Sample records for face-centered cubic structures

  1. Use of the Primitive Unit Cell in Understanding Subtle Features of the Cubic Closest-Packed Structure

    ERIC Educational Resources Information Center

    Hawkins, John A.; Rittenhouse, Jeffrey L.; Soper, Linda M.; Rittenhouse, Robert C.

    2008-01-01

    One of the most important crystal structures adopted by metals is characterized by the "abcabc"...stacking of close-packed layers. This structure is commonly referred to in textbooks as the cubic close-packed (ccp) or face-centered cubic (fcc) structure, since the entire lattice can be generated by replication of a face-centered cubic unit cell…

  2. The role of grain boundaries in hydrogen diffusion in metals at 25 C

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1993-01-01

    The effect of grain size on hydrogen diffusion at 25 C was examined for 4340 steel (body-centered cubic) and for Inconel 718 (face-centered cubic). It was found that the effect of grain size is important for body-centered cubic structures, but plays a much less important role in face centered cubic structures. Accurate measurements of hydrogen desorption coefficients during hydrogen desorption show that these are not greatly different for both types of structures.

  3. The Symmetry and Packing Fraction of the Body Centered Tetragonal Structure

    ERIC Educational Resources Information Center

    Dunlap, Richard A.

    2012-01-01

    It is shown that for different ratios of lattice parameters, "c/a," the body centered tetragonal structure may be view as body centered tetragonal, body centered cubic, face centered cubic or hexagonal. This illustrates that the apparent symmetry of a lattice depends on the choice of the conventional unit cell.

  4. Symmetry and Structure of Cubic Semiconductor Surfaces.

    PubMed

    Jenkins, Stephen J

    2017-11-07

    A systematic stereographic approach to the description of surface symmetry and structure, applied previously to face-centered cubic, body-centered cubic, and hexagonal close-packed metals, is here extended to the surfaces of diamond-structure and zinc-blende-structure semiconductors. A variety of symmetry-structure combinations are categorized and the chiral properties of certain cases emphasized. A general condition for nonpolarity in the surfaces of zincblende materials is also noted.

  5. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1998-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  6. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, Amit; Budai, John D.; Kroeger, Donald M.; Norton, David P.; Specht, Eliot D.; Christen, David K.

    1999-01-01

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon.

  7. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1999-04-27

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  8. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-21

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  9. Structures having enhanced biaxial texture and method of fabricating same

    DOEpatents

    Goyal, A.; Budai, J.D.; Kroeger, D.M.; Norton, D.P.; Specht, E.D.; Christen, D.K.

    1998-04-14

    A biaxially textured article includes a rolled and annealed, biaxially textured substrate of a metal having a face-centered cubic, body-centered cubic, or hexagonal close-packed crystalline structure; and an epitaxial superconductor or other device epitaxially deposited thereon. 11 figs.

  10. Using the Plan View to Teach Basic Crystallography in General Chemistry

    ERIC Educational Resources Information Center

    Cushman, Cody V.; Linford, Matthew R.

    2015-01-01

    The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…

  11. Icosahedral quasicrystals of intermetallic compounds are icosahedral twins of cubic crystals of three kinds, consisting of large (about 5000 atoms) icosahedral complexes in either a cubic body-centered or a cubic face-centered arrangement or smaller (about 1350 atoms) icosahedral complexes in the β-tungsten arrangement

    PubMed Central

    Pauling, Linus

    1989-01-01

    The twofold-axis electron-diffraction photographs of icosahedral quasicrystals are of three kinds, reflecting three different structures of the cubic crystals that by icosahedral twinning form the quasicrystals. The first kind, represented by Al13Cu4Fe3, contains two very large icosahedral complexes, each of about 4680 atoms, in the body-centered arrangement, with six smaller icosahedral complexes (104 atoms each) in the principal interstices. The second kind, represented by Al5Mn, contains four of the very large complexes in the face-centered arrangement (cubic close packing), with four of the smaller clusters in the interstices. The third kind, represented by Al6CuLi3, contains eight icosahedral complexes, each of about 1350 atoms, in the β-W arrangement. The supporting evidence for these cubic structures is discussed as well as other evidence showing that the simple quasicrystal theory, which states that quasicrystals do not involve any translational identity operations, has to be modified. Images PMID:16594078

  12. The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.

    PubMed

    Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A

    2010-06-21

    The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.

  13. Bismuth doping strategies in GeTe nanowires to promote high-temperature phase transition from rhombohedral to face-centered cubic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Huang, Rong; Wei, Fenfen

    2014-11-17

    The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.

  14. A structural analysis of small vapor-deposited 'multiply twinned' gold particles

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Heinemann, K.; Yacaman, M. J.; Poppa, H.

    1979-01-01

    High resolution selected zone dark field, Bragg reflection imaging and weak beam dark field techniques of transmission electron microscopy were used to determine the structure of small gold particles vapor deposited on NaCl substrates. Attention was focused on the analysis of those particles in the 50-150 A range that have pentagonal or hexagonal bright field profiles. These particles have been previously described as multiply twinned crystallites composed of face-centered cubic tetrahedra. The experimental evidence of the present studies can be interpreted on the assumption that the particle structure is a regular icosahedron or decahedron for the hexagonal or the pentagonal particles respectively. The icosahedron is a multiply twinned rhombohedral crystal and the decahedron is a multiply twinned body-centered orthorhombic crystal, each of which constitutes a slight distortion from the face-centered cubic structure.

  15. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    DOE PAGES

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  16. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    DOEpatents

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  17. The diagram of phase-field crystal structures: an influence of model parameters in a two-mode approximation

    NASA Astrophysics Data System (ADS)

    Ankudinov, V.; Galenko, P. K.

    2017-04-01

    Effect of phase-field crystal model (PFC-model) parameters on the structure diagram is analyzed. The PFC-model is taken in a two-mode approximation and the construction of structure diagram follows from the free energy minimization and Maxwell thermodynamic rule. The diagram of structure’s coexistence for three dimensional crystal structures [Body-Centered-Cubic (BCC), Face-Centered-Cubic (FCC) and homogeneous structures] are constructed. An influence of the model parameters, including the stability parameters, are discussed. A question about the structure diagram construction using the two-mode PFC-model with the application to real materials is established.

  18. Structural building principles of complex face-centered cubic intermetallics.

    PubMed

    Dshemuchadse, Julia; Jung, Daniel Y; Steurer, Walter

    2011-08-01

    Fundamental structural building principles are discussed for all 56 known intermetallic phases with approximately 400 or more atoms per unit cell and space-group symmetry F43m, Fd3m, Fd3, Fm3m or Fm3c. Despite fundamental differences in chemical composition, bonding and electronic band structure, their complex crystal structures show striking similarities indicating common building principles. We demonstrate that the structure-determining elements are flat and puckered atomic {110} layers stacked with periodicities 2p. The atoms on this set of layers, which intersect each other, form pentagon face-sharing endohedral fullerene-like clusters arranged in a face-centered cubic packing (f.c.c.). Due to their topological layer structure, all these crystal structures can be described as (p × p × p) = p(3)-fold superstructures of a common basic structure of the double-diamond type. The parameter p, with p = 3, 4, 7 or 11, is determined by the number of layers per repeat unit and the type of cluster packing, which in turn are controlled by chemical composition.

  19. Phonons and superconductivity in fcc and dhcp lanthanum

    NASA Astrophysics Data System (ADS)

    Baǧcı, S.; Tütüncü, H. M.; Duman, S.; Srivastava, G. P.

    2010-04-01

    We have investigated the structural and electronic properties of lanthanum in the face-centered-cubic (fcc) and double hexagonal-close-packed (dhcp) phases using a generalized gradient approximation of the density functional theory and the ab initio pseudopotential method. It is found that double hexagonal-close-packed is the more stable phase for lanthanum. Differences in the density of states at the Fermi level between these two phases are pointed out and discussed in detail. Using the calculated lattice constant and electronic band structure for both phases, a linear response approach based on the density functional theory has been applied to study phonon modes, polarization characteristics of phonon modes, and electron-phonon interaction. Our phonon results show a softening behavior of the transverse acoustic branch along the Γ-L direction and the Γ-M direction for face-centered-cubic and double hexagonal-close-packed phases, respectively. Thus, the transverse-phonon linewidth shows a maximum at the zone boundary M(L) for the double hexagonal-close-packed phase (face-centered-cubic phase), where the transverse-phonon branch exhibits a dip. The electron-phonon coupling parameter λ is found to be 0.97 (1.06) for the double hexagonal-close-packed phase (face-centered-cubic phase), and the superconducting critical temperature is estimated to be 4.87 (dhcp) and 5.88 K (fcc), in good agreement with experimental values of around 5.0 (dhcp) and 6.0 K (fcc). A few superconducting parameters for the double hexagonal-close-packed phase have been calculated and compared with available theoretical and experimental results. Furthermore, the calculated superconducting parameters for both phases are compared between each other in detail.

  20. Linear complexions: Confined chemical and structural states at dislocations

    NASA Astrophysics Data System (ADS)

    Kuzmina, M.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D.

    2015-09-01

    For 5000 years, metals have been mankind’s most essential materials owing to their ductility and strength. Linear defects called dislocations carry atomic shear steps, enabling their formability. We report chemical and structural states confined at dislocations. In a body-centered cubic Fe-9 atomic percent Mn alloy, we found Mn segregation at dislocation cores during heating, followed by formation of face-centered cubic regions but no further growth. The regions are in equilibrium with the matrix and remain confined to the dislocation cores with coherent interfaces. The phenomenon resembles interface-stabilized structural states called complexions. A cubic meter of strained alloy contains up to a light year of dislocation length, suggesting that linear complexions could provide opportunities to nanostructure alloys via segregation and confined structural states.

  1. Linear complexions: Confined chemical and structural states at dislocations.

    PubMed

    Kuzmina, M; Herbig, M; Ponge, D; Sandlöbes, S; Raabe, D

    2015-09-04

    For 5000 years, metals have been mankind's most essential materials owing to their ductility and strength. Linear defects called dislocations carry atomic shear steps, enabling their formability. We report chemical and structural states confined at dislocations. In a body-centered cubic Fe-9 atomic percent Mn alloy, we found Mn segregation at dislocation cores during heating, followed by formation of face-centered cubic regions but no further growth. The regions are in equilibrium with the matrix and remain confined to the dislocation cores with coherent interfaces. The phenomenon resembles interface-stabilized structural states called complexions. A cubic meter of strained alloy contains up to a light year of dislocation length, suggesting that linear complexions could provide opportunities to nanostructure alloys via segregation and confined structural states. Copyright © 2015, American Association for the Advancement of Science.

  2. Impact of medium-range order on the glass transition in liquid Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Entel, P.

    2011-09-01

    We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.

  3. Deformation-induced structural transition in body-centred cubic molybdenum

    PubMed Central

    Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.

    2014-01-01

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655

  4. High-entropy alloys in hexagonal close-packed structure

    DOE PAGES

    Gao, Michael C.; Zhang, B.; Guo, S. M.; ...

    2015-08-28

    The microstructures and properties of high-entropy alloys (HEAs) based on the face-centered cubic and body-centered cubic structures have been studied extensively in the literature, but reports on HEAs in the hexagonal close-packed (HCP) structure are very limited. Using an efficient strategy in combining phase diagram inspection, CALPHAD modeling, and ab initio molecular dynamics simulations, a variety of new compositions are suggested that may hold great potentials in forming single-phase HCP HEAs that comprise rare earth elements and transition metals, respectively. Lastly, experimental verification was carried out on CoFeReRu and CoReRuV using X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy.

  5. BDA: A novel method for identifying defects in body-centered cubic crystals.

    PubMed

    Möller, Johannes J; Bitzek, Erik

    2016-01-01

    The accurate and fast identification of crystallographic defects plays a key role for the analysis of atomistic simulation output data. For face-centered cubic (fcc) metals, most existing structure analysis tools allow for the direct distinction of common defects, such as stacking faults or certain low-index surfaces. For body-centered cubic (bcc) metals, on the other hand, a robust way to identify such defects is currently not easily available. We therefore introduce a new method for analyzing atomistic configurations of bcc metals, the BCC Defect Analysis (BDA). It uses existing structure analysis algorithms and combines their results to uniquely distinguish between typical defects in bcc metals. In essence, the BDA method offers the following features:•Identification of typical defect structures in bcc metals.•Reduction of erroneously identified defects by iterative comparison to the defects in the atom's neighborhood.•Availability as ready-to-use Python script for the widespread visualization tool OVITO [http://ovito.org].

  6. Modeling antigen-antibody nanoparticle bioconjugates and their polymorphs

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Delhommelle, Jerome

    2018-03-01

    The integration of nanomaterials with biomolecules has recently led to the development of new ways of designing biosensors, and through their assembly, to new hybrid structures for novel and exciting applications. In this work, we develop a coarse-grained model for nanoparticles grafted with antibody molecules and their binding with antigens. In particular, we isolate two possible states for antigen-antibody pairs during the binding process, termed as recognition and anchoring states. Using molecular simulation, we calculate the thermodynamic and structural features of three possible crystal structures or polymorphs, the body-centered cubic, simple cubic, and face-centered cubic phases, and of the melt. This leads us to determine the domain of stability of the three solid phases. In particular, the role played by the switching process between anchoring and recognition states during melting is identified, shedding light on the complex microscopic mechanisms in these systems.

  7. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE PAGES

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    2017-06-22

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  8. Stacking fault energies of face-centered cubic concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shijun; Stocks, G. Malcolm; Zhang, Yanwen

    We report the stacking fault energy (SFE) for a series of face-centered cubic (fcc) equiatomic concentrated solid solution alloys (CSAs) derived as subsystems from the NiCoFeCrMn and NiCoFeCrPd high entropy alloys based on ab initio calculations. At low temperatures, these CSAs display very low even negative SFEs, indicating that hexagonal close-pack ( hcp) is more energy favorable than fcc structure. The temperature dependence of SFE for some CSAs is studied. With increasing temperature, a hcp-to- fcc transition is revealed for those CSAs with negative SFEs, which can be attributed to the role of intrinsic vibrational entropy. The analysis of themore » vibrational modes suggests that the vibrational entropy arises from the high frequency states in the hcp structure that originate from local vibrational mode. Furthermore, our results underscore the importance of vibrational entropy in determining the temperature dependence of SFE for CSAs.« less

  9. Structural origin underlying poor glass forming ability of Al metallic glass

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.

    2011-07-01

    We performed molecular dynamics simulations to study the glass formation and local atomic structure of rapidly quenched Al. Both potential energy and structural parameters indicate that the glass transition temperature of amorphous Al is as low as 300 K, which may lead to the poor thermal stability of the amorphous Al as it is prone to crystallize even at room temperature. Voronoi polyhedra analysis reveals that the most popular polyhedron is the deformed body-centered cubic (bcc) cluster characterized by the index < 0, 3, 6, 4 > in the amorphous Al, while the icosahedron with the index < 0, 0, 12, 0 > is always predominant in bulk metallic glass formers with excellent glass forming ability (GFA). Moreover, these deformed-bcc short-range orders can make up medium-range orders via the linkage of vertex-, edge-, face-, intercrossed-shared atoms, which are believed to more easily transform into face-centered cubic (fcc) Al nanocrystal compared with the icosahedral clusters in terms of the symmetrical similarity between bcc and fcc structures. This finding could unveil the structural origin of poor GFA of Al-based alloys.

  10. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloss, Jonas; Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno; Shah Zaman, Sameena

    2013-12-23

    Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phasemore » diagram revealing the transformable region is presented.« less

  11. Mechanism of slip and twinning

    NASA Technical Reports Server (NTRS)

    Rastani, Mansur

    1992-01-01

    The objectives are to: (1) demonstrate the mechanisms of deformation in body centered cubic (BCC), face centered cubic (FCC), and hexagonal close-packed (HCP)-structure metals and alloys and in some ceramics as well; (2) examine the deformed microstructures (slip lines and twin boundaries) in different grains of metallic and ceramic specimens; and (3) study visually the deformed macrostructure (slip and twin bands) of metals and alloys. Some of the topics covered include: deformation behavior of materials, mechanisms of plastic deformation, slip bands, twin bands, ductile failure, intergranular fracture, shear failure, slip planes, crystal deformation, and dislocations in ceramics.

  12. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; Wang, M.P.; Chen, C., E-mail: chench011-33@163.com

    2014-05-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compressionmore » axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different.« less

  13. Method for improving performance of high temperature superconductors within a magnetic field

    DOEpatents

    Wang, Haiyan; Foltyn, Stephen R.; Maiorov, Boris A.; Civale, Leonardo

    2010-01-05

    The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.

  14. Polarization Change in Face-Centered Cubic Opal Films

    NASA Astrophysics Data System (ADS)

    Wolff, Christian; Romanov, Sergei; Küchenmeister, Jens; Peschel, Ulf; Busch, Kurt

    2011-10-01

    Artificial opals are a popular platform for investigating fundamental properties of Photonic Crystals (PhC). In this work, we provide a theoretical analysis of polarization-resolved transmission experiments through thin opal films. Despite the full cubic symmetry of the PhC, this system provides a very efficient mechanism for manipulating the polarization state of light. Based on band structure calculations and Bloch mode analysis, we find that this effect closely resembles classical birefringence. Due to the cubic symmetry, however, a description using tensorial quantities is not possible. This indicates fundamental limitations of effective material models for Photonic Crystals and demonstrates the importance of accurately modelling the microscopic geometry of such systems.

  15. Using Latex Balls and Acrylic Resin Plates to Investigate the Stacking Arrangement and Packing Efficiency of Metal Crystals

    ERIC Educational Resources Information Center

    Ohashi, Atsushi

    2015-01-01

    A high-school third-year or undergraduate first-semester general chemistry laboratory experiment introducing simple-cubic, face-centered cubic, body-centered cubic, and hexagonal closest packing unit cells is presented. Latex balls and acrylic resin plates are employed to make each atomic arrangement. The volume of the vacant space in each cell is…

  16. Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

    DOE PAGES

    Bufford, Daniel C.; Wang, Morris; Liu, Yue; ...

    2016-04-01

    The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less

  17. Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufford, Daniel C.; Wang, Morris; Liu, Yue

    The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less

  18. Face Centered Cubic SnSe as a Z2 Trivial Dirac Nodal Line Material

    NASA Astrophysics Data System (ADS)

    Tateishi, Ikuma; Matsuura, Hiroyasu

    2018-07-01

    The presence of a Dirac nodal line in a time-reversal and inversion symmetric system is dictated by the Z2 index when spin-orbit interaction is absent. In a first principles calculation, we show that a Dirac nodal line can emerge in Z2 trivial material by calculating the band structure of SnSe in a face centered cubic lattice as an example. We qualitatively show that it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obtaining irreducible representations corresponding to bands and explain the triviality of the Z2 index. We construct an effective model representing the Dirac nodal line using the k · p method, and discuss the Berry phase and a surface state expected from the Dirac nodal line.

  19. Cubic Unit Cell Construction Kit.

    ERIC Educational Resources Information Center

    Mattson, Bruce

    2000-01-01

    Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)

  20. New twinning route in face-centered cubic nanocrystalline metals.

    PubMed

    Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong

    2017-12-15

    Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.

  1. Numerical simulation of a shear-thinning fluid through packed spheres

    NASA Astrophysics Data System (ADS)

    Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol

    2012-12-01

    Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.

  2. Structural phase transition of gold under uniaxial, tensile, and triaxial stresses: An ab initio study

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2007-07-01

    The behavior of gold crystal under uniaxial, tensile, and three different triaxial stresses is studied using an ab initio constant pressure technique within a generalized gradient approximation. Gold undergoes a phase transformation from the face-centered-cubic structure (fcc) to a body-centered-tetragonal (bct) structure having the space group of I4/mmm with the application of uniaxial stress, while it transforms to a face-centered-tetragonal (fct) phase within I4/mmm symmetry under uniaxial tensile loading. Further uniaxial compression of the bct phase results in a symmetry change from I4/mmm to P1 at high stresses and ultimately structural failure around 200.0GPa . For the case of triaxial stresses, gold also converts into a bct state. The critical stress for the fcc-to-bct transformation increases as the ratio of the triaxial stress increases. Both fct and bct phases are elastically unstable.

  3. Effect of titanium on the structural and optical property of NiO nano powders

    NASA Astrophysics Data System (ADS)

    Amin, Ruhul; Mishra, Prashant; Khatun, Nasima; Ayaz, Saniya; Srivastava, Tulika; Sen, Somaditya

    2018-05-01

    Nickel Oxide (NiO) and Ti doped NiO nanoparticles were prepared by sol-gel auto combustion method. Powder x-ray diffraction (PXRD) structural studies revealed face centered cubic (FCC) structure of the NiO nanopowders. The crystallite size decreased with Ti incorporation. UV-Vis spectroscopy carried out in diffused reflectance mode revealed decrease in band gap with increment in Urbach energy with doping.

  4. Crystallography of decahedral and icosahedral particles. I - Geometry of twinning

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.

    1979-01-01

    The crystal structure of the tetrahedral twins in multiply-twinned particles with decahedral and icosahedral point group symmetries has been examined and correlated with the face-centered cubic structure. Details on the crystal structure as well as the geometrical relationships among twins in each particle are presented. These crystallographic facts serve as a basis for the interpretation of small particle images obtained with advanced methods of transmission electron microscopy.

  5. The determination of temperature stability of silver nanotubes by the molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Filatov, O.; Soldatenko, S.; Soldatenko, O.

    2018-04-01

    Molecular dynamics simulation using the embedded-atom method is applied to study thermal stability of silver nanotubes and its coefficient of linear thermal expansion. The correspondence of face centered cubic structure potential for this task is tested. Three types of nanotubes are modelled: scrolled from graphene-like plane, scrolled from plane with cubic structure and cut from cylinder. It is established that only the last two of them are stable. The last one describes in details. There is critical temperature when free ends of the nanotube close but the interior surface retains. At higher temperatures, the interior surface collapses and the nanotube is unstable.

  6. Quasi-Dual-Packed-Kerneled Au49 (2,4-DMBT)27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap.

    PubMed

    Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun

    2017-10-02

    Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Antiswarming: Structure and dynamics of repulsive chemically active particles

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Brady, John F.

    2017-12-01

    Chemically active Brownian particles with surface catalytic reactions may repel each other due to diffusiophoretic interactions in the reaction and product concentration fields. The system behavior can be described by a "chemical" coupling parameter Γc that compares the strength of diffusiophoretic repulsion to Brownian motion, and by a mapping to the classical electrostatic one component plasma (OCP) system. When confined to a constant-volume domain, body-centered cubic (bcc) crystals spontaneously form from random initial configurations when the repulsion is strong enough to overcome Brownian motion. Face-centered cubic (fcc) crystals may also be stable. The "melting point" of the "liquid-to-crystal transition" occurs at Γc≈140 for both bcc and fcc lattices.

  8. Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Weibing; Lan, Si; Gao, Libo

    High-entropy CoCrFeNiAl0.3 alloy thin films were prepared by magnetron sputtering technique. The thin film surface was very smooth and homogeneous. The synchrotron X-ray experiment confirmed that (111) type of texture existed in the thin film, and the structure was face-centered cubic nanocrystals with a minor content of ordered NiAl-type body-centered cubic structures. Interestingly, the elastic modulus of the thin film was nearly the same to the bulk single-crystal counterpart, however, the nanohardness is about four times of the bulk single-crystal counterpart. It was found that the high hardness was due to the formation of nanocrystal structure inside the thin filmsmore » and the preferred growth orientation, which could be promising for applications in micro fabrication and advanced coating technologies.« less

  9. Closed-cell crystalline foams: self-assembling, resonant metamaterials.

    PubMed

    Spadoni, Alessandro; Höhler, Reinhard; Cohen-Addad, Sylvie; Dorodnitsyn, Vladimir

    2014-04-01

    Internal degrees of freedom and periodic structure are critical requirements in the design of acoustic/elastic metamaterials since they can give rise to extraordinary properties like negative effective mass and stiffness. However, they are challenging to realize in three dimensions. Closed-cell, crystalline foams are a particularly advantageous basis to develop metamaterials as they intrinsically have a complex microstructure, exhibiting internal resonances. Recently self-assembly techniques have been implemented to produce such foams: a Kelvin (body centered cubic) foam, a face centered cubic foam, and a Weaire-Phelan structure. Numerical models are employed to demonstrate that such foams are superanisotropic, selectively behaving as a fluid or a solid, pentamode solids as a result of fluid-structure interaction, in addition to having regimes characterized by film resonances and high density of states. Microstructural deformations obtained from numerical models allow the derivation of equivalent mechanical models.

  10. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  11. Predicting the Crystal Structure and Phase Transitions in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    King, D. M.; Middleburgh, S. C.; Edwards, L.; Lumpkin, G. R.; Cortie, M.

    2015-06-01

    High-entropy alloys (HEAs) have advantageous properties compared with other systems as a result of their chemistry and crystal structure. The transition between a face-centered cubic (FCC) and body-centered cubic (BCC) structure in the Al x CoCrFeNi high-entropy alloy system has been investigated on the atomic scale in this work. The Al x CoCrFeNi system, as well as being a useful system itself, can also be considered a model HEA material. Ordering in the FCC structure was investigated, and an order-disorder transition was predicted at ~600 K. It was found that, at low temperatures, an ordered lattice is favored over a truly random lattice. The fully disordered BCC structure was found to be unstable. When partial ordering was imposed (lowering the symmetry), with Al and Ni limited specific sites of the BCC system, the BCC packing was stabilized. Decomposition of the ordered BCC single phase into a dual phase (Al-Ni rich and Fe-Cr rich) is also considered.

  12. Relaxation, Structure and Properties of Semi-coherent Interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian

    2015-11-05

    Materials containing high density of interfaces are promising candidates for future energy technologies, because interfaces acting as sources, sinks, and barriers for defects can improve mechanical and irradiation properties of materials. Semi-coherent interface widely occurring in various materials is composed of a network of misfit dislocations and coherent regions separated by misfit dislocations. Lastly, in this article, we review relaxation mechanisms, structure and properties of (111) semi-coherent interfaces in face centered cubic structures.

  13. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    DOE PAGES

    Ueland, B. G.; Saunders, S. M.; Bud'ko, S. L.; ...

    2015-11-30

    In this study, YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below a temperature of T*=0.7K, fragile antiferromagnetic order below T N = 0.4K, a Kondo temperature of T K ≈ 1K, and crystalline-electric-field splitting on the order of E/k B = 1 – 10K. Whereas the compound has a face-centered-cubic lattice at ambient temperature, certain experimental data, particularly those from studies aimed at determining its crystalline-electric-field scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-resolution, high-energy x-ray diffraction experiments which show that, within our experimental resolution of ≈ 6 – 10more » × 10 –5 Å, no structural phase transition occurs between T = 1.5 and 50 K. In combination with results from dilatometry measurements, we further show that the compound's thermal expansion has a minimum at ≈ 18 K and a region of negative thermal expansion for 9 ≲ T ≲ 18 K. Despite diffraction patterns taken at 1.6 K which indicate that the lattice is face-centered cubic and that the Yb resides on a crystallographic site with cubic point symmetry, we demonstrate that the linear thermal expansion may be modeled using crystalline-electric-field level schemes appropriate for Yb 3+ residing on a site with either cubic or less than cubic point symmetry.« less

  14. BFACF-style algorithms for polygons in the body-centered and face-centered cubic lattices

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Rechnitzer, A.

    2011-04-01

    In this paper, the elementary moves of the BFACF-algorithm (Aragão de Carvalho and Caracciolo 1983 Phys. Rev. B 27 1635-45, Aragão de Carvalho and Caracciolo 1983 Nucl. Phys. B 215 209-48, Berg and Foester 1981 Phys. Lett. B 106 323-6) for lattice polygons are generalized to elementary moves of BFACF-style algorithms for lattice polygons in the body-centered (BCC) and face-centered (FCC) cubic lattices. We prove that the ergodicity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice (see Janse van Rensburg and Whittington (1991 J. Phys. A: Math. Gen. 24 5553-67)). Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.

  15. Three Dimensional Optical Metamaterials via Direct Laser Writing

    DTIC Science & Technology

    2013-03-01

    can be derived from a face-centered-cubic (fcc) unit cell with a basis of two rods. b. Silver- coated woodpile structures with a period of 600 nm...described earlier. 4 It has been produced by the addition of zirconium propoxide (ZPO, 70% in propanol) to methacryloxypropyl trimethoxysilane (MAPTMS...structures, he materials investigation, synthesis and metallization protocols employed have been described in detail previously in 4-5. The silver- coated

  16. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures

    NASA Astrophysics Data System (ADS)

    Yang, Huayan; Wang, Yu; Zheng, Nanfeng

    2013-03-01

    The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions.The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions. Electronic supplementary information (ESI) available: Experimental details, more pictures of the structure and XPS spectra of the clusters. CCDC 916463 and 916464. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr34328f

  17. Bond-Energy and Surface-Energy Calculations in Metals

    ERIC Educational Resources Information Center

    Eberhart, James G.; Horner, Steve

    2010-01-01

    A simple technique appropriate for introductory materials science courses is outlined for the calculation of bond energies in metals from lattice energies. The approach is applied to body-centered cubic (bcc), face-centered cubic (fcc), and hexagonal-closest-packed (hcp) metals. The strength of these bonds is tabulated for a variety metals and is…

  18. Orientation Dependence of the Deformation Microstructure of Ta-4%W after Cold-Rolling

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ma, G. Q.; Godfrey, A.; Shu, D. Y.; Chen, Q.; Wu, G. L.

    2017-07-01

    One of the common features of deformed face-centered cubic metals with medium to high stacking fault energy is the formation of geometrically necessary dislocation boundaries. The dislocation boundary arrangements in refractory metals with body-centered cubic crystal structure are, however, less well known. To address this issue a Ta-4%W alloy was cold rolled up to 70% in thickness in the present work. The resulting deformation microstructures were characterized by electron back-scattering diffraction and the dislocation boundary arrangements in each grain were revealed using sample-frame misorientation axis maps calculated using an in-house code. The maps were used to analyze the slip pattern of individual grains after rolling, revealing an orientation dependence of the slip pattern.

  19. On the electron density localization in elemental cubic ceramic and FCC transition metals by means of a localized electrons detector.

    PubMed

    Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro

    2017-06-14

    The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.

  20. Theory for plasticity of face-centered cubic metals.

    PubMed

    Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun

    2014-05-06

    The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control.

  1. Theory for plasticity of face-centered cubic metals

    PubMed Central

    Jo, Minho; Koo, Yang Mo; Lee, Byeong-Joo; Johansson, Börje; Vitos, Levente; Kwon, Se Kyun

    2014-01-01

    The activation of plastic deformation mechanisms determines the mechanical behavior of crystalline materials. However, the complexity of plastic deformation and the lack of a unified theory of plasticity have seriously limited the exploration of the full capacity of metals. Current efforts to design high-strength structural materials in terms of stacking fault energy have not significantly reduced the laborious trial and error works on basic deformation properties. To remedy this situation, here we put forward a comprehensive and transparent theory for plastic deformation of face-centered cubic metals. This is based on a microscopic analysis that, without ambiguity, reveals the various deformation phenomena and elucidates the physical fundaments of the currently used phenomenological correlations. We identify an easily accessible single parameter derived from the intrinsic energy barriers, which fully specifies the potential diversity of metals. Based entirely on this parameter, a simple deformation mode diagram is shown to delineate a series of convenient design criteria, which clarifies a wide area of material functionality by texture control. PMID:24753563

  2. Microstructural Formations and Phase Transformation Pathways in Hot Isostatically Pressed Tantalum Carbides

    DTIC Science & Technology

    2012-01-01

    and wear-resistant brake liners. The phase diagram for the tantalum–carbon system [5] is shown in Fig. 1a with corresponding crystal structures shown... structure ), with carbon atoms occupying the octahe- dral interstitial sites in a tantalum face-centered cubic (fcc) lattice [2,7]. The carbon-deficient...carbon sublattice. The allotropic phase trans- formation temperature between a-Ta2C (CdI2 antitype structure ) and b (L’3 structure ) is 2300 K [1,7]. In

  3. 3-D phononic crystals with ultra-wide band gaps

    PubMed Central

    Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit

    2017-01-01

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812

  4. 3-D phononic crystals with ultra-wide band gaps.

