Li, Minghai; Liu, Yongsheng; Bansil, Rama
2010-08-28
The kinetics of the transformation from the hexagonal packed cylinder (hex) phase to the face-centered-cubic (fcc) phase was simulated using Brownian dynamics for an ABA triblock copolymer in a selective solvent for the A block. The kinetics was obtained by instantaneously changing either the temperature of the system or the well-depth of the Lennard-Jones potential. Detailed analysis showed that the transformation occurred via a rippling mechanism. The simulation results indicated that the order-order transformation was a nucleation and growth process when the temperature of the system instantly jumped from 0.8 to 0.5. The time evolution of the structure factor obtained by Fourier transformation showed that the peak intensities of the hex and fcc phases could be fit well by an Avrami equation.
Face-Centered-Cubic Nanostructured Polymer Foams
NASA Astrophysics Data System (ADS)
Cui, C.; Baughman, R. H.; Liu, L. M.; Zakhidov, A. A.; Khayrullin, I. I.
1998-03-01
Beautifully iridescent polymer foams having Fm-3m cubic symmetry and periodicities on the scale of the wavelength of light have been synthesized by the templating of porous synthetic opals. These fabrication processes involve the filling of porous SiO2 opals (with typical cubic lattice parameters of 250 nm) with either polymers or polymer precursors, polymerization of the precursors if necessary, and removal of the fcc array of SiO2 balls to provide an all-polymer structure. The structures of these foams are similar to periodic minimal surfaces, although the Gaussian curvature can have both positive and negative values. Depending upon whether the internal surfaces of the opal are polymer filled or polymer coated, the polymer replica has either one or two sets of independent channels. We fill these channels with semiconductors, metals, or superconductors to provide electronic and optical materials with novel properties dependent on the nanoscale periodicity.
Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters
Souza, T. X. R.; Macedo, C. A.
2016-01-01
In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653
Ultrahigh hardness on a face-centered cubic metal
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Wang, Bo; Wen, Bin; Zhang, Bi; Guo, Dongming
2017-09-01
Nanotwinned (NT) surfaces are developed on a face-centered cubic (fcc) metal with ultrahigh hardness under cyclic loading using plastic deformation at room temperature. The hardness on NT surfaces remains constant at 7.9 and 8.5 GPa indented at 1 and 7 N under 0-100 cycles respectively, which are about three times that of their pristine surfaces. This is different from the NT metals and nonmetallic materials, on which the hardness is about two times that of their pristine counterparts. Moreover, NT metals usually consist of randomly oriented twin and grain boundaries, making it difficult to control the uniform mechanical property. Here, novel nt structure is proposed on an fcc metal, in which all the twin boundaries are along (-1-11) orientation, forming bundles of nanotwins to several micrometers in length.
Ytterbium: Transition at High Pressure from Face-Centered Cubic to Body-Centered Cubic Structure.
Hall, H T; Barnett, J D; Merrill, L
1963-01-11
Pressure of 40,000 atmospheres at 25 degrees C induces a phase transformation in ytterbium metal; the face-centered cubic structure changes to body-centered cubic. The radius of the atom changes from 1.82 to 1.75 A. At the same time the atom's volume decreases by 11 percent and the volume, observed macroscopically, decreases 3.2 percent.
Theory for plasticity of face-centered cubic metals.
Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun
2014-05-06
The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control.
NASA Astrophysics Data System (ADS)
Chen, Hong-Bo; Cao, Yan-Ling; Zhu, Yong-Zheng; Wang, Yan-Ping; Chi, Yuan-Bin
2006-05-01
We report a photonic crystal model, which consists of hollow spheres located at face-centered cubic lattice sites and each sphere connected to all of its 12 nearest neighbors by cylindrical rods. Theoretical calculations show that this kind of structure exhibits two large complete photonic band gaps. The maximum relative gap sizes reach 17.3% between the eighth and ninth bands, and 15.1% between the 13th and 14th bands for a dielectric contrast of 11.9, and the minimal dielectric contrasts needed to open the two gaps are 5.8 and 7.3, respectively, which are lower than that of other face-centered cubic photonic crystal structures.
1992-11-01
A model was derived to predict the average jet velocity difference between particulated shaped charge jet particles. The model is based on the ’ wire ... drawing formula presented by Kolsky, the plastic instability criterion, and the Zerilli-Armstrong constitutive equation for face-centered-cubic
Magnetic and thermodynamic properties of face-centered cubic Fe-Ni alloys.
Lavrentiev, M Yu; Wróbel, J S; Nguyen-Manh, D; Dudarev, S L
2014-08-14
A model lattice ab initio parameterized Heisenberg-Landau magnetic cluster expansion Hamiltonian spanning a broad range of alloy compositions and a large variety of chemical and magnetic configurations has been developed for face-centered cubic Fe-Ni alloys. The thermodynamic and magnetic properties of the alloys are explored using configuration and magnetic Monte Carlo simulations over a temperature range extending well over 1000 K. The predicted face-centered cubic-body-centered cubic coexistence curve, the phase stability of ordered Fe3Ni, FeNi, and FeNi3 intermetallic compounds, and the predicted temperatures of magnetic transitions simulated as functions of alloy composition agree well with experimental observations. Simulations show that magnetic interactions stabilize the face-centered cubic phase of Fe-Ni alloys. Both the model Hamiltonian simulations and ab initio data exhibit a particularly large number of magnetic configurations in a relatively narrow range of alloy compositions corresponding to the occurrence of the Invar effect.
Void nucleation in biaxially strained ultrathin films of face-centered cubic metals
NASA Astrophysics Data System (ADS)
Kolluri, Kedarnath; Gungor, M. Rauf; Maroudas, Dimitrios
2007-05-01
We report an analysis of void nucleation as a relaxation mechanism in freestanding biaxially strained ultrathin films of face-centered cubic metals based on large-scale molecular-dynamics simulations. Above a critical strain level, multiple threading dislocations are emitted from the film surface. The surface step traces formed by gliding dislocations on intersecting and on adjacent parallel glide planes lead to formation and growth of surface pits and grooves, while vacancies form due to gliding of jogged dislocations and dislocation intersections. Coalescence of the surface pits with vacancy clusters is the precursor to the formation of a larger void extending across the film.
Phonon densities of states of face-centered-cubic Ni-Fe alloys
Lucas, Matthew; Mauger, L; Munoz, Jorge A.; Halevy, I; Horwath, J; Semiatin, S L; Leontsev, S. O.; Stone, Matthew B; Abernathy, Douglas L; Xiao, Yuming; Chow, P; Fultz, B.
2013-01-01
Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to determine the phonon densities of states of face-centered-cubic Ni-Fe alloys. Increasing Fe concentration results in an average softening of the phonon modes. Chemical ordering of the Ni0.72Fe0.28 alloy results in a reduction of the partial vibrational entropy of the Fe atoms but does not significantly change the partial vibrational entropy of the Ni atoms. Changes in the phonon densities of states with composition and chemical ordering are discussed and analyzed with a cluster expansion method.
Supersolid of hardcore bosons on the face-centered cubic lattice
Suzuki, Takahumi; Kawashima, Naoki
2007-05-01
We investigate a supersolid state in hardcore boson models on the face-centered-cubic (fcc) lattice. The supersolid state is characterized by a coexistence of crystalline order and superfluidity. Using a quantum Monte Carlo method based on the directed-loop algorithm, we calculate static structure factors and superfluid density at finite temperature, from which we obtain the phase diagram. The supersolid phase exists at intermediate fillings between a three-quarter-filled solid phase and a half-filled solid phase. We also discuss the mechanism of the supersolid state on the fcc lattice.
Designing photonic band gaps in SiO2-based face-centered cubic-structured crystals
NASA Astrophysics Data System (ADS)
Fang, Mei; Volotinen, Tarja T.; Kulkarni, Sulabha K.; Belova, Lyubov; Rao, K. Venkat
2011-01-01
We designed face-centered cubic-structured (fcc) photonic crystals whose lattice parameters were tuned by varying the size of the constituent spherical silica particles in the range 100 to 520 nm. From wide-angle optical transmission investigations and Gaussian fitting of the absorbance spectra over UV-Vis-Near IR range, we found that in these crystals the Bragg wavelengths of the photonic band gaps (PBGs) corresponding to the reflected crystal planes linearly increase with the size of the spheres as expected. From this data, the average refractive index along the different crystal planes of the fcc structure was found to be in the 1.24 to 1.32 range. The Bragg wavelengths were tuned between 400 and 1100 nm. Thus, photonic crystals of the same structure can be designed to tune the Bragg wavelengths of PBGs by selecting the sphere size. These studies open up possibilities to design a new class of ``smart'' photonic crystals consisting of dielectric entities of sub-micron silica spheres with added functionality from magnetic or piezoelectric nanoparticles embedded in them.
Bufford, Daniel C.; Wang, Morris; Liu, Yue; Lu, Lei
2016-04-01
The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, while engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.
Formation of recrystallization cube texture in high purity face-centered cubic metal sheets
NASA Astrophysics Data System (ADS)
Mao, W.
1999-10-01
An investigation on recrystallization textures in high purity face-centered cubic (fcc) aluminum, copper, and nickel indicated that the cube texture is a unique dominant final texture. In a macroview of rolling deformation, a balanced activation of four slip systems can result in certain stability of some substructure with cube orientation in the deformed matrix. In the stable substructure the dislocation density is very low, and the dislocation configuration is rather simple in comparison to other orientations so that the cube substructure can easily be transformed into cube recrystallization nuclei by a recovery process. A high orientation gradient and correspondingly high angle boundaries to the deformed matrix are usually expected around the cube nuclei, which, therefore, grow rapidly. After the primary recrystallization, the size of cube grains is much larger than the grains with other orientations, which will be expensed as the cube grains grow further, so that the cube texture can finally become a dominant texture component.
Stacking fault energies of face-centered cubic concentrated solid solution alloys
Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen
2017-06-22
We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack (hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to-fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of the vibrational modesmore » suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less
Weyl points and topological nodal superfluids in a face-centered-cubic optical lattice
NASA Astrophysics Data System (ADS)
Lang, Li-Jun; Zhang, Shao-Liang; Law, K. T.; Zhou, Qi
2017-07-01
We point out that a face-centered-cubic (fcc) optical lattice, which can be realized by a simple scheme using three lasers, provides one a highly controllable platform for creating Weyl points and topological nodal superfluids in ultracold atoms. In noninteracting systems, Weyl points automatically arise in the Floquet band structure when shaking such fcc lattices, and sophisticated design of the tunneling is not required. More interestingly, in the presence of attractive interaction between two hyperfine spin states, which experience the same shaken fcc lattice, a three-dimensional topological nodal superfluid emerges, and Weyl points show up as the gapless points in the quasiparticle spectrum. One could either create a double Weyl point of charge 2, or split it into two Weyl points of charge 1, which can be moved in the momentum space by tuning the interactions. Correspondingly, the Fermi arcs at the surface may be linked with each other or separated as individual ones.
Ice rule for a ferromagnetic nanosite network on the face-centered cubic lattice
NASA Astrophysics Data System (ADS)
Mistonov, A. A.; Shishkin, I. S.; Dubitskiy, I. S.; Grigoryeva, N. A.; Eckerlebe, H.; Grigoriev, S. V.
2015-05-01
The magnetic properties of an inverse opal-like cobalt-based structure having the symmetry of the face-centered cubic lattice are studied. The magnetization reversal of the structure in a magnetic field applied along the [] axis is described using a phenomenological model, which uses the ice rule for the local magnetization of nanostructure elements. This description predicts the absence of a long-range magnetic order in two <111> directions that are normal to the magnetic field. The magnetic structure is analyzed by smallangle neutron diffraction. Neutron diffraction patterns are measured in an external magnetic field varying from -1.2 to 1.2 T and applied along the crystallographic [] direction. A magnetic contribution to the neutron scattering intensity is extracted. It is shown that this contribution is close to zero over the entire applied magnetic field range for all scattering planes that are normal to the field, which agrees well with the proposed model.
High dose effects in neutron irradiated face-centered cubic metals
Garner, F.A.; Toloczko, M.B.
1993-06-01
During neutron irradiation, most face-centered cubic metals and alloys develop saturation or quasi-steady state microstructures. This, in turn, leads to saturation levels in mechanical properties and quasi-steady state rates of swelling and creep deformation. Swelling initially plays only a small role in determining these saturation states, but as swelling rises to higher levels, it exerts strong feedback on the microstructure and its response to environmental variables. The influence of swelling, either directly or indirectly via second order mechanisms, such as elemental segregation to void surfaces, eventually causes major changes, not only in irradiation creep and mechanical properties, but also on swelling itself. The feedback effects of swelling on irradiation creep are particularly complex and lead to problems in applying creep data derived from highly pressurized creep tubes to low stress situations, such as fuel pins in liquid metal reactors.
Thermodynamics of face-centered-cubic silicon nucleation at the nanoscale from laser ablation.
Hu, Shengliang; Li, Wuhong; Liu, Wei; Dong, Yingge; Cao, Shirui; Yang, Jinlong
2011-05-25
The thermodynamic nucleation and the phase transition of the face-centered-cubic structure of Si (fcc-Si) on the nanoscale are performed by taking the effect of nanosize-induced additional pressure on the fcc-Si formation under the conditions generated by laser ablation in liquid into account. The thermodynamic analyses showed that the formation of fcc-Si nanocrystals with sizes of 2-6 nm would take place prior to that of large fcc-Si nanocrystals, and the phase transition probability from diamond-like structure Si (d-Si) to fcc-Si is rather high, up to 10(-3)-10(-2), under the conditions created by laser ablation of an Si target in water. These theoretical results suggest that laser ablation in liquid would be an effective industrial route to prepare ultrasmall fcc-Si nanocrystals.
Template-directed convective assembly of three-dimensional face-centered-cubic colloidal crystals
NASA Astrophysics Data System (ADS)
Zhang, Fan
2003-03-01
We have demonstrated that square two-dimensional grating templates can drive the growth of three-dimensional (3D), face-centered-cubic (FCC) colloidal crystals by convective assembly. The square symmetry (i.e. (100) planes parallel to the substrate) of the underlying template was transferred to the colloidal crystal and maintained throughout its growth of 50 layers. We characterized crystals grown on flat and on templated substrates using electron microscopy and small-angle x-ray scattering (SAXS). SAXS measurements of the templated samples clearly show four-fold diffraction patterns arising from FCC domains without stacking faults. The work is partially supported by NSF grants DMR-0203378, the PENN MRSEC, DMR-0079909, and NASA grant NAG8-2172.
Rolling-induced Face Centered Cubic Titanium in Hexagonal Close Packed Titanium at Room Temperature
Wu, H. C.; Kumar, A.; Wang, J.; Bi, X. F.; Tomé, C. N.; Zhang, Z.; Mao, S. X.
2016-01-01
Combining transmission electron microscopes and density functional theory calculations, we report the nucleation and growth mechanisms of room temperature rolling induced face-centered cubic titanium (fcc-Ti) in polycrystalline hexagonal close packed titanium (hcp-Ti). Fcc-Ti and hcp-Ti take the orientation relation: 〈0001〉hcp||〈001〉fcc and , different from the conventional one. The nucleation of fcc-Ti is accomplished via pure-shuffle mechanism with a minimum stable thickness of three atomic layers, and the growth via shear-shuffle mechanisms through gliding two-layer disconnections or pure-shuffle mechanisms through gliding four-layer disconnections. Such phase transformation offers an additional plastic deformation mode comparable to twinning. PMID:27067515
Bufford, Daniel C.; Wang, Morris; Liu, Yue; ...
2016-04-01
The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less
Face-centered-cubic B80 metal: Density functional theory calculations
NASA Astrophysics Data System (ADS)
Yan, Qing-Bo; Zheng, Qing-Rong; Su, Gang
2008-06-01
By means of ab initio calculations within the density functional theory, we have found that B80 fullerenes can condense to form stable face-centered-cubic (fcc) solids. It is shown that when forming a crystal, B80 cages are geometrically distorted, the Ih symmetry is lowered to Th , and four boron-boron chemical bonds are formed between every two nearest neighbor B80 cages. The cohesive energy of B80 fcc solid is 0.23 eV/atom with respect to the isolated B80 fullerene. The calculated electronic structure reveals that the fcc B80 solid is a metal. The predicted solid phase would constitute a form of pure boron and might have diverse implications. In addition, a simple electron counting rule is proposed, which could explain the stability of B80 fullerene and the recently predicted stable boron sheet.
Room-temperature ferromagnetism in doped face-centered cubic fe nanoparticles.
Wei, Bingqing; Shima, Mutsuhiro; Pati, Ranjit; Nayak, Saroj K; Singh, David J; Ma, Renzhi; Li, Yubao; Bando, Yoshio; Nasu, Saburo; Ajayan, Pulickel M
2006-06-01
The magnetism of Fe and its alloys has been at the center of scientific and technological interest for decades. Along with the ferromagnetic nature of body-centered cubic Fe, the magnetic properties of face-centered cubic (fcc) Fe have attracted much attention. It is well known that fcc Fe is thermodynamically unstable at ambient conditions and not ferromagnetic. Contrary to what is known, we report that elongated nanoparticles of fcc Fe, grown within graphitic nanotubes, remain structurally stable and appear ferromagnetic at room temperature. The magnetic moment (2+/-0.5 microB) in these nanoparticles and the hyperfine fields for two different components of 57Fe (33 and 21 T), measured by Mössbauer spectroscopy, are explained by carbon interstitials in the expanded fcc Fe lattice, that is, FeC(x) where x approximately 0.10, which result in the formation of a dominant Fe4C stoichiometry. First-principles calculations suggest that the ferromagnetism observed in the fcc Fe is related to both lattice expansion and charge transfer between iron and carbon. The understanding of strain- and dopant-induced ferromagnetism in the fcc Fe could lead to the development of new fcc Fe-based alloys for magnetic applications.
NASA Astrophysics Data System (ADS)
Kumar Ray, Atish
There exists considerable debate in the texture community about whether grain interactions are a necessary factor to explain the development of deformation textures in polycrystalline metals. Computer simulations indicate that grain interactions play a significant role, while experimental evidence shows that the material type and starting orientation are more important in the development of texture and microstructure. A balanced review of the literature on face-centered cubic metals shows that the opposing viewpoints have developed due to the lack of any complete experimental study which considers both the intrinsic (material type and starting orientation) and extrinsic (grain interaction) factors. In this study, a novel method was developed to assemble ideally orientated crystalline aggregates in 99.99% aluminum (Al) or copper (Cu) to experimentally evaluate the effect of grain interactions on room temperature deformation texture. Ideal orientations relevant to face-centered cubic rolling textures, Cube {100} <001>, Goss {110} <001>, Brass {110} <11¯2> and Copper {112} <111¯> were paired in different combinations and deformed by plane strain compression to moderate strain levels of 1.0 to 1.5. Orientation dependent mechanical behavior was distinguishable from that of the neighbor-influenced behavior. In interacting crystals the constraint on the rolling direction shear strains (gammaXY , gammaXZ) was found to be most critical to show the effect of interactions via the evolution of local microstructure and microtexture. Interacting crystals with increasing deformations were observed to gradually rotate towards the S-component, {123} <634>. Apart from the average lattice reorientations, the interacting crystals also developed strong long-range orientation gradients inside the bulk of the crystal, which were identified as accumulating misorientations across the deformation boundaries. Based on a statistical procedure using quaternions, the orientation and
Zhao, Ming; Figueroa-Cosme, Legna; Elnabawy, Ahmed O; Vara, Madeline; Yang, Xuan; Roling, Luke T; Chi, Miaofang; Mavrikakis, Manos; Xia, Younan
2016-08-10
Nanocages have received considerable attention in recent years for catalytic applications owing to their high utilization efficiency of atoms and well-defined facets. Here we report, for the first time, the synthesis of Ru cubic nanocages with ultrathin walls, in which the atoms are crystallized in a face-centered cubic (fcc) rather than hexagonal close-packed (hcp) structure. The key to the success of this synthesis is to ensure layer-by-layer deposition of Ru atoms on the surface of Pd cubic seeds by controlling the reaction temperature and the injection rate of a Ru(III) precursor. By selectively etching away the Pd from the Pd@Ru core-shell nanocubes, we obtain Ru nanocages with an average wall thickness of 1.1 nm or about six atomic layers. Most importantly, the Ru nanocages adopt an fcc crystal structure rather than the hcp structure observed in bulk Ru. The synthesis has been successfully applied to Pd cubic seeds with different edge lengths in the range of 6-18 nm, with smaller seeds being more favorable for the formation of Ru shells with a flat, smooth surface due to shorter distance for the surface diffusion of the Ru adatoms. Self-consistent density functional theory calculations indicate that these unique fcc-structured Ru nanocages might possess promising catalytic properties for ammonia synthesis compared to hcp Ru(0001), on the basis of strengthened binding of atomic N and substantially reduced activation energies for N2 dissociation, which is the rate-determining step for ammonia synthesis on hcp Ru catalysts.
Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches
NASA Astrophysics Data System (ADS)
Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente
2016-10-01
The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the ‘pseudo-interfacial energy’ that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.
Design of new face-centered cubic high entropy alloys by thermodynamic calculation
NASA Astrophysics Data System (ADS)
Choi, Won-Mi; Jung, Seungmun; Jo, Yong Hee; Lee, Sunghak; Lee, Byeong-Joo
2017-09-01
A new face-centered cubic (fcc) high entropy alloy system with non-equiatomic compositions has been designed by utilizing a CALculation of PHAse Diagram (CALPHAD) - type thermodynamic calculation technique. The new alloy system is based on the representative fcc high entropy alloy, the Cantor alloy which is an equiatomic Co- Cr-Fe-Mn-Ni five-component alloy, but fully or partly replace the cobalt by vanadium and is of non-equiatomic compositions. Alloy compositions expected to have an fcc single-phase structure between 700 °C and melting temperatures are proposed. All the proposed alloys are experimentally confirmed to have the fcc single-phase during materials processes (> 800 °C), through an X-ray diffraction analysis. It is shown that there are more chances to find fcc single-phase high entropy alloys if paying attention to non-equiatomic composition regions and that the CALPHAD thermodynamic calculation can be an efficient tool for it. An alloy design technique based on thermodynamic calculation is demonstrated and the applicability and limitation of the approach as a design tool for high entropy alloys is discussed.
Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.
Lee, Byoung-Sun; Seo, Jong-Hyun; Son, Seoung-Bum; Kim, Seul Cham; Choi, In-Suk; Ahn, Jae-Pyoung; Oh, Kyu Hwan; Lee, Se-Hee; Yu, Woong-Ryeol
2013-07-23
In the foreseeable future, there will be a sharp increase in the demand for flexible Li-ion batteries. One of the most important components of such batteries will be a freestanding electrode, because the traditional electrodes are easily damaged by repeated deformations. The mechanical sustainability of carbon-based freestanding electrodes subjected to repeated electrochemical reactions with Li ions is investigated via nanotensile tests of individual hollow carbon nanofibers (HCNFs). Surprisingly, the mechanical properties of such electrodes are improved by repeated electrochemical reactions with Li ions, which is contrary to the conventional wisdom that the mechanical sustainability of carbon-based electrodes should be degraded by repeated electrochemical reactions. Microscopic studies reveal a reinforcing mechanism behind this improvement, namely, that inserted Li ions form irreversible face-centered-cubic (FCC) crystals within HCNF cavities, which can reinforce the carbonaceous matrix as strong second-phase particles. These FCC Li crystals formed within the carbon matrix create tremendous potential for HCNFs as freestanding electrodes for flexible batteries, but they also contribute to the irreversible (and thus low) capacity of HCNFs.
Numerical Modeling of the Stability of Face-Centered Cubic Metals with High Vacancy Concentration
Brian P. Somerday; M. I. Baskes
1998-12-01
The objective of this research is to assess the possibility of forming an atomically porous structure in a low-density metal, e.g., Al with vacancies up to 0.20/lattice site; and to examine the effects of hydrogen and vacancy concentration on the stability of an atomically porous structure that has been experimentally produced in nickel. The approach involves numerical modeling using the Embedded-Atom Method (EAM). High vacancy concentrations cause the Al lattice to disorder at 300K. In contrast, Ni retains the face-centered-cubic structure at 300K for vacancy concentrations up to 0.15 Vac/lattice site. Unexpectedly, the lattice with 0.15 Vac/lattice site is more stable than the lattice with 0.10 or 0.20 Vac/lattice site. The Ni systems with 0.10 and 0.15 Vac/lattice site exhibit domains consisting of uniform lattice rotations. The Ni lattice with 0.15 Vac/lattice site is more stable with an initial distribution of random vacancies compared to ordered vacancies. The equilibrium lattice structures of Ni a d Al containing vacancies and H are less ordered to structures with vacancies only at 300K.
Formation mechanism of fivefold deformation twins in a face-centered cubic alloy
Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming
2017-01-01
The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins. PMID:28349995
Formation mechanism of fivefold deformation twins in a face-centered cubic alloy.
Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming
2017-03-28
The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.
Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Yang, Song; Guo, Dongming; Yuan, Boya; Guo, Xiaoguang; Zhang, Bi; Huo, Yanxia
2015-06-01
Deformation twinning evolution from a single crystal is conducted by molecular dynamics simulations, to elucidate a twinned face-centered-cubic alloy in an experiment with hardness up to 100 times as that of single crystals, and with ductility simultaneously. Critical twinning stress of cadmium zinc telluride (CdZnTe or CZT) calculated is 1.38 GPa. All the twin boundaries are along the (11-1) orientation, except the one with the (-111) plane that supports the indentation, interpreting the unidirectional and boundary-free characteristics, confirmed in the experiment. Three twin thicknesses after unloading are 3.2, 3.5, and 16 nm, which is consistent with the experimentally repeated pattern of a lamellar twin with thickness larger than 12.7 nm, followed by one or several twins with thicknesses smaller than 12.7 nm. An inverse triangle of a twin combining with three twins generate a synergistic strengthening effect through the hardening and softening functions, illuminating the ultrahigh hardness demonstrated in the experiment. Twinning takes place in loading, and detwinning occurs in unloading, which expounds the high ductility observed in the experiment.
Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.
Wei, Yaochi; Chen, Shaohua
2015-12-01
The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.
High pressure-induced distortion in face-centered cubic phase of thallium
NASA Astrophysics Data System (ADS)
Kotmool, Komsilp; Li, Bing; Chakraborty, Sudip; Bovornratanaraks, Thiti; Luo, Wei; Mao, Ho-kwang; Ahuja, Rajeev
2016-10-01
The complex and unusual high-pressure phase transition of III-A (i.e. Al, Ga, and In) metals have been investigated in the last several decades because of their interesting periodic table position between the elements having metallic and covalent bonding. Our present first principles-based electronic structure calculations and experimental investigation have revealed the unusual distortion in face-centered cubic (f.c.c.) phase of the heavy element thallium (Tl) induced by the high pressure. We have predicted body-centered tetragonal (b.c.t) phase at 83 GPa using an evolutionary algorithm coupled with ab initio calculations, and this prediction has been confirmed with a slightly distorted parameter (2 × a - c)/c lowered by 1% using an angle-dispersive X-ray diffraction technique. The density functional theory (DFT)-based calculations suggest that s-p mixing states and the valence-core overlapping of 6s and 5d states play the most important roles for the phase transitions along the pathway h.c.p→b.c.t.
High pressure-induced distortion in face-centered cubic phase of thallium
Kotmool, Komsilp; Li, Bing; Chakraborty, Sudip; Bovornratanaraks, Thiti; Luo, Wei; Mao, Ho-kwang; Ahuja, Rajeev
2016-01-01
The complex and unusual high-pressure phase transition of III-A (i.e. Al, Ga, and In) metals have been investigated in the last several decades because of their interesting periodic table position between the elements having metallic and covalent bonding. Our present first principles-based electronic structure calculations and experimental investigation have revealed the unusual distortion in face-centered cubic (f.c.c.) phase of the heavy element thallium (Tl) induced by the high pressure. We have predicted body-centered tetragonal (b.c.t) phase at 83 GPa using an evolutionary algorithm coupled with ab initio calculations, and this prediction has been confirmed with a slightly distorted parameter (2 × a − c)/c lowered by 1% using an angle-dispersive X-ray diffraction technique. The density functional theory (DFT)-based calculations suggest that s–p mixing states and the valence-core overlapping of 6s and 5d states play the most important roles for the phase transitions along the pathway h.c.p→f.c.c.→b.c.t. PMID:27655891
High pressure-induced distortion in face-centered cubic phase of thallium.
Kotmool, Komsilp; Li, Bing; Chakraborty, Sudip; Bovornratanaraks, Thiti; Luo, Wei; Mao, Ho-Kwang; Ahuja, Rajeev
2016-10-04
The complex and unusual high-pressure phase transition of III-A (i.e. Al, Ga, and In) metals have been investigated in the last several decades because of their interesting periodic table position between the elements having metallic and covalent bonding. Our present first principles-based electronic structure calculations and experimental investigation have revealed the unusual distortion in face-centered cubic (f.c.c.) phase of the heavy element thallium (Tl) induced by the high pressure. We have predicted body-centered tetragonal (b.c.t) phase at 83 GPa using an evolutionary algorithm coupled with ab initio calculations, and this prediction has been confirmed with a slightly distorted parameter ([Formula: see text] × a - c)/c lowered by 1% using an angle-dispersive X-ray diffraction technique. The density functional theory (DFT)-based calculations suggest that s-p mixing states and the valence-core overlapping of 6s and 5d states play the most important roles for the phase transitions along the pathway h.c.p[Formula: see text]f.c.c.[Formula: see text]b.c.t.
Synthesis of ultralarge-pore FDU-12 silica with face-centered cubic structure.
Huang, Liang; Yan, Xuewu; Kruk, Michal
2010-09-21
Ultralarge-pore FDU-12 (ULP-FDU-12) silicas with face-centered cubic structures (Fm3m symmetry) of spherical mesopores were synthesized at low initial temperature (∼14 °C) using commercially available PEO-PPO-PEO triblock copolymer Pluronic F127 as a micellar template and xylene as a micelle expander. Xylene was selected on the basis of its predicted higher swelling ability for the Pluronic surfactant micelles in comparison to 1,3,5-trimethylbenzene that was used previously to obtain large-pore FDU-12. The optimization of the synthesis conditions afforded as-synthesized ULP-FDU-12 materials with unit-cell parameters up to 56 nm, which is comparable to the highest reported values for Fm3m structures templated by custom-made surfactants. Calcined silicas were obtained with unit-cell parameters up to 53 nm and pore diameters up to ∼36 nm (for N(2) adsorption at 77 K, the capillary condensation relative pressure was up to 0.938). The preferred silica source was tetraethylorthosilicate, but tetramethylorthosilicate was also found suitable. The pore diameter was dependent on the unit-cell size of the as-synthesized material, but was further tuned by adjusting the time and temperature of the treatment in the HCl solution. If the synthesis was performed at low temperature only, highly ordered closed-pore silicas were obtained at calcination temperatures as low as 450 °C. On the other hand, the hydrothermal treatments, including the acid treatment at 130 °C, afforded silicas with large pore entrance sizes. The present synthesis constitutes a major advancement in the synthesis of ordered silicas with very large open and closed spherical mesopores.
Wang-Landau sampling in face-centered-cubic hydrophobic-hydrophilic lattice model proteins.
Liu, Jingfa; Song, Beibei; Yao, Yonglei; Xue, Yu; Liu, Wenjie; Liu, Zhaoxia
2014-10-01
Finding the global minimum-energy structure is one of the main problems of protein structure prediction. The face-centered-cubic (fcc) hydrophobic-hydrophilic (HP) lattice model can reach high approximation ratios of real protein structures, so the fcc lattice model is a good choice to predict the protein structures. The lacking of an effective global optimization method is the key obstacle in solving this problem. The Wang-Landau sampling method is especially useful for complex systems with a rough energy landscape and has been successfully applied to solving many optimization problems. We apply the improved Wang-Landau (IWL) sampling method, which incorporates the generation of an initial conformation based on the greedy strategy and the neighborhood strategy based on pull moves into the Wang-Landau sampling method to predict the protein structures on the fcc HP lattice model. Unlike conventional Monte Carlo simulations that generate a probability distribution at a given temperature, the Wang-Landau sampling method can estimate the density of states accurately via a random walk, which produces a flat histogram in energy space. We test 12 general benchmark instances on both two-dimensional and three-dimensional (3D) fcc HP lattice models. The lowest energies by the IWL sampling method are as good as or better than those of other methods in the literature for all instances. We then test five sets of larger-scale instances, denoted by the S, R, F90, F180, and CASP target instances on the 3D fcc HP lattice model. The numerical results show that our algorithm performs better than the other five methods in the literature on both the lowest energies and the average lowest energies in all runs. The IWL sampling method turns out to be a powerful tool to study the structure prediction of the fcc HP lattice model proteins.
Structural and magnetic properties of a chemically ordered face-centered-cubic (111) Mn alloy film
NASA Astrophysics Data System (ADS)
Zhou, Zhuowei; Li, Qiangyong; Venus, D.
2006-04-01
A 4 ML Ni/W(110) substrate is used to establish a (111) face-centered-cubic (fcc) template upon which 3 ML of Fe is deposited and annealed to 580 K to form a substrate with very good short and long range fcc (111) order, that is Fe rich at the surface. Mn alloy films are formed by annealing a subsequent Mn deposit of 0.3-1.6 ML. Low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and directional AES show that an ordered alloy is not formed until an annealing temperature of 580 K, upon which a multilayer alloy with a P(23×23)R30° LEED pattern is created. The alloy films formed from 0.3 to 0.5 ML of Mn have magnetic properties similar to the FeNi substrate. Hysteresis loops and ac-susceptibility curves measured using the Kerr effect give square loops with a ferromagnetic moment along the in-plane fcc [-211] direction and a Curie temperature TC of about 460 K. There is an increase in coercive field likely due to the inhomogeneities introduced by the Mn. Alloy films formed from 0.8 to 1.6 ML of Mn show a marked increase in the width of the susceptibility peak, and a decrease in the peak temperature. The hysteresis loop becomes slanted with a reduced coercive field. The measurements are consistent with a paramagnetic or antiferromagnetic Mn alloy forming an uneven interface within the FeNi film, so that the remaining FeNi film has a wide distribution in TC.
NASA Astrophysics Data System (ADS)
Patrykiejew, A.; Sokołowski, S.; Zientarski, T.; Binder, K.
1998-03-01
The results of Monte Carlo simulation of two-dimensional films formed on the (110) face of a face-centered-cubic crystal are presented. Systems with different corrugation of the gas-solid potential and different size of adsorbed atoms are discussed. It is demonstrated that even small changes in the gas-solid potential corrugation considerably affect the inner structure of the low-temperature ordered phases and the location of the order-disorder phase transition.
NASA Astrophysics Data System (ADS)
Duan, Chun-gang; Sabiryanov, R. F.; Liu, Jianjun; Mei, W. N.; Dowben, P. A.; Hardy, J. R.
2005-05-01
We present a detailed theoretical study of the magnetic ordering in heavy rare-earth compounds with a face-centered-cubic structure. In addition to the exchange interactions which are counted up to the third nearest neighbors, the effect of the dipolar interactions and magnetic anisotropic effect are also included in our model Hamiltonian. The interactions parameters are obtained from first-principles band-structure calculations by fitting the total energies of different magnetic configurations to the Heisenberg Model. Thus from utilizing the Monte Carlo simulations, we explained the formation of different magnetic structures in the rare-earth compounds.
Kusada, Kohei; Kobayashi, Hirokazu; Yamamoto, Tomokazu; Matsumura, Syo; Sumi, Naoya; Sato, Katsutoshi; Nagaoka, Katsutoshi; Kubota, Yoshiki; Kitagawa, Hiroshi
2013-04-17
We report the first discovery of pure face-centered-cubic (fcc) Ru nanoparticles. Although the fcc structure does not exist in the bulk Ru phase diagram, fcc Ru was obtained at room temperature because of the nanosize effect. We succeeded in separately synthesizing uniformly sized nanoparticles of both fcc and hcp Ru having diameters of 2-5.5 nm by simple chemical reduction methods with different metal precursors. The prepared fcc and hcp nanoparticles were both supported on γ-Al2O3, and their catalytic activities in CO oxidation were investigated and found to depend on their structure and size.
Xiao, X.; Liang, J. H.; Chen, B. L.; Li, J. X.; Ding, Z.; Wu, Y. Z.; Ma, D. H.
2015-07-28
Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.
NASA Astrophysics Data System (ADS)
Kysar, Jeffrey W.; Gan, Yong X.; Morse, Timothy L.; Chen, Xi; Jones, Milton E.
2007-07-01
Experimental studies on indentation into face-centered cubic (FCC) single crystals such as copper and aluminum were performed to reveal the spatially resolved variation in crystal lattice rotation induced due to wedge indentation. The crystal lattice curvature tensors of the indented crystals were calculated from the in-plane lattice rotation results as measured by electron backscatter diffraction (EBSD). Nye's dislocation density tensors for plane strain deformation of both crystals were determined from the lattice curvature tensors. The least L2-norm solutions to the geometrically necessary dislocation densities for the case in which three effective in-plane slip systems were activated in the single crystals associated with the indentation were determined. Results show the formation of lattice rotation discontinuities along with a very high density of geometrically necessary dislocations.
Wei, S.; Guo, B.C.; Deng, H.T.; Kerns, K.; Purnell, J.; Buzza, S.A.; Castleman, A.W. Jr. )
1994-05-18
On the basis of a series of experimental studies from our laboratory, it is well established that metallocarbohedrenes, or Met-Cars for short, are a stable class of cluster materials. To account for their exceptional stability, we initially proposed a pentagonal dodecahedron structure. This cage-like structure is consistent with all the experimental findings. In general, there are two possible structures that can be developed in these metal-carbon systems, i.e., Met-Cars and cubes. Since only one structural pattern is generally observed for one particular cluster system, it has been suggested that their thermodynamical stabilities might be responsible for the selective formation of specific structures, e.g., Met-Cars or fcc structures. Herein, we present new experimental results on the system of Nb[sub m]C[sub n] under various conditions. It is shown that the experimental conditions are extremely critical for the formation of either Met-Cars or cubic structures, as predicted by Reddy and Khanma. Moreover, the new data show that the cubic structures do not develop on top of Met-Cars, but rather, they grow independently. The experiments were performed by using both time-of-flight and quadrupole mass spectrometer techniques coupled with a laser vaporization source. 23 refs., 1 fig.
Low-temperature thermostatics of face-centered-cubic metallic hydrogen
NASA Technical Reports Server (NTRS)
Caron, L. G.
