efficacy of silicone gel (Cica-Care) on severe post-traumatic hypertophic scars among the Chinese population. A randomized clinical trial (RCT) was conducted on 45 Chinese patients with post-traumatic hypertrophic scars. Twenty-two subjects were placed in the experimental group with silicone gel sheeting (SGS) applied 24h per day for 6 months while all subjects were taught to massage the scar daily for 15 min serving as the control intervention. Scar assessments were conducted regularly to measure the changes in thickness, pigmentation, vascularity, pliability, itchiness and pain. Two-way repeated ANOVA showed a significant difference between MT group and SGS group on scar thickness. The post hoc comparison analysis showed that the difference was significant at the post-2-month (p=0.008) and post-6-month (p<0.001) intervention. The SGS group also showed changes in pigmentation which resembled normal skin but no statistical significance was found. Pain, itchiness and pliability were also improved after intervention. This study indicated that silicone gel sheeting (Cica-Care) was effective to reduce thickness, pain, itchiness and pliability of the severe hypertrophic scar among the Chinese population. The moisturization effect of the tough and hard scar might contribute to the reduction of the skin thickness after 6 month's intervention.
NASA Astrophysics Data System (ADS)
Burchette, Trevor P.; Paul Wright, V.; Faulkner, Tom J.
1990-07-01
A 1000 m thick early Mississippian carbonate supersequence, the "Carboniferous Limestone" of southwest Britain, consists of three third-order depositional sequences. These comprise parasequences in various configurations, and the whole forms a carbonate ramp stack. Within this framework five major oolitic carbonate sandbodies developed: (a) Castell Coch Limestone, (b) Stowe Oolite, (c) Brofiscin Oolite, (d) Gully Oolite, and (e) High Tor Limestone. The depositional regime was storm- and wave-dominated throughout and the major sandbodies represent a range of progradational carbonate beaches, barriers and detached subtidal shoals. Analysis of the three-dimensional shapes and distribution of these five examples shows that they evolved to produce three major carbonate sandbody geometries: (a) strings, (b) sheets, and (c) wedges. These geometries are characterised using the five field examples and offered as a template which may assist in the exploration and reservoir modelling of petroleum-rich high-energy ramp systems. Progradation, for up to 40 km, of barrier islands (Stowe Oolite) and beach-ridge plains (Gully Oolite Formation) generated strings, and "thick" sheets individually up to 10-20 m thick. "Thin" shoreface-retreat carbonate packstone/grainstone sheets up to 5 m thick (High Tor limestone) developed during transgressions as veneers across flooding surfaces. These are comparable with sheet sands developed in siliciclastic shelf depositional systems. Progradation, for up to 30 km, and vertical aggradation of shoreline-detached oolite shoals (Castell Coch limestone, Brofiscin Oolite), generated basinwards-expanding or thinning wedges up to 30 m thick. Tectonically controlled stacking of strandplain sheets produced a composite carbonate sandbody up to 80 m thick (Gully Oolite). The intrinsic (sedimentary) and extrinsic (eustacy, tectonism, climate) factors which controlled these sandbody geometries are addressed. Establishing the positions of the sandbodies accurately within depositional sequences allows them to be located within inferred seismic sequence geometries and provides one possible solution to the difficult problem of predicting carbonate facies distribution in subtle stratigraphic plays. In this ramp system, the most homogeneous sandbodies (up to 30 m grainstones), with greatest reservoir facies potential, are represented by shoal-belt wedges. Potential grainstone reservoir facies in the prograding shorelines are limited to the upper parts of individual shoreface sequences (max. 10 m grainstones). For shoreline carbonate sandbodies, the greatest reservoir and stratigraphic trapping potential exists in the earliest ramp parasequences where enveloping offshore sediments are siliciclastic mudstones. In later stages, potential seals are likely to be less reliable, low-porosity outer ramp carbonates.
Deep drawing of 304 L Steel Sheet using Vegetable oils as Forming Lubricants
NASA Astrophysics Data System (ADS)
Shashidhara, Y. M.; Jayaram, S. R.
2012-12-01
The study involves the evaluation of deep drawing process using two non edible oils, Pongam (Pongammia pinnata) and Jatropha (Jatropha carcass) as metal forming lubricants. Experiments are conducted on 304L steel sheets under the raw and modified oils with suitable punch and die on a hydraulic press of 200 ton capacity. The punch load, draw-in-length and wall thickness distribution for deep drawn cups are observed. The drawn cups are scanned using laser scanning technique and 3D models are generated using modeling package. The wall thickness profiles of cups at different sections (or height) are measured using CAD package. Among the two raw oils, the drawn cups under Jatropha oil, have uniform wall thickness profile compared to Pongam oil. Uneven flow of material and cup rupturing is observed under methyl esters of Pongam and Jatropha oil lubricated conditions. However, the results are observed under epoxidised Jatropha oil with uniform metal flow and wall thicknesses compared to mineral and other versions of vegetable oils.
Math, Souvik; Horn, Roger; Jayaram, Vikram; Biswas, Sanjay Kumar
2007-04-15
Currently data obtained from surface force apparatus experiments are convoluted with the mechanical response of glue of unknown thickness, used to bond mica sheets to the substrates. This paper describes a formulation to precisely deconvolute out the forces between the mica sheets by determining the thickness of glue, knowing the mechanical properties of the glue. The formulation consists of a general solution based on the noniterative Hankel transform of the Laplace equation. The generality is achieved by treating all the layers except the one in contact as an effective lumped system consisting of a set of springs in series, where each spring represents a layer. The solution is validated by nanoindentation of trilayer systems consisting of layers with widely diverse mechanical properties, some differing from each other by three orders of magnitude. SFA experiments are done with carefully metered slabs of glue. The proposed method is validated by comparing the actual glue thicknesses with those determined using the present analysis.
NASA Astrophysics Data System (ADS)
Wang, Yin-Ping; Liu, Hai-Tao; Song, Hong-Yu; Liu, Jia-Xin; Shen, Hui-Ying; Jin, Yang; Wang, Guo-Dong
2018-04-01
0.05-0.15 mm-thick ultra-thin grain-oriented silicon steel sheets were successfully produced by a novel processing route including strip casting, hot rolling, normalizing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing and secondary recrystallization annealing. The evolutions of microstructure, texture and inhibitor along the processing were briefly investigated. The results showed that the initial Goss orientation originated due to the heterogenous nucleation of δ-ferrite grains during solidification. Because of the lack of shear deformation, only a few Goss grains were observed in the hot rolled sheet. After the first cold rolling and intermediate annealing, Goss texture was enhanced and distributed in the whole thickness. A small number of Goss grains having a high fraction of high energy boundaries exhibited in the primary recrystallization annealed sheet. A large number of fine and dispersed MnS and AlN and a few co-precipitates MnS and AlN with the size range of 10-70 nm were also observed. Interestingly, a well-developed secondary recrystallization microstructure characterized by 10-60 mm grains and a sharp Goss texture were finally produced in the 0.05-0.15 mm-thick ultra-thin sheets. A magnetic induction B8 of 1.72-1.84 T was obtained. Another new finding was that a few {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains also can grow up abnormally because of the high fraction of high energy boundaries and the size and number advantage, respectively. These non-Goss grains finally deteriorated the magnetic properties of the ultra-thin sheets. In addition, low surface energies of {hk0} planes may also contribute to the abnormal growth of Goss, {2 3 0}〈0 0 1〉 and {2 1 0}〈1 2 7〉 grains.
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.
2016-12-01
This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal component analysis and multivariate regression to analyze the dynamic ice-thickness change time series derived by SERAC and to investigate the primary forcings and controls on outlet glacier changes.
3D surface parameterization using manifold learning for medial shape representation
NASA Astrophysics Data System (ADS)
Ward, Aaron D.; Hamarneh, Ghassan
2007-03-01
The choice of 3D shape representation for anatomical structures determines the effectiveness with which segmentation, visualization, deformation, and shape statistics are performed. Medial axis-based shape representations have attracted considerable attention due to their inherent ability to encode information about the natural geometry of parts of the anatomy. In this paper, we propose a novel approach, based on nonlinear manifold learning, to the parameterization of medial sheets and object surfaces based on the results of skeletonization. For each single-sheet figure in an anatomical structure, we skeletonize the figure, and classify its surface points according to whether they lie on the upper or lower surface, based on their relationship to the skeleton points. We then perform nonlinear dimensionality reduction on the skeleton, upper, and lower surface points, to find the intrinsic 2D coordinate system of each. We then center a planar mesh over each of the low-dimensional representations of the points, and map the meshes back to 3D using the mappings obtained by manifold learning. Correspondence between mesh vertices, established in their intrinsic 2D coordinate spaces, is used in order to compute the thickness vectors emanating from the medial sheet. We show results of our algorithm on real brain and musculoskeletal structures extracted from MRI, as well as an artificial multi-sheet example. The main advantages to this method are its relative simplicity and noniterative nature, and its ability to correctly compute nonintersecting thickness vectors for a medial sheet regardless of both the amount of coincident bending and thickness in the object, and of the incidence of local concavities and convexities in the object's surface.
NASA Astrophysics Data System (ADS)
Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron
2017-04-01
Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.
Metal Foam Analysis: Improving Sandwich Structure Technology for Engine Fan and Propeller Blades
NASA Technical Reports Server (NTRS)
Fedor, Jessica L.
2004-01-01
The Life Prediction Branch of the NASA Glenn Research Center is searching for ways to construct aircraft and rotorcraft engine fan and propeller blades that are lighter and less costly. One possible design is to create a sandwich structure composed of two metal faces sheets and a metal foam core. The face sheets would carry the bending loads and the foam core would have to resist the transverse shear loads. Metal foam is ideal because of its low density and energy absorption capabilities, making the structure lighter, yet still stiff. The material chosen for the face sheets and core was 17-4PH stainless steel, which is easy to make and has appealing mechanical properties. This material can be made inexpensively compared to titanium and polymer matrix composites, the two current fan blade alternatives. Initial tests were performed on design models, including vibration and stress analysis. These tests revealed that the design is competitive with existing designs; however, some problems were apparent that must be addressed before it can be implemented in new technology. The foam did not hold up as well as expected under stress. This could be due to a number of issues, but was most likely a result of a large number of pores within the steel that weakened the structure. The brazing between the face sheets and the foam was also identified as a concern. The braze did not hold up well under shear stress causing the foam to break away from the face sheets. My role in this project was to analyze different options for improving the design. I primarily spent my time examining various foam samples, created with different sintering conditions, to see which exhibited the most favorable characteristics for our purpose. Methods of analysis that I employed included examining strut integrity under a microscope, counting the number of cells per inch, measuring the density, testing the microhardness, and testing the strength under compression. Shear testing will also be done to examine the strengths of different types of brazes.
Weld Repair of Thin Aluminum Sheet
NASA Technical Reports Server (NTRS)
Beuyukian, C. S.; Mitchell, M. J.
1986-01-01
Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.
NASA Technical Reports Server (NTRS)
Barrett, C. A.; Lowell, C. E.
1974-01-01
The cyclic and isothermal oxidation resistance of 25 high-temperature Ni-, Co-, and Fe-base sheet alloys after 100 hours in air at 1150 C was compared. The alloys were evaluated in terms of their oxidation, scaling, and vaporization rates and their tendency for scale spallation. These values were used to develop an oxidation rating parameter based on effective thickness change, as calculated from a mass balance. The calculated thicknesses generally agreed with the measured values, including grain boundary oxidation, to within a factor of 3. Oxidation behavior was related to composition, particularly Cr and Al content.
Detail of north end of the Electrical Shop (foreground) and ...
Detail of north end of the Electrical Shop (foreground) and Sheet Metal Shop, note the metal-frame windows in the Electrical Shop, view facing east - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI
Physical basis for a thick ice shelf in the Arctic Basin during the penultimate glacial maximum
NASA Astrophysics Data System (ADS)
Gasson, E.; DeConto, R.; Pollard, D.; Clark, C.
2017-12-01
A thick ice shelf covering the Arctic Ocean during glacial stages was discussed in a number of publications in the 1970s. Although this hypothesis has received intermittent attention, the emergence of new geophysical evidence for ice grounding in water depths of up to 1 km in the central Arctic Basin has renewed interest into the physical plausibility and significance of an Arctic ice shelf. Various ice shelf configurations have been proposed, from an ice shelf restricted to the Amerasian Basin (the `minimum model') to a complete ice shelf cover in the Arctic. Attempts to simulate an Arctic ice shelf have been limited. Here we use a hybrid ice sheet / shelf model that has been widely applied to the Antarctic ice sheet to explore the potential for thick ice shelves forming in the Arctic Basin. We use a climate forcing appropriate for MIS6, the penultimate glacial maximum. We perform a number of experiments testing different ice sheet / shelf configurations and compare the model results with ice grounding locations and inferred flow directions. Finally, we comment on the potential significance of an Arctic ice shelf to the global glacial climate system.
Mello, Marcia B C; Luz, Francisco C; Leal-Santos, Fabio A; Alves, Eduardo R; Gasquez, Thamires M; Fontes, Cor J F
2014-06-17
Due to students' initial inexperience, slides are frequently broken and blood smears are damaged in microscopy training, leading to the need for their constant replacement. To minimize this problem a method of preparing blood smears on transparent acetate sheets was developed with the goal of implementing appropriate and more readily available teaching resources for the microscopic diagnosis of malaria. Acetate sheets derived from polyester were used to standardize the preparation and staining of thin and thick blood smears on transparent acetate sheets. Thick and thin blood smears were also prepared using the conventional method on glass slides. The staining was conducted using Giemsa staining for the thick and thin smears. Microscopic examination (1,000x) of the thin and thick blood smears prepared on transparent acetate produced high-quality images for both the parasites and the blood cells. The smears showed up on a clear background and with minimal dye precipitation. It was possible to clearly identify the main morphological characteristics of Plasmodium, neutrophils and platelets. After 12 months of storage, there was no change in image quality or evidence of fungal colonization. Preparation of thin and thick blood smears in transparent acetate for the microscopic diagnosis of malaria does not compromise the morphological and staining characteristics of the parasites or blood cells. It is reasonable to predict the applicability of transparent acetate in relevant situations such as the training of qualified professionals for the microscopic diagnosis of malaria and the preparation of positive specimens for competency assessment (quality control) of professionals and services involved in the diagnosis of malaria.
14 CFR 6 - Objective Classification of Balance Sheet Elements
Code of Federal Regulations, 2012 CFR
2012-01-01
...] Current Liabilities 2000Current Maturities of Long-term Debt. Record here the face value or principal... not properly classifiable as current. 2005Notes Payable—Banks. Record here the face value of all notes... should be included in account 2000. 2015Notes Payable—Other. Record here the face value of all notes...
14 CFR Section 6 - Objective Classification of Balance Sheet Elements
Code of Federal Regulations, 2014 CFR
2014-01-01
...] Current Liabilities 2000Current Maturities of Long-term Debt. Record here the face value or principal... not properly classifiable as current. 2005Notes Payable—Banks. Record here the face value of all notes... should be included in account 2000. 2015Notes Payable—Other. Record here the face value of all notes...
17 CFR 210.6-03 - Special rules of general application to registered investment companies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... of assets. The balance sheets of registered investment companies, other than issuers of face-amount.... As required by section 28(b) of the Investment Company Act of 1940, qualified assets of face-amount... outstanding face-amount certificates. If the nature of the qualifying assets and amount thereof are not...
14 CFR Section 6 - Objective Classification of Balance Sheet Elements
Code of Federal Regulations, 2013 CFR
2013-01-01
...] Current Liabilities 2000Current Maturities of Long-term Debt. Record here the face value or principal... not properly classifiable as current. 2005Notes Payable—Banks. Record here the face value of all notes... should be included in account 2000. 2015Notes Payable—Other. Record here the face value of all notes...
New Modelling of Localized Necking in Sheet Metal Stretching
NASA Astrophysics Data System (ADS)
Bressan, José Divo
2011-01-01
Present work examines a new mathematical model to predict the onset of localized necking in the industrial processes of sheet metal forming such as biaxial stretching. Sheet metal formability is usually assessed experimentally by testing such as the Nakajima test to obtain the Forming Limit Curve, FLC, which is an essential material parameter necessary to numerical simulations by FEM. The Forming Limit Diagram or "Forming Principal Strain Map" shows the experimental FLC which is the plot of principal true strains in the sheet metal surface, ɛ1 and ɛ2, occurring at critical points obtained in laboratory formability tests or in the fabrication process. Two types of undesirable rupture mechanisms can occur in sheet metal forming products: localized necking and shear induced fracture. Therefore, two kinds of limit strain curves can be plotted: the local necking limit curve FLC-N and the shear fracture limit curve FLC-S. Localized necking is theoretically anticipated to initiate at a thickness defect ƒin = hib/hia inside the grooved sheet thickness hia, but only at the instability point of maximum load. The inception of grooving on the sheet surface evolves from instability point to localized necking and final rupture, during further sheet metal straining. Work hardening law is defined for a strain and strain rate material by the effective stress σ¯ = σo(1+βɛ¯)n???ɛM. The average experimental hardening law curve for tensile tests at 0°, 45° and 90°, assuming isotropic plasticity, was used to analyze the plasticity behavior during the biaxial stretching of sheet metals. Theoretical predicted curves of local necking limits are plotted in the positive quadrant of FPSM for different defect values ƒin and plasticity parameters. Limit strains are obtained from a software developed by the author. Some experimental results of forming limit curve obtained from experiments for IF steel sheets are compared with the theoretical predicted curves: the correlation is good.
Effect of Specimen Thickness on the Creep Response of a Single Crystal Superalloy (Preprint)
2012-01-01
0.38mm. 3.1.2. Fractography Figure 5: SEM images of the sheet specimen of thickness 3.18mm creep tested at 760◦C/758MPa, (a) Specimen reconstructed after...with dotted rectangle in (b). To further explore the mechanism behind thickness debit effect, we performed stan- dard fractography using secondary...thickness 3.18mm ruptured after 210hours. 3.2.3. Fractography The SEM image of the reconstructed creep ruptured specimen of thickness 3.18mm is shown in
Intermittent magnetic reconnection in TS-3 merging experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Y.; Hayashi, Y.; Ii, T.
2011-11-15
Ejection of current sheet with plasma mass causes impulsive and intermittent magnetic reconnection in the TS-3 spherical tokamak (ST) merging experiment. Under high guide toroidal field, the sheet resistivity is almost classical due to the sheet thickness much longer than the ion gyroradius. Large inflow flux and low current-sheet resistivity result in flux and plasma pileup followed by rapid growth of the current sheet. When the pileup exceeds a critical limit, the sheet is ejected mechanically from the squeezed X-point area. The reconnection (outflow) speed is slow during the flux/plasma pileup and is fast during the ejection, suggesting that intermittentmore » reconnection similar to the solar flare increases the averaged reconnection speed. These transient effects enable the merging tokamaks to have the fast reconnection as well as the high-power reconnection heating, even when their current-sheet resistivity is low under high guide field.« less
Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection
Mertz, Jerome; Kim, Jinhyun
2010-01-01
It is well known that light-sheet illumination can enable optically sectioned wide-field imaging of macroscopic samples. However, the optical sectioning capacity of a light-sheet macroscope is undermined by sample-induced scattering or aberrations that broaden the thickness of the sheet illumination. We present a technique to enhance the optical sectioning capacity of a scanning light-sheet microscope by out-of-focus background rejection. The technique, called HiLo microscopy, makes use of two images sequentially acquired with uniform and structured sheet illumination. An optically sectioned image is then synthesized by fusing high and low spatial frequency information from both images. The benefits of combining light-sheet macroscopy and HiLo background rejection are demonstrated in optically cleared whole mouse brain samples, using both green fluorescent protein (GFP)-fluorescence and dark-field scattered light contrast. PMID:20210471
Thin sheets achieve optimal wrapping of liquids
NASA Astrophysics Data System (ADS)
Paulsen, Joseph; Démery, Vincent; Davidovitch, Benny; Santangelo, Christian; Russell, Thomas; Menon, Narayanan
2015-03-01
A liquid drop can wrap itself in a sheet using capillary forces [Py et al., PRL 98, 2007]. However, the efficiency of ``capillary origami'' at covering the surface of a drop is hampered by the mechanical cost of bending the sheet. Thinner sheets deform more readily by forming small-scale wrinkles and stress-focussing patterns, but it is unclear how coverage efficiency competes with mechanical cost as thickness is decreased, and what wrapping shapes will emerge. We place a thin (~ 100 nm) polymer film on a drop whose volume is gradually decreased so that the sheet covers an increasing fraction of its surface. The sheet exhibits a complex sequence of axisymmetric and polygonal partially- and fully- wrapped shapes. Remarkably, the progression appears independent of mechanical properties. The gross shape, which neglects small-scale features, is correctly predicted by a simple geometric approach wherein the exposed area is minimized. Thus, simply using a thin enough sheet results in maximal coverage.