    PubMed

    Lu, Yan; Yang, Yang; Guest, James K; Srivastava, Ankit

    2017-02-24

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.

  5. Effects of temperature on serrated flows of Al 0.5CoCrCuFeNi high-entropy alloy

    DOE PAGES

    Chen, Shuying; Xie, Xie; Chen, Bilin; ...

    2015-08-14

    Compression behavior of the Al 0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673 K to 873 K at a low strain rate of 5 x 10 –5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered-cubic (fcc) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed fcc and body-centered cubic (bcc) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron x-ray diffraction. As a result, by comparing the stress–strain curves at different temperatures, two opposite directions ofmore » serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  6. Discrete exterior calculus approach for discretizing Maxwell's equations on face-centered cubic grids for FDTD

    NASA Astrophysics Data System (ADS)

    Salmasi, Mahbod; Potter, Michael

    2018-07-01

    Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.

  7. Structure and magnetic properties of nanostructured MnNi alloys fabricated by mechanical alloying and annealing treatments

    NASA Astrophysics Data System (ADS)

    Jalal, T.; Hossein Nedjad, S.; Khalili Molan, S.

    2013-05-01

    A nearly equiatomic MnNi alloy was fabricated from the elemental powders by means of mechanical alloying in a planetary ball milling apparatus. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and measurements of magnetization were conducted to identify the structural states and properties of the prepared alloys. After ball milling for 20 h, a disordered face-centered cubic (f.c.c.) solid solution was formed which increased in lattice parameter by further milling up to 50 h. An exothermic reaction took place at around 300-400°C during continuous heating of the disordered f.c.c. solid solution. This reaction is attributed to a structural ordering leading to the formation of a face-centered tetragonal (f.c.t.) phase with L10 type ordering. Examination of the magnetic properties indicated that the structural ordering increases remnant magnetization and decreases coerecivity.

  8. Shell structures in aluminum nanocontacts at elevated temperatures

    PubMed Central

    2012-01-01

    Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572

  9. Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.

    A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less

  10. Microstructure and Plastic Deformation of the As-Welded Invar Fusion Zones

    NASA Astrophysics Data System (ADS)

    Yao, D. J.; Zhou, D. R.; Xu, P. Q.; Lu, F. G.

    2017-05-01

    The as-welded Invar fusion zones were fabricated between cemented carbides and carbon steel using a Fe-Ni Invar interlayer and laser welding method. Three regions in the as-welded Invar fusion zones were defined to compare microstructures, and these were characterized and confirmed by scanning electron microscopy and X-ray diffractometry. The structure and plastic deformation mechanism for initial Invar Fe-Ni alloys and the as-welded Invar fusion zones are discussed. (1) After undergoing high-temperature thermal cycles, the microstructure of the as-welded Invar fusion zones contains γ-(Fe, Ni) solid solution (nickel dissolving in γ-Fe) with a face-centered cubic (fcc) crystal structure and mixed carbides (eutectic colonies, mixed carbides between two adjacent grains). The mixed carbides exhibited larger, coarser eutectic microstructures with a decrease in welding speed and an increase in heat input. (2) The structure of the initial Invar and the as-welded Invar is face-centered cubic γ-(Fe, Ni). (3) The as-welded Invar has a larger plastic deformation than initial Invar with an increase in local strain field and dislocation density. Slip deformation is propagated along the (111) plane. This finding helps us to understand microstructure and the formation of dislocation and plastic deformation when the Invar Fe-Ni alloy undergoes a high-temperature process.

  11. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE PAGES

    Yu, Qian; Kacher, Josh; Gammer, Christoph; ...

    2017-07-04

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  12. In situ TEM observation of FCC Ti formation at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Qian; Kacher, Josh; Gammer, Christoph

    Pure Ti traditionally exhibits the hexagonal closed packed (HCP) crystallographic structure under ambient conditions and the body centered cubic (BCC) structure at elevated temperatures. In addition to these typical structures for Ti alloys, the presence of a face centered cubic (FCC) phase associated with thin films, interfaces, or high levels of plastic deformation has occasionally been reported. Here in this paper we show that small FCC precipitates form in freestanding thin foils during in situ transmission electron microscope (TEM) heating and we discuss the potential origins of the FCC phase in light of the in situ observations. This FCC phasemore » was found to be stable upon cooling and under ambient conditions, which allowed us to explore its mechanical properties and stability via nanomechanical in situ TEM testing. It was found that FCC platelets within the HCP matrix phase were stable under mechanical deformation and exhibited similar mechanical deformation behavior as the parent HCP phase.« less

  13. Strength and texture of Pt compressed to 63 GPa

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Shieh, Sean R.; Duffy, Thomas S.

    2015-02-01

    Angle- and energy-dispersive X-ray diffraction experiments in a radial geometry were performed in the diamond anvil cell on polycrystalline platinum samples at pressures up to 63 GPa. Observed yield strength and texture depend on grain size. For samples with 70-300-nm particle size, the yield strength is 5-6 GPa at ˜60 GPa. Coarse-grained (˜2-μm particles) Pt has a much lower yield strength of 1-1.5 GPa at ˜60 GPa. Face-centered cubic metals Pt and Au have lower strength to shear modulus ratio than body-centered cubic or hexagonal close-packed metals. While a 300-nm particle sample exhibits the <110> texture expected of face-centered-cubic metals under compression, smaller and larger particles show a weak mixed <110> and <100> texture under compression. Differences in texture development may also occur due to deviations from uniaxial stress under compression in the diamond anvil cell.

  14. Phase composition and microstructure of WC-Co alloys obtained by selective laser melting

    NASA Astrophysics Data System (ADS)

    Khmyrov, Roman S.; Shevchukov, Alexandr P.; Gusarov, Andrey V.; Tarasova, Tatyana V.

    2018-03-01

    Phase composition and microstructure of initial WC, BK8 (powder alloy 92 wt.% WC-8 wt.% Co), Co powders, ball-milled powders with four different compositions (1) 25 wt.% WC-75 wt.% Co, (2) 30 wt.% BK8-70 wt.% Co, (3) 50 wt.% WC-50 wt.% Co, (4) 94 wt.% WC-6 wt.% Co, and bulk alloys obtained by selective laser melting (SLM) from as-milled powders in as-melted state and after heat treatment were investigated by scanning electron microscopy and X-ray diffraction analysis. Initial and ball-milled powders consist of WC, hexagonal α-Co and face-centered cubic β-Co. The SLM leads to the formation of major new phases W3Co3C, W4Co2C and face-centered cubic β-Co-based solid solution. During the heat treatment, there occurs partial decomposition of the face-centered cubic β-Co-based solid solution with the formation of W2C and hexagonal α-Co solid solution. The microstructure of obtained bulk samples, in general, corresponds to the observed phase composition.

  15. In situ TEM observation of heterogeneous phase transition of a constrained single-crystalline Ag2Te nanowire.

    PubMed

    In, Juneho; Yoo, Youngdong; Kim, Jin-Gyu; Seo, Kwanyong; Kim, Hyunju; Ihee, Hyotchel; Oh, Sang Ho; Kim, Bongsoo

    2010-11-10

    Laterally epitaxial single crystalline Ag2Te nanowires (NWs) are synthesized on sapphire substrates by the vapor transport method. We observed the phase transitions of these Ag2Te NWs via in situ transmission electron microscopy (TEM) after covering them with Pt layers. The constrained NW shows phase transition from monoclinic to a body-centered cubic (bcc) structure near the interfaces, which is ascribed to the thermal stress caused by differences in the thermal expansion coefficients. Furthermore, we observed the nucleation and growth of bcc phase penetrating into the face-centered cubic matrix at 200 °C by high-resolution TEM in real time. Our results would provide valuable insight into how compressive stresses imposed by overlayers affect behaviors of nanodevices.

  16. Automatic procedure for stable tetragonal or hexagonal structures: application to tetragonal Y and Cd

    NASA Astrophysics Data System (ADS)

    Marcus, P. M.; Jona, F.

    2005-05-01

    A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.

  17. The effect of relativity on stability of Copernicium phases, their electronic structure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Čenčariková, Hana; Legut, Dominik

    2018-05-01

    The phase stability of the various crystalline structures of the super-heavy element Copernicium was determined based on the first-principles calculations with different levels of the relativistic effects. We utilized the Darwin term, mass-velocity, and spin-orbit interaction with the single electron framework of the density functional theory while treating the exchange and correlation effects using local density approximations. It is found that the spin-orbit coupling is the key component to stabilize the body-centered cubic (bcc) structure over the hexagonal closed packed (hcp) structure, which is in accord with Sol. Stat. Comm. 152 (2012) 530, but in contrast to Atta-Fynn and Ray (2015) [11], Gaston et al. (2007) [10], Papaconstantopoulos (2015) [9]. It seems that the main role here is the correct description of the semi-core relativistic 6p1/2 orbitals. The all other investigated structures, i.e. face-centered cubic (fcc) , simple cubic (sc) as well as rhombohedral (rh) structures are higher in energy. The criteria of mechanical stability were investigated based on the calculated elastic constants, identifying the phase instability of fcc and rh structures, but surprisingly confirm the stability of the energetically higher sc structure. In addition, the pressure-induced structural transition between two stable sc and bcc phases has been detected. The ground-state bcc structure exhibits the highest elastic anisotropy from single elements of the Periodic table. At last, we support the experimental findings that Copernicium is a metal.

  18. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, X.; Liang, J. H.; Chen, B. L.

    2015-07-28

    Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.

  19. Full Vector Wave Calculation of Photonic Band Structures in Face-Centered Cubic Dielectric Media

    DTIC Science & Technology

    1990-01-01

    refractive index ratios90 0(;o8 070 2 were painstakingly machined out of low-loss dk’-tric materials. This very time comsuming approach was necessary to...find that the X-gap goes to zero for f=0.66. This is very close to the experimental value of 0.68. The physical origin of this behavior has been fully

  20. Stability of the bcc phase of 4He close to the melting curve: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Belonoshko, A. B.; Koči, L.; Rosengren, A.

    2012-01-01

    We have investigated whether the Aziz [J. Chem. Phys.JCPSA60021-960610.1063/1.438007 70, 4330 (1979)] model for 4He renders the body-centered cubic phase more stable than the face-centered cubic phase in the proximity of the melting curve. Using molecular dynamics, we have simulated these solid phases in equilibrium with the liquid at a number of densities. In contrast to previous free energy molecular dynamics calculations, the model stabilizes the body-centered cubic phase. The stability field is just 5∘ wide below the melting curve at pressures around 140 Kbar and about 70∘ wide at pressures around 750 Kbar. Considering that the body-centered cubic phase is dynamically unstable at low temperature, this result bears striking similarities to transition metal phase diagrams.

  1. Pseudomorphic to orthomorphic growth of Fe films on Cu3Au(001)

    NASA Astrophysics Data System (ADS)

    Bruno, F.; Terreni, S.; Floreano, L.; Cossaro, A.; Cvetko, D.; Luches, P.; Mattera, L.; Morgante, A.; Moroni, R.; Repetto, M.; Verdini, A.; Canepa, M.

    2002-06-01

    The structure of Fe films grown on the (001) surface of a Cu3Au single crystal at room temperature has been investigated by means of grazing incidence x-ray diffraction (GIXRD) and photo/Auger-electron diffraction (ED) as a function of thickness in the (3-36)-Å range. The combination of GIXRD and ED allows one to obtain quantitative information on the in-plane spacing a from the former technique, and the ratio between the vertical spacing c and a, from the latter one. At low coverage the film grows pseudomorphic to the face-centered-cubic substrate. The experimental results obtained on a film of 8 Å thickness clearly indicate the overcoming of the limit for pseudomorphic growth. Above this limit the film is characterized by the coexistence of the pseudomorphic phase with another tetragonally strained phase γ, which falls on the epitaxial line of ferromagnetic face-centered cubic Fe. Finally, the development of a body-centered phase α, whose unit cell is rotated by 45° with respect to the substrate one, has been clearly observed at ~17 Å. α is the dominating phase for film thickness above ~25 Å and its lattice constant evolves towards the orthomorphic phase in strict quantitative agreement with epitaxial curves calculated for body-centered tetragonal iron phases.

  2. Design of new face-centered cubic high entropy alloys by thermodynamic calculation

    NASA Astrophysics Data System (ADS)

    Choi, Won-Mi; Jung, Seungmun; Jo, Yong Hee; Lee, Sunghak; Lee, Byeong-Joo

    2017-09-01

    A new face-centered cubic (fcc) high entropy alloy system with non-equiatomic compositions has been designed by utilizing a CALculation of PHAse Diagram (CALPHAD) - type thermodynamic calculation technique. The new alloy system is based on the representative fcc high entropy alloy, the Cantor alloy which is an equiatomic Co- Cr-Fe-Mn-Ni five-component alloy, but fully or partly replace the cobalt by vanadium and is of non-equiatomic compositions. Alloy compositions expected to have an fcc single-phase structure between 700 °C and melting temperatures are proposed. All the proposed alloys are experimentally confirmed to have the fcc single-phase during materials processes (> 800 °C), through an X-ray diffraction analysis. It is shown that there are more chances to find fcc single-phase high entropy alloys if paying attention to non-equiatomic composition regions and that the CALPHAD thermodynamic calculation can be an efficient tool for it. An alloy design technique based on thermodynamic calculation is demonstrated and the applicability and limitation of the approach as a design tool for high entropy alloys is discussed.

  3. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  4. The Theory for the Mechanism of Chromium Plating: The Theory for the Physical Characteristics of Chromium Plate

    DTIC Science & Technology

    1947-01-01

    first, to produce a cathode film containing highly reducing atomic hydro- gen, and, second , to raise the cathode film pH above that of the solution...those of a face-centered cubic structure with a lattice parameter (a0) of 3.84 A. It was concluded that a second unstable structure of chrom- ium...plates similar to those produced from cathode films of relatively low pH, Second , the sulphate ion is strongly adsorbed by the trivalent chromium

  5. Surface Structure Spread Single Crystals (S4C): Preparation and characterization

    NASA Astrophysics Data System (ADS)

    de Alwis, A.; Holsclaw, B.; Pushkarev, V. V.; Reinicker, A.; Lawton, T. J.; Blecher, M. E.; Sykes, E. C. H.; Gellman, A. J.

    2013-02-01

    A set of six spherically curved Cu single crystals referred to as Surface Structure Spread Single Crystals (S4Cs) has been prepared in such a way that their exposed surfaces collectively span all possible crystallographic surface orientations that can be cleaved from the face centered cubic Cu lattice. The method for preparing these S4Cs and for finding the high symmetry pole point is described. Optical profilometry has been used to determine the true shapes of the S4Cs and show that over the majority of the surface, the shape is extremely close to that of a perfect sphere. The local orientations of the surfaces lie within ± 1° of the orientation expected on the basis of the spherical shape; their orientation is as good as that of many commercially prepared single crystals. STM imaging has been used to characterize the atomic level structure of the Cu(111) ± 11°-S4C. This has shown that the average step densities and the average step orientations match those expected based on the spherical shape. In other words, although there is some distribution of step-step spacing and step orientations, there is no evidence of large scale reconstruction or faceting. The Cu S4Cs have local structures based on the ideal termination of the face centered cubic Cu lattice in the direction of termination. The set of Cu S4Cs will serve as the basis for high throughput investigations of structure sensitive surface chemistry on Cu.

  6. Density-functional theory for fluid-solid and solid-solid phase transitions.

    PubMed

    Bharadwaj, Atul S; Singh, Yashwant

    2017-03-01

    We develop a theory to describe solid-solid phase transitions. The density functional formalism of classical statistical mechanics is used to find an exact expression for the difference in the grand thermodynamic potentials of the two coexisting phases. The expression involves both the symmetry conserving and the symmetry broken parts of the direct pair correlation function. The theory is used to calculate phase diagram of systems of soft spheres interacting via inverse power potentials u(r)=ε(σ/r)^{n}, where parameter n measures softness of the potential. We find that for 1/n<0.154 systems freeze into the face centered cubic (fcc) structure while for 1/n≥0.154 the body-centred-cubic (bcc) structure is preferred. The bcc structure transforms into the fcc structure upon increasing the density. The calculated phase diagram is in good agreement with the one found from molecular simulations.

  7. Computer simulation of formation and decomposition of Au13 nanoparticles

    NASA Astrophysics Data System (ADS)

    Stishenko, P.; Svalova, A.

    2017-08-01

    To study the Ostwald ripening process of Au13 nanoparticles a two-scale model is constructed: analytical approximation of average nanoparticle energy as function of nanoparticle size and structural motive, and the Monte Carlo model of 1000 particles ensemble. Simulation results show different behavior of particles of different structural motives. The change of the distributions of atom coordination numbers during the Ostwald ripening process was observed. The nanoparticles of the equal size and shape with the face-centered cubic structure of the largest sizes appeared to be the most stable.

  8. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase

    NASA Astrophysics Data System (ADS)

    Wei, Ran; Sun, Huan; Chen, Chen; Tao, Juan; Li, Fushan

    2018-03-01

    Fe-Co-Ni-Si-B high entropy amorphous alloys composites (HEAACs), which containing high entropy solid solution phase in amorphous matrix, show good soft magnetic properties and bending ductility even in optimal annealed state, were successfully developed by melt spinning method. The crystallization phase of the HEAACs is solid solution phase with body centered cubic (BCC) structure instead of brittle intermetallic phase. In addition, the BCC phase can transformed into face centered cubic (FCC) phase with temperature rise. Accordingly, Fe-Co-Ni-Si-B high entropy alloys (HEAs) with FCC structure and a small amount of BCC phase was prepared by copper mold casting method. The HEAs exhibit high yield strength (about 1200 MPa) and good plastic strain (about 18%). Meanwhile, soft magnetic characteristics of the HEAs are largely reserved from HEAACs. This work provides a new strategy to overcome the annealing induced brittleness of amorphous alloys and design new advanced materials with excellent comprehensive properties.

  9. Local lattice distortion in high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Song, Hongquan; Tian, Fuyang; Hu, Qing-Miao; Vitos, Levente; Wang, Yandong; Shen, Jiang; Chen, Nanxian

    2017-07-01

    The severe local lattice distortion, induced mainly by the large atomic size mismatch of the alloy components, is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). In this work, we propose a supercell model, in which every lattice site has similar local atomic environment, to describe the random distributions of the atomic species in HEAs. Using these supercells in combination with ab initio calculations, we investigate the local lattice distortion of refractory HEAs with body-centered-cubic structure and 3 d HEAs with face-centered-cubic structure. Our results demonstrate that the local lattice distortion of the refractory HEAs is much more significant than that of the 3 d HEAs. We show that the atomic size mismatch evaluated with the empirical atomic radii is not accurate enough to describe the local lattice distortion. Both the lattice distortion energy and the mixing entropy contribute significantly to the thermodynamic stability of HEAs. However the local lattice distortion has negligible effect on the equilibrium lattice parameter and bulk modulus.

  10. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    PubMed

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  11. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry.

    PubMed

    Adur, Alaknanda J; Nandini, N; Shilpashree Mayachar, K; Ramya, R; Srinatha, N

    2018-06-01

    Silver nanoparticles were prepared through eco-friendly, cost effective, bio-mediated technique using anaerobically digested Parthenium hysterophorous digested slurry (PDS) for the first time. The synthesized nanoparticles were characterized through different techniques such as UV-Vis spectrophotometer for optical properties; X-ray diffractometer (XRD), high resolution transmission electron spectroscopy (HR-TEM) and Fourier Transform Infra Red (FTIR) Spectroscopy for structural property investigations. It was observed that the prepared silver nanoparticles were crystallized in face centered cubic crystal structure with an average particle size of 19 nm as confirmed from XRD. Also HR-TEM studies reveal the formation of nano-sized silver particles with face centered cubic nano structure. In addition, absorption spectra exhibit Surface Plasmon Resonance (SPR) which suggests the formation of silver nanoparticles. FTIR results show the presence of different characteristic functional groups and their stretching / bending vibrations in turn responsible for the bioreduction of silver ions in Parthenium digested slurry. Further investigations on antimicrobial activity were done by subjecting the synthesized silver nanoparticles on E-coli and Pseudomonas as marker organisms for the group of gram negative bacteria by well plate method on enrichment media. The result obtained shows a clear zone of inhibition confirming the antibacterial activity. Overall, the investigated results confirm the biosynthesized silver nanoparticles are potential candidates for antimicrobial activity applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    NASA Astrophysics Data System (ADS)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  13. Screen printed silver top electrode for efficient inverted organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min

    2015-10-15

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinitymore » and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.« less

  14. Review of high pressure phases of calcium by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Nagara, H.; Suzuki, N.; Tsuchiya, J.; Tsuchiya, T.

    2010-03-01

    We review high pressure phases of calcium which have obtained by recent experimental and first-principles studies. In this study, we investigated the face-centered cubic (fcc) structure, the body-centered cubic (bcc) structure, the simple cubic (sc) structure, a tetragonal P43212 [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmca [Ishikawa T et al. 2008 Phys. Rev. B 77 020101(R)], an orthorhombic Cmcm [Teweldeberhan A M and Bonev S A 2008 Phys. Rev. B 78 140101(R)], an orthorhombic Pnma [Yao Y et al. 2008 Phys. Rev. B 78 054506] and a tetragonal I4/mcm(00) [Arapan S et al. 2008 Proc. Natl. Acad. Sci. USA 105 20627]. We compared the enthalpies among the structures up to 200 GPa and theoretically determined the phase diagram of calcium. The sequence of the structural transitions is fcc (0- 3.5 GPa) → bcc (3.5 - 35.7 GPa) → Cmcm (35.7- 52GPa) → P43212 (52-109 GPa) → Cmca (109-117.4GPa) → Pnma (117.4-134.6GPa) → I4/mcm(00) (134.6 GPa -). The sc phase is experimentally observed in the pressure range from 32 to 113 GPa but, in our calculation, there is no pressure region where the sc phase is the most stable. In addition, we found that the enthalpy of the hexagonal close-packed (hcp) structure is lower than that of I4/mcm(00) above 495 GPa.

  15. Formation of met-cars and face-centered cubic structures. Thermodynamically or kinetically controlled

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, S.; Guo, B.C.; Deng, H.T.

    1994-05-18

    On the basis of a series of experimental studies from our laboratory, it is well established that metallocarbohedrenes, or Met-Cars for short, are a stable class of cluster materials. To account for their exceptional stability, we initially proposed a pentagonal dodecahedron structure. This cage-like structure is consistent with all the experimental findings. In general, there are two possible structures that can be developed in these metal-carbon systems, i.e., Met-Cars and cubes. Since only one structural pattern is generally observed for one particular cluster system, it has been suggested that their thermodynamical stabilities might be responsible for the selective formation ofmore » specific structures, e.g., Met-Cars or fcc structures. Herein, we present new experimental results on the system of Nb[sub m]C[sub n] under various conditions. It is shown that the experimental conditions are extremely critical for the formation of either Met-Cars or cubic structures, as predicted by Reddy and Khanma. Moreover, the new data show that the cubic structures do not develop on top of Met-Cars, but rather, they grow independently. The experiments were performed by using both time-of-flight and quadrupole mass spectrometer techniques coupled with a laser vaporization source. 23 refs., 1 fig.« less

  16. Random-field Ising model on isometric lattices: Ground states and non-Porod scattering

    NASA Astrophysics Data System (ADS)

    Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay

    2016-01-01

    We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δc at zero temperature with high accuracy. For the SC lattice, our estimate (Δc=2.278 ±0.002 ) is consistent with earlier reports. For the BCC and FCC lattices, Δc=3.316 ±0.002 and 5.160 ±0.002 , respectively, which are the most accurate estimates in the literature to date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α signifying fractal interfaces. In the paramagnetic phase, α =0.5 ±0.01 for all three lattices. In the ferromagnetic phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy Ei(L ) for an interface of size L is significantly different for the three lattices. This has important implications for nonequilibrium properties.

  17. Nb-H system at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Guangtao; Besedin, Stanislav; Irodova, Alla; Liu, Hanyu; Gao, Guoying; Eremets, Mikhail; Wang, Xin; Ma, Yanming

    2017-03-01

    We studied the Nb-H system over extended pressure and temperature ranges to establish the highest level of hydrogen abundance we could achieve from the resulting alloy. We probed the Nb-H system with laser heating and x-ray diffraction complemented by numerical density functional theory-based simulations. New quenched double hexagonal close-packed (hcp) Nb H2.5 appears under 46 GPa, and above 56 GPa cubic Nb H3 is formed as theoretically predicted. Nb atoms are arranged in close-packed lattices which are martensitically transformed in the sequence: face-centered cubic (fcc) → hcp → double hcp (dhcp) → distorted body-centered cubic (bcc) as pressure increases. The appearance of fcc Nb H2.5 -3 and dhcp Nb H2.5 cannot be understood in terms of enthalpic stability, but can be rationalized when finite temperatures are taken into account. The structural and compressional behavior of Nb Hx >2 is similar to that of NbH. Nevertheless, a direct H-H interaction emerges with hydrogen concentration increases, which manifests itself via a reduction in the lattice expansion induced by hydrogen dissolution.

  18. Static high pressure studies on Nd and Sc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akella, J.; Xu, J.; Smith, G.S.

    1985-06-24

    We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.

  19. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    NASA Astrophysics Data System (ADS)

    Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong

    2016-11-01

    The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  20. Structural and magnetic properties of FexNi100-x alloys synthesized using Al as a reducing metal

    NASA Astrophysics Data System (ADS)

    Srakaew, N.; Jantaratana, P.; Nipakul, P.; Sirisathitkul, C.

    2017-08-01

    Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%-30%) Fe content the single face-centered cubic (FCC) FeNi3 phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%-70% with the alloy structure possessing a mixture of FCC FeNi3 and body-centered cubic (BCC) Fe7Ni3. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%-90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  1. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. II. Structural features.

    PubMed

    Sesé, Luis M; Bailey, Lorna E

    2007-04-28

    The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45

  2. Pattern formation in three-dimensional reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Callahan, T. K.; Knobloch, E.

    1999-08-01

    Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamellæ, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special wavenumber k* at which the normal form coefficients take on fixed model-independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor.

  3. A fast, parallel algorithm for distant-dependent calculation of crystal properties

    NASA Astrophysics Data System (ADS)

    Stein, Matthew

    2017-12-01

    A fast, parallel algorithm for distant-dependent calculation and simulation of crystal properties is presented along with speedup results and methods of application. An illustrative example is used to compute the Lennard-Jones lattice constants up to 32 significant figures for 4 ≤ p ≤ 30 in the simple cubic, face-centered cubic, body-centered cubic, hexagonal-close-pack, and diamond lattices. In most cases, the known precision of these constants is more than doubled, and in some cases, corrected from previously published figures. The tools and strategies to make this computation possible are detailed along with application to other potentials, including those that model defects.

  4. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches

    NASA Astrophysics Data System (ADS)

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-01

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the ‘pseudo-interfacial energy’ that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  5. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches.

    PubMed

    Li, Ruihuan; Lu, Song; Kim, Dongyoo; Schönecker, Stephan; Zhao, Jijun; Kwon, Se Kyun; Vitos, Levente

    2016-10-05

    The formation energy of the interface between face-centered cubic (fcc) and hexagonal close packed (hcp) structures is a key parameter in determining the stacking fault energy (SFE) of fcc metals and alloys using thermodynamic calculations. It is often assumed that the contribution of the planar fault energy to the SFE has the same order of magnitude as the bulk part, and thus the lack of precise information about it can become the limiting factor in thermodynamic predictions. Here, we differentiate between the interfacial energy for the coherent fcc(1 1 1)/hcp(0 0 0 1) interface and the 'pseudo-interfacial energy' that enters the thermodynamic expression for the SFE. Using first-principles calculations, we determine the coherent and pseudo-interfacial energies for six elemental metals (Al, Ni, Cu, Ag, Pt, and Au) and three paramagnetic Fe-Cr-Ni alloys. Our results show that the two interfacial energies significantly differ from each other. We observe a strong chemistry dependence for both interfacial energies. The calculated pseudo-interfacial energies for the Fe-Cr-Ni steels agree well with the available literature data. We discuss the effects of strain on the description of planar faults via thermodynamic and ab initio approaches.

  6. Group-III elements under high pressure.

    NASA Astrophysics Data System (ADS)

    Simak, S. I.; Haussermann, U.; Ahuja, R.; Johansson, B.

    2000-03-01

    At ambient conditions the Group-III elements Ga and In attain unusual open ground-state crystal structures. Recent experiments have discovered that Ga under high pressure transforms into the face-centered (fcc) cubic close-packed structure, while such a transition for In has so far not been observed. We offer a simple explanation for such different behavior based on results from first principles calculations. We predict a so far undiscovered transition of In to the fcc structure at extreme pressures and show that the structure determining mechanism originates from the degree of s-p mixing of the valence orbitals. A unified bonding picture for the Group-III elements is discussed.

  7. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...

    2018-02-23

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  8. A novel numerical framework for self-similarity in plasticity: Wedge indentation in single crystals

    NASA Astrophysics Data System (ADS)

    Juul, K. J.; Niordson, C. F.; Nielsen, K. L.; Kysar, J. W.

    2018-03-01

    A novel numerical framework for analyzing self-similar problems in plasticity is developed and demonstrated. Self-similar problems of this kind include processes such as stationary cracks, void growth, indentation etc. The proposed technique offers a simple and efficient method for handling this class of complex problems by avoiding issues related to traditional Lagrangian procedures. Moreover, the proposed technique allows for focusing the mesh in the region of interest. In the present paper, the technique is exploited to analyze the well-known wedge indentation problem of an elastic-viscoplastic single crystal. However, the framework may be readily adapted to any constitutive law of interest. The main focus herein is the development of the self-similar framework, while the indentation study serves primarily as verification of the technique by comparing to existing numerical and analytical studies. In this study, the three most common metal crystal structures will be investigated, namely the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close packed (HCP) crystal structures, where the stress and slip rate fields around the moving contact point singularity are presented.

  9. Freezing of soft spheres: A critical test for weighted-density-functional theories

    NASA Astrophysics Data System (ADS)

    Laird, Brian B.; Kroll, D. M.

    1990-10-01

    We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.

  10. Research Update: Focused ion beam direct writing of magnetic patterns with controlled structural and magnetic properties

    NASA Astrophysics Data System (ADS)

    Urbánek, Michal; Flajšman, Lukáš; Křižáková, Viola; Gloss, Jonáš; Horký, Michal; Schmid, Michael; Varga, Peter

    2018-06-01

    Focused ion beam irradiation of metastable Fe78Ni22 thin films grown on Cu(100) substrates is used to create ferromagnetic, body-centered cubic patterns embedded into paramagnetic, face-centered-cubic surrounding. The structural and magnetic phase transformation can be controlled by varying parameters of the transforming gallium ion beam. The focused ion beam parameters such as the ion dose, number of scans, and scanning direction can be used not only to control a degree of transformation but also to change the otherwise four-fold in-plane magnetic anisotropy into the uniaxial anisotropy along a specific crystallographic direction. This change is associated with a preferred growth of specific crystallographic domains. The possibility to create magnetic patterns with continuous magnetization transitions and at the same time to create patterns with periodical changes in magnetic anisotropy makes this system an ideal candidate for rapid prototyping of a large variety of nanostructured samples. Namely, spin-wave waveguides and magnonic crystals can be easily combined into complex devices in a single fabrication step.