1974-01-01
The thermostatic properties of a high-symmetry phase of metallic hydrogen with atomic sphere radius between 0.1 and 1.5 bohr are studied, with special emphasis accorded to electronic screening and quantum proton motion. The electron-proton and proton-proton interactions receive a perturbation treatment based on the Singwi dielectric function, while the proton motion is handled by self-consistent harmonic approximation. Quantum behavior is found to be less pronounced than expected, and nuclear magnetism is absent. The phonon spectrum is, however, affected by screening and large proton motion. The zero-point vibrational energy and the superconducting critical temperature are below previous estimates. The crystalline-defect formation energies are a few times the Debye energy, which implies that defects contribute significantly to melting at the lower particle densities.
NASA Astrophysics Data System (ADS)
Kudryavtsev, Y. V.; Perekos, A. E.; Uvarov, N. V.; Kolchiba, M. R.; Synoradzki, K.; Dubowik, J.
2016-05-01
Magnetic and transport properties of near stoichiometric metastable FexMnyGaz alloys (46 ≤ x ≤ 52, 17 ≤ y ≤ 25, 26 ≤ z ≤ 30) with face-centered cubic (FCC), body-centered cubic (BCC), and two-phase (FCC + BCC) structures are investigated. The experimental results are analyzed in terms of first-principles calculations of stoichiometric Fe2MnGa alloy with the L21, L12, and the tetragonally distorted L21 structural orderings. It is shown that the pure BCC and FCC phases have distinct magnetic and transport properties. Two-phase Fe2MnGa alloys have magnetic and transport properties typical of the mixed BCC and FCC phases. Among the investigated alloys, Fe46Mn24Ga30 has a martensitic transformation accompanied with significant changes of its magnetic and transport properties.
Effects of stacking fault energy on defect formation process in face-centered cubic metals
NASA Astrophysics Data System (ADS)
Okita, Taira; Yang, Yingjuan; Hirabayashi, Junichi; Itakura, Mitsuhiro; Suzuki, Katsuyuki
2016-05-01
To elucidate the effect of stacking fault energies (SFEs) on defect formation by the collision cascade process for face-centred cubic metals, we used six sets of interatomic potentials with different SFEs while keeping the other properties almost identical. Molecular dynamic simulations of the collision cascade were carried out using these potentials with primary knock-on atom energies (EPKA) of 10 and 20 keV at 100 K. Neither the number of residual defects nor the size distributions for both self-interstitial atom (SIA) type and vacancy type clusters were affected by the difference in the SFE. In the case of EPKA = 20 keV, the ratio of glissile SIA clusters increased as the SFE decreased, which was not expected by a prediction based on the classical dislocation theory. The trend did not change after annealing at 1100 K for 100 ps. For vacancy clusters, few stacking fault tetrahedrons (SFTs) formed before the annealing. However, lower SFEs tended to increase the SFT fraction after the annealing, where large vacancy clusters formed at considerable densities. The findings of this study can be used to characterise the defect formation process in low SFE metals such as austenitic stainless steels.
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-19
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-01-01
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed. PMID:27430188
NASA Astrophysics Data System (ADS)
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-01
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
Liu, Jingfa; Song, Beibei; Liu, Zhaoxia; Huang, Weibo; Sun, Yuanyuan; Liu, Wenjie
2013-11-01
Protein structure prediction (PSP) is a classical NP-hard problem in computational biology. The energy-landscape paving (ELP) method is a class of heuristic global optimization algorithm, and has been successfully applied to solving many optimization problems with complex energy landscapes in the continuous space. By putting forward a new update mechanism of the histogram function in ELP and incorporating the generation of initial conformation based on the greedy strategy and the neighborhood search strategy based on pull moves into ELP, an improved energy-landscape paving (ELP+) method is put forward. Twelve general benchmark instances are first tested on both two-dimensional and three-dimensional (3D) face-centered-cubic (fcc) hydrophobic-hydrophilic (HP) lattice models. The lowest energies by ELP+ are as good as or better than those of other methods in the literature for all instances. Then, five sets of larger-scale instances, denoted by S, R, F90, F180, and CASP target instances on the 3D FCC HP lattice model are tested. The proposed algorithm finds lower energies than those by the five other methods in literature. Not unexpectedly, this is particularly pronounced for the longer sequences considered. Computational results show that ELP+ is an effective method for PSP on the fcc HP lattice model.
Three-dimensional phase-field model of dislocations for a heterogeneous face-centered cubic crystal
NASA Astrophysics Data System (ADS)
Ruffini, Antoine; Le Bouar, Yann; Finel, Alphonse
2017-08-01
A central aim of current materials studies is to develop a predictive modeling that incorporates dislocation-based plastic activity and microstructural evolution. Phase-field method has emerged as a powerful tool for addressing this issue, providing us with a versatile variational framework able to describe the movement of dislocations in interaction with underlying microstructures. In this article, a three-dimensional phase-field model of dislocations (PFMD) is developed with a discretization scheme that explicitly captures the face-centered cubic (FCC) geometry. Within this framework, continuous fields are discretized in a way that allows to consider strongly heterogeneous materials and sharp interfaces (free surfaces, stiffer precipitates, pores...) without generating numerical artifacts. The PFMD exposed in this work reproduces dislocation activity in FCC geometry, their reactions, and a particular attention is devoted to the dislocation core behaviors in order to remove effects present in prior generic PFMDs that can appear to be spurious for micron-scale applications. This allows us to rigorously reproduce the dislocation's velocity with respect to experimental friction coefficients. The model is discussed and illustrated by applications standing at different space-scales that show how dislocations operate with microstructural heterogeneities such as free-surfaces (cylindrical nanopillar) and voids (pore under isostatic pressure).
Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys
Lavrentiev, M. Yu. Nguyen-Manh, D.; Dudarev, S. L.; Wróbel, J. S.; Ganchenkova, M. G.
2016-07-28
A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rather than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.
NASA Astrophysics Data System (ADS)
Liu, Jingfa; Song, Beibei; Liu, Zhaoxia; Huang, Weibo; Sun, Yuanyuan; Liu, Wenjie
2013-11-01
Protein structure prediction (PSP) is a classical NP-hard problem in computational biology. The energy-landscape paving (ELP) method is a class of heuristic global optimization algorithm, and has been successfully applied to solving many optimization problems with complex energy landscapes in the continuous space. By putting forward a new update mechanism of the histogram function in ELP and incorporating the generation of initial conformation based on the greedy strategy and the neighborhood search strategy based on pull moves into ELP, an improved energy-landscape paving (ELP+) method is put forward. Twelve general benchmark instances are first tested on both two-dimensional and three-dimensional (3D) face-centered-cubic (fcc) hydrophobic-hydrophilic (HP) lattice models. The lowest energies by ELP+ are as good as or better than those of other methods in the literature for all instances. Then, five sets of larger-scale instances, denoted by S, R, F90, F180, and CASP target instances on the 3D FCC HP lattice model are tested. The proposed algorithm finds lower energies than those by the five other methods in literature. Not unexpectedly, this is particularly pronounced for the longer sequences considered. Computational results show that ELP+ is an effective method for PSP on the fcc HP lattice model.
Face-centered-cubic K3B80 and Mg3B80 metals: Covalent and ionic bondings
NASA Astrophysics Data System (ADS)
Yan, Qing-Bo; Zheng, Qing-Rong; Su, Gang
2009-09-01
By means of first-principles calculations within the density-functional theory, we find that stable face-centered-cubic (fcc) K3B80 and Mg3B80 solids can be formed. For both solids, two possibly stable geometrical phases (identified as phase A and phase B ) with different lattice parameters can exist, where phase A has a lattice parameter smaller than phase B . In phase A , B80 clusters are significantly distorted and two or four intercluster covalent bonds are formed for K3B80 or Mg3B80 , respectively. In phase B , B80 units are slightly distorted and no intercluster covalent bonds exist. The phase A of Mg3B80 bears the largest cohesive energy among them and is more stable than the fcc B80 solid. The charge population analysis shows that K and Mg are ionized and donate electrons to the other boron atoms of K3B80 and Mg3B80 solids. The different ionic radii of K and Mg lead to major geometrical differences between K3B80 and Mg3B80 solids and the competition of the covalent and ionic bondings could explain the emergence of two different geometrical phases for both. The electronic structural calculations reveal that both fcc K3B80 and Mg3B80 solids are metals.
NASA Astrophysics Data System (ADS)
Kimizuka, Hajime; Ogata, Shigenobu
We investigated the H diffusivity in face-centered cubic Pd and Al by performing path-integral molecular dynamics (PIMD) modeling in the framework of density functional theory (DFT); in our calculations, we took nuclear quantum effects into consideration. The DFT results showed that the H-migration barriers (Em) in Pd and Al exhibited similar values (approximately 0.16 eV), while the H atoms were stable at octahedral (O) sites for Pd and at tetrahedral (T) sites for Al. The PIMD-based free-energy profiles for H migration between the O-site and T-site were evaluated using the thermodynamic integration of the centroid forces at 150-600 K. We confirmed that the quantum effects significantly affected the Em and the difference between the energies of the H atom at the O-site and the T-site (EO - T); The Em and EO - T values in Pd at 300 K increased by 32% and 98%, respectively, relative to the classical limit. On the other hand, the Em and ET - O (i.e., -EO - T) values in Al at 300 K decreased by 3% and 41%, respectively. This suggested that the quantum nature of H nuclei was essential for understanding the H-diffusion kinetics in these metals even above ambient temperature.
NASA Astrophysics Data System (ADS)
Zhang, Hai-Feng; Liu, Shao-Bin; Kong, Xiang-Kun
2013-09-01
In this paper, dispersive properties of three-dimensional (3D) photonic crystals (PCs) with face-centered-cubic (fcc) lattices composed of the isotropic positive-index materials and epsilon-negative materials are theoretically investigated based on a modified plane wave expansion (PWE) method. The eigenvalue equations of such structure (spheres with epsilon-negative materials inserted in the dielectric background) are deduced. The band structures can be obtained by solving such nonlinear eigenvalue equations. It can be obviously seen that a photonic band gap (PBG), a flat band region, and two stop band gaps (SBGs) in the Г- X and Г- L directions appear, respectively. The results show that the upper edges of flat band region cannot be tuned by any parameters except for the electronic plasma frequency. The first PBG and the first SBGs above the flat band region in the Г- X and Г- L directions for the 3D PCs can be modulated by the filling factor, relative dielectric constant and electronic plasma frequency, respectively. However, the damping factor has no effect on the locations of the first PBG and the first SBGs above the flat band region in the Г- X and Г- L directions. These results may provide theoretical instructions to design the future optoelectronic and communication devices containing epsilon-negative materials.
Li, Wei-Zhen; Liu, Jin-Xun; Gu, Jun; Zhou, Wu; Yao, Si-Yu; Si, Rui; Guo, Yu; Su, Hai-Yan; Yan, Chun-Hua; Li, Wei-Xue; Zhang, Ya-Wen; Ma, Ding
2017-02-15
Ruthenium is a promising low-temperature catalyst for Fischer-Tropsch synthesis (FTS). However, its scarcity and modest specific activity limit its widespread industrialization. We demonstrate here a strategy for tuning the crystal phase of catalysts to expose denser and active sites for a higher mass-specific activity. Density functional theory calculations show that upon CO dissociation there are a number of open facets with modest barrier available on the face-centered cubic (fcc) Ru but only a few step edges with a lower barrier on conventional hexagonal-closest packed (hcp) Ru. Guided by theoretical calculations, water-dispersible fcc Ru catalysts containing abundant open facets were synthesized and showed an unprecedented mass-specific activity in the aqueous-phase FTS, 37.8 molCO·molRu(-1)·h(-1) at 433 K. The mass-specific activity of the fcc Ru catalysts with an average size of 6.8 nm is about three times larger than the previous best hcp catalyst with a smaller size of 1.9 nm and a higher specific surface area. The origin of the higher mass-specific activity of the fcc Ru catalysts is identified experimentally from the 2 orders of magnitude higher density of the active sites, despite its slightly higher apparent barrier. Experimental results are in excellent agreement with prediction of theory. The great influence of the crystal phases on site distribution and their intrinsic activities revealed here provides a rationale design of catalysts for higher mass-specific activity without decrease of the particle size.
Kumara, L S R; Sakata, Osami; Kohara, Shinji; Yang, Anli; Song, Chulho; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi
2016-11-09
The 3-dimensional (3D) atomic-scale structure of newly discovered face-centered cubic (fcc) and conventional hexagonal close packed (hcp) type ruthenium (Ru) nanoparticles (NPs) of 2.2 to 5.4 nm diameter were studied using X-ray pair distribution function (PDF) analysis and reverse Monte Carlo (RMC) modeling. Atomic PDF based high-energy X-ray diffraction measurements show highly diffuse X-ray diffraction patterns for fcc- and hcp-type Ru NPs. We here report the atomic-scale structure of Ru NPs in terms of the total structure factor and Fourier-transformed PDF. It is found that the respective NPs have substantial structural disorder over short- to medium-range order atomic distances from the PDF analysis. The first-nearest-neighbor peak analyses show a significant size dependence for the fcc-type Ru NPs demonstrating the increase in the peak height due to an increase in the number density as a function of particle size. The bond angle and coordination number (CN) distribution for the RMC-simulated fcc- and hcp-type Ru NP models indicated inherited structural features from their bulk counterparts. The CN analysis of the whole NP and surface of each RMC model of Ru NPs show the low activation energy packing sites on the fcc-type Ru NP surface atoms. Finally, our newly defined order parameters for RMC simulated Ru NP models suggested that the enhancement of the CO oxidation activity of fcc-type NPs was due to a decrease in the close packing ordering that resulted from the increased NP size. These structural findings could be positively supported for synthesized low-cost and high performance nano-sized catalysts and have potential application in fuel-cell systems and organic synthesis.
Gabbrielli, Ruggero; Jiao, Yang; Torquato, Salvatore
2012-10-01
The problem of tiling or tessellating (i.e., completely filling) three-dimensional Euclidean space R(3) with polyhedra has fascinated people for centuries and continues to intrigue mathematicians and scientists today. Tilings are of fundamental importance to the understanding of the underlying structures for a wide range of systems in the biological, chemical, and physical sciences. In this paper, we enumerate and investigate the most comprehensive set of tilings of R(3) by any two regular polyhedra known to date. We find that among all of the Platonic solids, only the tetrahedron and octahedron can be combined to tile R(3). For tilings composed of only congruent tetrahedra and congruent octahedra, there seem to be only four distinct ratios between the sides of the two polyhedra. These four canonical periodic tilings are, respectively, associated with certain packings of tetrahedra (octahedra) in which the holes are octahedra (tetrahedra). Moreover, we derive two families of an uncountably infinite number of periodic tilings of tetrahedra and octahedra that continuously connect the aforementioned four canonical tilings with one another, containing the previously reported Conway-Jiao-Torquato family of tilings [Conway et al., Proc. Natl. Acad. Sci. USA 108, 11009 (2011)] as a special case. For tilings containing infinite planar surfaces, nonperiodic arrangements can be easily generated by arbitrary relative sliding along these surfaces. We also find that there are three distinct canonical periodic tilings of R(3) by congruent regular tetrahedra and congruent regular truncated tetrahedra associated with certain packings of tetrahedra (truncated tetrahedra) in which the holes are truncated tetrahedra (tetrahedra). Remarkably, we discover that most of the aforementioned periodic tilings can be obtained by "retessellating" the well-known tiling associated with the face-centered-cubic lattice, i.e., by combining the associated fundamental tiles (regular tetrahedra and
NASA Astrophysics Data System (ADS)
Pham, M. S.; Creuziger, A.; Iadicola, M.; Rollett, A. D.
2017-02-01
This study investigates the joint impact of preferred texture and latent hardening on the plastic anisotropy of face centered cubic (FCC) materials. The main result is that both aspects have significant impact on the anisotropy, but the two can either counteract each other or synergistically reinforce each other to maximize anisotropy. Preferred texture results in significant anisotropy in plastic yielding. However, the latent hardening significantly alters the texture-induced anisotropy. In addition, one latent hardening type can cancel out the anisotropy of another type. Consequently, if all dislocation-based latent hardening types are included at the same level as the self-hardening, the result might not reveal the complexity of plastic anisotropy. The present study of the synergistic influence of detailed latent hardening and texture presented helps provide new insights into the complex anisotropic behavior of FCC materials during multi-axial forming. the stress at which the material initially yields is not a function of material orientation with respect to the frame of the test (i.e., isotropic yielding); there exists a multi-axial yield locus that is described by a single value of stress that corresponds to yield in uniaxial tension (i.e., stress equivalency); on hardening, the multi-axial yield locus expands by the same amount in every direction in the π-plane, which is the plane that has its normal parallel to [111] in the deviatoric stress space (i.e., isotropic hardening); there is an associated flow rule, i.e., the strain increment is normal to the yield locus.
Zhang, Jie; Huang, Rong; Wei, Fenfen; Cheng, Guosheng; Kong, Tao
2014-11-17
The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.
Sastry, S V; Khan, M A
1998-11-01
The main objective of the study was to use the statistical response surface methodology to evaluate the effect of formulation variables and their interaction on drug release in atenolol gastrointestinal therapeutic system (GITS) development coated with cellulose acetate (CA) pseudolatex system. A three-factor, three-level, face-centered design was employed to evaluate the quadratic response surface, and to achieve the desired response in atenolol delivery. Coating was achieved by spraying plasticized CA pseudolatex on atenolol bilayered tablets in a Uni-Glatt fluidized-bed coater. The independent variables were orifice size (X1), percent coating weight gain (X2) and Carbopol 934P (X3). The response variable (Y1) was time for 50% (t50%) drug dissolution with a constraint on cumulative percent released in 24 hr (Y2). The polynomial equation obtained was Y1 = 61.88 - 3779.8X1 + 1.89X2 - 3.95X3 - 266.87 X1X2 - 1675X1X3 + 0.07X2X3 + 215123X1(2) + 0.06X2(2) + 0.10X3(2). Contour and response plots were used to relate the independent and dependent variables. The optimization procedure predicted a t50% of 10.83 hr with 92% atenolol release in 24 hr when orifice size (X1), percent coating weight gain (X2), and Carbopol 934P (X3) were 0.014 in., 13%, and 20 mg, respectively. Preparation and testing of optimized formulation showed a good correlation between the predicted and observed values.
Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin
2015-07-25
To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.
Gloss, Jonas; Shah Zaman, Sameena; Jonner, Jakub; Novotny, Zbynek; Schmid, Michael; Varga, Peter; Urbánek, Michal
2013-12-23
Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phase diagram revealing the transformable region is presented.
Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin
2015-07-25
To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.
Hao, Zheng-Ming; Fang, Rui-Qin; Wu, Hai-Shun; Zhang, Xian-Ming
2008-09-15
Hydrothermal reaction of Cu(MeCO2)2, (4-pyridylthio)acetic acid and NH4SCN resulted in a twelve-connected face-centered cubic topological metal-organic framework [Cu3(pdt)2(CN)] (pdt = pyridinethiolate) in which Cu6S4 clusters act as twelve-connected nodes and pyridine rings and cyanides act as connectors. As an extension, an unprecedented fourteen-connected body-centered cubic coordination polymer [Cu19I4(pdt)12(SH)3] has been synthesized by three methods, in which nanosized chiral Cu19I4S12 clusters act as fourteen-connected nodes and triple pyridine rings and hydrosulfides act as connectors. The in situ S-C(sp(3)), S-C(sp(2)), and S-C(sp) cleavage reactions have been observed in the work.
cubic structure . Both long-range and short-range interactions have been considered in a series of fcc elements; the stability of each configuration resulting from a short-range attraction has been determined. The widths of the possible barriers in the various fcc elements have been computed, and the relative strength and importance of each barrier discussed. The most important barriers are those associated with the long-range interaction of two dislocations whose Burgers vectors are orthogonal. The Lomer-Cottrell barrier, although relatively weak, does exist in the
NASA Astrophysics Data System (ADS)
Guo, Yong; Ai, Juan-Juan; Gao, Tao; Ao, Bing-Yun
2013-05-01
We perform first-principles calculations to investigate the structural, magnetic, electronic, and mechanical properties of face-centered cubic (fcc) PuH2 and fcc PuH3 using the full potential linearized augmented plane wave method (FP-LAPW) with the generalized gradient approximation (GGA) and the local spin density approximation (LSDA) taking account of both relativistic and strong correlation effects. The optimized lattice constant a0 = 5.371 Å for fcc PuH2 and a0 = 5.343 Å for fcc PuH3 calculated in the GGA + sp (spin polarization) + U (Hubbard parameter) + SO (spin—orbit coupling) scheme are in good agreement with the experimental data. The ground state of fcc PuH3 is found to be slightly ferromagnetic. Our results indicate that fcc PuH2 is a metal while fcc PuH3 is a semiconductor with a band gap about 0.35 eV. We note that the SO and the strong correlation between localized Pu 5f electrons are responsible for the band gap of fcc PuH3. The bonds for PuH2 have mainly covalent character while there are covalent bonds in addition to apparent ionicity bonds for PuH3. We also predict the elastic constants of fcc PuH2 and fcc PuH3, which were not observed in the previous experiments.
NASA Astrophysics Data System (ADS)
Somasi, Sweta; Khomami, Bamin; Lovett, Ronald
2001-04-01
We introduce a new molecular dynamics simulation path to easily calculate solid-vapor surface free energies. The method is illustrated with explicit calculations of the surface free energies of a face-centered-cubic (fcc) crystal (the [110], [111], and [100] surfaces) and a hexagonal-close-packed (hcp) crystal (the [111] surface) of Lennard-Jones atoms. We verify that, because of the reduced symmetry at interfaces, simulation of the surface structure and free energy requires a large cutoff distance for the range of the pair potential. To estimate when a growing crystal resolves the fcc/hcp structural ambiguity, we observe the binding free energy and dynamics of clusters of adatoms on [111] surfaces of fcc and hcp crystals. A structural distinction only appears when clusters become large enough that their slow translational motion allows a structural relaxation of the crystal's surface. From the observed distribution over cluster structures we deduce thermodynamic parameters that can be used to model the equilibrium between fcc-like clusters and hcp-like clusters on [111] surfaces and the rate of transformation between these.
Papaioannou, E Th; Angelakeris, M; Poulopoulos, P; Tsiaoussis, I; Rüdt, C; Fumagalli, P; Flevaris, N K
2007-12-01
Co70Cr30 alloyed layers are combined with extremely thin Pt layers in order to produce novel face-centered-cubic multilayered films to be considered as a potential perpendicular magnetic recording medium. The films were grown on Si, glass and polyimide substrates by e-beam evaporation at a temperature slightly higher than room temperature. The multilayered structure of the films was verified by X-ray diffraction experiments. Plane-view transmission electron microscopy images have revealed the formation of very small grains in the range of 7-9 nm. Hysteresis loops as a function of temperature were recorded via the magneto-optic Kerr effect in the polar geometry configuration. The system exhibits perpendicular magnetic anisotropy, which enhances with decreasing temperature. Hysteresis loops with a squareness of 1 and a coercivity of 1.45 kOe were obtained at 10 K. Furthermore, complete magneto-optic spectra of the films are recorded, showing a strong magneto-optic enhancement in the ultraviolet region at around 4.5 eV.
NASA Astrophysics Data System (ADS)
Mukherji, Debashis; Strunz, Pavel; Piegert, Sebastian; Gilles, Ralph; Hofmann, Michael; Hölzel, Markus; Rösler, Joachim
2012-06-01
Co-Re-based alloys have been developed to supplement the Ni-base superalloys used in gas turbine applications at high temperatures (1473 K [1200 °C] bare metal temperature). Unlike other commercial Co-based alloys, the Co matrix in the Co-Re alloys has a stable hexagonal close-packed (hcp) structure at room temperature. In situ neutron diffraction measurements on experimental Co-Re alloys hardened by carbide precipitates showed that the matrix undergoes an hcp ⇆ face-centered cubic (fcc) allotropic transformation after heating to high temperatures. Furthermore, it was found that this transformation has a large hysteresis (~100 K). Thermodynamic calculations were undertaken to study the high-temperature phase stability and transformations in the complex multicomponent, multiphase Co-Re-Cr-C system with or without the addition of Ta. The results show that the minor phases (Cr23C6-type carbides and the Cr2Re3-type σ phase) play an important role in the hcp ⇆ fcc hysteresis by influencing the partitioning of Cr and Re between the matrix and the other phases.
Jeon, Yoon Tae; Moon, Je Yong; Lee, Gang Ho; Park, Jeunghee; Chang, Yongmin
2006-01-26
We report the first magnetic study of pure and metastable hexagonal close-packed (hcp) Ni nanoparticles (sample 1). We also produced stable face-centered cubic (fcc) Ni nanoparticles, as mixtures with the hcp Ni nanoparticles (samples 2 and 3). We compared the magnetic properties of the hcp Ni nanoparticles with those of the fcc Ni nanoparticles by observing the evolution of magnetic properties from those of the hcp Ni nanoparticles to those of the fcc Ni nanoparticles as the number of fcc Ni nanoparticles increased from sample 1 to sample 3. The blocking temperature (T(B)) of the hcp Ni nanoparticles is approximately 12 K for particle diameters ranging between 8.5 and 18 nm, whereas those of the fcc Ni nanoparticles are 250 and 270 K for average particle diameters of 18 and 26 nm, respectively. The hcp Ni nanoparticles seem to be antiferromagnetic for T < T(B) and paramagnetic for T > T(B). This is very different from the fcc Ni nanoparticles, which are ferromagnetic for T < T(B) and superparamagnetic for T > T(B). This unusual magnetic state of the metastable hcp Ni nanoparticles is likely related to their increased bond distance (2.665 angstroms), compared to that (2.499 angstroms) of the stable fcc Ni nanoparticles.
Fan, Zhanxi; Zhu, Yihan; Huang, Xiao; Han, Yu; Wang, Qingxiao; Liu, Qing; Huang, Ying; Gan, Chee Lip; Zhang, Hua
2015-05-04
The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f -oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures.
Lei, M.K.; Zhu, X.M.
2004-09-01
A single high nitrogen face-centered-cubic phase ({gamma}{sub N}) was formed on the plasma source ion nitrided 1Cr18Ni9Ti (18-8 type) austenitic stainless steel. Auger electron spectroscopy and x-ray photoelectron spectroscopy, in conjunction with ion beam sputtering, were used to determine the chemical composition and bonding of nitrogen in the {gamma}{sub N} phase. The chemical composition of the {gamma}{sub N} phase was shown as a formula with atomic fraction (Fe{sub 0.60},Cr{sub 0.22},Ni{sub 0.18}){sub 2}N. The {gamma}{sub N} phase possessed weaker Cr-N ionic-type bonds and stronger Fe-N ionic-type bonds, compared with the stoichiometric nitrides. The Cr 2p{sub 3sol2} binding energy was 1.1 eV lower than that of CrN and Cr{sub 2}N phases (at 575.5 eV). The chemical shift of the Fe-N bonding compared with the Fe-Fe bonding was nearly 2.1 eV. The N 1s binding energies showed that the nitrogen was in the chemical state with iron (at 396.6 eV) and chromium (at 397.7 eV). All the chromium appeared to be in the Cr-N bond. A part of iron was also observed in the nitride state, and all the nickel was contained in the metallic state.
Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling
2014-01-01
The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug-silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0nm increased, the dissolution rate of CEL from FMS gradually increased. © 2013.
NASA Astrophysics Data System (ADS)
Zhu, Linli; Qu, Shaoxing; Guo, Xiang; Lu, Jian
2015-03-01
Hierarchical twin lamellae in polycrystalline face-centered cubic (fcc) metals possess a possibility to achieve higher strength with keeping an acceptable elongation. The present work is concerned with the analysis of twin spacing and grain size-dependent plastic performance in hierarchically nanotwinned fcc metals using a generalized strain-gradient plasticity model. The dislocation density-based physical model for constitutive description of nanotwinned fcc metals is expanded for the hierarchical structures of nanotwins. The strengthening mechanism and the failure behavior in these hierarchical nanostructures are studied to evaluate the strength and ductility. Moreover, the transition twin spacing between the strengthening and softening is obtained in different order of twin lamellae. A dislocation-based model on nucleating deformation twins is presented to predict the critical twin spacing in the lowest twin lamellae for generating the subordinate twin lamellae. Our simulation results demonstrate that the existence of the hierarchical nanotwins gives rise to a significant enhancement in the strength, and the resulting global flow stresses are sensitive to the twin spacings of the hierarchical twin lamellae and the grain size. Two softening stages are observed with variation of twin spacing, and the relevant transition twin spacing depends on the microstructural size in hierarchically nanotwinned metals. We further find that the predicted failure strain decreases with decreasing the twin spacing, which is quite different from the case of the individually nanotwinned fcc metals. The critical twin spacing for generating subordinate twins also depends on the twin spacing of superordinate twin lamellae and the grain size. These findings suggest that the high yield strength and good ductility can be achieved by optimizing the grain size and the twin spacings in the hierarchical twins.
Assembly of body-centered cubic crystals in hard spheres.
Xu, W-S; Sun, Z-Y; An, L-J
2011-05-01
We investigate the crystallization of monodisperse hard spheres confined by two square patterned substrates (possessing the basic character of the body-centered cubic (bcc) crystal structure) at varying substrate separations via molecular dynamics simulation. Through slowly increasing the density of the system, we find that crystallization under the influence of square patterned substrates can set in at lower densities compared with the homogeneous crystallization. As the substrate separation decreases, the density, where crystallization occurs (i.e., pressure drops), becomes small. Moreover, two distinct regimes are identified in the plane of bcc particle fraction and density for the separation range investigated. For large substrate separations, the bcc particle fraction displays a local maximum as the density is increased, and the resulting formed crystals have a polycrystalline structure. However, and more importantly, another situation emerges for small substrate separations: the capillary effects (stemming from the presence of two substrates) overwhelm the bulk driving forces (stemming from the spontaneous thermal fluctuations in the bulk) during the densification, eventually resulting in the formation of a defect-free bcc crystal (unstable with respect to the bulk hard-sphere crystals) by using two square patterned substrates.
Takasaki, Tomoaki; Kyoi, Daisuke; Kitamura, Naoyuki; Tanase, Shigeo; Sakai, Tetsuo
2007-12-27
The face-centered cubic (fcc) type magnesium-zirconium hydride (Mg0.82Zr0.18Hx) was synthesized by means of the ultrahigh pressure (UHP) technique, which could generate 8 GPa of hydrogen pressure. The differential scanning calorimeter (DSC) measurements indicated that the fcc phase exhibited reversible hydrogen releasing and restoring properties under 0.5 MPa of hydrogen pressure. On the pressure-composition isotherms, the released and restored hydrogen capacities were estimated to be 3 approximately 3.5 wt %. The Rietveld analysis for synchrotron X-ray diffraction (XRD) data showed that the fcc phase had around 70 wt % mass fraction and was preserved without decomposition during hydrogen releasing and restoring cycles.
NASA Astrophysics Data System (ADS)
Proust, Gwénaëlle; Kalidindi, Surya R.
2006-08-01
Microstructure-sensitive design (MSD) is a novel mathematical framework that facilitates a rigorous consideration of the material microstructure as a continuous design variable in the engineering design enterprise [Adams, B.L., Henrie, A., Henrie, B., Lyon, M., Kalidindi, S.R., Garmestani, H., 2001. Microstructure-sensitive design of a compliant beam. J. Mech. Phys. Solids 49(8), 1639-1663; Adams, B.L., Lyon, M., Henrie, B., 2004. Microstructures by design: linear problems in elastic-plastic design. Int. J. Plasticity 20(8-9), 1577-1602; Kalidindi, S.R., Houskamp, J.R., Lyons, M., Adams, B.L., 2004. Microstructure sensitive design of an orthotropic plate subjected to tensile load. Int. J. Plasticity 20(8-9), 1561-1575]. MSD employs spectral representations of the local state distribution functions in describing the microstructure quantitatively, and these in turn enable development of invertible linkages between microstructure and effective properties using established homogenization (composite) theories. As a natural extension of the recent publications in MSD, we provide in this paper a detailed account of the methods that can be readily used by mechanical designers to construct first-order elastic-plastic property closures. The main focus in this paper is on the crystallographic texture (also called Orientation Distribution Function or ODF) as the main microstructural parameter controlling the elastic and yield properties of cubic (fcc and bcc) polycrystalline metals. The following specific advances are described in this paper: (i) derivation of rigorous first-order bounds for the off-diagonal terms of the effective elastic stiffness tensor and their incorporation in the MSD framework, (ii) delineation of the union of the property closures corresponding to both the upper and lower bound theories resulting in comprehensive first-order closures, (iii) development of generalized and readily usable expressions for effective anisotropic elastic-plastic properties
Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T.
1994-12-31
The calculations in a majority of previous works for the fulleride (AqC{sub 60}) crystals were performed within the framework of the rigid-lattice model, neglecting the distoration relaxation of the host fullerene (C{sub 60}) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distoration field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. This paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of statistic concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the statistic inherent reorientation and/or displacements of the solvent molecules from the average-lattice sites as well as on the lattice parameter a of the elastically-anysotropic cubic C{sub 60} crystal are taken into account.
NASA Technical Reports Server (NTRS)
Tatarenko, Valentine A.; Tsysman, Constantin L.; Oltarzhevskaya, Yelena T.
1995-01-01
The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method(*). In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the 'average-lattice' sites' as well as on the lattice parameter a of a elastically-anysotropic 'cubic' C-60 crystal are taken into account.
Pauling, L
1989-11-01
The twofold-axis electron-diffraction photographs of icosahedral quasicrystals are of three kinds, reflecting three different structures of the cubic crystals that by icosahedral twinning form the quasicrystals. The first kind, represented by Al(13)Cu(4)Fe(3), contains two very large icosahedral complexes, each of about 4680 atoms, in the body-centered arrangement, with six smaller icosahedral complexes (104 atoms each) in the principal interstices. The second kind, represented by Al(5)Mn, contains four of the very large complexes in the face-centered arrangement (cubic close packing), with four of the smaller clusters in the interstices. The third kind, represented by Al(6)CuLi(3), contains eight icosahedral complexes, each of about 1350 atoms, in the beta-W arrangement. The supporting evidence for these cubic structures is discussed as well as other evidence showing that the simple quasicrystal theory, which states that quasicrystals do not involve any translational identity operations, has to be modified.
Chen, Yuejiao; Yu, Ling; Li, Qing; Wu, Yan; Li, Qiuhong; Wang, Taihong
2012-10-19
We have successfully observed the development of three-dimensional (3D) face-centered-cubic ZnSnO(3) into two-dimensional (2D) orthorhombic ZnSnO(3) nanosheets, which is the first observation of 2D ZnSnO(3) nanostructures to date. The synthesis from 3D to 2D nanostructures is realized by the dual-hydrolysis-assisted liquid precipitation reaction and subsequent hydrothermal treatment. The time-dependent morphology indicates the transformation via a 'dissolution-recrystallization' mechanism, accompanied by a 'further growth' process. Furthermore, the 2D ZnSnO(3) nanosheets consist of smaller sized nanoflakes. This further increases the special specific surface area and facilitates their application in gas sensing. The 2D ZnSnO(3) nanosheets exhibit excellent gas sensing properties, especially through their ultra-fast response and recovery. When exposed to ethanol and acetone, the response rate is as fast as 0.26 s and 0.18 s, respectively, and the concentration limit can reach as low as 50 ppb of ethanol. All these results are much better than those reported so far. Our experimental results indicate an efficient approach to realize high-performance gas sensors.
Ma, Zhongyun; Wang, Pu; Pei, Yong
2016-09-29
Based on the recently reported atomic structures of thiolate-protected Au28(SR)20, Au36(SR)24, Au44(SR)28, and Au52(SR)32 clusters, a family of homogeneous, linear, thiolate-protected gold superstructures containing novel quasi-face-centered-cubic (quasi-fcc) Au-cores is theoretically envisioned, denoted as the Au20+8N(SR)16+4N cluster. By means of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, a unified view of the geometric structure, electronic structure, magic stable size and size-dependent NIR absorption properties of Au20+8N(SR)16+4N clusters is provided. We find that the Au20+8N(SR)16+4N clusters demonstrate oscillating transformation energies dependent on N. The odd-N clusters show more favorable (negative) reaction energies than the even-N clusters. The magic stability of recently reported Au28(SR)20, Au36(SR)24, Au44(SR)28, Au52(SR)32 and Au76(SR)44 clusters can be addressed from the relative reaction energies and geometric distortion of Au-cores. A novel 4N + 4 magic electron-number is suggested for the Au20+8N(SR)16+4N cluster. Using the polyhedral skeletal electron pair theory (PSEPT) and the extended Hückel molecular orbital (EHMO) calculations, we suggest that the magic 4N + 4 electron number is correlated with the quasi-fcc Au-cores, which can be viewed as double helical tetrahedron-Au4 chains. The size-dependent optical absorption properties of Au20+8N(SR)16+4N clusters are revealed based on TD-DFT calculations. We propose that these clusters are potential candidates for the experimental synthesis of atomically precise one-dimensional ligand protected gold superstructures with tunable NIR absorption properties.
The quantization of the radii of coordination spheres cubic crystals and cluster systems
NASA Astrophysics Data System (ADS)
Melnikov, G.; Emelyanov, S.; Ignatenko, N.; Ignatenko, G.
2016-02-01
The article deals with the creation of an algorithm for calculating the radii of coordination spheres and coordination numbers cubic crystal structure and cluster systems in liquids. Solution has important theoretical value since it allows us to calculate the amount of coordination in the interparticle interaction potentials, to predict the processes of growth of the crystal structures and processes of self-organization of particles in the cluster system. One option accounting geometrical and quantum factors is the use of the Fibonacci series to construct a consistent number of focal areas for cubic crystals and cluster formation in the liquid.
Diffusion spectrum MRI using body-centered-cubic and half-sphere sampling schemes.
Kuo, Li-Wei; Chiang, Wen-Yang; Yeh, Fang-Cheng; Wedeen, Van Jay; Tseng, Wen-Yih Isaac
2013-01-15
The optimum sequence parameters of diffusion spectrum MRI (DSI) on clinical scanners were investigated previously. However, the scan time of approximately 30 min is still too long for patient studies. Additionally, relatively large sampling interval in the diffusion-encoding space may cause aliasing artifact in the probability density function when Fourier transform is undertaken, leading to estimation error in fiber orientations. Therefore, this study proposed a non-Cartesian sampling scheme, body-centered-cubic (BCC), to avoid the aliasing artifact as compared to the conventional Cartesian grid sampling scheme (GRID). Furthermore, the accuracy of DSI with the use of half-sphere sampling schemes, i.e. GRID102 and BCC91, was investigated by comparing to their full-sphere sampling schemes, GRID203 and BCC181, respectively. In results, smaller deviation angle and lower angular dispersion were obtained by using the BCC sampling scheme. The half-sphere sampling schemes yielded angular precision and accuracy comparable to the full-sphere sampling schemes. The optimum b(max) was approximately 4750 s/mm(2) for GRID and 4500 s/mm(2) for BCC. In conclusion, the BCC sampling scheme could be implemented as a useful alternative to the GRID sampling scheme. Combination of BCC and half-sphere sampling schemes, that is BCC91, may potentially reduce the scan time of DSI from 30 min to approximately 14 min while maintaining its precision and accuracy.