Wanek, Justin; Blair, Norman P.; Chau, Felix Y.; Lim, Jennifer I.; Leiderman, Yannek I.; Shahidi, Mahnaz
2016-01-01
Purpose This article reports a method for en face optical coherence tomography (OCT) imaging and quantitative assessment of alterations in both thickness and reflectance of individual retinal layers at different stages of diabetic retinopathy (DR). Methods High-density OCT raster volume scans were acquired in 29 diabetic subjects divided into no DR (NDR) or non-proliferative DR (NPDR) groups and 22 control subjects (CNTL). A customized image segmentation method identified eight retinal layer interfaces and generated en face thickness maps and reflectance images for nerve fiber layer (NFL), ganglion cell and inner plexiform layers (GCLIPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), photoreceptor outer segment layer (OSL), and retinal pigment epithelium (RPE). Mean thickness and intensity values were calculated in nine macular subfields for each retinal layer. Results En face thickness maps and reflectance images of retinal layers in CNTL subjects corresponded to normal retinal anatomy. Total retinal thickness correlated negatively with age in nasal subfields (R ≤−0.31; P ≤ 0.03, N = 51). In NDR subjects, NFL and OPL thickness were decreased (P = 0.05), and ONL thickness was increased (P = 0.04) compared to CNTL. In NPDR subjects, GCLIPL thickness was increased in perifoveal subfields (P < 0.05) and INL intensity was higher in all macular subfields (P = 0.04) compared to CNTL. Conclusions Depth and spatially resolved retinal thickness and reflectance measurements are potential biomarkers for assessment and monitoring of DR. PMID:27409491
Thin, porous metal sheets and methods for making the same
Liu, Wei; Li, Xiaohong Shari; Canfield, Nathan L.
2015-07-14
Thin, porous metal sheets and methods for forming them are presented to enable a variety of applications and devices. The thin, porous metal sheets are less than or equal to approximately 200 .mu.m thick, have a porosity between 25% and 75% by volume, and have pores with an average diameter less than or equal to approximately 2 .mu.m. The thin, porous metal sheets can be fabricated by preparing a slurry having between 10 and 50 wt % solvent and between 20 and 80 wt % powder of a metal precursor. The average particle size in the metal precursor powder should be between 100 nm and 5 .mu.m.
Development of 1500mm Wide Wrought Magnesium Alloys by Twin Roll Casting Technique in Turkey
NASA Astrophysics Data System (ADS)
Duygulu, Ozgur; Ucuncuoglu, Selda; Oktay, Gizem; Temur, Deniz Sultan; Yucel, Onuralp; Kaya, Ali Arslan
Magnesium alloy AZ31, AZ61, AZ91, AM50 and AM60 sheets were produced by twin roll casting first time in Turkey. Sheets of 4.5-6.5mm thick and 1500mm width were successfully achieved. Microstructure of the sheet was analyzed by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). Semi-quantitative analyses were performed by SEM-EDS. In addition, X-ray studies were performed for both characterization and texture purposes. Mechanical properties were investigated by tensile tests and also hardness measurements. Homogenization and annealing heat treatments were performed on the produced sheets.
Design Considerations for Thermally Insulating Structural Sandwich Panels for Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2016-01-01
Simplified thermal/structural sizing equations were derived for the in-plane loading of a thermally insulating structural sandwich panel. Equations were developed for the strain in the inner and outer face sheets of a sandwich subjected to uniaxial mechanical loads and differences in face sheet temperatures. Simple equations describing situations with no viable solution were developed. Key design parameters, material properties, and design principles are identified. A numerical example illustrates using the equations for a preliminary feasibility assessment of various material combinations and an initial sizing for minimum mass of a sandwich panel.
An Experimental Study of Filmwise Condensation on Horizontal Enhanced Condenser Tubing.
1979-12-01
with a 51 mm thick sheet of Johns - Manville Aerotube insulation. 22 D. CONDENSATE AND FEEDWATER SYSTEMS The condensate and feedwater systems are shown...desuperheater. The condensate and feedwater lines are insulated with 25.4 mm thick Johns - Manville Aerotube insulation. E. COOLING WATER SYSTEM The cooling
Chest wall abscesses due to continuous application of silicone gel sheets for keloid management
Tang, Hon-Lok; Lau, Keith K; Sam, Ramin; Ing, Todd S
2015-01-01
A patient with three episodes of chest wall abscesses as a result of 6 years of round-the-clock, uninterrupted (except during bathing) application of silicone gel sheets to a chest wall keloid is described. Two of the episodes occurred during hot weather. It is suggested that, in the space beneath the silicone sheet, the higher humidity and temperature, both generated as a result of prolonged sheeting, especially during hot weather, might have caused the keloid and its neighbouring skin to become soggy. This sogginess might have facilitated bacterial invasion. It is suggested that some sheeting-free time during a 24 h period might be indicated so that a keloid and its adjacent skin have the time to recover from their sheeting-induced sogginess. A sheeting-free period might especially be needed in the face of sweat accumulation beneath the silicone sheet. PMID:25920733
Chest wall abscesses due to continuous application of silicone gel sheets for keloid management.
Tang, Hon-Lok; Lau, Keith K; Sam, Ramin; Ing, Todd S
2015-04-28
A patient with three episodes of chest wall abscesses as a result of 6 years of round-the-clock, uninterrupted (except during bathing) application of silicone gel sheets to a chest wall keloid is described. Two of the episodes occurred during hot weather. It is suggested that, in the space beneath the silicone sheet, the higher humidity and temperature, both generated as a result of prolonged sheeting, especially during hot weather, might have caused the keloid and its neighbouring skin to become soggy. This sogginess might have facilitated bacterial invasion. It is suggested that some sheeting-free time during a 24 h period might be indicated so that a keloid and its adjacent skin have the time to recover from their sheeting-induced sogginess. A sheeting-free period might especially be needed in the face of sweat accumulation beneath the silicone sheet. 2015 BMJ Publishing Group Ltd.
NASA Astrophysics Data System (ADS)
Chambers, Andrew T.
Airborne noise with a low dominant frequency content (< 500 Hz) has detrimental effects in many applications, but is as yet beyond the scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and sound pressure level on the attenuation across folded core liners is evaluated using grazing flow impedance tube tests. Up to 20 dB of attenuation is observed in the targeted frequency range in these tests indicating potential for performance retention in an operational scenario. With current additive and hybrid manufacturing techniques attaining critical commercial maturity, lightweight and compact acoustic liners employing folded cores could provide a promising practical solution to mitigate low-frequency airborne noise, especially in aerospace applications.
NASA Astrophysics Data System (ADS)
Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun
2018-05-01
The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.
NASA Astrophysics Data System (ADS)
Balter, A.; Bromley, G. R.; Balco, G.; Thomas, H.; Jackson, M. S.
2017-12-01
Ice-free areas at high elevation in the central Transantarctic Mountains preserve extensive moraine sequences and drift deposits that comprise a geologic record of former East Antarctic Ice Sheet thickness and extent. We are applying cosmogenic-nuclide exposure dating to determine the ages of these moraine sequences at Roberts Massif and Otway Massif, at the heads of the Shackleton and Beardmore Glaciers, respectively. Moraines at these sites are for the most part openwork boulder belts characteristic of deposition by cold-based ice, which is consistent with present climate and glaciological conditions. To develop our chronology, we collected samples from 30 distinct ice-marginal landforms and have so far measured >100 3He, 10Be, and 21Ne exposure ages. Apparent exposure ages range from 1-14 Ma, which shows that these landforms record glacial events between the middle Pleistocene and middle Miocene. These data show that the thickness of the East Antarctic Ice Sheet in this region was similar to or thicker than present for long periods between the middle Miocene and today. The time range represented by these moraine sequences indicates that they may also provide direct geologic evidence for East Antarctic Ice Sheet behavior during past periods of warmer-than-present climate, specifically the Miocene and Pliocene. As the East Antarctic Ice Sheet is the largest ice sheet on earth, understanding its sensitivity to warm-climate conditions is critical for projections of ice sheet behavior and sea-level rise in future warm climates.
NASA Astrophysics Data System (ADS)
Feldmann, Johannes; Levermann, Anders
2017-08-01
Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.
Frozen-bed Fennoscandian and Laurentide ice sheets during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Kleman, Johan; Hättestrand, Clas
1999-11-01
The areal extents of the Laurentide and Fennoscandian ice sheets during the Last Glacial Maximum (about 20,000 years ago) are well known, but thickness estimates range widely, from high-domed to thin, with large implications for our reconstruction of the climate system regarding, for example, Northern Hemisphere atmospheric circulation and global sea levels. This uncertainty stems from difficulties in determining the basal temperatures of the ice sheets and the shear strength of subglacial materials, a knowledge of which would better constrain reconstructions of ice-sheet thickness. Here we show that, in the absence of direct data, the occurrence of ribbed moraines in modern landscapes can be used to determine the former spatial distribution of frozen- and thawed-bed conditions. We argue that ribbed moraines were formed by brittle fracture of subglacial sediments, induced by the excessive stress at the boundary between frozen- and thawed-bed conditions resulting from the across-boundary difference in basal ice velocity. Maps of glacial landforms from aerial photographs of Canada and Scandinavia reveal a concentration of ribbed moraines around the ice-sheet retreat centres of Quebec, Keewatin, Newfoundland and west-central Fennoscandia. Together with the evidence from relict landscapes that mark glacial areas with frozen-bed conditions, the distribution of ribbed moraines on both continents suggest that a large area of the Laurentide and Fennoscandian ice sheets was frozen-based-and therefore high-domed and stable-during the Last Glacial Maximum.
Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao; Umetani, Keiji; Imai, Yasuhiko; Uesugi, Kentaro; Yagi, Naoto
2008-07-01
A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 microm high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 microm-thick polyimide sheets that were separated by 175 microm-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of the dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.
Stability of Thin Liquid Sheet Flows
NASA Technical Reports Server (NTRS)
McConley, Marc W.; Chubb, Donald L.; McMaster, Matthew S.; Afjeh, Abdollah A.
1997-01-01
A two-dimensional, linear stability analysis of a thin nonplanar liquid sheet flow in vacuum is carried out. A sheet flow created by a narrow slit of W and tau attains a nonplanar cross section as a consequence of cylinders forming on the sheet edge under the influence of surface tension forces. The region where these edge cylinders join the sheet is one of high curvature, and this is found to be the location where instability is most likely to occur. The sheet flow is found to be unstable, but with low growth rates for symmetric wave disturbances and high growth rates for antisymmetric disturbances. By combining the symmetric and antisymmetric disturbance modes, a wide range of stability characteristics is obtained. The product of unstable growth rate and flow time is proportional to the width-to-thickness ratio of the sift generating the sheet Three-dimensional effects can alter these results, particularly when the sheet length-to-width ratio is not much greater than unity.
ISEE-1 and 2 observations of field-aligned currents in the distant midnight magnetosphere
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Kelly, T. J.; Russell, C. T.
1985-01-01
Magnetic field measurements obtained in the nightside magnetosphere by the co-orbiting ISEE-1 and 2 spacecraft have been examined for signatures of field-aligned currents (FAC). Such currents are found on the boundary of the plasma sheet both when the plasma sheet is expanding and when it is thinning. Evidence is often found for the existence of waves on the plasma sheet boundary, leading to multiple crossings of the FAC sheet. At times the boundary layer FAC sheet orientation is nearly parallel to the X-Z GSM plane, suggesting 'protrusions' of plasma sheet into the lobes. The boundary layer current polarity is, as expected, into the ionosphere in the midnight to dawn local time sector, and outward near dusk. Current sheet thicknesses and velocities are essentially independent of plasma sheet expansion or thinning, having typical values of 1500 km and 20-40 km/s respectively. Characteristic boundary layer current densities are about 10 nanoamps per square meter.
Antarctica and Its Ice Sheet: Knowledge Gained During the IGY/IGC
NASA Astrophysics Data System (ADS)
Bentley, C. R.
2006-12-01
At the end of World War II, the interior of Antarctica, with the exception of the mountains south of the Ross Ice Shelf, was still terra incognita. It was described simply as a nearly continuous high plateau. Even less was known about the ice thickness; the eminent glacial geologist, Richard Foster Flint, believed it "unlikely that the ice thickness exceeds 2000 feet except very locally; probably its average thickness is considerably less." Then in the late 1940's and early 1950's, seismic sounding in Greenland by the Expéditions Polaires Françaises and in Queen Maud Land by the Norwegian-British-Swedish Antarctic Expedition, 1949-52, revealed that, inland of the coastal mountains, the beds in both regions lie close to sea level. This led to a reappraisal of the Antarctic ice sheet, such that the prescient glaciologist, Robert P. Sharp, could predict, on the eve of the IGY, that "between 3000 and 4000 meters of ice will be found" in East Antarctica and that "work during IGY will establish an average thickness for Antarctic inland ice in excess of 1600 m." Seismic and gravity soundings on oversnow traverses conducted by eight countries during the IGY and the succeeding IGC showed Sharp to be basically correct, but there were major surprises, such as the vast Gamburtsev Subglacial Mountains, completely hidden by the ice in central East Antarctica, and the equally vast Byrd Subglacial Basin beneath much of the West Antarctic ice sheet, so deep that roughly half the ice in the region lies below sea level. There were major discoveries on and above the surface too, such as the huge size of the Filchner/Ronne Ice Shelf, and the very existence of the Ellsworth and Pensacola Mountains, the former including the highest peak on the continent. Further, the fundamental difference between the crustal structures of East and West Antarctica became clear. A summary paper published in 1960, looking primarily at West Antarctica where the main U.S. activity lay, could conclude that 1) the bed of most of the West Antarctic ice sheet (including the ice shelves) lies below sea level; 2) the Byrd Subglacial Basin represents a fundamental division between the geological provinces of Marie Byrd Land, the Ellsworth Mountains, and the Transantarctic Mountains; 3) the crust of West Antarctica is continental in character and is in approximate isostatic equilibrium, but is only about 30 km thick; and 4) the ice sheet in West Antarctica originated separately in Marie Byrd Land and the Ellsworth-Whitmore-Horlick highland, expanded and converged to form an ice shelf over the open water between them, which then thickened to form the present grounded ice sheet. Thus the background was well laid for all the advances of the last 50 years.
Action of a Local Time-Periodic Load on an Ice Sheet with a Crack
NASA Astrophysics Data System (ADS)
Tkacheva, L. A.
2017-11-01
The problem of vibrations of an ice sheet with a rectilinear crack on the surface of an ideal incompressible fluid of finite depth under the action of a time-periodic local load is solved analytically using the Wiener-Hopf technique. Ice cover is simulated by two thin elastic semi-infinite plates of constant thickness. The thickness of the plates may be different on the opposite sides of the crack. Various boundary conditions on the edges of the plates are considered. For the case of contact of plates of the same thickness, a solution in explicit form is obtained. The asymptotics of the deflection of the plates in the far field is studied. It is shown that in the case of contact of two plates of different thickness, predominant directions of wave propagation at an angle to the crack can be identified in the far field. In the case of contact of plates of the same thickness with free edges and with free overlap, an edge waveguide mode propagating along the crack is excited. It is shown that the edge mode propagates with maximum amplitude if the vertical wall is in contact with the plate. Examples of calculations are given.
Electro-optic device with gap-coupled electrode
Deri, Robert J.; Rhodes, Mark A.; Bayramian, Andrew J.; Caird, John A.; Henesian, Mark A.; Ebbers, Christopher A.
2013-08-20
An electro-optic device includes an electro-optic crystal having a predetermined thickness, a first face and a second face. The electro-optic device also includes a first electrode substrate disposed opposing the first face. The first electrode substrate includes a first substrate material having a first thickness and a first electrode coating coupled to the first substrate material. The electro-optic device further includes a second electrode substrate disposed opposing the second face. The second electrode substrate includes a second substrate material having a second thickness and a second electrode coating coupled to the second substrate material. The electro-optic device additionally includes a voltage source electrically coupled to the first electrode coating and the second electrode coating.
Study on Strata Behavior Regularity of 1301 Face in Thick Bedrock of Wei - qiang Coal Mine
NASA Astrophysics Data System (ADS)
Gu, Shuancheng; Yao, Boyu
2017-09-01
In order to ensure the safe and efficient production of the thick bedrock face, the rule of the strata behavior of the thick bedrock face is discussed through the observation of the strata pressure of the 1301 first mining face in Wei qiang coal mine. The initial face is to press the average distance of 50.75m, the periodic weighting is to press the average distance of 12.1m; during the normal mining period, although the upper roof can not be broken at the same time, but the pressure step is basically the same; the working face for the first weighting and periodical weighting is more obvious to the change of pressure step change, when the pressure of the working face is coming, the stent force increased significantly, but there are still part of the stent work resistance exceeds the rated working resistance, low stability, still need to strengthen management.
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1971-01-01
Through- and surface-cracked specimens of two thicknesses were tested in uniaxial tension. Surface-cracked specimens were generally found to be stronger than through-cracked specimens with the same crack length. Apparent surface-crack fracture toughness calculated using the Anderson modified Irwin equation remained relatively constant for cracks as deep as 90 percent of the sheet thickness. Subcritical growth of surface cracks was investigated. Comparison of chamber and open air welds showed chamber welds to be slightly tougher. Both methods produced welds with toughness that compared favorably with that of the parent metal. Weld efficiencies were above 94 percent.
1983-11-01
galvanising industry, this pressure distribution is created by blowing a thin high-speed air jet onto the coated steel sheet, just after it emerges from the...if that free surface possesses curvature and non-zero surface tension, the internal pressure will differ from that in the jet. In the galvanising
Direct Laser Writing of Single-Material Sheets with Programmable Self-Rolling Capability
NASA Astrophysics Data System (ADS)
Bauhofer, Anton; KröDel, Sebastian; Bilal, Osama; Daraio, Chiara; Constantinescu, Andrei
Direct laser writing, a sub-class of two-photon polymerization, facilitates 3D-printing of single-material microstructures with inherent residual stresses. Here we show that controlled distribution of these stresses allows for fast and cost-effective fabrication of structures with programmable self-rolling capability. We investigate 2D sheets that evolve into versatile 3D structures. Precise control over the shape morphing potential is acquired through variations in geometry and writing parameters. Effects of capillary action and gravity were shown to be relevant for very thin sheets (thickness <1.5um) and have been analytically and experimentally quantified. In contrast to that, the deformations of sheets with larger thickness (>1.5um) are dominated by residual stresses and adhesion forces. The presented structures create local tensions up to 180MPa, causing rolling curvatures of 25E3m-1. A comprehensive analytical model that captures the relevant influence factors was developed based on laminate plate theory. The predicted curvature and directionality correspond well with the experimentally obtained data. Potential applications are found in drug encapsulation and particle traps for emulsions with differing surface energies. This work was supported by the Swiss National Science Foundation.
Hot forging of roll-cast high aluminum content magnesium alloys
NASA Astrophysics Data System (ADS)
Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio
2017-10-01
This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.
Eastern Ross Ice Sheet Deglacial History inferred from the Roosevelt Island Ice Core
NASA Astrophysics Data System (ADS)
Fudge, T. J.; Buizert, C.; Lee, J.; Waddington, E. D.; Bertler, N. A. N.; Conway, H.; Brook, E.; Severinghaus, J. P.
2017-12-01
The Ross Ice Sheet drains large portions of both West and East Antarctica. Understanding the retreat of the Ross Ice Sheet following the Last Glacial Maximum is particularly difficult in the eastern Ross area where there is no exposed rock and the Ross Ice Shelf prevents extensive bathymetric mapping. Coastal domes, by preserving old ice, can be used to infer the establishment of grounded ice and be used to infer past ice thickness. Here we focus on Roosevelt Island, in the eastern Ross Sea, where the Roosevelt Island Climate Evolution project recently completed an ice core to bedrock. Using ice-flow modeling constrained by the depth-age relationship and an independent estimate of accumulation rate from firn-densification measurements and modeling, we infer ice thickness histories for the LGM (20ka) to present. Preliminary results indicate thinning of 300m between 15ka and 12ka is required. This is similar to the amount and timing of thinning inferred at Siple Dome, in the central Ross Sea (Waddington et al., 2005; Price et al., 2007) and supports the presence of active ice streams throughout the Ross Ice Sheet advance during the LGM.
Structural assessment of metal foam using combined NDE and FEA
NASA Astrophysics Data System (ADS)
Ghosn, Louis J.; Abdul-Aziz, Ali; Young, Philippe G.; Rauser, Richard W.
2005-05-01
Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a high fidelity finite element analysis is conducted on as fabricated metal foam microstructures, to compare the calculated mechanical properties with the idealized theory. The high fidelity geometric models for the FEA are generated using series of 2D CT scans of the foam structure to reconstruct the 3D metal foam geometry. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile, compressive, and shear mechanical properties are deduced from the FEA model and compared with the theoretical values. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.
Pixelized Device Control Actuators for Large Adaptive Optics
NASA Technical Reports Server (NTRS)
Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter
2009-01-01
A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.
An Obstacle Problem for Conical Deformations of Thin Elastic Sheets
NASA Astrophysics Data System (ADS)
Figalli, Alessio; Mooney, Connor
2018-05-01
A developable cone ("d-cone") is the shape made by an elastic sheet when it is pressed at its center into a hollow cylinder by a distance {ɛ}. Starting from a nonlinear model depending on the thickness h > 0 of the sheet, we prove a {Γ} -convergence result as {h → 0} to a fourth-order obstacle problem for curves in {S^2}. We then describe the exact shape of minimizers of the limit problem when {ɛ} is small. In particular, we rigorously justify previous results in the physics literature.