  11. Survey of Portions of the Chromium-Cobalt-Nickel-Molybdenum Quaternary System at 1,200 Degrees C

    NASA Technical Reports Server (NTRS)

    Rideout, Sheldon Paul; Beck, Paul A

    1953-01-01

    A survey was made of portions of the chromium-cobalt-nickel-molybdenum quaternary system at 1,200 degrees c by means of microscopic and x-ray diffraction studies. Since the face-centered cubic (alpha) solid solutions form the matrix of almost all practically useful high-temperature alloys, the solid solubility limits of the quaternary alpha phase were determined up to 20 percent molybdenum. The component cobalt-nickel-molybdenum, chromium-cobalt-molybdenum, and chromium-nickel-molybdenum ternary systems were also studied. The survey of these systems was confined to the determination of the boundaries of the face-centered cubic (alpha) solid solutions and of the phases coexisting with alpha at 1,200 degrees c.

  12. Formation of fivefold deformation twins in nanocrystalline face-centered-cubic copper based on molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, A. J.; Wei, Y. G.

    2006-07-24

    Fivefold deformation twins were reported recently to be observed in the experiment of the nanocrystalline face-centered-cubic metals and alloys. However, they were not predicted previously based on the molecular dynamics (MD) simulations and the reason was thought to be a uniaxial tension considered in the simulations. In the present investigation, through introducing pretwins in grain regions, using the MD simulations, the authors predict out the fivefold deformation twins in the grain regions of the nanocrystal grain cell, which undergoes a uniaxial tension. It is shown in their simulation results that series of Shockley partial dislocations emitted from grain boundaries providemore » sequential twining mechanism, which results in fivefold deformation twins.« less

  13. PHASEGO: A toolkit for automatic calculation and plot of phase diagram

    NASA Astrophysics Data System (ADS)

    Liu, Zhong-Li

    2015-06-01

    The PHASEGO package extracts the Helmholtz free energy from the phonon density of states obtained by the first-principles calculations. With the help of equation of states fitting, it reduces the Gibbs free energy as a function of pressure/temperature at fixed temperature/pressure. Based on the quasi-harmonic approximation (QHA), it calculates the possible phase boundaries among all the structures of interest and finally plots the phase diagram automatically. For the single phase analysis, PHASEGO can numerically derive many properties, such as the thermal expansion coefficients, the bulk moduli, the heat capacities, the thermal pressures, the Hugoniot pressure-volume-temperature relations, the Grüneisen parameters, and the Debye temperatures. In order to check its ability of phase transition analysis, I present here two examples: semiconductor GaN and metallic Fe. In the case of GaN, PHASEGO automatically determined and plotted the phase boundaries among the provided zinc blende (ZB), wurtzite (WZ) and rocksalt (RS) structures. In the case of Fe, the results indicate that at high temperature the electronic thermal excitation free energy corrections considerably alter the phase boundaries among the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed (hcp) structures.

  14. AACSD: An atomistic analyzer for crystal structure and defects

    NASA Astrophysics Data System (ADS)

    Liu, Z. R.; Zhang, R. F.

    2018-01-01

    We have developed an efficient command-line program named AACSD (Atomistic Analyzer for Crystal Structure and Defects) for the post-analysis of atomic configurations generated by various atomistic simulation codes. The program has implemented not only the traditional filter methods like the excess potential energy (EPE), the centrosymmetry parameter (CSP), the common neighbor analysis (CNA), the common neighborhood parameter (CNP), the bond angle analysis (BAA), and the neighbor distance analysis (NDA), but also the newly developed ones including the modified centrosymmetry parameter (m-CSP), the orientation imaging map (OIM) and the local crystallographic orientation (LCO). The newly proposed OIM and LCO methods have been extended for all three crystal structures including face centered cubic, body centered cubic and hexagonal close packed. More specially, AACSD can be easily used for the atomistic analysis of metallic nanocomposite with each phase to be analyzed independently, which provides a unique pathway to capture their dynamic evolution of various defects on the fly. In this paper, we provide not only a throughout overview on various theoretical methods and their implementation into AACSD program, but some critical evaluations, specific testing and applications, demonstrating the capability of the program on each functionality.

  15. Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases

    DOE PAGES

    Egle, Tobias; Barroo, Cédric; Janvelyan, Nare; ...

    2017-07-11

    Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal thatmore » the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H 3PO 4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.« less

  16. Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egle, Tobias; Barroo, Cédric; Janvelyan, Nare

    Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal thatmore » the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H 3PO 4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.« less

  17. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    PubMed

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru

    The interaction of two charged point macroparticles located in Wigner–Seitz cells of simple cubic (SC), body-centered cubic (BCC), or face-centered cubic (FCC) lattices in an equilibrium plasma has been studied within the Debye approximation or, more specifically, based on the linearized Poisson–Boltzmann model. The shape of the outer boundary is shown to exert a strong influence on the pattern of electrostatic interaction between the two macroparticles, which transforms from repulsion at small interparticle distances to attraction as the interparticle distance approaches half the length of the computational cell. The macroparticle pair interaction potential in an equilibrium plasma is shown tomore » be nevertheless the Debye one and purely repulsive for likely charged macroparticles.« less

  19. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin

    To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less

  20. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys

    DOE PAGES

    Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin

    2016-11-01

    To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less

  1. Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Vida, Ádám; Li, Wei; Molnár, Dávid; Kyun Kwon, Se; Holmström, Erik; Varga, Béla; Károly Varga, Lajos; Vitos, Levente

    2017-06-01

    First-principle alloy theory and key experimental techniques are applied to determine the thermal expansion of FeCrCoNiGa high-entropy alloy. The magnetic transition, observed at 649 K, is accompanied by a significant increase in the thermal expansion coefficient. The phase stability is analyzed as a function of temperature via the calculated free energies accounting for the structural, magnetic, electronic, vibrational and configurational contributions. The single- and polycrystal elastic modulus for the ferro- and paramagnetic states of the face-centered and body-centered cubic phases are presented. By combining the measured and theoretically predicted temperature-dependent lattice parameters, we reveal the structural and magnetic origin of the observed anomalous thermal expansion behavior.

  2. Order-disorder effects on the elastic properties of CuMPt6 (M=Cr and Co) compounds

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Li, Rui-Zi; Qi, San-Tao; Chen, Bao; Shen, Jiang

    2014-04-01

    The elastic properties of CuMPt6 (M=Cr and Co) in disordered face-centered cubic (fcc) structure and ordered Cu3Au-type structure are studied with lattice inversion embedded-atom method. The calculated lattice constant and Debye temperature agree quite well with the comparable experimental data. The obtained formation enthalpy demonstrates that the Cu3Au-type structure is energetically more favorable. Numerical estimates of the elastic constants, bulk/shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy, and Debye temperature for both compounds are performed, and the results suggest that the disordered fcc structure is much softer than the ordered Cu3Au-type structure.

  3. Interpretation of small-angle diffraction experiments on opal-like photonic crystals

    NASA Astrophysics Data System (ADS)

    Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.

    2011-08-01

    Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.

  4. Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals

    NASA Astrophysics Data System (ADS)

    Wang, J.; Anderoglu, O.; Hirth, J. P.; Misra, A.; Zhang, X.

    2009-07-01

    High resolution transmission electron microscopy of nanotwinned Cu films revealed Σ3 {112} incoherent twin boundaries (ITBs), with a repeatable pattern involving units of three {111} atomic planes. Topological analysis shows that Σ3 {112} ITBs adopt two types of atomic structure with differing arrangements of Shockley partial dislocations. Atomistic simulations were performed for Cu and Al. These studies revealed the structure of the two types of ITBs, the formation mechanism and stability of the associated 9R phase, and the influence of stacking fault energies on them. The results suggest that Σ3 {112} ITBs may migrate through the collective glide of partial dislocations.

  5. Atomic force microscope studies of fullerene films - Highly stable C60 fcc (311) free surfaces

    NASA Technical Reports Server (NTRS)

    Snyder, Eric J.; Tong, William M.; Williams, R. S.; Anz, Samir J.; Anderson, Mark S.

    1991-01-01

    Atomic force microscopy and X-ray diffractometry were used to study 1500 A-thick films of pure C60 grown by sublimation in ultrahigh vacuum onto a CaF2 (111) substrte. Topographs of the films did not reveal the expected close-packed structures, but they showed instead large regions that correspond to a face-centered cubic (311) surface and distortions of this surface. The open (311) structure may have a relatively low free energy because the low packing density contributes to a high entropy of the exposed surface.

  6. In situ nanomechanical testing of twinned metals in a transmission electron microscope

    DOE PAGES

    Li, Nan; Wang, Jiangwei; Mao, Scott; ...

    2016-04-01

    This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.

  7. In situ nanomechanical testing of twinned metals in a transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Wang, Jiangwei; Mao, Scott

    This paper focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms.

  8. Mechanical properties of fullerite of various composition

    NASA Astrophysics Data System (ADS)

    Rysaeva, L. Kh.

    2017-12-01

    Molecular dynamics simulation is used to study the structures of fullerite of various composition as well as their mechanical properties. Fullerites based on fullerene C60 with simple cubic and face-centered packing, fullerene-like molecule C48 and fullerene C240 with simple cubic packing are studied. Compliance and stiffness coefficients are calculated for fullerites C60 and C48. For fullerite C240, C60, and C48, deformation behavior under the effect of hydrostatic compression is also investigated. It is shown that the fullerenes in the fullerite remain almost spherical up to high values of compressive strain, as a result of which the fullerite is an elastic medium up to densities of 2.5 g/cm3. The increasing stiffness and strength under an applied compression is found for all the considered fullerites.

  9. Kohn anomalies in momentum dependence of magnetic susceptibility of some three-dimensional systems

    NASA Astrophysics Data System (ADS)

    Stepanenko, A. A.; Volkova, D. O.; Igoshev, P. A.; Katanin, A. A.

    2017-11-01

    We study a question of the presence of Kohn points, yielding at low temperatures nonanalytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectra of some threedimensional systems. In particular, we consider a one-band model on face-centered cubic lattice with hopping between the nearest and next-nearest neighbors, which models some aspects of the dispersion of ZrZn2, and the two-band model on body-centered cubic lattice, modeling the dispersion of chromium. For the former model, it is shown that Kohn points yielding maxima of susceptibility exist in a certain (sufficiently wide) region of electronic concentrations; the dependence of the wave vectors, corresponding to the maxima, on the chemical potential is investigated. For the two-band model, we show the existence of the lines of Kohn points, yielding maximum susceptibility, whose position agrees with the results of band structure calculations and experimental data on the wave vector of antiferromagnetism of chromium.

  10. Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Li, Dongyue; Yong, Zhang; Liaw, Peter K.; Lewandowski, John J.

    2015-08-01

    The fracture toughness and fatigue crack growth behavior of two as-vacuum arc cast high-entropy alloys (HEAs) (Al0.2CrFeNiTi0.2 and AlCrFeNi2Cu) were determined. A microstructure examination of both HEA alloys revealed a two-phase structure consisting of body-centered cubic (bcc) and face-centered cubic (fcc) phases. The notched and fatigue precracked toughness values were in the range of those reported in the literature for two-phase alloys but significantly less than recent reports on a single phase fcc-HEA that was deformation processed. Fatigue crack growth experiments revealed high fatigue thresholds that decreased significantly with an increase in load ratio, while Paris law slopes exhibited metallic-like behavior at low R with significant increases at high R. Fracture surface examinations revealed combinations of brittle and ductile/dimpled regions at overload, with some evidence of fatigue striations in the Paris law regime.

  11. Pressure induced band inversion, electronic and structural phase transitions in InTe: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Rajaji, V.; Pal, Koushik; Sarma, Saurav Ch.; Joseph, B.; Peter, Sebastian C.; Waghmare, Umesh V.; Narayana, Chandrabhas

    2018-04-01

    We report high-pressure Raman scattering measurements on the tetragonal phase of InTe corroborated with the first-principles density functional theory and synchrotron x-ray diffraction measurements. Anomalous pressure-dependent linewidths of the A1 g and Eg phonon modes provide evidence of an isostructural electronic transition at ˜3.6 GPa . The first-principles theoretical analysis reveals that it is associated with a semiconductor-to-metal transition due to increased density of states near the Fermi level. Further, this pressure induced metallization acts as a precursor for structural phase transition to a face centered cubic phase (F m 3 ¯m ) at ˜6.0 GPa . Interestingly, theoretical results reveal a pressure induced band inversion at the Z and M points of the Brillouin zone corresponding to pressures ˜1.0 and ˜1.4 GPa , respectively. As the parity of bands undergoing inversions is the same, the topology of the electronic state remains unchanged, and hence InTe retains its trivial band topology (Z2=0 ) . The pressure dependent behavior of the A1 g and Eg modes can be understood based on the results from the synchrotron x-ray diffraction, which shows anisotropic compressibility of the lattice in the a and c directions. Our Raman measurements up to ˜19 GPa further confirms the pressure induced structural phase transition from a face-centered to primitive cubic (F m 3 ¯m to P m 3 ¯m ) at P ˜15 GPa .

  12. Energy-landscape paving for prediction of face-centered-cubic hydrophobic-hydrophilic lattice model proteins

    NASA Astrophysics Data System (ADS)

    Liu, Jingfa; Song, Beibei; Liu, Zhaoxia; Huang, Weibo; Sun, Yuanyuan; Liu, Wenjie

    2013-11-01

    Protein structure prediction (PSP) is a classical NP-hard problem in computational biology. The energy-landscape paving (ELP) method is a class of heuristic global optimization algorithm, and has been successfully applied to solving many optimization problems with complex energy landscapes in the continuous space. By putting forward a new update mechanism of the histogram function in ELP and incorporating the generation of initial conformation based on the greedy strategy and the neighborhood search strategy based on pull moves into ELP, an improved energy-landscape paving (ELP+) method is put forward. Twelve general benchmark instances are first tested on both two-dimensional and three-dimensional (3D) face-centered-cubic (fcc) hydrophobic-hydrophilic (HP) lattice models. The lowest energies by ELP+ are as good as or better than those of other methods in the literature for all instances. Then, five sets of larger-scale instances, denoted by S, R, F90, F180, and CASP target instances on the 3D FCC HP lattice model are tested. The proposed algorithm finds lower energies than those by the five other methods in literature. Not unexpectedly, this is particularly pronounced for the longer sequences considered. Computational results show that ELP+ is an effective method for PSP on the fcc HP lattice model.

  13. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio

    2009-01-01

    We perturb the simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) structures with a spatial Gaussian noise whose adimensional strength is controlled by the parameter α and analyze the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. We concentrate on topological properties of the cells, such as the number of faces, and on metric properties of the cells, such as the area, volume and the isoperimetric quotient. The topological properties of the Voronoi tessellations of the SC and FCC crystals are unstable with respect to the introduction of noise, because the corresponding polyhedra are geometrically degenerate, whereas the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. Whereas the average volume of the cells is the intensity parameter of the system and does not depend on the noise, the average area of the cells has a rather interesting behavior with respect to noise intensity. For weak noise, the mean area of the Voronoi tessellations corresponding to perturbed BCC and FCC perturbed increases quadratically with the noise intensity. In the case of perturbed SCC crystals, there is an optimal amount of noise that minimizes the mean area of the cells. Already for a moderate amount of noise ( α>0.5), the statistical properties of the three perturbed tessellations are indistinguishable, and for intense noise ( α>2), results converge to those of the Poisson-Voronoi tessellation. Notably, 2-parameter gamma distributions constitute an excellent model for the empirical pdf of all considered topological and metric properties. By analyzing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape, measured by the isoperimetric quotient, fluctuates. The Voronoi tessellations of the BCC and of the FCC structures result to be local maxima for the isoperimetric quotient among space-filling tessellations, which suggests a weaker form of the recently disproved Kelvin conjecture. Moreover, whereas the size of the isoperimetric quotient fluctuations go to zero linearly with noise in the SC and BCC case, the decrease is quadratic in the FCC case. Correspondingly, anomalous scaling relations with exponents larger than 3/2 are observed between the area and the volumes of the cells for all cases considered, and, except for the FCC structure, also for infinitesimal noise. In the Poisson-Voronoi limit, the exponent is ˜1.67. The anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. The FCC structure, in spite of being topologically unstable, results to be the most stable against noise when the shape—as measured by the isoperimetric quotient—of the cells is considered. These scaling relations apply only for a finite range and should be taken as descriptive of the bulk statistical properties of the cells. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces.

  14. Local structure order in Pd 78Cu 6Si 16 liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, G. Q.; Zhang, Y.; Sun, Y.

    2015-02-05

    The short-range order (SRO) in Pd 78Cu 6Si 16 liquid was studied by high energy x-ray diffraction and ab initio molecular dynamics (MD) simulations. The calculated pair correlation functions at different temperatures agree well with the experimental results. The partial pair correlation functions from ab intio MD simulations indicate that Si atoms prefer to be uniformly distributed while Cu atoms tend to aggregate. By performing structure analysis using Honeycutt-Andersen index, Voronoi tessellation, and atomic cluster alignment method, we show that the icosahedron and face-centered cubic SRO increase upon cooling. The dominant SRO is the Pd-centered Pd 9Si 2 motif, namelymore » the structure of which motif is similar to the structure of Pd-centered clusters in the Pd 9Si 2 crystal. The study further confirms the existence of trigonal prism capped with three half-octahedra that is reported as a structural unit in Pd-based amorphous alloys. The majority of Cu-centered clusters are icosahedra, suggesting that the presence of Cu is benefit to promote the glass forming ability.« less

  15. On the mechanical stability of the body-centered cubic phase and the emergence of a metastable cI16 phase in classical hard sphere solids

    NASA Astrophysics Data System (ADS)

    Warshavsky, Vadim B.; Ford, David M.; Monson, Peter A.

    2018-01-01

    The stability of the body-centered cubic (bcc) solid phase of classical hard spheres is of intrinsic interest and is also relevant to the development of perturbation theories for bcc solids of other model systems. Using canonical ensemble Monte Carlo, we simulated systems initialized in a perfect bcc lattice at various densities in the solid region. We observed that the systems rapidly evolved into one of four structures that then persisted for the duration of the simulation. Remarkably, one of these structures was identified as cI16, a cubic crystalline structure with 16 particles in the unit cell, which has recently been observed experimentally in lithium and sodium solids at high pressures. The other three structures do not exhibit crystalline order but are characterized by common patterns in the radial distribution function and bond-orientational order parameter distribution; we refer to them as bcc-di, with i ranging from 1 to 3. We found similar outcomes when employing any of the three single occupancy cell (SOC) restrictions commonly used in the literature. We also ran long constant-pressure simulations with box shape fluctuations initiated from bcc and cI16 initial configurations. At lower pressures, all the systems evolved to defective face-centered cubic (fcc) or hexagonal close-packed (hcp) structures. At higher pressures, most of the systems initiated as bcc evolved to cI16 with some evolving to defective fcc/hcp. High pressure systems initiated from cI16 remained in that structure. We computed the chemical potential of cI16 using the Einstein crystal reference method and found that it is higher than that of fcc by ˜0.5kT-2.5kT over the pressure range studied, with the difference increasing with pressure. We find that the undistorted bcc solid, even with constant-volume and SOC restrictions applied, is so mechanically unstable that it is unsuitable for consideration as a metastable phase or as a reference system for studying bcc phases of other systems. On the other hand, cI16 is a mechanically stable structure that can spontaneously emerge from a bcc starting point but it is thermodynamically metastable relative to fcc or hcp.

  16. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    ERIC Educational Resources Information Center

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  17. Research for preparation of cation-conducting solids by high-pressure synthesis and other methods

    NASA Technical Reports Server (NTRS)

    Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A.; Dwight, K., Jr.

    1975-01-01

    It was shown that two body-centered-cubic skeleton structures, the Im3 KSbO3 phase and the defect-pyrochlore phase A(+)B2X6, do exhibit fast Na(+)-ion transport. The placement of anions at the tunnel intersection sites does not impede Na(+)-ion transport in (NaSb)3)(1/6 NaF), and may not in (Na(1+2x)Ta2 5F)(Ox). The activation energies are higher than those found in beta-alumina. There are two possible explanations for the higher activation energy: breathing of the bottleneck (site face or edge) through which the A(+) ions must pass on jumping from one site to another may be easier in a layer structure and/or A(+)-O bonding may be stronger in the cubic structures because the O(2-) ion bonds with two (instead of three) cations of the skeleton. If the former explanation is dominant, a lower activation energy may be achieved by optimizing the lattice parameter. If the latter is dominant, a new structural principle may have to be explored.

  18. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping

    DOE PAGES

    Zuo, Tingting; Gao, Michael C.; Ouyang, Lizhi; ...

    2017-03-07

    Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (M s), e.g., the CoFeMnNiAl alloy has M s of 147.86 Am 2/kg.more » In conclusion, first-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism.« less

  19. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  20. Z3 topological order in the face-centered-cubic quantum plaquette model

    NASA Astrophysics Data System (ADS)

    Devakul, Trithep

    2018-04-01

    We examine the topological order in the resonating singlet valence plaquette (RSVP) phase of the hard-core quantum plaquette model (QPM) on the face centered cubic (FCC) lattice. To do this, we construct a Rohksar-Kivelson type Hamiltonian of local plaquette resonances. This model is shown to exhibit a Z3 topological order, which we show by identifying a Z3 topological constant (which leads to a 33-fold topological ground state degeneracy on the 3-torus) and topological pointlike charge and looplike magnetic excitations which obey Z3 statistics. We also consider an exactly solvable generalization of this model, which makes the geometrical origin of the Z3 order explicitly clear. For other models and lattices, such generalizations produce a wide variety of topological phases, some of which are novel fracton phases.

  1. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    NASA Astrophysics Data System (ADS)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  2. Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente

    2015-12-01

    We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.

  3. High pressure/temperature equation of state of gold silver alloys

    NASA Astrophysics Data System (ADS)

    Jenei, Zsolt; Lipp, Magnus J.; Klepeis, Jae-Hyun P.; Cynn, Hyunchae; Evans, William J.; Park, Changyong

    2012-02-01

    Gold-silver alloys crystallize in face centered cubic structures, like their constituent pure elements [McKeehan -- Phys.Rev. 20, 424 (1922)]. The cell parameter of the alloys does not scale linearly with the ratio of Ag/Au. In this work we investigate the high-pressure/temperature behavior of gold-silver alloys with different Au/Ag ratios. Powder x-ray diffraction experiments performed at HPCAT/Advanced Photon Source confirm the stability of the alloy's fcc structure to pressures/temperatures exceeding 100 GPa/1000 K. We will present isothermal EOS of the alloys from ambient temperature up to 1000 K, discuss the thermal expansion and its variation with pressure.

  4. Nucleation of fcc Ta when heating thin films

    DOE PAGES

    Janish, Matthew T.; Mook, William M.; Carter, C. Barry

    2014-10-25

    Thin tantalum films have been studied during in-situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in-situ at 450°C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. As a result, these observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.

  5. Large scale structural optimization of trimetallic Cu-Au-Pt clusters up to 147 atoms

    NASA Astrophysics Data System (ADS)

    Wu, Genhua; Sun, Yan; Wu, Xia; Chen, Run; Wang, Yan

    2017-10-01

    The stable structures of Cu-Au-Pt clusters up to 147 atoms are optimized by using an improved adaptive immune optimization algorithm (AIOA-IC method), in which several motifs, such as decahedron, icosahedron, face centered cubic, sixfold pancake, and Leary tetrahedron, are randomly selected as the inner cores of the starting structures. The structures of Cu8AunPt30-n (n = 1-29), Cu8AunPt47-n (n = 1-46), and partial 75-, 79-, 100-, and 147-atom clusters are analyzed. Cu12Au93Pt42 cluster has onion-like Mackay icosahedral motif. The segregation phenomena of Cu, Au and Pt in clusters are explained by the atomic radius, surface energy, and cohesive energy.

  6. Epitaxial Growth of an Organic p-n Heterojunction: C60 on Single-Crystal Pentacene.

    PubMed

    Nakayama, Yasuo; Mizuno, Yuta; Hosokai, Takuya; Koganezawa, Tomoyuki; Tsuruta, Ryohei; Hinderhofer, Alexander; Gerlach, Alexander; Broch, Katharina; Belova, Valentina; Frank, Heiko; Yamamoto, Masayuki; Niederhausen, Jens; Glowatzki, Hendrik; Rabe, Jürgen P; Koch, Norbert; Ishii, Hisao; Schreiber, Frank; Ueno, Nobuo

    2016-06-01

    Designing molecular p-n heterojunction structures, i.e., electron donor-acceptor contacts, is one of the central challenges for further development of organic electronic devices. In the present study, a well-defined p-n heterojunction of two representative molecular semiconductors, pentacene and C60, formed on the single-crystal surface of pentacene is precisely investigated in terms of its growth behavior and crystallographic structure. C60 assembles into a (111)-oriented face-centered-cubic crystal structure with a specific epitaxial orientation on the (001) surface of the pentacene single crystal. The present experimental findings provide molecular scale insights into the formation mechanisms of the organic p-n heterojunction through an accurate structural analysis of the single-crystalline molecular contact.

  7. Three-dimensional periodic dielectric structures having photonic Dirac points

    DOEpatents

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin

    2015-06-02

    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  8. Discovery of a Superconducting High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J.

    2014-09-01

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a =3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field μ0Hc2≈8.2 T, a lower critical field μ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  9. Getting off the Bain path: Are there any metastable states of cubic elements?

    NASA Astrophysics Data System (ADS)

    Mehl, Michael J.; Boyer, Larry L.

    2003-03-01

    Body-centered and face-centered cubic crystals can be considered as special cases of a body-centered tetragonal crystal with c/a = 1 and 2, respectively. First-principles calculations along this Bain path show that elements with an fcc (bcc) ground state are elastically unstable with respect to a tetragonal distortion in the bcc (fcc) phase. Starting with a normally fcc element and calculating E(c/a) for c/a < 1 we find a local minimum near c/a = 2/3, while for a bcc element we find a local minimum at some c/a > 2. It is tempting to conclude that these bct minima, which are required by continuity, are metastable, but calculations by several authors show that, at least for Al, Cu, and Pd, the bct structures are unstable with respect to an orthorhombic distortion. We use a simple "magic strain" construction(L. L. Boyer, Acta Cryst. A) 45, FC29 (1989).(M. J. Mehl and L. L. Boyer, Phys. Rev. B) 43, 9498 (1991). to study the stability of these bct states, and present examples which suggest that no fcc or bcc element has a metastable bct state.

  10. Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery

    NASA Astrophysics Data System (ADS)

    Yoshida, Koji; Sato, Toyoto; Unemoto, Atsushi; Matsuo, Motoaki; Ikeshoji, Tamio; Udovic, Terrence J.; Orimo, Shin-ichi

    2017-03-01

    In the present work, we developed highly sodium-ion conductive Na2B10H10-Na2B12H12 pseudo-binary complex hydride via mechanically ball-milling admixtures of the pure Na2B10H10 and Na2B12H12 components. Both of these components show a monoclinic phase at room temperature, but ball-milled mixtures partially stabilized highly ion-conductive, disordered cubic phases, whose fraction and favored structural symmetry (body-centered cubic or face-centered cubic) depended on the conditions of mechanical ball-milling and molar ratio of the component compounds. First-principles molecular-dynamics simulations demonstrated that the total energy of the closo-borane mixtures and pure materials is quite close, helping to explain the observed stabilization of the mixed compounds. The ionic conductivity of the closo-borane mixtures appeared to be correlated with the fraction of the body-centered-cubic phase, exhibiting a maximum at a molar ratio of Na2B10H10:Na2B12H12 = 1:3. A conductivity as high as log(σ/S cm-1) = -3.5 was observed for the above ratio at 303 K, being approximately 2-3 orders of magnitude higher than that of either pure material. A bulk-type all-solid-state sodium-ion battery with a closo-borane-mixture electrolyte, sodium-metal negative-electrode, and TiS2 positive-electrode demonstrated a high specific capacity, close to the theoretical value of NaTiS2 formation and a stable discharge/charge cycling for at least eleven cycles, with a high discharge capacity retention ratio above 91% from the second cycle.

  11. Shear response of Σ3{112} twin boundaries in face-centered-cubic metals

    NASA Astrophysics Data System (ADS)

    Wang, J.; Misra, A.; Hirth, J. P.

    2011-02-01

    Molecular statics and dynamics simulations were used to study the mechanisms of sliding and migration of Σ3{112} incoherent twin boundaries (ITBs) under applied shear acting in the boundary in the face-centered-cubic (fcc) metals, Ag, Cu, Pd, and Al, of varying stacking fault energies. These studies revealed that (i) ITBs can dissociate into two phase boundaries (PBs), bounding the hexagonal 9R phase, that contain different arrays of partial dislocations; (ii) the separation distance between the two PBs scales inversely with increasing stacking fault energy; (iii) for fcc metals with low stacking fault energy, one of the two PBs migrates through the collective glide of partials, referred to as the phase-boundary-migration (PBM) mechanism; (iv) for metals with high stacking energy, ITBs experience a coupled motion (migration and sliding) through the glide of interface disconnections, referred to as the interface-disconnection-glide (IDG) mechanism.

  12. Hierarchical and chemical space partitioning in new intermetallic borides MNi21B20 (M = In, Sn).

    PubMed

    Wagner, Frank R; Zheng, Qiang; Gumeniuk, Roman; Bende, David; Prots, Yurii; Bobnar, Matej; Hu, Dong-Li; Burkhardt, Ulrich; Grin, Yuri; Leithe-Jasper, Andreas

    2017-10-10

    The compounds MNi 21 B 20 (M = In, Sn) have been synthesized and their cubic crystal structure determined (space group Pm3[combining macron]m, lattice parameters a = 7.1730(1) Å and a = 7.1834(1) Å, respectively). The structure can be described as a hierarchical partitioning of space based on a reo-e net formed by Ni3 species with large cubical, cuboctahedral and rhombicuboctahedral voids being filled according to [Ni1@Ni3 8 ], [M@Ni3 12 ], and [Ni2 6 @B 20 @Ni3 24 ], respectively. The [Ni 6 @B 20 ] motif inside the rhombicuboctahedral voids features an empty [Ni 6 ] octahedron surrounded by a [B 20 ] cage recently described in E 2 Ni 21 B 20 (E = Zn, Ga). Position-space bonding analysis using ELI-D and QTAIM space partitioning as well as 2- and 3-center delocalization indices gives strong support to an alternative chemical description of space partitioning based on face-condensed [B@Ni 6 ] trigonal prisms as basic building blocks. The shortest B-B contacts display locally nested 3-center B-B-Ni bonding inside each trigonal prism. This clearly rules out the notion of [Ni 6 @B 20 ] clusters and leads to the arrangement of 20 face-condensed [B@Ni2 3 Ni3 3 ] trigonal prisms resulting in a triple-shell like situation Ni2 6 @B 20 @Ni3 24 (reo-e), where the shells display comparable intra- and inter-shell bonding. Both compounds are Pauli paramagnets displaying metallic conductivity.

  13. Neural network approach for characterizing structural transformations by X-ray absorption fine structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timoshenko, Janis; Frenkel, Anatoly I.; Cintins, Arturs

    The knowledge of coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use artificial neural network approach to extract the information on the local structure and its in-situ changes directly from the X-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic andmore » austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from body-centered to face-centered cubic arrangement of iron atoms. Furthermore, this method is attractive for a broad range of materials and experimental conditions« less

  14. Neural network approach for characterizing structural transformations by X-ray absorption fine structure

    DOE PAGES

    Timoshenko, Janis; Frenkel, Anatoly I.; Cintins, Arturs; ...

    2018-05-25

    The knowledge of coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use artificial neural network approach to extract the information on the local structure and its in-situ changes directly from the X-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic andmore » austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from body-centered to face-centered cubic arrangement of iron atoms. Furthermore, this method is attractive for a broad range of materials and experimental conditions« less

  15. Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy

    NASA Astrophysics Data System (ADS)

    Timoshenko, Janis; Anspoks, Andris; Cintins, Arturs; Kuzmin, Alexei; Purans, Juris; Frenkel, Anatoly I.

    2018-06-01

    The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.

  16. High-pressure phase transitions of nitinol NiTi to a semiconductor with an unusual topological structure

    NASA Astrophysics Data System (ADS)

    Liu, Guangtao; Liu, Hanyu; Feng, Xiaolei; Redfern, Simon A. T.