NASA Astrophysics Data System (ADS)
Takemura, Yasutaka; Lee, Du-Yeong; Lee, Seung-Eun; Chae, Kyo-Suk; Shim, Tae-Hun; Lian, Guoda; Kim, moon; Park, Jea-Gun
2015-05-01
The TMR ratio of Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd]n-SyAF layer decreased rapidly when the ex situ magnetic annealing temperature (Tex) was increased from 275 to 325 °C, and this decrease was associated with degradation of the Co2Fe6B2 pinned layer rather than the Co2Fe6B2 free layer. At a Tex above 325 °C the amorphous Co2Fe6B2 pinned layer was transformed into a face-centered-cubic (fcc) crystalline layer textured from [Co/Pd]n-SyAF, abruptly reducing the Δ1 coherence tunneling of perpendicular-spin-torque electrons between the (100) MgO tunneling barrier and the fcc Co2Fe6B2 pinned layer.
Takemura, Yasutaka; Lee, Du-Yeong; Lee, Seung-Eun; Chae, Kyo-Suk; Shim, Tae-Hun; Lian, Guoda; Kim, Moon; Park, Jea-Gun
2015-05-15
The TMR ratio of Co2Fe6B2/MgO-based p-MTJ spin valves stacked with a [Co/Pd]n-SyAF layer decreased rapidly when the ex situ magnetic annealing temperature (Tex) was increased from 275 to 325 °C, and this decrease was associated with degradation of the Co2Fe6B2 pinned layer rather than the Co2Fe6B2 free layer. At a Tex above 325 °C the amorphous Co2Fe6B2 pinned layer was transformed into a face-centered-cubic (fcc) crystalline layer textured from [Co/Pd]n-SyAF, abruptly reducing the Δ1 coherence tunneling of perpendicular-spin-torque electrons between the (100) MgO tunneling barrier and the fcc Co2Fe6B2 pinned layer.
NASA Astrophysics Data System (ADS)
Sun, Jiu-Xun; Cai, Ling-Cang; Wu, Qiang; Jin, Ke
2013-09-01
Based on the expansion and extension of the virial equation of state (EOS) of hard-sphere fluids solved by the Percus-Yevick integration equation, a universal cubic (UC) EOS is developed. The UC EOS is applied to model hard-sphere and Lennard-Jones (LJ) fluids, simple Ar and N2 liquids at low temperatures, and supercritical Ar and N2 fluids at high temperatures, as well as ten solids, respectively. The three parameters are determined for the hard-sphere fluid by fitting molecular dynamics (MD) simulation data of the third to eighth virial coefficients in the literature; for other fluids by fitting isothermal compression data; and for solids by using the Einstein model. The results show that the UC EOS gives better results than the Carnahan-Starling EOS for compressibility of hard-sphere fluids. The Helmholtz free energy and internal energy for LJ fluids are predicted and compared with MD simulation data. The calculated pressures for simple Ar and N2 liquids are compared with experimental data. The agreement is fairly good. Eight three-parameter EOSs are applied to describe isothermals of ten typical solids. It is shown that the UC EOS gives the best precision with correct behavior at high-pressure limitation. The UC EOS considering thermal effects is used to analytically evaluate the isobaric thermal expansivity and isothermal compressibility coefficients. The results are in good agreement with experimental data.
Carbon coated face-centered cubic Ru-C nanoalloys.
Zhao, Zhisheng; Meng, Chuanmin; Li, Peifang; Zhu, Wenjun; Wang, Qianqian; Ma, Yanming; Shen, Guoyin; Bai, Ligang; He, Hongliang; He, Duanwei; Yu, Dongli; He, Julong; Xu, Bo; Tian, Yongjun
2014-09-07
Carbon-encapsulated ruthenium-carbon (Ru-C) nanoalloys were synthesized by dynamic shocks. The Ru-C alloy shows a new fcc structure different from the original hcp structure of metal Ru. This fcc phase is assigned to a Ru32C4 solid solution with a lattice parameter of 3.868(2) Å and a bulk modulus KT0 of 272(12) GPa. The small amount of carbon in the solid solution enhances the thermodynamic and chemical stabilities with respect to pure Ru, as well as induces changes in the electronic properties, which have direct applications in improving the material's catalytic activity and selectivity.
Box spline reconstruction on the face-centered cubic lattice.
Kim, Minho; Entezari, Alireza; Peters, Jörg
2008-01-01
We introduce and analyze an efficient reconstruction algorithm for FCC-sampled data. The reconstruction is based on the 6-direction box spline that is naturally associated with the FCC lattice and shares the continuity and approximation order of the triquadratic B-spline. We observe less aliasing for generic level sets and derive special techniques to attain the higher evaluation efficiency promised by the lower degree and smaller stencil-size of the C1 6-direction box spline over the triquadratic B-spline.
Melting temperature of colloidal crystals of polystyrene spheres
NASA Astrophysics Data System (ADS)
Okubo, Tsuneo
1991-09-01
The melting temperature (Tm) of colloidal crystals of polystyrene spheres has been measured by the reflection spectroscopy as a function of sphere concentration. Seven kinds of spheres their diameters ranging from 85 to 212 nm, and their monodispersity indices (standard deviation of spheres divided by the mean diameter) between 0.014 and 0.26, are used after further purification and deionization processes. A phase diagram, including liquid-like and crystal-like (body-centered-cubic and face-centered-cubic lattices) structures, is obtained as a function of Tm against sphere concentration. The data of Tm are analyzed successfully with the theory of Williams, Crandall, and Wojtowicz, and the heat and entropy of melting are estimated. Tm values are consistent with the theory of Robbins and co-workers which treats the repulsive Yukawa potential between colloidal spheres.
NASA Astrophysics Data System (ADS)
Tang, Chengchun; Bando, Yoshio; Huang, Yang; Zhi, Chunyi; Golberg, Dmitri; Xu, Xuewen; Zhao, Jianling; Li, YangXian
2010-03-01
Cubic spinel structured gallium oxynitride has been synthesized through the reaction of metallic gallium and water in the presence of organic ethylenediamine. The relative content of the mixed solvent of water and ethylenediamine controls the product morphology and structure. A novel well-defined nanoporous structure has finally been obtained, whose large surface area and peculiar surface chemistry will generate novel physical and chemical properties. As an example, lithium intercalation properties for prospective applications in lithium ion batteries are demonstrated in this work.
NASA Astrophysics Data System (ADS)
Sun, Jiu-Xun; Wu, Qiang; Cai, Ling-Cang; Jin, Ke
2013-11-01
A universal cubic equation of state (UC EOS) is proposed based on a modification of the virial Percus-Yevick (PY) integral equation EOS for hard-sphere fluid. The UC EOS is extended to multi-component hard-sphere mixtures based on a modification of Lebowitz solution of PY equation for hard-sphere mixtures. And expressions of the radial distribution functions at contact (RDFC) are improved with the form as simple as the original one. The numerical results for the compressibility factor and RDFC are in good agreement with the simulation results. The average errors of the compressibility factor relative to MC data are 3.40%, 1.84% and 0.92% for CP3P, BMCSL equations and UC EOS, respectively. The UC EOS is a unique cubic one with satisfactory precision among many EOSs in the literature both for pure and mixture fluids of hard spheres.
Melting temperature of colloidal crystals of monodisperse silica spheres
NASA Astrophysics Data System (ADS)
Okubo, Tsuneo
1992-02-01
Melting temperature (Tm) of colloidal crystals of monodisperse silica spheres has been measured by the reflection spectroscopy as a function of sphere concentration. Spheres of their diameters of 110 and 178 nm from electron microscopy, and their monodispersity indices (standard deviation of sphere diameter divided by the mean diameter) of 0.041 and 0.05, respectively, are used after purification and deionization processes. Transformation from the body-centered cubic lattice to the face-centered cubic lattice subphases are observed as the suspension temperature rises. A phase diagram including liquid-like and crystal-like structures is obtained in the presence of ion-exchange resins or sodium chloride. The Tm values observed are analyzed with the theory of Crandall et al. successfully. The Tm values are also consistent with the theory of Robbins et al., which treats the repulsive Yukawa potential between colloidal spheres.
Brouwers, H J H
2008-07-01
In a previous paper analytical equations were derived for the packing fraction of crystalline structures consisting of bimodal randomly placed hard spheres [H. J. H. Brouwers, Phys. Rev. E 76, 041304 (2007)]. The bimodal packing fraction was derived for the three crystalline cubic systems: viz., face-centered cubic, body-centered cubic, and simple cubic. These three equations appeared also to be applicable to all 14 Bravais lattices. Here it is demonstrated, accounting for the number of distorted bonds in the building blocks and using graph theory, that one general packing equation can be derived, valid again for all lattices. This expression is validated and applied to the process of amorphization.
Squeezing of a periodic emulsion through a cubic lattice of spheres
NASA Astrophysics Data System (ADS)
Zinchenko, Alexander Z.; Davis, Robert H.
2008-04-01
Squeezing of a periodic, highly concentrated emulsion of deformable drops through a dense, simple cubic array of solid spherical particles at zero Reynolds number is simulated by considering one drop in a periodic cell. The particles are rigidly held in space. The drops with nondeformed diameter comparable with the particle size (and considerably larger than the interparticle constrictions) squeeze under a specified average pressure gradient. This three dimensional problem serves as a useful prototype model of drop-solid interaction for emulsion flow through granular materials. The solution allows us to study permeabilities for both phases in detail and determine the critical conditions when the drop phase flow stops due to blockage in the pores by capillary forces. The algorithm employs a boundary-integral formulation with periodic Green's function, Hebeker representation for solid-particle contributions, and recent desingularization tools [A. Z. Zinchenko and R. H. Davis, J. Fluid Mech. 564, 227 (2006)] to alleviate difficulties with lubrication. Calculations are challenging in that tens of thousands of boundary elements per surface and 10 000-20 000 time steps are required for near-critical squeezing conditions, and the use of multipole acceleration is crucial to make such simulations feasible. The results are presented for 36% and 50% concentrated emulsions flowing through an array of almost packed particles, at drop-to-medium viscosity ratios of 1 and 4. Scaling for the squeezing time of the drop phase at near-criticial capillary numbers is extracted from the calculations. For all the simulated cases, the drops move, on average, faster than the continuous phase.
Torija, Maria A; Choi, Soo-Hyung; Lodge, Timothy P; Bates, Frank S
2011-05-19
Small-angle X-ray diffraction experiments have uncovered a remarkable mechanism of grain alignment during plastic deformation of ordered sphere-forming diblock copolymer micelles when subjected to large amplitude dynamic shearing. A nearly monodisperse poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymer with block molecular weights of 42,000 and 60,000 was mixed with squalane (C(30)H(62)), an EP selective solvent, at a concentration of 10 wt%. After high temperature annealing, the sample formed an ordered polydomain morphology containing glassy S cores at room temperature. SAXS powder patterns confirm body-centered cubic (BCC) symmetry and reveal the development of a complex array of two-dimensionally resolved Bragg reflections following the application, and cessation, of oscillatory shearing. These diffraction results are interpreted on the basis of the classic mechanism of crystalline slip, which accounts for plastic deformation of ductile materials such as metals. Four distinct slip systems are shown to be active in this work, suggesting a robust basis for deforming and mixing of soft ordered solids.
2014-09-09
ISS040-E-139549 (9 Sept. 2014) --- In the International Space Station’s Kibo laboratory, NASA astronaut Reid Wiseman, Expedition 40 crew member, works with the bowling ball-sized satellites known as SPHERES (Synchronized Position Hold Engage Reorient Experimental Satellites) to study how liquids behave inside containers in microgravity. The experiment, named SPHERES-Slosh, maneuvers the tiny satellites similar to an actual spacecraft with an externally mounted tank and observes the interaction between the sloshing fluid and the tank/vehicle dynamics.
2013-08-08
Astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with the bowling-ball-sized free-flying satellite known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES in the International Space Stations Japanese Experiment Module (JEM) Kibo laboratory. Also sent as Twitter message.
2009-07-11
ISS020-E-019064 (11 July 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, perform a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.
2009-07-13
ISS020-E-018319 (11 July 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, perform a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.
2009-07-11
ISS020-E-019069 (11 July 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, is pictured near three Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) floating freely in the Harmony node of the International Space Station.
2009-07-13
ISS020-E-018324 (11 July 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, perform a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.
2009-06-26
ISS020-E-014670 (26 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, is pictured near two Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) floating freely in the Harmony node of the International Space Station.
2009-07-13
ISS020-E-018325 (11 July 2009) --- NASA astronaut Michael Barratt (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, perform a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.
2009-07-11
ISS020-E-019059 (11 July 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, writes notes while performing a check of the Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) Beacon / Beacon Tester in the Destiny laboratory of the International Space Station.
Phase diagram of elastic spheres.
Athanasopoulou, L; Ziherl, P
2017-02-15
Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.
2013-08-08
ISS036-E-029545 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.
2013-08-08
ISS036-E-029521 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.
2013-08-08
ISS036-E-029539 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.
2013-08-08
ISS036-E-029522 (7 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Nyberg and NASA astronaut Chris Cassidy (not pictured) put the miniature satellites through their paces for a dry run of the SPHERES Zero Robotics tournament scheduled for Aug. 13. Teams of middle school students from Florida, Georgia, Idaho and Massachusetts will gather at the Massachusetts Institute of Technology in Cambridge to see which teams’ algorithms do the best job of commanding the free-flying robots through a series of maneuvers and objectives.
NASA Astrophysics Data System (ADS)
Sun, Jiu-Xun; Jin, Ke; Cai, Ling-Cang; Wu, Qiang
2014-08-01
The equation of state (EOS) for hard-sphere fluid derived from compressibility routes of Percus-Yevick theory (PYC) is extended. The two parameters are determined by fitting well-known virial coefficients of pure fluid. The extended cubic EOS can be directly extended to multi-component mixtures, merely demanding the EOS of mixtures also is cubic and combining two physical conditions for the radial distribution functions at contact (RDFC) of mixtures. The calculated virial coefficients of pure fluid and predicted compressibility factors and RDFC for both pure fluid and mixtures are excellent as compared with the simulation data. The values of RDFC for mixtures with extremely large size ratio 10 are far better than the BGHLL expressions in literature.
Brouwers, H J H
2007-10-01
The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fraction of binary mixtures of amorphously packed spheres is recapitulated. Next, the packing of a binary mixture of hard spheres in randomly disordered cubic structures is analyzed, resulting in original analytical expressions for the unit cell volume and the packing fraction, and which are also valid for the other five crystal systems. The bimodal fcc lattice parameter appears to be in close agreement with empirical hard sphere data from literature, and this parameter could be used to distinguish the size mismatch effect from all other effects in distorted binary lattices of materials. Here, as a first model application, bimodal amorphous and crystalline fcc/bcc packing fractions are combined, yielding the optimum packing configuration, which depends on mixture composition and diameter ratio only. Maps of the closest packing mode are established and applied to colloidal mixtures of polydisperse spheres and to binary alloys of bcc, fcc, and hcp metals. The extensive comparison between the analytical expressions derived here and the published numerical and empirical data yields good agreement. Hence, it is seen that basic space-filling theories on "simple" noninteracting hard spheres are a valuable tool for the study of crystalline materials.
NASA Astrophysics Data System (ADS)
Brouwers, H. J. H.
2007-10-01
The geometrical stability of the three lattices of the cubic crystal system, viz. face-centered cubic (fcc), body-centered cubic (bcc), and simple cubic (sc), consisting of bimodal discrete hard spheres, and the transition to amorphous packing is studied. First, the random close packing (rcp) fraction of binary mixtures of amorphously packed spheres is recapitulated. Next, the packing of a binary mixture of hard spheres in randomly disordered cubic structures is analyzed, resulting in original analytical expressions for the unit cell volume and the packing fraction, and which are also valid for the other five crystal systems. The bimodal fcc lattice parameter appears to be in close agreement with empirical hard sphere data from literature, and this parameter could be used to distinguish the size mismatch effect from all other effects in distorted binary lattices of materials. Here, as a first model application, bimodal amorphous and crystalline fcc/bcc packing fractions are combined, yielding the optimum packing configuration, which depends on mixture composition and diameter ratio only. Maps of the closest packing mode are established and applied to colloidal mixtures of polydisperse spheres and to binary alloys of bcc, fcc, and hcp metals. The extensive comparison between the analytical expressions derived here and the published numerical and empirical data yields good agreement. Hence, it is seen that basic space-filling theories on “simple” noninteracting hard spheres are a valuable tool for the study of crystalline materials.
Cubic Unit Cell Construction Kit.
ERIC Educational Resources Information Center
Mattson, Bruce
2000-01-01
Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)
ERIC Educational Resources Information Center
Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.
2008-01-01
One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…
ERIC Educational Resources Information Center
Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.
2008-01-01
One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…
Heterogeneous crystallization of hard spheres on patterned substrates
NASA Astrophysics Data System (ADS)
Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia
2010-04-01
We report a numerical investigation of the crystallization of monodisperse hard spheres on different patterned substrates. We find that the duration of a metastable fluid state, which may last for relatively long time in the homogeneous crystallization, can be deeply reduced or almost eliminated when a substrate is used as the seed of crystallization. In the presence of the square patterned substrate, which has the basic character of the body-centered cubic (bcc) crystal structure, a transient bcc crystal phase was observed, suggesting that the bcc structure could be possible to be stabilized by the square patterned substrates. The process of crystallization becomes complicated when the patterned substrate is incommensurate with the bulk crystal. Furthermore, a purely face-centered cubic or hexagonal close packed crystal phase with stacking faults can be generated by using a certain patterned substrate without other factors such as gravity.
Phase diagrams of colloidal spheres with a constant zeta-potential.
Smallenburg, Frank; Boon, Niels; Kater, Maarten; Dijkstra, Marjolein; van Roij, René
2011-02-21
We study suspensions of colloidal spheres with a constant zeta-potential within Poisson-Boltzmann theory, quantifying the discharging of the spheres with increasing colloid density and decreasing salt concentration. We use the calculated renormalized charge of the colloids to determine their pairwise effective screened-Coulomb repulsions. Bulk phase diagrams in the colloid concentration-salt concentration representation follow, for various zeta-potentials, by a mapping onto published fits of phase boundaries of point-Yukawa systems. Although the resulting phase diagrams do feature face-centered cubic and body-centered cubic phases, they are dominated by the (re-entrant) fluid phase due to the colloidal discharging with increasing colloid concentration and decreasing salt concentration.
Microstructural Effects in Face-Centered-Cubic Alloys after Small Charge Explosions
NASA Astrophysics Data System (ADS)
Firrao, D.; Matteis, P.; Scavino, G.; Ubertalli, G.; Pozzi, C.; Ienco, M. G.; Piccardo, P.; Pinasco, M. R.; Costanza, G.; Montanari, R.; Tata, M. E.; Brandimarte, G.; Petralia, S.
2007-12-01
Effects on metal targets after an explosion include the following: fracture, plastic deformation, surface modifications, and microstructural crystallographic alterations with ensuing mechanical properties changes. In the case of small charge explosions, macroscopic effects are restricted to small charge-to-target distances, whereas crystal alterations can still be observed at moderate distances. Microstructural variations, induced on gold-alloy disk samples, as compared to previous results on AISI 304Cu steel samples, are illustrated. The samples were subjected to blast-wave overpressures in the range of 0.5 to 195 MPa. Minimum distances and peak pressures, which could still yield observable alterations, were especially investigated. Blast-related microstructural features were observed on the explosion-exposed surface and on perpendicular cross sections. Analyses using X-ray diffraction (XRD) were performed to identify modifications of phase, texture, dislocation density, and frequency of mechanical twins, before and after the explosions. Optical metallography (OM) and scanning electron microscopy (SEM) observations evidenced partial surface melting, zones with recrystallization phenomena, and crystal plastic deformation marks. The latter marks are attributed to mechanical twinning in the stainless steel and to cross-slip (prevalent) and mechanical twinning (possibly) in the gold alloy.
Thermal plasma processed ferro-magnetically ordered face-centered cubic iron at room temperature
Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.
2014-10-28
Here, we report tailor made phase of iron nanoparticles using homogeneous gas phase condensation process via thermal plasma route. It was observed that crystal lattice of nano-crystalline iron changes as a function of operating parameters of the plasma reactor. In the present investigation iron nanoparticles have been synthesized in presence of argon at operating pressures of 125–1000 Torr and fixed plasma input DC power of 6 kW. It was possible to obtain pure fcc, pure bcc as well as the mixed phases for iron nanoparticles in powder form as a function of operating pressure. The as synthesized product was characterized for understanding the structural and magnetic properties by using X-ray diffraction, vibrating sample magnetometer, and Mössbauer spectroscopy. The data reveal that fcc phase is ferromagnetically ordered with high spin state, which is unusual whereas bcc phase is found to be ferromagnetic as usual. Finally, the structural and magnetic properties are co-related.
In situ observation of deformation processes in nanocrystalline face-centered cubic metals.
Kobler, Aaron; Brandl, Christian; Hahn, Horst; Kübel, Christian
2016-01-01
The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline Pd x Au1- x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin-twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains.
NASA Astrophysics Data System (ADS)
Adlakha, I.; Solanki, K. N.
2015-03-01
We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs.
Thermodynamic properties of solid face centered cubic Rb3C60 at high temperature and pressure
NASA Astrophysics Data System (ADS)
Yang, W.; Sun, J. X.; Liu, H.; Yan, G. F.
2014-03-01
Analytic equation of state and thermodynamic quantities of solid fcc Rb3C60 are derived by using an analytic mean field potential method. For intermolecular forces, the double-exponential potential is utilized. Four potential parameters are determined by fitting experimental compression data of Rb3C60 up to 14 GPa at 296 K. Various physical quantities including isothermals, thermal expansion, isochoric heat capacity, Helmholtz free energy and internal energy are calculated and analyzed. Calculated results are consistent with available experimental data in literature. Furthermore, spinodal temperature for Rb3C60 is found to be 2,860 K. Results verify that analytic mean field potential method is a useful approach to consider the anharmonic effect at high temperatures. Numerous reasonable predictions and the change trend of the properties for Rb3C60 at high temperature and pressure have been given.
Adlakha, I.; Solanki, K. N.
2015-01-01
We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs. PMID:25732834
In situ observation of deformation processes in nanocrystalline face-centered cubic metals
Kobler, Aaron; Brandl, Christian; Hahn, Horst
2016-01-01
Summary The atomistic mechanisms active during plastic deformation of nanocrystalline metals are still a subject of controversy. The recently developed approach of combining automated crystal orientation mapping (ACOM) and in situ straining inside a transmission electron microscope was applied to study the deformation of nanocrystalline PdxAu1− x thin films. This combination enables direct imaging of simultaneously occurring plastic deformation processes in one experiment, such as grain boundary motion, twin activity and grain rotation. Large-angle grain rotations with ≈39° and ≈60° occur and can be related to twin formation, twin migration and twin–twin interaction as a result of partial dislocation activity. Furthermore, plastic deformation in nanocrystalline thin films was found to be partially reversible upon rupture of the film. In conclusion, conventional deformation mechanisms are still active in nanocrystalline metals but with different weighting as compared with conventional materials with coarser grains. PMID:27335747
Uranium mobility in face-centered cubic aluminium driven by interstitial migration
NASA Astrophysics Data System (ADS)
Ramunni, Viviana P.
2014-08-01
We characterize the solute mobility behavior driven by interstitial mechanism in FCC diluted alloys using a classical molecular static technique (CMS). In the same line of ideas as the multi-frequency model, we calculate the tracer self- and solute diffusion coefficients. Specifically, we perform our calculations for the Al-U diluted alloy. We verify that in the Al-U system, mixed dumb-bells are observed to be unstable and U mobility is driven by crowdions. From previous results of diffusion in same alloys containing only vacancies, qualitatively we conclude that, experimental data are in perfect agreement with previous calculations of solute U diffusion driven by a vacancy mechanism. Also we give a possible migration path for solute U atoms through interstitial migration, where we have found that U enhances the Al mobility in the alloy.
Surface-induced ordering and disordering in face-centered-cubic alloys: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Schweika, W.; Landau, D. P.; Binder, K.
1996-04-01
Using extensive Monte Carlo simulations we have studied phase transitions in a fcc model with antiferromagnetic nearest-neighbor couplings J in the presence of different free surfaces which lead either to surface-induced order or to surface-induced disorder. Our model is a prototype for CuAu-type ordering alloys and shows a strong first-order bulk transition at a temperature kTcb/||J||=1.738 005(50). For free (100) surfaces, we find a continuous surface transition at a temperature Tcs>~Tcb exhibiting critical exponents of the two-dimensional Ising model. Surface-induced ordering occurs as the temperature approaches Tcb and the surface excess order and surface excess energy diverges logarithmically. For a free (111) surface, the surface order vanishes continuously at Tcb accompanied by surface-induced disorder (SID). In addition to a logarithmic divergence of the excess quantities of order and energy, we find further critical exponents which confirm the actual theory of SID and critical wetting and which can be understood in terms of rough interfaces. For both cases of free surfaces, the asymptotic behavior of the squared interfacial width shows the expected logarithmic divergence.
2006-03-01
an inserted 500-nm scale [26]. . 24 2.12. SEM image of single- cell and two-layer PhC, using method out- lined in Figure 2.10. (a) Shows the results of...structure with a 2-µm scale and an inserted 500-nm scale [26]. 24 Figure 2.12: SEM image of single- cell and two-layer PhC, using method outlined in Figure...Volume fraction of column in the unit cell . bbeta = 3.14159*a*a/d/d*2.0/ sqrt (3.0); EPSA =1; % column DIELECTRIC INPUT MatNam1 = ’air’; %name of
NASA Astrophysics Data System (ADS)
Lee, Seok-Woo; Meza, Lucas; Greer, Julia R.
2013-09-01
Cryogenic nanoindentation experiments performed on [0 0 1]-oriented single crystalline Nb, W, Al, and Au in an in situ nanomechanical instrument with customized cryogenic testing capability revealed temperature dependence on nanoindentation size effect. The Nix-Gao model, commonly used to capture indentation size effect at room temperature, does not take into account thermal effects and hence is not able to explain these experimental results where both hardness at infinite indentation depth and characteristic material length scale were found to be strong functions of temperature. Physical attributes are critically examined in the framework of intrinsic lattice resistance and dislocation cross-slip probability.
NASA Astrophysics Data System (ADS)
Sun, Jiu-Xun; Wu, Qiang; Cai, Ling-Cang; Jin, Ke
2014-06-01
A generalized cubic (GC) equation of state (EOS) with two independent parameters is proposed. The GC EOS can include EOS from both virial and compressibility routes of Percus-Yevick theory in it as special cases. The two parameters are determined by fitting well-known virial coefficients of pure fluid. The generalized cubic EOS can be directly and consistently extended to multi-component mixtures merely demanding of the EOS of mixtures also is cubic, and combining two strict physical conditions for the radial distribution functions at contact (RDFC) of mixtures. The calculated virial coefficients of pure fluid and predicted compressibility factors and RDFC for both pure fluid and mixtures are excellent as compared with the simulation data. The values of RDFC for mixtures with extremely large size ratio are far better than the expressions in literature.
A staggered overset grid method for resolved simulation of incompressible flow around moving spheres
NASA Astrophysics Data System (ADS)
Vreman, A. W.
2017-03-01
An overset grid method for resolved simulation of incompressible (turbulent) flows around moving spherical particles is presented. The Navier-Stokes equations in spherical coordinates are solved on body-fitted spherical polar grids attached to the moving spheres. These grids are overset on a fixed Cartesian background grid, where the Navier-Stokes equations in Cartesian coordinates are solved. The standard second-order staggered finite difference scheme is used on each grid. The velocities and pressures on different grids are coupled by third-order Lagrange interpolations. The method, implemented in the form of a Message Passing Interface parallel program, has been validated for a range of flows around spheres. In a first validation section, the results of simulations of four Stokes flows around a single moving sphere are compared with classical analytical results. The first three cases are the flows due to a translating, an oscillating sphere and a rotating sphere. The numerically produced velocity and pressure fields appear to converge to the corresponding (transient) analytical solutions in the maximum norm. The fourth Stokes case is the flow due to an instantaneously accelerated sphere. For this case, the results are compared with the corresponding numerical solution of the Basset-Boussinesq-Oseen equation. In a second validation section, results of three Navier-Stokes flows around one or more moving spheres are presented. These test configurations are a moving face-centered cubic array of spheres, laminar channel flow with a falling a sphere, and freely moving small spheres in a Taylor-Green flow. Results for the flow with the falling sphere are compared with the results from the literature on immersed boundary methods.
Lattice Theory of Face-Shear and Thickness-Twist Waves in Body-Centered Cubic Crystal Plates.
An analytical study is made of face-shear and thickness-twist waves propagating along the (100) and (110) directions of a body - centered cubic lattice...in the (100) direction of simple-cubic and face-centered cubic plates. In the (100) direction of the body - centered cubic plate, the situation is quite
Low-Temperature Electrodep-osition of the High-Temperature Cubic Polymorph of Bismuth(III) Oxide
1999-12-01
8-Bi 3 electrodeposited cubic as opposed to a face centered cubic structure ontohigh degree of columnar growth, typical of textured films. The [31...The observation of mixed index reflections thickness of the film as determined by SEM agrees well with that would preclude a face centered cubic ... structure for calculated from the EQCM. The bar marker is 750 nm. our material, as these reflections are symmetry 104 E.W Bohannan et al. I Solid State
Vacancy Relaxation in Cubic Crystals
NASA Technical Reports Server (NTRS)
Girifalco, L. A.; Weizer, V. G.
1960-01-01
The configuration of the atoms surrounding a vacancy in four face-centered cubic and three body-centered cubic metals has been computed, using a pairwise, central-force model in which the energy of interaction between two atoms was taken to have the form of a Morse function. Only radial relaxations were considered. The first and second nearest-neighbor relaxations for the face-centered systems were found to be: Pb (1.42,-0.43), Ni (2.14,-0.39), Cu(2.24,-0.40) and Ca (2.73,-0.41, expressed in percentages of normal distances. For the body-centered systems the relaxations out to the fourth nearest neighbors to the vacancy were: Fe (6.07,-2.12, -0.25, -), Ba (7.85, -2.70, 0.70, -0.33) and Na (10.80, -3.14, 3.43, -0.20). The positive signs indicate relaxation toward the vacancy and the negative signs indicate relaxation away from the vacancy. The energies of relaxation (eV) are: Pb (0.162), Ni (0.626), Cu (0.560), Ca (0.400), Fe (1.410), Ba (0.950) and Na (0.172).
Growth of defect-free colloidal hard-sphere crystals using colloidal epitaxy
NASA Astrophysics Data System (ADS)
Dasgupta, Tonnishtha; Edison, John R.; Dijkstra, Marjolein
2017-02-01
Using event-driven Brownian dynamics simulations, we investigate the epitaxial growth of hard-sphere crystals with a face-centered-cubic (fcc) structure on the three densest cross-sectional planes of the fcc: (i) fcc (100), (ii) fcc (111), and (iii) fcc (110). We observe that for high settling velocities, large fcc crystals with very few extended defects grow on the fcc (100) template. Our results show good agreement with the experiments of Jensen et al. [Soft Matter 9, 320 (2013)], who observed such large fcc crystals upon centrifugation on an fcc (100) template. We also compare the quality of the fcc crystal formed on the fcc (111) and fcc (110) templates with that of the fcc (100) template and conclude that the latter yields the best crystal. We also briefly discuss the dynamical behavior of stacking faults that occur in the sediments.
Growth of defect-free colloidal hard-sphere crystals using colloidal epitaxy.
Dasgupta, Tonnishtha; Edison, John R; Dijkstra, Marjolein
2017-02-21
Using event-driven Brownian dynamics simulations, we investigate the epitaxial growth of hard-sphere crystals with a face-centered-cubic (fcc) structure on the three densest cross-sectional planes of the fcc: (i) fcc (100), (ii) fcc (111), and (iii) fcc (110). We observe that for high settling velocities, large fcc crystals with very few extended defects grow on the fcc (100) template. Our results show good agreement with the experiments of Jensen et al. [Soft Matter 9, 320 (2013)], who observed such large fcc crystals upon centrifugation on an fcc (100) template. We also compare the quality of the fcc crystal formed on the fcc (111) and fcc (110) templates with that of the fcc (100) template and conclude that the latter yields the best crystal. We also briefly discuss the dynamical behavior of stacking faults that occur in the sediments.
Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres
NASA Astrophysics Data System (ADS)
Shin, Homin; Schweizer, Kenneth S.
2013-02-01
We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.
Wang, Minghong; Sun, Zhenkun; Yue, Qin; Yang, Jie; Wang, Xiqing; Deng, Yonghui; Yu, Chengzhong; Zhao, Dongyuan
2014-02-05
A facile and controllable interface-directed coassembly (IDCA) approach is developed for the first time to synthesize uniform discrete mesoporous silica particles with a large pore size (ca. 8 nm) by using 3-dimensional macroporous carbon (3DOMC) as the nanoreactor for the confined coassembly of template molecules and silica source. By controlling the amount of the precursor solution and using Pluronic templates with different compositions, we can synthesize mesoporous silica particles with diverse morphologies (spheres, hollow spheres, and hemispheres) and different mesostructure (e.g., 2-D hexagonal and 3D face centered cubic symmetry), high surface area of about 790 m(2)/g, and large pore volume (0.98 cm(3)/g). The particle size can be tunable from submicrometer to micrometer regimes by changing the macropore diameter of 3DOMC. Importantly, this synthesis concept can be extended to fabricate multifunctional mesoporous composite spheres with a magnetic core and a mesoporous silica shell, large saturated magnetization (23.5 emu/g), and high surface area (280 m(2)/g). With the use of the magnetic mesoporous silica spheres as a magnetically recyclable absorbent, a fast and efficient removal of microcystin from water is achieved, and they can be recycled for 10 times without a significant decrease of removal efficiency for microcystin.
NASA Astrophysics Data System (ADS)
Wang, Lin; An, Xizhong; Wang, Defeng; Qian, Quan
2016-01-01
Quantitative characterization on the topological and metrical properties of radical subunits (polyhedra) for two new ternary hard sphere crystals was studied. These two ideal crystalline structures are numerically constructed by filling small and medium spheres into interstices (corresponding to regular tetrahedral and octahedral pores) of perfect face centered cubic (FCC) and hexagonal close packed (HCP) crystals formed by the packing of large spheres. Topological properties such as face number, edge number, vertex number of each radical polyhedron (RP), edge number of each RP face and metrical properties such as volume, surface area, total perimeter and pore volume of each RP, area and perimeter of each RP face were analyzed and compared. The results show that even though the overall packing densities for FCC and HCP ternary crystals are the same, different characteristics of radical polyhedra for corresponding spheres in these two crystals can be identified. That is, in the former structure RPs are more symmetric than those in the latter; the orientations of corresponding RP in the latter are twice as many as that in the former. Moreover, RP topological and metrical properties in the HCP ternary crystal are much more complicated than those in the FCC ternary crystal. These differences imply the structure and property differences of these two ternary crystals. Analyses of RPs provide intensive understanding of pores in the structure.
Bond-orientational analysis of hard-disk and hard-sphere structures.
Senthil Kumar, V; Kumaran, V
2006-05-28
We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.
Kamiko, M.; Nose, K.; Suenaga, R.; Kyuno, K.; Koo, J.-W.; Ha, J.-G.
2013-12-28
The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed that the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.
NASA Astrophysics Data System (ADS)
Gungor, M. Rauf; Maroudas, Dimitrios
2005-06-01
A comprehensive computational analysis is reported of the atomistic mechanisms of strain relaxation and failure in free-standing Cu thin films under applied biaxial tensile strain for strain levels up to 6%. The analysis focuses on nanometer-scale-thick films with a preexisting void extending across the film thickness and the film plane oriented normal to the [111] crystallographic direction. Our computational study is based on isothermal-isostrain large-scale molecular-dynamics simulations within an embedded-atom-method parametrization for Cu. Our analysis has revealed various regimes in the film's mechanical response as the applied strain level increases. Within the considered strain range, after an elastic response at a low strain (<2%), void growth is the major strain relaxation mechanism mediated by the emission of perfect screw dislocation pairs from the void surface and subsequent dislocation propagation; as a result, a plastic zone forms around the void. Plastic deformation is accompanied by the glide motion of the dislocations emitted from the void surface, void surface morphological transitions, formation of a step pattern on the film's surfaces, dislocation jogging, vacancy generation due to gliding jogged dislocations, dislocation-vacancy interactions, vacancy pipe diffusion along dislocation cores, as well as dislocation-dislocation interactions. The increase in film surface roughness with increasing strain eventually leads to nucleation and propagation from the film surfaces of threading dislocation loops, which ultimately break up when they reach the opposite free surface of the thin film.
Barnard, Amanda S.; Lin, X. M.; Curtiss, Larry A.
2005-12-29
Many of the unique properties of metallic nanoparticles are determined not only by their finite size but also by their shape, defined by the crystallographic orientation of the surface facets. These surfaces (and therefore the nanoparticles themselves) may differ in a number of ways, including surface atom densities, electronic structure, bonding, chemical reactivities, and thermodynamic properties. In the case of gold, it is known that the melting temperature of nanoparticles strongly depends on the crystal size and that the shape may alter considerably (and yet somewhat unpredictably) during annealing. In this work we use first principle calculations and a thermodynamic model to investigate the morphology of gold nanoparticles in the range 3-100 nm. The results predict that the equilibrium shape of gold nanoparticles is a modified truncated octahedron and that the (size-dependent) melting of such particles is preceded by a significant change in the nanoparticle’s morphology.
2013-02-15
strain-hardening and fatigue resistance are strongly influ- enced by dislocation micromechanisms , especially cross- slip, and including physics -based cross...AVAILABILITY STATEMENT Distribution Statement A. Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES Journal article published...incorpo- rate physics -based models of deformation in the design of structural components. While models for predicting yield strength and creep
NASA Astrophysics Data System (ADS)
Magomedov, M. N.