Mu, S; Tee, B C; Emam, H; Zhou, Y; Sun, Z
2018-04-06
Impaired bone formation of the buccal alveolar plate after tooth extraction during adolescence increases the difficulty of future implant restoration. This study was undertaken to assess the feasibility and efficacy of transplanting autogenous scaffold-free culture-expanded mesenchymal stem cell (MSC) sheets to the buccal alveolar bone surface to stimulate local bone growth. Mandibular bone marrow was aspirated from 3-month-old pigs (n = 5), from which MSCs were isolated and culture expanded. Triple-layer MSC sheets were then fabricated using temperature-responsive tissue culture plates. One month after bone marrow aspirations, the same pigs underwent bilateral extraction of mandibular primary molars, immediately followed by transplantation of 3 autogenous triple-layer MSC sheets on to the subperiosteal buccal alveolar surface of 1 randomly chosen side. The contralateral side (control) underwent the same periosteal reflection surgery without receiving MSC sheet transplantation. Six weeks later, the animals were killed and specimens from both sides were immediately harvested for radiographic and histological analysis. Buccal alveolar bone thickness, tissue mineral density (TMD), mineral apposition and bone volume fraction (BV/TV) were quantified and compared between the MSC sheet and control sides using paired t-tests. Triple-layer MSC sheets were reliably fabricated and the majority of cells remained vital before transplantation. The thickness of buccal bone tended to increase with MSC sheet transplantation (P = .18), with 4 of 5 animals showing an average of 1.82 ± 0.73 mm thicker bone on the MSC sheet side than the control side. After being normalized by the TMD of intracortical bone, the TMD of surface cortical bone was 0.5-fold higher on the MSC sheet side than the control side (P < .05). Likewise, the BV/TV measurements of the buccal surface region were also 0.4-fold higher on the MSC sheet side than the control side (P < .05) after being normalized by measurements from the intracortical region. Mineral apposition measurements were not different between the 2 sides. Mandibular marrow-derived MSCs can be fabricated into cell sheets and autogenous transplantation of MSC sheets onto the subperiosteal buccal alveolar bone surface at the tooth-extraction site may increase local bone density. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Influence of laser beam incidence angle on laser lap welding quality of galvanized steels
NASA Astrophysics Data System (ADS)
Mei, Lifang; Yan, Dongbing; Chen, Genyu; Wang, Zhenhui; Chen, Shuixuan
2017-11-01
Based on the characteristics of laser welded structural parts of auto bodies, the influence of variation in laser beam incidence angle on the lap welding performance of galvanized auto-body sheets was studied. Lap welding tests were carried out on the galvanized sheets for auto-body application at different laser beam incidence angles by using the optimal welding parameters obtained through orthogonal experiment. The effects of incidence angle variation on seam appearance, cross-sectional shape, joint mechanical properties and microstructure of weldments were analyzed. In addition, the main factors influencing the value of incidence angle were investigated. According to the results, the weld seams had a good appearance as well as a fine, and uniform microstructure when the laser beam incidence angle was smaller than the critical incidence angle, and thus they could withstand great tensile and shear loads. Moreover, all tensile-shear specimens were fractured in the base material zone. When the laser beam incidence angle was larger than the critical incidence angle, defects like shrinkage and collapse tended to emerge, thereby resulting in the deteriorated weldability of specimens. Meanwhile, factors like the type and thickness of sheet, weld width as well as inter-sheet gap all had a certain effect on the value of laser beam incidence angle. When the sheet thickness was small and the weld width was narrow, the laser beam incidence angle could be increased appropriately. At the same time, small changes in the inter-sheet gap could greatly impact the value of incidence angle. When the inter-sheet gap was small, the laser beam incidence angle should not be too large.
Mochizuki, Yumi; Tomioka, Hirofumi; Tushima, Fumihiko; Shimamoto, Hiroaki; Hirai, Hideaki; Oikawa, Yuu; Harada, Hiroyuki
2016-01-01
Purpose: This study aimed to evaluate the coverage of oral wounds using either a polyglycolic acid (PGA) sheet or split-thickness skin grafting (STSG). Materials and Methods: A total of 119 cases of wound coverage using a PGA sheet and fibrin glue spray as well as 132 cases of wound coverage cases using STSG were reviewed retrospectively. The site of the excision area, perioperative conditions, and postoperative functional problems were evaluated. Results: The PGA group had significantly shorter operation time, earlier start of oral intake, and shorter hospitalization than the STSG group. If the PGA sheet over the wound with exposed bone could be protected by a surgical sprint, oral food intake could be started on the day after surgery at the earliest. When the size of the wound in the buccal excisional area was classified into two groups (<6 or ≥6 cm2), mouth opening in the STSG group was significantly larger at 3 months postoperatively. When the size of the wound in the tongue and floor of mouth was classified into two groups (<12 or ≥12 cm2), the STSG group had a significantly higher score in postoperative speech intelligibility. Conclusion: Selection of a PGA sheet or STSG based on the consideration of defect size, tumor location, patients’ local and general condition and tolerance for surgery could reduce the patients’ postsurgical dysfunctional problems. PMID:28299263
Oxygen acceleration in magnetotail reconnection
NASA Astrophysics Data System (ADS)
Liang, Haoming; Lapenta, Giovanni; Walker, Raymond J.; Schriver, David; El-Alaoui, Mostafa; Berchem, Jean
2017-01-01
Motivated by the observed high concentration of oxygen ions in the magnetotail during enhanced geomagnetic activity, we investigated the oxygen acceleration in magnetotail reconnection by using 2.5-D implicit particle-in-cell simulations. We found that lobe oxygen ions can enter the downstream outflow region, i.e., the outflow region downstream of the dipolarization fronts (DFs) or the reconnection jet fronts. Without entering the reconnection exhaust, they are accelerated by the Hall electric field. They can populate the downstream outflow region before the DFs arrive there. This acceleration is in addition to acceleration in the exhaust by the Hall and reconnection electric fields. Oxygen ions in the preexisting current sheet are reflected by the propagating DF creating a reflected beam with a hook shape in phase space. This feature can be applied to deduce a history of the DF speed. However, it is difficult to observe for protons because their typical thermal velocity in the plasma sheet is comparable those of the DF and the reflection speed. The oxygen ions from the lobes and the preexisting current sheet form multiple beams in the distribution function in front of the DF. By comparing oxygen concentrations of 50%, 5%, and 0% with the same current sheet thickness, we found that the DF thickness is proportional to the oxygen concentration in the preexisting current sheet. All the simulation results can be used to compare with the observations from the Magnetospheric Multiscale mission.
Properties of hot-rolled sheets from ferritic steel with increased strength
NASA Astrophysics Data System (ADS)
Perlovich, Yu.; Isaenkova, M.; Dobrokhotov, P.; Stolbov, S.; Bannykh, O.; Bannykh, I.; Antsyferova, M.
2017-10-01
Sheets from ferritic steel 3 mm thick with increased strength after thermal hardening were studied by use of various X-ray methods and mechanical testing. Rolling of steel was carried out at 1100°C with rather great reductions per pass, so that plastic deformation of metal spread by the significant distance from the surface. The texture of sheet proved to have two sharply different layers: the inner layer of ˜40% thick with the usual rolling texture of BCC metals and the external layer with the rolling texture of FCC metals. At that, within the intermediate layer the texture is weakened. Texture formation within the external layer is conditioned by the process of dynamical deformation ageing: interstitial impurities from atmosphere block dislocations, prevent from their slip and at increased temperatures promote their collective climb. As a result, the direction of lattice rotation as well as the final rolling texture change. Due to texture layering, by impact testing of the sheet the plane of crack propagation must be changed when this crack reaches the inner layer, and then an additional energy for its further movement is required. Thermal hardening of the sheet retains the type of rolling texture, though results in some its scattering, but at the same time the breaking point of steel grows twice owing to formation of intermetallic particles.
NASA Astrophysics Data System (ADS)
Parsons, R. A.; Nimmo, F.
2010-03-01
SHARAD observations constrain the thickness and dust content of lobate debris aprons (LDAs). Simulations of dust-free ice-sheet flow over a flat surface at 205 K for 10-100 m.y. give LDA lengths and thicknesses that are consistent with observations.
Optimizing Observations of Sea Ice Thickness and Snow Depth in the Arctic
2014-09-30
changes in the thickness of sea ice, glaciers , and ice sheets. These observations are critical for predicting the response of Earth’s polar ice to...Arctic Sea Ice Conditions in Spring 2009 - 2013 Prior to Melt , Geophys. Res. Lett., 40, 5888-5893, doi: 10.1002/2013GL058011. [published, refereed
Hexaferrite multiferroics: from bulk to thick films
NASA Astrophysics Data System (ADS)
Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.
2018-03-01
We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.
2012-01-01
We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics. PMID:22222144
On the balance of stresses in the plasma sheet.
NASA Technical Reports Server (NTRS)
Rich, F. J.; Wolf, R. A.; Vasyliunas, V. M.
1972-01-01
The stress resulting from magnetic tension on the neutral sheet must, in a steady state, be balanced by any one or a combination of (1) a pressure gradient in the direction along the axis of the tail, (2) a similar gradient of plasma flow kinetic energy, and (3) the tension resulting from a pressure anisotropy within the plasma sheet. Stress balance in the first two cases requires that the ratios h/LX and BZ/BX be of the same order of magnitude, where h is the half-thickness of the neutral sheet, LX is the length scale for variations along the axis of the tail, and BZ and BX are the magnetic field components in the plasma sheet just outside the neutral sheet. The second case requires, in addition, that the plasma flow speed within the neutral sheet be of the order of or larger than the Alfven speed outside the neutral sheet. Stress balance in the third case requires that just outside the neutral sheet the plasma pressure obey the marginal firehose stability condition.
Theoretical and experimental emittance measurements for a thin liquid sheet flow
NASA Technical Reports Server (NTRS)
Englehart, Amy N.; Mcconley, Marc W.; Chubb, Donald L.
1995-01-01
Surface tension forces at the edges of a thin liquid (approximately 200 microns) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. Since the fluid must have very low vapor pressure, Dow Corning 705 silicone oil was used and the emittance of a flowing sheet of oil was determined by two methods. The emittance was derived as a function of the temperature drop between the top of the sheet and the coalescence point of the sheet, the sink temperature, the volumetric flow and the length of the sheet. the emittance for the oil was also calculated using an extinction coefficient determined from spectral transmittance data of the oil. The oil's emittance ranges from .67 to .87 depending on the sheet thickness and sheet temperature. The emittance derived from the temperature drop was slightly less than the emittance calculated from transmittance data. An investigation of temperature fluctuation upstream of the slit plate was also done. The fluctuations were determined to be negligible, not affecting the temperature drop which was due to radiation.
Design Optimization and Analysis of a Composite Honeycomb Intertank
NASA Technical Reports Server (NTRS)
Finckenor, Jeffrey; Spurrier, Mike
1998-01-01
Intertanks, the structure between tanks of launch vehicles, are prime candidates for weight reduction of rockets. This paper discusses the optimization and detailed analysis of a 96 in (2.44 m) diameter, 77 in (1.85 m) tall intertank. The structure has composite face sheets and an aluminum honeycomb core. The ends taper to a thick built up laminate for a double lap bolted shear joint. It is made in 8 full length panels joined with bonded double lap joints. The nominal load is 4000 lb/in (7 x 10(exp 5) N/m). Optimization is by Genetic Algorithm and minimizes weight by varying C, core thickness, number and orientation of acreage and buildup plies, and the size, number and spacing of bolts. A variety of cases were run with populations up to 2000 and chromosomes as long as 150 bits. Constraints were buckling, face stresses (normal, shear, wrinkling and dimpling, bolt stress, and bolt hole stresses (bearing, net tension, wedge splitting, shear out and tension/shear out). Analysis is by a combination of theoretical solutions and empirical data. After optimization, a series of coupon tests were performed in conjunction with a rigorous analysis involving a variety of finite element models. The analysis and test resulted in several small changes to the optimized design. The intertank has undergone a 250,000 lb (1.1 x 10(exp 6) N) limit load test and been mated with a composite liquid hydrogen tank. The tank/intertank unit is being installed in a test stand where it will see 200 thermal/load cycles. Afterwards the intertank will be demated and loaded in compression to failure.
Light Redirective Display Panel And A Method Of Making A Light Redirective Display Panel
Veligdan, James T.
2005-07-26
An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.
Light redirective display panel and a method of making a light redirective display panel
Veligdan, James T.
2002-01-01
An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.
Equivalent-Continuum Modeling With Application to Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.
2002-01-01
A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.
Energy conditions of high quality laser-oxygen cutting of mild steel
NASA Astrophysics Data System (ADS)
Shulyatyev, V. B.; Orishich, A. M.; Malikov, A. G.
2011-02-01
In our previous work we found experimentally the scaling laws for the oxygen-assisted laser cutting of low-carbon steel of 5 - 25 mm. No dross and minimal roughness of the cut surface were chosen as criteria of quality. Formulas were obtained to determine the optimum values of the laser power and cutting speed for the given sheet thickness. In the present paper, the energy balance of the oxygen-assisted laser cutting is studied experimentally at these optimum parameters. The absorbed laser energy and heat conduction losses and cut width were measured experimentally, and then the energy of exothermic reaction of oxidation was found from the balance equation. To define the integral coefficient of absorption, the laser power was measured on the cutting channel exit during the cutting. The heat conduction losses were measured by the calorimetric method. It has been established that the absorbed laser energy, oxidation energy, thermal losses and melting enthalpy related to a sheet thickness unit, do not depend on the sheet thickness at the cutting with the minimal roughness. The results enable to determine the fraction of the oxidized iron in the melt and thermal efficiency at the cutting with the minimal roughness. The share of the oxidation reaction energy is 50 - 60% in the total contributed energy.
Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells
NASA Astrophysics Data System (ADS)
Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios
2017-01-01
Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.
Reversible Humidity Sensitive Clothing for Personal Thermoregulation
Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun
2017-01-01
Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design. PMID:28281646
Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.
Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk
2009-10-01
This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).
Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays
Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk
2010-01-01
This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516
Reversible Humidity Sensitive Clothing for Personal Thermoregulation
NASA Astrophysics Data System (ADS)
Zhong, Ying; Zhang, Fenghua; Wang, Meng; Gardner, Calvin J.; Kim, Gunwoo; Liu, Yanju; Leng, Jinsong; Jin, Sungho; Chen, Renkun
2017-03-01
Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, the sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.
Reversible Humidity Sensitive Clothing for Personal Thermoregulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Ying; Zhang, Fenghua; Wang, Meng
Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, themore » sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.« less
Ice-sheet-driven methane storage and release in the Arctic
Portnov, Alexey; Vadakkepuliyambatta, Sunil; Mienert, Jürgen; Hubbard, Alun
2016-01-01
It is established that late-twentieth and twenty-first century ocean warming has forced dissociation of gas hydrates with concomitant seabed methane release. However, recent dating of methane expulsion sites suggests that gas release has been ongoing over many millennia. Here we synthesize observations of ∼1,900 fluid escape features—pockmarks and active gas flares—across a previously glaciated Arctic margin with ice-sheet thermomechanical and gas hydrate stability zone modelling. Our results indicate that even under conservative estimates of ice thickness with temperate subglacial conditions, a 500-m thick gas hydrate stability zone—which could serve as a methane sink—existed beneath the ice sheet. Moreover, we reveal that in water depths 150–520 m methane release also persisted through a 20-km-wide window between the subsea and subglacial gas hydrate stability zone. This window expanded in response to post-glacial climate warming and deglaciation thereby opening the Arctic shelf for methane release. PMID:26739497
Reversible Humidity Sensitive Clothing for Personal Thermoregulation
Zhong, Ying; Zhang, Fenghua; Wang, Meng; ...
2017-03-10
Two kinds of humidity-induced, bendable smart clothing have been designed to reversibly adapt their thermal insulation functionality. The first design mimics the pores in human skin, in which pre-cut flaps open to produce pores in Nafion sheets when humidity increases, as might occur during human sweating thus permitting air flow and reducing both the humidity level and the apparent temperature. Like the smart human sweating pores, the flaps can close automatically after the perspiration to keep the wearer warm. The second design involves thickness adjustable clothes by inserting the bent polymer sheets between two fabrics. As the humidity increases, themore » sheets become thinner, thus reducing the gap between the two fabrics to reduce the thermal insulation. The insulation layer can recover its original thickness upon humidity reduction to restore its warmth-preservation function. Such humidity sensitive smart polymer materials can be utilized to adjust personal comfort, and be effective in reducing energy consumption for building heating or cooling with numerous smart design.« less
A linear shock cell model for jets of arbitrary exit geometry
NASA Technical Reports Server (NTRS)
Morris, P. J.; Bhat, T. R. S.; Chen, G.
1989-01-01
The shock cell structures of single supersonic non-ideally expanded jets with arbitrary exit geometry are studied. Both vortex sheets and realistic mean profiles are considered for the jet shear layer. The boundary element method is used to predict the shock spacing and screech tones in a vortex sheet model of a single jet. This formulation enables the calculations to be performed only on the vortex sheet. This permits the efficient and convenient study of complicated jet geometries. Results are given for circular, elliptic and rectangular jets and the results are compared with analysis and experiment. The agreement between the predictions and measurements is very good but depends on the assumptions made to predict the geometry of the fully expanded jet. A finite diffference technique is used to examine the effect of finite mixing layer thickness for a single jet. The finite thickness of the mixing layer is found to decrease the shock spacing by approximately 20 percent over the length of the jet potential core.
Disintegration of liquid sheets
NASA Technical Reports Server (NTRS)
Mansour, Adel; Chigier, Norman
1990-01-01
The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.
NASA Technical Reports Server (NTRS)
Holko, K. H.
1972-01-01
Hot press butt welds were made in 0.5 in. diameter bar, and roll lap welds were made in 0.060 in. thick sheet of Ti-6A1-4V. For hot press welds made after auto-vacuum cleaning at 1800 F for 2 hours, weld strength and ductility equaled the parent metal properties. Only 5 minutes of pressing time were needed at 1800 F and 200 psi to make the hot press welds. Roll welds were made in sheet at 1750 F with only 10 percent deformation. The welds in the bar and sheet were metallurgically indistinguishable from the parent material.
Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3
NASA Astrophysics Data System (ADS)
Tordjman, Moshe; Weinfeld, Kamira; Kalish, Rafi
2017-09-01
An advanced charge-transfer yield is demonstrated by employing single monolayers of transition-metal oxides—tungsten trioxide (WO3) and rhenium trioxide (ReO3)—deposited on the hydrogenated diamond surface, resulting in improved p-type sheet conductivity and thermal stability. Surface conductivities, as determined by Hall effect measurements as a function of temperature for WO3, yield a record sheet hole carrier concentration value of up to 2.52 × 1014 cm-2 at room temperature for only a few monolayers of coverage. Transfer doping with ReO3 exhibits a consistent narrow sheet carrier concentration value of around 3 × 1013 cm-2, exhibiting a thermal stability of up to 450 °C. This enhanced conductivity and temperature robustness exceed those reported for previously exposed surface electron acceptor materials used so far on a diamond surface. X-ray photoelectron spectroscopy measurements of the C1s core level shift as a function of WO3 and ReO3 layer thicknesses are used to determine the respective increase in surface band bending of the accumulation layers, leading to a different sub-surface two-dimensional hole gas formation efficiency in both cases. This substantial difference in charge-exchange efficiency is unexpected since both surface acceptors have very close work functions. Consequently, these results lead us to consider additional factors influencing the transfer doping mechanism. Transfer doping with WO3 reveals the highest yet reported transfer doping efficiency per minimal surface acceptor coverage. This improved surface conductivity performance and thermal stability will promote the realization of 2D diamond-based electronic devices facing process fabrication challenges.
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1998-01-01
A spin bearing assembly including, a pair of mutually opposing complementary bearing support members having mutually spaced apart bearing support surfaces which may be, for example, bearing races and a set of spin bearings located therebetween. Each spin bearing includes a pair of end faces, a central rotational axis passing through the end faces, a waist region substantially mid-way between the end faces and having a first thickness dimension, and discrete side surface regions located between the waist region and the end faces and having a second thickness dimension different from the first thickness dimension of the waist region and wherein the side surface regions further have respective curvilinear contact surfaces adapted to provide a plurality of bearing contact points on the bearing support members.
NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Walker, james; Roth, Don; Hopkins, Dale
2010-01-01
This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.
Elevation Change of the Southern Greenland Ice Sheet from Satellite Radar Altimeter Data
NASA Technical Reports Server (NTRS)
Haines, Bruce J.