    2018-04-01

    Systematic ab initio structure simulations have been used to explore the high-pressure behavior of nitinol (NiTi) at zero temperature. Our crystal structure prediction and first-principles calculations reveal that the known B 19 phase is dynamically unstable, and an orthorhombic structure (Pbcm) and a face-centered-cubic B 32 structure (F d 3 ¯m ) become stable above ˜4 and 29 GPa, respectively. The predicted, highest-pressure, B 32 phase is composed of two interpenetrating diamond structures, with a structural topology that is quite distinct from that of the other phases of NiTi. Interestingly, the B 32 phase shows an unusual semiconducting characteristic as a result of its unique band structure and the nature of 3 d orbitals localization, whose expected synthesis pressure is accessible to current experimental techniques.

  17. Favoured local structures in liquids and solids: a 3D lattice model.

    PubMed

    Ronceray, Pierre; Harrowell, Peter

    2015-05-07

    We investigate the connection between the geometry of Favoured Local Structures (FLS) in liquids and the associated liquid and solid properties. We introduce a lattice spin model - the FLS model on a face-centered cubic lattice - where this geometry can be arbitrarily chosen among a discrete set of 115 possible FLS. We find crystalline groundstates for all choices of a single FLS. Sampling all possible FLS's, we identify the following trends: (i) low symmetry FLS's produce larger crystal unit cells but not necessarily higher energy groundstates, (ii) chiral FLS's exhibit peculiarly poor packing properties, (iii) accumulation of FLS's in supercooled liquids is linked to large crystal unit cells, and (iv) low symmetry FLS's tend to find metastable structures on cooling.

  18. High pressure/temperature equation of state of gold-silver alloys

    NASA Astrophysics Data System (ADS)

    Evans, W. J.; Jenei, Zs.; Sinogeikin, S. V.; Yang, W.; Shebanova, O.

    2010-03-01

    It has been reported previously (McKeehan Phys.Rev. 20 p424) that gold-silver alloys crystallize in face centered cubic structures, like their constituant pure elements and the cell parameter of the alloy has a linear relationship with the ratios of Ag/Au in the alloy. We investigate the high-pressure/temperature behavior of gold-silver alloys with different Au/Ag ratios. Powder x-ray diffraction experiments performed at HPCAT/Advanced Photon Source confirm the stability of the alloy's fcc structure to pressures/temperatures exceeding 100 GPa/1000 K. We will present isothermal EOS of the alloys from ambient temperature up to 1000 K, discuss the thermal expansion and its variation with pressure.

  19. Weldability of a high entropy CrMnFeCoNi alloy

    DOE PAGES

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; ...

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less

  20. Parametric Study of Amorphous High-Entropy Alloys formation from two New Perspectives: Atomic Radius Modification and Crystalline Structure of Alloying Elements

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Guo, S.; Wang, J. M.; Yan, Y. H.; Chen, S. S.; Lu, D. P.; Liu, K. M.; Zou, J. Z.; Zeng, X. R.

    2017-01-01

    Chemical and topological parameters have been widely used for predicting the phase selection in high-entropy alloys (HEAs). Nevertheless, previous studies could be faulted due to the small number of available data points, the negligence of kinetic effects, and the insensitivity to small compositional changes. Here in this work, 92 TiZrHfM, TiZrHfMM, TiZrHfMMM (M = Fe, Cr, V, Nb, Al, Ag, Cu, Ni) HEAs were prepared by melt spinning, to build a reliable and sufficiently large material database to inspect the robustness of previously established parameters. Modification of atomic radii by considering the change of local electronic environment in alloys, was critically found out to be superior in distinguishing the formation of amorphous and crystalline alloys, when compared to using atomic radii of pure elements in topological parameters. Moreover, crystal structures of alloying element were found to play an important role in the amorphous phase formation, which was then attributed to how alloying hexagonal-close-packed elements and face-centered-cubic or body-centered-cubic elements can affect the mixing enthalpy. Findings from this work not only provide parametric studies for HEAs with new and important perspectives, but also reveal possibly a hidden connection among some important concepts in various fields.

  1. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  2. Biosynthesis of Silver Nanoparticles Using Extracts of Mexican Medicinal Plants

    NASA Astrophysics Data System (ADS)

    López, J. L.; Baltazar, C.; Torres, M.; Ruız, A.; Esparza, R.; Rosas, G.

    The biosynthesis of silver nanoparticles using an aqueous extract of Agastache mexicana and Tecoma stans was carried out. The AgNO3 concentration and extract concentration was varied to evaluate their influence on the nanoparticles characteristics such as size and shape. Several characterization techniques were employed. UV-Vis spectroscopy revealed the surface plasmon resonance in the range of 400-500 nm. The X-Ray diffraction results showed that the nanoparticles have a face-centered cubic structure. SEM results confirmed the formation of silver nanoparticles with spherical morphologies. Finally, the antibacterial activity of silver nanoparticles was evaluated against Escherichia coli bacteria.

  3. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys

    DOE PAGES

    Jin, K.; Lu, C.; Wang, L. M.; ...

    2016-04-14

    The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.

  4. Formation mechanism of fivefold deformation twins in a face-centered cubic alloy.

    PubMed

    Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming

    2017-03-28

    The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.

  5. Formation mechanism of fivefold deformation twins in a face-centered cubic alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Huang, Siling; Chen, Leilei; Zhu, Zhanwei; Guo, Dongming

    2017-03-01

    The formation mechanism considers fivefold deformation twins originating from the grain boundaries in a nanocrystalline material, resulting in that fivefold deformation twins derived from a single crystal have not been reported by molecular dynamics simulations. In this study, fivefold deformation twins are observed in a single crystal of face-centered cubic (fcc) alloy. A new formation mechanism is proposed for fivefold deformation twins in a single crystal. A partial dislocation is emitted from the incoherent twin boundaries (ITBs) with high energy, generating a stacking fault along {111} plane, and resulting in the nucleating and growing of a twin by the successive emission of partials. A node is fixed at the intersecting center of the four different slip {111} planes. With increasing stress under the indentation, ITBs come into being close to the node, leading to the emission of a partial from the node. This generates a stacking fault along a {111} plane, nucleating and growing a twin by the continuous emission of the partials. This process repeats until the formation of fivefold deformation twins.

  6. Energy absorption ability of buckyball C720 at low impact speed: a numerical study based on molecular dynamics

    PubMed Central

    2013-01-01

    The dynamic impact response of giant buckyball C720 is investigated by using molecular dynamics simulations. The non-recoverable deformation of C720 makes it an ideal candidate for high-performance energy absorption. Firstly, mechanical behaviors under dynamic impact and low-speed crushing are simulated and modeled, which clarifies the buckling-related energy absorption mechanism. One-dimensional C720 arrays (both vertical and horizontal alignments) are studied at various impact speeds, which show that the energy absorption ability is dominated by the impact energy per buckyball and less sensitive to the number and arrangement direction of buckyballs. Three-dimensional stacking of buckyballs in simple cubic, body-centered cubic, hexagonal, and face-centered cubic forms are investigated. Stacking form with higher occupation density yields higher energy absorption. The present study may shed lights on employing C720 assembly as an advanced energy absorption system against low-speed impacts. PMID:23360618

  7. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air,more » the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.« less

  8. Structure family and polymorphous phase transition in the compounds with soft sublattice: Cu{sub 2}Se as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Wujie; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050; Lu, Ping

    Quite a few interesting but controversial phenomena, such as simple chemical composition but complex structures, well-defined high-temperature cubic structure but intriguing phase transition, coexist in Cu{sub 2}Se, originating from the relatively rigid Se framework and “soft” Cu sublattice. However, the electrical transport properties are almost uninfluenced by such complex substructures, which make Cu{sub 2}Se a promising high-performance thermoelectric compound with extremely low thermal conductivity and good power factor. Our work reveals that the crystal structure of Cu{sub 2}Se at the temperature below the phase-transition point (∼400 K) should have a group of candidate structures that all contain a Se-dominated face-centered-cubic-likemore » layered framework but nearly random site occupancy of atoms from the “soft” Cu sublattice. The energy differences among those structures are very low, implying the coexistence of various structures and thus an intrinsic structure complexity with a Se-based framework. Detailed analyses indicate that observed structures should be a random stacking of those representative structure units. The transition energy barriers between each two of those structures are estimated to be zero, leading to a polymorphous phase transition of Cu{sub 2}Se at increasing temperature. Those are all consistent with experimental observations.« less

  9. Interplay between quantum confinement and surface effects in thickness selective stability of thin Ag and Eu films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaojie; Wang, Cai -Zhuang

    Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.

  10. Interplay between quantum confinement and surface effects in thickness selective stability of thin Ag and Eu films

    DOE PAGES

    Liu, Xiaojie; Wang, Cai -Zhuang

    2017-04-03

    Using first-principles calculations, we show that both face-centered cubic (fcc) Ag (1 1 0) ultrathin films and body-centered cubic (bcc) Eu(1 1 0) ultrathin films exhibit thickness selective stability. Furthermore, the origin of such thickness selection is different. While the thickness selective stability in fcc Ag(1 1 0) films is mainly due to the well-known quantum well states ascribed to the quantum confinement effects in free-electron-like metal films, the thickness selection in bcc Eu(1 1 0) films is more complex and also strongly correlated with the occupation of the surface and surface resonance states.

  11. Size-Dependent Surface Energy Density of Spherical Face-Centered-Cubic Metallic Nanoparticles.

    PubMed

    Wei, Yaochi; Chen, Shaohua

    2015-12-01

    The surface energy density of nano-sized elements exhibits a significantly size-dependent behavior. Spherical nanoparticle, as an important element in nano-devices and nano-composites, has attracted many interesting studies on size effect, most of which are molecular dynamics (MD) simulations. However, the existing MD calculations yield two opposite size-dependent trends of surface energy density of nanoparticles. In order to clarify such a real underlying problem, atomistic calculations are carried out in the present paper for various spherical face-centered-cubic (fcc) metallic nanoparticles. Both the embedded atom method (EAM) potential and the modified embedded atom method (MEAM) one are adopted. It is found that the size-dependent trend of surface energy density of nanoparticles is not governed by the chosen potential function or variation trend of surface energy, but by the defined radius of spherical nanoparticles in MD models. The finding in the present paper should be helpful for further theoretical studies on surface/interface effect of nanoparticles and nanoparticle-reinforced composites.

  12. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  13. Study of structural and optical properties of PbS thin films

    NASA Astrophysics Data System (ADS)

    Homraruen, T.; Sudswasd, Y.; Sorod, R.; Kayunkid, N.; Yindeesuk, W.

    2018-03-01

    This research aimed to synthesize lead sulfide (PbS) thin films on glass slides using the successive ion layer absorption and reaction (SILAR) method. We studied the optical properties and structure of PbS thin films by changing the number of dipping cycles and the concentration of precursor solution. The results of this experiment show that different conditions have a considerable influence on the thickness and absorbance of the films. When the number of dipping cycles and the concentration of the solution are increased, film thickness and absorbance tend to become higher. The xrays diffraction pattern showed all the diffraction peaks which confirmed the face center cubic and the structure of PbS had identified. Grain size computation was used to confirm how much these conditions could be affected.

  14. Structure determination of the ordered (2 × 1) phase of NiSi surface alloy on Ni(111) using low-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Sazzadur Rahman, Md.; Amirul Islam, Md.; Saha, Bidyut Baran; Nakagawa, Takeshi; Mizuno, Seigi

    2015-12-01

    The (2 × 1) structure of the two-dimensional nickel silicide surface alloy on Ni(111) was investigated using quantitative low-energy electron diffraction analysis. The unit cell of the determined silicide structure contains one Si and one Ni atom, corresponding to a chemical formula of NiSi. The Si atoms adopt substitutional face-centered cubic hollow sites on the Ni(111) substrate. The Ni-Si bond lengths were determined to be 2.37 and 2.34 Å. Both the alloy surface and the underlying first layers of Ni atoms exhibit slight corrugation. The Ni-Si interlayer distance is smaller than the Ni-Ni interlayer distance, which indicates that Si atoms and underlying Ni atoms strongly interact.

  15. Efficient LBM visual simulation on face-centered cubic lattices.

    PubMed

    Petkov, Kaloian; Qiu, Feng; Fan, Zhe; Kaufman, Arie E; Mueller, Klaus

    2009-01-01

    The Lattice Boltzmann method (LBM) for visual simulation of fluid flow generally employs cubic Cartesian (CC) lattices such as the D3Q13 and D3Q19 lattices for the particle transport. However, the CC lattices lead to suboptimal representation of the simulation space. We introduce the face-centered cubic (FCC) lattice, fD3Q13, for LBM simulations. Compared to the CC lattices, the fD3Q13 lattice creates a more isotropic sampling of the simulation domain and its single lattice speed (i.e., link length) simplifies the computations and data storage. Furthermore, the fD3Q13 lattice can be decomposed into two independent interleaved lattices, one of which can be discarded, which doubles the simulation speed. The resulting LBM simulation can be efficiently mapped to the GPU, further increasing the computational performance. We show the numerical advantages of the FCC lattice on channeled flow in 2D and the flow-past-a-sphere benchmark in 3D. In both cases, the comparison is against the corresponding CC lattices using the analytical solutions for the systems as well as velocity field visualizations. We also demonstrate the performance advantages of the fD3Q13 lattice for interactive simulation and rendering of hot smoke in an urban environment using thermal LBM.

  16. Au-Ag-Cu nano-alloys: tailoring of permittivity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-04-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.

  17. Ion-beam-induced magnetic transformation of CO-stabilized fcc Fe films on Cu(100)

    NASA Astrophysics Data System (ADS)

    Shah Zaman, Sameena; Oßmer, Hinnerk; Jonner, Jakub; Novotný, Zbyněk; Buchsbaum, Andreas; Schmid, Michael; Varga, Peter

    2010-12-01

    We have grown 22-ML-thick Fe films on a Cu(100) single crystal. The films were stabilized in the face-centered-cubic (fcc) γ phase by adsorption of carbon monoxide during growth, preventing the transformation to the body-centered-cubic (bcc) α phase. A structural transformation of these films from fcc to bcc can be induced by Ar+ ion irradiation. Scanning-tunneling microscopy images show the nucleation of bcc crystallites, which grow with increasing Ar+ ion dose and eventually result in complete transformation of the film to bcc. Surface magneto-optic Kerr effect measurements confirm the transformation of the Fe film from paramagnetic (fcc) to ferromagnetic (bcc) with an in-plane easy axis. The transformation can also be observed by low-energy electron diffraction. We find only very few nucleation sites of the bcc phase and argue that nucleation of the bcc phase happens under special circumstances during resolidification of the molten iron in the thermal spike after ion impact. Intermixing with the Cu substrate impedes the transformation. We also demonstrate the transformation of films coated with Au to protect them from oxidation at ambient conditions.

  18. Prevention of nanoparticle coalescence under high-temperature annealing.

    PubMed

    Mizuno, Mikihisa; Sasaki, Yuichi; Yu, Andrew C C; Inoue, Makoto

    2004-12-21

    An effective method of employing 3-aminopropyldimethylethoxysilane linker molecules to stabilize 4.4 nm FePt nanoparticle monolayer films on a SiO2 substrate as well as to prevent coalescence of the particles under 800 degrees C annealing is reported. As-deposited FePt nanoparticle films in chemically disordered face-centered-cubic phase transform to mostly chemically ordered L1 0 structure after annealing, while the nanoparticles are free from serious coalescence. The method may fulfill the pressing need to prevent nanoparticle coalescence under high-temperature annealing for the development of FePt nanoparticle based products, such as ultrahigh-density magnetic recording media and novel memory devices.

  19. Photocatalytic degradation of congo red using copper substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Kirankumar, V. S.; Hardik, B.; Sumathi, S.

    2017-11-01

    Co1-xCuxFe2O4 nanoparticles with x = 0 and 0.5 were synthesized through the combustion method. The as-made materials are face centered-cubic close-packed spinel structures. The characterization techniques such as powder XRD, FTIR, UV-DRS and SEM studies collectively verified that the formed products are cobalt ferrite and copper substituted cobalt ferrite nanoparticles. In addition, the mean crystalline size, lattice parameter and band gap energy of nanoparticles are calculated. The photocatalytic activity of the obtained Co1-xCuxFe2O4 spinel nanoparticles is evaluated by monitoring the degradation of congo red under visible light irradiation.

  20. A simple approach for large-area fabrication of Ag nanorings

    NASA Astrophysics Data System (ADS)

    Yuan, Zhi-hao; Zhou, Wei; Duan, Yue-qin; Bie, Li-jian

    2008-02-01

    A simple and low-cost method based on a two-step heat treatment of AgNO3/SiO2 film has been developed for fabricating metal Ag nanoring arrays. The as-prepared nanorings have an inner diameter of 70-250 nm and an average wall thickness (namely wire diameter) of approximately 30 nm with a number density of approximately 109 cm-2 on the surface of the SiO2 matrix. X-ray diffraction (XRD) results reveal that these nanorings exhibit a face-centered cubic crystal structure. Furthermore, a new growth mechanism, namely a molten metal bubble as a self-template, is tentatively proposed for Ag nanorings.

  1. Second moment scaling and the relationship of geometric and electronic structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoistad, L.M.

    1993-01-01

    Extended Hueckel band calculations were used to show the ditellurides in the CdI[sub 2] structure type with more than 16 valence electrons/MTe[sub 2] unit should have an instability due to their electronic structure. Single crystal X-ray diffraction studies of the electron rich Ta[sub 1[minus]x]Ti[sub x]Te[sub 2] (x = 0.2, 0.3, 0.4 and 0.5) show that a statistical distortion of the CdI[sub 2] structure type has indeed occurred for these compounds confirming the theoretical calculations. Second Moment Scaled Hueckel theory was used to examine the basis of the Hume-Rothery phases are face centered cubic, hexagonal closest packed ([zeta], [epsilon] and [eta]-hcp),more » body centered cubic, [beta]-Mn and [gamma]-brass structures. Good agreement between the experimental and theoretically predicted electron concentration ranges was achieved when an s, p and contracted d orbital model was used. The results presented in this thesis were the first theoretical calculations that corroborate the entire set of Hume-Rothery electron concentration rules. Second Moment Scaled Hueckel energies were used for constructing structure maps for intermetallic compounds with stoichiometry ZA[sub 2], ZA[sub 3] and ZA[sub 6]. Calculations were performed only on the covalent network of the A atoms. The structure types considered were SmSb[sub 2], ZrSi[sub 2], Cu[sub 2]Sb, AuCu[sub 3], TiNi[sub 3], TiCu[sub 3], BiF[sub 3], SnNi[sub 3], NdTe[sub 3], TiS[sub 3], SmAu[sub 6], CeCu[sub 6] and PuGa[sub 6]. The bond distance variation found for closo-borohydrides B[sub 8]H[sub 8][sup 2[minus

  2. Polytype transition of N-face GaN:Mg from wurtzite to zinc-blende

    NASA Astrophysics Data System (ADS)

    Monroy, E.; Hermann, M.; Sarigiannidou, E.; Andreev, T.; Holliger, P.; Monnoye, S.; Mank, H.; Daudin, B.; Eickhoff, M.

    2004-10-01

    We have investigated the polytype conversion of a GaN film from N-face wurtzite (2H) to zinc-blende (3C) structure due to Mg doping during growth by plasma-assisted molecular-beam epitaxy. Structural analysis by high-resolution transmission electron microscopy and high-resolution x-ray diffraction measurement revealed alignment of the cubic phase with the [111] axis perpendicular to the substrate surface. The optical characteristics of GaN:Mg layers are shown to be very sensitive to the presence of the cubic polytype. For low Mg doping, photoluminescence is dominated by a phonon-replicated donor-acceptor pair at ˜3.25eV, related to the shallow Mg acceptor level, accompanied by a narrow excitonic emission. For high Mg doping, the photoluminescence spectra are also dominated by a line around 3.25eV, but this emission displays the behavior of excitonic luminescence from cubic GaN. A cubic-related donor-acceptor transition at ˜3.16eV is also observed, together with a broad blue band around 2.9eV, previously reported in heavily Mg-doped 3C-GaN(001).

  3. Threshold photoionization and density functional theory studies of bimetallic-carbide nanocrystals and fragments: Ta3ZrC(y) (y = 0-4).

    PubMed

    Dryza, V; Metha, G F

    2009-06-28

    Gas-phase bimetallic tantalum-zirconium-carbide clusters are generated using a constructed double ablation cluster source. The Ta(3)ZrC(y) (y = 0-4) clusters are examined by photoionization efficiency spectroscopy to extract experimental ionization energies (IEs). The IE trend for the Ta(3)ZrC(y) cluster series is reasonably similar to that of the Ta(4)C(y) cluster series [V. Dryza et al., J. Phys. Chem. A 109, 11180 (2005)], although the IE reductions upon carbon addition are greater for the former. Complementary density functional theory calculations are performed for the various isomers constructed by attaching carbon atoms to the different faces of the tetrahedral Ta(3)Zr cluster. The good agreement between the experimental IE trend and that calculated for these isomers support a 2x2x2 face centered cubic nanocrystal structure for Ta(4)ZrC(4) and nanocrystal fragment structures for the smaller clusters.

  4. Discovery of a superconducting high-entropy alloy.

    PubMed

    Koželj, P; Vrtnik, S; Jelen, A; Jazbec, S; Jagličić, Z; Maiti, S; Feuerbacher, M; Steurer, W; Dolinšek, J

    2014-09-05

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a=3.36  Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3  K, an upper critical field μ0H_c2≈8.2  T, a lower critical field μ0Hc1≈32  mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ≈2.2  meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  5. Diabat Interpolation for Polymorph Free-Energy Differences.

    PubMed

    Kamat, Kartik; Peters, Baron

    2017-02-02

    Existing methods to compute free-energy differences between polymorphs use harmonic approximations, advanced non-Boltzmann bias sampling techniques, and/or multistage free-energy perturbations. This work demonstrates how Bennett's diabat interpolation method ( J. Comput. Phys. 1976, 22, 245 ) can be combined with energy gaps from lattice-switch Monte Carlo techniques ( Phys. Rev. E 2000, 61, 906 ) to swiftly estimate polymorph free-energy differences. The new method requires only two unbiased molecular dynamics simulations, one for each polymorph. To illustrate the new method, we compute the free-energy difference between face-centered cubic and body-centered cubic polymorphs for a Gaussian core solid. We discuss the justification for parabolic models of the free-energy diabats and similarities to methods that have been used in studies of electron transfer.

  6. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    DOEpatents

    Narayan, Jagdish; Chen, Yok

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  7. Microstructures and Mechanical Properties of NiTiFeAlCu High-Entropy Alloys with Exceptional Nano-precipitates

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Wang, Sibing; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2017-01-01

    Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.

  8. Structures with negative index of refraction

    DOEpatents

    Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  9. Fabrication and characterization of morphology-tuned single-crystal monodisperse Fe3O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Xuegang; Shan, Yan; Chen, Kezheng

    2018-05-01

    Monodisperse Fe3O4 nanocrystals with different size and morphology have been successfully fabricated by a facile high temperature reflow method. The presented materials were characterized by X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), selection area electron diffraction (SAED) and magnetic property measurement system (MPMS). The results showed that the as-prepared materials have face-centered cubic structures. Oleic acid plays a key role in the dispersion of Fe3O4 nanocrystals. The cubic and octahedral nanocrystals are enclosed by {1 0 0} and {1 1 1} lattice planes. The MPMS measurements show that magnetic properties are closely related to the sizes of the materials, and there is a stronger dipolar interaction between Fe3O4 nanocrystals with larger sizes. The controllable magnetic property and good dispersion endow the as-synthesized materials with great potential applications in magnetic fluid fields including sealing, medical equipment, mineral processing and other aspects.

  10. Growth of sodium chlorate crystals in the presence of potassium sulphate

    NASA Astrophysics Data System (ADS)

    Kim, E. L.; Tsyganova, A. A.; Vorontsov, D. A.; Ovsetsina, T. I.; Katkova, M. R.; Lykov, V. A.; Portnov, V. N.

    2015-09-01

    In this work, we investigated the morphology and growth rates of NaClO3 crystals in solutions with K2SO4 additives. NaClO3 crystals were grown using the temperature gradient technique under concentration convection. We found that the crystal habitus changed from cubic to tetrahedral, and the growth of the cubic {100}, tetrahedral {111} and rhomb-dodecahedral {110} faces decelerated with an increase in the concentration of SO42- ions. The {110} face was the most and the {100} face was the least inhibited by sulphate ions. The mechanism of SO42- ions action is their adsorption on the crystal surface, which impedes attachment of the crystal's building units. We conclude that different atomic structure and charge state of various crystal faces determine their sensitivity to the action of the SO42- ions.

  11. Quantum and isotope effects in lithium metal

    NASA Astrophysics Data System (ADS)

    Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel; Loa, Ingo; Zhang, Rong; Sinogeikin, Stanislav; Cai, Weizhao; Deemyad, Shanti

    2017-06-01

    The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.

  12. Synthesis of nanocrystalline α-Fe2O3 by using thermal oxidation of Fe Films

    NASA Astrophysics Data System (ADS)

    Fortas, G.; Saidoun, I.; Abboud, H.; Gabouze, N.; Haine, N.; Manseri, A.; Zergoug, M.; Menari, H.; Sam, S.; Cheraga, H.; Bozetine, I.

    2018-03-01

    α-Fe2O3 hematite films were prepared by thermal oxidation from Fe films electroplated on silicon. Electrodeposition of Fe thin films was carried out from a sulfate bath containing an ammonium chloride complexing agent. The electrochemical study was performed by cyclic voltammetry. The SEM analysis of the films obtained at a -1.3 V constant polarization shows dendritic grains in the form of islet. The DRX spectra exhibit characteristic iron peaks according to the face centered cubic (Fcc) structure. These samples were annealed. At a temperature of 650 ° C, a single iron oxide phase was well formed, with the hematite structure. The SEM photos show a well-assembled columnar structure with formation of nanowires at the surface of the deposit. The absorbance spectra reveal an absorption features in the ultraviolet range

  13. Optical properties of three-dimensional P(St-MAA) photonic crystals on polyester fabrics

    NASA Astrophysics Data System (ADS)

    Liu, Guojin; Zhou, Lan; Wu, Yujiang; Wang, Cuicui; Fan, Qinguo; Shao, Jianzhong

    2015-04-01

    The three-dimensional (3D) photonic crystals with face-centered cubic (fcc) structure was fabricated on polyester fabrics, a kind of soft textile materials quite different from the conventional solid substrates, by gravitational sedimentation self-assembly of monodisperse P(St-MAA) colloidal microspheres. The optical properties of structural colors on polyester fabrics were investigated and the position of photonic band gap was characterized. The results showed that the color-tuning ways of the structural colors from photonic crystals were in accordance with Bragg's law and could be modulated by the size of P(St-MAA) colloidal microspheres and the viewing angles. The L∗a∗b∗ values of the structural colors generated from the assembled polyester fabrics were in agreement with their reflectance spectra. The photonic band gap position of photonic crystals on polyester fabrics could be consistently confirmed by reflectance and transmittance spectra.

  14. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure

    PubMed Central

    Liu, Hanyu; Naumov, Ivan I.; Hoffmann, Roald; Ashcroft, N. W.; Hemley, Russell J.

    2017-01-01

    A systematic structure search in the La–H and Y–H systems under pressure reveals some hydrogen-rich structures with intriguing electronic properties. For example, LaH10 is found to adopt a sodalite-like face-centered cubic (fcc) structure, stable above 200 GPa, and LaH8 a C2/m space group structure. Phonon calculations indicate both are dynamically stable; electron phonon calculations coupled to Bardeen–Cooper–Schrieffer (BCS) arguments indicate they might be high-Tc superconductors. In particular, the superconducting transition temperature Tc calculated for LaH10 is 274–286 K at 210 GPa. Similar calculations for the Y–H system predict stability of the sodalite-like fcc YH10 and a Tc above room temperature, reaching 305–326 K at 250 GPa. The study suggests that dense hydrides consisting of these and related hydrogen polyhedral networks may represent new classes of potential very high-temperature superconductors. PMID:28630301

  15. Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing

    PubMed Central

    Yang, Ya-Chu; Yeh, Jien-Wei; Tsau, Chun-Huei

    2017-01-01

    This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TixFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model. After annealing was performed at 1000 °C for 30 min, the films presented a layered structure comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and layered structures. The underlying mechanism is mainly related to the competition among possible oxides in terms of free energy production at 1000 °C. PMID:28953244

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travesset, Alex

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists withmore » the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed.« less

  17. First-principles phase stability at high temperatures and pressure in Nb 90Zr 10 alloy

    DOE PAGES

    Landa, A.; Soderlind, P.

    2016-08-18

    The phase stability of Nb 90Zr 10 alloy at high temperatures and compression is explored by means of first-principles electronic-structure calculations. Utilizing the self-consistent ab initio lattice dynamics (SCAILD) approach in conjunction with density-functional theory, we show that pressure-induced mechanical instability of the body-centered cubic phase, which results in formation of a rhombohedral phase at around 50 GPa, will prevail significant heating. As a result, the body-centered cubic structure will recover before melting at ~1800 K.

  18. Au-Ag-Cu nano-alloys: tailoring of permittivity

    PubMed Central

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  19. Atomically informed nonlocal semi-discrete variational Peierls-Nabarro model for planar core dislocations

    PubMed Central

    Liu, Guisen; Cheng, Xi; Wang, Jian; Chen, Kaiguo; Shen, Yao

    2017-01-01

    Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be extended to study more complicated planar-extended core dislocations, such as <110> {111} dislocations in Al-based and Ti-based intermetallic compounds. PMID:28252102

  20. Near-neighbor mixing and bond dilation in mechanically alloyed Cu-Fe

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Kemner, K. M.; Das, B. N.; Koon, N. C.; Ehrlich, A. E.; Kirkland, J. P.; Woicik, J. C.; Crespo, P.; Hernando, A.; Garcia Escorial, A.

    1996-09-01

    Extended x-ray-absorption fine-structure (EXAFS) measurements were used to obtain element-specific, structural, and chemical information of the local environments around Cu and Fe atoms in high-energy ball-milled CuxFe1-x samples (x=0.50 and 0.70). Analysis of the EXAFS data shows both Fe and Cu atoms reside in face-centered-cubic sites where the first coordination sphere consists of a mixture of Fe and Cu atoms in a ratio which reflects the as-prepared stoichiometry. The measured bond distances indicate a dilation in the bonds between unlike neighbors which accounts for the lattice expansion measured by x-ray diffraction. These results indicate that metastable alloys having a positive heat of mixing can be prepared via the high-energy ball-milling process.

  1. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE PAGES

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...

    2016-03-05

    We investigate Irradiation-induced damage accumulation in Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  2. Diophantine Approach to the Classification of Two-Dimensional Lattices: Surfaces of Face-Centered Cubic Materials.

    PubMed

    Jenkins, Stephen J

    2018-04-03

    The long-range periodic order of a crystalline surface is generally represented by means of a two-dimensional Bravais lattice, of which only five symmetrically distinct types are possible. Here, we explore the circumstances under which each type may or may not be found at the surfaces of face-centered cubic materials and provide means by which the type of lattice may be determined with reference only to the Miller indices of the surface; the approach achieves formal rigor by focusing on the number theory of integer variables rather than directly upon real geometry. We prove that the {100} and {111} surfaces are, respectively, the only exemplars of square and triangular lattices. For surfaces exhibiting a single mirror plane, we not only show that rectangular and rhombic lattices are the only two possibilities, but also capture their alternation in terms of the parity of the indices. In the case of chiral surfaces, oblique lattices predominate, but rectangular and rhombic cases are also possible and arise according to well-defined rules, here partially recounted.

  3. Atomic Migration Induced Crystal Structure Transformation and Core-Centered Phase Transition in Single Crystal Ge2Sb2Te5 Nanowires.