2017-04-01
All four parameters of the Mie-Lennard-Jones pair interatomic potential have been determined, and the state equation ( P) and baric dependences of the lattice properties of an fcc iron are calculated using a previously proposed method. The dependences have been studied for the following properties: Debye temperature; the first, second, and third Gruneisen parameters; isothermal bulk modulus B T and B'( P); isochoric specific heat C v and C v '( P); isobaric specific heat C p ; coefficient of thermal expansion α p and α p '( P); specific surface energy σ and σ'( P). Calculations performed along two isotherms (1500 and 3000 K) have shown good agreement with the experimental data. Analytical approximations of the baric dependences for B'( P), α p ( P), C p ( P), and σ'( P) have been obtained, and it is shown that at P → ∞ the functions B T ( P) and σ( P) change linearly, while the functions α p'( P) and C p '( P) tend to zero. The calculated baric dependence of the melting temperature shows good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Chen, Jian; Deng, Xin; Gong, Manfeng; Liu, Wei; Wu, Shanghua
2016-09-01
This paper systematically investigated a set of functionally graded WC-TiC-Mo-Co cemented carbides with modified surface layer (called fcc-rich surface layer in this study), which is mainly composed of fcc phases (Ti(CN) and TiN) and WC. Nitridation at liquid phase sintering temperature is the key process making this fcc-rich surface layer. The functionally graded WC-TiC-Mo-Co cemented carbides synthesized in this study show 3 layer structure: the outer layer, i.e. the fcc-rich surface layer; the intermediate layer, which is characterized by abnormally large WC and high Co content; and the inner layer. It was found that TiC is the most critical component for the formation of fcc-rich surface layer. The higher content of TiC results in the thicker fcc-rich outer layer, higher (Ti(CN) and TiN) content in the outer layer, and higher hardness of the fcc-rich outer layer. The formation of this fcc-rich surface layer is mainly due to the nitridation process between Ti and N, which leads to the diffusion of Ti outwards (from the inside of the sample to the surface) and the subsequent migration of liquid cobalt inwards (from surface to the inside of the sample). The three-layer structure developed in this study provides the excellent combination of high wear resistance and high toughness, which is favorable for some applications.
Simulation for F.C.C. deformation texture by modified pencil glide theory[Face Centered Cubic
Masui, H.
1999-11-26
Inspired by the pencil glide theory for b.c.c. metal, modified pencil glide theory for f.c.c. metal was proposed, dividing the 12 glide systems of f.c.c. metal into three groups individually composed of eight {l{underscore}brace}111{r{underscore}brace}{l{underscore}angle}110{r{underscore}angle} glide systems around the principal axes X[100], Y[010] and Z[001]. These assumptions yielded two mathematical solutions {Omega}(3) and {Omega}(1). In {Omega}(3), from the three groups with four complete conjugated glide systems composed of, respectively, two glide systems of common {l{underscore}angle}110{r{underscore}angle} direction, only one group with the maximum plastic work may operate if the requirements are satisfied, otherwise glide systems in {Omega}(1) where one of the four conjugated glide systems is zero are activated. The model considering the 12 glide systems of f.c.c. as a whole explained many experimentally stable orientations in axisymmetric and rolling deformation. The differences between the two pencil glide theories for b.c.c. and f.c.c. are also discussed with data.
Force distribution/transmission in amorphous and crystalline packings of spheres
NASA Astrophysics Data System (ADS)
An, Xizhong; Huang, Fei
2013-06-01
In this paper, the discrete element modeling (DEM) was used to study the force distributions/transmissions in the packings of amorphous and crystalline states generated by equal spheres subjected to an external load (of a large sphere) applied on the top of a packing. Crystalline packings such as {100}-and {111}-oriented face centered cubic (FCC), hexagonal close packed (HCP) and body centered cubic (BCC) were considered. The results show that the forces among the particles in these packings are quite different, with different force chains identified with different structures. For amorphous packings, the force chain supporting the external load gives a conical shape. The force chain in a crystalline packing is mainly of a pyramid shape and the forces therein are transmitted along the crystalline lattice. For {100}-FCC, {111}-FCC, and BCC other than HCP, the forces transmit along straight lines with different orientations. In crystalline packings, the forces in the chains are uniformly distributed in each layer and decrease linearly with the height. The force distributions in amorphous and crystalline granular packings are structure-dependent.
Voronoi neighbor statistics of hard-disks and hard-spheres
NASA Astrophysics Data System (ADS)
Kumar, V. Senthil; Kumaran, V.
2005-08-01
The neighbor distribution in hard-sphere and hard-disk fluids is analyzed using Voronoi tessellation. The statistical measures analyzed are the nth neighbor coordination number (Cn), the nth neighbor distance distribution [fn(r )], and the distribution of the number of Voronoi faces (Pn). These statistics are sensitive indicators of microstructure, and they distinguish thermodynamic and annealed structures. A sharp rise in the hexagon population marks the onset of hard-disk freezing transition, and Cn decreases sharply to the hexagonal lattice values. In hard-disk random structures the pentagon and heptagon populations remain significant even at high volume fraction. In dense hard-sphere (three-dimensional) structures at the freezing transition, C1 is close to 14, instead of the value of 12 expected for a face-centered-cubic lattice. This is found to be because of a topological instability, where a slight perturbation of the positions in the centers of a pair of particles transforms a vertex in the Voronoi polyhedron into a Voronoi surface. We demonstrate that the pair distribution function and the equation-of-state obtained from Voronoi tessellation are equal to those obtained from thermodynamic calculations. In hard-sphere random structures, the dodecahedron population decreases with increasing density. To demonstrate the utility of the neighbor analysis, we estimate the effective hard-sphere diameter of the Lennard-Jones fluid by identifying the diameter of the spheres in the hard-sphere fluid which has C1 equal to that for the Lennard-Jones fluid. The estimates are within 2% deviation from the theoretical results of Barker-Henderson and Weeks-Chandler-Andersen.
[Optimization of cataplasm matrix with face-centered design-response surface method].
Liu, Shuzhi; Li, Junhong; Jin, Rixian; Du, Maobo
2009-12-01
To optimize the matrix formulation of cataplasm. Face-centered design was used in the experimental design, and response surface was produced in quadratic polynomial after data fitting in order to explore the impacts of Sodium Polyacrylate, Carbomer and the cross-linking agent on stickiness of cataplasm, optimize the prescription of the cataplasm matrix and perform the evaluation analysis. The multiple correlation coefficient (R2) and adjusted R2 in the fitting method using quadratic polynomial were 0.970 and 0. 952 (F = 53.953, P = 0.0001), respectively, and the model was significant different. The ratio of optimum proportion of Sodium Polyacrylate, Carbomer and the cross-linking agent in the matrix of cataplasm was determined, which was proved efficaciously. Face-centered design-response surface method is a simple method with good prediction result for the optimization of cataplasm matrix.
Self-assembly in colloidal hard-sphere systems
NASA Astrophysics Data System (ADS)
Filion, L. C.
2011-01-01
In this thesis, we examine the phase behaviour and nucleation in a variety of hard-sphere systems. In Chapter 1 we present a short introduction and describe some of the simulation techniques used in this thesis. One of the main difficulties in predicting the phase behaviour in colloidal, atomic and nanoparticle systems is in determining the stable crystalline phases. To address this problem, in Chapters 2 and 4 we present two different methods for predicting possible crystal phases. In Chapter 2, we apply a genetic algorithm to binary hard-sphere mixtures and use it to predict the best-packed structures for this system. In Chapter 4 we present a novel method based on Monte Carlo simulations to predict possible crystalline structures for a variety of models. When the possible phases are known, full free-energy calculations can be used to predict the phase diagrams. This is the focus of Chapters 3 and 5. In Chapter 3, we examine the phase behaviour for binary hard-sphere mixtures with size ratios of the large and small spheres between 0.74 and 0.85. Between size ratios 0.76 and 0.84 we find regions where the binary Laves phases are stable, in addition to monodisperse face-centered-cubic (FCC) crystals of the large and small spheres and a binary liquid. For size ratios 0.74 and 0.85 we find only the monodisperse FCC crystals and the binary liquid. In Chapter 5 we examine the phase behaviour of binary hard-sphere mixtures with size ratios between 0.3 and 0.42. In this range, we find an interstitial solid solution (ISS) to be stable, as well as FCC crystals of the small and large spheres, and a binary fluid. The ISS phase consists of an FCC crystal of the large particles with some of the octahedral holes filled by smaller particles. We show that this filling fraction can be tuned from 0 to 100%. Additionally, we examine the diffusive properties of the small particles in the ISS for size ratio 0.3. In contrast to most systems, we find a region where the diffusion
Desgranges, Caroline; Delhommelle, Jerome
2007-10-25
Using hybrid Monte Carlo molecular simulations, we study crystallization from the melt of softly repulsive spheres interacting through an inverse power law potential. We work at fixed supercooling (i.e., at a temperature 25% below the melting temperature) and consider three systems, defined by different values for the inverse power exponent n: n = 5, n = 6.67, and n = 10. Modifying the value of n allows us to study the onset of crystallization in the domain of stability of the body-centered cubic (bcc) phase (n = 5 and n = 6.67) and in the domain of stability of the face-centered cubic (fcc) phase (n = 10). We show that, for the three systems, polymorph selection does not take place during crystal nucleation since the structure of the critical nuclei obtained for the three systems is not well defined. However, our results demonstrate that polymorph selection takes place during the growth step since growth proceeds either into the stable bcc phase for the two smaller values of n (n = 5 and n = 6.67) or into the stable fcc phase for the larger value of n (n = 10). We also show that we did not achieve complete control of polymorphism for n = 10. The growth step gives rise to either slowly growing crystallites composed of two blocks of different structures (the stable fcc form and the metastable bcc form) or rapidly growing crystallites of the metastable bcc form.
Dynamics of Disorder-Order Transitions in Hard Sphere Colloidal Dispersions in micro-g
NASA Technical Reports Server (NTRS)
Zhu, J. X.; Li, M.; Phan, S. E.; Russel, W. B.; Chaikin, Paul M.; Rogers, Rick; Meyers, W.
1996-01-01
We performed a series of experiments on 0.518 millimeter PMMA spheres suspended in an index matching mixture of decalin and tetralin the microgravity environment provided by the Shuttle Columbia on mission STS-73. The samples ranged in concentration from 0.49 to 0.62. volume fraction (phi) of spheres, which covers the range in which liquid, coexistence, solid and glass phases are expected from Earth bound experiments. Light scattering was used to probe the static structure, and the particle dynamics. Digital and 35 mm photos provided information on the morphology of the crystals. In general, the crystallites grew considerably larger (roughly an order of magnitude larger) than the same samples with identical treatment in 1 g. The dynamic light scattering shows the typical short time diffusion and long time caging effects found in 1 g. The surprises that were encountered in microgravity include the preponderance of random hexagonal close packed (RHCP) structures and the complete absence of the expected face centered cubic (FCC) structure, existence of large dendritic crystals floating in the coexistence samples (where liquid and solid phases coexist) and the rapid crystallization of samples which exist only in glass phase under the influence of one g. These results suggest that colloidal crystal growth is profoundly effected by gravity in yet unrecognized ways. We suspect that the RCHP structure is related to the nonequilibrium growth that is evident from the presence of dendrites. An analysis of the dendritic growth instabilities is presented within the framework of the Ackerson-Schatzel equation.
NASA Astrophysics Data System (ADS)
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
Edison, John R; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-07
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
2014-06-18
ISS040-E-014147 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (foreground), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-014536 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-014615 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (top), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-014444 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-013914 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-015415 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson, Expedition 40 commander; and Reid Wiseman (partially obscured), flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
2014-06-18
ISS040-E-013952 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Reid Wiseman, Expedition 40 flight engineer, enters data in a computer during test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES (out of frame). The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity.
NASA Technical Reports Server (NTRS)
Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.
1998-01-01
Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.
NASA Technical Reports Server (NTRS)
Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.
1998-01-01
Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.
NASA Astrophysics Data System (ADS)
Bommineni, Praveen Kumar; Punnathanam, Sudeep N.
2017-08-01
Co-crystal formation from fluid-mixtures is quite common in a large number of systems. The simplest systems that show co-crystal (also called substitutionally ordered solids) formation are binary hard sphere mixtures. In this work, we study the nucleation of AB2 type solid compounds using Monte Carlo molecular simulations in binary hard sphere mixtures with the size ratio of 0.55. The conditions chosen for the study lie in the region where nucleation of an AB2 type solid competes with that of a pure A solid with a face-centered-cubic structure. The fluid phase composition is kept equal to that of the AB2 type solid. The nucleation free-energy barriers are computed using the seeding technique of Sanz et al. [J. Am. Chem. Soc. 135, 15008 (2013)]. Our simulation results show that the nucleation of the AB2 type solid is favored even under conditions where the pure A solid is more stable. This is primarily due to the similarity in the composition of the fluid phase and the AB2 type solid which in turn leads to much lower interfacial tension between the crystal nucleus and the fluid phase. This system is an example of how the fluid phase composition affects the structure of the nucleating solid phase during crystallization and has relevance to crystal polymorphism during crystallization processes.
Filion, L; Hermes, M; Ni, R; Dijkstra, M
2010-12-28
Over the last number of years several simulation methods have been introduced to study rare events such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett-Chandler-type theory where the nucleation barrier is determined using umbrella sampling simulations. The resulting nucleation rates are compared with the experimental rates of Harland and van Megen [Phys. Rev. E 55, 3054 (1997)], Sinn et al. [Prog. Colloid Polym. Sci. 118, 266 (2001)], Schätzel and Ackerson [Phys. Rev. E 48, 3766 (1993)], and the predicted rates for monodisperse and 5% polydisperse hard spheres of Auer and Frenkel [Nature 409, 1020 (2001)]. When the rates are examined in units of the long-time diffusion coefficient, we find agreement between all the theoretically predicted nucleation rates, however, the experimental results display a markedly different behavior for low supersaturation. Additionally, we examined the precritical nuclei arising in the molecular dynamics, forward flux sampling, and umbrella sampling simulations. The structure of the nuclei appears independent of the simulation method, and in all cases, the nuclei contains on average significantly more face-centered-cubic ordered particles than hexagonal-close-packed ordered particles.
Body-centered-cubic Ni and its magnetic properties.
Tian, C S; Qian, D; Wu, D; He, R H; Wu, Y Z; Tang, W X; Yin, L F; Shi, Y S; Dong, G S; Jin, X F; Jiang, X M; Liu, F Q; Qian, H J; Sun, K; Wang, L M; Rossi, G; Qiu, Z Q; Shi, J
2005-04-08
The body-centered-cubic (bcc) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bcc Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of 0.52+/-0.08 micro(B)/atom. The cubic magnetocrystalline anisotropy of bcc Ni is determined to be +4.0x10(5) ergs x cm(-3), as opposed to -5.7x10(4) ergs x cm(-3) for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bcc Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation.
2014-06-18
ISS040-E-014468 (18 June 2014) --- In the International Space Station's Kibo laboratory, NASA astronauts Steve Swanson (left), Expedition 40 commander; and Reid Wiseman, flight engineer, conduct test runs of the SPHERES-Slosh experiment, using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The SPHERES-Slosh investigation uses small robotic satellites on the space station to examine how liquids move around inside containers in microgravity. Russian cosmonaut Maxim Suraev (bottom right), flight engineer, looks on.
Electronic structure of nonstoichiometric cubic hydrides
Switendick, A.C.
1980-01-01
Using the supercell approach we have calculated the electronic structure of Y/sub 4/H/sub 8/, Y/sub 4/H/sub 9/, Y/sub 4/H/sub 11/, and Y/sub 4/H/sub 12/ as prototypic of nonstoichiometric cubic di- and trihydrides. The nature of the interaction between the yttrium and the octahedral and tetrahedral hydrogens is shown by the relative amount of charge contained in the crystal spheres. Each added hydrogen lowers one band which was already partially filled. The charge on both the octahedral and tetrahedral sites is very similar and significantly more than is contained in a comparable atomic sphere.
Diffusion and interactions of point defects in hard-sphere crystals
NASA Astrophysics Data System (ADS)
van der Meer, Berend; Dijkstra, Marjolein; Filion, Laura
2017-06-01
Using computer simulations, we study the diffusion, interactions, and strain fields of point defects in a face-centered-cubic crystal of hard spheres. We show that the vacancy diffusion decreases rapidly as the density is increased, while the interstitial diffusion exhibits a much weaker density-dependence. Additionally, we predict the free-energy barriers associated with vacancy hopping and find that the increasing height of the free-energy barrier is solely responsible for the slowing down of vacancy diffusion. Moreover, we find that the shape of the barriers is independent of the density. The interactions between vacancies are shown to be weakly attractive and short-ranged, while the interactions between interstitials are found to be strongly attractive and are felt over long distances. As such, we find that vacancies do not form vacancy clusters, while interstitials do form long-lived interstitial clusters. Considering the strain field of vacancies and interstitials, we argue that vacancies will hardly feel each other, as they do not substantially perturb the crystal, and as such exhibit weak interactions. Two interstitials, on the other hand, interact with each other over long distances and start to interact (attractively) when their strain fields start to overlap.
Yu, K. Y.; Chen, Y.; Li, J.; ...
2016-11-28
Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.
NASA Astrophysics Data System (ADS)
Li, Tengfei; Liu, Tianmo; Wei, Hongmei; Hussain, Shahid; Wang, Jinxing; Zeng, Wen; Peng, Xianghe; Wang, Zhongchang
2015-11-01
The twin boundary energies of TiN, ZrN, HfN, TiC, ZrC, HfC, VC, NbC and TaC and the adhesion energies of twin interfaces and interfaces of TiN/ZrN, VC/TiC and TiN/TiC were calculated using first-principles methods. A new route in the preparation of mechanically superhard films has been proposed by introducing twin into the multilayer of transition-metal nitrides and carbides.
Yu, K. Y.; Chen, Y.; Li, J.; Liu, Y.; Wang, H.; Kirk, M. A.; Li, M.; Zhang, X.
2016-11-28
Nanocrystalline Ag, Cu, and Ni thin films and their coarse grained counterparts are patterned in this paper using focused ion beam and then irradiated by Kr ions within an electron microscope at room temperature. Irradiation induced in-plane strain of the films is measured by tracking the location of nanosized holes. The magnitude of the strain in all specimens is linearly dose-dependent and the strain rates of nanocrystalline metals are significantly greater as compared to that of the coarse grained metals. Finally, real-time microscopic observation suggests that substantial grain boundary migration and grain rotation are responsible for the significant in-plane strain.
NASA Astrophysics Data System (ADS)
Nagase, Takeshi; Hosokawa, Takashi; Umakoshi, Yukichi
2007-02-01
Both amorphization and crystallization were observed in Zr66.7Pd33.3 metallic glass under electron irradiation. The melt-spun amorphous phase was not stable under 2.0 MV electron irradiation and two kinds of fcc-solid solution were precipitated through electron irradiation induced crystallization at 103 and 298 K. The fcc-solid solution obtained by electron irradiation induced crystallization at 298 K transformed to an amorphous phase during irradiation at 103 K. Electron irradiation induced phase transformation behavior in Zr66.7Pd33.3 metallic glass can be explained by phase stability of an amorphous phase and crystalline phases against electron irradiation.
NASA Astrophysics Data System (ADS)
Bocchini, Peter J.
High-temperature structural alloys for aerospace and energy applications have long been dominated by Ni-based superalloys, whose high-temperature strength and creep resistance can be attributed to a two-phase microstructure consisting of a large volume fraction of ordered gamma'(L12)-precipitates embedded in a disordered gamma(f.c.c.)-matrix. These alloys exhibit excellent mechanical behavior and thermal stability, but after decades of incremental improvement, are nearing the theoretical limit of their operating temperatures. In 2006, an analogous gamma(f.c.c.) + gamma'(L12) microstructure was identified in the Co-Al-W ternary system with liquidus and solidus temperatures 50-150 °C higher than conventional Ni-based superalloys. The work herein focuses on assessing the effects of alloying additions on microstructure and mechanical behavior in an effort to lay the foundations for understanding this emerging alloy system. A variety of Co-based superalloys are investigated in order to study fundamental materials properties and to address key engineering challenges. Coarsening rate constants and temporal exponents are measured for gamma'(L1 2)-precipitates in a ternary Co-Al-W alloy aged at 650 °C and 750 °C. A series of Co-Al-W-B-Zr alloys are cast to study the influence of segregation of B and Zr to grain boundaries (GBs) on mechanical properties. Co-Ni-Al-W-Ti alloys with various amounts of Al, W, and Ti are cast in order to fabricate Co-based superalloys with decreased density and increased gamma'(L1 2)-solvus temperature. 2-D dislocation dynamics modeling is employed to predict how gamma'(L12)-precipitate size and volume fraction affect the mechanical properties of Ni- and Co-based superalloys. Compositional information such as phase concentrations, partitioning behavior, and GB segregation are measured with local electrode atom probe (LEAP) tomography in alloys with fine microstructures and with scanning electron microscope (SEM) electron dispersive x-ray spectroscopy (EDS) in alloys with coarse microstructures. High-temperature mechanical properties are determined with compression creep at 850 °C and flow stress tests conducted between room temperature and 900 °C. gamma'(L12)-solvus temperature, as well as solidus and liquidus temperatures, are measured with differential thermal analysis (DTA). B and Zr strongly segregate to GBs in Co-Al-W-B-Zr alloys. B additions of 0.05 at. % result in micron-sized GB-precipitates that improve creep strength by two orders of magnitude. Segregation of B or Zr in amounts where GB-precipitates do not form, have no effect on creep strength over a ternary Co-Al-W alloy. The concurrent addition of B and Zr improves creep strength, though to a lesser degree than in alloys containing GB-borides. Ti is an effective substitute for W and Al in Co-Ni-Al-W alloys where density is decreased by 9 % and solvus is increased to 1137 °C in a Co-10Ni-5Al-5W-8Ti at. % alloy compared to 982 °C in a Co-10Ni-9Al-9W at. % alloy. Further investigation of reducing W in a Co-10Ni-6Al-xW-6Ti at. % (x=6, 4, 2, 0) alloys ascertain that, with the addition of Ti, gamma'(L12)-precipitates can form in a wider composition range than in ternary Co-Al-W alloys. 2-D dislocation dynamics simulations are in good agreement with experimental measurements for binary Ni-Al and ternary Co-Al-W alloys. General trends in strengthening are captured for higher order Ni-Al-Cr and Ni-Al-Cr-W alloys.
NASA Astrophysics Data System (ADS)
Aref'eva, L. P.; Shebzukhova, I. G.
2016-07-01
A technique for the evaluation of the electron work function of metallic single crystals and the electron work function anisotropy has been developed in the framework of the electron-statistical method. The surface energy and the electron work function have been calculated for crystal faces of allotropic modifications of 4 d- and 5 d-metals. A change in the electron work function due to the allotropic transformations has been estimated, and the periodic dependence of the electron work function has been determined. It has been shown that the results obtained using the proposed technique correlate with the available experimental data for polycrystals.
Piecewise Cubic Interpolation Package
Fritsch, F. N.; LLNL,
1982-04-23
PCHIP (Piecewise Cubic Interpolation Package) is a set of subroutines for piecewise cubic Hermite interpolation of data. It features software to produce a monotone and "visually pleasing" interpolant to monotone data. Such an interpolant may be more reasonable than a cubic spline if the data contain both 'steep' and 'flat' sections. Interpolation of cumulative probability distribution functions is another application. In PCHIP, all piecewise cubic functions are represented in cubic Hermite form; that is, f(x) is determined by its values f(i) and derivatives d(i) at the breakpoints x(i), i=1(1)N. PCHIP contains three routines - PCHIM, PCHIC, and PCHSP to determine derivative values, six routines - CHFEV, PCHFE, CHFDV, PCHFD, PCHID, and PCHIA to evaluate, differentiate, or integrate the resulting cubic Hermite function, and one routine to check for monotonicity. A FORTRAN 77 version and SLATEC version of PCHIP are included.
2014-07-25
ISS040-E-079355 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.
2014-07-25
ISS040-E-079332 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.
2014-07-25
ISS040-E-079129 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.
2014-07-25
ISS040-E-079083 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson, Expedition 40 commander, enters data in a computer in preparation for a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.
2014-07-25
ISS040-E-079910 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.
Ustinov, E A
2017-01-21
The paper aims at a comparison of techniques based on the kinetic Monte Carlo (kMC) and the conventional Metropolis Monte Carlo (MC) methods as applied to the hard-sphere (HS) fluid and solid. In the case of the kMC, an alternative representation of the chemical potential is explored [E. A. Ustinov and D. D. Do, J. Colloid Interface Sci. 366, 216 (2012)], which does not require any external procedure like the Widom test particle insertion method. A direct evaluation of the chemical potential of the fluid and solid without thermodynamic integration is achieved by molecular simulation in an elongated box with an external potential imposed on the system in order to reduce the particle density in the vicinity of the box ends. The existence of rarefied zones allows one to determine the chemical potential of the crystalline phase and substantially increases its accuracy for the disordered dense phase in the central zone of the simulation box. This method is applicable to both the Metropolis MC and the kMC, but in the latter case, the chemical potential is determined with higher accuracy at the same conditions and the number of MC steps. Thermodynamic functions of the disordered fluid and crystalline face-centered cubic (FCC) phase for the hard-sphere system have been evaluated with the kinetic MC and the standard MC coupled with the Widom procedure over a wide range of density. The melting transition parameters have been determined by the point of intersection of the pressure-chemical potential curves for the disordered HS fluid and FCC crystal using the Gibbs-Duhem equation as a constraint. A detailed thermodynamic analysis of the hard-sphere fluid has provided a rigorous verification of the approach, which can be extended to more complex systems.
NASA Astrophysics Data System (ADS)
Ustinov, E. A.
2017-01-01
The paper aims at a comparison of techniques based on the kinetic Monte Carlo (kMC) and the conventional Metropolis Monte Carlo (MC) methods as applied to the hard-sphere (HS) fluid and solid. In the case of the kMC, an alternative representation of the chemical potential is explored [E. A. Ustinov and D. D. Do, J. Colloid Interface Sci. 366, 216 (2012)], which does not require any external procedure like the Widom test particle insertion method. A direct evaluation of the chemical potential of the fluid and solid without thermodynamic integration is achieved by molecular simulation in an elongated box with an external potential imposed on the system in order to reduce the particle density in the vicinity of the box ends. The existence of rarefied zones allows one to determine the chemical potential of the crystalline phase and substantially increases its accuracy for the disordered dense phase in the central zone of the simulation box. This method is applicable to both the Metropolis MC and the kMC, but in the latter case, the chemical potential is determined with higher accuracy at the same conditions and the number of MC steps. Thermodynamic functions of the disordered fluid and crystalline face-centered cubic (FCC) phase for the hard-sphere system have been evaluated with the kinetic MC and the standard MC coupled with the Widom procedure over a wide range of density. The melting transition parameters have been determined by the point of intersection of the pressure-chemical potential curves for the disordered HS fluid and FCC crystal using the Gibbs-Duhem equation as a constraint. A detailed thermodynamic analysis of the hard-sphere fluid has provided a rigorous verification of the approach, which can be extended to more complex systems.
Cubic ideal ferromagnets at low temperature and weak magnetic field
NASA Astrophysics Data System (ADS)
Hofmann, Christoph P.
2017-04-01
The low-temperature series for the free energy density, pressure, magnetization and susceptibility of cubic ideal ferromagnets in weak external magnetic fields are discussed within the effective Lagrangian framework up to three loops. The structure of the simple, body-centered, and face-centered cubic lattice is taken into account explicitly. The expansion involves integer and half-integer powers of the temperature. The corresponding coefficients depend on the magnetic field and on low-energy effective constants that can be expressed in terms of microscopic quantities. Our formulas may also serve as efficiency or consistency check for other techniques like Green's function methods, where spurious terms in the low-temperature expansion have appeared. We explore the sign and magnitude of the spin-wave interaction in the pressure, magnetization and susceptibility, and emphasize that our effective field theory approach is fully systematic and rigorous.
2013-07-05
ISS036-E-015549 (5 July 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, watches as he devotes some time with the long-running SPHERES experiment, also known as Synchronized Position Hold Engage and Reorient Experimental Satellites. The experiment is run in conjunction with students who program bowling ball-sized satellites using algorithms. The free-floating satellites are programmed to perform maneuvers potentially influencing the design of future missions.
Structure and Stability of Aluminum-Copper Face-Centered Icosahedral Alloys
NASA Astrophysics Data System (ADS)
Shield, Jeffrey E.
The phases and microstructures in rapidly solidified Al-Cu-Ru alloys were investigated in this study. A chemically and topologically disordered icosahedral (i) phase grows dendritically from the liquid as the primary solidification product over the entire compositional region studied. The as-solidified i-phase is metastable and transforms to crystalline products at ~500^ circC. The i-phase was not found as a product of the exothermic transformation for any composition, indicating that it is not the low temperature stable phase in the Al-Cu-Ru system. A chemically and topologically ordered i-phase was found to be an equilibrium phase at temperatures above ~670^circ C and exists over a compositional region of several atomic percent. Once formed, this phase was easily retained at lower temperatures because of kinetic limitations of the transformation to the low temperature crystalline phase. Crystalline phases which from diffraction results appear structurally similar to the i-phase were also found in the Al-Cu-Ru system. These "approximant" phases aid in the determination of the atomic structure of i-phases by having common structural units. A simple cubic structure (a = 12.38 A, Pm3) containing a bcc network of icosahedral clusters was discovered. Comparisons of this phase with the i-phase indicated that strong similarities exist between the two structures. A rhombohedral approximant phase was also found. It exists as a transition state between the low-temperature crystalline phase and the high-temperature i-phase. This approximant phase also contains local icosahedral symmetry. The strong presence of icosahedral clusters in approximant phases in the Al-Cu-Ru system points to the distinct possibility that the i-phase is a quasiperiodic packing of icosahedral clusters of atoms.
Cubic topological Kondo insulators.
Alexandrov, Victor; Dzero, Maxim; Coleman, Piers
2013-11-27
Current theories of Kondo insulators employ the interaction of conduction electrons with localized Kramers doublets originating from a tetragonal crystalline environment, yet all Kondo insulators are cubic. Here we develop a theory of cubic topological Kondo insulators involving the interaction of Γ(8) spin quartets with a conduction sea. The spin quartets greatly increase the potential for strong topological insulators, entirely eliminating the weak topological phases from the diagram. We show that the relevant topological behavior in cubic Kondo insulators can only reside at the lower symmetry X or M points in the Brillouin zone, leading to three Dirac cones with heavy quasiparticles.
Accurate monotone cubic interpolation
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1991-01-01
Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.
NASA Technical Reports Server (NTRS)
Martinez, Andres; Benavides, Jose Victor; Ormsby, Steve L.; GuarnerosLuna, Ali
2014-01-01
Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized satellites that provide a test bed for development and research into multi-body formation flying, multi-spacecraft control algorithms, and free-flying physical and material science investigations. Up to three self-contained free-flying satellites can fly within the cabin of the International Space Station (ISS), performing flight formations, testing of control algorithms or as a platform for investigations requiring this unique free-flying test environment. Each satellite is a self-contained unit with power, propulsion, computers, navigation equipment, and provides physical and electrical connections (via standardized expansion ports) for Principal Investigator (PI) provided hardware and sensors.
Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei
2013-04-30
A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.
Cubic colloidal platinum nanoparticles
Ahmadi, T.S.; Wang, Z.L.; Henglein, A.; El-Sayed, M.A.
1996-06-01
Cubic platinum nanoparticles (4-18 nm) have been synthesized for the first time in solution by the controlled reduction of K{sub 2}PtCl{sub 4} with hydrogen gas in the presence of sodium polyacrylate as a capping material. The nanoparticles are found to have fcc structures, similar to the bulk metal with (100) facets.
Henry Spelter
2002-01-01
Noted forest products industry researcher and writer says the conversion factor traditionally used to convert logs measured in board feet to cubic meters has risen. In the U.S., most timber is measured in terms of board feet. The log scales currently in use to estimate lumber recovery from roundwood, however, were created in the 19th century according to sawmill...
Interaction in equilibrium plasmas of charged macroparticles located in nodes of cubic lattices
NASA Astrophysics Data System (ADS)
Filippov, A. V.
2016-11-01
Interaction of two charged pointlike macroparticles located at nodes of simple cubic (sc), body-centered cubic (bcc) and face-centered cubic (fcc) lattices in an equilibrium plasma is studied within the linearized Poisson-Boltzmann model. It is shown that the boundary shape has a strong influence on the electrostatic interaction between two macroparticles, which switches from repulsion at small interparticle distances to attraction as it approaches the halflength of a computational cell. It is found that in a case of dust particles arranged in the nodes of the sc, bcc and fcc lattices, the electrostatic force acting on them is equal to zero and the nature of the interaction changes from repulsion to attraction; hence, the infinite sc, bcc and fcc lattices of charged dust particles are thermodynamically stable at rather low temperatures.
NASA Astrophysics Data System (ADS)
Roundy, David; Kraig, Robert E.; Cohen, Marvin L.
2002-03-01
Scientists have long pondered why the simple cubic structure is so rarely seen in nature. Only one element forms the simple cubic structure: polonium. There are `proofs' dating back to 1954 that the simple cubic lattice should be unstable. We will attempt to address the question of why polonium takes the simple cubic structure by means of ab initio calculations using the pseudopotential density functional method. We will discuss the electronic structure of polonium in relation to its crystal structure.
Interplay between cubic and hexagonal phases in block copolymer solutions.
Park, Moon Jeong; Char, Kookheon; Bang, Joona; Lodge, Timothy P
2005-02-15
The phase behavior of a symmetric styrene-isoprene (SI) diblock copolymer in a styrene-selective solvent, diethylphthalate, was investigated by in situ small-angle X-ray scattering on isotropic and shear-oriented solutions and by rheology and birefringence. A remarkable new feature in this phase diagram is the coexistence of both body-centered cubic (bcc) and hexagonally close-packed (hcp) sphere phases, in a region between close-packed spheres (cps) and hexagonally packed cylinders (hex) over the concentration range phi approximately 0.33-0.45. By focusing on the transitions among these various ordered phases during heating and cooling cycles, we observed a strong hysteresis: supercooled cylinders persisted upon cooling. The stability of these supercooled cylinders is quite dependent on concentration, and for phi > or = 0.40, the supercooled cylinders do not revert to spheres even after quiescent annealing for 1 month. The spontaneous formation of spheres due to the dissociation of cylinders is kinetically hindered in this case, and the system is apparently not amenable to any pretransitional fluctuations of cylinders prior to the cylinder-to-sphere transition. This contrasts with the case of cylinders transforming to spheres upon heating in the melt. The application of large amplitude shear to the supercooled cylinders is effective in restoring the equilibrium sphere phases.
Small, Ward; Pearson, Mark A.; Metz, Tom R.
2016-03-09
Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW) in a face centered tetragonal (FCT) configuration. The filament diameter was 250 μm. Structures consisting of 4, 8, or 12 layers were fabricated with center-to-center filament spacing (“road width” (RW)) of 475, 500, 525, 550, or 575 μm. Three compressive load-unload cycles to 2000 kPa were performed on four separate areas of each sample; three samples of each thickness and filament spacing were tested. At a given strain during the third loading phase, stress varied inversely with porosity. At 10% strain, the stress was nearly independent of the number of layers (i.e., thickness). At higher strains (20- 40%), the stress was highest for the 4-layer structure; the 8- and 12-layer structures were nearly equivalent suggesting that the load deflection is independent of number of layers above 8 layers. Intra-and inter-sample variability of the load deflection response was higher for thinner and less porous structures.
Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters
Walton, O.R.; Braun, R.L.
1993-11-01
The effects of rotation rate and interparticle friction on the bulk flow behavior in rotating horizontal cylinders are studied via particle-dynamic simulations. Assemblies of inelastic, frictional spheres and rigid sphere clusters are utilized, and rotation rates from quasistatic to centrifuging are examined. Flow phenomena explored include size segregation, avalanching, slumping and centrifuging. Simulated drum flows with two sizes of frictional spheres showed very rapid segregation of species perpendicular to the drum axis; however, simulations of up to 10 revolutions, utilizing periodic-boundary ends, did not exhibit the experimentally observed axial segregation into stripes. Angles of repose for uniform-sized spheres in slowly rotating cylinders varied from 13 to 31 degrees as the friction coefficient varied from 0.02 to 1.0. For simulated rotation rates higher than the threshold to obtain uniform flow conditions, the apparent angle of repose increases as the rotation rats increases, consistent with experiments. Also, simulations with rigid clusters of 4 spheres in a tetrahedral shape or 8 spheres in a cubical arrangement, demonstrate that particle shape strongly influences the repose angle. Simulations of cubical 8-sphere clusters, with a surface coefficient of friction of 0.1, produced apparent angles of repose exceeding 35 degrees, compared to 23 degrees for assemblies of single spheres interacting with the same force model parameters. Centrifuging flows at very high rotation rates exist as stationary beds moving exactly as the outer rotating wall. At somewhat slower speeds the granular bed remains in contact with the wall but exhibits surface sliding down the rising inner bed surface, moving a short distance on each revolution. At still slower speeds particles rain from the surface of the upper half of the rotating bed.
Phase diagram of Hertzian spheres
NASA Astrophysics Data System (ADS)
Pàmies, Josep C.; Cacciuto, Angelo; Frenkel, Daan
2009-07-01
We report the phase diagram of interpenetrating Hertzian spheres. The Hertz potential is purely repulsive, bounded at zero separation, and decreases monotonically as a power law with exponent 5/2, vanishing at the overlapping threshold. This simple functional describes the elastic interaction of weakly deformable bodies and, therefore, it is a reliable physical model of soft macromolecules, like star polymers and globular micelles. Using thermodynamic integration and extensive Monte Carlo simulations, we computed accurate free energies of the fluid phase and a large number of crystal structures. For this, we defined a general primitive unit cell that allows for the simulation of any lattice. We found multiple re-entrant melting and first-order transitions between crystals with cubic, trigonal, tetragonal, and hexagonal symmetries.
Observation of Body-Centered Cubic Gold Nanocluster.
Liu, Chao; Li, Tao; Li, Gao; Nobusada, Katsuyuki; Zeng, Chenjie; Pang, Guangsheng; Rosi, Nathaniel L; Jin, Rongchao
2015-08-17
The structure of nanoparticles plays a critical role in dictating their material properties. Gold is well known to adopt face-centered cubic (fcc) structure. Herein we report the first observation of a body-centered cubic (bcc) gold nanocluster composed of 38 gold atoms protected by 20 adamantanethiolate ligands and two sulfido atoms ([Au38S2(SR)20], where R=C10H15) as revealed by single-crystal X-ray crystallography. This bcc structure is in striking contrast with the fcc structure of bulk gold and conventional Au nanoparticles, as well as the bi-icosahedral structure of [Au38(SCH2CH2Ph)24]. The bcc nanocluster has a distinct HOMO-LUMO gap of ca. 1.5 eV, much larger than the gap (0.9 eV) of the bi-icosahedral [Au38(SCH2CH2Ph)24]. The unique structure of the bcc gold nanocluster may be promising in catalytic applications.