1999-01-01
Long-term changes in the thickness of the polar ice sheets are important indicators of climate change. Understanding the contributions to the global water mass balance from the accumulation or ablation of grounded ice in Greenland and Antarctica is considered crucial for determining the source of the about 2 mm/yr sea-level rise in the last century. Though the Antarctic ice sheet is much larger than its northern counterpart, the Greenland ice sheet is more likely to undergo dramatic changes in response to a warming trend. This can be attributed to the warmer Greenland climate, as well as a potential for amplification of a global warming trend in the polar regions of the Northern Hemisphere. In collaboration with Drs. Curt Davis and Craig Kluever of the University of Missouri, we are using data from satellite radar altimeters to measure changes in the elevation of the Southern Greenland ice sheet from 1978 to the present. Difficulties with systematic altimeter measurement errors, particularly in intersatellite comparisons, beset earlier studies of the Greenland ice sheet thickness. We use altimeter data collected contemporaneously over the global ocean to establish a reference for correcting ice-sheet data. In addition, the waveform data from the ice-sheet radar returns are reprocessed to better determine the range from the satellite to the ice surface. At JPL, we are focusing our efforts principally on the reduction of orbit errors and range biases in the measurement systems on the various altimeter missions. Our approach emphasizes global characterization and reduction of the long-period orbit errors and range biases using altimeter data from NASA's Ocean Pathfinder program. Along-track sea-height residuals are sequentially filtered and backwards smoothed, and the radial orbit errors are modeled as sinusoids with a wavelength equal to one revolution of the satellite. The amplitudes of the sinusoids are treated as exponentially-correlated noise processes with a time-constant of six days. Measurement errors (e.g., altimeter range bias) are simultaneously recovered as constant parameters. The corrections derived from the global ocean analysis are then applied over the Greenland ice sheet. The orbit error and measurement bias corrections for different missions are developed in a single framework to enable robust linkage of ice-sheet measurements from 1978 to the present. In 1998, we completed our re-evaluation of the 1978 Seasat and 1985-1989 Geosat Exact Repeat Mission data. The estimates of ice thickness over Southern Greenland (south of 72N and above 2000 m) from 1978 to 1988 show large regional variations (+/-18 cm/yr), but yield an overall rate of +1.5 +/- 0.5 cm/yr (one standard error). Accounting for systematic errors, the estimate may not be significantly different from the null growth rate. The average elevation change from 1978 to 1988 is too small to assess whether the Greenland ice sheet is undergoing a long-term change.
THE FREE-FALL TIME OF FINITE SHEETS AND FILAMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toala, Jesus A.; Vazquez-Semadeni, Enrique; Gomez, Gilberto C.
2012-01-10
Molecular clouds often exhibit filamentary or sheet-like shapes. We compute the free-fall time ({tau}{sub ff}) for finite, uniform, self-gravitating circular sheets and filamentary clouds of small but finite thickness, so that their volume density {rho} can still be defined. We find that, for thin sheets, the free-fall time is larger than that of a uniform sphere with the same volume density by a factor proportional to {radical}A, where the aspect ratio A is given by A = R/h, R being the sheet's radius and h is its thickness. For filamentary clouds, the aspect ratio is defined as A=L/R, where Lmore » is the filament's half-length and R is its (small) radius, and the modification factor is more complicated, although in the limit of large A it again reduces to nearly {radical}A. We propose that our result for filamentary shapes naturally explains the ubiquitous configuration of clumps fed by filaments observed in the densest structures of molecular clouds. Also, the longer free-fall times for non-spherical geometries in general may contribute toward partially alleviating the 'star formation conundrum', namely, the star formation rate in the Galaxy appears to be proceeding in a timescale much larger than the total molecular mass in the Galaxy divided by its typical free-fall time. If molecular clouds are in general formed by thin sheets and long filaments, then their relevant free-fall time may have been systematically underestimated, possibly by factors of up to one order of magnitude.« less
Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan
2015-01-01
Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures. PMID:26229979
Helium-Cooled Black Shroud for Subscale Cryogenic Testing
NASA Technical Reports Server (NTRS)
Tuttle, James; Jackson, Michael; DiPirro, Michael; Francis, John
2011-01-01
This shroud provides a deep-space simulating environment for testing scaled-down models of passively cooling systems for spaceflight optics and instruments. It is used inside a liquid-nitrogen- cooled vacuum chamber, and it is cooled by liquid helium to 5 K. It has an inside geometry of approximately 1.6 m diameter by 0.45 m tall. The inside surfaces of its top and sidewalls have a thermal absorptivity greater than 0.96. The bottom wall has a large central opening that is easily customized to allow a specific test item to extend through it. This enables testing of scale models of realistic passive cooling configurations that feature a very large temperature drop between the deepspace-facing cooled side and the Sun/Earth-facing warm side. This shroud has an innovative thermal closeout of the bottom wall, so that a test sample can have a hot (room temperature) side outside of the shroud, and a cold side inside the shroud. The combination of this closeout and the very black walls keeps radiated heat from the sample s warm end from entering the shroud, reflecting off the walls and heating the sample s cold end. The shroud includes 12 vertical rectangular sheet-copper side panels that are oriented in a circular pattern. Using tabs bent off from their edges, these side panels are bolted to each other and to a steel support ring on which they rest. The removable shroud top is a large copper sheet that rests on, and is bolted to, the support ring when the shroud is closed. The support ring stands on four fiberglass tube legs, which isolate it thermally from the vacuum chamber bottom. The insides of the cooper top and side panels are completely covered with 25- mm-thick aluminum honeycomb panels. This honeycomb is painted black before it is epoxied to the copper surfaces. A spiral-shaped copper tube, clamped at many different locations to the outside of the top copper plate, serves as part of the liquid helium cooling loop. Another copper tube, plumbed in a series to the top plate s tube, is clamped to the sidewall tabs where they are bolted to the support ring. Flowing liquid helium through these tubes cools the entire shroud to 5 K. The entire shroud is wrapped loosely in a layer of double-aluminized Kapton. The support ring s inner diameter is the largest possible hole through which the test item can extend into the shroud. Twelve custom-sized trapezoidal copper sheets extend inward from the support ring to within a few millimeters of the test item. Attached to the inner edge of each of these sheets is a custom-shaped strip of Kapton, which is aluminum- coated on the warm-facing (outer) side, and has thin Dacron netting attached to its cold-facing side. This Kapton rests against the test item, but the Dacron keeps it from making significant thermal contact. The result is a non-contact, radiatively reflective thermal closeout with essentially no gap through which radiation can pass. In this way, the part of the test item outside the shroud can be heated to relatively high temperatures without any radiative heat leaking to the inside.
NASA Technical Reports Server (NTRS)
Geipel, Clayton M.; Rockwell, Robert D.; Chelliah, Harsha K.; Cutler, Andrew D.; Spelker, Christopher A.; Hashem, Zeid; Danehy, Paul M.
2017-01-01
OH and CH2O were imaged in a premixed, cavity-anchored, ethylene-air turbulent flame using a high resolution planar laser-induced fluorescence (PLIF) system. The electrically-heated, continuous flow facility (UVa Supersonic Combustion Facility, Configuration E) consisted of a Mach 2 nozzle, an isolator with fuel injectors, a test section with a cavity flame holder and optical access, and an extender. Standard test conditions comprised total temperature 1200 K, total pressure 300 kPa, local equivalence ratio near 0.4, and local Mach number near 0.6. OH PLIF data was also collected for a case with reduced total temperature and another with reduced equivalence ratio. OH and CH2O were excited in separate experiments with light sheets at 283.55 nm and 352.48 nm, respectively. A light sheet of approximate thickness 25 ?m illuminated the stream-wise midplane. This plane was imaged for 120 mm downstream of the backward-facing step. The intensified camera system imaged OH with magnification 1.97, a square 6.67 mm field of view, and in-plane resolution of 39 ?m. The smallest observed OH structures observed were approximately 100 ?m wide. The CH2O PLIF image signal was much weaker; the smallest observed structures were approximately 200 ?m wide. Composite fluorescence images were computed for the observed area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Suresh C.; Gupta, Neha
2015-12-15
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less
NASA Astrophysics Data System (ADS)
Rignot, Eric
2017-04-01
With unabated climate warming, massive sea level rise from the melting of ice sheets in Greenland and Antarctica looms at the horizon. This is unfortunately an experiment that we can afford to run only once. Satellite and airborne sensors have significantly helped reveal the magnitude of the mass balance of the ice sheets, where the changes take place, when they started, how they change with time and the nature of the physical processes controlling them. These observations have constrained the maturation of numerical modeling techniques for projecting changes in these ice sheets, including the coupling of ocean and ice sheet models, yet significant uncertainties remain to make these projections directly policy relevant and many challenges remain. I will review the state of balance of the ice sheets as we know it today and the fundamental processes that will drive fast ice sheet retreat and sea level change: ice-ocean interaction and iceberg calving. Ice-ocean interaction are dominated by the wind-forced intrusion of warm, salty, subsurface waters toward the ice sheet periphery to melt ice from below at rates orders of magnitude greater than at the surface. In Greenland, these rates are difficult to observe, but model simulations indicate rates of ice melt along vertical calving faces of meters per day, along with undercutting of the ice faces. Constraining the temperature of the ocean waters from high resolution models and observations, however, remains a significant challenge. I will describe the progress we have made in addressing one major issue which is the mapping of fjord bathymetry around Greenland to define the pathways for warm waters. In Antarctica, the rates of melt are measured from remote sensing data but averaged over long periods, so that we are dependent on in-situ observations to understand the interaction of ocean waters with ice within the sub-ice-shelf cavities. I will describe progress made in mapping the bathymetry of the ice shelves and how the results have impacted our understanding of these interactions. In terms of calving, there is a range of processes acting upon the glacier and ice shelf faces, proceeding from the surface and mostly from below, that are still not sufficiently well explored. I will discuss processes elucidated in Greenland (undercutting and rotation of ice blocks near floatation) and those that are not well known in Antarctica.
46 CFR 182.440 - Independent fuel tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... C65100 and C65500 1.29 (0.051) [AWG 16] 1.63 (0.064) [AWG 14] 3.66 (0.144) [AWG 7]. Steel or iron 5 6 1... act of March 3, 1892 (15 U.S.C. 206), for sheet and plate iron and steel. The letters “AWG” stand for... for “Manufacturer's Standard Gage” for sheet steel thickness. 2 Tanks over 1514 liters (400 gallons...
46 CFR 182.440 - Independent fuel tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... C65100 and C65500 1.29 (0.051) [AWG 16] 1.63 (0.064) [AWG 14] 3.66 (0.144) [AWG 7]. Steel or iron 5 6 1... act of March 3, 1892 (15 U.S.C. 206), for sheet and plate iron and steel. The letters “AWG” stand for... for “Manufacturer's Standard Gage” for sheet steel thickness. 2 Tanks over 1514 liters (400 gallons...
Automated array assembly task, phase 1
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1977-01-01
Various aspects of a sensitivity analysis, in particular, the impact of variations in metal sheet resistivity, metal line width, diffused layer sheet resistance, junction depth, base layer lifetime, optical coating thickness and optical coating refractive index and on process reproducibility for A's diffusion from a polymer dopant source and on module fabrication were studied. Model calculations show that acceptable process windows exist for each of these parameters.
METHOD OF MAKING FUEL ELEMENTS
Bean, C.H.; Macherey, R.E.
1959-12-01
A method is described for fabricating fuel elements, particularly for enclosing a plate of metal with a second metal by inserting the plate into an aperture of a frame of a second plate, placing a sheet of the second metal on each of opposite faces of the assembled plate and frame, purging with an inert gas the air from the space within the frame and the sheets while sealing the seams between the frame and the sheets, exhausting the space, purging the space with air, re-exhausting the spaces, sealing the second aperture, and applying heat and pressure to bond the sheets, the plate, and the frame to one another.
Christine Esposito
2006-01-01
Bringing the right people into a collaborative process can be difficult. Potential collaborators must all feel they have something to gain to justify investing resources, sharing knowledge, and perhaps compromising on goals and actions. This fact sheet discusses some of the common challenges that individuals, communities, and institutions face in collaboration.
Method of constructing dished ion thruster grids to provide hole array spacing compensation
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1976-01-01
The center-to-center spacings of a photoresist pattern for an array of holes applied to a thin metal sheet are increased by uniformly stretching the thin metal sheet in all directions along the plane of the sheet. The uniform stretching is provided by securely clamping the periphery of the sheet and applying an annular force against the face of the sheet, within the periphery of the sheet and around the photoresist pattern. The technique is used in the construction of ion thruster grid units where the outer or downstream grid is subjected to uniform stretching prior to convex molding. The technique provides alignment of the holes of grid pairs so as to direct the ion beamlets in a direction parallel to the axis of the grid unit and thereby provide optimization of the available thrust.
NASA Astrophysics Data System (ADS)
Jeon, Jae-Yeol; Son, Hyeon-Taek; Woo, Kee-Do; Lee, Kwang-Jin
2012-04-01
The relationship between the texture and mechanical properties of 6xxx aluminum alloy sheets processed via cross rolling was investigated. The microstructures of the conventional rolled and cross rolled sheets after annealing were analyzed using optical micrographs (OM). The texture distribution across the thickness in the Al-Mg-Si-Cu alloy, conventional rolled sheets, and cross rolled sheets both before and after annealing was investigated via X-ray texture measurements. The texture was analyzed in three layers from the surface to the center of the sheet. The β-fiber texture of the conventional rolled sheet was typical of the texture obtained using aluminumoll ring. After annealing, the typical β-fiber orientations were changed to recrystallization textures: cube{001}<100> and normal direction (ND)-rotated cubes. However, the texture of the cross rolled sheet was composed of an asymmetrical, rolling direction (RD)-rotated cubes. After annealing, the asymmetrical orientations in the cross rolled sheet were changed to a randomized texture. The average R-value of the annealed cross rolled sheets was higher than that of the conventional rolled sheets. The limit dome height (LDH) test results demonstrated that cross rolling is effective in improving the formability of the Al-Mg-Si-Cu alloy sheets.
Ang, E S; Lee, S T; Gan, C S; See, P; Chan, Y H; Ng, L H; Machin, D
2000-01-01
Conventional management of partial thickness facial burn wounds includes the use of silver sulphadiazine dressings. Silver sulphadiazine forms an overlying slough that makes wound healing assessment difficult. Moist exposed burn ointment (MEBO) has been proposed as the ideal burn wound dressing both for burns of the face and other sites. Proponents of MEBO claim that it accelerates wound healing and results in scarless wound healing and at the same time reduce bacterial colonisation and the need for analgesics. We present here our experience with MEBO in the management of partial thickness burns of the face. One hundred and fifteen patients with partial thickness burns were randomly assigned to conventional treatment or MEBO. Out of this, 112 were analysed. Thirty-nine patients sustained facial burns; 17 received MEBO and 22 received silver sulphadiazine. Patients were followed up daily until the burn wounds were reduced by 75% of original body surface area (BSA). In patients with facial burns, MEBO was similar to silver sulphadiazine therapy with respect to rate of wound healing. Minimal slough was present over the wounds in MEBO-treated wounds resulting in clearer assessment of healing progression. Advantages of MEBO as compared to silver sulphadiazine in the management of partial thickness burns of the face include convenient change of dressing and easier assessment of healing progression. This suggests that MEBO is a useful alternative therapy for partial thickness burns of the face.
Sea-level and solid-Earth deformation feedbacks in ice sheet modelling
NASA Astrophysics Data System (ADS)
Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk
2014-05-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
NASA Technical Reports Server (NTRS)
Zwally, H. Jay
2004-01-01
NASA's Ice, Cloud and Land Elevation Satellite (ICESat) has been measuring elevations of the Antarctic ice sheet and sea-ice freeboard elevations with unprecedented accuracy. Since February 20,2003, data has been acquired during three periods of laser operation varying from 36 to 54 days, which is less than the continuous operation of 3 to 5 years planned for the mission. The primary purpose of ICESat is to measure time-series of ice-sheet elevation changes for determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat data will continue to be acquired for approximately 33 days periods at 3 to 6 month intervals with the second of ICESat's three lasers, and eventually with the third laser. The laser footprints are about 70 m on the surface and are spaced at 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The orbital altitude is around 600 km at an inclination of 94 degrees with a 8-day repeat pattern for the calibration and validation period, followed by a 91 -day repeat period for the rest of the mission. The expected range precision of single footprint measurements was 10 cm, but the actual range precision of the data has been shown to be much better at 2 to 3 cm. The star-tracking attitude-determination system should enable footprints to be located to 6 m horizontally when attitude calibrations are completed. With the present attitude calibration, the elevation accuracy over the ice sheets ranges from about 30 cm over the low-slope areas to about 80 cm over areas with slopes of 1 to 2 degrees, which is much better than radar altimetry. After the first period of data collection, the spacecraft attitude was controlled to point the laser beam to within 50 m of reference surface tracks over the ice sheets. Detection of ice elevation changes over select areas of the ice sheet is demonstrated with using both crossover analysis and precise-repeat track analysis. Sea ice freeboard-height distributions over the Antarctic sea pack are derived over distances of 50 km and converted into maps of average freeboard thickness and sea-ice thickness.
NASA Astrophysics Data System (ADS)
Guan, Qing-Qing; Zhou, Hua-Jing; Ning, Ping; Lian, Pei-Chao; Wang, Bo; He, Liang; Chai, Xin-Sheng
2018-05-01
We have developed an easy and efficient method for exfoliating few-layer sheets of black phosphorus (BP) in N-methyl-2-pyrrolidone, using ultra-high pressure homogenization (UPH). The BP was first exfoliated into sheets that were a few atomic layers thick, using a homogenizer for only 30 min. Next, a double centrifugation procedure was used to separate the material into few-layer nanosheets that were examined by X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) spectroscopy. The results show that the products are specimens of phosphorene that are only a few-layer thick.
NASA Astrophysics Data System (ADS)
Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias
2017-11-01
Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.
Ice sheet margins and ice shelves
NASA Technical Reports Server (NTRS)
Thomas, R. H.
1984-01-01
The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.
Jafar-Zanjani, Samad; Cheng, Jierong; Mosallaei, Hossein
2016-04-10
An efficient auxiliary differential equation method for incorporating 2D inhomogeneous dispersive impedance sheets in the finite-difference time-domain solver is presented. This unique proposed method can successfully solve optical problems of current interest involving 2D sheets. It eliminates the need for ultrafine meshing in the thickness direction, resulting in a significant reduction of computation time and memory requirements. We apply the method to characterize a novel broad-beam leaky-wave antenna created by cascading three sinusoidally modulated reactance surfaces and also to study the effect of curvature on the radiation characteristic of a conformal impedance sheet holographic antenna. Considerable improvement in the simulation time based on our technique in comparison with the traditional volumetric model is reported. Both applications are of great interest in the field of antennas and 2D sheets.
NASA Astrophysics Data System (ADS)
Toifur, M.; Yuningsih, Y.; Khusnani, A.
2018-03-01
In this research, it has been made Cu/Ni thin film produced with electroplating technique. The deposition process was done in the plating bath using Cu and Ni as cathode and anode respectively. The electrolyte solution was made from the mixture of HBrO3 (7.5g), NiSO4 (100g), NiCl2 (15g), and aquadest (250 ml). Electrolyte temperature was varied from 40°C up to 80°C, to make the Ni ions in the solution easy to move to Cu cathode. The deposition was done during 2 minutes on the potential of 1.5 volt. Many characterizations were done including the thickness of Ni film, microstructure, and sheet resistivity. The results showed that at all samples Ni had attacked on the Cu substrate to form Cu/Ni. The raising of electrolyte temperature affected the increasing of Ni thickness that is the Ni thickness increase with the increasing electrolyte temperature. From the EDS spectrum, it can be informed that samples already contain Ni and Cu elements and NiO and CuO compounds. Addition element and compound are found for sample Cu/Ni resulted from 70° electrolyte temperature of Ni deposition, that are Pt and PtO2. From XRD pattern, there are several phases which have crystal structure i.e. Cu, Ni, and NiO, while CuO and PtO2 have amorphous structure. The sheet resistivity linearly decreases with the increasing electrolyte temperature.
Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet
NASA Technical Reports Server (NTRS)
Heimerl, George J; Woods, Walter
1946-01-01
Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.
Semiconductor surface protection material
NASA Technical Reports Server (NTRS)
Packard, R. D. (Inventor)
1973-01-01
A method and a product for protecting semiconductor surfaces is disclosed. The protective coating material is prepared by heating a suitable protective resin with an organic solvent which is solid at room temperature and converting the resulting solution into sheets by a conventional casting operation. Pieces of such sheets of suitable shape and thickness are placed on the semiconductor areas to be coated and heat and vacuum are then applied to melt the sheet and to drive off the solvent and cure the resin. A uniform adherent coating, free of bubbles and other defects, is thus obtained exactly where it is desired.
Creep forming of an Al-Mg-Li alloy for aeronautic application
NASA Astrophysics Data System (ADS)
Younes, Wael; Giraud, Eliane; Fredj, Montassar; Dal Santo, Philippe; van der Veen, Sjoerd
2016-10-01
Creep forming of Al-Mg-Li alloy sheets is studied. An instrumented bulging machine is used to form a double curvature panel at a reduced scale. The deformation of the work-sheet is ensured by a 7475 aluminum alloy lost sheet deformed by a gas pressure applied on its upper surface. A numerical model using the ABAQUS software is developed in order to obtain the pressure law and to ensure the forming conditions during the cycle. This model is validated by comparing experiments and numerical results in terms of deformed shape and thickness evolution.
Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min
2016-06-21
Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration.
NASA Technical Reports Server (NTRS)
Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.
1995-01-01
Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.
Collisionless distribution function for the relativistic force-free Harris sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, C. R.; Neukirch, T.
A self-consistent collisionless distribution function for the relativistic analogue of the force-free Harris sheet is presented. This distribution function is the relativistic generalization of the distribution function for the non-relativistic collisionless force-free Harris sheet recently found by Harrison and Neukirch [Phys. Rev. Lett. 102, 135003 (2009)], as it has the same dependence on the particle energy and canonical momenta. We present a detailed calculation which shows that the proposed distribution function generates the required current density profile (and thus magnetic field profile) in a frame of reference in which the electric potential vanishes identically. The connection between the parameters ofmore » the distribution function and the macroscopic parameters such as the current sheet thickness is discussed.« less
Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets
Tilka, J. A.; Park, J.; Ahn, Y.; ...
2018-02-26
A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less
Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilka, J. A.; Park, J.; Ahn, Y.