    PubMed

    Lee, Jun-Young; Kim, Jeong-Hyeon; Jeon, Deok-Jin; Han, Jaehyun; Yeo, Jong-Souk

    2016-10-12

    A phase change nanowire holds a promise for nonvolatile memory applications, but its transition mechanism has remained unclear due to the analytical difficulties at atomic resolution. Here we obtain a deeper understanding on the phase transition of a single crystalline Ge 2 Sb 2 Te 5 nanowire (GST NW) using atomic scale imaging, diffraction, and chemical analysis. Our cross-sectional analysis has shown that the as-grown hexagonal close-packed structure of the single crystal GST NW transforms to a metastable face-centered cubic structure due to the atomic migration to the pre-existing vacancy layers in the hcp structure going through iterative electrical switching. We call this crystal structure transformation "metastabilization", which is also confirmed by the increase of set-resistance during the switching operation. For the set to reset transition between crystalline and amorphous phases, high-resolution imaging indicates that the longitudinal center of the nanowire mainly undergoes phase transition. According to the atomic scale analysis of the GST NW after repeated electrical switching, partial crystallites are distributed around the core-centered amorphous region of the nanowire where atomic migration is mainly induced, thus potentially leading to low power electrical switching. These results provide a novel understanding of phase change nanowires, and can be applied to enhance the design of nanowire phase change memory devices for improved electrical performance.

  4. Unusual Features of Crystal Structures of Some Simple Copper Compounds

    ERIC Educational Resources Information Center

    Douglas, Bodie

    2009-01-01

    Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

  5. Elastic strain relaxation in interfacial dislocation patterns: II. From long- and short-range interactions to local reactions

    NASA Astrophysics Data System (ADS)

    Vattré, A.

    2017-08-01

    The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.

  6. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  7. Experimental study of grain interactions on rolling texture development in face-centered cubic metals

    NASA Astrophysics Data System (ADS)

    Kumar Ray, Atish

    There exists considerable debate in the texture community about whether grain interactions are a necessary factor to explain the development of deformation textures in polycrystalline metals. Computer simulations indicate that grain interactions play a significant role, while experimental evidence shows that the material type and starting orientation are more important in the development of texture and microstructure. A balanced review of the literature on face-centered cubic metals shows that the opposing viewpoints have developed due to the lack of any complete experimental study which considers both the intrinsic (material type and starting orientation) and extrinsic (grain interaction) factors. In this study, a novel method was developed to assemble ideally orientated crystalline aggregates in 99.99% aluminum (Al) or copper (Cu) to experimentally evaluate the effect of grain interactions on room temperature deformation texture. Ideal orientations relevant to face-centered cubic rolling textures, Cube {100} <001>, Goss {110} <001>, Brass {110} <11¯2> and Copper {112} <111¯> were paired in different combinations and deformed by plane strain compression to moderate strain levels of 1.0 to 1.5. Orientation dependent mechanical behavior was distinguishable from that of the neighbor-influenced behavior. In interacting crystals the constraint on the rolling direction shear strains (gammaXY , gammaXZ) was found to be most critical to show the effect of interactions via the evolution of local microstructure and microtexture. Interacting crystals with increasing deformations were observed to gradually rotate towards the S-component, {123} <634>. Apart from the average lattice reorientations, the interacting crystals also developed strong long-range orientation gradients inside the bulk of the crystal, which were identified as accumulating misorientations across the deformation boundaries. Based on a statistical procedure using quaternions, the orientation and interaction related heterogeneous deformations were characterized by three principal component vectors and their respective eigenvalues for both the orientation and misorientation distributions. For the case of a medium stacking fault energy metal like Cu, the texture and microstructure development depends wholly on the starting orientations. Microstructural instabilities in Cu are explained through a local slip clustering process, and the possible role of grain interactions on such instabilities is proposed. In contrast, the texture and microstructure development in a high stacking fault energy metal like Al is found to be dependent on the grain interactions. In general, orientation, grain interaction and material type were found to be key factors in the development of rolling textures in face-centered cubic metals and alloys. Moreso, in the texture development not any single parameter can be held responsible, rather, the interdependency of each of the three parameters must be considered. In this frame-work polycrystalline grains can be classified into four types according to their stability and susceptibility during deformation.

  8. Self-assembly of ordered nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Jinsong

    2000-10-01

    Several different kinds of nanostructure materials were studied in this thesis: self-assembled monodispersive nanocrystals, photonic crystals, ordered mesoporous silica and hierarchically ordered nanostructured materials. Tetrahedral nanocrystals of CoO, with edge-lengths of 4.4 +/- 0.2 nm, were synthesized at high purity and monodispersity. The size, shape and phase selections of the nanocrystals were performed using a novel magnetic field separation technique. These nanocrystals behave like molecules, forming a face-centered cubic self-assembly of nanocrystal superlattices. In-situ behavior of self-assembled CoO nanocrystal arrays was also analyzed using transmission electron microscopy and associated techniques. The surface passivation layer started to evaporate/decompose at temperatures as low as ˜200°C, but the exposed cores of nanocrystals preserved the geometrical configuration of the assembly due to the strong adhesion of the carbon substrate. As the temperature is further increased from 300 to 600°C, the intrinsic crystal structure of the CoO nanoparticles experiences a replacement reaction, resulting in the formation of cobalt carbides. Two-dimensional self-assembling of cobalt nanocrystals with an average particle size of 9.2 nm and polydispersity of 9% is processed. Phtonic crystals were processed by a template-assisted method. Ordered self-assembly of pores of titania nanocrystals formed a face-centered cubic packing structure. The walls of the pores were made of anatase nanocrystals of ˜8 nm in diameter. Cobalt can be doped into the walls of the pores by solution infiltration of cobalt carbonyl. Cobalt titanium oxide may be formed on the internal surface of the ordered pore structure. This type of structure is likely to be an excellent supporting material for catalysis. The experimental results suggest that transition metal elements can be incorporated into porous titania without blocking the interconnected pores. Hierarchically ordered nanostructured materials with high porosity at dual length-scale were prepared by a single annealing procedure. The plasma energy of this porous materials shifts about 1.2 eV to lower energy, compared to the fully densed silica spheres. This type of material is expected to have not only large surface area for catalysis, but also low dielectric constant for low-loss dielectric applications.

  9. High-resolution x-ray diffraction study of the heavy-fermion compound YbBiPt

    NASA Astrophysics Data System (ADS)

    Ueland, B. G.; Saunders, S. M.; Bud'Ko, S. L.; Schmiedeshoff, G. M.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.

    YbBiPt is a heavy-fermion compound possessing significant short-range antiferromagnetic correlations below T* = 0 . 7 K, fragile antiferromagnetic order below TN = 0 . 4 K, a Kondo temperature of TK ~ 1 K, and crystalline-electric-field splitting (CEF) on the order of E /kB = 1 - 10 K. Its lattice is face-centered cubic at ambient temperature, but certain data, particularly those from studies aimed at determining the CEF level scheme, suggest that the lattice distorts at lower temperature. Here, we present results from high-energy x-ray diffraction experiments which show that, within our experimental resolution of ~ 6 - 10 ×10-5 Å, no structural phase transition occurs between 1 . 5 and 50 K. Despite this result, we demonstrate that the compound's thermal expansion may be modeled using CEF level schemes appropriate for Yb3+ residing on a site with either cubic or less than cubic point symmetry. Work at the Ames Laboratory was supported by the US DOE, BES, DMSE, under Contract No. DE-AC02-07CH11358. Work at Occidental College was supported by the NSF under DMR-1408598. This research used resources at the Advanced Photon Source a US DOE, Office of Science, User Facility.

  10. A Successful Synthesis of the CoCrFeNiAl0.3 Single-Crystal, High-Entropy Alloy by Bridgman Solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, S. G.; Zhang, S. F.; Gao, M. C.

    2013-08-22

    For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking faultmore » energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.« less

  11. Tuning the electronic and the crystalline structure of LaBi by pressure: From extreme magnetoresistance to superconductivity

    DOE PAGES

    Tafti, F. F.; Torikachvili, M. S.; Stillwell, R. L.; ...

    2017-01-10

    Here, extreme magnetoresistance (XMR) in topological semimetals is a recent discovery which attracts attention due to its robust appearance in a growing number of materials. To search for a relation between XMR and superconductivity, we study the effect of pressure on LaBi. By increasing pressure, we observe the disappearance of XMR followed by the appearance of superconductivity at P ≈ 3.5 GPa. We find a region of coexistence between superconductivity and XMR in LaBi in contrast to other superconducting XMR materials. The suppression of XMR is correlated with increasing zero-field resistance instead of decreasing in-field resistance. At higher pressures, Pmore » ≈ 11 GPa, we find a structural transition from the face-centered cubic lattice to a primitive tetragonal lattice, in agreement with theoretical predictions. The relationship between extreme magnetoresistance, superconductivity, and structural transition in LaBi is discussed.« less

  12. Optical analysis of the fine crystalline structure of artificial opal films.

    PubMed

    Lozano, G; Dorado, L A; Schinca, D; Depine, R A; Míguez, H

    2009-11-17

    Herein, we present a detailed analysis of the structure of artificial opal films. We demonstrate that, rather than the generally assumed face centered cubic lattice of spheres, opal films are better approximated by rhombohedral assemblies of distorted colloids. Detailed analysis of the optical response in a very wide spectral range (0.4 < or = a/lambda < or = 2, where a is the conventional lattice constant), as well as at perpendicular and off-normal directions, unambiguously shows that the interparticle distance coincides very approximately with the expected diameter only along directions contained in the same close-packed plane but differs significantly in directions oblique to the [111] one. A full description of the real and reciprocal lattices of actual opal films is provided, as well as of the photonic band structure of the proposed arrangement. The implications of this distortion in the optical response of the lattice are discussed.

  13. CdO nanosheet film with a (200)-preferred orientation with sensitivity to liquefied petroleum gas (LPG) at low-temperatures.

    PubMed

    Cui, Guangliang; Li, Zimeng; Gao, Liang; Zhang, Mingzhe

    2012-12-21

    CdO nanosheet film can be synthesized by electrochemical deposition in an ultra-thin liquid layer by using Cd(NO(3))(2) and HNO(3) as source materials for Cd and oxygen respectively. HNO(3) is also used to adjust the pH of the electrolyte. Studies on the detailed structure indicate that the synthesized CdO nanosheet film has a face-centered cubic structure with (200)-preferred orientation. The response of the CdO nanosheet film to liquefied petroleum gas (LPG) at low temperature has been significantly improved by the novel structure of film. It has exhibited excellent sensitivity and selectivity to LPG at low temperature. A new growth mechanism of electrochemical deposition has been proposed to elaborate the formation of nanosheet in an ultra-thin liquid layer. The self-oscillation of potential in the growth interface and intermediate hydroxide are responsible for the formation of nanosheets.

  14. High magnetization Fe-Co and Fe-Ni submicron and nanosize particles by thermal decomposition and hydrogen reduction

    NASA Astrophysics Data System (ADS)

    Cui, B. Z.; Marinescu, M.; Liu, J. F.

    2014-05-01

    This paper reports morphology, structure, and magnetic properties of air-stable soft magnetic FexCo100-x (x = 65, 50, and 34) and Fe50Ni50 (at. %) submicron and nanosize particles fabricated by template-free thermal decomposition of nitrates of Fe, Co, and Ni and subsequent hydrogen reduction. The particle compositions were tuned by modification of the precursor solution concentrations. The as-synthesized Fe-Co and Fe50Ni50 particles have body centered cubic and face centered cubic poly-nanocrystalline structures, respectively. The Fe-Co and Fe50Ni50 particles have particle sizes in the range of 28-200 nm and 70-480 nm, and average grain sizes of 16-29 nm and 20-24 nm, respectively. The particle and grain sizes were controlled by tuning particle composition, and the temperature and time of hydrogen reduction. Saturation magnetization Ms as high as 207-224 emu/g and intrinsic coercivity Hci of 59-228 Oe were obtained in the Fe-Co particles reduced at 550 °C for 90 min. Of special note, the Ms of 224 emu/g (˜2.3 T) obtained in the Fe65Co35 particles is among the highest values for Fe-Co particles reported so far. Ms of 135-137 emu/g and Hci of 59-111 Oe were obtained in the Fe50Ni50 particles reduced at 500 or 550 °C for 20 min.

  15. Electronic properties of carbon in the fcc phase.

    NASA Astrophysics Data System (ADS)

    Cab, Cesar; Canto, Gabriel

    2005-03-01

    The observation of a new carbon phase in nanoparticles obtained from Mexican crude oil having the face-centered-cubic structure (fcc) has been reported. However, more recently has been suggested that hydrogen is present in the samples forming CH with the zincblende structure. The structural and electronic properties of C(fcc) and CH(zincblende) are unknown. In the present work we have studied the electronic structure of C(fcc) and CH(zincblende) by means of first-principles total-energy calculations. The results were obtained with the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We have analyzed the band structure, the local density of states (LDOS), and orbital population. We find that in contrast to graphite and diamond, both fcc carbon and CH with the zincblende structure exhibit metallic behavior. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt-M'exico) under Grants No. 43830-F, No. 44831-F, and No. 43828-Y.

  16. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    NASA Astrophysics Data System (ADS)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. The application of an atomistic J-integral to a ductile crack.

    PubMed

    Zimmerman, Jonathan A; Jones, Reese E

    2013-04-17

    In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data to estimate the J-integral for the emission dislocations from a crack tip. Face-centered cubic (fcc) gold and body-centered cubic (bcc) iron modeled with embedded atom method (EAM) potentials are used as example systems. The results of a single crack with a K-loading compare well to an analytical solution from anisotropic linear elastic fracture mechanics. We also discovered that in the post-emission of dislocations from the crack tip there is a loop size-dependent contribution to the J-integral. For a system with a finite width crack loaded in simple tension, the finite size effects for the systems that were feasible to compute prevented precise agreement with theory. However, our results indicate that there is a trend towards convergence.

  18. Experimental investigation of in-situ transformations of the M 7C3 carbide in the cast Fe-Cr-Ni alloy

    NASA Astrophysics Data System (ADS)

    Kraposhin, V. S.; Kondrat'ev, S. Yu.; Talis, A. L.; Anastasiadi, G. P.

    2017-03-01

    The microstructure and the phase composition of a heat-resistant Fe-Cr-Ni alloy (0. 45C-25Cr-35Ni) has been investigated in the cast state and after annealing at 1150°C for 2-100 h. After a 2-h high-temperature annealing, the fragmentation of the crystal structure of the eutectic M 7C3 carbides into domains of 500 nm in size with a partial transition into M 23C6 carbides is observed. After a 100-h holding, the complete transition of the hexagonal M 7C3 carbides into M 23C6 with a face-centered cubic structure occurs. The carbide transition M 7C3 → M 23 can be considered to be an in situ transformation.

  19. Correlation effects in fcc-Fe(x)Ni(1-x) alloys investigated by means of the KKR-CPA.

    PubMed

    Minár, J; Mankovsky, S; Šipr, O; Benea, D; Ebert, H

    2014-07-09

    The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study.

  20. LocalMove: computing on-lattice fits for biopolymers

    PubMed Central

    Ponty, Y.; Istrate, R.; Porcelli, E.; Clote, P.

    2008-01-01

    Given an input Protein Data Bank file (PDB) for a protein or RNA molecule, LocalMove is a web server that determines an on-lattice representation for the input biomolecule. The web server implements a Markov Chain Monte-Carlo algorithm with simulated annealing to compute an approximate fit for either the coarse-grain model or backbone model on either the cubic or face-centered cubic lattice. LocalMove returns a PDB file as output, as well as dynamic movie of 3D images of intermediate conformations during the computation. The LocalMove server is publicly available at http://bioinformatics.bc.edu/clotelab/localmove/. PMID:18556754

  1. New Tools for the Study of Combustion Chemistry and Complex Gas-Surface Interactions from First Principles

    DTIC Science & Technology

    2007-10-06

    Proffen, A. M. Rappe, S. Scott, and R. Seshadri, "BaCel-xPd,O 3-8 (0<xɘ.1): Redox controlled ingress and egress of palladium in a perovskite...methyl and the surface rhodium atoms. Such multi-center bonding leads to C-H bond depletion and is the cause of experimentally observed mode-softening...The Pd 2 - containing perovskite phases extrude elemental face-centered cubic palladium nanoparticles when heated in a reducing atmosphere. This

  2. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    NASA Astrophysics Data System (ADS)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adidharma, Hertanto, E-mail: adidharm@uwyo.edu; Tan, Sugata P.

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T{sup ∗} ≤ 1.20) and high densities (0.96 ≤ ρ{sup ∗} ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe themore » properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.« less

  4. Removal of Rhodamine B from aqueous solution using magnetic NiFe nanoparticles.

    PubMed

    Liu, Yan; Liu, Kaige; Zhang, Lin; Zhang, Zhaowen

    2015-01-01

    Surface-modified magnetic nano alloy particles Ni2.33Fe were prepared using a hydrothermal method and they were utilized for removing Rhodamine B (RhB) from aqueous solution. The magnetic nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy, which confirmed that the surface of the magnetic product with a face-centered cubic-type structure was successfully modified by sodium citrate. Kinetics studies were conducted. The pseudo-second-order kinetic model was used for fitting the kinetic data successfully. The Freundlich and Langmuir adsorption models were employed for the mathematical description of adsorption equilibrium. It was found that the adsorption isotherm can be very satisfactorily fitted by the Freundlich model.

  5. Emission properties of body-centered cubic elemental metal photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tuo; Rickman, Benjamin L., E-mail: brickm2@uic.edu; Schroeder, W. Andreas

    2015-04-07

    A first principles analysis of photoemission is developed to explain the lower than expected rms transverse electron momentum measured using the solenoid scan technique for the body-centered cubic Group Vb (V, Nb, and Ta) and Group VIb (Cr, Mo, and W) metallic photocathodes. The density functional theory based analysis elucidates the fundamental role that the electronic band structure (and its dispersion) plays in determining the emission properties of solid-state photocathodes and includes evaluation of work function anisotropy using a thin-slab method.

  6. Thermal vibrations and polymorphic β → γ transition in cerium

    NASA Astrophysics Data System (ADS)

    Agafonov, S. S.; Blanter, M. S.; Glazkov, V. P.; Somenkov, V. A.; Shushunov, M. N.

    2010-10-01

    Method of neutron diffraction was used to determine the temperature dependence of the Debye-Waller factor and the related thermal atomic displacements for two polymorphic modifications of cerium, namely, for β-Ce with a double hexagonal closed-packed (dhcp) structure and for γ-Ce with a face-centered cubic (fcc) structure. It has been shown that the phase transition does not lead to substantial changes in the root-mean-square thermal atomic displacements and that the Debye temperatures of the two modifications are close: 131 K for β-Ce and 127 K for γ-Ce. However, the relative (with respect to the lattice parameters) displacements along the axes change considerably. The transition from the anisotropic hexagonal to the isotropic cubic modification leads, because of a redistribution of thermal atomic displacements along the crystallographic axes, to a decrease in the maximum values of these quantities and to a weakening of their temperature dependence. It has also been shown that a change in the thermal atomic vibrations and in the vibrational contribution to the entropy of the polymorphic transformations is connected with the sign of the volume effect of the transformation (stronger upon a positive effect and weaker, upon a negative one). The reasons for this behavior are discussed.

  7. Origin of coloration in beetle scales: An optical and structural investigation

    NASA Astrophysics Data System (ADS)

    Nagi, Ramneet Kaur

    In this thesis the origin of angle-independent yellowish-green coloration of the exoskeleton of a beetle was studied. The beetle chosen was a weevil with the Latin name Eupholus chevrolati. The origin of this weevil's coloration was investigated by optical and structural characterization techniques, including optical microscopy, scanning electron microscopy imaging and focused ion beam milling, combined with three-dimensional modeling and photonic band structure calculations. Furthermore, using color theory the pixel-like coloring of the weevil's exoskeleton was investigated and an interesting additive color mixing scheme was discovered. For optical studies, a microreflectance microscopy/spectroscopy set-up was optimized. This set-up allowed not only for imaging of individual colored exoskeleton domains with sizes ˜2-10 μm, but also for obtaining reflection spectra of these micrometer-sized domains. Spectra were analyzed in terms of reflection intensity and wavelength position and shape of the reflection features. To find the origin of these colored exoskeleton spots, a combination of focused ion beam milling and scanning electron microscopy imaging was employed. A three-dimensional photonic crystal in the form of a face-centered cubic lattice of ABC-stacked air cylinders in a biopolymeric cuticle matrix was discovered. Our photonic band structure calculations revealed the existence of different sets of stop-gaps for the lattice constant of 360, 380 and 400 nm in the main lattice directions, Gamma-L, Gamma-X, Gamma-U, Gamma-W and Gamma-K. In addition, scanning electron microscopy images were compared to the specific directional-cuts through the constructed face-centered cubic lattice-based model and the optical micrographs of individual domains to determine the photonic structure corresponding to the different lattice directions. The three-dimensional model revealed stop-gaps in the Gamma-L, Gamma-W and Gamma-K directions. Finally, the coloration of the weevil as perceived by an unaided human eye was represented (mathematically) on the xy-chromaticity diagram, based on XYZ color space developed by CIE (Commission Internationale de l'Eclairage), using the micro-reflectance spectroscopy measurements. The results confirmed the additive mixing of various colors produced by differently oriented photonic crystal domains present in the weevil's exoskeleton scales, as a reason for the angle-independent dull yellowish-green coloration of the weevil E. chevrolati.

  8. A bronze matryoshka: the discrete intermetalloid cluster [Sn@Cu12@Sn20](12-) in the ternary phases A12Cu12Sn21 (A = Na, K).

    PubMed

    Stegmaier, Saskia; Fässler, Thomas F

    2011-12-14

    The synthesis and crystal structure of the first ternary A-Cu-Sn intermetallic phases for the heavier alkali metals A = Na to Cs is reported. The title compounds A(12)Cu(12)Sn(21) show discrete 33-atom intermetalloid Cu-Sn clusters {Sn@Cu(12)@Sn(20)}, which are composed of {Sn(20)} pentagonal dodecahedra surrounding {Cu(12)} icosahedra with single Sn atoms at the center. Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21) were characterized by single-crystal XRD studies, and the successful synthesis of analogous A-Cu-Sn compounds with A = Rb and Cs is deduced from powder XRD data. The isotypic A(12)Cu(12)Sn(21) phases crystallize in the cubic space group Pn ̅3m (No. 224), with the Cu-Sn clusters adopting a face centered cubic arrangement. A formal charge of 12- can be assigned to the {Sn@Cu(12)@Sn(20)} cluster unit, and the interpretation of the title compounds as salt-like intermetallic phases featuring discrete anionic intermetalloid [Sn@Cu(12)@Sn(20)](12-) clusters separated by alkali metal cations is supported by electronic structure calculations. For both Na(12)Cu(12)Sn(21) and K(12)Cu(12)Sn(21), DFT band structure calculations (TB-LMTO-ASA) reveal a band gap. The discrete [Sn@Cu(12)@Sn(20)](12-) cluster is analyzed in consideration of the molecular orbitals obtained from hybrid DFT calculations (Gaussian 09) for the cluster anion. The [Sn@Cu(12)@Sn(20)](12-) cluster MOs can be classified with labels indicating the numbers of radial and angular nodes, in the style of spherical shell models of cluster bonding. © 2011 American Chemical Society

  9. Molecular dynamics simulation of the plastic behavior anisotropy of shock-compressed monocrystal nickel

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai

    2017-01-01

    Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.

  10. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  11. Ab initio calculation of thermodynamic potentials and entropies for superionic water

    DOE PAGES

    French, Martin; Desjarlais, Michael P.; Redmer, Ronald

    2016-02-25

    We construct thermodynamic potentials for two superionic phases of water [with body-centered cubic (bcc) and face-centered cubic (fcc) oxygen lattice] using a combination of density functional theory (DFT) and molecular dynamics simulations (MD). For this purpose, a generic expression for the free energy of warm dense matter is developed and parametrized with equation of state data from the DFT-MD simulations. A second central aspect is the accurate determination of the entropy, which is done using an approximate two-phase method based on the frequency spectra of the nuclear motion. The boundary between the bcc superionic phase and the ices VII andmore » X calculated with thermodynamic potentials from DFT-MD is consistent with that directly derived from the simulations. As a result, differences in the physical properties of the bcc and fcc superionic phases and their impact on interior modeling of water-rich giant planets are discussed.« less

  12. Single-crystalline cubic structured InP nanosprings

    NASA Astrophysics Data System (ADS)

    Shen, G. Z.; Bando, Y.; Zhi, C. Y.; Yuan, X. L.; Sekiguchi, T.; Golberg, D.

    2006-06-01

    Cubic structured nanosprings, InP nanosprings, have been synthesized via a simple thermochemical process using InP and ZnS as the source materials. Each InP nanospring is formed by rolling up a single InP nanobelt with the growth direction along the ⟨111⟩ orientation. The formation of these novel nanostructures is mainly attributed to the minimization of the electrostatic energy due to the polar charges on the ±(002) side surfaces of cubic InP. Cathodoluminescence properties were also studied, which reveal that the InP nanosprings have three emission bands centered at ˜736, ˜920, and ˜980nm.

  13. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on au(111).

    PubMed

    Yan, Jiawei; Ouyang, Runhai; Jensen, Palle S; Ascic, Erhad; Tanner, David; Mao, Bingwei; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Ulstrup, Jens; Reimers, Jeffrey R

    2014-12-10

    The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstituted chiral alkanethiol), followed by in situ scanning tunneling microscopy (STM) imaging combined with density functional theory molecular dynamics STM image simulations. Even though butanethiol SAMs manifest strong headgroup interactions, steric interactions are shown to dominate SAM structure and chirality. Indeed, steric interactions are shown to dictate the nature of the headgroup itself, whether it takes on the adatom-bound motif RS(•)Au(0)S(•)R or involves direct binding of RS(•) to face-centered-cubic or hexagonal-close-packed sites. Binding as RS(•) produces large, organizationally chiral domains even when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS(•) also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs.

  14. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature

    NASA Astrophysics Data System (ADS)

    Austin, Ryan A.

    2018-01-01

    The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.

  15. Plasma-enhanced pulsed-laser deposition of single-crystalline M o2C ultrathin superconducting films

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Zhi; Wang, Huichao; Chan, Cheuk Ho; Chan, Ngai Yui; Chen, Xin Xin; Dai, Ji-Yan

    2017-08-01

    Transition-metal carbides (TMCs) possess many intriguing properties and inspiring application potentials, and recently the study of a two-dimensional form of TMCs has attracted great attention. Herein, we report successful fabrication of continuous M o2C ultrathin single-crystalline films at 700 ∘C with an approach of plasma-enhanced pulsed-laser deposition. By sophisticated structural analyses, the M o2C films are characterized as single crystal with a rarely reported face-centered cubic structure. In further electrical transport measurements, superconductivity observed in the M o2C films demonstrates a typical two-dimensional feature, which is consistent with Berezinskii-Kosterlitz-Thouless transitions. Besides, large upper critical magnetic fields are discovered in this system. Our work offers an approach to grow large-area and high-quality TMCs at relatively low temperatures. This study may stimulate more related investigations on the synthesis, characterizations, and applications of two-dimensional TMCs.

  16. Two-dimensional and three-dimensional evaluation of the deformation relief

    NASA Astrophysics Data System (ADS)

    Alfyorova, E. A.; Lychagin, D. V.

    2017-12-01

    This work presents the experimental results concerning the research of the morphology of the face-centered cubic single crystal surface after compression deformation. Our aim is to identify the method of forming a quasiperiodic profile of single crystals with different crystal geometrical orientation and quantitative description of deformation structures. A set of modern methods such as optical and confocal microscopy is applied to determine the morphology of surface parameters. The results show that octahedral slip is an integral part of the formation of the quasiperiodic profile surface starting with initial strain. The similarity of the formation process of the surface profile at different scale levels is given. The size of consistent deformation regions is found. This is 45 µm for slip lines ([001]-single crystal) and 30 µm for mesobands ([110]-single crystal). The possibility of using two- and three-dimensional roughness parameters to describe the deformation structures was shown.

  17. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds.

    PubMed

    Liu, Jianhua; Zhang, Xiaoliang; Yu, Mei; Li, Songmei; Zhang, Jindan

    2012-01-23

    Biological scaffolds are being actively explored for the synthesis of nanomaterials with novel structures and unexpected properties. Toroidal plasmid DNA separated from the Bacillus host is applied as a sacrificial mold for the synthesis of silver nanoparticles and nanorings. The photoirradiation method is applied to reduce Ag(I) on the plasmid. The nanoparticles are obtained by varying the concentration of the Ag(I) ion solution and the exposure time of the plasmid-Ag(I) complex under UV light at 254 nm and room temperature. It is found that the plasmid serves not only as a template but also as a reductant to drive the silver nucleation and deposition. The resulting nanoparticles have a face-centered cubic (fcc) crystal structure and 20-30 nm average diameter. The detailed mechanism is discussed, and other metals or alloys could also be synthesized with this method. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The fcc - bcc structural transition: I. A band theoretical study for Li, K, Rb, Ca, Sr, and the transition metals Ti and V

    NASA Astrophysics Data System (ADS)

    Sliwko, V. L.; Mohn, P.; Schwarz, K.; Blaha, P.

    1996-02-01

    Employing a high-precision band structure method (FP LAPW - full potential linearized augmented plane wave) we calculate the total energy variation along the tetragonal distortion path connecting the body centred cubic (bcc) and the face centred cubic (fcc) structures. The total energy along this Bain transformation is calculated, varying c/a and volume, providing a first-principles energy surface which has two minima as a function of c/a. These are shallow and occur for the sp metals at the two cubic structures, while Ti (V) has a minimum at fcc (bcc) but a saddle point (i.e. a minimum in volume and a maximum with respect to c/a) at the other cubic structure. These features can be analysed in terms of an interplay between the Madelung contribution and the band energies. Our total energy results allow us to calculate the elastic constants 0953-8984/8/7/006/img1 and 0953-8984/8/7/006/img2 and to study the influence of pressure on the phase stability. These energy surfaces will be used in part II of this paper to investigate finite-temperature effects by mapping them to a Landau - Ginzburg expansion.

  19. Method for making nanomaterials

    DOEpatents

    Fan, Hongyou; Wu, Huimeng

    2013-06-04

    A method of making a nanostructure by preparing a face centered cubic-ordered metal nanoparticle film from metal nanoparticles, such as gold and silver nanoparticles, exerting a hydrostatic pressure upon the film at pressures of several gigapascals, followed by applying a non-hydrostatic stress perpendicularly at a pressure greater than approximately 10 GPA to form an array of nanowires with individual nanowires having a relatively uniform length, average diameter and density.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.

    Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble growth and superlattice formation are not well known. In this work, molecular dynamics is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the molecular dynamics simulations, the embedded-atom method (EAM) potential of U10Mo-Xe (Smirnova et al. 2013) is employed. Initial gas bubbles with low Xe concentration aremore » generated in a U10Mo single crystal. Then Xe atom atoms are continuously added into the bubbles, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that the gas bubble growth is accompanied by partial dislocation emission, which results in a star-shaped dislocation structure and an anisotropic stress field. The emitted partial dislocations have a Burgers vector along the <111> direction and a slip plane of (11-2). Dislocation loop punch-out was not observed. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in body-centered cubic U10Mo fuels.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, T.; Setyawan, W.; Kurtz, R. J.

    Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.