Rheological properties of Cubic colloidal suspensions
NASA Astrophysics Data System (ADS)
Boromand, Arman; Maia, Joao
2016-11-01
Colloidal and non-colloidal suspensions are ubiquitous in many industrial application. There are numerous studies on these systems to understand and relate their complex rheological properties to their microstructural evolution under deformation. Although most of the experimental and simulation studies are centered on spherical particles, in most of the industrial applications the geometry of the colloidal particles deviate from the simple hard sphere and more complex geometries exist. Recent advances in microfabrication paved the way to fabricate colloidal particles with complex geometries for applications in different areas such as drug delivery where the fundamental understanding of their dynamics has remained unexplored. In this study, using dissipative particle dynamics, we investigate the rheological properties of cubic (superball) particles which are modeled as the cluster of core-modified DPD particles. Explicit representation of solvent particles in the DPD scheme will conserve the full hydrodynamic interactions between colloidal particles. Rheological properties of these cubic suspensions are investigated in the dilute and semi-dilute regimes. The Einstein and Huggins coefficients for these particles with different superball exponent will be calculate which represent the effect of single particle's geometry and multibody interactions on viscosity, respectively. The response of these suspensions is investigated under simple shear and oscillatory shear where it is shown that under oscillation these particles tend to form crystalline structure giving rise to stronger shear-thinning behavior recently measured experimentally.
Percolation of disordered jammed sphere packings
NASA Astrophysics Data System (ADS)
Ziff, Robert M.; Torquato, Salvatore
2017-02-01
We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato–Jiao algorithm. For the site threshold, which gives the fraction of conducting versus non-conducting spheres necessary for percolation, we find {{p}\\text{c}}=0.3116(3) , consistent with the 1979 value of Powell 0.310(5) and identical within errors to the threshold for the simple-cubic lattice, 0.311 608, which shares the same average coordination number of 6. In terms of the volume fraction ϕ, the threshold corresponds to a critical value {φ\\text{c}}=0.199 . For the bond threshold, which apparently was not measured before, we find {{p}\\text{c}}=0.2424(3) . To find these thresholds, we considered two shape-dependent universal ratios involving the size of the largest cluster, fluctuations in that size, and the second moment of the size distribution; we confirmed the ratios’ universality by also studying the simple-cubic lattice with a similar cubic boundary. The results are applicable to many problems including conductivity in random mixtures, glass formation, and drug loading in pharmaceutical tablets.
NASA Astrophysics Data System (ADS)
Lü, Bin-Bin; Tian, Qiang
2009-10-01
In this paper we study the existence and stability of two-dimensional discrete gap breathers in a two-dimensional diatomic face-centered square lattice consisting of alternating light and heavy atoms, with on-site potential and coupling potential. This study is focused on two-dimensional breathers with their frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of the existence of two-dimensional gap breathers by using a numerical method. Six types of two-dimensional gap breathers are obtained, i.e., symmetric, mirror-symmetric and asymmetric, whether the center of the breather is on a light or a heavy atom. The difference between one-dimensional discrete gap breathers and two-dimensional discrete gap breathers is also discussed. We use Aubry's theory to analyze the stability of discrete gap breathers in the two-dimensional diatomic face-centered square lattice.
NASA Astrophysics Data System (ADS)
Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro
2017-06-01
The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.
NASA Astrophysics Data System (ADS)
Filippov, A. V.
2016-10-01
The interaction of two charged point macroparticles located in Wigner-Seitz cells of simple cubic (SC), body-centered cubic (BCC), or face-centered cubic (FCC) lattices in an equilibrium plasma has been studied within the Debye approximation or, more specifically, based on the linearized Poisson-Boltzmann model. The shape of the outer boundary is shown to exert a strong influence on the pattern of electrostatic interaction between the two macroparticles, which transforms from repulsion at small interparticle distances to attraction as the interparticle distance approaches half the length of the computational cell. The macroparticle pair interaction potential in an equilibrium plasma is shown to be nevertheless the Debye one and purely repulsive for likely charged macroparticles.
Filippov, A. V.
2016-10-15
The interaction of two charged point macroparticles located in Wigner–Seitz cells of simple cubic (SC), body-centered cubic (BCC), or face-centered cubic (FCC) lattices in an equilibrium plasma has been studied within the Debye approximation or, more specifically, based on the linearized Poisson–Boltzmann model. The shape of the outer boundary is shown to exert a strong influence on the pattern of electrostatic interaction between the two macroparticles, which transforms from repulsion at small interparticle distances to attraction as the interparticle distance approaches half the length of the computational cell. The macroparticle pair interaction potential in an equilibrium plasma is shown to be nevertheless the Debye one and purely repulsive for likely charged macroparticles.
2014-01-22
ISS038-E-033888 (22 Jan. 2014) --- A new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, already on the station, is featured in this image photographed by an Expedition 38 crew member in the International Space Station's Kibo laboratory. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding a plastic tank with green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.
The Smart SPHERES space robot (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) equipped with an Android smartphone performs a video survey inside of the International Space S...
DISE: directed sphere exclusion.
Gobbi, Alberto; Lee, Man-Ling
2003-01-01
The Sphere Exclusion algorithm is a well-known algorithm used to select diverse subsets from chemical-compound libraries or collections. It can be applied with any given distance measure between two structures. It is popular because of the intuitive geometrical interpretation of the method and its good performance on large data sets. This paper describes Directed Sphere Exclusion (DISE), a modification of the Sphere Exclusion algorithm, which retains all positive properties of the Sphere Exclusion algorithm but generates a more even distribution of the selected compounds in the chemical space. In addition, the computational requirement is significantly reduced, thus it can be applied to very large data sets.
2014-01-22
ISS038-E-033890 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, works with a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.
Colloidal alloys with preassembled clusters and spheres
NASA Astrophysics Data System (ADS)
Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra; Pine, David J.
2017-06-01
Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.
Multiscale mesh generation on the sphere
NASA Astrophysics Data System (ADS)
Lambrechts, Jonathan; Comblen, Richard; Legat, Vincent; Geuzaine, Christophe; Remacle, Jean-François
2008-12-01
A method for generating computational meshes for applications in ocean modeling is presented. The method uses a standard engineering approach for describing the geometry of the domain that requires meshing. The underlying sphere is parametrized using stereographic coordinates. Then, coastlines are described with cubic splines drawn in the stereographic parametric space. The mesh generation algorithm builds the mesh in the parametric plane using available techniques. The method enables to import coastlines from different data sets and, consequently, to build meshes of domains with highly variable length scales. The results include meshes together with numerical simulations of various kinds.
MINIMAL IMMERSIONS OF SPHERES INTO SPHERES
Do Carmo, Manfredo P.; Wallach, Nolan R.
1969-01-01
In this paper we announce a qualitative description of an important class of closed n-dimensional submanifolds of the m-dimensional sphere, namely, those which locally minimize the n-area in the same way that geodesics minimize the arc length and are themselves locally n-spheres of constant radius r; those r that may appear are called admissible. It is known that for n = 2 each admissible r determines a unique element of the above class. The main result here is that for each n ≥ 3 and each admissible r ≥ [unk]8 there exists a continuum of distinct such submanifolds. PMID:16591771
Infrared cubic dielectric resonator metamaterial.
Sinclair, Michael B.; Brener, Igal; Peters, David William; Ginn, James Cleveland, III; Ten Eyck, Gregory A.
2010-06-01
Dielectric resonators are an effective means to realize isotropic, low-loss optical metamaterials. As proof of this concept, a cubic resonator is analytically designed and then tested in the long-wave infrared.
ERIC Educational Resources Information Center
Szekely, George
2011-01-01
This article describes an art lesson that allows students to set up and collect sphere canvases. Spheres move art away from a rectangular canvas into a dimension that requires new planning and painting. From balls to many other spherical canvases that bounce, roll, float and fly, art experiences are envisioned by students. Even if adults recognize…
Liquid hydrogen sphere project
2011-06-22
A 107,000-gallon liquid hydrogen sphere no longer needed at Stennis Space Center is barged through the facility locks June 21. The rocket engine test facility has teamed with the Mississippi Department of Marine Resource to place the sphere in offshore waters as an artificial reef.
ERIC Educational Resources Information Center
Szekely, George
2011-01-01
This article describes an art lesson that allows students to set up and collect sphere canvases. Spheres move art away from a rectangular canvas into a dimension that requires new planning and painting. From balls to many other spherical canvases that bounce, roll, float and fly, art experiences are envisioned by students. Even if adults recognize…
Diffusion and reaction in regular arrays of spheres
NASA Astrophysics Data System (ADS)
Lu, Shih-Yuan
1998-09-01
The overall rate constant of reaction of diffusing species in regular arrays of spherical particles is investigated. The surface reaction occurring on the particle surface is of finite rate. Calculation results for three common spherical arrays: Simple cubic (SC), face-centered cubic (fcc), and body-centered cubic (bcc) arrays, are illustrated and studied. The normalized overall rate constant, k/k0, is found to be a function of the particle volume fraction, a dimensionless parameter P characterizing the relative rate of diffusive transport versus surface reaction, and the array structure. When the process is diffusion limited (P=0), results from the present development agree very well with those from first passage time simulations. When it is surface reaction limited (P→∞), the normalized overall rate constant is shown to exactly equal 1/(1-f ), independent of the system structure. For general P, results of the present study conform well with Torquato and Avellaneda's upper bound [J. Chem. Phys. 95, 6477 (1991)]. The normalized overall rate constant increases with increasing f, but decreases with increasing P. For the three arrays, the magnitudes of k/k0, at the same f and P, are in the order of bcc≈fcc>SC. As P increases, the structural effect on k/k0 weakens.
Phase behaviour of deionized binary mixtures of charged colloidal spheres.
Lorenz, Nina J; Schöpe, Hans Joachim; Reiber, Holger; Palberg, Thomas; Wette, Patrick; Klassen, Ina; Holland-Moritz, Dirk; Herlach, Dieter; Okubo, Tsuneo
2009-11-18
We review recent work on the phase behaviour of binary charged sphere mixtures as a function of particle concentration and composition. Both size ratios Γ and charge ratios Λ are varied over a wide range. Unlike the case for hard spheres, the long-ranged Coulomb interaction stabilizes the crystal phase at low particle concentrations and shifts the occurrence of amorphous solids to particle concentrations considerably larger than the freezing concentration. Depending on Γ and Λ, we observe upper azeotrope, spindle, lower azeotrope and eutectic types of phase diagrams, all known well from metal systems. Most solids are of body centred cubic structure. Occasionally stoichiometric compounds are formed at large particle concentrations. For very low Γ, entropic effects dominate and induce a fluid-fluid phase separation. Since for charged spheres the charge ratio Λ is also decisive for the type of phase diagram, future experiments with charge variable silica spheres are suggested.
PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES
McNees, R.A. Jr.; Taylor, A.J.
1963-12-31
A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)
Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
2000-01-01
(Earth's gravity), and the emergence of face-centered-cubic (FCC) crystals late in the coarsening process (as small crystallites lost particles to the slow ripening of large crystallites). Significant quantitative findings from the microgravity experiments have been developed describing complex interactions among crystallites during the growth process, as concentration fields overlap in the surrounding disordered phase. Time-resolved Bragg scattering under microgravity captures one effect of these interactions quite conclusively for the sample at a volume fraction of 0.528. From the earliest time until the sample is almost fully crystalline, the size and overall crystallinity grow monotonically, but the number of crystallites per unit volume (number density) falls. Apparently nucleation is slower than the loss of crystallites because of the transfer of particles from small to large crystals. Thus, coarsening occurs simultaneously with growth, rather than following the completion of nucleation and growth as is generally assumed. In the same sample, an interesting signature appears in the apparent number density of crystallites and the volume fraction within the crystallites shortly before full crystallinity is reached. A brief upturn in both indicates the creation of more domains of the size of the average crystallite simultaneous with the compression of the crystallites. Only the emergence of dendritic arms offers a reasonable explanation. The arms would be "seen" by the light scattering as separate domains whose smaller radii of curvature would compress the interior phase. In fiscal year 1999, numerous papers, a doctoral dissertation, and the PHaSE final report were produced. Although this flight project has been completed, plans are in place for a follow-on colloid experiment by Chaikin and Russel that employs a light microscope within Glenn's Fluids and Combustion Facility on the International Space Station. PHaSE is providing us with a deeper understanding of the
NASA Technical Reports Server (NTRS)
Benavides, Jose
2014-01-01
SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.
NASA Astrophysics Data System (ADS)
Shaulov, S. B.; Besshapov, S. P.; Kabanova, N. V.; Sysoeva, T. I.; Antonov, R. A.; Anyuhina, A. M.; Bronvech, E. A.; Chernov, D. V.; Galkin, V. I.; Tkaczyk, W.; Finger, M.; Sonsky, M.
2009-12-01
The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10-10 eV.
Jammed lattice sphere packings
NASA Astrophysics Data System (ADS)
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
2013-11-04
ISS037-E-025870 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2013-11-04
ISS037-E-025872 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2013-11-04
ISS037-E-025866 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2013-11-04
ISS037-E-025868 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2013-11-04
ISS037-E-025879 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
Zhang, Ying; Zhang, Jian
2008-10-10
The headspace solid-phase microextraction (HS-SPME) of ethyl carbamate from alcoholic beverages was optimized for the first time using a face-centered cube central composite design (CCD). The factors expected to influence the extraction process are discussed. Firstly, some of factors are fixed based on the opinion of expert and previous experiments, which reduce the number of factors and then avoid very complex response models and large variability. Secondly, for three remaining inexplicit factors, sample temperature, pH and %NaCl, a face-centered cube central composite design was performed and a response surface equation was derived. The statistical parameters of the derived model were r=0.974 and F=20.183. The optimum conditions were obtained using a grid method. Next, the method was analytically evaluated using the optimum conditions. The detection limit, relative standard deviation, linear range and recovery were 3microgL(-1), 4.3-8.6%, 10-160microgL(-1), and 92.8-97.5%, respectively. Finally, the method was applied to a variety of alcoholic beverages.
NASA Public Affairs Officer Kelly Humphries conducts a phone interview with Mark Micire, SPHERES Engineering Manager at Ames Research Center. Questions? Ask us on Twitter @NASA_Johnson and include ...
Electromagnetically revolving sphere viscometer
NASA Astrophysics Data System (ADS)
Hosoda, Maiko; Sakai, Keiji
2014-12-01
In this paper, we propose a new method of low viscosity measurement, in which the rolling of a probe sphere on the flat solid bottom of a sample cell is driven remotely and the revolution speed of the probe in a sample liquid gives the viscosity measurements. The principle of this method is based on the electromagnetically spinning technique that we developed, and the method is effective especially for viscosity measurements at levels below 100 mPa·s with an accuracy higher than 1%. The probe motion is similar to that in the well-known rolling sphere (ball) method. However, our system enables a steady and continuous measurement of viscosity, which is problematic using the conventional method. We also discuss the limits of the measurable viscosity range common to rolling-sphere-type viscometers by considering the accelerating motion of a probe sphere due to gravity, and we demonstrate the performance of our methods.
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)
1986-01-01
The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)
1989-01-01
The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.
Catalytic, hollow, refractory spheres
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)
1987-01-01
Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.
2016-06-30
iss048e017435 (6/30/2016) --- Commander Jeff Williams monitors bowling ball-sized internal satellites known as SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) during a maintenance run in the Japanese Kibo Laboratory Module.
2000-10-25
The John C. Stennis Space Center's visitor center, StenniSphere, is one of Mississippi's leading tourist attractions and features a 14,000-square-foot interactive review of Stennis Space Center's role in America's space program. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies located at Stennis Space Center in Hancock County, Miss.
NASA Technical Reports Server (NTRS)
2000-01-01
The John C. Stennis Space Center's visitor center, StenniSphere, is one of Mississippi's leading tourist attractions and features a 14,000-square-foot interactive review of Stennis Space Center's role in America's space program. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies located at Stennis Space Center in Hancock County, Miss.
2007-03-24
ISS014-E-17880 (24 March 2007) --- This medium close-up view shows three bowling-ball-sized free-flying satellites called Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) in the Destiny laboratory of the International Space Station. SPHERES were designed to test control algorithms for spacecraft by performing autonomous rendezvous and docking maneuvers inside the station. The results are important for multi-body control and in designing constellation and array spacecraft configurations.
NASA Astrophysics Data System (ADS)
Sun, Xiaochun
The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.
NASA Astrophysics Data System (ADS)
Minguzzi, E.
2017-03-01
We investigate spacetimes whose light cones could be anisotropic. We prove the equivalence of the structures: (a) Lorentz-Finsler manifold for which the mean Cartan torsion vanishes, (b) Lorentz-Finsler manifold for which the indicatrix (observer space) at each point is a convex hyperbolic affine sphere centered on the zero section, and (c) pair given by a spacetime volume and a sharp convex cone distribution. The equivalence suggests to describe (affine sphere) spacetimes with this structure, so that no algebraic-metrical concept enters the definition. As a result, this work shows how the metric features of spacetime emerge from elementary concepts such as measure and order. Non-relativistic spacetimes are obtained replacing proper spheres with improper spheres, so the distinction does not call for group theoretical elements. In physical terms, in affine sphere spacetimes the light cone distribution and the spacetime measure determine the motion of massive and massless particles (hence the dispersion relation). Furthermore, it is shown that, more generally, for Lorentz-Finsler theories non-differentiable at the cone, the lightlike geodesics and the transport of the particle momentum over them are well defined, though the curve parametrization could be undefined. Causality theory is also well behaved. Several results for affine sphere spacetimes are presented. Some results in Finsler geometry, for instance in the characterization of Randers spaces, are also included.
Amaya, Andrew J.; Pathak, Harshad; Modak, Viraj P.; ...
2017-06-28
Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ±more » 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. Lastly, the high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.« less
ERIC Educational Resources Information Center
Khonsari, Michael M.; Horn, Douglas
1990-01-01
An algorithm is described for generating smooth curves of first-order continuity. The algorithm is composed of several cubic Bezier curves joined together at the user defined control points. Introduced is a tension control parameter which can be set thus providing additional flexibility in the design of free-form curves. (KR)
Cubication of Conservative Nonlinear Oscillators
ERIC Educational Resources Information Center
Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…
Cubication of Conservative Nonlinear Oscillators
ERIC Educational Resources Information Center
Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…
Sphere-supported thin film electroluminescent technology
NASA Astrophysics Data System (ADS)
Xiang, Yingwei
A new Sphere-Supported Thin Film Electroluminescent (SSTFEL) technology is developed based on a novel device structure containing numerous spherical BaTiO3 particles embedded in a polypropylene matrix with top and bottom area exposed. A TFEL phosphor stack deposited on the top area of the spherical BaTiO3 particles emits light through the same mechanism as conventional flat TFEL devices. Flexibility is realized by the polypropylene matrix. SSTFEL technology provides the first flexible and rollable light-emitting devices based on the TFEL mechanism. Besides the superior flexibility, SSTFEL technology enables high post-annealing temperature for the phosphor up to approximately 1200°C, which permits a wide range of TFEL phosphors to be exploited. After sintering at a temperature higher than 920°C, the spray-dried cubic BaTiO3 spheres have tetragonal phase. The relative dielectric constant of the BaTiO3 spheres depends on the grain size that is mainly controlled by the sintering temperature. Software simulation and experimental measurements indicate that the relative dielectric constant of the BaTiO 3 spheres reaches above 4000 after sintering at 1170° for 2 hours. Assuming angle alpha varying from 0° (top of the BaTiO3 sphere) to 180° (bottom of the BaTiO3 sphere), the phosphor stack sputtered on a BaTiO3 sphere has a nearly uniform thickness with a variation less than +/-2.5% when alpha is between 0° and 25°. When alpha increases from 25° to 45°, the thickness of the phosphor stack gradually decreases up to 12.5%. Software simulation shows that the electric field in the central plane of the phosphor stack increases 18% from the pole to the edge of the light-emitting cap on the BaTiO3 sphere. Experimental results reveal that, instead of the variation in electric field, the nature of the surface of the BaTiO3 spheres before the sputtering process primarily influences the electroluminescent properties of the SSTFEL devices. A new Indium-Tin-Oxide (ITO
Diagnosis of a poorly performing liquid hydrogen bulk storage sphere
NASA Astrophysics Data System (ADS)
Krenn, Angela Gray
2012-06-01
There are two 3,218 cubic meter (850,000 gallon) Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A, the other at Launch Pad B. The Sphere at Pad B had a high boiloff rate when brought into service in the 1960s. In 2001, the daily commodity loss was approximately double that of the Pad A sphere, and well above the maximum allowed by the specification. After being re-painted in the 1990s a "cold spot" appeared on the outer sphere that resulted in poor paint bonding and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of service, which provided a unique opportunity to perform a series of visual inspections of the insulation. Boroscope examinations revealed a large Perlite void in the region where the cold spot was apparent. Perlite was then trucked in and offloaded into the annular void region until full. The sphere has not yet been brought back into service.
NASA Astrophysics Data System (ADS)
Holmes-Cerfon, Miranda; Gortler, Steven; Brenner, Michael
2014-03-01
We have enumerated all the ways to arrange n <= 13+ spheres as a cluster that is nonlinearly rigid. We have discovered many packings that are hypostatic, namely they have fewer than the 3n-6 contacts required to be linearly rigid. Simple scaling arguments explain why these are thermodynamically important when the spheres are colloids interacting with a short-range potential. We discuss these clusters, as well as other surprises that came up along the way. (''+'' means we have enumerated only a particular kind of cluster for n=14, 15, and beyond.)
2014-07-25
ISS040-E-080130 (25 July 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.
Cubic Icosahedra? A Problem in Assigning Symmetry
ERIC Educational Resources Information Center
Lloyd, D. R.
2010-01-01
There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…
Solving Cubic Equations by Polynomial Decomposition
ERIC Educational Resources Information Center
Kulkarni, Raghavendra G.
2011-01-01
Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…
Cubic Icosahedra? A Problem in Assigning Symmetry
ERIC Educational Resources Information Center
Lloyd, D. R.
2010-01-01
There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…
Glycerol prevents dehydration in lipid cubic phases.
Richardson, S J; Staniec, P A; Newby, G E; Rawle, J L; Slaughter, A R; Terrill, N J; Elliott, J M; Squires, A M
2015-07-21
Lipid cubic phase samples dry out and undergo phase transitions when exposed to air. We demonstrate experimentally and theoretically that adding glycerol controllably lowers the humidity at which cubic phases form. These results broaden the potential applications of cubic phases and open up the potential of a new humidity-responsive nanomaterial.
2013-09-04
ISS036-E-039685 (4 Sept. 2013) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
2013-08-13
ISS036-E-031684 (13 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
2013-09-04
ISS036-E-039743 (4 Sept. 2013) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
2013-08-13
ISS036-E-031668 (13 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
2013-08-13
ISS036-E-031698 (13 Aug. 2013) --- In the International Space Station’s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, poses for a photo while conducting a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
2013-09-04
ISS036-E-039697 (4 Sept. 2013) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
2013-08-13
ISS036-E-032134 (13 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
2013-08-13
ISS036-E-032138 (13 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
2013-08-13
ISS036-E-032180 (13 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
2013-11-10
ISS038-E-000078 (10 Nov. 2013) --- In the International Space Station?s Kibo laboratory, Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, poses for a photo while conducting a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.
Storing Chemicals in Packed Spheres
NASA Technical Reports Server (NTRS)
Wang, T. G.; Elleman, D. D.
1986-01-01
Reactants released by crushing or puncturing. Agglomerated gas-filled spheres hexagonally close packed and sintered or glued together into rods strung together at ends. Rods fed into crushing machine to release material in spheres as needed.
Chemical potential of a test hard sphere of variable size in a hard-sphere fluid
NASA Astrophysics Data System (ADS)
Heyes, David M.; Santos, Andrés
2016-12-01
The Labík and Smith Monte Carlo simulation technique to implement the Widom particle insertion method is applied using Molecular Dynamics (MD) instead to calculate numerically the insertion probability, P0(η ,σ0) , of tracer hard-sphere (HS) particles of different diameters, σ0, in a host HS fluid of diameter σ and packing fraction, η , up to 0.5. It is shown analytically that the only polynomial representation of -ln P0 (η ,σ0) consistent with the limits σ0→0 and σ0→∞ has necessarily a cubic form, c0(η ) +c1(η ) σ0 /σ +c2(η ) (σ0/σ ) 2 +c3(η ) (σ0/σ ) 3 . Our MD data for -ln P0 (η ,σ0) are fitted to such a cubic polynomial and the functions c0(η ) and c1(η ) are found to be statistically indistinguishable from their exact solution forms. Similarly, c2(η ) and c3(η ) agree very well with the Boublík-Mansoori-Carnahan-Starling-Leland and Boublík-Carnahan-Starling-Kolafa formulas. The cubic polynomial is extrapolated (high density) or interpolated (low density) to obtain the chemical potential of the host fluid, or σ0→σ , as β μex =c0+c1+c2+c3 . Excellent agreement between the Carnahan-Starling and Carnahan-Starling-Kolafa theories with our MD data is evident.
Electromechanical polishing of metal spheres
Miller, N.E.; Engelhaupt, D.E.
1980-04-01
Equipment has been developed to electromechanically polish metal spheres. Mechanical polishing is accomplished by the action of three cup-shaped laps which rotate against the sphere. An abrasive slurry containing an electrolyte is continuously applied to the sphere and laps. Electrochemical etching is accomplished by applying a positive potential to two of the laps and a negative potential to the third.
Weighted cubic and biharmonic splines
NASA Astrophysics Data System (ADS)
Kvasov, Boris; Kim, Tae-Wan
2017-01-01
In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.
Sticky surface: sphere-sphere adhesion dynamics
Sircar, Sarthok; Younger, John G.; Bortz, David M.
2014-01-01
We present a multi-scale model to study the attachment of spherical particles with a rigid core, coated with binding ligands and suspended in the surrounding, quiescent fluid medium. This class of fluid-immersed adhesion is widespread in many natural and engineering settings, particularly in microbial surface adhesion. Our theory highlights how the micro-scale binding kinetics of these ligands, as well as the attractive / repulsive surface potential in an ionic medium affects the eventual macro-scale size distribution of the particle aggregates (flocs). The bridge between the micro-macro model is made via an aggregation kernel. Results suggest that the presence of elastic ligands on the particle surface lead to the formation of larger floc aggregates via efficient inter-floc collisions (i.e., non-zero sticking probability, g). Strong electrolytic composition of the surrounding fluid favors large floc formation as well. The kernel for the Brownian diffusion for hard spheres is recovered in the limit of perfect binding effectiveness (g → 1) and in a neutral solution with no dissolved salts. PMID:25159830
Absolute multilateration between spheres
NASA Astrophysics Data System (ADS)
Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin
2017-04-01
Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m-1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.
Krogh, M.; Painter, J.; Hansen, C.
1996-10-01
Sphere rendering is an important method for visualizing molecular dynamics data. This paper presents a parallel algorithm that is almost 90 times faster than current graphics workstations. To render extremely large data sets and large images, the algorithm uses the MIMD features of the supercomputers to divide up the data, render independent partial images, and then finally composite the multiple partial images using an optimal method. The algorithm and performance results are presented for the CM-5 and the M.
Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; Shen, Bo; Wu, Liheng; Zhang, Sen; Lu, Gang; Wu, Zhongbiao; Sun, Shouheng
2015-10-04
We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe_{3}O_{4} NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO_{4} with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offers a general approach to enhance Pd catalysis in acid for ORB.
Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; ...
2015-10-04
We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offersmore » a general approach to enhance Pd catalysis in acid for ORB.« less
Transparent polycrystalline cubic silicon nitride
NASA Astrophysics Data System (ADS)
Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo
2017-03-01
Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.
Hardness of cubic solid solutions
Gao, Faming
2017-01-01
We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55–0.85 in BNxP1−x, where BNxP1−x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications. PMID:28054659
Transparent polycrystalline cubic silicon nitride.
Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo
2017-03-17
Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions.
Transparent polycrystalline cubic silicon nitride
Nishiyama, Norimasa; Ishikawa, Ryo; Ohfuji, Hiroaki; Marquardt, Hauke; Kurnosov, Alexander; Taniguchi, Takashi; Kim, Byung-Nam; Yoshida, Hidehiro; Masuno, Atsunobu; Bednarcik, Jozef; Kulik, Eleonora; Ikuhara, Yuichi; Wakai, Fumihiro; Irifune, Tetsuo
2017-01-01
Glasses and single crystals have traditionally been used as optical windows. Recently, there has been a high demand for harder and tougher optical windows that are able to endure severe conditions. Transparent polycrystalline ceramics can fulfill this demand because of their superior mechanical properties. It is known that polycrystalline ceramics with a spinel structure in compositions of MgAl2O4 and aluminum oxynitride (γ-AlON) show high optical transparency. Here we report the synthesis of the hardest transparent spinel ceramic, i.e. polycrystalline cubic silicon nitride (c-Si3N4). This material shows an intrinsic optical transparency over a wide range of wavelengths below its band-gap energy (258 nm) and is categorized as one of the third hardest materials next to diamond and cubic boron nitride (cBN). Since the high temperature metastability of c-Si3N4 in air is superior to those of diamond and cBN, the transparent c-Si3N4 ceramic can potentially be used as a window under extremely severe conditions. PMID:28303948
Hardness of cubic solid solutions
NASA Astrophysics Data System (ADS)
Gao, Faming
2017-01-01
We demonstrate that a hardening rule exists in cubic solid solutions with various combinations of ionic, covalent and metallic bonding. It is revealed that the hardening stress ∆τFcg is determined by three factors: shear modulus G, the volume fraction of solute atoms fv, and the size misfit degree δb. A simple hardening correlation in KCl-KBr solid-solution is proposed as ∆τFcg = 0.27 G. It is applied to calculate the hardening behavior of the Ag-Au, KCl-KBr, InP-GaP, TiN-TiC, HfN-HfC, TiC-NbC and ZrC-NbC solid-solution systems. The composition dependence of hardness is elucidated quantitatively. The BN-BP solid-solution system is quantitatively predicted. We find a hardening plateau region around the x = 0.55-0.85 in BNxP1-x, where BNxP1-x solid solutions are far harder than cubic BN. Because the prediction is quantitative, it sets the stage for a broad range of applications.
Discovery of a Frank-Kasper sigma phase in sphere-forming block copolymer melts.
Lee, Sangwoo; Bluemle, Michael J; Bates, Frank S
2010-10-15
Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma (σ) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the σ phase in undiluted linear block copolymers (and certain branched dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.
BDA: A novel method for identifying defects in body-centered cubic crystals.
Möller, Johannes J; Bitzek, Erik
2016-01-01
The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].
Goodfellow, Brian W; Yu, Yixuan; Bosoy, Christian A; Smilgies, Detlef-M; Korgel, Brian A
2015-07-02
This paper addresses the assembly of body centered-cubic (bcc) superlattices of organic ligand-coated nanocrystals. First, examples of bcc superlattices of dodecanethiol-capped Au nanocrystals and oleic acid-capped PbS and PbSe nanocrystals are presented and examined by transmission electron microscopy (TEM) and grazing incidence small-angle X-ray scattering (GISAXS). These superlattices tend to orient on their densest (110) superlattice planes and exhibit a significant amount of {112} twinning. The same nanocrystals deposit as monolayers with hexagonal packing, and these thin films can coexist with thicker bcc superlattice layers, even though there is no hexagonal plane in a bcc lattice. Both the preference of bcc in bulk films over the denser face-centered cubic (fcc) superlattice structure and the transition to hexagonal monolayers can be rationalized in terms of packing frustration of the ligands. A model is presented to calculate the difference in entropy associated with capping ligand packing frustration in bcc and fcc superlattices.
Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten
NASA Astrophysics Data System (ADS)
Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.
2017-05-01
Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.
Automated reasoning about cubic curves.
Padmanabhan, R.; McCune, W.; Mathematics and Computer Science; Univ. of Manitoba
1995-01-01
It is well known that the n-ary morphisms defined on projective algebraic curves satisfy some strong local-to-global equational rules of derivation not satisfied in general by universal algebras. For example, every rationally defined group law on a cubic curve must be commutative. Here we extract from the geometry of curves a first order property (gL) satisfied by all morphisms defined on these curves such that the equational consequences known for projective curves can be derived automatically from a set of six rules (stated within the first-order logic with equality). First, the rule (gL) is implemented in the theorem-proving program Otter. Then we use Otter to automatically prove some incidence theorems on projective curves without any further reference to the underlying geometry or topology of the curves.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
2013-05-23
ISS036-E-003308(23 May 2013) --- Onboard the International Space Station, Expedition 36 Flight Engineer Chris Cassidy, NASA astronaut, watches from just out of frame as he devotes some time with the long-running SPHERES experiment, also known as Synchronized Position Hold Engage and Reorient Experimental Satellites. The experiment is run in conjunction with students who program bowling ball-sized satellites using algorithms. The free-floating satellites are programmed to perform maneuvers potentially influencing the design of future missions.
Krogh, M.; Hansen, C.; Painter, J.; de Verdiere, G.C.
1995-05-01
Sphere rendering is an important method for visualizing molecular dynamics data. This paper presents a parallel divide-and-conquer algorithm that is almost 90 times faster than current graphics workstations. To render extremely large data sets and large images, the algorithm uses the MIMD features of the supercomputers to divide up the data, render independent partial images, and then finally composite the multiple partial images using an optimal method. The algorithm and performance results are presented for the CM-5 and the T3D.
Microstructural characterization of random packings of cubic particles
Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi
2016-01-01
Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO2 sequestration in rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. The results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities. The maximum packing fraction is about 0.57. PMID:27725736
Microstructural characterization of random packings of cubic particles
Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi
2016-10-11
Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO2 sequestration in rock,more » and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. Here, the results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities.« less
Microstructural characterization of random packings of cubic particles
Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi
2016-10-11
Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO_{2} sequestration in rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. Here, the results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities.
Microstructural characterization of random packings of cubic particles
NASA Astrophysics Data System (ADS)
Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi
2016-10-01
Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO2 sequestration in rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. The results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities. The maximum packing fraction is about 0.57.
Interactions between uniformly magnetized spheres
NASA Astrophysics Data System (ADS)
Edwards, Boyd F.; Riffe, D. M.; Ji, Jeong-Young; Booth, William A.
2017-02-01
We use simple symmetry arguments suitable for undergraduate students to demonstrate that the magnetic energy, forces, and torques between two uniformly magnetized spheres are identical to those between two point magnetic dipoles. These arguments exploit the equivalence of the field outside of a uniformly magnetized sphere with that of a point magnetic dipole, and pertain to spheres of arbitrary sizes, positions, and magnetizations. The point dipole/sphere equivalence for magnetic interactions may be useful in teaching and research, where dipolar approximations for uniformly magnetized spheres can now be considered to be exact. The work was originally motivated by interest in the interactions between collections of small neodymium magnetic spheres used as desk toys.
NASA Astrophysics Data System (ADS)
Hall, Brian C.; Mitchell, Jeffrey J.
2002-03-01
We describe a family of coherent states and an associated resolution of the identity for a quantum particle whose classical configuration space is the d-dimensional sphere Sd. The coherent states are labeled by points in the associated phase space T*(Sd). These coherent states are not of Perelomov type but rather are constructed as the eigenvectors of suitably defined annihilation operators. We describe as well the Segal-Bargmann representation for the system, the associated unitary Segal-Bargmann transform, and a natural inversion formula. Although many of these results are in principle special cases of the results of Hall and Stenzel, we give here a substantially different description based on ideas of Thiemann and of Kowalski and Rembieliński. All of these results can be generalized to a system whose configuration space is an arbitrary compact symmetric space. We focus on the sphere case in order to carry out the calculations in a self-contained and explicit way.
NASA Technical Reports Server (NTRS)
2009-01-01
Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.
2009-03-31
Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.
Magnetic spheres in microwave cavities
NASA Astrophysics Data System (ADS)
Zare Rameshti, Babak; Cao, Yunshan; Bauer, Gerrit E. W.
2015-06-01
We apply Mie scattering theory to study the interaction of magnetic spheres with microwaves in cavities beyond the magnetostatic and rotating wave approximations. We demonstrate that both strong and ultrastrong coupling can be realized for stand alone magnetic spheres made from yttrium iron garnet (YIG), acting as an efficient microwave antenna. The eigenmodes of YIG spheres with radii of the order mm display distinct higher angular momentum character that has been observed in experiments.
Cubic spline functions for curve fitting
NASA Technical Reports Server (NTRS)
Young, J. D.
1972-01-01
FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.
Modified cubic convolution resampling for Landsat
NASA Technical Reports Server (NTRS)
Prakash, A.; Mckee, B.
1985-01-01
An overview is given of Landsat Thematic Mapper resampling technique, including a modification of the well-known cubic convolution interpolator (nearest neighbor interpolation) used to provide geometric correction for TM data. Post launch study has shown that the modified cubic convolution interpolator can selectively enhance or suppress frequency bands in the output image. This selectivity is demonstrated on TM Band 3 imagery.
Cubic spline functions for curve fitting
NASA Technical Reports Server (NTRS)
Young, J. D.
1972-01-01
FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.
Thermodynamic properties of lattice hard-sphere models.
Panagiotopoulos, A Z
2005-09-08
Thermodynamic properties of several lattice hard-sphere models were obtained from grand canonical histogram- reweighting Monte Carlo simulations. Sphere centers occupy positions on a simple cubic lattice of unit spacing and exclude neighboring sites up to a distance sigma. The nearestneighbor exclusion model, sigma = radical2, was previously found to have a second-order transition. Models with integer values of sigma = 1 or 2 do not have any transitions. Models with sigma = radical3 and sigma = 3 have weak first-order fluid-solid transitions while those with sigma = 2 radical2, 2 radical3, and 3 radical2 have strong fluid-solid transitions. Pressure, chemical potential, and density are reported for all models and compared to the results for the continuum, theoretical predictions, and prior simulations when available.