A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Yumiko; Torikoshi, Masami; Suzuki, Masao
A multislit collimator was designed and fabricated for basic studies on microbeam radiation therapy (MRT) with an x-ray energy of about 100 keV. It consists of 30 slits that are 25 {mu}m high, 30 mm wide, and 5 mm thick in the beam direction. The slits were made of 25 {mu}m-thick polyimide sheets that were separated by 175 {mu}m-thick tungsten sheets. The authors measured the dose distribution of a single microbeam with a mean energy of 125 keV by a scanning slit method using a phosphor coupled to a charge coupled device camera and found that the ratios of themore » dose at the center of a microbeam to that at midpositions to adjacent slits were 1050 and 760 for each side of the microbeam. This dose distribution was well reproduced by the Monte Carlo simulation code PHITS.« less
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir
2018-05-01
Main objective of present analysis is to study the magnetohydrodynamic (MHD) nonlinear convective flow of thixotropic nanofluid. Flow is due to nonlinear stretching surface with variable thickness. Nonlinear thermal radiation and heat generation/absorption are utilized in the energy expression. Convective conditions and zero mass flux at sheet are considered. Intention in present analysis is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Appropriate transformations are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been scrutinized through homotopic algorithm. Behavior of various sundry variables on velocity, temperature, nanoparticle concentration, skin friction coefficient and local Nusselt number are displayed through graphs. It is concluded that qualitative behaviors of temperature and thermal layer thickness are similar for radiation and temperature ratio variables. Moreover an enhancement in heat generation/absorption show rise to thermal field.
Deformation and flexural properties of denture base polymer reinforced with glass fiber sheet.
Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji
2005-09-01
The purpose of this study was to investigate the deformation and flexural properties of acrylic and urethane polymers reinforced with glass fiber sheet. Four types of specimen--self-curing resin plate (R), light-curing oligomer plate containing a reinforcement (GO), and self-curing resin plate containing a reinforcement on one (GR) or both (GRG) sides--were prepared with three thicknesses: 1.5, 2.4, and 3.0 mm. Gaps between polymerized test specimen and a standard metal plate were measured at the corner (C), middle of the long sides (LS), and middle of the short sides (SS). The gaps for R were 0-2.0 microm. GO and GR markedly deformed at Points C, LS, and SS, and the degree of deformation increased as GO became thinner. Flexural strength was significantly increased by the reinforcement (p < 0.05). The flexural moduli of 3.0-mm thick R, GO, and GR were significantly smaller than that of 1.5-mm thick specimens.
Design of a Microwave Assisted Discharge Inductive Plasma Accelerator
NASA Technical Reports Server (NTRS)
Hallock, Ashley K.; Polzin, Kurt A.
2010-01-01
A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.
1991-09-01
by 2.7 m (4 ft by 9 ft) sheets with cross cuts every 32 mm (1.25 in) through 90 per cent of its thickness. This allows the sheets to drape easily over...aluminium substrates. This procedure has many uses such as the production of dual hardness armour . An example of its primary use on wear surfaces could
Nanoscale Polymeric Photocells by Advanced Electrospinning
2006-07-20
Is desirable for efficient utilization of both infrared and ultraviolet regions of the solar spectrum. We have demonstrated that MWCNT sheet can be...recently described. 27These structures are based on very thin free-standing sheets of multiwall carbon nanotubes starting from a forest of MWCNTs home...significantly higher than earlier reported 0.081% efficiency of MEH-PPV based SCs with non-transparent and thick MWCNT hole collectors. 29 Not only were the
Perforated-Layer Implementation Of Radio-Frequency Lenses
NASA Technical Reports Server (NTRS)
Dolgin, Benjamin P.
1996-01-01
Luneberg-type radio-frequency dielectric lenses made of stacked perforated circular dielectric sheets, according to proposal. Perforation pattern designed to achieve required spatial variation of permittivity. Consists of round holes distributed across face of each sheet in "Swiss-cheese" pattern, plus straight or curved slots that break up outer parts into petals in "daisy-wheel" pattern. Holes and slots made by numerically controlled machining.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
In the face of rapidly changing public and political attitudes toward fire and fuel planning, one thing remains constant: the fuel planner is ultimately responsible for making decisions on the land. This fact sheet discusses the options for fuel treatments, and the need, development, and use of the MS Excel-based tool, My Fuel Treatment Planner.
State Capacity and Resistance in Afghanistan
2009-03-01
PRGF )222 of the International Monetary Fund (IMF).223 Facing these self-imposed (internal) and international (external) constraints, budget and...Budget_Policy_Coord_Reporting/Fact _Sheet/Fact_sheet_final_1386.pdf (accessed 19 November 2008). 222 The PRGF provides aid and structural guidance in the...management. See: A Factsheet: The Poverty Reduction and Growth Facility ( PRGF ). (International Monetary Fund, October 2008). On the web: http
Women, Work and Health Hazards: A Fact Sheet and Cosmetologists: Health Risks at Work.
ERIC Educational Resources Information Center
National Commission on Working Women, Washington, DC.
The first part of this document is a fact sheet that provides information on health hazards faced by employed women. It covers the Occupational Safety and Health Act (OSHA), job-related diseases suffered by workers in female-dominated occupations, employer responsibilities under OSHA, and the lack of statistical reporting on job-related disease.…
Views from the Home Front: The Experience of Children from Military Families. Fact Sheet
ERIC Educational Resources Information Center
Adamson, David M.
2009-01-01
Research has begun to document the challenges faced by members of the U.S. military in deploying for war and reintegrating into life at home. But little is known about how wartime experience and parental deployments have affected the children from military families. This fact sheet summarizes a study that explored how these children fared…
Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line
NASA Astrophysics Data System (ADS)
Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.
2004-11-01
Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.
Sakai, Yusuke; Koike, Makiko; Hasegawa, Hideko; Yamanouchi, Kosho; Soyama, Akihiko; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Ohashi, Kazuo; Okano, Teruo; Eguchi, Susumu
2013-01-01
Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell) sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells) as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.
Effect of Metamorphic Foliation on Regolith Thickness, Catalina Critical Zone Observatory, Arizona
NASA Astrophysics Data System (ADS)
Leone, J. D.; Holbrook, W. S.; Chorover, J.; Carr, B.
2016-12-01
Terrestrial life is sustained by nutrients and water held in soil and weathered rock, which are components of the Earth's critical zone, referred to as regolith. The thickness of regolith in the near-surface is thought to be influenced by factors such as climate, topographic stress, erosion and lithology. Our study has two aims: to determine the effect of metamorphic foliation on regolith thickness and to test an environmental model, Effective Energy Mass Transfer (EEMT), within a zero-order basin (ZOB) in the Santa Catalina Mountains. Seismic refraction and electrical resistivity data show a stark contrast in physical properties, and inferred regolith thickness, on north- versus south-facing slopes: north-facing slopes are characterized by higher seismic velocities and higher resistivities, consistent with thin regolith, while south-facing slopes show lower resistivities and velocities, indicative of deeper and more extensive weathering. This contrast is exactly the opposite of that expected from most climatic models, including the EEMT model, which predicts deeper regolith on north-facing slopes. Instead, regolith thickness appears to be controlled by metamorphic foliation: we observed a general, positive correlation between interpreted regolith thickness and foliation dip within heavily foliated lithologies and no correlation in weakly foliated lithologies. We hypothesize that hydraulic conductivity controls weathering here: where foliation is parallel to the surface topography, regolith is thin, but where foliation pierces the surface topography at a substantial angle, regolith is thick. The effect of foliation is much larger than that expected from environmental models: regolith thickness varies by a factor of 4 (2.5 m vs. 10 m). These results suggest that metamorphic foliation, and perhaps by extension sedimentary layering, plays a key role in determining regolith thickness and must be accounted for in models of critical zone development.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1991-01-01
Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.
Thermal Inspection of Composite Honeycomb Structures
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Parker, F. Raymond
2014-01-01
Composite honeycomb structures continue to be widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Pulsed thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Pulsed thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are presented. In addition, limitations to the thermal detection of the core are investigated. Other NDE techniques, such as computed tomography X-ray and ultrasound, are used for comparison to the thermography results.
C. -Y. Hse
1976-01-01
One-half-inch-thick, 8tructural exterior composite panels of various constructions were made in a one-step process, with faces of eouthern pine veneer and corea of mixed southern hardwood flakes. The flakes were precisely machined to be 3/8-inch wide, 3 inches long and 0.015 inch thick. Two veneer, cross-laminated on each face over an oriented flake core, yielded the...
Briggs, Matthew; Clements, Helen; Wynne, Neil; Rennie, Allan; Kellett, Darren
This study investigates the use of 3D printing for patients that require localised radiotherapy treatment to the face. The current process involves producing a lead mask in order to protect the healthy tissue from the effects of the radiotherapy. The mask is produced by applying a thermoplastic sheet to the patient's face and allowing to set hard. This can then be used as a mould to create a plaster impression of the patient's face. A sheet of lead is then hammered on to the plaster to create a bespoke fitted face mask. This process can be distressing for patients and can be problematic when the patient is required to remain motionless for a prolonged time while the thermoplastic sets. In this study, a 1:1 scale 3D print of a patient's face was generated using a laser scanner. The lead was hammered directly on to the surface of the 3D print in order to create a bespoke fitted treatment mask. This eliminated the thermoplastic moulding stage and significantly reduced the time needed for the patient to be in clinic. The higher definition impression of the the face resulted in a more accurate, better fitting treatment mask.
Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting
NASA Astrophysics Data System (ADS)
Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu
2016-05-01
Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.
Follicular contact dermatitis due to coloured permanent-pressed sheets
Panaccio, François; Montgomery, D. C.; Adam, J. E.
1973-01-01
A delayed hypersensitivity type of allergic contact dermatitis was observed following exposure to certain brands of 50% cotton, 50% polyester coloured permanent-pressed sheets produced by a particular manufacturer. The dermatitis presented as an extremely pruritic follicular eczema of the body and vesicular edema of the ears and face. Patch testing excluded formalin as the allergen but suggested permanent-pressing chemicals as a possibility. Several washings of the sheets did not prevent the development of the dermatitis. The removal of sheets did not immediately result in improvement: the condition could persist for up to eight weeks after their discontinuance. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:4268628
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Bolduc, Sean; Harman, Rebecca
2017-01-01
A composite fuselage aircraft forward section was inspected with flash thermography. The fuselage section is 24 feet long and approximately 8 feet in diameter. The structure is primarily configured with a composite sandwich structure of carbon fiber face sheets with a Nomex(Trademark) honeycomb core. The outer surface area was inspected. The thermal data consisted of 477 data sets totaling in size of over 227 Gigabytes. Principal component analysis (PCA) was used to process the data sets for substructure and defect detection. A fixed eigenvector approach using a global covariance matrix was used and compared to a varying eigenvector approach. The fixed eigenvector approach was demonstrated to be a practical analysis method for the detection and interpretation of various defects such as paint thickness variation, possible water intrusion damage, and delamination damage. In addition, inspection considerations are discussed including coordinate system layout, manipulation of the fuselage section, and the manual scanning technique used for full coverage.
Aeroelastic Sizing for High-Speed Research (HSR) Longitudinal Control Alternatives Project (LCAP)
NASA Technical Reports Server (NTRS)
Walsh, Joanne L.; Dunn, H. J.; Stroud, W. Jefferson; Barthelemy, J.-F.; Weston, Robert P.; Martin, Carl J.; Bennett, Robert M.
2005-01-01
The Longitudinal Control Alternatives Project (LCAP) compared three high-speed civil transport configurations to determine potential advantages of the three associated longitudinal control concepts. The three aircraft configurations included a conventional configuration with a layout having a horizontal aft tail, a configuration with a forward canard in addition to a horizontal aft tail, and a configuration with only a forward canard. The three configurations were aeroelastically sized and were compared on the basis of operational empty weight (OEW) and longitudinal control characteristics. The sized structure consisted of composite honeycomb sandwich panels on both the wing and the fuselage. Design variables were the core depth of the sandwich and the thicknesses of the composite material which made up the face sheets of the sandwich. Each configuration was sized for minimum structural weight under linear and nonlinear aeroelastic loads subject to strain, buckling, ply-mixture, and subsonic and supersonic flutter constraints. This report describes the methods that were used and the results that were generated for the aeroelastic sizing of the three configurations.
Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals
NASA Technical Reports Server (NTRS)
Dirusso, Eliseo
1984-01-01
Tests were performed to determine the dynamic behavior and establish baseline dynamic data for five self-acting face seals employing Rayleigh-step lift-pads and inward pumping as well as outward-pumping spiral grooves for the lift-generating mechanism. The primary parameters measured in the tests were film thickness, seal seat axial motion, and seal frictional torque. The data show the dynamic response of the film thickness to the motion of the seal seat. The inward-pumping spiral-groove seals exhibited a high-amplitude film thickness vibratory mode with a frequency of four times the shaft speed. This mode was not observed in the other seals tested. The tests also revealed that high film thickness vibration amplitude produces considerably higher average film thickness than do low amplitude film thickness vibrations. The seals were tested at a constant face load of 73 N (16.4 lb) with ambient air at room temperature and atmospheric pressure as the fluid medium. The test speed range was from 7000 to 17000 rpm. Seal tangential speed range was 34.5 to 83.7 m/sec (113 to 274 ft/sec).
NASA Astrophysics Data System (ADS)
Shen, C.; Li, X.; Dunlop, M.; Liu, Z. X.; Balogh, A.; Baker, D. N.; Hapgood, M.; Wang, X.
2003-05-01
The geometrical structure of the magnetic field is a critical character in the magnetospheric dynamics. Using the magnetic field data measured by the Cluster constellation satellites, the geometrical structure including the curvature radius, directions of curvature, and normal of the osculating planes of the magnetic field lines within the current sheet/neutral sheet have been investigated. The results are (1) Inside of the tail neutral sheet (NS), the curvature of magnetic field lines points towards Earth, the normal of the osculating plane points duskward, and the characteristic half width (or the minimum curvature radius) of the neutral sheet is generally less than 2 RE, for many cases less than 1600 km. (2) Outside of the neutral sheet, the curvature of magnetic field lines pointed northward (southward) at the north (south) side of NS, the normal of the osculating plane points dawnward, and the curvature radius is about 5 RE ˜ 10 RE. (3) Thin NS, where the magnetic field lines have the minimum of the curvature radius less than 0.25 RE, may appear at all the local time between LT 20 hours and 4 hours, but thin NS occurs more frequently near to midnight than that at the dawnside and duskside. (4) The size of the NS is dependent on substorm phases. Generally, the NS is thin during the growth and expansion phases and grows thick during the recovery phase. (5) For the one-dimensional NS, the half thickness and flapping velocity of the NS could be quantitatively determined. Therefore the differential geometry analyses based on Cluster 4-point magnetic measurements open a window for visioning the three-dimensional static and dynamic magnetic field structure of geomagnetosphere.
Role of ice sheet dynamics in the collapse of the early-Holocene Laurentide Ice Sheet
NASA Astrophysics Data System (ADS)
Matero, I. S. O.; Gregoire, L. J.; Cornford, S. L.; Ivanovic, R. F.
2017-12-01
The last stage of the deglaciation of the Laurentide Ice Sheet (LIS) during the early Holocene Thermal Maximum ( 9000 to 7000 years ago) provides an analogy and insight to the possible responses of contemporary ice sheets in a warming climate. What makes LIS particularly interesting is that meltwater from the collapse of an ice saddle over Hudson Bay was recently shown to be the primary forcing for the period of abrupt northern hemisphere cooling known as the 8.2 ka event. The evolution of the LIS during this period was likely influenced by its interaction with marginal lakes and the ocean, and its major ice stream, which exported ice towards Hudson Strait. Accurately simulating the early Holocene LIS evolution thus requires a model such as BISICLES, capable of accurately and efficiently resolving ice stream dynamics and grounding line migration thanks to the combined use of higher order physics and adaptive mesh refinement. We drive the BISICLES model using a positive degree day mass balance scheme with monthly precipitation and temperature from the HadCM3 climate model under climatic conditions from 10,000 to 8,000 years ago. We test the effect of varying the initial topographies and ice thicknesses from different timeslices in the ICE-6Gc reconstruction. We also test different parameterisations for the basal friction based on the thicknesses of the underlying sediments. These simulations evaluate the role of the Hudson Strait ice stream, ice sheet dynamics and interactions with the adjacent proglacial Lake Agassiz and North Atlantic Ocean in the collapse of the LIS. Our results highlight that the choice of parameterisation for basal friction has major effects on ice sheet dynamics and evolution.
Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate
NASA Technical Reports Server (NTRS)
Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.
1993-01-01
Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.
NASA Astrophysics Data System (ADS)
Wang, Xianglong; Li, Haoze; Zhang, Weina; Liu, Zhenyu; Wang, Guodong; Luo, Zhonghan; Zhang, Fengquan
2016-09-01
As-cast strip of 6.5 wt pct Si steel was fabricated by twin-roll strip casting. After hot rolling at 1323 K (1050 °C), thin sheets with the thickness of 0.35 mm were produced by warm rolling at 373 K (100 °C) with rolling reductions of 15, 25, 35, 45, 55, and 65 pct. Influence of warm rolling reduction on ductility was investigated by room temperature bending test. The measurement of macro-hardness showed that "work softening" could begin when the warm rolling reduction exceeded 35 pct. The room temperature ductility of the thin sheets gradually increased with the increase of warm rolling reductions, and the plastic deformation during bending began to form when the warm rolling reduction was greater than 45 pct, the 65 pct rolled thin sheet exhibited the maximum plastic deformation of about 0.6 pct during bending at room temperature, with a few small dimples having been observed on the fracture surfaces. B2-ordered domains were formed in the 15, 25, 35, 45, and 55 pct rolled specimens, and their average size decreased with the increase of warm rolling reductions. By contrast, no B2-ordered domain could be found in the 65 pct rolled specimen. It had been observed that large-ordered domains could be split into several small parts by the slip of partial super-dislocations during warm rolling, which led to significant decrease of the order degree to cause the phenomenon of deformation-induced disordering. On the basis of these results, cold rolling schedule was developed to successfully fabricate 0.25-mm-thick sheets with good surface qualities and magnetic properties from warm rolled sheets.
Interactions of ice sheet evolution, sea level and GIA in a region of complex Earth structure
NASA Astrophysics Data System (ADS)
Gomez, N. A.; Chan, N. H.; Latychev, K.; Pollard, D.; Powell, E. M.
2017-12-01
Constraining glacial isostatic adjustment (GIA) is challenging in Antarctica, where the solid Earth deformation, sea level changes and ice dynamics are strongly linked on all timescales. Furthermore, Earth structure beneath the Antarctic Ice Sheet is characterized by significant lateral variability. A stable, thick craton exists in the east, while the west is underlain by a large continental rift system, with a relatively thin lithosphere and hot, low viscosity asthenosphere, as indicated by high resolution seismic tomography. This implies that in parts of the West Antarctic, the Earth's mantle may respond to surface loading on shorter than average (centennial, or even decadal) timescales. Accounting for lateral variations in viscoelastic Earth structure alters the timing and geometry of load-induced Earth deformation, which in turn impacts the timing and extent of the ice-sheet retreat via a sea-level feedback, as well as predictions of relative sea-level change and GIA. We explore the impact of laterally varying Earth structure on ice-sheet evolution, sea level change and Earth deformation in the Antarctic region since the Last Glacial Maximum using a newly developed coupled ice sheet - sea level model that incorporates 3-D variations in lithospheric thickness and mantle viscosity derived from recent seismic tomographic datasets. Our results focus on identifying the regions and time periods in which the incorporation of 3-D Earth structure is critical for accurate predictions of ice sheet evolution and interpretation of geological and geodetic observations. We also investigate the sensitivity to the regional Earth structure of the relative contributions to modern GIA predictions of Last Deglacial and more recent Holocene ice cover changes.
Yan, Keyi; Toku, Yuhki; Morita, Yasuyuki; Ju, Yang
2018-06-22
In this research, we propose a new simple method to fabricate hydrogen gas sensor by stacking the multiwall carbon nanotube (MWCNT) sheets. MWCNT sheet offers a larger surface area and more CNT contacts, which are key factors for gas sensing, because of its super-high alignment and end-to-end structure comparing to the traditional CNT film. Besides, MWCNT sheet can be directly drawn from the spinnable CNT array in large scales. Therefore, this method is a potential answer for the mass production and commercialization of CNT based sensor with high response. By stacking different layers of sheet, microstructure and CNT interactions in the layers were changed and their influences towards gas sensing were investigated. It was observed that the sample with 3 layers of sheet and functionalized with 3 nm-thick Pd showed the best gas sensing performance with a response of 12.31% at 4% H2 and response time below 200 s. © 2018 IOP Publishing Ltd.
NASA Technical Reports Server (NTRS)
Ibrahim, E. A.; Przekwas, A. J.
1991-01-01
An analysis of the characteristics of the spray produced by an impinging-jet injector is presented. Predictions of the spray droplet size and distribution are obtained through studying the formation and disintegration of the liquid sheet formed by the impact of two cylindrical jets of the same diameter and momentum. Two breakup regimes of the sheet are considered depending on Weber number, with transition occurring at Weber numbers between 500 and 2000. In the lower Weber number regime, the breakup is due to Taylor cardioidal waves, while at Weber number higher than 2000, the sheet disintegration is by the growth of Kelvin-Helmholtz instability waves. Theoretical expressions to predict the sheet thickness and shape are derived for the low Weber number breakup regime. An existing mathematical analysis of Kelvin-Helmholtz instability of radially moving liquid sheets is adopted in the predictions of resultant drop sizes by sheet breakup at Weber numbers greater than 2000. Comparisons of present theoretical results with experimental measurements and empirical correlations reported in the literature reveal favorable agreement.
Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.
Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki
2015-04-24
The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.
Polycrystal-Plasticity Simulation of Roping in AA 6xxx Automotive Sheet Alloys
NASA Astrophysics Data System (ADS)
Engler, O.; Schäfer, C.; Brinkman, H.-J.
The occurrence of roping in AA 6xxx series sheet for car body applications is caused by the collective deformation of band-like clusters of grains with similar crystallographic orientation. In this study large-scale orientation maps obtained by electron back-scattered diffraction (EBSD) are input into a visco-plastic self-consistent polycrystal-plasticity model to analyze the strain anisotropy caused by the topographic arrangement of the recrystallization texture orientations and, in turn, the occurrence of roping. At variance to earlier studies, the measurements were carried out in the short transverse section of the sheets so as to get information on distribution and morphology of orientation clusters through the sheet thickness. Then, narrow bands in the EBSD maps aligned parallel to the ridges on the sheet surface are considered, and the variation in macroscopic strain response from band to band is determined. For a given deformation of the sample these simulations yield quantitative information on the level of roping of Al-alloy sheet for car body applications.
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...
2017-11-04
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Fast imaging of live organisms with sculpted light sheets
NASA Astrophysics Data System (ADS)
Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.
2015-04-01
Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.
Commercial scale production of Fe-6.5 wt. % Si sheet and its magnetic properties
NASA Astrophysics Data System (ADS)
Takada, Y.; Abe, M.; Masuda, S.; Inagaki, J.
1988-11-01
Commercial scale production of a Fe-6.5 wt. % Si sheet has been successfully developed. Presently manufactured sheets are in coil form, whose thickness ranges from 0.1 to 0.5 mm with a maximum width of 400 mm. Magnetic properties of the manufactured sheet have been investigated. The permeability of Fe-6.5 wt. % Si sheet is about 10 times higher than the conventional nonoriented silicon steel sheet. The core losses are less than half the conventional, and even less than that of the grain-oriented silicon steel sheet at frequencies over 400 Hz. Superior soft magnetic properties are attributed to the low magnetostriction and high electric resistivity of this alloy. It is well known that the Fe-6.5 wt. % Si alloy has poor ductility in conventional mechanical work. But investigation of the forming conditions has enabled the stamping and bending of alloy sheets. Low core losses and high permeability make Fe-6.5 wt. % Si sheet adequate for motor cores, transformer cores operating at high frequencies, and magnetic shielding. Application to the micromotor core shows that Fe-6.5 wt. % Si sheet reduces the consumption of no-load electric current by 25% in comparison with the conventional silicon steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaton, Daniel B.; Darnel, Jonathan M.; Bartz, Allison E., E-mail: daniel.seaton@noaa.gov
2017-02-01
We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops.more » We estimate that the rate of reconnection during the event was M{sub A} ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.« less
Diarra, Harona; Mazel, Vincent; Busignies, Virginie; Tchoreloff, Pierre
2015-09-30
Finite elements method was used to study the influence of tablet thickness and punch curvature on the density distribution inside convex faced (CF) tablets. The modeling of the process was conducted on 2 pharmaceutical excipients (anhydrous calcium phosphate and microcrystalline cellulose) by using Drucker-Prager Cap model in Abaqus(®) software. The parameters of the model were obtained from experimental tests. Several punch shapes based on industrial standards were used. A flat-faced (FF) punch and 3 convex faced (CF) punches (8R11, 8R8 and 8R6) with a diameter of 8mm were chosen. Different tablet thicknesses were studied at a constant compression force. The simulation of the compaction of CF tablets with increasing thicknesses showed an important change on the density distribution inside the tablet. For smaller thicknesses, low density zones are located toward the center. The density is not uniform inside CF tablets and the center of the 2 faces appears with low density whereas the distribution inside FF tablets is almost independent of the tablet thickness. These results showed that FF and CF tablets, even obtained at the same compression force, do not have the same density at the center of the compact. As a consequence differences in tensile strength, as measured by diametral compression, are expected. This was confirmed by experimental tests. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Cheng-zhuang; Li, Jing-yuan; Fang, Zhi
2018-02-01
In ferritic stainless steels, a significant non-uniform recrystallization orientation and a substantial texture gradient usually occur, which can degrade the ridging resistance of the final sheets. To improve the homogeneity of the recrystallization orientation and reduce the texture gradient in ultra-purified 17%Cr ferritic stainless steel, in this work, we performed conventional and asymmetric rolling processes and conducted macro and micro-texture analyses to investigate texture evolution under different cold-rolling conditions. In the conventional rolling specimens, we observed that the deformation was not uniform in the thickness direction, whereas there was homogeneous shear deformation in the asymmetric rolling specimens as well as the formation of uniform recrystallized grains and random orientation grains in the final annealing sheets. As such, the ridging resistance of the final sheets was significantly improved by employing the asymmetric rolling process. This result indicates with certainty that the texture gradient and orientation inhomogeneity can be attributed to non-uniform deformation, whereas the uniform orientation gradient in the thickness direction is explained by the increased number of shear bands obtained in the asymmetric rolling process.
Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint
NASA Astrophysics Data System (ADS)
Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar
2015-11-01
Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.
Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures
NASA Astrophysics Data System (ADS)
Lares, Alan
Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the previous insert designs. A casting process for manufacturing the v.3 inserts was developed. The developed casting process, when producing more than 13 inserts, becomes more economical than machining. An exploratory study was conducted looking at the effects of dynamic loading on the v.3 insert performance. The results of this study highlighted areas for improving dynamic testing of foam-core sandwich structure inserts. Correlations were developed relating design variables such as face-sheet thickness and insert diameter to a failure load for different load cases. This was done through simulations using Computer Aided Engineering (CAE) software, and experimental testing. The resulting correlations were integrated into a computer program which outputs the required insert dimensions given a set of design parameters, and load values.
NASA Technical Reports Server (NTRS)
Johnston, William M.; Newman, James C. (Technical Monitor)
2002-01-01
A series of fracture tests were conducted on Middle-crack tension M(T) and compact tension C(T) specimens to determine the effects of specimen type, specimen width, notch tip sharpness and buckling on the fracture behavior of cracked thin sheet (0.04 inch thick) 2024-T3 aluminum alloy material. A series of M(T) specimens were tested with three notch tip configurations: (1) a fatigue pre-cracked notch, (2) a 0.010-inch-diameter wire electrical discharge machined (EDM) notch, and (3) a EDM notch sharpened with a razor blade. The test procedures are discussed and the experimental results for failure stress, load vs. crack extension and the material stress-strain response are reported.
The destabilization of an initially thick liquid sheet edge
NASA Astrophysics Data System (ADS)
Lhuissier, Henri; Villermaux, Emmanuel
2011-09-01
By forcing the sudden dewetting of a free soap film attached on one edge to a straight solid wire, we study the recession and subsequent destabilization of its free edge. The newly formed rim bordering the sheet is initially thicker than the film to which it is attached, because of the Plateau border preexisting on the wire. The initial condition is thus that of an immobile massive toroidal rim connected to a thin liquid film of thickness h. The terminal Taylor-Culick receding velocity V =√2σ/ρh , where σ and ρ are the liquid surface tension and density, respectively, is only reached after a transient acceleration period which promotes the rim destabilization. The selected wavelength and associated growth time coincide with those of an inertial instability driven by surface tension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rubing, E-mail: zrb86411680@126.com; Zhang, Yaoyao; Liu, Qiang
TiAl/Nb and TiAl/NiCoCrAl laminate composite sheets with a thickness of 0.4–0.6 mm and dimensions of 150 mm × 100 mm were successfully fabricated by electron beam physical vapor deposition. The microstructures of the sheets were examined, and their mechanical properties were compared with those of TiAl monolithic sheet produced by electron beam physical vapor deposition. Tensile testing was performed at room temperature and 750 °C, and the fracture surfaces were examined by scanning electron microscopy. Among the three microlaminate sheets, the TiAl/NiCoCrAl micro-laminate sheet had the best comprehensive properties at room temperature, and the TiAl/Nb micro-laminate sheet showed the idealmore » high-temperature strength and plasticity at 750 °C. The result was discussed in terms of metal strengthening mechanism. - Highlights: • TiAl-based multilayer foils was fabricated successfully by using EB-PVD method; • The tensile properties and micro-fracture morphologies of the sheet were investigated; • The deformation behavior of the multilayer foils was discussed.« less
Dynamics of a radially expanding liquid sheet: Experiments
NASA Astrophysics Data System (ADS)
Majumdar, Nayanika; Tirumkudulu, Mahesh
2017-11-01
A recent theory predicts that sinuous waves generated at the center of a radially expanding liquid sheet grow spatially even in absence of a surrounding gas phase. Unlike flat liquid sheets, the thickness of a radially expanding liquid sheet varies inversely with distance from the center of the sheet. To test the predictions of the theory, experiments were carried out on a horizontal, radially expanding liquid sheet formed by collision of a single jet on a solid impactor. The latter was placed on a speaker-vibrator with controlled amplitude and frequency. The growth of sinuous waves was determined by measuring the wave surface inclination angle using reflected laser light under both atmospheric and sub-atmospheric pressure conditions. It is shown that the measured growth rate matches with the predictions of the theory over a large range of Weber numbers for both pressure conditions suggesting that the thinning of the liquid sheet plays a dominant role in setting the growth rate of sinuous waves with minimal influence of the surrounding gas phase on its dynamics. IIT Bombay.
NASA Astrophysics Data System (ADS)
Umazano, A. Martín; Krause, J. Marcelo; Bellosi, Eduardo S.; Perez, Mariano; Visconti, Graciela; Melchor, Ricardo N.
2017-08-01
The Cretaceous Puesto La Paloma (PLPM) and Cerro Castaño (CCM) members (Cerro Barcino Formation, Chubut Group) are pyroclastic-rich, alluvial successions deposited in the Somuncurá-Cañadón Asfalto Basin during sag and endorheic conditions. The PLPM comprises sheet-like tuffaceous sandstone strata, whereas the overlying CCM includes sheet-to ribbon-channel sandstone bodies intercalated within tuffaceous and fine-grained sediments. In this context, the goals of this contribution were: i) to make a detailed documentation of the contrasting sedimentary palaeonvironments; and ii) to infer the allocyclic controls that governed the sedimentation of both units. The study area is located in the western sector of the basin, where six localities, which were studied. Six facies associations were defined including ash-falls, sheet-floods, shallow lakes, aeolian, fluvial channel-belts, and reworked debris-flows. We defined four stratigraphic intervals for the studied sections, denominated 1 to 4 in chronological order of deposition, which increase their thicknesses toward the Puesto Mesa-Cerro León site. The interval 1 (18-42 m thick) corresponds to the PLPM and includes numerous pedogenized sheet-flood deposits, carbonate-rich lacustrine, aeolian sandy facies, and ash-fall beds. The interval 1 is interpreted as an ephemeral and unconfined alluvial system that interacted with aeolian dunes and dry interdune zones. The interval 2 (20-47 m thick) represents the lower part of the CCM. It shows an alternation of fluvial channel-belt deposits and vegetated floodplain facies with sediments originated from sheet-floods, lakes, and few ash-falls and debris-flows. The mean palaeoflow was toward E-SE, except in the northernmost locality where the drainage was towards SW. Proportion of channel-belt bodies ranges from 10 to 36%, reaching higher values in the northern part of the study area, where they are also thicker. The interval 2 represents a permanent, meandering or locally low-sinuosity, fluvial system, and displays both an increase of lacustrine facies and a decrease of ash-fall deposits. The interval 3 (7.5-27 m thick) corresponds to the middle part of the CCM, and lacks channel-belt bodies. It has the highest participation of sheet-flood and ash-fall deposits. This interval entirely records a pedogenized floodplain setting. In relation to the interval 2, participation of debris-flow deposits remains constant and lacustrine facies subtly increases. The interval 4 (18-148 m thick) represents the upper part of the CCM. It comprises an alternation of channel-belt bodies and pedogenized floodplain facies, the last characterized by sheet-flood, lake, debris-flow, and volcanic ash rain deposits. The mean palaeoflow was toward E-SE, except in the two localities positioned further north where the drainage was towards NE and SSE. Proportion of channel-belt deposits ranges from 6 to 32%. It represents channelized and perennial fluvial systems with meandering and locally low-sinuosity styles. Increase in channel proportion and thicker channel bodies are in the northern part of the study area. Particularly, in Puesto Mesa-Cerro León locality this interval is the thickest and has the highest proportion of thicker channel-belt bodies. We interpret these changes in facies architecture as the response to alternated periods of high (intervals 1 and 3) and low (intervals 2 and 4) primary pyroclastic sediment supply. Moreover, there was a climatic change to wetter conditions (intervals 1 to 2-4); as well as intrabasinal tectonic activity in northern area for intervals 2 and 4 inferred from palaeocurrent data.
NASA Technical Reports Server (NTRS)
Barrett, C. A.; Lowell, C. E.
1975-01-01
Twenty-five commercial nickel-, iron-, and cobalt-base sheet alloys incorporating chromium or chromium and aluminum additions for oxidation resistance were tested at 1150 C in air for 100 hr in both isothermal and 1-hr cyclic furnace exposures. The alloys were evaluated by sample specific weight change, by type of scale formed, by amount and type of spall, and by sample thickness change and microstructure.-
Development of a tornado safe room door from wood Products: door design and impact testing
Robert H. Falk; James J. Bridwell
2016-01-01
In this study, a tornado safe room door built from wood products and steel sheeting was developed and impact-tested according to tornado safe room standards. Results indicate that an door constructed from as few as two sheets of 23/32-in. (18.26-mm) construction-grade plywood and overlaid with 18-gauge (0.05-in.- (1.27- mm-) thick) steel can pass the required impact...
Large area silicon sheet by EFG
NASA Technical Reports Server (NTRS)
Morrison, A. D.; Ravi, K. V.; Rao, C. V. H.; Surek, T.; Bliss, D. F.; Garone, L. C.; Hogencamp, R. W.
1976-01-01
Progress in a program to produce high speed, thin, wide silicon sheets for fabricating 10% efficient solar cells is reported. An EFG ribbon growth system was used to perform growth rate and ribbon thickness experiments. A new, wide ribbon growth system was developed. A theoretical study of stresses in ribbons was also conducted. The EFG ribbons were observed to exhibit a characteristic defect structure which is orientation dependent in the early stages of growth.
A combined NDE/FEA approach to evaluate the structural response of a metal foam
NASA Astrophysics Data System (ADS)
Ghosn, Louis J.; Abdul-Aziz, Ali; Raj, Sai V.; Rauser, Richard W.
2007-04-01
Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight metal foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans. The series of the 2D images are assembled to construct a high precision solid model capturing all the fine details within the metal foam as detected by the CT scanning technique. Moreover, a finite element analysis is then performed on as fabricated metal foam microstructures, to calculate the foam mechanical properties with the idealized theory. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile and compressive mechanical properties are deduced from the FEA model and compared with the theoretical values for three different foam densities. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.
Structural Benchmark Testing of Superalloy Lattice Block Subelements Completed
NASA Technical Reports Server (NTRS)
2004-01-01
Superalloy lattice block panels, which are produced directly by investment casting, are composed of thin ligaments arranged in three-dimensional triangulated trusslike structures (see the preceding figure). Optionally, solid panel face sheets can be formed integrally during casting. In either form, lattice block panels can easily be produced with weights less than 25 percent of the mass of a solid panel. Inconel 718 (IN 718) and MarM-247 superalloy lattice block panels have been developed under NASA's Ultra-Efficient Engine Technology Project and Higher Operating Temperature Propulsion Components Project to take advantage of the superalloys' high strength and elevated temperature capability with the inherent light weight and high stiffness of the lattice architecture (ref. 1). These characteristics are important in the future development of turbine engine components. Casting quality and structural efficiency were evaluated experimentally using small beam specimens machined from the cast and heat treated 140- by 300- by 11-mm panels. The matrix of specimens included samples of each superalloy in both open-celled and single-face-sheet configurations, machined from longitudinal, transverse, and diagonal panel orientations. Thirty-five beam subelements were tested in Glenn's Life Prediction Branch's material test machine at room temperature and 650 C under both static (see the following photograph) and cyclic load conditions. Surprisingly, test results exceeded initial linear elastic analytical predictions. This was likely a result of the formation of plastic hinges and redundancies inherent in lattice block geometry, which was not considered in the finite element models. The value of a single face sheet was demonstrated by increased bending moment capacity, where the face sheet simultaneously increased the gross section modulus and braced the compression ligaments against early buckling as seen in open-cell specimens. Preexisting flaws in specimens were not a discriminator in flexural, shear, or stiffness measurements, again because of redundant load paths available in the lattice block structure. Early test results are available in references 2 and 3; more complete analyses are scheduled for publication in 2004.
Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets
NASA Astrophysics Data System (ADS)
Kadri, Usama; Abdolali, Ali; Kirby, James T.
2017-04-01
We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234
NASA Astrophysics Data System (ADS)
Bradwell, Tom; Small, David; Fabel, Derek; Dove, Dayton; Cofaigh, Colm O.; Clark, Chris; Consortium, Britice-Chrono
2016-04-01
Chronologically constrained studies of former ice-sheet extents and dynamics are important for understanding past cryospheric responses and modelling future ice-sheet and sea-level change. As part of the BRITICE-CHRONO project, we present new geomorphological and chronological data from a marine-terminating ice stream system in NW Europe that operated during the Late Weichselian Glaciation. A suite of 51 cosmogenic-nuclide exposure ages from ice sheet moraines and glacially transported boulders constrain the maximum extent of the ice sheet on the continental shelf (~28 ka BP) and its subsequent retreat, between ~27 and 16 ka BP, into a large marine embayment (ca. 7000 km2; the Minch, NW Scotland). Recently acquired swath bathymetry and acoustic sub-bottom profiler data reveal several large transverse grounding-zone wedges up to 40 m thick and 5 km wide with diagnostic acoustic-facies architecture. These seabed sediment wedges mark former quasi-stable positions of grounded marine-terminating ice-stream fronts; their size and thickness suggest long-lived stillstands of the order of centuries. Statistically significant clusters of exposure ages from glacial deposits on islands and intervening headlands shed important new light on the age of these marine grounding-zone wedges and, by inference, the rate and timing of Minch palaeo-ice stream retreat. We find strong evidence for episodic ice stream retreat on the continental shelf between ~28-24 ka BP, in the outer Minch between ~24-22 ka BP, and in the central Minch between 22-18.5 ka BP. In contrast, final ice stream deglaciation (<18 ka) across the deepest parts of the inner Minch embayment, was probably rapid and uninterrupted - with the ice sheet margin at or close to the present-day coastline in NW Scotland by 16.1 ka BP. It is hoped that these results will form the empirical basis for future ice-sheet modelling of this dynamically sensitive sector of the British-Irish Ice Sheet.
Prediction of thinning of the sheet metal in the program AutoForm and its experimental verification
NASA Astrophysics Data System (ADS)
Fedorko, M.; Urbánek, M.; Rund, M.
2017-02-01
The manufacture of press-formed parts often involves deep-drawing operations. Deep drawing, however, can be deemed an industrial branch in its own right. Today, many experimental as well as numerical methods are available for designing and optimizing deep drawing operations. The best option, however, is to combine both approaches. The present paper describes one such investigation. Here, measurements and numerical simulation were used for mapping the impact of anisotropy on thickness variation in a spherical-shaped drawn part of DC01 steel. Variation in sheet thickness was measured on spherical-shaped drawn parts of various geometries by means of two cameras, and evaluated with digital image correlation using the ARAMIS software from the company GOM. The forming experiment was carried out on an INOVA 200 kN servohydraulic testing machine in which the force vs. piston displacement curve was recorded. The same experiment was then numerically simulated and analyzed using the AUTOFORM software. Various parameters were monitored, such as thinning, strain magnitude, formability, and others. For the purpose of this simulation, a series of mechanical tests was conducted to obtain descriptions of the experimental material of 1.5 mm thickness. A material model was constructed from the tests data involving the work-hardening curve, the impact of anisotropy, and the forming limit diagram. Specifically, these tests included tensile tests, the Nakajima test, and the stacked test, which were carried out to determine materials data for the model. The actual sheet thickness was measured on a sectioned spherical-shaped drawn part using a NIKON optical microscope. The variations in thickness along defined lines on the sectioned drawn part were compared with the numerical simulations data using digital image correlation. The above-described experimental programme is suitable for calibrating a material model for any computational software and can correctly solve deep-drawing problems.
NASA Astrophysics Data System (ADS)
Durkin, John
1997-01-01
The effect of a thin conducting sheet located at the earth-to-air interface on the surface vertical magnetic field created by a buried finite loop was studied. Expected field values as a function of frequency are provided for variations in the sheet's conductivity-thickness product. Since the results would be most beneficial for purposes of through-the-earth communications, such as communicating with trapped miners following a mine emergency, field values were derived for a range of frequencies, mine depths, and earth conductivity values that would be typically found in such an application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zieger, H.