  2. Modulated structure and molecular dissociation of solid chlorine at high pressures

    NASA Astrophysics Data System (ADS)

    Li, Peifang; Gao, Guoying; Ma, Yanming

    2012-08-01

    Among diatomic molecular halogen solids, high pressure structures of solid chlorine (Cl2) remain elusive and least studied. We here report first-principles structural search on solid Cl2 at high pressures through our developed particle-swarm optimization algorithm. We successfully reproduced the known molecular Cmca phase (phase I) at low pressure and found that it remains stable up to a high pressure 142 GPa. At 150 GPa, our structural searches identified several energetically competitive, structurally similar, and modulated structures. Analysis of the structural results and their similarity with those in solid Br2 and I2, it was suggested that solid Cl2 adopts an incommensurate modulated structure with a modulation wave close to 2/7 in a narrow pressure range 142-157 GPa. Eventually, our simulations at >157 GPa were able to predict the molecular dissociation of solid Cl2 into monatomic phases having body centered orthorhombic (bco) and face-centered cubic (fcc) structures, respectively. One unique monatomic structural feature of solid Cl2 is the absence of intermediate body centered tetragonal (bct) structure during the bco → fcc transition, which however has been observed or theoretically predicted in solid Br2 and I2. Electron-phonon coupling calculations revealed that solid Cl2 becomes superconductors within bco and fcc phases possessing a highest superconducting temperature of 13.03 K at 380 GPa. We further probed the molecular Cmca → incommensurate phase transition mechanism and found that the softening of the Ag vibrational (rotational) Raman mode in the Cmca phase might be the driving force to initiate the transition.

  3. Percolation Network Study on the Gas Apparent Permeability of Rock

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tang, Y. B.; Li, M.

    2017-12-01

    We modeled the gas single phase transport behaviors of monomodal porous media using percolation networks. Different from the liquid absolute permeability, which is only related to topology and morphology of pore space, the gas permeability depends on pore pressure as well. A published gas flow conductance model, included usual viscous flow, slip flow and Knudsen diffusion in cylinder pipe, was used to simulated gas flow in 3D, simple cubic, body-center cubic and face-center cubic networks with different hydraulic radius, different coordination number, and different pipe radius distributions under different average pore pressure. The simulation results showed that the gas apparent permeability kapp obey the `universal' scaling law (independence of network lattices), kapp (z-zc)β, where exponent β is related to pore radius distribution, z is coordination number and zc=1.5. Following up on Bernabé et al.'s (2010) study of the effects of pore connectivity and pore size heterogeneity on liquid absolute permeability, gas apparent permeability kapp model and a new joint gas-liquid permeability (i.e., kapp/k∞) model, which could explain the Klinkenberg phenomenon, were proposed. We satisfactorily tested the models by comparison with published experimental data on glass beads and other datasets.

  4. The competitive growth of cubic domains in Ti(1-x)AlxN films studied by diffraction anomalous near-edge structure spectroscopy.

    PubMed

    Pinot, Y; Tuilier, M-H; Pac, M-J; Rousselot, C; Thiaudière, D

    2015-11-01

    Titanium and aluminium nitride films deposited by magnetron sputtering generally grow as columnar domains made of oriented nanocrystallites with cubic or hexagonal symmetry depending on Al content, which are embedded in more disordered grain boundaries. The substitution of Al atoms for Ti in the cubic lattice of the films improves their resistance to wear and oxidation, allowing their use as protective coatings. Ti K-edge X-ray absorption spectroscopy, which probes both crystallized and more disordered grain boundaries, and X-ray diffraction anomalous fine structure, which is sensitive to short- and long-range order within a given crystallized domain, are carried out on a set of Ti(1-x)AlxN films deposited by magnetron sputtering on Si substrates. Attention is paid to the shape of the pre-edge region, which is sensitive to the symmetry of the site occupied by Ti atoms, either octahedral in face-centred-cubic Ti-rich (TiN, Ti0.54Al0.46N) samples or tetrahedral in hexagonal-close-packed Al-rich (Ti0.32Al0.68N) films. In order to obain information on the titanium environment in the well crystallized areas, subtraction of the smooth part of the energy-dependent structure factor for the Bragg reflections is applied to the pre-edge region of the diffraction anomalous data in order to restore their spectroscopic appearance. A flat pre-edge is related to the typical octahedral environment of Ti atoms for cubic reflections. The difference observed between pre-edge spectra associated with face-centred-cubic 200 and 111 Bragg reflections of Ti0.54Al0.46N is assigned to Ti enrichment of 111 large well ordered domains compared with the more disordered 200 ones. The sharp peak observed in the spectrum recorded from the hexagonal 002 peak of Ti0.32Al0.68N can be regarded as a standard for the pure tetrahedral Ti environment in hexagonal-close-packed nitride.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring overmore » a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.« less

  6. Catalytic and antibacterial properties of silver nanoparticles green biosynthesized using soluble green tea powder

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Fan, Yapei; Liu, Xinfang; Luo, Denglin; Liu, Huan; Yang, Ningning

    2018-04-01

    Silver nanoparticles (Ag NPs) were green fabricated using soluble green tea powder (SGTP) as stabilizer and reducing agent. The properties and morphology of Ag NPs were investigated through UV–visible spectroscopy, field emission transmission electron microscope (FE-TEM) and fourier transform infrared (FT-IR). The spectroscopy showed surface plasmon resonance around at 420 nm revealing the synthesis of Ag NPs. FE-TEM results confirmed that the Ag NPs are spherical and face-centered cubic structure. FT-IR spectroscopy identified the role of various functional groups in the nanoparticle synthesis. The one spot biosynthesized Ag NPs showed favourable antibacterial properties on Escherichia coli and Staphyloccocus aureus, and excellent catalytic reduction of 4-nitrophenol. This work provided a feasible, green method to fabricate Ag NPs with promising photocatalytic and antimicrobial activities.

  7. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts)

    PubMed Central

    2013-01-01

    We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal. PMID:23841946

  8. Synthesis and characterization of monodispersed silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Jegatha Christy, A.; Umadevi, M.

    2012-09-01

    Synthesis of silver nanoparticles (NPs) has become a fascinating and important field of applied chemical research. In this paper silver NPs were prepared using silver nitrate (AgNO3), gelatin, and cetyl trimethyl ammonium bromide (CTAB). The prepared silver NPs were exposed under the laser ablation. In our photochemical procedure, gelatin acts as a biopolymer and CTAB acts as a reducing agent. The appearance of surface plasmon band around 410 nm indicates the formation of silver NPs. The nature of the prepared silver NPs in the face-centered cubic (fcc) structure are confirmed by the peaks in the x-ray diffraction (XRD) pattern corresponding to (111), (200), (220) and (311) planes. Monodispersed, stable, spherical silver NPs with diameter about 10 nm were obtained and confirmed by high-resolution transmission electron microscope (HRTEM).

  9. Synthesis and characterization of gold nanodogbones by the seeded mediated growth method

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Chiu, Pin-Hsiang; Wang, Yeong-Her; Meen, Teen-Hang; Yang, Cheng-Fu

    2007-10-01

    Novel gold nanodogbones (GDBs) are successfully fabricated using a simple seeded mediated growth (SMG) method. The shapes of GDBs depend on the amount of added vitamin C solvent. The amount of vitamin C solvent was varied from 10 to 40 µl to investigate the influence of vitamin C solvent on the GDBs. It is found that the aspect ratios (R) of GDBs were in the range from 2.34 to 1.46, and the UV-vis absorption measurement revealed a pronounced blueshift on the longitudinal surface plasmon resonance (SPR) band from 713 to 676 nm. The GDBs were determined by x-ray diffraction (XRD) to be single-crystalline with a face-centered cubic (fcc) structure. The lattice constant calculated from this selected-area electron diffraction (SAED) pattern is 4.068 Å.

  10. Microtribological Mechanisms of Tungsten and Aluminum Nitride Films

    NASA Astrophysics Data System (ADS)

    Zhao, Hongjian; Mu, Chunyan; Ye, Fuxing

    2016-04-01

    Microtribology experiments were carried out on the W1- x Al x N films, deposited by radio frequency magnetron reactive sputtering on 304 stainless steel substrates and Si(100). Film wear mechanisms were investigated from the evolution of the friction coefficient and scanning electron microscopy observations. The results show that the WAlN films consist of a mixture of face-centered cubic W(Al)N and hexagonal wurtzite structure AlN phases and the preferred orientation changes from (111) to (200). The film damage after sliding test is mainly attributed to the composition and microstructure of the films. The amount of debris generated by friction is linked to the crack resistance. The better tribological properties for W1- x Al x N films ( x < 0.4) are mainly determined by the higher toughness.

  11. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to different less symmetric structures and phonons. The results of these calculations are compared with either experiments or calculations based on the density functional theory (DFT), and they all show very good agreement. Importantly, the lowest energy configuration of SIAs agrees with DFT calculations that show that it is an exception within bcc transition metals controlled by magnetism. Moreover, the migration energy of interstitials is significantly lower than that of vacancies, which is essential for correct analysis of the effects of irradiation. Finally, the core structure and glide of ½ <111 > screw dislocations that control the plastic flow in single crystals of bcc metals was explored. The results fully agree with available DFT based studies and with experimental observations of the slip geometry of bcc iron at low temperatures.

  12. Corrosion resistant coatings suitable for elevated temperature application

    DOEpatents

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  13. Model Uncertainty and Test of a Segmented Mirror Telescope

    DTIC Science & Technology

    2014-03-01

    Optical Telescope project EOM: equation of motion FCA: fine control actuator FCD: Face-Centered Cubic Design FEA: finite element analysis FEM: finite...housed in a dark tent to isolate the telescope from stray light, air currents, or dust and other debris. However, the closed volume is prone to...is composed of six hexagonal segments that each have six coarse control actuators (CCA) for segment phasing control, three fine control actuators

  14. Intrinsic behavior of face-centered-cubic supra-crystals of nanocrystals self-organized on mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2005-12-01

    We describe intrinsic behavior due to the high ordering of nanocrystals at the mesoscopic scale. The first example shows well-defined columns in the formation of cobalt nanocrystals when an applied magnetic field is applied during the evaporation process. Collective breathing properties between nanocrystals are demonstrated. In both cases, these features are observed when the nanocrystals are highly ordered in fcc supra-crystals.

  15. Computational prediction of body-centered cubic carbon in an all- s p 3 six-member ring configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhen -Zhen; Lian, Chao -Sheng; Xu, Jing

    2015-06-11

    Recent shock compression experiments produced clear evidence of a new carbon phase, but a full structural identification has remained elusive. Here we establish by ab initio calculations a body-centered cubic carbon phase in Ia3¯d(O 10 h) symmetry, which contains twelve atoms in its primitive cell, thus termed BC12, and comprises all-sp 3 six-membered rings. This structural configuration places BC12 carbon in the same bonding type as cubic diamond, and its stability is verified by phonon mode analysis. Simulated x-ray diffraction patterns provide an excellent match to the previously unexplained distinct diffraction peak found in shock compression experiments. Electronic band andmore » density of states calculations reveal that BC12 is a semiconductor with a direct band gap of ~2.97eV. Lastly, these results provide a solid foundation for further exploration of this new carbon allotrope.« less

  16. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  17. Ammoniated alkali fullerides (ND(3))(x)NaA(2)C(60): ammonia specific effects and superconductivity.

    PubMed

    Margadonna, Serena; Aslanis, Efstathios; Prassides, Kosmas

    2002-08-28

    The crystal structure of the superconducting (ND(3))(x)()NaA(2)C(60) (0.7 < or = x < or = 1, A= K, Rb) fullerides (T(c)= 6-15 K) has been studied by synchrotron X-ray and neutron powder diffraction. It is face-centered cubic (fcc) to low temperatures with Na(+)-ND(3) pairs residing in the octahedral interstices. These are disordered over the corners of two "interpenetrating" cubes with the Na(+) ions and the N atoms displaced by approximately 2.0 A and approximately 0.5 A from the center of the site and statically disordered over the corners of the inner and outer cube, respectively. Close contacts between the D atoms of the ND(3) molecules and electron rich 6:6 C-C bonds of neighboring C(60) units provide the signature of weak N-D.pi hydrogen-bonding interactions, which control the intermolecular packing in the crystal and may determine the unusual superconducting properties.

  18. Formation and electronic properties of palladium hydrides and palladium-rhodium dihydride alloys under pressure.

    PubMed

    Yang, Xiao; Li, Huijian; Ahuja, Rajeev; Kang, Taewon; Luo, Wei

    2017-06-14

    We present the formation possibility for Pd-hydrides and Pd-Rh hydrides system by density functional theory (DFT) in high pressure upto 50 GPa. Calculation confirmed that PdH 2 in face-centered cubic (fcc) structure is not stable under compression that will decomposition to fcc-PdH and H 2 . But it can be formed under high pressure while the palladium is involved in the reaction. We also indicate a probably reason why PdH 2 can not be synthesised in experiment due to PdH is most favourite to be formed in Pd and H 2 environment from ambient to higher pressure. With Rh doped, the Pd-Rh dihydrides are stabilized in fcc structure for 25% and 75% doping and in tetragonal structure for 50% doping, and can be formed from Pd, Rh and H 2 at high pressure. The electronic structural study on fcc type Pd x Rh 1-x H 2 indicates the electronic and structural transition from metallic to semi-metallic as Pd increased from x = 0 to 1.

  19. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein

    2016-08-01

    We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.

  20. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    NASA Astrophysics Data System (ADS)

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, A. V.; Grigoriev, S. V.

    2014-10-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale face-centered-cubic (fcc) ordering of spherical voids in the inverse opal-like structure with unit cell dimension of 750±10nm. The diffuse scattering data were used to map defects in the fcc structure as a function of the number of layers in the Ni inverse opal-like structure. The average lateral size of mesoscopic domains is found to be independent of the number of layers. 3D reconstruction of the reciprocal space for the inverse opal crystals with different thickness provided an indirect study of original opal templates in a depth-resolved way. The microstructure and thermal response of the framework of the porous inverse opal crystal was examined using wide-angle powder x-ray diffraction. This artificial porous structure is built from nickel crystallites possessing stacking faults and dislocations peculiar for the nickel thin films.

  1. ZnS-Au planet-like structure: a facile fabrication and improved optical performance induced by surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Yang, Chaoshun; An, Guofei; Zhou, Yawei; Zhao, Xiaopeng

    2013-05-01

    Semiconductor-metal planet-like structure composed of ZnS crystals and Au nanoparticles (NPs) were successfully synthesized using a simple method. The external surface of ZnS was pre-modified with sodium dodecyl sulfate (SDS). With the assistance of this anionic surfactant, Au NPs could be deposited onto the surface of ZnS crystals via electrostatic adsorption. The samples were structurally characterized by X-ray diffraction, Fourier transform infrared, and transmission electron microscope. It was shown that all samples were made up of face-centered cubic Au and wurtzite ZnS. In this structure, the surface coverage of Au NPs could be readily adjusted by varying the Au/ZnS ratio during the synthesis. Photoluminescence results showed that the defect emission intensity of the ZnS-Au planet-like structure improved by 20 % at the Au/ZnS molar ratio of 1:588, with the Au NPs measuring 12 nm in diameter. This enhancement can be primarily ascribed to localized surface plasmon resonance on the surface of the Au NPs.

  2. Crystal grain growth at the α -uranium phase transformation in praseodymium

    NASA Astrophysics Data System (ADS)

    Cunningham, Nicholas C.; Velisavljevic, Nenad; Vohra, Yogesh K.

    2005-01-01

    Structural phase transformations under pressure are examined in praseodymium metal for the range 0-40GPa at ambient temperature. Pressure was generated with a diamond-anvil cell, and data were collected using high-resolution synchrotron x-ray diffraction and the image plate technique. The structural sequence double hexagonal close packed (dhcp)→face centered cubic (fcc)→distorted-fcc (d-fcc)→ α -uranium (α-U) is observed with increasing pressure. Rietveld refinement of all crystallographic phases provided confirmation of the hR24 structure for the d-fcc phase while the previously reported monoclinic phase between the d-fcc and the α-U phase was not confirmed. We observe dramatic crystal grain growth during the volume collapse concurrent with the symmetry-lowering transition to the α-U structure. No preferred orientation axis is observed, and the formation process for these large grains is expected to be via a nucleation and growth mechanism. An analogous effect in rare earth metal cerium suggests that the grain growth during transformation to the α-U structure is a common occurrence in f -electron metals at high pressures.

  3. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nearest the face, shall be at least 6,000 cubic feet per minute, or 9,000 cubic feet per minute in longwall and continuous miner sections. The quantity of air across each face at a work place shall be at...

  4. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nearest the face, shall be at least 6,000 cubic feet per minute, or 9,000 cubic feet per minute in longwall and continuous miner sections. The quantity of air across each face at a work place shall be at...

  5. Pair distribution function analysis applied to decahedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakotte, H.; Silkwood, C.; Page, K.; Wang, H.-W.; Olds, D.; Kiefer, B.; Manna, S.; Karpov, D.; Fohtung, E.; Fullerton, E. E.

    2017-11-01

    The five-fold symmetry of face-centered cubic (fcc) derived nanoparticles is inconsistent with the translational symmetry of a Bravais lattice and generally explained by multiple twinning of a tetrahedral subunit about a (joint) symmetry axis, with or without structural modification to the fcc motif. Unlike in bulk materials, five-fold twinning in cubic nanoparticles is common and strongly affects their structural, chemical, and electronic properties. To test and verify theoretical approaches, it is therefore pertinent that the local structural features of such materials can be fully characterized. The small size of nanoparticles severely limits the application of traditional analysis techniques, such as Bragg diffraction. A complete description of the atomic arrangement in nanoparticles therefore requires a departure from the concept of translational symmetry, and prevents fully evaluating all the structural features experimentally. We describe how recent advances in instrumentation, together with the increasing power of computing, are shaping the development of alternative analysis methods of scattering data for nanostructures. We present the application of Debye scattering and pair distribution function (PDF) analysis towards modeling of the total scattering data for the example of decahedral gold nanoparticles. PDF measurements provide a statistical description of the pair correlations of atoms within a material, allowing one to evaluate the probability of finding two atoms within a given distance. We explored the sensitivity of existing synchrotron x-ray PDF instruments for distinguishing four different simple models for our gold nanoparticles: a multiply twinned fcc decahedron with either a single gap or multiple distributed gaps, a relaxed body-centered orthorhombic (bco) decahedron, and a hybrid decahedron. The data simulations of the models were then compared with experimental data from synchrotron x-ray total scattering. We present our experimentally derived atomistic models of the gold nanoparticles, with surprising results and a perspective on remaining challenges. Our findings provide evidence for the suitability of PDF analysis in the characterization of other nanosized particles that may have commercial applications.

  6. Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.

    2018-02-01

    We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.

  7. Metallurgical characterization of new palladium-containing cobalt chromium and nickel chromium alloys

    NASA Astrophysics Data System (ADS)

    Puri, Raghav

    Recently introduced to the market has been an entirely new subclass of casting alloy composition whereby palladium (˜25 wt%) is added to traditional base metal alloys such as CoCr and NiCr. Objectives. The purpose of this study was to evaluate the microstructure and Vickers hardness of two new CoPdCr and one new NiPdCr alloy and compare them to traditional CoCr and NiCr alloys. Methods. The casting alloys investigated were: CoPdCr-A (Noble Crown NF, The Argen Corporation), CoPdCr-I (Callisto CP+, Ivoclar Vivadent), NiPdCr (Noble Crown, Argen), CoCr (Argeloy N.P. Special, Argen), and NiCr (Argeloy N.P. Star, Argen). As-cast cylindrical alloy specimens were mounted in epoxy resin and prepared with standard metallographic procedures, i.e. grinding with successive grades of SiC paper and polishing with alumina suspensions. The alloys were examined with an optical microscope, SEM/EPMA, and XRD to gain insight into their microstructure, composition, and crystal structure. Vickers hardness (VHN) was measured and statistically analyzed by one way ANOVA and Tukey's HSD test (alpha=0.05). Results. Optical microscopy showed a dendritic microstructure for all alloys. The Pd-containing alloys appear to possess a more complex microstructure. SEM/EPMA showed Cr to be rather uniformly distributed in the matrix with palladium tending to be segregated apart from Mo and Ni or Co. Areas of different composition may explain the poor electrochemical results noted in previous studies. XRD suggested the main phase in the Ni-containing solutions was a face centered cubic Ni solid solution, whereas the CoCr exhibited a hexagonal crystal structure that was altered to face centered cubic when Pd was included in the composition. For Vickers hardness, the Co-containing alloys possessed a greater hardness than the Ni-containing alloys. However, the incorporation of Pd in CoCr and NiCr had only a slight effect on microhardness. Conclusion. Overall, the inclusion of palladium increases the microstructural complexity of NiCr and CoCr alloys.

  8. Grain boundary phases in bcc metals

    DOE PAGES

    Frolov, T.; Setyawan, W.; Kurtz, R. J.; ...

    2018-01-01

    Evolutionary grand-canonical search predicts novel grain boundary structures and multiple grain boundary phases in elemental body-centered cubic (bcc) metals represented by tungsten, tantalum and molybdenum.

  9. New way for determining electron energy levels in quantum dots arrays using finite difference method

    NASA Astrophysics Data System (ADS)

    Dujardin, F.; Assaid, E.; Feddi, E.

    2018-06-01

    Electronic states are investigated in quantum dots arrays, depending on the type of cubic Bravais lattice (primitive, body centered or face centered) according to which the dots are arranged, the size of the dots and the interdot distance. It is shown that the ground state energy level can undergo significant variations when these parameters are modified. The results were obtained by means of finite difference method which has proved to be easily adaptable, efficient and precise. The symmetry properties of the lattice have been used to reduce the size of the Hamiltonian matrix.

  10. Comparative study of the pentamodal property of four potential pentamode microstructures

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Lu, Xuegang; Liang, Gongying; Xu, Zhuo

    2017-03-01

    In this paper, a numerical comparative study is presented on the pentamodal property of four potential pentamode microstructures (three based on simple cubic and one on body-centered cubic structures) based on phonon band calculations. The finite-element method is employed to calculate the band structures, and the two essential factors of the ratio of bulk modulus B to shear modulus G and the single-mode band gap (SBG) are analyzed to quantitatively evaluate the pentamodal property. The results show that all four structures possess a higher B/G ratio than traditional materials. One of the simple cubic structures exhibits the incomplete SBG, while the three other structures exhibit complete SBG to decouple the compression and shear waves in all propagation directions. Further parametric analyses are presented investigating the effects of geometrical and material parameters on the pentamodal property of these structures. This study provides guidelines for the future design of novel pentamode microstructures possessing a high B/G ratio and a low-frequency broadband SBG.

  11. Inverse opal with an ultraviolet photonic gap

    NASA Astrophysics Data System (ADS)

    Ni, Peigen; Cheng, Bingying; Zhang, Daozhong

    2002-03-01

    Photonic crystals composed of TiO2 and air voids fabricated by the template method exhibit an ultraviolet photonic stop band (˜380 nm) in the Γ-L direction. Scanning electron microscopy images show that the inverse opal possesses face-centered-cubic symmetry with a lattice constant of 240 nm. The transmission spectra show that the change in transmittance is one order of magnitude in the gap, which is in accord with the reflection spectrum.

  12. Site occupancy of interstitial deuterium atoms in face-centred cubic iron

    PubMed Central

    Machida, Akihiko; Saitoh, Hiroyuki; Sugimoto, Hidehiko; Hattori, Takanori; Sano-Furukawa, Asami; Endo, Naruki; Katayama, Yoshinori; Iizuka, Riko; Sato, Toyoto; Matsuo, Motoaki; Orimo, Shin-ichi; Aoki, Katsutoshi

    2014-01-01

    Hydrogen composition and occupation state provide basic information for understanding various properties of the metal–hydrogen system, ranging from microscopic properties such as hydrogen diffusion to macroscopic properties such as phase stability. Here the deuterization process of face-centred cubic Fe to form solid-solution face-centred cubic FeDx is investigated using in situ neutron diffraction at high temperature and pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å3 per deuterium atom. The minor occupation of the tetrahedral site is thermally driven by the intersite movement of deuterium atoms along the ‹111› direction in the face-centred cubic metal lattice. PMID:25256789

  13. Ru nanoframes with an fcc structure and enhanced catalytic properties

    DOE PAGES

    Ye, Haihang; Wang, Qingxiao; Catalano, Massimo; ...

    2016-03-21

    Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd–Ru core–frame octahedra could be easily converted to Ru octahedral nanoframes of ~2 nm inmore » thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. Furthermore, the fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH 4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness.« less

  14. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  15. A theoretical prediction of the paradoxical surface free energy for FCC metallic nanosolids

    NASA Astrophysics Data System (ADS)

    Abdul-Hafidh, Esam H.; Aïssa, Brahim

    2016-08-01

    We report on the development of an efficient and simple method to calculate the surface free energy (surface tension) of a general-shaped metallic nanosolid. Both nanoparticles and nanostructures that account for the crystal structure and size were considered. The surface free energy of a face-centered cubic structure of a metallic nanoparticles was found to decrease as the size decreases, for a shape factor equal to 1.0 (i.e., spherical). However, when the shape factor exceeds this value, which includes disk-like, regular tetrahedral, regular hexahedral, regular octahedral, nanorod, and regular quadrangular structures, the behavior of the surface free energy was found to reverse, especially for small nanoparticles and then increases as the size decreases. Moreover, this behavior was systematically recorded for large nanoparticles when the mechanical distortion was appreciable. As a matter of fact, this model was also applied to the noble transition metals, including gold and silver nanoparticles. This work is a clear step forward establishing a systematic mechanism for controlling the mechanical properties of nanoscale particles by controlling the shape, size and structure.

  16. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    PubMed

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen

    NASA Astrophysics Data System (ADS)

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-11-01

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe2O4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H2) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe2O4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (Ms) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (Hc) decreased monotonously firstly and then basically stayed unchanged. The largest Ms (~145.7 emu·g-1) and the moderate Hc (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

  18. Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen.

    PubMed

    Jing, Panpan; Liu, Mengting; Pu, Yongping; Cui, Yongfei; Wang, Zhuo; Wang, Jianbo; Liu, Qingfang

    2016-11-23

    Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe 2 O 4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H 2 ) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe 2 O 4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (M s ) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (H c ) decreased monotonously firstly and then basically stayed unchanged. The largest M s (~145.7 emu·g -1 ) and the moderate H c (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

  19. Cohesion and coordination effects on transition metal surface energies

    NASA Astrophysics Data System (ADS)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  20. Jacob's Ladder as Sketched by Escher: Assessing the Performance of Broadly Used Density Functionals on Transition Metal Surface Properties.

    PubMed

    Vega, Lorena; Ruvireta, Judit; Viñes, Francesc; Illas, Francesc

    2018-01-09

    The present work surveys the performance of various widely used density functional theory exchange-correlation (xc) functionals in describing observable surface properties of a total of 27 transition metals with face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. A total of 81 low Miller index surfaces were considered employing slab models. Exemplary xc functionals within the three first rungs of Jacob's ladder were considered, including the Vosko-Wilk-Nusair xc functional within the local density approximation, the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA), and the Tao-Perdew-Staroverov-Scuseria functional as a meta-GGA functional. Hybrids were excluded in the survey because they are known to fail in properly describing metallic systems. In addition, two variants of PBE were considered, PBE adapted for solids (PBEsol) and revised PBE (RPBE), aimed at improving adsorption energies. Interlayer atomic distances, surface energies, and surface work functions were chosen as the scrutinized properties. A comparison with available experimental data, including single-crystal and polycrystalline values, shows that no xc functional is best at describing all of the surface properties. However, in statistical mean terms the PBEsol xc functional is advised, while PBE is recommended when considering both bulk and surface properties. On the basis of the present results, a discussion of adapting GGA functionals to the treatment of metallic surfaces in an alternative way to meta-GGA or hybrids is provided.

  1. Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles.

    PubMed

    Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Wang, Na; Rong, Yangchun; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2017-12-13

    An atomic insight into the local chemical ordering and lattice strain is particular interesting to recent emerging bimetallic nanocatalysts such as PtNi alloys. Here, we reported the atomic distribution, chemical environment, and lattice thermal evolution in full-scale structural description of PtNi alloy nanoparticles (NPs). The different segregation of elements in the well-faceted PtNi nanoparticles is convinced by extended X-ray absorption fine structure (EXAFS). Atomic pair distribution function (PDF) study evidences the coexistence of the face-centered cubic and tetragonal ordering parts in the local environment of PtNi nanoparticles. Further reverse Monte Carlo (RMC) simulation with PDF data obviously exposed the segregation as Ni and Pt in the centers of {111} and {001} facets, respectively. Layer-by-layer statistical analysis up to 6 nm for the local atomic pairs revealed the distribution of local tetragonal ordering on the surface. This local coordination environment facilitates the distribution of heteroatomic Pt-Ni pairs, which plays an important role in the negative thermal expansion of Pt 41 Ni 59 NPs. The present study on PtNi alloy NPs from local short-range coordination to long-range average lattice provides a new perspective on tailoring physical properties in nanomaterials.

  2. Microscale simulations of shock interaction with large assembly of particles for developing point-particle models

    NASA Astrophysics Data System (ADS)

    Thakur, Siddharth; Neal, Chris; Mehta, Yash; Sridharan, Prasanth; Jackson, Thomas; Balachandar, S.

    2017-01-01

    Micrsoscale simulations are being conducted for developing point-particle and other related models that are needed for the mesoscale and macroscale simulations of explosive dispersal of particles. These particle models are required to compute (a) instantaneous aerodynamic force on the particle and (b) instantaneous net heat transfer between the particle and the surrounding. A strategy for a sequence of microscale simulations has been devised that allows systematic development of the hybrid surrogate models that are applicable at conditions representative of the explosive dispersal application. The ongoing microscale simulations seek to examine particle force dependence on: (a) Mach number, (b) Reynolds number, and (c) volume fraction (different particle arrangements such as cubic, face-centered cubic (FCC), body-centered cubic (BCC) and random). Future plans include investigation of sequences of fully-resolved microscale simulations consisting of an array of particles subjected to more realistic time-dependent flows that progressively better approximate the actual problem of explosive dispersal. Additionally, effects of particle shape, size, and number in simulation as well as the transient particle deformation dependence on various parameters including: (a) particle material, (b) medium material, (c) multiple particles, (d) incoming shock pressure and speed, (e) medium to particle impedance ratio, (f) particle shape and orientation to shock, etc. are being investigated.

  3. Calculations of and evidence for chain packing stress in inverse lyotropic bicontinuous cubic phases.

    PubMed

    Shearman, Gemma C; Khoo, Bee J; Motherwell, Mary-Lynn; Brakke, Kenneth A; Ces, Oscar; Conn, Charlotte E; Seddon, John M; Templer, Richard H

    2007-06-19

    Inverse bicontinuous cubic lyotropic phases are a complex solution to the dilemma faced by all self-assembled water-amphiphile systems: how to satisfy the incompatible requirements for uniform interfacial curvature and uniform molecular packing. The solution reached in this case is for the water-amphiphile interfaces to deform hyperbolically onto triply periodic minimal surfaces. We have previously suggested that although the molecular packing in these structures is rather uniform the relative phase behavior of the gyroid, double diamond, and primitive inverse bicontinuous cubic phases can be understood in terms of subtle differences in packing frustration. In this work, we have calculated the packing frustration for these cubics under the constraint that their interfaces have constant mean curvature. We find that the relative packing stress does indeed differ between phases. The gyroid cubic has the least packing stress, and at low water volume fraction, the primitive cubic has the greatest packing stress. However, at very high water volume fraction, the double diamond cubic becomes the structure with the greatest packing stress. We have tested the model in two ways. For a system with a double diamond cubic phase in excess water, the addition of a hydrophobe may release packing frustration and preferentially stabilize the primitive cubic, since this has previously been shown to have lower curvature elastic energy. We have confirmed this prediction by adding the long chain alkane tricosane to 1-monoolein in excess water. The model also predicts that if one were able to hydrate the double diamond cubic to high water volume fractions, one should destabilize the phase with respect to the primitive cubic. We have found that such highly swollen metastable bicontinuous cubic phases can be formed within onion vesicles. Data from monoelaidin in excess water display a well-defined transition, with the primitive cubic appearing above a water volume fraction of 0.75. Both of these results lend support to the proposition that differences in the packing frustration between inverse bicontinuous cubic phases play a pivotal role in their relative phase stability.

  4. Accurate Monte Carlo simulations on FCC and HCP Lennard-Jones solids at very low temperatures and high reduced densities up to 1.30

    NASA Astrophysics Data System (ADS)

    Adidharma, Hertanto; Tan, Sugata P.

    2016-07-01

    Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T∗ ≤ 1.20) and high densities (0.96 ≤ ρ∗ ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.