Panoramic stereo sphere vision
NASA Astrophysics Data System (ADS)
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Imaging grain boundary grooves in hard-sphere colloidal bicrystals
NASA Astrophysics Data System (ADS)
Maire, Eric; Redston, Emily; Persson Gulda, Maria; Weitz, David A.; Spaepen, Frans
2016-10-01
Colloidal particles were sedimented onto patterned glass slides to grow three-dimensional bicrystals with a controlled structure. Three types of symmetric tilt grain boundaries between close-packed face-centered-cubic crystals were produced: Σ 5 (100 ),Σ 17 (100 ) , and Σ 3 (110 ) . The structure of the crystals and their defects were visualized by confocal microscopy, and characterized by simple geometric measurements, including image difference, thresholding, and reprojection. This provided a quick and straightforward way to detect the regions in which the atoms are mobile. This atomic mobility was higher at the grain boundaries and close to the solid-liquid interface. This method was compared to the more conventional analysis based on the calculation of the local order parameter of the individual particles to identify the interface. This was used in turn to identify the presence of grooves at the grain-boundary-liquid triple junction for every type of grain boundary, except for the twin [Σ 3 (110 )] , for which no groove could be detected. Images of these grooves were processed, and the angle linking the grain boundary energy to the solid-liquid interfacial energy was measured. The resulting values of the grain boundary energy were compared to estimates based on the density deficit in the boundary.
Chemical potential of a test hard sphere of variable size in a hard-sphere fluid.
Heyes, David M; Santos, Andrés
2016-12-07
The Labík and Smith Monte Carlo simulation technique to implement the Widom particle insertion method is applied using Molecular Dynamics (MD) instead to calculate numerically the insertion probability, P0(η,σ0), of tracer hard-sphere (HS) particles of different diameters, σ0, in a host HS fluid of diameter σ and packing fraction, η, up to 0.5. It is shown analytically that the only polynomial representation of -lnP0(η,σ0) consistent with the limits σ0→0 and σ0→∞ has necessarily a cubic form, c0(η)+c1(η)σ0/σ+c2(η)(σ0/σ)(2)+c3(η)(σ0/σ)(3). Our MD data for -lnP0(η,σ0) are fitted to such a cubic polynomial and the functions c0(η) and c1(η) are found to be statistically indistinguishable from their exact solution forms. Similarly, c2(η) and c3(η) agree very well with the Boublík-Mansoori-Carnahan-Starling-Leland and Boublík-Carnahan-Starling-Kolafa formulas. The cubic polynomial is extrapolated (high density) or interpolated (low density) to obtain the chemical potential of the host fluid, or σ0→σ, as βμ(ex)=c0+c1+c2+c3. Excellent agreement between the Carnahan-Starling and Carnahan-Starling-Kolafa theories with our MD data is evident.
Ultrahard nanotwinned cubic boron nitride.
Tian, Yongjun; Xu, Bo; Yu, Dongli; Ma, Yanming; Wang, Yanbin; Jiang, Yingbing; Hu, Wentao; Tang, Chengchun; Gao, Yufei; Luo, Kun; Zhao, Zhisheng; Wang, Li-Min; Wen, Bin; He, Julong; Liu, Zhongyuan
2013-01-17
Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.
Cubical Sets and Trace Monoid Actions
Husainov, Ahmet A.
2013-01-01
This paper is devoted to connections between trace monoids and cubical sets. We prove that the category of trace monoids is isomorphic to the category of generalized tori and it is a reflective subcategory of the category of cubical sets. Adjoint functors between the categories of cubical sets and trace monoid actions are constructed. These functors carry independence preserving morphisms in the independence preserving morphisms. This allows us to build adjoint functors between the category of weak asynchronous systems and the category of higher dimensional automata. PMID:24453827
Laser range profile of spheres
NASA Astrophysics Data System (ADS)
Gong, Yanjun; Wang, Mingjun; Gong, Lei
2016-09-01
Profile information about a three-dimensional target can be obtained by laser range profile (LRP). A mathematical LRP model from rough sphere is presented. LRP includes laser one-dimensional range profile and laser two-dimensional range profile. A target coordinate system and an imaging coordinate system are established, the mathematical model of the range profile is derived in the imaging coordinate system. The mathematical model obtained has nothing to do with the incidence direction of laser. It is shown that the laser range profile of the sphere is independent of the incidence direction of laser. This is determined by the symmetry of the sphere. The laser range profile can reflect the shape and material properties of the target. Simulations results of LRP about some spheres are given. Laser range profile of sphere, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser one-dimensional range profile of sphere, whose surface mater with diffuse materials whose retro-reflectance can be modeled closely with an exponential term that decays with increasing incidence angles, is given in this paper. Laser range profiles of different pulse width of sphere are given in this paper. The influences of geometric parameters, pulse width on the range profiles are analyzed.
Biomechanical Analysis with Cubic Spline Functions
ERIC Educational Resources Information Center
McLaughlin, Thomas M.; And Others
1977-01-01
Results of experimentation suggest that the cubic spline is a convenient and consistent method for providing an accurate description of displacement-time data and for obtaining the corresponding time derivatives. (MJB)
Biomechanical Analysis with Cubic Spline Functions
ERIC Educational Resources Information Center
McLaughlin, Thomas M.; And Others
1977-01-01
Results of experimentation suggest that the cubic spline is a convenient and consistent method for providing an accurate description of displacement-time data and for obtaining the corresponding time derivatives. (MJB)
Mastracchio during SPHERES Vertigo Experiment
2014-01-24
ISS038-E-035434 (23 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with a pair of basketball-sized, free-flying satellites known Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, in the Kibo laboratory of the International Space Station. For this experiment session, the crew members equipped one of the two SPHERES with a pair of stereoscopic goggles dubbed the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO. As the second SPHERES tumbled and spun, the VERTIGO-equipped robot attempted to map it and perform relative navigation around it.
Mastracchio during SPHERES Vertigo Experiment
2014-01-23
ISS038-E-035432 (23 Jan. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with a pair of basketball-sized, free-flying satellites known Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, in the Kibo laboratory of the International Space Station. For this experiment session, the crew members equipped one of the two SPHERES with a pair of stereoscopic goggles dubbed the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO. As the second SPHERES tumbled and spun, the VERTIGO-equipped robot attempted to map it and perform relative navigation around it.
2014-07-10
ISS040-E-059478 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2014-07-10
ISS040-E-059467 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst and NASA astronaut Reid Wiseman (mostly obscured), both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2014-07-10
ISS040-E-059344 (10 July 2014) --- In the International Space Station’s Kibo laboratory, NASA astronaut Reid Wiseman (left) and European Space Agency astronaut Alexander Gerst, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
A note on cubic convolution interpolation.
Meijering, Erik; Unser, Michael
2003-01-01
We establish a link between classical osculatory interpolation and modern convolution-based interpolation and use it to show that two well-known cubic convolution schemes are formally equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a century ago. We also discuss computational differences and give examples of other cubic interpolation schemes not previously studied in signal and image processing.
Great Plains makes 100 billion cubic feet
Not Available
1987-03-01
The Great Plains coal gasification plant on January 18, 1987 produced its 100 billionth cubic foot of gas since start-up July 28, 1984. Owned by the Department of Energy and operated by ANG Coal Gasification Company, the plant uses the Lurgi process to produce about 50 billion cubic feet per year of gas from five million tons per year of lignite. The plant has been performing at well above design capacity.
Electrostatic swelling of bicontinuous cubic lipid phases.
Tyler, Arwen I I; Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Law, Robert V; Seddon, John M; Brooks, Nicholas J
2015-04-28
Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.
Hopkins during SPHERES Slosh Run
2014-01-22
ISS038-E-033884 (22 Jan. 2014) --- In the International Space Station's Kibo laboratory, NASA astronaut Mike Hopkins, Expedition 38 flight engineer, holds a plastic container partially filled with green-colored water which will be used in a new experiment using the soccer-ball-sized, free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES, which are already on the station. For the SPHERES-Slosh experiment, two SPHERES robots are attached to opposite ends of a metal frame holding the plastic tank with the green-colored water. The new hardware for the SPHERES-Slosh study was delivered to the station aboard Orbital Sciences' Cygnus cargo craft on Jan. 12.
Frontal Impact of Rolling Spheres.
ERIC Educational Resources Information Center
Domenech, A.; Casasus, E.
1991-01-01
A model of the inelastic collision between two spheres rolling along a horizontal track is presented, taking into account the effects of frictional forces at impact. This experiment makes possible direct estimates of the coefficients of restitution and friction. (Author)
Science off the Sphere: Bistronauts
International Space Station Expedition 30 astronaut Don Pettit demonstrates physics in space for 'Science off the Sphere.' Through a partnership between NASA and the American Physical Society you c...
Analysis of principal nested spheres.
Jung, Sungkyu; Dryden, Ian L; Marron, J S
2012-09-01
A general framework for a novel non-geodesic decomposition of high-dimensional spheres or high-dimensional shape spaces for planar landmarks is discussed. The decomposition, principal nested spheres, leads to a sequence of submanifolds with decreasing intrinsic dimensions, which can be interpreted as an analogue of principal component analysis. In a number of real datasets, an apparent one-dimensional mode of variation curving through more than one geodesic component is captured in the one-dimensional component of principal nested spheres. While analysis of principal nested spheres provides an intuitive and flexible decomposition of the high-dimensional sphere, an interesting special case of the analysis results in finding principal geodesics, similar to those from previous approaches to manifold principal component analysis. An adaptation of our method to Kendall's shape space is discussed, and a computational algorithm for fitting principal nested spheres is proposed. The result provides a coordinate system to visualize the data structure and an intuitive summary of principal modes of variation, as exemplified by several datasets.
Analysis of principal nested spheres
Jung, Sungkyu; Dryden, Ian L.; Marron, J. S.
2012-01-01
Summary A general framework for a novel non-geodesic decomposition of high-dimensional spheres or high-dimensional shape spaces for planar landmarks is discussed. The decomposition, principal nested spheres, leads to a sequence of submanifolds with decreasing intrinsic dimensions, which can be interpreted as an analogue of principal component analysis. In a number of real datasets, an apparent one-dimensional mode of variation curving through more than one geodesic component is captured in the one-dimensional component of principal nested spheres. While analysis of principal nested spheres provides an intuitive and flexible decomposition of the high-dimensional sphere, an interesting special case of the analysis results in finding principal geodesics, similar to those from previous approaches to manifold principal component analysis. An adaptation of our method to Kendall’s shape space is discussed, and a computational algorithm for fitting principal nested spheres is proposed. The result provides a coordinate system to visualize the data structure and an intuitive summary of principal modes of variation, as exemplified by several datasets. PMID:23843669
Cubic mesoporous titanium phosphonates with multifunctionality.
Ma, Tian-Yi; Lin, Xiu-Zhen; Yuan, Zhong-Yong
2010-07-26
Cubic mesoporous titanium phosphonate materials with bridged organic groups inside the framework were synthesized by means of a one-pot hydrothermal autoclaving process, with the assistance of cationic surfactant cetyltrimethylammonium bromide. 1-Hydroxyethylidene-1,1-diphosphonic acid was used as the coupling molecule. A typical cubic mesophase with surface area of 1052 m(2) g(-1) and pore size of 2.6 nm was confirmed by XRD, TEM, and N(2) sorption analysis. The organophosphonate groups were homogeneously incorporated in the network of the mesoporous solids, as revealed by FTIR and magic-angle spinning (MAS) NMR spectroscopy, and thermogravimetry and differential scanning calorimetry (TG-DSC) measurements. The synthesized hydroxyethylidene-bridged cubic mesoporous titanium phosphonates proved to be thermally stable up to 350 degrees C, with a well-preserved hybrid framework and cubic mesoporous architecture. The obtained cubic mesophase could be transformed into a hexagonal mesophase by simply adjusting the molar ratios of the added raw materials, namely, a Ti/P molar ratio of 1:4 and a CTAB/Ti molar ratio of 1.9-2.3 for the cubic phase and Ti/P molar ratio of 3:4 and CTAB/Ti molar ratio of 0.1-0.4 for the hexagonal phase. The cubic hybrid materials could be used as efficient photocatalysts for the photodegradation of rhodamine B. Moreover, they were also used for adsorption of CO(2) and heavy metal ions and exhibited a significant capture amount of around 1.0 mmol g(-1) for CO(2) molecules at 35 degrees C and high adsorption capacity of 28.5 micromol g(-1) for Cu(2+) ions with good reusability, which demonstrated their promising potential in environmental remediation.
Porous Ceramic Spheres From Cation Exchange Beads
NASA Technical Reports Server (NTRS)
Dynys, Fred
2005-01-01
This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)
Interpolation by two-dimensional cubic convolution
NASA Astrophysics Data System (ADS)
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Impurity modes in Frenkel exciton systems with dipolar interactions and cubic symmetry.
Avgin, I; Huber, D L
2013-04-28
We introduce a continuum model for impurity modes of Frenkel excitons in fully occupied face-centered and body-centered cubic lattices with dipole-dipole interactions and parallel moments. In the absence of impurities, the model reproduces the small-k behavior found in numerical calculations of dipolar lattice sums. The exciton densities of states near the upper and lower band edges are calculated and compared with the corresponding results for a random array of dipoles. The Green function obtained with the continuum model, together with a spherical approximation to the Brillouin zone, is used to determine the conditions for the formation of a localized exciton mode associated with a shift in the transition energy of a single chromophore. The dependence of the local mode energy on the magnitude of the shift is ascertained. The formation of impurity bands at high concentrations of perturbed sites is investigated using the coherent potential approximation. The contribution of the impurity bands to the optical absorption is calculated in the coherent potential approximation. The locations of the optical absorption peaks of the dipolar system are shown to depend on the direction of propagation of the light relative to the dipolar axis, a property that is maintained in the presence of short-range interactions.
Superhard BC3 in cubic diamond structure
Zhang, Miao; Liu, Hanyu; Li, Quan; ...
2015-01-06
We solve the crystal structure of recently synthesized cubic BC3 using an unbiased swarm structure search, which identifies a highly symmetric BC3 phase in the cubic diamond structure (d–BC3) that contains a distinct B-B bonding network along the body diagonals of a large 64-atom unit cell. Simulated x-ray diffraction and Raman peaks of d–BC3 are in excellent agreement with experimental data. Calculated stress-strain relations of d–BC3 demonstrate its intrinsic superhard nature and reveal intriguing sequential bond-breaking modes that produce superior ductility and extended elasticity, which are unique among superhard solids. Here, the present results establish the first boron carbide inmore » the cubic diamond structure with remarkable properties, and these new findings also provide insights for exploring other covalent solids with complex bonding configurations.« less
Image reconstruction by parametric cubic convolution
NASA Technical Reports Server (NTRS)
Park, S. K.; Schowengerdt, R. A.
1983-01-01
Cubic convolution, which has been discussed by Rifman and McKinnon (1974), was originally developed for the reconstruction of Landsat digital images. In the present investigation, the reconstruction properties of the one-parameter family of cubic convolution interpolation functions are considered and thee image degradation associated with reasonable choices of this parameter is analyzed. With the aid of an analysis in the frequency domain it is demonstrated that in an image-independent sense there is an optimal value for this parameter. The optimal value is not the standard value commonly referenced in the literature. It is also demonstrated that in an image-dependent sense, cubic convolution can be adapted to any class of images characterized by a common energy spectrum.
Purely cubic action for string field theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Diffuse reflectivity measurement using cubic cavity.
Yu, Jia; Zhang, Y G; Gao, Qiang; Hu, Gang; Zhang, Z G; Wu, S H
2014-04-01
A method for measuring diffuse reflectivity using cubic cavity based on the variable port fraction method was developed by measuring oxygen P11 line at 762 nm using tunable diode laser absorption spectroscopy. An experimental method to determine the additional path length l0 was presented. We measured the diffuse reflectivity of a cubic cavity with scattering coatings of different thickness. The error of diffuse reflectivity was reduced from 0.004 to 0.0003 when the diffuse reflectivity increased from 0.867(4) to 0.9887(3). A simulation result manifests that the error of diffuse reflectivity has the potential to be further reduced at higher diffuse reflectivity.
Cubic trihedral corner entanglement for a free scalar
NASA Astrophysics Data System (ADS)
Hayward Sierens, Lauren E.; Bueno, Pablo; Singh, Rajiv R. P.; Myers, Robert C.; Melko, Roger G.
2017-07-01
We calculate the universal contribution to the α -Rényi entropy from a cubic trihedral corner in the boundary of the entangling region in 3 +1 dimensions for a massless free scalar. The universal number vα is manifest as the coefficient of a scaling term that is logarithmic in the size of the entangling region. Our numerical calculations find that this universal coefficient has both larger magnitude and the opposite sign to that induced by a smooth spherical entangling boundary in 3 +1 dimensions, for which there is a well-known subleading logarithmic scaling. Despite these differences, up to the uncertainty of our finite-size lattice calculations, the functional dependence of the trihedral coefficient vα on the Rényi index α is indistinguishable from that for a sphere, which is known analytically for a massless free scalar. We comment on the possible source of this α dependence arising from the general structure of (3 +1 ) -dimensional conformal field theories, and suggest calculations past the free scalar which could further illuminate the general structure of the trihedral divergence in the Rényi entropy.
Sphere forming method and apparatus
NASA Technical Reports Server (NTRS)
Youngberg, C. L.; Miller, C. G.; Stephens, J. B.; Finnerty, A. A. (Inventor)
1983-01-01
A system is provided for forming small accurately spherical objects. Preformed largely spherical objects are supported at the opening of a conduit on the update of hot gas emitted from the opening, so the object is in a molten state. The conduit is suddenly jerked away at a downward incline, to allow the molten object to drop in free fall, so that surface tension forms a precise sphere. The conduit portion that has the opening, lies in a moderate vacuum chamber, and the falling sphere passes through the chamber and through a briefly opened valve into a tall drop tower that contains a lower pressure, to allow the sphere to cool without deformation caused by falling through air.
Experimental and numerical study on bubble-sphere interaction near a rigid wall
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, A. M.; Han, R.; Liu, Y. Q.
2017-09-01
This study is concerned with the interaction between a violently oscillating bubble and a movable sphere with comparable size near a rigid wall, which is an essential physical phenomenon in many applications such as cavitation, underwater explosion, ultrasonic cleaning, and biomedical treatment. Experiments are performed in a cubic water tank, and the underwater electric discharge technique (580 V DC) is employed to generate a bubble that is initiated between a rigid wall and a sphere in an axisymmetric configuration. The bubble-sphere interactions are captured using a high-speed camera operating at 52 000 frames/s. A classification of the bubble-sphere interaction is proposed, i.e., "weak," "intermediate," and "strong" interactions, identified with three distinct bubble shapes at the maximum volume moment. In the numerical simulations, the boundary integral method and the auxiliary function method are combined to establish a full coupling model that decouples the mutual dependence between the force and the sphere motion. The main features of bubble dynamics in different experiments are well reproduced by our numerical model. Meanwhile, the pressure and velocity fields are also provided for clarifying the associated mechanisms. The effects of two dimensionless standoff parameters, namely, γs (defined as ds/Rm, where ds is the minimum distance between the initial bubble center and the sphere surface and Rm is the maximum bubble radius) and γw (defined as dw/Rm, where dw is the distance between the initial bubble center and the rigid wall), are also discussed.
NASA Astrophysics Data System (ADS)
Stewart, Cameron; Najjar, Fady; Stewart, D. Scott; Bdzil, John
2012-11-01
Modern-engineered high explosive (HE) materials can consist of a matrix of solid, inert particles embedded into an HE charge. When this charge is detonated, intense shock waves are generated. As these intense shocks interact with the inert particles, large deformations occur in the particles while the incident shock diffracts around the particle interface. We will present results from a series of 3-D DNS of an intense shock interacting with unit-cube configurations of inert particles embedded into nitromethane. The LLNL multi-physics massively parallel hydrodynamics code ALE3D is used to carry out high-resolution (4 million nodes) simulations. Three representative unit-cube configurations are considered: primitive cubic, face-centered and body-centered cubic for two particle material types of varying impedance ratios. Previous work has only looked at in-line particles configurations. We investigate the time evolution of the unit cell configurations, vorticity being generated by the shock interaction, as well as the velocity and acceleration of the particles until they reach the quasi-steady regime. LLNL-ABS-567694. CSS was supported by a summer internship through the HEDP program at LLNL. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A monotonicity conjecture for real cubic maps
Dawson, S.P.; Galeeva, R.; Milnor, J.; Tresser, C.
1993-12-01
This will be an outline of work in progress. We study the conjecture that the topological entropy of a real cubic map depends ``monotonely`` on its parameters, in the sense that each locus of constant entropy in parameter space is a connected set. This material will be presented in more detail in a later paper.
Sound velocity anisotropy in cubic crystals
NASA Technical Reports Server (NTRS)
Tsang, T.; Park, H. Y.
1983-01-01
Simple analytical expressions may be derived for sound velocities in cubic crystals by using lattice harmonics or functions which are invariant under the crystal symmetry operations. These expressions are in good agreement with the exact results for typical crystals such as metallic iron and potassium fluoride.
Jammed Ellipsoids Beat Jammed Spheres
NASA Astrophysics Data System (ADS)
Chaikin, Paul; Donev, Aleksandar; Man, Weining; Cisse, Ibrahim; Stillinger, Frank; Torquato, Salvatore
2004-03-01
We have performed experiments and computer simulations on random packings of ellipsoids. The experiments on M^textregistered Milk Chocolate candies (spheroids with aspect ratio ˜ 1.91:1) indicate a packing fraction 0.68-0.7 considerably higher than that for random sphere packings (0.64). Moreover the number of contacting neighbors is measured as Z ˜ 9.8, close to the isostatic result of twice the number of degrees of freedom f, Z=2f, per particle. For spheres f=3, Z ˜ 6, for ellipsoids of revolution f=5, Z ˜ 10, and for general ellipsoids Z ˜ 12. Simulations, for spheroids support this observation and show a remarkable downward cusp-like behavior for packing fraction vs aspect ratio with a local minimum for spheres. Experiments on general ellipsoids also show high packing fractions and simulations yield orientationally disordered ellipsoid packings up to a density of 0.75, i.e., exceeding even the densest crystal packing of spheres.
Neuroscience in the public sphere.
O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene
2012-04-26
The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere. Copyright © 2012 Elsevier Inc. All rights reserved.
Improved linings for integrating spheres
NASA Technical Reports Server (NTRS)
Fergerson, P. O.; French, B. O.
1970-01-01
Sphere surface is covered with plain weave of glass fibers coated with polytetrafluoroethylene and one or two layers of magnesium oxide vapor. The resultant lining is suitable for measurement of radiation in the ultraviolet, visible, and near-infrared wavelengths, is not damage prone, and is easily cleaned.
Space-time CFTs from the Riemann sphere
NASA Astrophysics Data System (ADS)
Adamo, Tim; Monteiro, Ricardo; Paulos, Miguel F.
2017-08-01
We consider two-dimensional chiral, first-order conformal field theories governing maps from the Riemann sphere to the projective light cone inside Minkowski space — the natural setting for describing conformal field theories in two fewer dimensions. These theories have a SL(2) algebra of local bosonic constraints which can be supplemented by additional fermionic constraints depending on the matter content of the theory. By computing the BRST charge associated with gauge fixing these constraints, we find anomalies which vanish for specific target space dimensions. These critical dimensions coincide precisely with those for which (biadjoint) cubic scalar theory, gauge theory and gravity are classically conformally invariant. Furthermore, the BRST cohomology of each theory contains vertex operators for the full conformal multiplets of single field insertions in each of these space-time CFTs. We give a prescription for the computation of three-point functions, and compare our formalism with the scattering equations approach to on-shell amplitudes.
Entropy of hard spheres in the close-packing limit
NASA Astrophysics Data System (ADS)
Noya, Eva G.; Almarza, Noé G.
2015-05-01
The Helmholtz free energies of the face-centred cubic (FCC) and hexagonal close packed (HCP) hard-sphere solids in the close-packing limit have been evaluated using two different approaches based on the Einstein crystal method. Different system sizes and orientations of the crystal with respect to the simulation box have been investigated, both methods giving free energies that are consistent within statistical uncertainty. Our results show that for a given orientation of the crystal and system size, the FCC crystal is always slightly more stable than the HCP, the free-energy difference remaining practically constant with the number of particles up to the thermodynamic limit. In agreement with previous calculations, it is found that the free-energy difference between the HCP and FCC crystals at close packing in the thermodynamic limit is 0.001 164(8) NkBT.
Science off the Sphere: Fun with Antibubbles
International Space Station Expedition 30 astronaut Don Pettit injects air bubbles inside a sphere of water to demonstrate physics in space for 'Science off the Sphere.' Through a partnership betwe...
Nontrivial topology of cubic alkali bismuthides
NASA Astrophysics Data System (ADS)
Rusinov, I. P.; Sklyadneva, I. Yu.; Heid, R.; Bohnen, K.-P.; Petrov, E. K.; Koroteev, Yu. M.; Echenique, P. M.; Chulkov, E. V.
2017-06-01
We report an ab initio study of the effect of pressure on vibrational and electronic properties of K3Bi and Rb3Bi in the cubic F m 3 ¯m structure. It is shown that the high-temperature cubic phase of K3Bi and Rb3Bi is dynamically unstable at T =0 but can be stabilized by pressure. The electronic spectra of alkali bismuthides are found to possess the bulk band touching at the Brillouin zone center and an inverted spin-orbit bulk band structure. Upon hydrostatic compression the compounds transform from the topologically nontrivial semimetal (K3Bi )/metal (Rb3Bi ) into a trivial semiconductor (metal) with a conical Dirac-type dispersion of electronic bands at the point of the topological transition. In K3Bi the dynamical stabilization occurs before the system undergoes the topological phase transition.
Wavelets based on Hermite cubic splines
NASA Astrophysics Data System (ADS)
Cvejnová, Daniela; Černá, Dana; Finěk, Václav
2016-06-01
In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.
Coating a Sphere With Evaporated Metal
NASA Technical Reports Server (NTRS)
Strayer, D. M.; Jackson, H. W.; Gatewood, J. R.
1986-01-01
In vacuum coating apparatus, metal evaporated onto sphere from small source located some distance away. Sphere held in path of metal vapor while rotated about axis that rocks back and forth. One tilting motion particularly easy to produce is sinusoidal rocking with frequency much lower than rotational frequency. Apparatus developed for coating single-crystal sapphire spheres with niobium.
NASA Astrophysics Data System (ADS)
Koiller, J.; Ehlers, K.
2007-04-01
“Rubber” coated bodies rolling over a surface satisfy a no-twist condition in addition to the no slip condition satisfied by “marble” coated bodies [1]. Rubber rolling has an interesting differential geometric appeal because the geodesic curvatures of the curves on the surfaces at corresponding points are equal. The associated distribution in the 5 dimensional configuration space has 2 3 5 growth (these distributions were first studied by Cartan; he showed that the maximal symmetries occurs for rubber rolling of spheres with 3:1 diameters ratio and materialize the exceptional group G 2). The 2 3 5 nonholonomic geometries are classified in a companion paper [2] via Cartan’s equivalence method [3]. Rubber rolling of a convex body over a sphere defines a generalized Chaplygin system [4 8] with SO(3) symmetry group, total space Q = SO(3) × S 2 and base S 2, that can be reduced to an almost Hamiltonian system in T* S 2 with a non-closed 2-form ωNH. In this paper we present some basic results on the sphere-sphere problem: a dynamically asymmetric but balanced sphere of radius b (unequal moments of inertia I j but with center of gravity at the geometric center), rubber rolling over another sphere of radius a. In this example ωNH is conformally symplectic [9]: the reduced system becomes Hamiltonian after a coordinate dependent change of time. In particular there is an invariant measure, whose density is the determinant of the reduced Legendre transform, to the power p = 1/2( b/a - 1). Using sphero-conical coordinates we verify the result by Borisov and Mamaev [10] that the system is integrable for p = -1/2 (ball over a plane). They have found another integrable case [11] corresponding to p = -3/2 (rolling ball with twice the radius of a fixed internal ball). Strikingly, a different set of sphero-conical coordinates separates the Hamiltonian in this case. No other integrable cases with different I j are known.
Use of Pom Pons to Illustrate Cubic Crystal Structures.
ERIC Educational Resources Information Center
Cady, Susan G.
1997-01-01
Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)
Use of Pom Pons to Illustrate Cubic Crystal Structures.
ERIC Educational Resources Information Center
Cady, Susan G.
1997-01-01
Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)
Cubic Polynomials with Rational Roots and Critical Points
ERIC Educational Resources Information Center
Gupta, Shiv K.; Szymanski, Waclaw
2010-01-01
If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.
Cubic Polynomials with Rational Roots and Critical Points
ERIC Educational Resources Information Center
Gupta, Shiv K.; Szymanski, Waclaw
2010-01-01
If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.
Effect of cubic aeroelastic nonlinearities on flutter
NASA Astrophysics Data System (ADS)
Berci, M.
2017-07-01
The effect of cubic aero-structural nonlinearities on aeroelastic flutter instability is here investigated. Focusing on the unstable flutter mode, the exact amplitude and frequency of the arising limit cycle oscillations are determined analytically. Both harmonic balance and multiple scales methods are adopted and perfect agreement of the explicit results is demonstrated, for the case of small perturbations of the aircraft speed in the neighborhood of the flutter instability.
Quasiparticle Interference on Cubic Perovskite Oxide Surfaces
NASA Astrophysics Data System (ADS)
Okada, Yoshinori; Shiau, Shiue-Yuan; Chang, Tay-Rong; Chang, Guoqing; Kobayashi, Masaki; Shimizu, Ryota; Jeng, Horng-Tay; Shiraki, Susumu; Kumigashira, Hiroshi; Bansil, Arun; Lin, Hsin; Hitosugi, Taro
2017-08-01
We report the observation of coherent surface states on cubic perovskite oxide SrVO3(001 ) thin films through spectroscopic-imaging scanning tunneling microscopy. A direct link between the observed quasiparticle interference patterns and the formation of a dx y -derived surface state is supported by first-principles calculations. We show that the apical oxygens on the topmost VO2 plane play a critical role in controlling the coherent surface state via modulating orbital state.
Deposition Of Cubic BN On Diamond Interlayers
NASA Technical Reports Server (NTRS)
Ong, Tiong P.; Shing, Yuh-Han
1994-01-01
Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.
Deposition Of Cubic BN On Diamond Interlayers
NASA Technical Reports Server (NTRS)
Ong, Tiong P.; Shing, Yuh-Han
1994-01-01
Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.
Cubic pencils of lines and bivariate interpolation
NASA Astrophysics Data System (ADS)
Carnicer, J. M.; Gasca, M.
2008-10-01
Cubic pencils of lines are classified up to projectivities. Explicit formulae for the addition of lines on the set of nonsingular lines of the pencils are given. These formulae can be used for constructing planar generalized principal lattices, which are sets of points giving rise to simple Lagrange formulae in bivariate interpolation. Special attention is paid to the irreducible nonsingular case, where elliptic functions are used in order to express the addition in a natural form.
Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart
Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen
1992-01-01
This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.
Archaic artifacts resembling celestial spheres
NASA Astrophysics Data System (ADS)
Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.
We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.
NASA Astrophysics Data System (ADS)
Sknepnek, Rastko; Henkes, Silke
2015-02-01
We show that coupling to curvature nontrivially affects collective motion in active systems, leading to motion patterns not observed in flat space. Using numerical simulations, we study a model of self-propelled particles with polar alignment and soft repulsion confined to move on the surface of a sphere. We observe a variety of motion patterns with the main hallmarks being polar vortex and circulating band states arising due to the incompatibility between spherical topology and uniform motion—a consequence of the "hairy ball" theorem. We provide a detailed analysis of density, velocity, pressure, and stress profiles in the circulating band state. In addition, we present analytical results for a simplified model of collective motion on the sphere showing that frustration due to curvature leads to stable elastic distortions storing energy in the band.
46 CFR 160.035-9 - Cubic capacity of lifeboats.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Cubic capacity of lifeboats. 160.035-9 Section 160.035-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-9 Cubic capacity of... its cubic capacity. (1) Length (L). The length is the distance in feet from the inside of the...
46 CFR 160.035-9 - Cubic capacity of lifeboats.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Cubic capacity of lifeboats. 160.035-9 Section 160.035-9...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Lifeboats for Merchant Vessels § 160.035-9 Cubic capacity of... its cubic capacity. (1) Length (L). The length is the distance in feet from the inside of the...
Northeastern forest survey revised cubic-foot volume equations
Charles T. Scott
1981-01-01
Cubic-foot volume equations are presented for the 17 species groups used in the forest survey of the 14 northeastern states. The previous cubic- foot volume equations were simple linear in form; the revised cubic-foot volume equations are nonlinear.
NASA Astrophysics Data System (ADS)
Barrera, Ruben G.; Mendoza, Carlos I.; Fuchs, Ronald
1998-03-01
A theory for the energy loss of electrons travelling parallel to a semiinfinite system of polarizable spheres has been recently reported(R. Fuchs, C. I. Mendoza, R. G. Barrera and J. L. Carrillo, Physica A, 241, 29(1997).). In this theory a spectral representation of the surface response is explicitly constructed. Here we apply this theory to a cubic array of identical spheres using a numerical approach. Our results are compared with previous calculations(J. B. Pendry and L. M. Moreno, Phys. Rev. B 50, 5062 (1994)), (C. I. Mendoza, R. G. Barrera and R. Fuchs, Phys. Rev. B (submitted).).
Principal Fibrations from Noncommutative Spheres
NASA Astrophysics Data System (ADS)
Landi, Giovanni; Suijlekom, Walter Van
2005-11-01
We construct noncommutative principal fibrations Sθ7→Sθ4 which are deformations of the classical SU(2) Hopf fibration over the four sphere. We realize the noncommutative vector bundles associated to the irreducible representations of SU(2) as modules of coequivariant maps and construct corresponding projections. The index of Dirac operators with coefficients in the associated bundles is computed with the Connes-Moscovici local index formula. "The algebra inclusion is an example of a not-trivial quantum principal bundle."
Light Scattering by Charged Spheres.
1988-01-29
Wyman Graduate Student: Mr. Alan Chu %"% ,’A% 4, % .1 % 70 References , % -- Arnold S. and N. Hessel , 1985: Photoemission from Single...position of the natural resonances of a sphere are used to determine its size or its chemical * composition ( Arnold , 1980; Lettieri, 1984). High...us very helpful suggestions during the program. We also kept close scientific contact with Dr. Arnold of the Polytechnic Institute of New York, and
1992-12-16
12 = (K,, + )- (29) K 2 (see [3]). The parameter KM represents the amplitude of the periodic curva - ture function and sm denotes the value at which K...Additamentum De curvis elasticis. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Ser. 1., Vol. 24, Lausanne 1744. 17 [10...Mathematical Theory of Elasticity. 4th. ed., Cambridge University Press, 1927. [12] G. Nielson. Bernstein/ Bezier Curves and Splines on Spheres based upon
Saito, Kazuya; Shinhara, Takashi; Nakamoto, Tadahiro; Kutsumizu, Shoichi; Yano, S; Sorai, Michio
2002-03-01
Heat capacity of a thermotropic mesogen ANBC(22) (4(')-alkoxy-3(')-nitrobiphenyl-4-carboxylic acid with 22 carbon atoms in alkyl chain) showing two cubic mesophases was measured by adiabatic calorimetry between 13 and 480 K. Excess enthalpies and entropies due to phase transitions were determined. A small thermal anomaly due to the cubic Im3m-->cubic Ia3d phase transition was successfully detected. Through an analysis of chain-length dependence of the entropy of transition, the sequence of two cubic mesophases (with space groups Ia3d and Im3m) is deduced for thermotropic mesogens ANBC(n). It is shown that the disorder of the core arrangement decreases in the order of Sm-C-->cubic (Im3m)-->cubic (Ia3d) while that of the chain in the reverse order cubic (Ia3d)-->cubic (Im3m)-->Sm C.
Dense, collisional, shearing flows of compliant spheres
NASA Astrophysics Data System (ADS)
Jenkins, James; Berzi, Diego
2017-06-01
We outline the development of theory to describe, dense, collisional shearing flows of identical compliant spheres. We begin with two simple theories: one for rigid, nearly elastic spheres that interact through instantaneous, binary collisions; the other for compliant spheres that interact through multiple, enduring contacts. We then join the two extremes by adding compliance to the collisions and collisions to the spheres in enduring contact. Finally, we compare the predictions of the resulting theory with the results of discrete numerical simulations of steady, homogeneous shearing of compliant frictional spheres.
Homogeneous sphere packings with triclinic symmetry.
Fischer, W; Koch, E
2002-11-01
All homogeneous sphere packings with triclinic symmetry have been derived by studying the characteristic Wyckoff positions P -1 1a and P -1 2i of the two triclinic lattice complexes. These sphere packings belong to 30 different types. Only one type exists that has exclusively triclinic sphere packings and no higher-symmetry ones. The inherent symmetry of part of the sphere packings is triclinic for 18 types. Sphere packings of all but six of the 30 types may be realized as stackings of parallel planar nets.
Growth and characterization of cubic and non-cubic Ge nanocrystals
Mukherjee, S.; Pradhan, A.; Bhunia, S.; Mukherjee, S.; Maitra, T.; Nayak, A.
2016-05-06
Germanium nanocrystals with tetragonal (ST-12) and diamond like cubic (Ge-I) phases have been selectively grown by controlling the ionization and electrostatic potential of Ge clusters in an ion cluster beam deposition system. Predominantly tetragonal nanocrystals were obtained when grown using neutral clusters. The percentage of cubic phase increased when grown by ionizing the clusters and accelerating them towards substrates by applying electrostatic bias in the range of 1.5 –2.5 kV. Raman spectroscopic measurement showed strong peak at 275 cm{sup −1} and 300 cm{sup −1} for tetragonal and cubic Ge nanocrystals, respectively. TEM measurements showed crystalline lattice fringes of both type of the nanocrystals. The selected area electron diffraction patterns showed (111) and (210) as the dominating lattice planes for tetragonal nanocrystals while the cubic phases had (111), (311) and (331) as the prominent lattice planes. The optical absorption edge redshifted from 1.75 to 1.55 eV as the percentage of the cubic phases increased in the NC composition in the composite film.
Tunable photoluminescence in monodisperse silica spheres.
Kong, Deyan; Zhang, Cuimiao; Xu, Zhenhe; Li, Guogang; Hou, Zhiyao; Lin, Jun
2010-12-15
The nanometer-scale luminescent monodisperse silica spheres have been prepared by a water/oil (W/O) microemulsion method and the size of these spheres changed with the different concentrations of 3-aminopropyltriethoxysilane (APTES). The luminescent monodisperse silica spheres at the submicrometer scale have been prepared via Stöber method and the particles size increased with the increase of the amino concentrations. After calcination, all silica spheres do not change obviously in size. The annealed silica spheres contain C impurities and O defects, which resulted in the luminescence of silica spheres. The spheres showed variations in emission due to the different size and the concentration of organosiloxane precursors. Therefore, the emission can be tuned finely via the change of organosiloxane precursor and the size of samples. Copyright © 2010 Elsevier Inc. All rights reserved.