1961-10-01
The as-cast structure of d.c.-cast aluminum ingots sometimes shows feather-like crystals. The influence of this type of crystals on the earing behavior and on the surface markings after anodizing was investigated on Al 99.5- sheets of 2 mm thickness. Feather-like crystals gave rise to more irregular and higher earings in all cases. Hot and afterwards cold rolled sheets showed markings on the anodized surface, which were intensified by feather-like crystals in the ingot. Extruding prior to hot rolling suppressed these markings completely, but did not affect the earing behavior. (auth)
NASA Technical Reports Server (NTRS)
Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Grung, B. L.; Koepke, B.; Schuldt, S. B.
1979-01-01
The technical and economic feasibility of producing solar cell-quality silicon was investigated. This was done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress in the following areas was demonstrated: (1) fabricating a 10 sq cm cell having 9.9 percent conversion efficiency; (2) producing a 225 sq cm layer of sheet silicon; and (3) obtaining 100 microns thick coatings at pull speed of 0.15 cm/sec, although approximately 50 percent of the layer exhibited dendritic growth.
The rolling performance of Fe-6.5 wt.% Si sheets edged with stainless steel
NASA Astrophysics Data System (ADS)
Zhang, B.; Ye, F.; Liang, Y. F.; Shi, X. J.; Lin, J. P.
2017-10-01
Compared with common electrical steel, high silicon electrical steel (Fe-6.5 wt.% Si alloy) exhibits excellent soft magnetic properties and a wide application prospect in high frequency electromagnetic fields. In the process of cold rolling Fe-6.5 wt.% Si alloy, edge-crack often occurs on the sheets due to the inadequate ductility and limited formability. It was found that the Fe-6.5 wt.% Si alloy sheet edged with 304 stainless steel by laser welding show an improved rolling performance. The composite sheet could be cold rolled to a thickness of 0.07 mm without observed edge cracks. The mechanical property of the edging material should be in an appropriate window in reference to that of the Fe-6.5 wt.% Si alloy.
Cost-Effective TiAl based Materials
NASA Technical Reports Server (NTRS)
Moxson, V. S.; Sun, Fusheng; Draper, Susan L.; Froes, F. H.; Duz, V.
2003-01-01
Because of their inherent low ductility, TiAl-based materials are difficult to fabricate, especially thin gage titanium gamma aluminide (TiAl) sheet and foil. In this paper, an innovative powder metallurgy approach for producing cost-effective thin gage TiAl sheets (with 356 mm long and 235 mm wide, and a thickness of 0.74, 1.09, 1.55, and 2.34 mm, respectively) is presented. The microstructures and tensile properties at room and elevated temperatures of the thin gage TiAl are studied. Results show that these TiAl sheets have a relatively homogenous chemistry, uniform microstructure, and acceptable mechanical properties. This work demonstrates a cost-effective method for producing both flat products (sheet/foil) and complex chunky parts of TiAl for various advanced applications including aerospace and automotive industries.
NASA Technical Reports Server (NTRS)
Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)
1991-01-01
A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.
NASA Astrophysics Data System (ADS)
Tolipov, A. A.; Elghawail, A.; Shushing, S.; Pham, D.; Essa, K.
2017-09-01
There is a growing demand for flexible manufacturing techniques that meet the rapid changes in customer needs. A finite element analysis numerical optimisation technique was used to optimise the multi-point sheet forming process. Multi-point forming (MPF) is a flexible sheet metal forming technique where the same tool can be readily changed to produce different parts. The process suffers from some geometrical defects such as wrinkling and dimpling, which have been found to be the cause of the major surface quality problems. This study investigated the influence of parameters such as the elastic cushion hardness, blank holder force, coefficient of friction, cushion thickness and radius of curvature, on the quality of parts formed in a flexible multi-point stamping die. For those reasons, in this investigation, a multipoint forming stamping process using a blank holder was carried out in order to study the effects of the wrinkling, dimpling, thickness variation and forming force. The aim was to determine the optimum values of these parameters. Finite element modelling (FEM) was employed to simulate the multi-point forming of hemispherical shapes. Using the response surface method, the effects of process parameters on wrinkling, maximum deviation from the target shape and thickness variation were investigated. The results show that elastic cushion with proper thickness and polyurethane with the hardness of Shore A90. It has also been found that the application of lubrication cans improve the shape accuracy of the formed workpiece. These final results were compared with the numerical simulation results of the multi-point forming for hemispherical shapes using a blank-holder and it was found that using cushion hardness realistic to reduce wrinkling and maximum deviation.
Ice thickness measurements over Pine Island and Thwaites Glaciers
NASA Astrophysics Data System (ADS)
Kanagaratnam, P.; Casassa, G.; Thomas, R.; Gogineni, S.
2003-04-01
The Pine Island and Thwaites glaciers (PIG and TG) are the fastest measured glaciers in Antarctica and have been identified as the part of the West Antarctica ice sheet most prone to instability. However, the reasons for the rapid retreat of these glaciers have not been resolved due to insufficient data. In particular, the role of ice shelves in regulating the ice discharge of these glaciers has been a point of contention in the glaciology community. To help resolve this issue the Centro de Estudios Científicos (CECS) and NASA with the support of the Armada de Chile conducted four airborne remote sensing missions over the PIG/TG regions. In addition, two missions were conducted over the Antarctic Peninsula. The University of Kansas operated its Coherent Radar Depth Sounder (CORDS) to measure the thickness of the ice sheet in these regions. CORDS is a pulse-compression radar that has proven its utility in the glaciological surveys over Greenland. The combination of pulse compression and coherent processing has allowed us to obtain high-sensitivity and high-resolution in the along-track direction while keeping the transmitted power low. CORDS transmits a 140-160 MHz chirp signal with 200 Watts of peak power and has a vertical resolution of about 5 meters in ice. We used a four-element dipole array on either side of the wing to transmit and receive the radar signals. We successfully mapped the thickness of the ice sheet over 99% of the PIG/TG flight lines. In this paper we will provide a description of the radar, experiment and signal processing. We will also discuss samples results of the ice thickness, basal conditions and surface roughness.
Structure of Hole 1256D: The role of mechanical deformation in superfast-spread crust
NASA Astrophysics Data System (ADS)
Tartarotti, P.; Hayman, N. W.; Anma, R.; Crispini, L.; Veloso Espinosa, E. A.; Galli, L.
2006-12-01
One view of seafloor spreading is that mechanical deformation is not significant at high spreading rates. With recovery of up to 37%, and the vertical axis known for many pieces, shipboard visual core descriptions from Hole 1256D provide an opportunity to evaluate the significance of deformational structures in EPR-, superfast- (~220 mm-yr) spread crust. From top to bottom, the structural characteristics of crustal units are: (1) A relatively flat-lying, ~100-m thick "lava pond" that is largely free of deformational structures; (2) ~184 m of shallowly dipping lava flows remarkable for hyaloclastites and a cooling-related fracture system; (3) ~466 m of massive and sheet flows with flow-related fractures, hydrothermal veins, and (fault-related) cataclastic domains; (3) A ~61 m thick transition zone that contains a well-developed (fault-related) cataclastic domain; (4) A ~346 m thick sheeted dike complex, with abundant hydrothermal veins, local breccias, and magmatic flow features. Recovered chilled dike margins have a mean dip of 70° and range from 41-88°; (5) A ~100 m thick plutonic suite contains gabbroic rocks that intrude the sheeted dikes. Gabbros contain some local brittle structures and minor (largely static) recrystallized domains, but are more noteworthy for their magmatic features: dike/gabbro contacts and flow foliations are modestly dipping (e.g., ~45°) with leucocratic melt patches concentrated toward the top of the section. Brittle structures were subordinate to magmatic processes in accommodating large extensional strain. Brittle deformation was important, however, in accommodating magmatism and hydrothermal fluid flow, thereby affecting the variation of crustal physical properties and the distribution of oceanic alteration.
Bessel light sheet structured illumination microscopy
NASA Astrophysics Data System (ADS)
Noshirvani Allahabadi, Golchehr
Biomedical study researchers using animals to model disease and treatment need fast, deep, noninvasive, and inexpensive multi-channel imaging methods. Traditional fluorescence microscopy meets those criteria to an extent. Specifically, two-photon and confocal microscopy, the two most commonly used methods, are limited in penetration depth, cost, resolution, and field of view. In addition, two-photon microscopy has limited ability in multi-channel imaging. Light sheet microscopy, a fast developing 3D fluorescence imaging method, offers attractive advantages over traditional two-photon and confocal microscopy. Light sheet microscopy is much more applicable for in vivo 3D time-lapsed imaging, owing to its selective illumination of tissue layer, superior speed, low light exposure, high penetration depth, and low levels of photobleaching. However, standard light sheet microscopy using Gaussian beam excitation has two main disadvantages: 1) the field of view (FOV) of light sheet microscopy is limited by the depth of focus of the Gaussian beam. 2) Light-sheet images can be degraded by scattering, which limits the penetration of the excitation beam and blurs emission images in deep tissue layers. While two-sided sheet illumination, which doubles the field of view by illuminating the sample from opposite sides, offers a potential solution, the technique adds complexity and cost to the imaging system. We investigate a new technique to address these limitations: Bessel light sheet microscopy in combination with incoherent nonlinear Structured Illumination Microscopy (SIM). Results demonstrate that, at visible wavelengths, Bessel excitation penetrates up to 250 microns deep in the scattering media with single-side illumination. Bessel light sheet microscope achieves confocal level resolution at a lateral resolution of 0.3 micron and an axial resolution of 1 micron. Incoherent nonlinear SIM further reduces the diffused background in Bessel light sheet images, resulting in confocal quality images in thick tissue. The technique was applied to live transgenic zebra fish tg(kdrl:GFP), and the sub-cellular structure of fish vasculature genetically labeled with GFP was captured in 3D. The superior speed of the microscope enables us to acquire signal from 200 layers of a thick sample in 4 minutes. The compact microscope uses exclusively off-the-shelf components and offers a low-cost imaging solution for studying small animal models or tissue samples.
Wang, Zhong-Shan; Feng, Zhi-Hong; Wu, Guo-Feng; Bai, Shi-Zhu; Dong, Yan; Chen, Fa-Ming; Zhao, Yi-Min
2016-01-01
Periodontal regeneration involves the restoration of at least three unique tissues: cementum, periodontal ligament tissue (PDL) and alveolar bone tissue. Here, we first isolated human PDL stem cells (PDLSCs) and jaw bone mesenchymal stem cells (JBMSCs). These cells were then induced to form cell sheets using an ascorbic acid-rich approach, and the cell sheet properties, including morphology, thickness and gene expression profile, were compared. Platelet-rich fibrin (PRF) derived from human venous blood was then fabricated into bioabsorbable fibrin scaffolds containing various growth factors. Finally, the in vivo potential of a cell-material construct based on PDLSC sheets, PRF scaffolds and JBMSC sheets to form periodontal tissue was assessed in a nude mouse model. In this model, PDLSC sheet/PRF/JBMSC sheet composites were placed in a simulated periodontal space comprising human treated dentin matrix (TDM) and hydroxyapatite (HA)/tricalcium phosphate (TCP) frameworks. Eight weeks after implantation, the PDLSC sheets tended to develop into PDL-like tissues, while the JBMSC sheets tended to produce predominantly bone-like tissues. In addition, the PDLSC sheet/PRF/JBMSC sheet composites generated periodontal tissue-like structures containing PDL- and bone-like tissues. Further improvements in this cell transplantation design may have the potential to provide an effective approach for future periodontal tissue regeneration. PMID:27324079
Characteristics of the aluminum alloy sheets for forming and application examples
NASA Astrophysics Data System (ADS)
Uema, Naoyuki; Asano, Mineo
2013-12-01
In this paper, the characteristics and application examples of aluminum alloy sheets developed for automotive parts by Sumitomo Light Metal are described. For the automotive closure panels (ex., hood, back-door), an Al-Mg-Si alloy sheet having an excellent hemming performance was developed. The cause of the occurrence and the propagation of cracks by bending were considered to be the combined effect of the shear bands formed across several crystal grains and the micro-voids formed around the second phase particles. By reducing the shear band formation during bending by controlling the crystallographic texture, the Al-Mg-Si alloy sheets showed an excellent hemming performance. For the automotive outer panels (ex., roof, fender, trunk-lid), an Al-Mg alloy sheet, which has both a good hot blow formability and excellent surface appearance after hot blow forming was developed, and hot blow forming technology was put to practical use using this developed Al-Mg alloy sheet. For automotive heat insulators, a high ductile Al-Fe alloy sheet was developed. The heat insulator, which integrated several panels, was put into practical use using this developed Al-Fe alloy sheet. The textured sheet was often used as a heat insulator in order to reduce the thickness of the aluminum alloy sheet and obtain good press formability. The new textured sheet, which has both high rigidity and good press formability for heat insulators, was developed by FE analysis.
Improvements in Cold-Plate Fabrication
NASA Technical Reports Server (NTRS)
Zaffetti, Mark A.; Taddey, Edmund P.; Laurin, Michael B.; Chabebe, Natalia
2012-01-01
Five improvements are reported in cold-plate fabrication. This cold plate is part of a thermal control system designed to serve on space missions. The first improvement is the merging of the end sheets of the cold plate with the face sheets of the structural honeycomb panel. The cold plate, which can be a brazed assembly, uses the honeycomb face sheet as its end sheet. Thus, when the honeycomb panel is fabricated, the face sheet that is used is already part of the cold plate. In addition to reducing weight, costs, and steps, the main benefit of this invention is that it creates a more structurally sound assembly. The second improvement involves incorporation of the header into the closure bar to pass the fluid to a lower layer. Conventional designs have used a separate header, which increases the geometry of the system. The improvement reduces the geometry, thus allowing the cold plate to fit into smaller area. The third improvement eliminates the need of hose, tube, or manifold to supply the cooling fluid externally. The external arrangement can be easily damaged and is vulnerable to leakage. The new arrangement incorporates an internal fluid transfer tube. This allows the fluid to pass from one cold plate to the other without any exposed external features. The fourth improvement eliminates separate fabrication of cold plate(s) and structural members followed by a process of attaching them to each other. Here, the structural member is made of material that can be brazed just as that of the cold plate. Now the structural member and the cold plate can be brazed at the same time, creating a monolithic unit, and thus a more structurally sound assembly. Finally, the fifth improvement is the elimination of an additional welding step that can damage the braze joints. A tube section, which is usually welded on after the braze process, is replaced with a more structurally sound configuration that can be brazed at the same time as the rest of the cold plate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... machine under the conditions described in § 1610.6. (d) Film means any non-rigid, unsupported plastic... sheeting of any thickness. (e) Flammability means those characteristics of a material that pertain to its...
NASA Astrophysics Data System (ADS)
Lewis, A. R.; Levy, R. H.; Naish, T.; Gorman, A. R.; Golledge, N.; Dickinson, W. W.; Kraus, C.; Florindo, F.; Ashworth, A. C.; Pyne, A.; Kingan, T.
2015-12-01
The Early to mid-Miocene is a compelling interval to study Antarctic ice sheet (AIS) sensitivity. Circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. Geologic records from locations proximal to the AIS are required to examine ice sheet response to climate variability during this time. Coastal and offshore drill core records recovered by ANDRILL and IODP provide information regarding ice sheet variability along and beyond the coastal margin but they cannot constrain the extent of inland retreat. Additional environmental data from the continental interior is required to constrain the magnitude of ice sheet variability and inform numerical ice sheet models. The only well-dated terrestrial deposits that register early to mid-Miocene interior ice extent and climate are in the Friis Hills, 80 km inland. The deposits record multiple glacial-interglacial cycles and fossiliferous non-glacial beds show that interglacial climate was warm enough for a diverse biota. Drifts are preserved in a shallow valley with the oldest beds exposed along the edges where they terminate at sharp erosional margins. These margins reveal drifts in short stratigraphic sections but none is more than 13 m thick. A 34 m-thick composite stratigraphic sequence has been produced from exposed drift sequences but correlating beds in scattered exposures is problematic. Moreover, much of the sequence is buried and inaccessible in the basin center. New seismic data collected during 2014 reveal a sequence of sediments at least 50 m thick. This stratigraphic package likely preserves a detailed and more complete sedimentary sequence for the Friis Hills that can be used to refine and augment the outcrop-based composite stratigraphy. We aim to drill through this sequence using a helicopter-transportable diamond coring system. These new cores will allow us to obtain continuous measurements on unweathered material through the terrestrial sequence. Beds of tephra are exposed in outcrop and we expect to encounter these key age markers in the cored sequence. These new high quality, well-dated terrestrial data will be directly compared to marine cores to provide environmental data across a broad onshore-offshore transect.
Distribution of "Compound" and "Simple" Flows in the Deccan Traps (India)
NASA Astrophysics Data System (ADS)
Vanderkluysen, L.; Self, S.; Jay, A. E.; Sheth, H. C.; Clarke, A. B.
2014-12-01
The Deccan Traps are a dominantly mafic large igneous province (LIP) that, prior to erosion, covered ~1 million km2 of west-central India with lava flows. The type sections of the Western Ghats escarpment, where the Deccan lava pile reaches a maximum reconstructed stratigraphic thickness of ~3400 m, are subdivided into eleven formations defined on chemo-stratigraphic grounds. Earlier work recognized that emplacement of Deccan basalt flows primarily occurs following two main modes: as a stack of meter-sized pāhoehoe toes and lobes, termed "compound" flows; or as inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height, previously termed "simple" flows. Initially, the distribution of small lobes and sheet lobes in the Deccan was thought to be controlled by distance from source, but later work suggested the distribution to be mainly controlled along stratigraphic, formational boundaries, with six of the lower formations being composed exclusively of compound flows, and the upper 4-5 formations being wholly built of sheet lobes. This simple stratigraphic subdivision of lava flow morphologies has also been documented in the volcanic architecture of other LIPs, e.g., the Etendeka, the Ethiopian Traps, and in the Faeroe Islands (North Atlantic LIP). Upon examination of eight sections carefully logged along the Western Ghats, this traditional view must be challenged. Where the lower Deccan formations crop out, we found that as much as 65% of the exposed thickness (below the Khandala Formation) is made up of sheet lobes, from 40% in the Bhimashankar Formation to 75% in the Thakurvadi Formation. Near the bottom of the sequence, 25% of the Neral Formation is composed of sheet lobes ≥15 m in thickness. This distribution in lava flow morphology does not seem to be noticeably affected by the inferred distance to the source (based on the location of similar-composition dikes for each formation). Several mechanisms have been proposed to explain the development of compound flows and inflated sheet lobes, involving one or more of the following factors: underlying slope, varying effusion rate, and source geometry. Analogue experiments are currently under way to test the relative influence of each of these factors in the development of different lava flow morphologies in LIPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng
An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the firstmore » exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.« less
Sakai, Yusuke; Koike, Makiko; Hasegawa, Hideko; Yamanouchi, Kosho; Soyama, Akihiko; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Ohashi, Kazuo; Okano, Teruo; Eguchi, Susumu
2013-01-01
Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell) sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells) as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions. PMID:23923035
Improving Altimetry Height-change Retrieval on the Fringes of the Antarctic Ice Sheet
NASA Astrophysics Data System (ADS)
Paolo, F. S.; Nilsson, J.; Gardner, A. S.
2017-12-01
Projections of sea-level change over the next century are highly uncertain, in part, due to insufficient understanding of ice-sheet sensitivity to changes in oceanic and atmospheric circulation. This limitation is, to a large degree, related to the lack of long and continuous observational records covering critical regions along the ice-sheet margins where the ice interacts with the ocean. Of particular importance are accurate records of changes in ice thickness that provide information on how mass fluctuates on the floating extensions of ice streams and glaciers through which the ice-sheet drains. These changes can modify the stability of the grounded ice sheet through changing back-stress, for example, through loss of ice-shelf buttressing. Here, we synthetize 25+ years of satellite altimetry observations to extend the time span and improve the resolution and accuracy of the existing record of Antarctic floating ice thickness. We incorporate data from ESA's ERS-1, ERS-2, Envisat and Cryosat-2 radar altimeters (1992-present) and NASA's ICESat laser altimeter (2003-2009) and Operation IceBridge surveys (2009-present); with plans to include ICESat-2 data soon after its launch in September 2018. Towards this effort, we revisit some of the main corrections applied to altimeter data, such as minimization of the difference between measurements from radar and laser systems; and we improve the approach for the synthesis of heterogeneous measurements of ice-surface topography and uncertainty estimation. We report on our progress in constructing this long-term and homogeneous record, with a particular focus on the floating ice shelves.
Eyeglass: A Very Large Aperture Diffractive Space Telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyde, R; Dixit, S; Weisberg, A
2002-07-29
Eyeglass is a very large aperture (25-100 meter) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope's large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently fieldable (lightweight and flat, hence packagable and deployable) and virtually eliminates the traditional, very tight, surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by correctivemore » optics in the telescope's eyepiece. The Eyeglass can provide diffraction-limited imaging with either single-band, multiband, or continuous spectral coverage. Broadband diffractive telescopes have been built at LLNL and have demonstrated diffraction-limited performance over a 40% spectral bandwidth (0.48-0.72 {micro}m). As one approach to package a large aperture for launch, a foldable lens has been built and demonstrated. A 75 cm aperture diffractive lens was constructed from 6 panels of 1 m thick silica; it achieved diffraction-limited performance both before and after folding. This multiple panel, folding lens, approach is currently being scaled-up at LLNL. We are building a 5 meter aperture foldable lens, involving 72 panels of 700 {micro}m thick glass sheets, diffractively patterned to operate as coherent f/50 lens.« less
NASA Astrophysics Data System (ADS)
Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.