  5. Synthesis and spectroscopic characterization of gold nanobipyramids prepared by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Thanh Ngo, Vo Ke; Phat Huynh, Trong; Giang Nguyen, Dang; Phuong Uyen Nguyen, Hoang; Lam, Quang Vinh; Dat Huynh, Thanh

    2015-12-01

    Gold nanobipyramids (NBPs) have attracted much attention because they have potential for applications in smart sensing devices, such as medical diagnostic equippments. This is due to the fact that they show more advantageous plasmonic properties than other gold nanostructures. We describe a chemical reduction method for synthesizing NBPs using conventional heating with ascorbic acid reduction and cetyltrimethylamonium bromide (CTAB) + AgNO3 as capping agents. The product was characterized by ultraviolet-visible spectroscopy (UV-vis), Fourier transmission infrared spectroscopy (FTIR), transmission electron microscopy (TEM), x-ray powder diffraction (XRD). The results showed that gold nanoparticles were formed with bipyramid shape (tip-to-tip distance of 88.4 ± 9.4 nm and base length of 29.9 ± 3.2 nm) and face-centered-cubic crystalline structure. Optimum parameters for preparation of NBPs are also found.

  6. Malva parviflora extract assisted green synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Zayed, Mervat F.; Eisa, Wael H.; Shabaka, A. A.

    2012-12-01

    Five plant leaf extracts (Malva parviflora, Beta vulgaris subsp. Vulgaris, Anethum graveolens, Allium kurrat and Capsicum frutescens) were screened for their bioreduction behavior for synthesis of silver nanoparticles. M. parviflora (Malvaceae) was found to exhibit the best reducing and protecting action in terms of synthesis rate and monodispersity of the prepared silver nanoparticles. Our measurements indicate that biosynthesis of Ag nanoparticles by M. parviflora produces Ag nanoparticles with the diameters in the range of 19-25 nm. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles of face-centered cubic structure. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process is an excellent candidate for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  7. Ginzburg-Landau theory for the solid-liquid interface of bcc elements

    NASA Technical Reports Server (NTRS)

    Shih, W. H.; Wang, Z. Q.; Zeng, X. C.; Stroud, D.

    1987-01-01

    Consideration is given to a simple order-parameter theory for the interfacial tension of body-centered-cubic solids in which the principal order parameter is the amplitude of the density wave at the smallest nonzero reciprocal-lattice vector of the solid. The parameters included in the theory are fitted to the measured heat of fusion, melting temperature, and solid-liquid density difference, and to the liquid structure factor and its temperature derivative at freezing. Good agreement is found with experiment for Na and Fe and the calculated anisotropy of the surface tension among different crystal faces is of the order of 2 percent. On the basis of various assumptions about the universal behavior of bcc crystals at melting, the formalism predicts that the surface tension is proportional to the heat of fusion per surface atom.

  8. The effect of long-range order on the elastic properties of Cu3Au

    NASA Astrophysics Data System (ADS)

    Wang, Gui-Sheng; Krisztina Delczeg-Czirjak, Erna; Hu, Qing-Miao; Kokko, Kalevi; Johansson, Börje; Vitos, Levente

    2013-02-01

    Ab initio calculations, based on the exact muffin-tin orbitals method are used to determine the elastic properties of Cu-Au alloys with Au/Cu ratio 1/3. The compositional disorder is treated within the coherent potential approximation. The lattice parameters and single-crystal elastic constants are calculated for different partially ordered structures ranging from the fully ordered L12 to the random face centered cubic lattice. It is shown that the theoretical elastic constants follow a clear trend with the degree of chemical order: namely, C11 and C12 decrease, whereas C44 remains nearly constant with increasing disorder. The present results are in line with the experimental findings that the impact of the chemical ordering on the fundamental elastic parameters is close to the resolution of the available experimental and theoretical tools.

  9. Composition distributions in FePt(Au) nanoparticles

    NASA Astrophysics Data System (ADS)

    Srivastava, C.; Nikles, D. E.; Harrell, J. W.; Thompson, G. B.

    2010-08-01

    Ternary alloy FePt(Au) nanoparticles were prepared by the co-reduction of platinum(II) acetylacetonate and gold(III) acetate and the thermal decomposition of iron pentacarbonyl in hot phenyl ether in the presence of oleic acid and oleylamine ligands. This gave spherical particles with an average diameter of 4.4 nm with a range of diameters from approximately 1.6-9 nm. The as-synthesized particles had a solid solution, face-centered-cubic structure. Though the average composition of the particles was Fe44Pt45Au11, individual particle analysis by Scanning Transmission Electron Microscopy-X-ray Energy Dispersive Spectroscopy showed a broad distribution in composition. In general, smaller-sized particles tended to have a lower amount of Au as compared to larger-sized particles. As the Au content increased, the ratio of Fe/Pt widened.

  10. (Zn,H)-codoped copper oxide nanoparticles via pulsed laser ablation on Cu-Zn alloy in water

    PubMed Central

    2012-01-01

    Nanosized (5 to 10 nm) amorphous and crystalline nanocondensates, i.e., metallic α-phase of Zn-Cu alloy in face-centered cubic structure and (Zn,H)-codoped cuprite (Cu2O) with high-pressure-favored close-packed sublattice, were formed by pulsed laser ablation on bulk Cu65Zn35 in water and characterized by X-ray/electron diffractions and optical spectroscopy. The as-fabricated hybrid nanocondensates are darkish and showed photoluminescence in the whole visible region. Further dwelling of such nanocondensates in water caused progressive formation of a rice-like assembly of (Zn,H)-codoped tenorite (CuO) nanoparticles with (001), (100), and {111} preferred orientations, (111) tilt boundary, yellowish color, and minimum bandgap narrowing down to ca. 2.7 eV for potential photocatalytic applications. PMID:22647312

  11. Surface morphological properties of Ag-Al2O3 nanocermet layers using dip-coating technique

    NASA Astrophysics Data System (ADS)

    Muhammad, Nor Adhila; Suhaimi, Siti Fatimah; Zubir, Zuhana Ahmad; Daud, Sahhidan

    2017-12-01

    Ag-Al2O3 nanocermet layer was deposited on Cu coated glass substrate using dip-coating technique. The aim of this study was to observe the surface morphology properties of Ag-Al2O3 nanocermet layers after annealing process at 350°C in H2. The surface morphology of Ag-Al2O3 nanocermet will be characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-Ray Diffractometer (XRD), respectively. The results show that nearly isolated Ag particles having a large and small size were present in the Al2O3 dielectric matrix after annealing process. The face centered cubic crystalline structure of Ag nanoparticles inclusion in the amorphous alumina dielectric matrix was confirmed using XRD pattern and supported by EDX spectra analysis.

  12. Cubic martensite in high carbon steel

    NASA Astrophysics Data System (ADS)

    Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi

    2018-05-01

    A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.

  13. A unified picture of the crystal structures of metals

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  14. Void Growth and Coalescence in Dynamic Fracture of FCC and BCC Metals - Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Seppälä, Eira

    2004-03-01

    In dynamic fracture of ductile metals, the state of tension causes the nucleation of voids, typically from inclusions or grain boundary junctions, which grow and ultimately coalesce to form the fracture surface. Significant plastic deformation occurs in the process, including dislocations emitted to accommodate the growing voids. We have studied at the atomistic scale growth and coalescence processes of voids with concomitant dislocation formation. Classical molecular dynamics (MD) simulations of one and two pre-existing spherical voids initially a few nanometers in radius have been performed in single-crystal face-centered-cubic (FCC) and body-centered-cubic (BCC) lattices under dilational strain with high strain-rates. Million atom simulations of single void growth have been done to study the effect of stress triaxiality,^1 along with strain rate and lattice-structure dependence. An interesting prolate-to-oblate transition in the void shape in uniaxial expansion has been observed and quantitatively analyzed. The simulations also confirm that the plastic strain results directly from the void growth. Interaction and coalescence between two voids have been studied utilizing a parallel MD code in a seven million atom system. In particular, the movement of centers of the voids, linking of the voids, and the shape changes in vicinity of the other void are studied. Also the critical intervoid ligament distance after which the voids can be treated independently has been searched. ^1 E. T. Seppälä, J. Belak, and R. E. Rudd, cond-mat/0310541, submitted to Phys. Rev. B. Acknowledgment: This work was done in collaboration with Dr. James Belak and Dr. Robert E. Rudd, LLNL. It was performed under the auspices of the US Dept. of Energy at the Univ. of Cal./Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  15. A canonical stability-elasticity relationship verified for one million face-centred-cubic structures.

    PubMed

    Maisel, Sascha B; Höfler, Michaela; Müller, Stefan

    2012-11-29

    Any thermodynamically stable or metastable phase corresponds to a local minimum of a potentially very complicated energy landscape. But however complex the crystal might be, this energy landscape is of parabolic shape near its minima. Roughly speaking, the depth of this energy well with respect to some reference level determines the thermodynamic stability of the system, and the steepness of the parabola near its minimum determines the system's elastic properties. Although changing alloying elements and their concentrations in a given material to enhance certain properties dates back to the Bronze Age, the systematic search for desirable properties in metastable atomic configurations at a fixed stoichiometry is a very recent tool in materials design. Here we demonstrate, using first-principles studies of four binary alloy systems, that the elastic properties of face-centred-cubic intermetallic compounds obey certain rules. We reach two conclusions based on calculations on a huge subset of the face-centred-cubic configuration space. First, the stiffness and the heat of formation are negatively correlated with a nearly constant Spearman correlation for all concentrations. Second, the averaged stiffness of metastable configurations at a fixed concentration decays linearly with their distance to the ground-state line (the phase diagram of an alloy at zero Kelvin). We hope that our methods will help to simplify the quest for new materials with optimal properties from the vast configuration space available.

  16. Equations of state of anhydrous AlF3 and AlI3: Modeling of extreme condition halide chemistry

    NASA Astrophysics Data System (ADS)

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Goncharov, Alexander F.; Radousky, Harry B.; Armstrong, Michael R.; Roberts, Sarah K.; Plaue, Jonathan W.

    2015-06-01

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.

  17. Research on the interfacial behaviors of plate-type dispersion nuclear fuel elements

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Yan, Xiaoqing; Ding, Shurong; Huo, Yongzhong

    2010-04-01

    The three-dimensional constitutive relations are constructed, respectively, for the fuel particles, the metal matrix and the cladding of dispersion nuclear fuel elements, allowing for the effects of large deformation and thermal-elastoplasticity. According to the constitutive relations, the method of modeling their irradiation behaviors in ABAQUS is developed and validated. Numerical simulations of the interfacial performances between the fuel meat and the cladding are implemented with the developed finite element models for different micro-structures of the fuel meat. The research results indicate that: (1) the interfacial tensile stresses and shear stresses for some cases will increase with burnup, but the relative stresses will decrease with burnup for some micro-structures; (2) at the lower burnups, the interfacial stresses increase with the particle sizes and the particle volume fractions; however, it is not the case at the higher burnups; (3) the particle distribution characteristics distinctly affect the interfacial stresses, and the face-centered cubic case has the best interfacial performance of the three considered cases.

  18. Dynamic Properties of DNA-Programmable Nanoparticle Crystallization.

    PubMed

    Yu, Qiuyan; Zhang, Xuena; Hu, Yi; Zhang, Zhihao; Wang, Rong

    2016-08-23

    The dynamics of DNA hybridization is very important in DNA-programmable nanoparticle crystallization. Here, coarse-grained molecular dynamics is utilized to explore the structural and dynamic properties of DNA hybridizations for a self-complementary DNA-directed nanoparticle self-assembly system. The hexagonal close-packed (HCP) and close-packed face-centered cubic (FCC) ordered structures are identified for the systems of different grafted DNA chains per nanoparticle, which are in good agreement with the experimental results. Most importantly, the dynamic crystallization processes of DNA hybridizations are elucidated by virtue of the mean square displacement, the percentage of hybridizations, and the lifetime of DNA bonds. The lifetime can be modeled by the DNA dehybridization, which has an exponential form. The lifetime of DNA bonds closely depends on the temperature. A suitable temperature for the DNA-nanoparticle crystallization is obtained in the work. Moreover, a too large volume fraction hinders the self-assembly process due to steric effects. This work provides some essential information for future design of nanomaterials.

  19. [Structure and luminescence properties of MgGa2O4 : Cr3+ with Zn substituted for Mg].

    PubMed

    Zhang, Wan-Xin; Wang, Yin-Hai; Li, Hai-Ling; Wang, Xian-Sheng; Zhao, Hui

    2013-01-01

    A series of red long afterglow phosphors with composition Zn(x) Mg(1-2) Ga2 O4 : Cr3+ (x = 0, 0.2, 0.6, 0.8, 1.0) were synthesized by a high temperature solid-state reaction method. The X-ray diffraction studies show that the phase of the phosphors is face-centered cubic structure. Photoluminescence spectra show that the red emission of Cr3+ originated from the transition of 2E-4A2. Due to the large overlap between absorption band of Cr3+ and emission band of the host. Cr3+ could obtain the excitation energy from the host via the effective energy transfer. The afterglow decay characteristics show that the phosphor samples with different Zn contents have different afterglow time and the afterglow time also changes with the value of x. The measurement of thermoluminescence reveals that the trap depth of the phosphor samples with different Zn contents is different. The samples with deeper traps have longer afterglow time.

  20. Electron-irradiation-induced crystallization at metallic amorphous/silicon oxide interfaces caused by electronic excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagase, Takeshi, E-mail: t-nagase@uhvem.osaka-u.ac.jp; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871; Yamashita, Ryo

    2016-04-28

    Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiO{sub x}) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiO{sub x}) interface, followed by the formation of a Pd{sub 2}Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiO{sub x} and Pd/SiO{sub x}more » interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.« less

  1. Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Wu, Chung-Chin

    2016-03-01

    The size effect on the cold-welding mechanism and mechanical properties of Au nanowires (NWs) in head-to-head contact are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The results are discussed in terms of atomic trajectories, slip vectors, stress, radial distribution function, and weld strength ratio. Simulation results show that during the cold-welding process, a few disordered atoms/defects in the jointing area rearrange themselves and transform into a face-centered cubic crystalline structure. With an increase in contact between the two NWs, dislocations gradually form on the (111) slip plane and then on a twin plane, leading to an increase in the lateral deformation of 4-nm-wide NWs. The effect of structural instability increases with decreasing NW width, making the alignment of the two NWs more difficult. The elongation ability of the welded NWs increases with increasing NW width. Smaller NWs have better weld strength.

  2. Optical chirality of achiral three-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Romanov, Sergei G.

    2017-04-01

    Extrinsic optical chirality in a form of the asymmetric transmission of circularly polarized light at the oblique light incidence has been observed in three-dimensional opal photonic crystals assembled from monodisperse polymer spheres in the closely packed face-centered-cubic lattice. This effect has been assigned to the translation-rotation symmetry of the lattice. The cross-polarization conversion of the circularly polarized light and the related asymmetry of the transmission of the inverted circularly polarized light have been demonstrated.

  3. Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles.

    PubMed

    Jeon, Yoon Tae; Moon, Je Yong; Lee, Gang Ho; Park, Jeunghee; Chang, Yongmin

    2006-01-26

    We report the first magnetic study of pure and metastable hexagonal close-packed (hcp) Ni nanoparticles (sample 1). We also produced stable face-centered cubic (fcc) Ni nanoparticles, as mixtures with the hcp Ni nanoparticles (samples 2 and 3). We compared the magnetic properties of the hcp Ni nanoparticles with those of the fcc Ni nanoparticles by observing the evolution of magnetic properties from those of the hcp Ni nanoparticles to those of the fcc Ni nanoparticles as the number of fcc Ni nanoparticles increased from sample 1 to sample 3. The blocking temperature (T(B)) of the hcp Ni nanoparticles is approximately 12 K for particle diameters ranging between 8.5 and 18 nm, whereas those of the fcc Ni nanoparticles are 250 and 270 K for average particle diameters of 18 and 26 nm, respectively. The hcp Ni nanoparticles seem to be antiferromagnetic for T < T(B) and paramagnetic for T > T(B). This is very different from the fcc Ni nanoparticles, which are ferromagnetic for T < T(B) and superparamagnetic for T > T(B). This unusual magnetic state of the metastable hcp Ni nanoparticles is likely related to their increased bond distance (2.665 angstroms), compared to that (2.499 angstroms) of the stable fcc Ni nanoparticles.

  4. Structure, rheology and shear alignment of Pluronic block copolymer mixtures.

    PubMed

    Newby, Gemma E; Hamley, Ian W; King, Stephen M; Martin, Christopher M; Terrill, Nicholas J

    2009-01-01

    The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.

  5. The iron-nickel-phosphorus system: Effects on the distribution of trace elements during the evolution of iron meteorites

    NASA Astrophysics Data System (ADS)

    Corrigan, Catherine M.; Chabot, Nancy L.; McCoy, Timothy J.; McDonough, William F.; Watson, Heather C.; Saslow, Sarah A.; Ash, Richard D.

    2009-05-01

    To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems. Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element's natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.

  6. Effects of Au content on the structure and magnetic properties of L1{sub 0}-FePt nanoparticles synthesized by the sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang; Institute of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013; Jiang, Yuhong

    2014-07-01

    (FePt){sub 100−x}Au{sub x} (x=0, 5, 10, and 20) nanoparticles were synthesized by the sol–gel method, and effects of Au content on the structural and magnetic properties of samples were investigated. Au doping reduced the phase transition temperature from face-centered cubic (FCC) to face-centered tetragonal (FCT) structure. In addition, additive Au promotes the chemical ordering of L1{sub 0} FePt NPs and increases the grain size of L1{sub 0} FePt NPs. When Au content increased from 0 to 10 at%, the coercivity (H{sub c}) increased due to the increase in degree of ordering S and grain size of L1{sub 0} FePt NPs.more » By increasing the Au content to 20 at%, H{sub c} decreased. - Graphical abstract: (FePt){sub 100}Au{sub 0} NPs are the coexistence of FCT and FCC phases. However, no hints of FCC phase were found for the (FePt){sub 100−x}Au{sub x} NPs (x=5, 10 and 20), which indicates that addition of gold greatly promotes the FCC to FCT phase transition. - Highlights: • (FePt){sub 100−x}Au{sub x} (x=0, 5, 10 and 20) nanoparticles (NPs) were synthesized. • Au addition promotes the chemical ordering of L1{sub 0} FePt NPs. • Au addition reduces ordering temperature of L1{sub 0} FePt NPs from FCC to FCT phase. • (FePt){sub 90}Au{sub 10} NPs show a high coercivity of 9585 Oe at room temperature.« less

  7. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-01

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  8. Structural, mechanical, and magnetic properties of ferrite-austenite mixture in evaporated 304 stainless steel thin films

    NASA Astrophysics Data System (ADS)

    Merakeb, Noureddine; Messai, Amel; Djelloul, Abdelkader; Ayesh, Ahmad I.

    2015-11-01

    In this paper, we investigate the structure, composition, magnetic, and mechanical properties of stainless steel thin films formed by thermal evaporation technique. These thin films reveal novel structural and physical properties where they were found to consist of nanocrystals that are ~90 % body-centred cubic crystal structure which holds ferromagnetic properties (α-phase), and ~10 % face-centred cubic crystal structure which is paramagnetic at room temperature (γ-phase). The presence of the above phases was quantified by X-ray diffraction, transmission electron microscopy, and conversion electron Mössbauer spectroscopy. The magnetic properties were evaluated by a superconducting quantum interference device magnetometer, and they confirmed the dual-phase crystal structure of the stainless thin films, where the presence of γ-phase reduced the magnetization of the produced thin films. In addition, the fabricated stainless steel thin films did not contain micro-cracks, and they exhibit a tensile stress of about 1.7 GPa, hardness of 7.5 GPa, and elastic modulus of 104 GPa.

  9. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatarenko, V.A.; Tsysman, C.L.; Oltarzhevskaya, Y.T.

    1994-12-31

    The calculations in a majority of previous works for the fulleride (AqC{sub 60}) crystals were performed within the framework of the rigid-lattice model, neglecting the distoration relaxation of the host fullerene (C{sub 60}) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distoration field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. This paper seeks to find a functional relationmore » between the amplitudes of the doping-induced structure-distortion waves and of statistic concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method. In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the statistic inherent reorientation and/or displacements of the solvent molecules from the average-lattice sites as well as on the lattice parameter a of the elastically-anysotropic cubic C{sub 60} crystal are taken into account.« less

  10. Phase conversion from hexagonal CuS(y)Se(1-y) to cubic Cu(2-x)S(y)Se(1-y): composition variation, morphology evolution, optical tuning, and solar cell applications.

    PubMed

    Xu, Jun; Yang, Xia; Yang, Qingdan; Zhang, Wenjun; Lee, Chun-Sing

    2014-09-24

    In this work, we report a simple and low-temperature approach for the controllable synthesis of ternary Cu-S-Se alloys featuring tunable crystal structures, compositions, morphologies, and optical properties. Hexagonal CuS(y)Se(1-y) nanoplates and face centered cubic (fcc) Cu(2-x)S(y)Se(1-y) single-crystal-like stacked nanoplate assemblies are synthesized, and their phase conversion mechanism is well investigated. It is found that both copper content and chalcogen composition (S/Se atomic ratio) of the Cu-S-Se alloys are tunable during the phase conversion process. Formation of the unique single-crystal-like stacked nanoplate assemblies is resulted from oriented stacking coupled with the Ostwald ripening effect. Remarkably, optical tuning for continuous red shifts of both the band-gap absorption and the near-infrared localized surface plasmon resonance are achieved. Furthermore, the novel Cu-S-Se alloys are utilized for the first time as highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells (QDSSCs), showing outstanding electrocatalytic activity for polysulfide electrolyte regeneration and yielding a 135% enhancement in power conversion efficiency (PCE) as compared to the noble metal Pt counter electrode.

  11. Macroscopic and bulk-controlled elastic modes in an interaction of interstitial alcali metal cations within a face-centered cubic crystalline fullerine

    NASA Technical Reports Server (NTRS)

    Tatarenko, Valentine A.; Tsysman, Constantin L.; Oltarzhevskaya, Yelena T.

    1995-01-01

    The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method(*). In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the 'average-lattice' sites' as well as on the lattice parameter a of a elastically-anysotropic 'cubic' C-60 crystal are taken into account.

  12. Structural transitions in electron beam deposited Co-carbonyl suspended nanowires at high electrical current densities.

    PubMed

    Gazzadi, Gian Carlo; Frabboni, Stefano

    2015-01-01

    Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed.

  13. Crystal structure of the new A2SnTa6X18 (A = K, Rb, Cs; X = Cl, Br) cluster compounds

    NASA Astrophysics Data System (ADS)

    Lemoine, P.; Wilmet, M.; Malaman, B.; Paofai, S.; Dumait, N.; Cordier, S.

    2018-01-01

    The crystal structure of the new cluster compounds A2SnTa6X18 (with A = K, Rb, Cs, and X = Cl, Br) was determined by using single-crystal and powder X-ray diffraction, and 119Sn Mössbauer spectroscopy. Those compounds crystallize in the Cs2EuNb6Br18-type structure of space group R 3 ̅. This type of structure is built up on discrete edge-bridged [M6Xi12Xa6]4- cluster units arranged according to a pseudo face-centered cubic stacking, where the octahedral and tetrahedral vacancies are fully occupied by divalent tin cations and monovalent alkaline cations, respectively. The tin cations influence on the halogen matrix and the electronic effects on the cluster units in the Cs2EuNb6Br18-type structure are discussed by comparison with isotype compounds. From those analyses, the ionic radius of Sn2+ in coordination number VI is estimated to be 1.14(1) Å. Finally, K2SnTa6Br18 might be considered as a new example of compound containing a quite bare stannous ion (5 s2 configuration).

  14. Tailoring characteristic thermal stability of Ni-Au binary nanocrystals via structure and composition engineering: theoretical insights into structural evolution and atomic inter-diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bangquan; Wang, Hailong; Xing, Guozhong

    We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs.more » The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.« less

  15. Atomistic Simulations of Surface Cross-Slip Nucleation in Face-Centered Cubic Nickel and Copper (Postprint)

    DTIC Science & Technology

    2013-02-15

    molecular dynamics code, LAMMPS [9], developed at Sandia National Laboratory. The simulation cell is a rectangular parallelepiped, with the z-axis...with assigned energies within LAMMPs of greater than 4.42 eV (Ni) or 3.52 eV (Cu) (the energy of atoms in the stacking fault region), the partial...molecular dynamics code LAMMPS , which was developed at Sandia National Laboratory by Dr. Steve Plimpton and co-workers. This work was supported by the

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, A., E-mail: perumal@iitg.ernet.in

    We report systematic investigations of structural, vibrational, resonance and magnetic properties of nanoscale NiO powders prepared by ball milling process under different milling speeds for 30 hours of milling. Structural properties revealed that both pure NiO and as-milled NiO powders exhibit face centered cubic structure, but average crystallite size decreases to around 11 nm along with significant increase in strain with increasing milling speed. Vibrational properties show the enhancement in the intensity of one-phonon longitudinal optical (LO) band and disappearance of two-magnon band due to size reduction. In addition, two-phonon LO band exhibits red shift due to size-induced phonon confinementmore » effect and surface relaxation. Pure NiO powder exhibit antiferromagnetic nature, which transforms into induced ferromagnetic after size reduction. The average magnetization at room temperature increases with decreasing the crystallite size and a maximum moment of 0.016 μ{sub B}/f.u. at 12 kOe applied field and coercivity of 170 Oe were obtained for 30 hours milled NiO powders at 600 rotation per minute milling speed. The change in the magnetic properties is also supported by the vibrational properties. Thermomagnetization measurements at high temperature reveal a well-defined magnetic phase transition at high temperature (T{sub C}) around 780 K due to induced ferromagnetic phase. Electron paramagnetic resonance (EPR) studies reveal a good agreement between the EPR results and magnetic properties. The observed results are described on the basis of crystallite size variation, defect density, large strain, oxidation/reduction of Ni and interaction between uncompensated surfaces and particle core with lattice expansion. The obtained results suggest that nanoscale NiO powders with high T{sub C} and moderate magnetic moment at room temperature with cubic structure would be useful to expedite for spintronic devices.« less

  17. Extracting grain-orientation-dependent data from in situ time-of-flight neutron diffraction. I. Inverse pole figures

    DOE PAGES

    Stoica, Grigoreta M.; Stoica, Alexandru Dan; An, Ke; ...

    2014-11-28

    The problem of calculating the inverse pole figure (IPF) is analyzed from the perspective of the application of time-of flight neutron diffraction toin situmonitoring of the thermomechanical behavior of engineering materials. On the basis of a quasi-Monte Carlo (QMC) method, a consistent set of grain orientations is generated and used to compute the weighting factors for IPF normalization. The weighting factors are instrument dependent and were calculated for the engineering materials diffractometer VULCAN (Spallation Neutron Source, Oak Ridge National Laboratory). The QMC method is applied to face-centered cubic structures and can be easily extended to other crystallographic symmetries. Examples includemore » 316LN stainless steelin situloaded in tension at room temperature and an Al–2%Mg alloy, substantially deformed by cold rolling and in situannealed up to 653 K.« less

  18. Intermixed adatom and surface-bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111).

    PubMed

    Ouyang, Runhai; Yan, Jiawei; Jensen, Palle S; Ascic, Erhad; Gan, Shiyu; Tanner, David; Mao, Bingwei; Niu, Li; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Reimers, Jeffrey R; Ulstrup, Jens

    2015-04-07

    In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium.

    PubMed

    Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao

    2017-12-01

    The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.

  20. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Zheng, Haibing; Shuai, Maobing; Li, Yao; Yang, Yang; Sun, Tao

    2017-07-01

    The coupling between structural phase transformations and dislocations induces challenges in understanding the deformation behavior of metallic cerium at the nanoscale. In the present work, we elucidate the underlying mechanism of cerium under ultra-precision diamond cutting by means of molecular dynamics modeling and simulations. The molecular dynamics model of diamond cutting of cerium is established by assigning empirical potentials to describe atomic interactions and evaluating properties of two face-centered cubic cerium phases. Subsequent molecular dynamics simulations reveal that dislocation slip dominates the plastic deformation of cerium under the cutting process. In addition, the analysis based on atomic radial distribution functions demonstrates that there are trivial phase transformations from the γ-Ce to the δ-Ce occurred in both machined surface and formed chip. Following investigations on machining parameter dependence reveal the optimal machining conditions for achieving high quality of machined surface of cerium.

  1. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion

    PubMed Central

    Wu, Wenqian; Song, Min; Ni, Song; Wang, Jingshi; Liu, Yong; Liu, Bin; Liao, Xiaozhou

    2017-01-01

    An equiatomic FeCoCrNi high-entropy alloy with a face-centered cubic structure was fabricated by a powder metallurgy route, and then processed by high-pressure torsion. Detailed microscopy investigations revealed that grain refinement from coarse grains to nanocrystalline grains occurred mainly via concurrent nanoband (NB) subdivision and deformation twinning. NB–NB, twin–NB and twin–twin interactions contributed to the deformation process. The twin–twin interactions resulted in severe lattice distortion and accumulation of high densities of dislocations in the interaction areas. With increasing strain, NB subdivision and interactions between primary twins and inclined secondary stacking faults (SFs)/nanotwins occurred. Secondary nanotwins divided the primary twins into many equiaxed parts, leading to further grain refinement. The interactions between secondary SFs/nanotwins associated with the presence of Shockley partials and primary twins also transformed the primary twin boundaries into incoherent high-angle grain boundaries. PMID:28429759

  2. Effects of Rhenium Addition on the Temporal Evolution of the Nanostructure and Chemistry of a Model Ni-Cr-Al Superalloy. 1; Experimental Observations

    NASA Technical Reports Server (NTRS)

    Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2006-01-01

    The temporal evolution of the nanostructure and chemistry of a model Ni-8.5 at.% Cr-10 at. % Al alloy, with the addition of 2 at.% Re, aged at 1073 K from 0.25 to 264 h, was studied. Transmission electron microscopy and atom-probe tomography were used to measure the number density and mean radius of the gamma prime (L1(sub 2) structure)-precipitates and the chemistry of the gamma prime-precipitates and the gamma (face-centered cubic)-matrix, including the partitioning behavior of all alloying elements between the gamma- and gamma prime-phases and the segregation behavior at gamma/gamma prime interfaces. The precipitates remained spheroidal for an aging time of up to 264 h and, unlike commercial nickel-based superalloys containing Re, there was not confined (nonmonotonic) Re segregation at the gamma/gamma prime interfaces.

  3. Friction surfaced Stellite6 coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less

  4. Synthesis of NiAu alloy and core-shell nanoparticles in water-in-oil microemulsions

    NASA Astrophysics Data System (ADS)

    Chiu, Hsin-Kai; Chiang, I.-Chen; Chen, Dong-Hwang

    2009-07-01

    NiAu alloy nanoparticles with various Ni/Au molar ratios were synthesized by the hydrazine reduction of nickel chloride and hydrogen tetrachloroaurate in the microemulsion system. They had a face-centered cubic structure and a mean diameter of 6-13 nm, decreasing with increasing Au content. As Au nanoparticles did, they showed a characteristic absorption peak at about 520 nm but the intensity decreased with increasing Ni content. Also, they were nearly superparamagnetic, although the magnetization decreased significantly with increasing Au content. Under an external magnetic field, they could be self-organized into the parallel lines. In addition, the core-shell nanoparticles, Ni3Au1@Au, were prepared by the Au coating on the surface of Ni3Au1 alloy nanoparticles. By increasing the hydrogen tetrachloroaurate concentration for Au coating, the thickness of Au shells could be raised and led to an enhanced and red-shifted surface plasmon absorption.