Spontaneous Graphitization of Ultrathin Cubic Structures: A Computational Study
NASA Astrophysics Data System (ADS)
Sorokin, Pavel B.; Kvashnin, Alexander G.; Zhu, Zhen; Tománek, David
2014-12-01
Results based on {\\em ab initio} density functional calculations indicate a general graphitization tendency in ultrathin slabs of cubic diamond, boron nitride, and many other cubic structures including rocksalt. Whereas such compounds often show an energy preference for cubic rather than layered atomic arrangements in the bulk, the surface energy of layered systems is commonly lower than that of their cubic counterparts. We determine the critical slab thickness for a range of systems, below which a spontaneous conversion from a cubic to a layered graphitic structure occurs, driven by surface energy reduction in surface-dominated structures.
Cherenkov and Scintillation Properties of Cubic Zirconium
NASA Technical Reports Server (NTRS)
Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.
2008-01-01
Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed
Craniofacial Reconstruction Using Rational Cubic Ball Curves
Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan
2015-01-01
This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632
Two-layer tubes from cubic crystals
NASA Astrophysics Data System (ADS)
Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S.; Volkov, M. A.
2016-12-01
Effective Young's moduli and Poisson's ratios of two-layer tubes from cubic crystals have been analyzed theoretically. It is shown (using derived formulas for numerical estimates) that the mechanical properties of two-layer tube composites from auxetics and nonauxetics are not described by the mixture rule. It is demonstrated that the deviation of the effective modulus from the mixture rule predictions rapidly increases with an increase in Young's modulus of the nonauxetic components of a composite. It is established that, combining auxetics and nonauxetics in layered tubes, one can obtain, depending on the packing order in layers, either a strong increase or a decrease in auxeticity.
Cherenkov and Scintillation Properties of Cubic Zirconium
NASA Technical Reports Server (NTRS)
Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.
2008-01-01
Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed
Brittle onset of monodispersed magmatic suspensions: from spheres to spheroid
NASA Astrophysics Data System (ADS)
Cordonnier, B.; Kaus, B.; Manga, M.; Caricchi, L.; Pistone, M.; Castro, J.; Hess, K.-U.; Gottschaller, S.; Dingwell, D. B.; Burlini, L.
2012-04-01
post-processing are all performed under MATLAB. For the largest meshes, the computation has been performed with the help of the BRUTUS cluster at ETH Zurich. For solving the system of equation we used the MILAMIN solver and extended it from 2-D to 3-D by the use of Crouzeix-Raviart type elements. MILAMIN is a native MATLAB implementation, which takes advantage of Tim Davi's SuiteSparse package. Here we solve the incompressible Stokes equations. We tested random to structured configurations (Simple Cubic, Body Centered Cubic and Face Centered Cubic) for different particle orientations from random to aligned. These numerical simulations allow us to estimate the stress concentration in magmas due to the presence of the crystals. Our results first confirm the hydrodynamics effects on the flow of elongated particles. The calculated apparent viscosity of the material versus the crystal fraction confirms an early increase for the suspensions viscosity with elongated particles. More importantly, the stress localization due to the particles suggests that the melt will start cracking for a relatively lower bulk stress. Finally, the experimental trend is supported by the numerical simulations, which highlight the importance of the critical packing fraction in addition to the maximum packing fraction. The combination of experimental results and numerical modeling allow us to characterize the physical processes responsible for the failure of particle bearing suspensions and characterize the effect of fraction and shape on the brittle-ductile transition.
Multiply charged monopoles in cubic dimer model
NASA Astrophysics Data System (ADS)
Ganesh Jaya, Sreejith; Powell, Stephen
2015-03-01
The classical cubic dimer model is a 3D statistical mechanical system whose degrees of freedom are dimers that occupy the edges between nearest neighbour vertices of a cubic lattice. Dimer occupancies are subject to the local constraint that every vertex is associated with exactly one dimer. In the presence of an aligning interaction, it is known that the system exhibits an unconventional continuous thermal phase transition from a symmetry broken columnar phase to a Coulomb-phase. The transition is in the NCCP1 universality class, which also describes the Neel-VBS transition in the JQ model and the S =1/2 Heisenberg model with suppression of hedgehog defects. Using Monte-Carlo simulations of a pair of defects in a background of fluctuating dimers, we calculate the scaling exponents for fugacities of monopole defects of charge Q = 2 and 3 at this critical point. Our estimates suggest that Q = 3 monopoles are relevant and could therefore drive the JQ model away from the NCCP1 critical point on a hexagonal lattice.
Cubic membranes: a structure-based design for DNA uptake.
Almsherqi, Zakaria; Hyde, Stephen; Ramachandran, Malarmathy; Deng, Yuru
2008-09-06
Cubic membranes are soft three-dimensional crystals found within cell organelles in a variety of living systems, despite the aphorism of Fedorov: 'crystallization is death'. They consist of multi-bilayer lipid-protein stacks, folded onto anticlastic surfaces that resemble triply periodic minimal surfaces, forming highly swollen crystalline sponges. Although cubic membranes have been observed in numerous cell types and under different pathophysiological conditions, knowledge about the formation and potential function(s) of non-lamellar, cubic structures in biological systems is scarce. We report that mitochondria with this cubic membrane organization isolated from starved amoeba Chaos carolinense interact sufficiently with short segments of phosphorothioate oligonucleotides (PS-ODNs) to give significant ODNs uptake. ODNs condensed within the convoluted channels of cubic membrane by an unknown passive targeting mechanism. Moreover, the interaction between ODNs and cubic membrane is sufficient to retard electrophoretic mobility of the ODN component in the gel matrix. These ODN-cubic membrane complexes are readily internalized within the cytoplasm of cultured mammalian cells. Transmission electron microscopic analysis confirms ODNs uptake by cubic membranes and internalization of ODN-cubic membrane complexes into the culture cells. Cubic membranes thus may offer a new, potentially benign medium for gene transfection.
Floating behavior of hydrophobic glass spheres.
Liu, Xinjie; Wang, Xiaolong; Liang, Yongmin; Zhou, Feng
2009-08-15
When a hydrophobic solid sphere is floating on water or salt solutions with different concentrations, it is at equilibrium under the impact of gravity, buoyancy force, and curvature force, the component of surface tension in the vertical direction. We have changed the diameters of the spheres and the concentrations of the two selected salts, NaCl and NaNO(3), to study the floating behaviors of these spheres and the contributions of surface tension and buoyancy force to their floatation. Generally speaking, the surface tension plays a more important role than the buoyancy force when the gravity is small, but the buoyancy force plays an identical or a more important role when the spheres are big enough. The wettability of the spheres significantly influences the height below the contact perimeter especially in salt solutions. The theoretical calculation meniscus slope angles at the sphere three-phase contact line are in agreement with experimental results.
Sphere-Pac Evaluation for Transmutation
Icenhour, A.S.
2005-05-19
The U.S. Department of Energy Advanced Fuel Cycle Initiative (AFCI) is sponsoring a project at Oak Ridge National Laboratory with the objective of conducting the research and development necessary to evaluate the use of sphere-pac transmutation fuel. Sphere-pac fuels were studied extensively in the 1960s and 1970s. More recently, this fuel form is being studied internationally as a potential plutonium-burning fuel. For transmutation fuel, sphere-pac fuels have potential advantages over traditional pellet-type fuels. This report provides a review of development efforts related to the preparation of sphere-pac fuels and their irradiation tests. Based on the results of these tests, comparisons with pellet-type fuels are summarized, the advantages and disadvantages of using sphere-pac fuels are highlighted, and sphere-pac options for the AFCI are recommended. The Oak Ridge National Laboratory development activities are also outlined.
NASA Astrophysics Data System (ADS)
Degtyareva, Valentina F.; Afonikova, Nataliya S.
2013-01-01
Binary alloy phases of the noble metals with the main group elements are analyzed in relation to the body centered cubic structure with distortions, vacancies and superlattices. The stability of these distorted phases is studied in terms of the Fermi sphere-Brillouin-Jones zone interaction within the nearly free-electron model in order to understand the importance of the band structure energy contribution to the overall crystal energy. Examination of Brillouin-Jones zone configurations with respect to the Fermi sphere for several representative phases has shown how significant the electron energy contribution is in forming the distorted structures with superlattices and ordered vacancies. This approach may be useful for understanding the complex structures recently found in compressed simple alkali metals.
Bond-order potential for magnetic body-centered-cubic iron and its transferability
NASA Astrophysics Data System (ADS)
Lin, Yi-Shen; Mrovec, M.; Vitek, V.
2016-06-01
We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to
Segregation and H2 transport rate control in body-centered cubic PdCu membranes.
Yuan, Lixiang; Goldbach, Andreas; Xu, Hengyong
2007-09-20
The H2 permeation of a supported 2 microm thick Pd48Cu52 membrane was investigated between 373 and 909 K at DeltaP=0.1 MPa. The initial H2 flux was 0.3 mol.m(-2).s(-1) at 723 K with an ideal H2/N2 selectivity better than 5000. The membrane underwent a bcc-fcc (body-centered cubic to face-centered cubic) phase transition between 723 and 873 K resulting in compositional segregation. After reannealing at 723 K the alloy layer reverted to a bcc structure although a small fcc fraction remained behind. The mixed-phase morphology was analyzed combining X-ray diffraction with scanning electron microscopy-energy-dispersive spectroscopic analysis (SEM-EDS) measurements, which revealed micrometer-scale Cu-enriched bcc and Cu-depleted fcc domains. The H2 flux JH2 of the fcc Pd48Cu52 single phase layer prevailing above 873 K could be described by an Arrhenius law with JH2=(7.6+/-4.9) mol.m(-2).s(-1) exp[(-32.9+/-4.5) kJ.mol(-1)/(RT)]. The characterization of the H2 flux in the mixed-phase region required two Arrhenius laws, i.e., JH2=(1.35+/-0.14) mol.m(-2).s(-1) exp[(-10.3+/-0.5) kJ.mol(-1)/(RT)] between 523 and ca. 700 K and JH2=(56.1+/-9.3) mol.m(-2).s(-1) exp[(-25.3+/-0.6) kJ.mol(-1)/(RT)] below 454 K. The H2 flux exhibited a square root pressure dependence above 523 K, but the pressure exponent gradually increased to 0.77 upon cooling to 373 K. The activation energy and pressure dependence in the intermediate temperature range are consistent with a diffusion-limited H2 transport, while the changes of these characteristics at lower temperatures indicate a desorption-limited H2 flux. The prevalence of desorption as the permeation rate-limiting step below 454 K is attributed to the pairing of an extraordinarily high hydrogen diffusivity with a marginal hydrogen solubility in bcc PdCu alloys. These result in an acceleration of the bulk diffusion rate and a deceleration of the desorption rate, respectively, allowing the bulk diffusion rate to surpass the desorption rate up to
Gravity theory through affine spheres
NASA Astrophysics Data System (ADS)
Minguzzi, E.
2017-08-01
In this work it is argued that in order to improve our understanding of gravity and spacetime our most successful theory, general relativity, must be destructured. That is, some geometrical assumptions must be dropped and recovered just under suitable limits. Along this line of thought we pursue the idea that the roundness of the light cone, and hence the isotropy of the speed of light, must be relaxed and that, in fact, the shape of light cones must be regarded as a dynamical variable. Mathematically, we apply some important results from affine differential geometry to this problem, the idea being that in the transition we should preserve the identification of the spacetime continuum with a manifold endowed with a cone structure and a spacetime volume form. To that end it is suggested that the cotangent indicatrix (dispersion relation) must be described by an equation of Monge-Ampère type determining a hyperbolic affine sphere, at least whenever the matter content is negligible. Non-relativistic spacetimes fall into this description as they are recovered whenever the center of the affine sphere is at infinity. In the more general context of Lorentz-Finsler theories it is shown that the lightlike unparametrized geodesic flow is completely determined by the distribution of light cones. Moreover, the transport of lightlike momenta is well defined though there could be no notion of affine parameter. Finally, we show how the perturbed indicatrix can be obtained from the perturbed light cone.
Sphere Drag and Heat Transfer.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-20
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-01-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698
Porous Ceramic Spheres from Ion Exchange Resin
NASA Technical Reports Server (NTRS)
Dynys, Fred
2005-01-01
A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.
Process for making hollow carbon spheres
Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle
2013-04-16
A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.
Microgravity and the Formation of Latex Spheres
NASA Technical Reports Server (NTRS)
1982-01-01
This set of photographs illustrates the value of microgravity in the formation of latex spheres. The image at left shows irregular spheres produced on Earth, while the photograph at right shows uniform spheres produced during the STS-3 mission, March 22 - 30, 1982, in the Monodisperse Latex Reactor, developed by the Marshall Space Flight Center and Lehigh University. The Marshall-managed MLR experiment demonstrated the feasibility of producing monodisperse polystyrene latex microspheres in space and their application to medicine and industry.
Simulation of Flow for an Immersed Sphere
2016-12-01
creating an unlikely physical realization of the flow field around the sphere. Two measures are implemented to prevent this problem from occurring. First...AFRL-RW-EG-TR-2016-092 Simulation of Flow for an Immersed Sphere Pedro A. Lopez-Fernandez Ralph K. Tatum Douglas...AND SUBTITLE 5a. CONTRACT NUMBER Simulation of Flow for an Immersed Sphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62602F
Microgravity and the Formation of Latex Spheres
NASA Technical Reports Server (NTRS)
1982-01-01
This set of photographs illustrates the value of microgravity in the formation of latex spheres. The image at left shows irregular spheres produced on Earth, while the photograph at right shows uniform spheres produced during the STS-3 mission, March 22 - 30, 1982, in the Monodisperse Latex Reactor, developed by the Marshall Space Flight Center and Lehigh University. The Marshall-managed MLR experiment demonstrated the feasibility of producing monodisperse polystyrene latex microspheres in space and their application to medicine and industry.
Aperture correction for a sphere interferometer
NASA Astrophysics Data System (ADS)
Arnold Nicolaus, R.; Bönsch, Gerhard
2009-12-01
Considerations have been made to derive a correction for the diameter measurements of a sphere by means of a special sphere interferometer. This correction is caused by the finite diameter of the light source acting as the entrance 'pinhole' aperture in the light collimating system. The finite diameter has the effect that the wave which is incident on the sphere is a superposition of spherical waves which are slightly inclined with respect to each other. The resulting correction is essential for high accuracy dimensional measurements of silicon spheres to determine the Avogadro constant—a new determination of which is a contribution to a new definition of the kilogram.
Chimera grid simulations of falling spheres
NASA Astrophysics Data System (ADS)
Hauser, Thomas; Schauerhamer, Daniel
2007-11-01
Many applications involve modeling a system with moving objects larger than the grid, such as air pollution, combustion systems, accident simulations, chemical and agricultural processes. The chimera grid approach is an efficient approach to solve such problems. Simulations of one sphere falling under the influence of gravity and suction through an orifice will be presented. Additionally, we will demonstrate collisions between two moving spheres. In this simulation the setup is the same as in the one sphere case, but two spheres are placed side by side. Both are released to be acted upon by gravity, the suction, and each other.
Macromolecule-Induced Clustering of Hard Spheres.
Chatterjee, Avik Prasun
2001-06-01
The connectivity Ornstein-Zernike formalism, together with the polymer reference interaction site model (PRISM), is employed to describe connectivity and network formation in mixtures of spheres and polymers. Results are presented for the percolation of spheres induced by both flexible coil-like and rigid rod-like linear polymers; the Percus-Yevick (PY) approximation is used throughout. Our results are compared with predictions based on the adhesive hard sphere (AHS) model, and correlations with the polymer-mediated second virial coefficient between spheres are discussed. Copyright 2001 Academic Press.
Small-world networks on a sphere
NASA Astrophysics Data System (ADS)
Corso, Gilberto; Torres Cruz, Claudia P.
2017-01-01
The Small-World Network on a Sphere SWNS is a non-crossing network that has no hubs and presents the small-world property diam log N with diam being the maximal distance between any two vertices and N being the number of vertices. The SWNS is constructed using a partition of the sphere and the parallels are regular sections of the sphere with constant latitude. The number of cells on the parallels, however, increases exponentially from the pole to the equator of the sphere. We analytically compute the distribution of connectivity, the clustering coefficient and the SWNS distances. The resilience of the model against selective attacks is also discussed.
Method for producing small hollow spheres
Hendricks, Charles D. [Livermore, CA
1979-01-09
Method for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T .gtorsim. 600.degree. C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.
Method for producing small hollow spheres
Hendricks, C.D.
1979-01-09
Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.
Magnetic torque on a rotating superconducting sphere
NASA Technical Reports Server (NTRS)
Holdeman, L. B.
1975-01-01
The London theory of superconductivity is used to calculate the torque on a superconducting sphere rotating in a uniform applied magnetic field. The London theory is combined with classical electrodynamics for a calculation of the direct effect of excess charge on a rotating superconducting sphere. Classical electrodynamics, with the assumption of a perfect Meissner effect, is used to calculate the torque on a superconducting sphere rotating in an arbitrary magnetic induction; this macroscopic approach yields results which are correct to first order. Using the same approach, the torque due to a current loop encircling the rotating sphere is calculated.
Fluorescent integrating sphere for the vacuum ultraviolet.
Brandenberg, W M
1970-02-01
An integrating sphere for absolute, hemispherical reflectance measurements on imperfectly diffuse surfaces in the wavelength range between 1250 A and 3500 A has been built. The sphere uses a double layer coating consisting of a sodium salicylate film on top of a diffuse white paint. The phosphor coating, under uv irradiation, emits fluorescent radiation in the blue, and the underlying paint layer serves as a diffuser of the fluorescent radiation. The usual problem, encountered in ordinary integrating spheres where direct irradiation of the detector by the sample can lead to erroneous signals, is easily eliminated in the fluorescent integrating sphere by proper filtering of the detector.
Science off the Sphere: Earth in Infrared
International Space Station Expedition 30 astronaut Don Pettit views cities, agricultural areas and deserts using an infrared camera for 'Science off the Sphere.' Through a partnership between NASA...
Dynamical interactions between two uniformly magnetized spheres
NASA Astrophysics Data System (ADS)
Edwards, Boyd F.; Edwards, John M.
2017-01-01
Studies of the two-dimensional motion of a magnet sphere in the presence of a second, fixed sphere provide a convenient venue for exploring magnet-magnet interactions, inertia, friction, and rich nonlinear dynamical behavior. These studies exploit the equivalence of these magnetic interactions to the interactions between two equivalent point dipoles. We show that magnet-magnet friction plays a role when magnet spheres are in contact, table friction plays a role at large sphere separations, and eddy currents are always negligible. Web-based simulation and visualization software, called MagPhyx, is provided for education, exploration, and discovery.
Curvature and Tangency Handles for Control of Convex Cubic Shapes
2000-01-01
looked at A-splines constructed with segments of singular al- gebraic cubics, which are just rational cubics, with new, geometrically more meaningful...contact interpolation , and curvatures at three prescribed points, see Figures 1-4. Curve and Surface Design: Saint-Malo 1999 91 Pierre-Jean Laurent...curvature at one contact point. §2. Barycentric Coordinates and Curvature at the Endpoints The general algebraic cubic in cartesian coordinates x, y is
Cubic meter volume optical coherence tomography
WANG, ZHAO; POTSAID, BENJAMIN; CHEN, LONG; DOERR, CHRIS; LEE, HSIANG-CHIEH; NIELSON, TORBEN; JAYARAMAN, VIJAYSEKHAR; CABLE, ALEX E.; SWANSON, ERIC; FUJIMOTO, JAMES G.
2017-01-01
Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications. PMID:28239628
On the stability of cubic galileon accretion
NASA Astrophysics Data System (ADS)
Bergliaffa, Santiago Esteban Perez; Maier, Rodrigo
2017-09-01
We examine the linear stability of the nongravitating steady-state galileon accretion for the case of a Schwarzcshild black hole. Considering the galileon action up to the cubic term in a static and spherically symmetric background we obtain the general solution for the equation of motion which is divided into two branches. By perturbing this solution we define an effective metric which determines the propagation of fluctuations. In this general picture we establish the position of the sonic horizon together with the matching condition of the two branches on it. Restricting to the case of a Schwarzschild background, we show, via the analysis of the energy of the perturbations and its time derivative, that the accreting field is linearly stable.
Polarization conversion in cubic Raman crystals
NASA Astrophysics Data System (ADS)
McKay, Aaron; Sabella, Alexander; Mildren, Richard P.
2017-02-01
Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB.
Polarization conversion in cubic Raman crystals
McKay, Aaron; Sabella, Alexander; Mildren, Richard P.
2017-01-01
Nonlinear conversion of unpolarized beams to lower frequencies is generally inefficient in c(2) materials, as it is challenging to achieve phase-matching for input ordinary and extraordinary beams simultaneously in the normal dispersion regime. Here, we show that cubic Raman crystals having doubly and triply degenerate (E and F type) modes provide a method for efficient nonlinear frequency downconversion of an unpolarized beam and yield a linearly polarized output state. Using Mueller calculus, optimal crystal directions for such polarization conversion are determined. Using diamond, an example of an F-class Raman crystal, we have verified that such conversion is possible with near quantum-defect-limited slope efficiency and a linear polarization contrast of more than 23.9 dB. PMID:28169327
Cubic meter volume optical coherence tomography.
Wang, Zhao; Potsaid, Benjamin; Chen, Long; Doerr, Chris; Lee, Hsiang-Chieh; Nielson, Torben; Jayaraman, Vijaysekhar; Cable, Alex E; Swanson, Eric; Fujimoto, James G
2016-12-01
Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 µm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications.
Triangulation of cubic panorama for view synthesis.
Zhang, Chunxiao; Zhao, Yan; Wu, Falin
2011-08-01
An unstructured triangulation approach, new to our knowledge, is proposed to apply triangular meshes for representing and rendering a scene on a cubic panorama (CP). It sophisticatedly converts a complicated three-dimensional triangulation into a simple three-step triangulation. First, a two-dimensional Delaunay triangulation is individually carried out on each face. Second, an improved polygonal triangulation is implemented in the intermediate regions of each of two faces. Third, a cobweblike triangulation is designed for the remaining intermediate regions after unfolding four faces to the top/bottom face. Since the last two steps well solve the boundary problem arising from cube edges, the triangulation with irregular-distribution feature points is implemented in a CP as a whole. The triangular meshes can be warped from multiple reference CPs onto an arbitrary viewpoint by face-to-face homography transformations. The experiments indicate that the proposed triangulation approach provides a good modeling for the scene with photorealistic rendered CPs.
A smoothing algorithm using cubic spline functions
NASA Technical Reports Server (NTRS)
Smith, R. E., Jr.; Price, J. M.; Howser, L. M.
1974-01-01
Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.
Low pressure growth of cubic boron nitride films
NASA Technical Reports Server (NTRS)
Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)
1997-01-01
A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.
Vibration analysis of cubic rotary-linear piezoelectric actuator.
Mashimo, Tomoaki; Toyama, Shigeki
2011-04-01
Cubic design of a stator in a rotary-linear piezoelectric actuator is sophisticated and interesting, but the vibration theory of the cubic stator remains unclear when using the finite element method (FEM). In this paper, we analyze the vibration behavior of the cubic stator by applying the energy method, which distinguishes the component of mechanical energy. By changing the design of the stator (especially the length in the direction of the through-hole axis), we clarify how the vibration modes are in accordance at one equal frequency in cubic shape. The behavior of the vibration modes is discussed using conventional vibration theory of a beam and a plate. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Bachas, Constantin; Couchoud, Nicolas; Windey, Paul
2001-12-01
We study the geometry of orientifolds in the SU(2)k WZW model. They correspond to the two inequivalent, orientation-reversing involutions of S3, whose fixed-point sets are: the north and south poles (Script O0), or the equator two-sphere (Script O2). We show how the geometric action of these involutions leads unambiguously to the previously obtained algebraic results for the Klein bottle and Möbius amplitudes. We give a semiclassical derivation of the selection rules and signs in the crosscap couplings, paying particular attention to discrete B-fluxes. A novel observation, which does not follow from consistency of the one-loop vacuum diagrams, is that in the case of the Script O0 orientifolds only integer- or only half-integer-spin Cardy states may coexist.
Dynamical simulations of sedimenting spheres
Ladd, A.J.C. )
1993-02-01
The sedimentation of monodisperse suspensions of rigid spheres has been studied by dynamical simulation; computational techniques are described and numerical results are reported. It has been found that there is a slow relaxation of the suspension microstructure during sedimentation, so that compared with the initial equilibrium distribution, there is an increased number of pairs of particles near contact; this leads to a 5%--10% increase in the average sedimentation velocity. Individual particle velocities fluctuate about the mean fall speed; these fluctuations are large and persist for long times. The resulting hydrodynamically induced dispersion of the particles can be characterized by strongly anisotropic diffusion coefficients; however, the dispersion process is non-Fickian at high solids concentrations.
Tandem spheres in hypersonic flow
Laurence, Stuart J; Deiterding, Ralf; Hornung, Hans G
2009-01-01
The problem of determining the forces acting on a secondary body when it is travelling at some point within the shocked region created by a hypersonic primary body is of interest in such situations as store or stage separation, re-entry of multiple vehicles, and atmospheric meteoroid fragmentation. The current work is concerned with a special case of this problem, namely that in which both bodies are spheres and are stationary with respect to one another. We first present an approximate analytical model of the problem; subsequently, numerical simulations are described and results are compared with those from the analytical model. Finally, results are presented from a series of experiments in the T5 hypervelocity shock tunnel in which a newly-developed force-measurement technique was employed.
Phononic crystals of poroelastic spheres
NASA Astrophysics Data System (ADS)
Alevizaki, A.; Sainidou, R.; Rembert, P.; Morvan, B.; Stefanou, N.
2016-11-01
An extension of the layer-multiple-scattering method to phononic crystals of poroelastic spheres immersed in a fluid medium is developed. The applicability of the method is demonstrated on specific examples of close-packed fcc crystals of submerged water-saturated meso- and macroporous silica microspheres. It is shown that, by varying the pore size and/or the porosity, the transmission, reflection, and absorption spectra of finite slabs of these crystals are significantly altered. Strong absorption, driven by the slow waves in the poroelastic material and enhanced by multiple scattering, leads to negligible transmittance over an extended frequency range, which might be useful for practical applications in broadband acoustic shielding. The results are analyzed by reference to relevant phononic dispersion diagrams in the viscous and inertial coupling limits, and a consistent interpretation of the underlying physics is provided.
The "Magical" Sphere: Uncovering the Secret
ERIC Educational Resources Information Center
Petruševski, Vladimir M.; Bukleski, Miha
2006-01-01
A red sphere is seen at the bottom of a sealed glass tube filled with a colorless, transparent liquid. Holding the tube for a short period makes the sphere rise slowly from the bottom until it finally floats on the surface of the liquid. Instructions for preparing the demonstration are given, together with an explanation of the phenomenon. A…
CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals
Braun, P.V.; Stupp, S.I. )
1999-02-01
Growth of CdS was studied in three different liquid crystalline phases demonstrating the versatility of liquid crystal templating of inorganic solids. Semiconductor growth in a hexagonal liquid crystal yielded a nanostructure with hexagonal symmetry, a lamellar liquid crystal yielded a lamellar nanostructure, and a cubic liquid crystal (consisting of spherical micelles) yielded a hollow, spherical product. The product grown in the hexagonal liquid crystal contains rod-like pores of 3 nm diameter, spaced 8 nm apart in a hexagonal lattice. The product grown in the lamellar liquid crystal consists of CdS sheets 5 nm thick, with 2 nm spaces between layers, which presumably contain the organic template. Both these superlattices have virtually identical symmetries and characteristic dimensions as the liquid crystal in which they were formed. The mineralization of the cubic phase yielded hollow spheres of CdS, 20--100 nm in diameter, 1--5 times the diameter of the micelles making up the liquid crystal.
NASA Astrophysics Data System (ADS)
Chanthrasuwan, Maveeka; Asri, Nur Asreenawaty Mohd; Hamid, Nur Nadiah Abd; Majid, Ahmad Abd.; Azmi, Amirah
2017-08-01
The cubic B-spline and cubic trigonometric B-spline functions are used to set up the collocation in finding solutions for the Buckmaster equation. These splines are applied as interpolating functions in the spatial dimension while the finite difference method (FDM) is used to discretize the time derivative. The Buckmaster equation is linearized using Taylor's expansion and solved using two schemes, namely Crank-Nicolson and fully implicit. The von Neumann stability analysis is carried out on the two schemes and they are shown to be conditionally stable. In order to demonstrate the capability of the schemes, some problems are solved and compared with analytical and FDM solutions. The proposed methods are found to generate more accurate results than the FDM.
Cubic phases for studies of drug partition into lipid bilayers.
Engström, S; Nordén, T P; Nyquist, H
1999-08-01
Drug partition into lipid bilayers in a cubic liquid-crystalline phase was investigated. Glyceryl monooleate was used to form the lipid bilayer in a reversed bicontinuous cubic liquid-crystalline phase. The reason for using the cubic phase is that it may coexist with an external aqueous phase, and that the phase boundary (cubic phase/aqueous bulk) is well-defined due to the stiffness of the cubic phase. This makes the cubic phase a potential candidate for high throughput screening (HTS) of the lipophilicity and the dissociation constant (if any) of drug compounds. Clomethiazole (CMZ), lidocaine, prilocaine and 4-phenylbutylamine (4-PBA) were chosen as model drug compounds. It was shown that it is possible to determine a pH-dependent apparent partition coefficient, Kbl/w, of a drug compound using a lipid bilayer expressed as a cubic liquid-crystalline structure. Good agreement was found when the resulting Kbl/w vs. pH curves for CMZ, lidocaine and prilocaine were fitted to a mathematical expression. This included the bilayer/water partition coefficient for the unionised and ionised drug respectively and the pKa of the drug. The effect of different experimental conditions; such as amount of cubic phase, temperature, agitation, sample preparation and interfacial area between the cubic phase and the aqueous bulk on the partition kinetics were investigated as well. The studies reveal that the time needed to reach partition equilibrium was, as expected, substantially reduced (from days to hours) by decreasing the amount of cubic phase, increasing the interfacial area between the cubic phase and the aqueous phase, and increasing the temperature and the agitation of the sample. It was also shown that the bilayer affinity of 4-PBA was increased when a zwitterionic lipid (i.e. dioleoyl phosphatidylcholine, DOPC) was incorporated in the bilayer.
Chen, Jun; Kuncewicz, Thomas; Kharlampieva, Eugenia; Godin, Biana
2015-01-01
Blood-borne objects display a non-spherical shape with in-flow dimensions much larger than the vascular endothelial fenestrations, yet, at the diseased state, are able to traverse through these fenestrations owing to their elasticity. The role of physical parameters including shape and elasticity in the behavior of objects found in the tumor microenvironment needs to be understood to ultimately enhance chemotherapy and minimize its side-effects. In this study, sphere and cube-shaped biocompatible elastic microparticles (EM) made via layer-by-layer (LbL) assembly of hydrogen-bonded tannic acid/poly(N-vinylpyrrolidone)/ (TA/PVPON) as hollow polymer shells and their rigid core-shell precursors (RM) are explored. In contrast to rigid 5-bilayer (TA/PVPON) core-shells, hollow shells are unrecognized by J774A.1 macrophages yet interact with endothelial and breast cancer cells. Internalization of cubical shells by HMVEC (endothelial) is 5-fold more efficient and 6- and 2.5-fold more efficient for MDA-MB-231 and by SUM159 (breast cancer cells), respectively, compared to spherical shells. The interaction of cubical (TA/PVPON)5 shells with endothelial cells is similar under 10 s−1 (characteristic of tumor vasculature) and 100 s−1 shear rate (normal vasculature) while it is decreased at 100 s−1 shear rate for the spherical shells. Our data suggest that cubical geometry promotes interaction of particles with breast cancer cells, while elasticity prevents engulfment by phagocytic cells in the tumor microenvironment. PMID:26424126
Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles.
Vidal-Iglesias, Francisco J; Arán-Ais, Rosa M; Solla-Gullón, José; Garnier, Emmanuel; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M
2012-08-07
The electrocatalytic properties of palladium nanocubes towards the electrochemical oxidation of formic acid were studied in H(2)SO(4) and HClO(4) solutions and compared with those of spherical Pd nanoparticles. The spherical and cubic Pd nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The intrinsic electrocatalytic properties of both nanoparticles were shown to be strongly dependent on the amount of metal deposited on the gold substrate. Thus, to properly compare the activity of both systems (spheres and nanocubes), the amount of sample has to be optimized to avoid problems due to a lower diffusion flux of reactants in the internal parts of the catalyst layer resulting in a lower apparent activity. Under the optimized conditions, the activity of the spheres and nanocubes was very similar between 0.1 and 0.35 V. From this potential value, the activity of the Pd nanocubes was remarkably higher. This enhanced electrocatalytic activity was attributed to the prevalence of Pd(100) facets in agreement with previous studies with Pd single crystal electrodes. The effect of HSO(4)(-)/SO(4)(2-) desorption-adsorption was also evaluated. The activity found in HClO(4) was significantly higher than that obtained in H(2)SO(4) in the whole potential range.
Laser Deposition of Cubic Boron Nitride on Electronic Materials.
1991-08-12
wurtzite or cubic structure of BN (see Figures 4 and 5). It is clear that the films grown via laser processing were amorphous rather than crystalline... cubic structure of BN can be obtained. It appears from our work and Dr. Doll’s work that excimer laser ablated species do not have sufficient energy
Cubic Polynomials with Real or Complex Coefficients: The Full Picture
ERIC Educational Resources Information Center
Bardell, Nicholas S.
2016-01-01
The cubic polynomial with real coefficients has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance…
Cubic Polynomials with Real or Complex Coefficients: The Full Picture
ERIC Educational Resources Information Center
Bardell, Nicholas S.
2016-01-01
The cubic polynomial with real coefficients has a rich and interesting history primarily associated with the endeavours of great mathematicians like del Ferro, Tartaglia, Cardano or Vieta who sought a solution for the roots (Katz, 1998; see Chapter 12.3: The Solution of the Cubic Equation). Suffice it to say that since the times of renaissance…
Smooth cubic commensurate oxides on gallium nitride
Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.
2014-02-14
Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.
Two New Cubic Structures of Mercury Arsenidehalides
NASA Astrophysics Data System (ADS)
Shevelkov, Andrei V.; Dikarev, Evgeny V.; Popovkin, Boris A.
1996-11-01
Crystal structures of Hg4As2Br3(I) and Hg7.4As4Cl6(II), which was prepared for the first time, have been refined based on the X-ray single crystal experiments. Both phases crystallize in the cubic space groupPa3. Crystal data: I,a= 12.610(1),Z= 8,R1= 0.0602; II,a= 12.178(1),Z= 4,R1= 0.0584. Characteristic of both structures are the As2Hg6octahedra having an As-As separation of ca. 2.38 Å. Such octahedra share vertices with AsHg4tetrahedra in I, while in II they compose a perovskite-like three-dimensional network by sharing all vertices. Part of the mercury atoms in II have no neighbors up to 3.53 Å and are considered to possess a zero oxidation state. An idealized path for the I to II structure transformation, which is based on the difference of halogen radii, is suggested.
Topological oxide insulator in cubic perovskite structure.
Jin, Hosub; Rhim, Sonny H; Im, Jino; Freeman, Arthur J
2013-01-01
The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases.
Radiation damage in cubic-stabilized zirconia
NASA Astrophysics Data System (ADS)
Costantini, Jean-Marc; Beuneu, François; Weber, William J.
2013-09-01
Cubic yttria-stabilized zirconia (YSZ) can be used for nuclear applications as an inert matrix for actinide immobilization or transmutation. Indeed, the large amount of native oxygen vacancies leads to a high radiation tolerance of this material owing to defect recombination occurring in the atomic displacement cascades induced by fast neutron irradiation or ion implantations, as showed by molecular dynamics (MD) simulations. Amorphization cannot be obtained in YSZ either by nuclear-collision or electronic-excitation damage, just like in urania. A kind of polygonization structure with slightly disoriented crystalline domains is obtained in both cases. In the first steps of damage, specific isolated point defects (like F+-type color centers) and point-defect clusters are produced by nuclear collisions with charged particles or neutrons. Further increase of damage leads to dislocation-loop formation then to collapse of the dislocation network into a polygonization structure. For swift heavy ion irradiations, a similar polygonization structure is obtained above a threshold stopping power value of about 20-30 keV nm-1.
Topological Oxide Insulator in Cubic Perovskite Structure
Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.
2013-01-01
The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973
Smooth cubic commensurate oxides on gallium nitride
NASA Astrophysics Data System (ADS)
Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Biegalski, Michael D.; Christen, Hans M.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul
2014-02-01
Smooth, commensurate alloys of ⟨111⟩-oriented Mg0.52Ca0.48O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.
Radiation damage in cubic-stabilized zirconia
Costantini, Jean-Marc; Beuneu, Francois; Weber, William J
2013-01-01
Cubic yttria-stabilized zirconia (YSZ) can be used for nuclear applications as an inert matrix for actinide immobilization or transmutation. Indeed, the large amount of native oxygen vacancies leads to a high radiation tolerance of this material owing to defect recombination occurring in the atomic displacements cascades induced by fast neutron irradiation or ion implantations, as showed by Molecular dynamics (MD) simulations. Amorphization cannot be obtained in YSZ either by nuclear-collision or electronic-excitation damage, just like in urania. A kind of polygonization structure with slightly disoriented crystalline domains is obtained in both cases. In the first steps of damage, specific isolated point defects (like F+-type color centers) and point-defect clusters are produced by nuclear collisions with charged particles or neutrons. Further increase of damage leads to dislocation-loop formation, then to collapse of the dislocation network into a polygonization structure. For swift heavy ion irradiations, a similar polygonization structure is obtained above a threshold stopping power value of about 20-30 keV nm-1.
Ceramic Spheres From Cation Exchange Beads
NASA Technical Reports Server (NTRS)
Dynys, F. W.
2003-01-01
Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.
Anomalies, conformal manifolds, and spheres
Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan
2016-03-04
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
Anomalies, conformal manifolds, and spheres
Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; ...
2016-03-04
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less
NASA Astrophysics Data System (ADS)
Lucarini, Valerio
2009-01-01
We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space
2001-04-25
StenniSphere, the John C. Stennis Space Center's visitor center in Hancock County, Miss., features a 14,000-square-foot museum and outdoor exhibits about Stennis Space Center. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies. Recently named Mississippi's Travel Attraction of the Year, StenniSphere hosted a quarter of a million visitors in its first year and is a major school field trip destination.