2013-12-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
Low Angle Silicon Sheet Growth. Large Area Silicon Sheet Task Low Cost Solar Array Project
NASA Technical Reports Server (NTRS)
1982-01-01
The results of a program to demonstrate the feasibility of a low angle silicon ribbon growth process are described. Twenty-six experimental runs were performed. Ribbons were grown at pull rates from 5 to 68 cm/min. Ribbon lengths up to 74 cm were grown while widths varied from 5 to 25 mm. Thicknesses varied from 0.6 to 2.5 mm, with typical values of about 1 mm.
Cai, Lili; McClellan, Connor J; Koh, Ai Leen; Li, Hong; Yalon, Eilam; Pop, Eric; Zheng, Xiaolin
2017-06-14
Two-dimensional (2D) molybdenum trioxide (MoO 3 ) with mono- or few-layer thickness can potentially advance many applications, ranging from optoelectronics, catalysis, sensors, and batteries to electrochromic devices. Such ultrathin MoO 3 sheets can also be integrated with other 2D materials (e.g., as dopants) to realize new or improved electronic devices. However, there is lack of a rapid and scalable method to controllably grow mono- or few-layer MoO 3 . Here, we report the first demonstration of using a rapid (<2 min) flame synthesis method to deposit mono- and few-layer MoO 3 sheets (several microns in lateral dimension) on a wide variety of layered materials, including mica, MoS 2 , graphene, and WSe 2 , based on van der Waals epitaxy. The flame-grown ultrathin MoO 3 sheet functions as an efficient hole doping layer for WSe 2 , enabling WSe 2 to reach the lowest sheet and contact resistance reported to date among all the p-type 2D materials (∼6.5 kΩ/□ and ∼0.8 kΩ·μm, respectively). These results demonstrate that flame synthesis is a rapid and scalable pathway to growing atomically thin 2D metal oxides, opening up new opportunities for advancing 2D electronics.
Single Student Parents Face Financial Difficulties, Debt, without Adequate Aid. Fact Sheet #C394
ERIC Educational Resources Information Center
Miller, Kevin
2012-01-01
Parents with dependent children were nearly one quarter of students enrolled for credit at American postsecondary institutions in 2008. These students face significant challenges to remaining enrolled and graduating, including limited access to affordable child care, difficulty balancing the demands of school with the demands of work and family,…
Siqingaowa; Tsumuki, Takehiro; Ogata, Kazuki; Yonezawa, Noriyuki; Okamoto, Akiko
2016-01-01
The asymmetric unit of the title compound, C27H20O3, contains two independent molecules (A and B). The anthracene ring system is connected to the 2,7-dimethoxynaphthalene core in a twisted manner, with dihedral angles of 86.38 (5) and 79.36 (8)°, respectively, for conformers A and B. In the crystal, face-to-face type dimeric molecular aggregates of each conformer are observed. The dimer of conformer A is formed by two pairs of C—H⋯π interactions, and that of conformer B by a pair of (sp 2)C—H⋯O hydrogen bonds. The dimers of conformer A are linked to each other via a π–π stacking interaction between the anthracene rings to form a chain along the b axis and the chains are aligned along the c axis, forming a sheet structure. The dimers of conformer B are connected to each other via a couple of C—H⋯π interactions to form a chain along the b axis. The chains are aligned along the c axis through (sp 2)C—H⋯O=C hydrogen bonds, forming a sheet parallel to the bc plane. The sheets of conformers A and B are alternately stacked along the a axis via two kinds of intermolecular (sp 2)C—H⋯O=C hydrogen bonds. PMID:27980839
Hot rolling of thick uranium molybdenum alloys
DeMint, Amy L.; Gooch, Jack G.
2015-11-17
Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.
Perfomance of a compensating lead-scintillator hadronic calorimeter
NASA Astrophysics Data System (ADS)
Bernardi, E.; Drews, G.; Garcia, M. A.; Klanner, R.; Kötz, U.; Levman, G.; Lomperski, M.; Lüke, D.; Ros, E.; Selonke, F.; Tiecke, H.; Tsirou, M.; Vogel, W.
1987-12-01
We have built a sandwich calorimeter consisting of 10 mm thick lead plates and 2.5 mm thick scintillator sheets. The thickness ratio between lead and scintillator was optimized to achieve a good energy resolution for hadrons. We have exposed this calorimeter to electrons, hadrons and muons in the energy range between 3 and 75 GeV, obtaining an average energy resolution of {23%}/{E} for electrons and {44%}/{E} for hadrons. For energies above 10 GeV and after leakage corrections, the ratio of electron response to hardron response is 1.05.
2012-08-01
unlimited 3.1.2. Fractography Figure 5: SEM images of a 3.18mm thick sheet specimen tested at 760◦C/758MPa. (a) The region near the fracture surface... fractography using secondary electron imaging (SE) in a scanning electron microscope (SEM). No surface oxidation was observed at this temperature. The...ruptured after 210 hours. 3.2.3. Fractography The SEM image of the reconstructed creep ruptured specimen with thickness h = 3.18mm is shown in Fig. 18a
NASA Astrophysics Data System (ADS)
Jiang, Hao
A method is developed for modeling, detecting, and locating material damage in homogeneous thin metallic sheets and sandwich panels. Analytical and numerical models are used along with non-contact, passive acoustic transmission measurements. It is shown that global and local damage mechanisms characterized by both material and geometrical changes in structural components can be detected using passive acoustic transmission measurements. Theoretical models of a flat sheet and sandwich panel are developed to describe the effects of global material damage due to density, modulus, or thickness changes on backplane radiated sound pressure level distributions. To describe the effects of local material damage, a three-segment stepped beam model and finite element beam, plate, and sandwich panel models are developed and analyzed using the acoustic transmission approach. It is shown that increases or decreases in transmitted sound energy occur behind a damaged material component that exhibits changes in thickness or other geometric or material properties. The damage due to thickness and density changes can be detected from the acoustic transmission, but modulus changes cannot. If the damage is located at an anti-node of a certain forced vibration pattern, the damage can be more readily observed in the data. Higher excitation frequencies within the operating spectrum are preferred to lower frequencies for damage detection. With the finite element beam, plate, and sandwich panel models, local damage detection has been performed in simulations. Experiments on a baffled homogeneous sheet and sandwich panel subjected to broadband acoustic energy show that transmitted intensity measurements with non-contact probes can be used to identify and locate material defects in the sheet and sandwich panel. Material damage is most readily identified where the changes in transmitted sound intensity are largest in the resonant frequency range of the panel. The three main contributions of this research are: (1) the use of non-contact sensing to detect global and localized damage in structural components; (2) the analytical and numerical modeling of material and geometrical damage mechanisms in structural components; and, (3) the experimental verification of acoustic transmission measurements for detecting both material and geometric damage mechanisms.
NASA Astrophysics Data System (ADS)
Young, Duncan; Blankeship, Donald; Beem, Lucas; Cavitte, Marie; Quartini, Enrica; Lindzey, Laura; Jackson, Charles; Roberts, Jason; Ritz, Catherine; Siegert, Martin; Greenbaum, Jamin; Frederick, Bruce
2017-04-01
The roughness of subglacial interfaces (as measured by airborne radar echo sounding) at length scales between profile line spacing and the footprint of the instrument is a key, but complex, signature of glacial and geomorphic processes, material lithology and integrated history at the bed of ice sheets. Subglacial roughness is also intertwined with assessments of ice thickness uncertainty using radar echo sounding, the utility of interpolation methodologies, and a key aspect of subglacial assess strategies. Here we present an assessment of subglacial roughness estimation in both West and East Antarctica, and compare this to exposed subglacial terrains. We will use recent high resolution aerogeophysical surveys to examine what variations in roughness are a fingerprint for, assess the limits of ice thickness uncertainty quantification and compare strategies for roughness assessment and utilization.
Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.
Peng, Yuan; Li, Yanshuo; Ban, Yujie; Jin, Hua; Jiao, Wenmei; Liu, Xinlei; Yang, Weishen
2014-12-12
Layered metal-organic frameworks would be a diverse source of crystalline sheets with nanometer thickness for molecular sieving if they could be exfoliated, but there is a challenge in retaining the morphological and structural integrity. We report the preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs. They are used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas (H2) permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200. We found an unusual proportional relationship between H2 permeance and H2 selectivity for the membranes, and achieved a simultaneous increase in both permeance and selectivity by suppressing lamellar stacking of the nanosheets. Copyright © 2014, American Association for the Advancement of Science.
Process Parameters Optimization in Single Point Incremental Forming
NASA Astrophysics Data System (ADS)
Gulati, Vishal; Aryal, Ashmin; Katyal, Puneet; Goswami, Amitesh
2016-04-01
This work aims to optimize the formability and surface roughness of parts formed by the single-point incremental forming process for an Aluminium-6063 alloy. The tests are based on Taguchi's L18 orthogonal array selected on the basis of DOF. The tests have been carried out on vertical machining center (DMC70V); using CAD/CAM software (SolidWorks V5/MasterCAM). Two levels of tool radius, three levels of sheet thickness, step size, tool rotational speed, feed rate and lubrication have been considered as the input process parameters. Wall angle and surface roughness have been considered process responses. The influential process parameters for the formability and surface roughness have been identified with the help of statistical tool (response table, main effect plot and ANOVA). The parameter that has the utmost influence on formability and surface roughness is lubrication. In the case of formability, lubrication followed by the tool rotational speed, feed rate, sheet thickness, step size and tool radius have the influence in descending order. Whereas in surface roughness, lubrication followed by feed rate, step size, tool radius, sheet thickness and tool rotational speed have the influence in descending order. The predicted optimal values for the wall angle and surface roughness are found to be 88.29° and 1.03225 µm. The confirmation experiments were conducted thrice and the value of wall angle and surface roughness were found to be 85.76° and 1.15 µm respectively.
Martian neutron leakage spectra
NASA Astrophysics Data System (ADS)
Drake, D. M.; Feldman, W. C.; Jakosky, B. M.
1988-06-01
A high-energy nucleon-meson transport code is used to calculate energy spectra of Martian leakage neutrons. Four calculations are used to simulate a uniform surface layer containing various amounts of water, different burial depths of a 50 percent water layer underneath a 1 percent water layer, changing atmospheric pressure, and a thick carbon dioxide ice sheet overlying a "dirty" water ice sheet. Calculated spectra at energies less than about 1000 eV were fitted by a superposition of thermal and epithermal functions having four free parameters, two of which (thermal and epithermal amplitudes) were found to vary systematically and to specify uniquely the configuration in each of the series. Parameter variations depend on the composition of the assumed surface layers through the average atomic mass and the macroscopic scattering and absorption cross sections. It is concluded that measurements of leakage neutron spectra should allow determination of the hydrogen content of surface layers buried to depths up to about 100 g/sq. cm and determination of the thickness of a polar dry ice cap up to a thickness of about 250 g/sq. cm.
A discontinuous melt sheet in the Manson impact structure
NASA Technical Reports Server (NTRS)
Izett, G. A.; Reynolds, R. L.; Rosenbaum, J. G.; Nishi, J. M.
1993-01-01
Petrologic studies of the core recovered from holes drilled in the Manson, Iowa, buried impact structure may unravel the thermal history of the crater-fill debris. We made a cursory examination of about 200 m of core recovered from the M-1 bore hole. The M-1 bore hole was the first of 12 holes drilled as part of a cooperative drilling program between the U.S. Geological Survey and the Iowa Geological Survey Bureau. The M-1 core hole is about 6 km northeast of the center of the impact structure, apparently on the flank of its central peak. We developed a working hypothesis that a 30-m-thick breccia unit within a 53-m-thick unit previously termed the 'crystalline clast breccia with glassy matrix' is part of a discontinuous melt sheet in the crater-fill impact debris. The 30-m-thick breccia unit reached temperatures sufficient to partially melt some small breccia clasts and convert the fine-grained breccia matrix into a silicate melt that cooled to a greenish-black, flinty, microcrystalline rock. The results of the investigation of this unit are presented.
Method of Fabricating a Composite Apparatus
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats (Inventor); Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); High, James W. (Inventor); Jalink, Antony, Jr. (Inventor)
2007-01-01
A method for fabricating a piezoelectric macro-fiber composite actuator comprises making a piezoelectric fiber sheet by providing a plurality of wafers of piezoelectric material, bonding the wafers together with an adhesive material to from a stack of alternating layers of piezoelectric material and adhesive material, and cutting through the stack in a direction substantially parallel to the thickness of the stack and across the alternating layers of piezoelectric material and adhesive material to provide at least one piezoelectric fiber sheet having two sides comprising a plurality of piezoelectric fibers in juxtaposition to the adhesive material. The method further comprises bonding two electrically conductive films to the two sides of the piezoelectric fiber sheet. At least one conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric fiber sheet.
Asymptotic decay and non-rupture of viscous sheets
NASA Astrophysics Data System (ADS)
Fontelos, Marco A.; Kitavtsev, Georgy; Taranets, Roman M.
2018-06-01
For a nonlinear system of coupled PDEs, that describes evolution of a viscous thin liquid sheet and takes account of surface tension at the free surface, we show exponential (H^1, L^2) asymptotic decay to the flat profile of its solutions considered with general initial data. Additionally, by transforming the system to Lagrangian coordinates we show that the minimal thickness of the sheet stays positive for all times. This result proves the conjecture formally accepted in the physical literature (cf. Eggers and Fontelos in Singularities: formation, structure, and propagation. Cambridge Texts in Applied Mathematics, Cambridge, 2015), that a viscous sheet cannot rupture in finite time in the absence of external forcing. Moreover, in the absence of surface tension we find a special class of initial data for which the Lagrangian solution exhibits L^2-exponential decay to the flat profile.
Slow Mode Waves in the Heliospheric Plasma Sheet
NASA Technical Reports Server (NTRS)
Smith, Edward. J.; Zhou, Xiaoyan
2007-01-01
We report the results of a search for waves/turbulence in the Heliospheric Plasma Sheet (HPS) surrounding the Heliospheric Current Sheet (HCS). The HPS is treated as a distinctive heliospheric structure distinguished by relatively high Beta, slow speed plasma. The data used in the investigation are from a previously published study of the thicknesses of the HPS and HCS that were obtained in January to May 2004 when Ulysses was near aphelion at 5 AU. The advantage of using these data is that the HPS is thicker at large radial distances and the spacecraft spends longer intervals inside the plasma sheet. From the study of the magnetic field and solar wind velocity components, we conclude that, if Alfven waves are present, they are weak and are dominated by variations in the field magnitude, B, and solar wind density, NP, that are anti-correlated.
Tissue-equivalent TL sheet dosimetry system for X- and gamma-ray dose mapping.
Nariyama, N; Konnai, A; Ohnishi, S; Odano, N; Yamaji, A; Ozasa, N; Ishikawa, Y
2006-01-01
To measure dose distribution for X- and gamma rays simply and accurately, a tissue-equivalent thermoluminescent (TL) sheet-type dosemeter and reader system were developed. The TL sheet is composed of LiF:Mg,Cu,P and ETFE polymer, and the thickness is 0.2 mm. For the TL reading, a square heating plate, 20 cm on each side, was developed, and the temperature distribution was measured with an infrared thermal imaging camera. As a result, linearity within 2% and the homogeneity within 3% were confirmed. The TL signal emitted is detected using a CCD camera and displayed as a spatial dose distribution. Irradiation using synchrotron radiation between 10 and 100 keV and (60)Co gamma rays showed that the TL sheet dosimetry system was promising for radiation dose mapping for various purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, W.; Heinrich, B.; Zhou, H.
1994-12-31
Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field willmore » be shown.« less
Single point incremental forming: Formability of PC sheets
NASA Astrophysics Data System (ADS)
Formisano, A.; Boccarusso, L.; Carrino, L.; Lambiase, F.; Minutolo, F. Memola Capece
2018-05-01
Recent research on Single Point Incremental Forming of polymers has slightly covered the possibility of expanding the materials capability window of this flexible forming process beyond metals, by demonstrating the workability of thermoplastic polymers at room temperature. Given the different behaviour of polymers compared to metals, different aspects need to be deepened to better understand the behaviour of these materials when incrementally formed. Thus, the aim of the work is to investigate the formability of incrementally formed polycarbonate thin sheets. To this end, an experimental investigation at room temperature was conducted involving formability tests; varying wall angle cone and pyramid frusta were manufactured by processing polycarbonate sheets with different thicknesses and using tools with different diameters, in order to draw conclusions on the formability of polymer sheets through the evaluation of the forming angles and the observation of the failure mechanisms.
Distribution and Aggregate Thickness of Salt Deposits of the United States
The map shows the distribution and aggregate thickness of salt deposits of the United States. This information is from contour map sheets, scanned and processed for use in a global mineral resource assessment, produced by the U.S. Geological Survey. It is used here to provide a geospatial context to the distribution of rock-salt deposits in the US. It is useful in illustrating sources of chlorides.
Properties of Urea-Doped Ice in the CRREL Test Basin,
1983-03-01
thickness versus initial ice thickness at start of warm-up ................ 7 9. Thin sections of urea-doped ice...following section ) on the mechanical properties of the tank, essential for achieving an ice sheet of uni- the model ice was investigated. In particular...Figure 1. elastic foundation: Measurements ~i 7 A 1 f 2 Temperature As mentioned in the preceding section , water and temperature was measured with a 1/50
Quantifying glassy and crystalline basalt partitioning in the oceanic crust
NASA Astrophysics Data System (ADS)
Moore, Rachael; Ménez, Bénédicte
2016-04-01
The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.
NASA Technical Reports Server (NTRS)
Roth, Donald J (Inventor)
2011-01-01
A process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. The process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.
Electromagnetic augmentation for casting of thin metal sheets
Hull, John R.
1989-01-01
Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.
A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces
NASA Astrophysics Data System (ADS)
Lee, P. C. Y.; Yu, J. D.; Lin, W. S.
1998-02-01
A system of two-dimensional (2-D) governing equations for piezoelectric plates with general crystal symmetry and with electroded faces is deduced from the three-dimensional (3-D) equations of linear piezoelectricity by expansion in series of trigonometric functions of thickness coordinate. The essential difference of the present derivation from the earlier studies by trigonometrical series expansion is that the antisymmetric in-plane displacements induced by gradients of the bending deflection (the zero-order component of transverse displacement) are expressed by the linear functions of the thickness coordinate, and the rest of displacements are expanded in cosine series of the thickness coordinate. For the electric potential, a sine-series expansion is used for it is well suited for satisfying the electrical conditions at the faces covered with conductive electrodes. A system of approximate first-order equations is extracted from the infinite system of 2-D equations. Dispersion curves for thickness shear, flexure, and face-shear modes varying along x1 and those for thickness twist and face shear varying along x3 for AT-cut quartz plates are calculated from the present 2-D equations as well as from the 3-D equations, and comparison shows that the agreement is very close without introducing any corrections. Predicted frequency spectra by the present equations are shown to agree closely with the experimental data by Koga and Fukuyo [J. Inst. Elec. Comm. Engrs. of Japan 36, 59 (1953)] and those by Nakazawa, Horiuchi, and Ito [Proceedings of 1990 IEEE Ultrasonics Symposium (IEEE, New York, 1990)].
NASA Astrophysics Data System (ADS)
Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.
2010-08-01
We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.
Confined disclinations: exterior versus material constraints in developable thin elastic sheets.
Efrati, Efi; Pocivavsek, Luka; Meza, Ruben; Lee, Ka Yee C; Witten, Thomas A
2015-02-01
We examine the shape change of a thin disk with an inserted wedge of material when it is pushed against a plane, using analytical, numerical, and experimental methods. Such sheets occur in packaging, surgery, and nanotechnology. We approximate the sheet as having vanishing strain, so that it takes a conical form in which straight generators converge to a disclination singularity. Then, its shape is that which minimizes elastic bending energy alone. Real sheets are expected to approach this limiting shape as their thickness approaches zero. The planar constraint forces a sector of the sheet to buckle into the third dimension. We find that the unbuckled sector is precisely semicircular, independent of the angle δ of the inserted wedge. We generalize the analysis to include conical as well as planar constraints and thereby establish a law of corresponding states for shallow cones of slope ε and thin wedges. In this regime, the single parameter δ/ε^{2} determines the shape. We discuss the singular limit in which the cone becomes a plane, and the unexpected slow convergence to the semicircular buckling observed in real sheets.
NASA Astrophysics Data System (ADS)
Park, Keecheol; Oh, Kyungsuk
2017-09-01
In order to investigate the effect of leveling conditions on residual stress evolution during the leveling process of hot rolled high strength steels, the in-plane residual stresses of sheet processed under controlled conditions at skin-pass mill and levelers were measured by cutting method. The residual stress was localized near the edge of sheet. As the thickness of sheet was increased, the residual stress occurred region was expanded. The magnitude of residual stress within the sheet was reduced as increasing the deformation occurred during the leveling process. But the residual stress itself was not removed completely. The magnitude of camber occurred at cut plate was able to be predicted by the residual stress distribution. A numerical algorithm was developed for analysing the effect of leveling conditions on residual stress. It was able to implement the effect of plastic deformation in leveling, tension, work roll bending, and initial state of sheet (residual stress and curl distribution). The validity of simulated results was verified from comparison with the experimentally measured residual stress and curl in a sheet.