Manipulator for rotating and examining small spheres
Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA
1980-02-12
A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.
Manipulator for rotating and examining small spheres
Weinstein, B.W.; Willenborg, D.L.
1980-02-12
A manipulator is disclosed which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern. 8 figs.
NASA Technical Reports Server (NTRS)
2001-01-01
StenniSphere, the John C. Stennis Space Center's visitor center in Hancock County, Miss., features a 14,000-square-foot museum and outdoor exhibits about Stennis Space Center. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA, the Naval Meteorology and Oceanography Command, and other resident agencies. Recently named Mississippi's Travel Attraction of the Year, StenniSphere hosted a quarter of a million visitors in its first year and is a major school field trip destination.
DOD SPHERES-RINGS Test Session
2013-11-04
ISS037-E-025915 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
Superelastic carbon spheres under high pressure
NASA Astrophysics Data System (ADS)
Li, Meifen; Guo, Junjie; Xu, Bingshe
2013-03-01
We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.
Sadakane, Masahiro; Sasaki, Keisuke; Nakamura, Hiroki; Yamamoto, Takashi; Ninomiya, Wataru; Ueda, Wataru
2012-12-21
We demonstrate that the glass-transition temperature (T(g)) of a polymer sphere template is a crucial factor in the production of three-dimensionally ordered macroporous (3DOM) materials. Metal nitrate dissolved in ethylene glycol-methanol was infiltrated into the void of a face-centered, close-packed colloidal crystal of poly(methyl methacrylate) (PMMA)-based spheres. The metal nitrate reacts with EG to form a metal oxalate (or metal glycoxylate) solid (nitrate oxidation) in the void of the template when the metal nitrate-EG-PMMA composite is heated. Further heating converts metal oxalate to metal oxide and removes PMMA to form 3DOM materials. We investigated the effect of T(g) of PMMA templates and obtained clear evidence that the solidification temperature of the metal precursor solution (i.e., nitration oxidation temperature) should be lower than the T(g) of the polymer spheres to obtain a well-ordered 3DOM structure.
Aerodynamic drag of a transiting sphere by large-scale tomographic-PIV
NASA Astrophysics Data System (ADS)
Terra, W.; Sciacchitano, A.; Scarano, F.
2017-07-01
A method is introduced to measure the aerodynamic drag of moving objects such as ground vehicles or athletes in speed sports. Experiments are conducted as proof-of-concept that yield the aerodynamic drag of a sphere towed through a square duct in stagnant air. The drag force is evaluated using large-scale tomographic PIV and invoking the time-average momentum equation within a control volume in a frame of reference moving with the object. The sphere with 0.1 m diameter moves at a velocity of 1.45 m/s, corresponding to a Reynolds number of 10,000. The measurements in the wake of the sphere are conducted at a rate of 500 Hz within a thin volume of approximately 3 × 40 × 40 cubic centimeters. Neutrally buoyant helium-filled soap bubbles are used as flow tracers. The terms composing the drag are related to the flow momentum, the pressure and the velocity fluctuations and they are separately evaluated. The momentum and pressure terms dominate the momentum budget in the near wake up to 1.3 diameters downstream of the model. The pressure term decays rapidly and vanishes within 5 diameters. The term due to velocity fluctuations contributes up to 10% to the drag. The measurements yield a relatively constant value of the drag coefficient starting from 2 diameters downstream of the sphere. At 7 diameters the measurement interval terminates due to the finite length of the duct. Error sources that need to be accounted for are the sphere support wake and blockage effects. The above findings can provide practical criteria for the drag evaluation of generic bluff objects with this measurement technique.
Please comply: the water entry of soft spheres
NASA Astrophysics Data System (ADS)
Belden, Jesse; Hurd, Randy; Fanning, Tate; Jandron, Michael; Rekos, John; Bower, Allan; Truscott, Tadd
2015-11-01
The typical phenomena associated with sphere water impact are significantly altered when the sphere material is highly compliant rather than rigid. We describe the water impact physics of homogenous and hollow elastic spheres. The homogeneous spheres undergo large oscillatory deformations throughout entry that carve nested disturbances into the normally smooth air cavity, altering cavity shape and pinch off. Using an analytical model, we relate the maximum sphere deformation to the material properties and impact velocity. This characteristic deformation is used to reconcile the differences between cavities formed by compliant and rigid spheres. In addition to the nested disturbances seen with the homogeneous spheres, we observe azimuthal irregularities on the cavity during water entry of hollow elastic spheres. Based on experiments and finite-element modeling, we suggest that these disturbances are initiated by vibration mode shapes excited in the hollow spheres upon impact. For all sphere types, we compare the forces throughout water entry to the rigid sphere case.
On the shock response of cubic metals
NASA Astrophysics Data System (ADS)
Bourne, N. K.; Gray, G. T.; Millett, J. C. F.
2009-11-01
The response of four cubic metals to shock loading is reviewed in order to understand the effects of microstructure on continuum response. Experiments are described that link defect generation and storage mechanisms at the mesoscale to observations in the bulk. Four materials were reviewed; these were fcc nickel, the ordered fcc intermetallic Ni3Al, the bcc metal tantalum, and two alloys based on the intermetallic phase TiAl; Ti-46.5Al-2Cr-2Nb and Ti-48Al-2Cr-2Nb-1B. The experiments described are in two groups: first, equation of state and shear strength measurements using Manganin stress gauges and, second, postshock microstructural examinations and measurement of changes in mechanical properties. The behaviors described are linked through the description of time dependent plasticity mechanisms to the final states achieved. Recovered targets displayed dislocation microstructures illustrating processes active during the shock-loading process. Reloading of previously shock-prestrained samples illustrated shock strengthening for the fcc metals Ni and Ni3Al while showing no such effect for bcc Ta and for the intermetallic TiAl. This difference in effective shock hardening has been related, on the one hand, to the fact that bcc metals have fewer available slip systems that can operate than fcc crystals and to the observation that the lower symmetry materials (Ta and TiAl) both possess high Peierls stress and thus have higher resistances to defect motion in the lattice under shock-loading conditions. These behaviors, compared between these four materials, illustrate the role of defect generation, transport, storage, and interaction in determining the response of materials to shock prestraining.
Polyimide nanocomposites based on cubic zirconium tungstate
NASA Astrophysics Data System (ADS)
Ramasubramanian Sharma, Gayathri
2009-12-01
In this research, cubic zirconium tungstate (ZrW2O8) was used as a filler to reduce the CTE of polyimides (PI), and the effect of ZrW2O8 nanoparticles on the bulk polymer properties was studied. Polyimides are high performance polymers with exceptional thermal stability, and there is a need for PIs with low CTEs for high temperature applications. The nanofiller, cubic ZrW2O8, is well known for its isotropic negative thermal expansion (NTE) over a wide temperature range from -272.7 to 777°C. The preparation of nanocomposites involved the synthesis of ZrW 2O8 nanofiller, engineering the polymer-filler interface using linker groups and optimization of processing strategies to prepare free-standing PI nanocomposite films. A hydrothermal method was used to synthesize ZrW 2O8 nanoparticles. Polyimide-ZrW2O8 interface interaction was enhanced by covalently bonding linker moieties to the surface of ZrW2O8 nanoparticles. Specifically, ZrW 2O8 nanoparticles were functionalized with two different linker groups: (1) a short aliphatic silane, and (2) low molecular weight PI. The surface functionalization was confirmed using X-ray photoelectron spectroscopy and thermal gravimetric analysis (TGA). Reprecipitation blending was used to prepare the freestanding PI-ZrW2O8 nanocomposite films with up to 15 volume% filler loading. SEM images showed the improvements in polymer-filler wetting behavior achieved using interface engineering. SEM images indicated that there was better filler dispersion in the PI matrix using reprecipitation blending, compared to the filler dispersion achieved in the nanocomposites prepared using conventional blending technique. The structure-property relationships in PI-ZrW2O8 nanocomposites were investigated by studying the thermal degradation, glass transition, tensile and thermal expansion properties of the nanocomposites. The properties were studied as a function of filler loading and interface linker groups. Addition of ZrW2O8 nanoparticles did not
Acoustic levitation of a large solid sphere
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-07-25
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Acoustic levitation of a large solid sphere
NASA Astrophysics Data System (ADS)
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-07-01
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
StenniSphere reopens after Hurricane Katrina
NASA Technical Reports Server (NTRS)
2006-01-01
StenniSphere reopened Jan. 18, 2006, almost five months after Hurricane Katrina damaged the basement of the building that houses the visitor center. Thanks to the staff's careful preparations before the storm, no artifacts or exhibits were harmed.
StenniSphere reopens after Hurricane Katrina
2006-01-18
StenniSphere reopened Jan. 18, 2006, almost five months after Hurricane Katrina damaged the basement of the building that houses the visitor center. Thanks to the staff's careful preparations before the storm, no artifacts or exhibits were harmed.
Catalytic, hollow, refractory spheres, conversions with them
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)
1989-01-01
Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.
StenniSphere reopens after Hurricane Katrina
NASA Technical Reports Server (NTRS)
2006-01-01
StenniSphere reopened Jan. 18, 2006, almost five months after Hurricane Katrina damaged the basement of the building that houses the visitor center. Thanks to the staff's careful preparations before the storm, no artifacts or exhibits were harmed.
Science off the Sphere: Knitting Needles
International Space Station Expedition 30 astronaut Don Pettit uses knitting needles and water droplets to demonstrate physics in space for 'Science off the Sphere.' Through a partnership between N...
Science off the Sphere: Lenses and Vortices
International Space Station Expedition 30 astronaut Don Pettit demonstrates physics in space for 'Science off the Sphere.' Through a partnership between NASA and the American Physical Society you c...
Science off the Sphere: Thin Film Physics
International Space Station Expedition 30 astronaut Don Pettit demonstrates physics in space for 'Science off the Sphere.' Through a partnership between NASA and the American Physical Society you c...
#4 Simulated Solar Sphere from Data - Interpolated
Rotating solar sphere made from a combination of imagery from the two STEREO spacecraft, together with simultaneous data from the Solar Dynamic Observatory.This movie is made from data taken on Jan...
Elastic spheres can walk on water
Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.
2016-01-01
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys. PMID:26842860
Separate spheres and indirect benefits
Brock, Dan W
2003-01-01
On any plausible account of the basis for health care resource prioritization, the benefits and costs of different alternative resource uses are relevant considerations in the prioritization process. Consequentialists hold that the maximization of benefits with available resources is the only relevant consideration. Non-consequentialists do not reject the relevance of consequences of benefits and costs, but insist that other considerations, and in particular the distribution of benefits and costs, are morally important as well. Whatever one's particular account of morally justified standards for the prioritization of different health interventions, we must be able to measure those interventions' benefits and costs. There are many theoretical and practical difficulties in that measurement, such as how to weigh extending life against improving health and quality of life as well as how different quality of life improvements should be valued, but they are not my concern here. This paper addresses two related issues in assessing benefits and costs for health resource prioritization. First, should benefits be restricted only to health benefits, or include as well other non health benefits such as economic benefits to employers from reducing the lost work time due to illness of their employees? I shall call this the Separate Spheres problem. Second, should only the direct benefits, such as extending life or reducing disability, and direct costs, such as costs of medical personnel and supplies, of health interventions be counted, or should other indirect benefits and costs be counted as well? I shall call this the Indirect Benefits problem. These two issues can have great importance for a ranking of different health interventions by either a cost/benefit or cost effectiveness analysis (CEA) standard. PMID:12773217
Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea.
Ren, T; Nuttall, A L; Miller, J M
1996-12-01
It has been demonstrated that electrical stimulation of the cochlear partition results in basilar membrane vibration and otoacoustic emissions. Electromotility of stimulated outer hair cells (OHCs) elicits the electrically evoked otoacoustic emissions (EEOAEs). Although electrically evoked upper and lower sideband distortion products (DPs) have been reported, electrically evoked cubic DP has not been investigated. Since the acoustically evoked cubic DP is the most commonly used otoacoustic measure of cochlear nonlinearity, this study tested whether electrical stimuli evoke a cubic DP otoacoustic emission. An electrical current containing the frequency component f1 and f2 (f1 < f2) was delivered to the round window niche of the gerbil, and electrically induced sound pressure change in the external ear canal was measured with a microphone. It was found that, in addition to f1 and f2 EEOAEs, cubic DP (2f1-f2) and other emissions at 3f1-2f2, 2f2-f1 and f2-f1 frequencies are electrically evoked. The electrically evoked cubic DP growth is similar to that of an acoustically evoked cubic DP. An electrical stimulus at f1 or f2 and an acoustic stimulus at f2 or f1 produce an identical cubic DP to that evoked by two electrical stimuli and/or two acoustic stimuli at f1 and f2 frequencies. An acoustic suppressor at a frequency near f2 can completely suppress an electrically evoked cubic DP emission. These data demonstrate that DPs can be provoked by a complex two frequency electrical current delivered to the round window niche. These stimuli elicit mechanical vibrations, from stimulated OHCs near the round window, which propagate apically toward their characteristic frequency places on the basilar membrane, and produce combination DPs. Electrically evoked cubic DPs appear to be produced by the same nonlinear mechanism that generates acoustically evoked DPs.
Formation and stability of cubic ice in water droplets.
Murray, Benjamin J; Bertram, Allan K
2006-01-07
There is growing evidence that a metastable phase of ice, cubic ice, plays an important role in the Earth's troposphere and stratosphere. Cubic ice may also be important in diverse fields such as cryobiology and planetary sciences. Using X-ray diffraction, we studied the formation of cubic ice in pure water droplets suspended in an oil matrix as a function of droplet size. The results show that droplets of volume median diameter 5.6 microm froze dominantly to cubic ice with stacking faults. These results support previous suggestions that cubic ice is the crystalline phase that nucleates when pure water droplets freeze homogeneously at approximately 235 K. It is also shown that as the size of the water droplets increased from 5.6 to 17.0 microm, the formation of the stable phase of ice, hexagonal ice, was favoured. This size dependence can be rationalised with heat transfer calculations. We also investigated the stability of cubic ice that forms in water droplets suspended in an oil matrix. We observe cubic ice up to 243 K, much higher in temperature than observed in many previous studies. This result adds to the existing literature that shows bulk ice I(c) can persist up to approximately 240 K. The transformation of cubic ice to hexagonal ice also showed a complex time and temperature dependence, proceeding rapidly at first and then slowing down and coming to a halt. These combined results help explain why cubic ice forms in some experiments described in the literature and not others.
Microstructure and Properties of WC Spheres
2008-11-01
Effective area vs. Weibull modulus for the 6.35-mm-diameter C-sphere specimen with 1.27-mm ligament thickness...6 Figure 5. Effective volume vs. Weibull modulus for the 6.35-mm-diameter C-sphere...performance in a thinner armor package (1–3). Conversely, it is also a preferred material for the core component of several armor piercing
Hollow sphere ceramic particles for abradable coatings
Longo, F.N.; Bader, N.F. III; Dorfman, M.R.
1984-05-22
A hollow sphere ceramic flame spray powder is disclosed. The desired constituents are first formed into agglomerated particles in a spray drier. Then the agglomerated particles are introduced into a plasma flame which is adjusted so that the particles collected are substantially hollow. The hollow sphere ceramic particles are suitable for flame spraying a porous and abradable coating. The hollow particles may be selected from the group consisting of zirconium oxide and magnesium zirconate.
Garcia, J; Ghaly, E S
2001-08-01
The objective of this study was to attempt to deliver glipizide from spheres and compacts containing the natural polymer Carrageenan (Gelcarin, GP 812) and prepared by extruder/marumerizer technique. A second objective was to evaluate the mucoadhesive strength of the bioadhesive spheres onto the mucus membrane of rabbit. The effects of polymer, drug level, and type of spheronizing material were evaluated. All sphere formulations were compacted into tablets using a rotary Manesty B-3B machine equipped with 12/32 flat face tooling. Results show drug release from spheres and compacts decreased as the level of Carrageenan was increased. However as the level of drug was increased drug release also increased. Spheres containing Avicel PH-101 gave higher drug release than spheres of the same composition but prepared with Avicel RC-581. In general, the drug release from tablets was higher than its corresponding spheres and drug release from spheres and tablets containing Carrageenan was higher than control spheres and tablets of the same composition but without Carrageenan. Tablet formulations compacted from spheres containing Avicel RC-581 gave higher release rate constants than tablet formulations of the same composition but prepared with Avicel PH-101. The bioadhesion study showed that mucoadhesion strength between spheres and mucus membrane of the rabbit depends on the levels of polymer, drug, and type of spheronizing material. Developed bioadhesive spheres and tablets increase the solubility of glipizide which may increase its bioavailability and also increased the adherence of the bioadhesive systems to the mucous membrane so that once daily dose can be administered.
Identification of Tetragonal and Cubic Structures of Zirconia
1990-05-29
sample containing 13 mol.% yttria-stabilized zirconia possessed the cubic structure with ao = 0.51420 + 0.00012 nm. A sample containing 6.5 mol.% yttria...spectroscopic data for the crystalline phases. However, Benedetti et al.35 have recently reassigned a cubic structure to a zirconia sample prerarel in a...parameters calculated from the diffraction data using 13 a least-square fle, indicate that Sample A has a cubic structure with ao = 0.51420 + 0.00012 nm. This
Strain tuning of topological band order in cubic semiconductors
Feng, wanxiang; Zhu, Wenguang; Weitering, Hanno; Stocks, George Malcolm; Yao, yugui; Xiao, Di
2012-01-01
We theoretically explore the possibility of tuning the topological order of cubic diamond/zinc-blende semi- conductors with external strain. Based on a simple tight-binding model, we analyze the evolution of the cubic semiconductor band structure under hydrostatic or biaxial lattice expansion, by which a generic guiding princi- ple is established that biaxial lattice expansion can induce a topological phase transition of small band-gap cubic semiconductors via a band inversion and symmetry breaking at point. Using density functional theory cal- culations, we demonstrate that a prototype topological trivial semiconductor, InSb, is converted to a nontrivial topological semiconductor with a 2% 3% biaxial lattice expansion.
Laminar Flow past a Rotating Sphere
NASA Astrophysics Data System (ADS)
Kim, Dongjoo; Choi, Haecheon
2000-11-01
In this study, laminar flow past a rotating sphere is numerically investigated to understand the effect of the streamwise rotation on the flow characteristics behind a sphere. The present numerical method is based on a newly developed immersed boundary method in a cylindrical coordinate. Numerical simulations are performed at Re =100, 250 and 300 in the range of 0 <= ω^* <= 1.0, where ω^* is the maximum circumferential speed at the sphere surface normalized by the free-stream velocity. At ω^*=0 (without rotation), the flow past a sphere experiences steady axisymmetry, steady plane-symmetry, and unsteady plane-symmetry, respectively, at Re =100, 250 and 300. When the rotational speed increases, the drag increases for all the Reynolds numbers investigated, whereas the lift shows a non-monotonic behavior depending on the Reynolds number. At Re =100, the flow past a sphere shows steady axisymmetry for all the rotational speeds considered and thus the lift is zero. On the other hand, at Re =250 and 300, the flow becomes unsteady with rotation. With increasing rotational speed, the lift first decreases and then increases, showing a local minimum of lift at a specific rotational speed. The three-dimensional vortical structures behind a sphere are significantly modified by the streamwise rotation. For example, the vortical structures at Re =300 are completely changed and phase locked with rotation at ω^*=0.6.
Inverse Magnus effect on a rotating sphere
NASA Astrophysics Data System (ADS)
Kim, Jooha; Park, Hyungmin; Choi, Haecheon; Yoo, Jung Yul
2011-11-01
In this study, we investigate the flow characteristics of rotating spheres in the subcritical Reynolds number (Re) regime by measuring the drag and lift forces on the sphere and the two-dimensional velocity in the wake. The experiment is conducted in a wind tunnel at Re = 0 . 6 ×105 - 2 . 6 ×105 and the spin ratio (ratio of surface velocity to the free-stream velocity) of 0 (no spin) - 0.5. The drag coefficient on a stationary sphere remains nearly constant at around 0.52. However, the magnitude of lift coefficient is nearly zero at Re < 2 . 0 ×105 , but rapidly increases to 0.3 and then remains constant with further increasing Reynolds number. On the other hand, with rotation, the lift coefficient shows negative values, called inverse Magnus effect, depending on the magnitudes of the Reynolds number and spin ratio. The velocity field measured from a particle image velocimetry (PIV) indicates that non-zero lift coefficient on a stationary sphere at Re > 2 . 0 ×105 results from the asymmetry of separation line, whereas the inverse Magnus effect for the rotating sphere results from the differences in the boundary-layer growth and separation along the upper and lower sphere surfaces. Supported by the WCU, Converging Research Center and Priority Research Centers Program, NRF, MEST, Korea.
Radiation of non-relativistic particle on a conducting sphere and a string of spheres
NASA Astrophysics Data System (ADS)
Shul'ga, N. F.; Syshchenko, V. V.; Larikova, E. A.
2017-07-01
The radiation resulting from the uniform motion of a charged particle by (or through) metal sphere is considered. The simple but rigorous description of the radiation process is developed for the case of non-relativistic particle and perfectly conducting sphere by the way of the method of images known from electrostatics. The spectral-angular and spectral densities of the diffraction and transition radiation on the single sphere are computed. The Smith-Purcell radiation caused by motion of the particle parallel to the periodic string of spheres is also considered.
The compressibility of cubic white and orthorhombic, rhombohedral, and simple cubic black phosphorus
Clark, Simon M; Zaug, Joseph
2010-03-10
The effect of pressure on the crystal structure of white phosphorus has been studied up to 22.4 GPa. The ?alpha phase was found to transform into the alpha' phase at 0.87 +- 0.04 GPa with a volume change of 0.1 +- 0.3 cc/mol. A fit of a second order Birch- Murnaghan equation to the data gave Vo = 16.94 ? 0.08 cc/mol and Ko = 6.7 +- 0.5 GPa for the alpha phase and Vo = 16.4 +- 0.1 cc/mol and Ko = 9.1 +- 0.3 GPa for the alpha' phase. The alpha' phase was found to transform to the A17 phase of black phosphorus at 2.68 +- 0.34 GPa and then with increasing pressure to the A7 and then simple cubic phase of black phosphorus. A fit of a second order Birch-Murnaghan equation to our data combined with previous measurements gave Vo = 11.43 +- 0.05 cc/mol and Ko = 34.7 +- 0.5 GPa for the A17 phase, Vo = 9.62 +- 0.01 cc/mol and Ko = 65.0 +- 0.6 GPa for the A7 phase and , Vo = 9.23 +- 0.01 cc/mol and Ko = 72.5 +- 0.3 GPa for the simple cubic phase.
Formation energy of planar superstructure defects in ordered FCC and BCC alloy lattices
Starostenkov, M.D.; Dmitriev, S.V.; Frolov, A.M.; Volkova, S.M.
1995-05-01
A solid sphere model is used to develop a general procedure for calculating the energy of planar superstructure defects of any type in ordered alloys with arbitrary unit cells. As an example we obtain an analytic expression for the energy required to form c-domain boundaries for L1{sub 0} superstructures in a face-centered cubic lattice.
A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements
ERIC Educational Resources Information Center
Collins, David C.
2011-01-01
An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…
A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements
ERIC Educational Resources Information Center
Collins, David C.
2011-01-01
An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…
Nonlinear surface acoustic waves in cubic crystals
NASA Astrophysics Data System (ADS)
Kumon, Ronald Edward
Model equations developed by Hamilton, Il'inskii, and Zabolotskaya [J. Acoust. Soc. Am. 105, 639-651 (1999)] are used to perform theoretical and numerical studies of nonlinear surface acoustic waves in a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, quasilinear solutions of the equations are derived, and expressions are developed for the shock formation distance and nonlinearity coefficient. A time-domain equation corresponding to the frequency-domain model equations is derived and shown to reduce to a time-domain equation introduced previously for Rayleigh waves [E. A. Zabolotskaya, J. Acoust. Soc. Am. 91, 2569-2575 (1992)]. Numerical calculations are performed to predict the evolution of initially monofrequency surface waves in the (001), (110), and (111) planes of the crystals RbCl, KCl, NaCl, CaF2, SrF2, BaF2, C (diamond), Si, Ge, Al, Ni, Cu in the moverline 3m point group, and the crystals Cs-alum, NH4- alum, and K-alum in the moverline 3 point group. The calculations are based on measured second- and third- order elastic constants taken from the literature. Nonlinearity matrix elements which describe the coupling strength of harmonic interactions are shown to provide a powerful tool for characterizing waveform distortion. Simulations in the (001) and (110) planes show that in certain directions the velocity waveform distortion may change in sign, generation of one or more harmonies may be suppressed and shock formation postponed, or energy may be transferred rapidly to the highest harmonics and shock formation enhanced. Simulations in the (111) plane show that the nonlinearity matrix elements are generally complex-valued, which may lead to asymmetric distortion and the appearance of low frequency oscillations near the peaks and shocks in the velocity waveforms. A simple transformation based on the phase of the nonlinearity matrix is shown to provide a reasonable approximation of asymmetric waveform
19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON ...
19. 1500 CUBIC FEET CAPACITY SCRAP STEEL CHARGING BOX ON THE CHARGING AISLE OF THE BOP SHOP LOOKING NORTHWEST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
ERIC Educational Resources Information Center
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
On the role of cubic structure in ice nucleation
NASA Astrophysics Data System (ADS)
Takahashi, Tōru
1982-10-01
To clarify the formation mechanism of snow polycrystals the possibility of formation of a cubic ice embryo is discussed on the basis of the homogeneous nucleation theory for supercooled water formed from ambient water molecules in the phase of supersaturated vapour. In this connection, attention is paid to a finding from a model of broken hydrogen bonds that the plane {111} of a cubic ice crystal has a smaller specific interfacial energy than each of the {0001} or {10ovbar|10} planes of a hexagonal ice crystal. Hence, it follows that a critical cubic embryo has a smaller activation energy than a critical hexagonal embryo below a critical temperature; namely, Ostwald's step rule (Stufenregel) holds for a change from cubic ice to hexagonal ice below a critical temperature. This discussion is reinforced by examining, from the viewpoint of this step rule, the observed misorientation of the c-axis of natural snow polycrystals and the results of experiments using frozen water droplets.
Monotonicity preserving splines using rational cubic Timmer interpolation
NASA Astrophysics Data System (ADS)
Zakaria, Wan Zafira Ezza Wan; Alimin, Nur Safiyah; Ali, Jamaludin Md
2017-08-01
In scientific application and Computer Aided Design (CAD), users usually need to generate a spline passing through a given set of data, which preserves certain shape properties of the data such as positivity, monotonicity or convexity. The required curve has to be a smooth shape-preserving interpolant. In this paper a rational cubic spline in Timmer representation is developed to generate interpolant that preserves monotonicity with visually pleasing curve. To control the shape of the interpolant three parameters are introduced. The shape parameters in the description of the rational cubic interpolant are subjected to monotonicity constrained. The necessary and sufficient conditions of the rational cubic interpolant are derived and visually the proposed rational cubic Timmer interpolant gives very pleasing results.
Late-time attractor for the cubic nonlinear wave equation
Szpak, Nikodem
2010-08-15
We apply our recently developed scaling technique for obtaining late-time asymptotics to the cubic nonlinear wave equation and explain the appearance and approach to the two-parameter attractor found recently by Bizon and Zenginoglu.
March 20, 2012 Space Station Briefing: Cubic Satellite Deploy
This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the deploy of small cubic satellites (often ...
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
ERIC Educational Resources Information Center
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
March 20, 2012 Space Station Briefing: Cubic Satellite Deploy (Narrated)
This animation, presented by Expedition 32 Lead Flight Director Dina Contella during the March 20, 2012 ISS Program and Science Overview Briefing, shows the deploy of small cubic satellites (often ...
Identification of Hammerstein models with cubic spline nonlinearities.
Dempsey, Erika J; Westwick, David T
2004-02-01
This paper considers the use of cubic splines, instead of polynomials, to represent the static nonlinearities in block structured models. It introduces a system identification algorithm for the Hammerstein structure, a static nonlinearity followed by a linear filter, where cubic splines represent the static nonlinearity and the linear dynamics are modeled using a finite impulse response filter. The algorithm uses a separable least squares Levenberg-Marquardt optimization to identify Hammerstein cascades whose nonlinearities are modeled by either cubic splines or polynomials. These algorithms are compared in simulation, where the effects of variations in the input spectrum and distribution, and those of the measurement noise are examined. The two algorithms are used to fit Hammerstein models to stretch reflex electromyogram (EMG) data recorded from a spinal cord injured patient. The model with the cubic spline nonlinearity provides more accurate predictions of the reflex EMG than the polynomial based model, even in novel data.
Terminal energy distribution of blast waves from bursting spheres
NASA Technical Reports Server (NTRS)
Adamczyk, A. A.; Strehlow, R. A.
1977-01-01
The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.
Effects of self-assembly process of latex spheres on the final topology of macroporous silica.
Barros Filho, Djalma A; Hisano, Cíntia; Bertholdo, Roberto; Schiavetto, Matheus G; Santilli, Celso; Ribeiro, Sidney J L; Messaddeq, Younés
2005-11-15
This paper surveys the topology of macroporous silica prepared using latex templates covering the submicrometric range (0.1-0.7 mum). The behavior of latex spheres in aqueous dispersion has been analyzed by dynamic light scattering (DLS) measurement indicating the most appropriate conditions to form well-defined cubic arrays. The optical behavior of latex spheres has been analyzed by transmittance and reflectance measurements in order to determine their diameter and filling factor when they were assembled in bidimensional arrays. Macroscopic templates have been obtained by a centrifugation process and their crystalline ordering has been confirmed by porosimetry and scanning electron microscopy. These self-assembled structures have been used to produce macroporous silica, whose final topology depends on the pore size distribution of the original template. It has been seen that latex spheres are ordered in a predominant fcc arrangement with slipping of tetragonal pores due to the action of attractive electrostatic interactions. The main effect is to change the spherical shape of voids in macroporous silica into a hexagonal configuration with possible applications to fabricate photonic devices with novel optical properties.
Holographic hierarchy in the Gaussian matrix model via the fuzzy sphere
NASA Astrophysics Data System (ADS)
Garner, David; Ramgoolam, Sanjaye
2013-10-01
The Gaussian Hermitian matrix model was recently proposed to have a dual string description with worldsheets mapping to a sphere target space. The correlators were written as sums over holomorphic (Belyi) maps from worldsheets to the two-dimensional sphere, branched over three points. We express the matrix model correlators by using the fuzzy sphere construction of matrix algebras, which can be interpreted as a string field theory description of the Belyi strings. This gives the correlators in terms of trivalent ribbon graphs that represent the couplings of irreducible representations of su(2), which can be evaluated in terms of 3j and 6j symbols. The Gaussian model perturbed by a cubic potential is then recognised as a generating function for Ponzano-Regge partition functions for 3-manifolds having the worldsheet as boundary, and equipped with boundary data determined by the ribbon graphs. This can be viewed as a holographic extension of the Belyi string worldsheets to membrane worldvolumes, forming part of a holographic hierarchy linking, via the large N expansion, the zero-dimensional QFT of the Matrix model to 2D strings and 3D membranes. Note that if, after removing the white vertices, the graph contains a blue edge connecting to the same black vertex at both ends, then the triangulation generated from the black edges will contain faces that resemble cut discs. These faces are triangles with two of the edges identified.
On the assumption of cubic graphs of vascular networks
NASA Astrophysics Data System (ADS)
Cha, Sung-Hyuk; Chang, Sukmoon; Gargano, Michael L.
2006-03-01
A vascular network is often represented by a Reeb graph, which is a topological skeleton, and graph theory has been widely applied to analyze properties of a vascular network. A Reeb graph model for a vascular network is obtained by assigning the branch points of the network to be the vertices of the graph and the vessels between branch points to be the edges of the graph. Vascular networks develop by way of angiogenesis, a growth process that involves the biological mechanisms of vessel sprouting (budding) and splitting (intussusception). Vascular networks develop by way of two biological mechanisms of vessel sprouting (budding) and splitting (intussusception). According to a graph theory modeling of two vascular network growth mechanisms, all nodes in the Reeb graph must be cubic in degree except for two special nodes: the afferent (A) and efferent (E) nodes. We define that a vascular network is cubic if all internal nodes are cubic in degree. We consider six normal adult rat renal glomerular networks and use their reeb graphs already constructed and published in the literature. We observe that five of them contain internal vertices of degree higher than three. Branch points in vascular networks may appear to be of a higher degree if the imaging resolution cannot differentiate between blood vessels that are very close in proximity. Here, we propose a random graph theory model that edits a non-cubic vascular network into a cubic graph. We observe that the edited cubic graph from a non-cubic vascular network has the similar size and order as the one cubic vascular network.
Data interpolation using rational cubic Ball spline with three parameters
NASA Astrophysics Data System (ADS)
Karim, Samsul Ariffin Abdul
2016-11-01
Data interpolation is an important task for scientific visualization. This research introduces new rational cubic Ball spline scheme with three parameters. The rational cubic Ball will be used for data interpolation with or without true derivative values. Error estimation show that the proposed scheme works well and is a very good interpolant to approximate the function. All graphical examples are presented by using Mathematica software.
The Separate Spheres Model of Gendered Inequality
Miller, Andrea L.; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals’ endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454
The Separate Spheres Model of Gendered Inequality.
Miller, Andrea L; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.
Recent researches on the air resistance of spheres
NASA Technical Reports Server (NTRS)
Flachsbart, O
1928-01-01
The following conclusions on air resistance of spheres are drawn: 1) disturbances in front of the sphere and even single fine wires affect the critical Reynolds Number; 2) disturbances around the sphere increased the drag of the sphere without martially affecting the value of the Reynolds Number(sub crith); 3) great disturbances of the boundary layer of the sphere likewise change R.N.(sub crith); 4) turbulence of the approaching air stream lowers critical R.N.
Liberations and twists of real and complex spheres
NASA Astrophysics Data System (ADS)
Banica, Teodor
2015-10-01
We study the 10 noncommutative spheres obtained by liberating, twisting, and liberating +twisting the real and complex spheres SRN-1, SCN-1. At the axiomatic level, we show that, under very strong axioms, these 10 spheres are the only ones. Our main results concern the computation of the quantum isometry groups of these 10 spheres, taken in an affine real/complex sense. We formulate as well a proposal for an extended formalism, comprising 18 spheres.
The effect of size ratio on the sphere structure factor in colloidal sphere-plate mixtures
NASA Astrophysics Data System (ADS)
Cinacchi, G.; Doshi, N.; Prescott, S. W.; Cosgrove, T.; Grillo, I.; Lindner, P.; Phipps, J. S.; Gittins, D.; van Duijneveldt, J. S.
2012-11-01
Binary mixtures of colloidal particles of sufficiently different sizes or shapes tend to demix at high concentration. Already at low concentration, excluded volume interactions between the two species give rise to structuring effects. Here, a new theoretical description is proposed of the structure of colloidal sphere-plate mixtures, based on a density expansion of the work needed to insert a pair of spheres and a single sphere in a sea of them, in the presence or not of plates. The theory is first validated using computer simulations. The predictions are then compared to experimental observations using silica spheres and gibbsite platelets. Small-angle neutron scattering was used to determine the change of the structure factor of spheres on addition of platelets, under solvent contrast conditions where the platelets were invisible. Theory and experiment agreed very well for a platelet/sphere diameter ratio D/d = 2.2 and reasonably well for D/d = 5. The sphere structure factor increases at low scattering vector Q in the presence of platelets; a weak reduction of the sphere structure factor was predicted at larger Q, and for the system with D/d = 2.2 was indeed observed experimentally. At fixed particle volume fraction, an increase in diameter ratio leads to a large change in structure factor. Systems with a larger diameter ratio also phase separate at lower concentrations.
Monodisperse sphere-on-sphere silica particles for fast HPLC separation of peptides and proteins.
Hayes, Richard; Myers, Peter; Edge, Tony; Zhang, Haifei
2014-11-21
Monodisperse sphere-on-sphere (SOS) silica particles are produced in a one-pot reaction, removing the need for time-consuming preparation and classification steps. Analysis of peptides and proteins using HPLC displays faster separation at lower operating pressure than commercially available fused core materials.
Heng, Ri-Liang; Sy, Ki Cheong; Pilon, Laurent
2015-01-01
This study demonstrates that the absorption and scattering cross sections and asymmetry factor of randomly oriented and optically soft bispheres, quadspheres, and circular rings of spheres, with either monodisperse or polydisperse monomers, can be approximated by an equivalent coated sphere with identical volume and average projected area. This approximation could also apply to the angle-dependent scattering matrix elements for monomer size parameter less than 0.1. However, it quickly deteriorated with increasing monomer number and/or size parameter. It was shown to be superior to previously proposed approximations considering a volume equivalent homogeneous sphere and a coated sphere with identical volume and surface area. These results provide a rapid and accurate way of predicting the radiation characteristics of bispheres, quadspheres, and rings of spheres representative of various unicellular and multicellular cyanobacteria considered for producing food supplements, biofuels, and fertilizers. They could also be used in inverse methods for retrieving the monomers' optical properties, morphology, and/or concentration.
Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.
Rodríguez-López, Tonalli; del Río, Fernando
2012-01-28
In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids.
Robotics Programming Competition Spheres, Russian Part
NASA Astrophysics Data System (ADS)
Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia
2016-07-01
Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.
Water exit dynamics of buoyant spheres
NASA Astrophysics Data System (ADS)
Truscott, Tadd T.; Epps, Brenden P.; Munns, Randy H.
2016-11-01
Buoyant spheres released below the free surface can rise well above the surface in a phenomenon known as pop-up. Contrary to intuition, increasing the release depth sometimes results in a lower pop-up height. We present the pop-up height of rising buoyant spheres over a range of release depths (1-12.5 diameters) and Reynolds numbers (4 ×104 to 6 ×105 ). While the dynamics of rising buoyant spheres and bubbles has been thoroughly investigated for Reynolds numbers below 104, pop-up in these larger-Reynolds-number regimes has not been studied. Yet the underwater motions of the sphere for the Reynolds numbers we study are the key to understanding the pop-up height. Two major regimes are apparent: vertical and oscillatory. The vertical regime exhibits a nearly vertical underwater trajectory and results in the largest pop-up heights. The oscillatory regime exhibits an underwater trajectory with periodic lateral motions and results in lower pop-up heights; this periodic lateral motion is modulated by unsteady vortex shedding in the wake of the sphere. Despite these complex fluid structure interactions, the experiments presented herein yield extremely repeatable results.