  5. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  6. Role of local assembly in the hierarchical crystallization of associating colloidal hard hemispheres

    NASA Astrophysics Data System (ADS)

    Lei, Qun-li; Hadinoto, Kunn; Ni, Ran

    2017-10-01

    Hierarchical self-assembly consisting of local associations of simple building blocks for the formation of complex structures widely exists in nature, while the essential role of local assembly remains unknown. In this work, by using computer simulations, we study a simple model system consisting of associating colloidal hemispheres crystallizing into face-centered-cubic crystals comprised of spherical dimers of hemispheres, focusing on the effect of dimer formation on the hierarchical crystallization. We found that besides assisting the crystal nucleation because of increasing the symmetry of building blocks, the association between hemispheres can also induce both reentrant melting and reentrant crystallization depending on the range of interaction. Especially when the interaction is highly sticky, we observe a novel reentrant crystallization of identical crystals, which melt only in a certain temperature range. This offers another axis in fabricating responsive crystalline materials by tuning the fluctuation of local association.

  7. Ab-initio calculations on melting of thorium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, D., E-mail: debojyoti@barc.gov.in; Sahoo, B. D.; Joshi, K. D.

    2016-05-23

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a{sub 0}){sup 3} and (1.02a{sub 0}){sup 3} and (1.04a{sub 0}){sup 3} increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a{sub 0} = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures asmore » melting point. The melting point of 2100 K is close to the experimental value of 2023 K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.« less

  8. Cluster Chemistry in Electron-Poor Ae-Pt-Cd Systems (Ae=Ca, Sr, Ba): (Sr,Ba)Pt2Cd4, Ca6Pt8Cd16, and Its Known Antitype Er6Pd16Sb8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Saroj L.; Gulo, Fakhili; Corbett, John D.

    Three new ternary polar intermetallic compounds, cubic Ca6Pt8Cd16, and tetragonal (Sr, Ba)Pt2Cd4 have been discovered during explorations of the Ae–Pt–Cd systems. Cubic Ca6Pt8Cd16 (Fm-3m, Z = 4, a = 13.513(1) Å) contains a 3D array of separate Cd8 tetrahedral stars (TS) that are both face capped along the axes and diagonally bridged by Pt atoms to generate the 3D anionic network Cd8[Pt(1)]6/2[Pt(2)]4/8. The complementary cationic surface of the cell consists of a face-centered cube of Pt(3)@Ca6 octahedra. This structure is an ordered ternary variant of Sc11Ir4 (Sc6Ir8Sc16), a stuffed version of the close relative Na6Au7Cd16, and a network inverse ofmore » the recent Er6Sb8Pd16 (compare Ca6Pt8Cd16). The three groups of elements each occur in only one structural version. The new AePt2Cd4, Ae = Sr, Ba, are tetragonal (P42/mnm,Z = 2, a ≈ 8.30 Å, c ≈ 4.47 Å) and contain chains of edge-sharing Cd4 tetrahedra along c that are bridged by four-bonded Ba/Sr. LMTO-ASA and ICOHP calculation results and comparisons show that the major bonding (Hamilton) populations in Ca6Pt8Cd16 and Er6Sb8Pd16 come from polar Pt–Cd and Pd–Sb interactions, that Pt exhibits larger relativistic contributions than Pd, that characteristic size and orbital differences are most evident for Sb 5s, Pt8, and Pd16, and that some terms remain incomparable, Ca–Cd versus Er–Pd.« less

  9. Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys

    DOE PAGES

    Troparevsky, M. Claudia; Morris, James R.; Daene, Markus; ...

    2015-09-03

    High-entropy alloys constitute a new class of materials that provide an excellent combination of strength, ductility, thermal stability, and oxidation resistance. Although they have attracted extensive attention due to their potential applications, little is known about why these compounds are stable or how to predict which combination of elements will form a single phase. Here, we present a review of the latest research done on these alloys focusing on the theoretical models devised during the last decade. We discuss semiempirical methods based on the Hume-Rothery rules and stability criteria based on enthalpies of mixing and size mismatch. To provide insightsmore » into the electronic and magnetic properties of high-entropy alloys, we show the results of first-principles calculations of the electronic structure of the disordered solid-solution phase based on both Korringa Kohn Rostoker coherent potential approximation and large supercell models of example face-centered cubic and body-centered cubic systems. Furthermore, we discuss in detail a model based on enthalpy considerations that can predict which elemental combinations are most likely to form a single-phase high-entropy alloy. The enthalpies are evaluated via first-principles high-throughput density functional theory calculations of the energies of formation of binary compounds, and therefore it requires no experimental or empirically derived input. Finally, the model correctly accounts for the specific combinations of metallic elements that are known to form single-phase alloys while rejecting similar combinations that have been tried and shown not to be single phase.« less

  10. Interplay of Transport and Morphology in Nanostructured Ion-Containing Polymers

    NASA Astrophysics Data System (ADS)

    Park, Moon Jeong

    The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community to develop innovative ways to improve energy storage and find more efficient methods of transporting the energy. Polymers containing charged species that show high ionic conductivity and good mechanical integrity are the essential components of these energy storage and transport systems. In this talk, first, I will present a fundamental understanding of the thermodynamics and transport in ion-containing block copolymers with a focus on the structure-property relationships. Tailoring the intermolecular interactions between the polymer matrix and the embedded charges appeared to be vital for controlling the transport properties. Particularly, the achievement of well-defined self-assembled morphologies with three-dimensional symmetries has proven to facilitate fast ion transport by constructing less tortuous ion-conducting pathways. Examples of attained morphologies include disorder, lamellae, gyroid, Fddd, hexagonal cylinder, body-centered cubic, face-centered cubic, and A15 phases. Second, various strategies for accessing high cation transference number as well as improved ionic conductivity from ionic-containing polymers are enclosed; (1) the inclusion of terminal ionic units as a new means to control the nanoscale morphologies and the transport efficiency of block copolymer electrolytes and (2) the addition of zwitterions that offered a polar medium close to water, and accordingly increased the charge density and ionic conductivity. The obtained knowledge on polymer electrolytes could be used in a wide range of emerging nanotechnologies such as fuel cells, lithium batteries, and electro-active actuators.

  11. Theory of freezing in simple systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Bagchi, B.

    The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and eachmore » other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.« less

  12. Magnetic states, correlation effects and metal-insulator transition in FCC lattice

    NASA Astrophysics Data System (ADS)

    Timirgazin, M. A.; Igoshev, P. A.; Arzhnikov, A. K.; Irkhin, V. Yu

    2016-12-01

    The ground-state magnetic phase diagram (including collinear and spiral states) of the single-band Hubbard model for the face-centered cubic lattice and related metal-insulator transition (MIT) are investigated within the slave-boson approach by Kotliar and Ruckenstein. The correlation-induced electron spectrum narrowing and a comparison with a generalized Hartree-Fock approximation allow one to estimate the strength of correlation effects. This, as well as the MIT scenario, depends dramatically on the ratio of the next-nearest and nearest electron hopping integrals {{t}\\prime}/t . In contrast with metallic state, possessing substantial band narrowing, insulator one is only weakly correlated. The magnetic (Slater) scenario of MIT is found to be superior over the Mott one. Unlike simple and body-centered cubic lattices, MIT is the first order transition (discontinuous) for most {{t}\\prime}/t . The insulator state is type-II or type-III antiferromagnet, and the metallic state is spin-spiral, collinear antiferromagnet or paramagnet depending on {{t}\\prime}/t . The picture of magnetic ordering is compared with that in the standard localized-electron (Heisenberg) model.

  13. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE PAGES

    Rao, J. C.; Diao, H. Y.; Ocelík, V.; ...

    2017-03-27

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  14. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, J. C.; Diao, H. Y.; Ocelík, V.

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selle, J E

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussedmore » in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.« less

  16. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE PAGES

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.; ...

    2017-10-27

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  17. Measurement of Body-Centered-Cubic Aluminum at 475 GPa [Observation of Body-Centered-Cubic Aluminum at 475 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsin, D. N.; Fratanduono, D. E.; Rygg, J. R.

    Nanosecond in situ x-ray diffraction and simultaneous velocimetry measurements were used to determine the crystal structure and pressure, respectively, of ramp compressed aluminum at stress states between 111 and 475 GPa. The solid-solid Al phase transformations, fcc-hcp and hcp-bcc, are observed at 216 ± 9 GPa and 321 ± 12 GPa, respectively, with the bcc phase persisting to 475 GPa. Here, this is the first in situ observation of the high-pressure bcc phase of Al. High-pressure texture of the hcp and bcc phases suggests close-packed or nearly close-packed lattice planes remain parallel through both transformations.

  18. Analysis of pulsed-neutron powder diffraction patterns of the icosahedral quasicrystals Pd3Siu and AlCuLiMg (three alloys) as twinned cubic crystals with large units.

    PubMed Central

    Pauling, L

    1991-01-01

    The low-Q peaks on three pulsed-neutron powder patterns (total, U differential, and Pd differential) of the icosahedral quasicrystal Pd3SiU have been indexed on the basis of an assumed cubic structure of the crystals that by icosahedral twinning form the quasicrystal. The primitive unit cube is found to have edge length 56.20 A and to contain approximately 12,100 atoms. Similar analyses of pulsed-neutron patterns of Al55Cu10Li35, Al55Cu10Li30Mg5, and Al510Cu125Li235Mg130 give values of the cube edge length 58.3, 58.5, and 58.4 A, respectively, with approximately 11,650 atoms in the unit cube. It is suggested that the unit contains eight complexes in the beta-W positions, plus some small interstitial groups of atoms, with each complex consisting of a centered icosahedron of 13 clusters, each of 116 atoms with the icosahedral structure found in the body-centered cubic crystal Mg32(Al,Zn)49. PMID:11607201

  19. Analysis of pulsed-neutron powder diffraction patterns of the icosahedral quasicrystals Pd3Siu and AlCuLiMg (three alloys) as twinned cubic crystals with large units.

    PubMed

    Pauling, L

    1991-08-01

    The low-Q peaks on three pulsed-neutron powder patterns (total, U differential, and Pd differential) of the icosahedral quasicrystal Pd3SiU have been indexed on the basis of an assumed cubic structure of the crystals that by icosahedral twinning form the quasicrystal. The primitive unit cube is found to have edge length 56.20 A and to contain approximately 12,100 atoms. Similar analyses of pulsed-neutron patterns of Al55Cu10Li35, Al55Cu10Li30Mg5, and Al510Cu125Li235Mg130 give values of the cube edge length 58.3, 58.5, and 58.4 A, respectively, with approximately 11,650 atoms in the unit cube. It is suggested that the unit contains eight complexes in the beta-W positions, plus some small interstitial groups of atoms, with each complex consisting of a centered icosahedron of 13 clusters, each of 116 atoms with the icosahedral structure found in the body-centered cubic crystal Mg32(Al,Zn)49.

  20. High- and low-Am RE inclusion phases in a U-Np-Pu-Am-Zr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn E.; Madden, James W.; O'Holleran, Thomas P.

    2015-03-01

    Structural, microstructural, and microchemical data were collected from rare-earth inclusions in an as-cast U-Pu-Zr alloy with ~3 at% Am, 2% Np, and 9% rare-earth elements (La, Ce, Pr, and Nd). Two RE phases with different concentrations of Am were identified. The composition of high-Am RE inclusions is ~2-5 at% La, 15-20 % Ce, 5-10% Pr, 25-45% Nd, 1% Np, 5-10% Pu, and 10-20% Am. Some areas also have O, although this does not appear to be an essential part of the high-Am RE phase. The inclusions have a face-centered cubic structure with a lattice parameter a ~ 0.54 nm. Themore » composition of the only low-Am RE inclusion studied in detail is ~~35-40 at% O, 40-45 % Nd, 1-2% Zr, 4-5% La, 9-10% Ce, and 6-7% Pr. This inclusion is an oxide with a crystal structure similar to the room-temperature structure of Nd 2O 3. Microstructural features suggest that oxidation occurred during casting, and that early crystallization of high-temperature oxides led to formation of two distinct RE phases.« less

  1. Structural stability and energetics of grain boundary triple junctions in face centered cubic materials

    NASA Astrophysics Data System (ADS)

    Adlakha, I.; Solanki, K. N.

    2015-03-01

    We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs.

  2. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    PubMed Central

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  3. Photonic band gap templating using optical interference lithography

    NASA Astrophysics Data System (ADS)

    Chan, Timothy Y. M.; Toader, Ovidiu; John, Sajeev

    2005-04-01

    We describe the properties of three families of inversion-symmetric, large photonic band-gap (PBG) template architectures defined by iso-intensity surfaces in four beam laser interference patterns. These templates can be fabricated by optical interference (holographic) lithography in a suitable polymer photo-resist. PBG materials can be synthesized from these templates using two stages of infiltration and inversion, first with silica and second with silicon. By considering point and space group symmetries to produce laser interference patterns with the smallest possible irreducible Brillouin zones, we obtain laser beam intensities, directions, and polarizations which generate a diamond-like (fcc) crystal, a novel body-centered cubic (bcc) architecture, and a simple-cubic (sc) structure. We obtain laser beam parameters that maximize the intensity contrasts of the interference patterns. This optimizes the robustness of the holographic lithography to inhomogeneity in the polymer photo-resist. When the optimized iso-intensity surface defines a silicon to air boundary (dielectric contrast of 11.9 to 1), the fcc, bcc, and sc crystals have PBG to center frequency ratios of 25%, 21%, and 11%, respectively. A full PBG forms for the diamond-like crystal when the refractive index contrast exceeds 1.97 to 1. We illustrate a noninversion symmetric PBG architecture that interpolates between a simple fcc structure and a diamond network structure. This crystal exhibits two distinct and complete photonic band gaps. We also describe a generalized class of tetragonal photonic crystals that interpolate between and extrapolate beyond the diamond-like crystal and the optimized bcc crystal. We demonstrate the extent to which the resulting PBG materials are robust against perturbations to the laser beam amplitudes and polarizations, and template inhomogeneity. The body centered cubic structure exhibits the maximum robustness overall.

  4. Phase and vacancy behaviour of hard "slanted" cubes

    NASA Astrophysics Data System (ADS)

    van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.

    2017-09-01

    We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the "slant" angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.

  5. Multiscale structural changes of atomic order in severely deformed industrial aluminum

    NASA Astrophysics Data System (ADS)

    Samoilenko, Z. A.; Ivakhnenko, N. N.; Pushenko, E. I.; Pashinskaya, E. G.; Varyukhin, V. N.

    2016-02-01

    The regularities of multiscale structural changes in the atomic order of the aluminum alloy AD-1 after a severe cold plastic deformation by conventional rolling in smooth rolls or in rolls with relief recesses favorable for shear deformation have been investigated. It has been found that there are four types of structural fractions that differ in scale and perfection of atomic order: crystallographic planes with a long-range order; nanoscale fragments of the planes ( D = 100-300 Å) with an incipient long-range order; smaller groups of atoms ( D = 20-30 Å) of amorphized structure; and the least ordered structural fraction of intercluster medium, keeping only a short-range atomic order (2-3 interatomic distances, 10 Å). The presence of diffuse halo bands in the region of intense Debye lines indicates phase transitions of the order → disorder type with the formation of one to three groups of amorphous clusters with the dominance, in the nanometer scale, of the atomic order characteristic of the family of planes (111), (220), and (311) of crystalline aluminum. We have found a dynamic phase transition with the changing crystallographic order of aluminum, with the matrix structure of a face-centered cubic (FCC) lattice, in the form of nanosized local groups of atoms, that is, the deformation clusters of aluminum with a simple cubic K6 lattice. In the case of conventional rolling, the development of large clusters 50-500 Å in size is observed; however, in the use of rolls with relief recesses, the difference in the sizes of the clusters is one half as much: 50-250 Å. Based on the analysis of the integrated intensity of incoherent X-ray scattering by the samples, we have elucidated the nature of the lowest measured density for the sample subjected to conventional rolling, which consists in the volume concentration of disorderly arranged atoms, the highest of the compared structures, which indicates the formation therein of the greatest amount of fluctuation "voids."

  6. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    NASA Astrophysics Data System (ADS)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} <111> in the bcc crystal system and the {111} <110> slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  7. Mechanical Behaviour of Conventional Materials at Experimental Conditions of Deep Drawing Technological Process

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Pashkouleva, D.; Kavardzhikov, V.

    2012-09-01

    The paper deals with experimental investigations on the mechanical behaviour of body-centred-cubic (BCC) and face-centred-cubic (FCC)-conventionally structured sheet metalic-metalic materials under stress-strain conditions of a deep drawing process determined by a coefficient close to the limiting one for Steel 08 and punch diameter of 50 mm. The mechanical characteristics of the investigated materials are identified by one-dimensional tension tests. The materials' responses, as results of identical loading conditions, are described by the change of blank sizes and characteristics of the forming processes. The chosen deformation path ensures obtaining a qualitative steel piece and leads to failures of aluminium and brass blanks. The reported results could be useful for investigations and predictions of the mechanical responses of such type metallic structures applying microscopic instrumented observations and numerical simulations.

  8. An Example of Body-Centered Cubic Crystal Structure: The Atomium in Brussels as an Educative Tool for Introductory Materials Chemistry

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2012-01-01

    When students are introduced to the ways in which atoms are arranged in crystal structures, transposing the textbook illustrations into three-dimensional structures is difficult for some of them. To facilitate this transition, this article describes an approach to the study of the structure of solids through a well-known monument, the Atomium in…

  9. Load Deflection of Dow Corning SE 1700 Simple Cubic Direct Ink Write Materials: Effect of Thickness and Filament Spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Ward; Pearson, Mark A.; Metz, Tom R.

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW) in a simple cubic (SC) configuration. The filament diameter was 250 μm. Structures consisting of 4, 8, or 12 layers were fabricated with center-to-center filament spacing (“road width” (RW)) of 475, 500, 525, 550, or 575 μm. Three compressive load-unload cycles to 2000 kPa were performed on four separate areas of each sample; three samples of each thickness and filament spacing were tested. Geometry-dependent buckling of the SC structure was evident. At a given strain during the third loading phase, stress varied inversely with porosity.more » At strains of 25% and higher, the stress varied inversely with the number of layers (i.e., thickness); however, the relationship between stress and number of layers was more complex at lower strains. Intra-and inter-sample variability of the load deflection response was higher for thinner and less porous structures.« less

  10. The electric field of a uniformly charged cubic shell

    NASA Astrophysics Data System (ADS)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  11. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Caruntu, Daniela; Rostamzadeh, Taha; Costanzo, Tommaso; Salemizadeh Parizi, Saman; Caruntu, Gabriel

    2015-07-01

    The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent in which the nanocrystals were dispersed. This approach provides an excellent platform for the synthesis of other titanium-based perovskite colloidal nanocrystals with controlled chemical composition, surface structure and morphology and for their assembly into complex architectures, therefore opening the door for the design of novel mesoscale functional materials/nanocomposites with potential applications in energy conversion, data storage and the biomedical field.The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent in which the nanocrystals were dispersed. This approach provides an excellent platform for the synthesis of other titanium-based perovskite colloidal nanocrystals with controlled chemical composition, surface structure and morphology and for their assembly into complex architectures, therefore opening the door for the design of novel mesoscale functional materials/nanocomposites with potential applications in energy conversion, data storage and the biomedical field. Electronic supplementary information (ESI) available: FE-SEM image of 12 nm BaTiO3 nanocubes deposited onto a silicon wafer (Fig. SI1), the X-ray diffraction pattern of a superlattice structure formed by monodisperse 10 nm BaTiO3 cuboidal nanocrystals (Fig. SI2) and TEM images of a BaTiO3 superparticle (Fig. SI3). See DOI: 10.1039/c5nr00737b

  12. Optimization of chemical displacement deposition of copper on porous silicon.

    PubMed

    Bandarenka, Hanna; Redko, Sergey; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2012-11-01

    Copper (II) sulfate was used as a source of copper to achieve uniform distribution of Cu particles deposited on porous silicon. Layers of the porous silicon were formed by electrochemical anodization of Si wafers in a mixture of HF, C3H7OH and deionized water. The well-known chemical displacement technique was modified to grow the copper particles of specific sizes. SEM and XRD analysis revealed that the outer surface of the porous silicon was covered with copper particles of the crystal orientation inherited from the planes of porous silicon skeleton. The copper crystals were found to have the cubic face centering elementary cell. In addition, the traces of Cu2O cubic primitive crystalline phases were identified. The dimensions of Cu particles were determined by the Feret's analysis of the SEM images. The sizes of the particles varied widely from a few to hundreds of nanometers. A phenomenological model of copper deposition was proposed.

  13. Preparation and X-Ray diffraction studies of curium hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, J.K.; Maire, R.G.

    Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a/sub 0/ = 0.3769(8) nm and c/sub 0/ = 0.6732(12) nm. These products are considere to be CmH/sub 3//sup -//sub 8/ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a/sub 0/ = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH /SUB 2-x/more » (B.M. Bansal and D. Damien. Inorg. Nucl. Chem. Lett. 6 603, 1970). The present results established a continuation of typical heavy trivalent lanthanidelike behavior of the transuranium actinide-hydrogen systems through curium.« less

  14. Preparation and X-ray diffraction studies of curium hydrides

    NASA Astrophysics Data System (ADS)

    Gibson, J. K.; Haire, R. G.

    1985-10-01

    Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a0 = 0.3769(8) nm and c0 = 0.6732(12) nm. These products are considered to be CmH 3-δ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a0 = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH 2+ x (B. M. Bansal and D. Damien, Inorg. Nucl. Chem. Lett., 6, 603, 1970). The present results established a continuation of typical heavy trivalent lanthanide-like behavior of the transuranium actinide-hydrogen systems through curium.

  15. Synthesis, structural, dielectric and magnetic properties of polyol assisted copper ferrite nano particles

    NASA Astrophysics Data System (ADS)

    Pavithradevi, S.; Suriyanarayanan, N.; Boobalan, T.

    2017-03-01

    Nanocrystalline copper ferrite CuFe2O4 is synthesized by co-precipitation method in ethylene glycol as chelating agent, using sodium Hydroxide as precipitator at pH 8. The as synthesized CuFe2O4 is annealed at temperatures of 350 °C, 700 °C, and 1050 °C for 2 h respectively. The thermal analysis of the synthesized sample is done by TG technique. It is shown that at 260 °C ethylene glycol has evaporated completely and after 715 °C, spinel ferrite is formed with a cubic structure. The calculated lattice parameters are in agreement with the reported values. FTIR spectra of CuFe2O4 nano particles are as synthesized and annealed at 1050 °C and recorded between 400 cm-1 and 4000 cm-1. It shows that when the temperature increases ethylene glycol gradually evaporates. Finally, nano crystalline single phase spinel ferrite is obtained. X-ray diffraction (XRD) and electron diffraction (EDS) studies show that the sample is indexed as the face centered cubic spinel structure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicated that the particles are flaky and spherical with the crystallite size in the range of 25-34 nm. From the dielectric studies, the dielectric constant decreases as the frequency increases. Low value of dielectric loss at higher frequencies suggests that the material is suitable for high frequency applications. AC conductivity increases with frequency. The magnetic properties of the samples are measured using a vibrating sample magnetometer (VSM) at room temperature, which shows that the sample exhibited a typical super paramagnetic behavior at low temperature. The saturation magnetization, remanant magnetism, and coercivity increases with applied field.

  16. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance

    PubMed Central

    Fu, Ming; Xiong, Wei

    2018-01-01

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility–brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10−4 mm3·N−1·m−1, which makes it a promising coating for use in abrasive environments. PMID:29473872

  17. Comparative study of crystallization process in metallic melts using ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Debela, Tekalign T.; Wang, X. D.; Cao, Q. P.; Zhang, D. X.; Jiang, J. Z.

    2017-05-01

    The crystallization process of liquid metals is studied using ab initio molecular dynamics simulations. The evolution of short-range order during quenching in Pb and Zn liquids is compared with body-centered cubic (bcc) Nb and V, and hexagonal closed-packed (hcp) Mg. We found that the fraction and type of the short-range order depends on the system under consideration, in which the icosahedral symmetry seems to dominate in the body-centered cubic metals. Although the local atomic structures in stable liquids are similar, liquid hcp-like Zn, bcc-like Nb and V can be deeply supercooled far below its melting point before crystallization while the supercooled temperature range in liquid Pb is limited. Further investigations into the nucleation process reveal the process of polymorph selection. In the body-centered cubic systems, the polymorph selection occurs in the supercooled state before the nucleation is initiated, while in the closed-packed systems it starts at the time of onset of crystallization. Atoms with bcc-like lattices in all studied supercooled liquids are always detected before the polymorph selection. It is also found that the bond orientational ordering is strongly correlated with the crystallization process in supercooled Zn and Pb liquids.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.

    High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.

  19. Antiferromagnetism and phase diagram in ammoniated alkali fulleride salts

    PubMed

    Takenobu; Muro; Iwasa; Mitani

    2000-07-10

    Intercalation of neutral ammonia molecules into trivalent face-centered-cubic (fcc) fulleride superconductors induces a dramatic change in electronic states. Monoammoniated alkali fulleride salts (NH3)K3-xRbxC60, forming an isostructural orthorhombic series, undergo an antiferromagnetic transition, which was found by the electron spin resonance experiment. The Neel temperature first increases with the interfullerene spacing and then decreases for (NH3)Rb3C60, forming a maximum at 76 K. This feature is explained by the generalized phase diagram of Mott-Hubbard transition with an antiferromagnetic ground state.

  20. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    PubMed Central

    Nkosi, Steven S; Mwakikunga, Bonex W; Sideras-Haddad, Elias; Forbes, Andrew

    2012-01-01

    Highly crystalline nanospherical iron–platinum systems were produced by 248 nm laser irradiation of a liquid precursor at different laser fluences, ranging from 100–375 mJ/cm2. The influence of laser intensity on particle size, iron composition, and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron–platinum nanoalloys through Fe(III) acetylacetonate and Pt(II) acetylacetonate. Fe(II) and Pt(I) acetylacetone decomposed into Fe0 and Pt0 nanoparticles. We found that the (001) diffraction peak shifted linearly to a lower angle, with the last peak shifting in opposition to the others. This caused the face-centered cubic L10 structure to change its composition according to laser fluence. The nanostructures were shown to contain iron and platinum only by energy-dispersive spectroscopy at several spots. The response of these iron–platinum nanoparticles to infrared depends on their stoichiometric composition, which is controlled by laser fluence. PMID:24198494

  1. Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells.

    PubMed

    Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S

    2006-05-25

    In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.

  2. Crystallization of Hard Sphere Colloids in Microgravity: Results of the Colloidal Disorder-Order Transition, CDOT on USML-2. Experiment 33

    NASA Technical Reports Server (NTRS)

    Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.

    1998-01-01

    Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.

  3. Praseodymium hydroxide and oxide nanorods and Au/Pr6O11 nanorod catalysts for CO oxidation.

    PubMed

    Huang, P X; Wu, F; Zhu, B L; Li, G R; Wang, Y L; Gao, X P; Zhu, H Y; Yan, T Y; Huang, W P; Zhang, S M; Song, D Y

    2006-02-02

    Praseodymium hydroxide nanorods were synthesized by a two-step approach: First, metallic praseodymium was used to form praseodymium chloride, which reacted subsequently with KOH solution to produce praseodymium hydroxide. In the second step the hydroxide was treated with a concentrated alkaline solution at 180 degrees C for 45 h, yielding nanorods as shown by the scanning and transmission electron microscopy images. The results of X-ray diffraction and energy-dispersive X-ray spectroscopy experiments indicate that these nanorods are pure praseodymium hydroxide with a hexagonal structure, which can be converted into praseodymium oxide (Pr6O11) nanorods of a face-centered cubic structure after calcination at 600 degrees C for 2 h in air. Gold was loaded on the praseodymium oxide nanorods using HAuCl4 as the gold source, and NaBH4 was used to reduce the gold species to metallic nanoparticles with sizes of 8-12 nm on the nanorod surface. These Au/Pr6O11 nanorods exhibit superior catalytic activity for CO oxidation.

  4. Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework.

    PubMed

    Cliffe, Matthew J; Castillo-Martínez, Elizabeth; Wu, Yue; Lee, Jeongjae; Forse, Alexander C; Firth, Francesca C N; Moghadam, Peyman Z; Fairen-Jimenez, David; Gaultois, Michael W; Hill, Joshua A; Magdysyuk, Oxana V; Slater, Ben; Goodwin, Andrew L; Grey, Clare P

    2017-04-19

    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf 12 O 8 (OH) 14 ), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.

  5. Effect of Gd3+ Ions on the Thermal Behavior, Optical, Electrical and Magnetic Properties of PbS Thin Films

    NASA Astrophysics Data System (ADS)

    Ravishankar, S.; Balu, A. R.; Nagarethinam, V. S.

    2018-02-01

    This paper reports the effect of Gd doping concentration on the thermal behavior, structural, morphological, optical, electrical and magnetic properties of PbS thin films. Gd doping concentration in PbS was varied as 0 wt.%, 1 wt.%, 2 wt.%, 3 wt.% and 4 wt.%, respectively. Thermogravimetric-Differential Thermal Analysis curves confirm that both the undoped and doped films become well crystallized above 354°C and 342°C, respectively. X-ray diffraction studies confirm that all the films exhibit face-centered cubic crystal structure with a strong (2 0 0) preferential growth. Undoped films exhibit triangular-shaped grains which modify to small cuboids with Gd doping. Energy dispersive x-ray spectra confirm the presence of Gd in the doped films. Transmission electron microscopy images confirm the presence of nanosized grains for both the undoped and doped films. The doped films showed increased transparency and improved magnetic behaviour. The results obtained confirm that Gd3+, a rare earth ion, strongly influences the physical properties of PbS thin films to a large extent.

  6. Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less

  7. Equations of state of anhydrous AlF{sub 3} and AlI{sub 3}: Modeling of extreme condition halide chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrou, Elissaios, E-mail: stavrou1@llnl.gov; Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350, Livermore, California 94550; Zaug, Joseph M., E-mail: zaug1@llnl.gov

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF{sub 3}) and separately, aluminum triiodide (AlI{sub 3}) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF{sub 3} and AlI{sub 3} were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less

  8. Synthesis of Crooked Gold Nanocrystals by Electrochemical Technique

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Jung; Chiu, Pin-Hsiang; Chen, Ming-Da; Meen, Teen-Hang

    2005-07-01

    In this article, we demonstrate the synthesis of crooked gold nanocrystals (CGNCs) by an electrochemical technique using micelle templates formed by two surfactants with different amounts of isopropanol solvent, the primary surfactant being hexadecyltrimethylammonium bromide (C16TABr) and the cosurfactant being tetradodecylammonium bromide (TC12ABr). To investigate the influence of isopropanol solvent on the CGNCs, the amount of isopropanol was varied in the range from 50 to 300 μL. It was found that the aspect ratios (γ) of CGNCs were in the range from 1.06 to 1.46, and the UV--vis optical absorption measurement revealed a pronounced redshift of the surface plasmon band from 532 to 560 nm. The CGNCs were composed of many large gold grains with small gold nuclei, and it was determined that several grains are present within each of the CGNCs using a dark-field transmission electron microscopy (TEM) image. It is suggested that the CGNCs have a polycrystalline structure. The CGNCs have been determined to be pure gold with a face-centered cubic (fcc) structure by electron diffraction (ED) analysis.

  9. Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry

    DOE PAGES

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...

    2015-06-04

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less

  10. Unusual behavior of uranium dioxide at high magnetic fields. Part I

    NASA Astrophysics Data System (ADS)

    Gofryk, K.; Jaime, M.; Zapf, V.; Harrison, N.; Saul, A.; Radtke, G.; Lashley, J. C.; Salamon, M.; Andersson, A. D.; Stanek, C.; Durakiewicz, T.; Smith, J. L.

    UO2 is a Mott-Hubbard insulator with well-localized 5 f-electrons and its crystal structure is the face-centered-cubic fluorite. It experiences a first-order antiferromagnetic phase transition at 30.8 K to a non-collinear antiferromagnetic structure that remains a topic of debate. It is believed that the first order nature of the transition results from the competition between the exchange interaction and the Jahn-Teller distortion of oxygen atoms. Despite extensive experimental and theoretical efforts the nature of the competing degrees of freedom and their couplings (such as spin-phonon coupling) are still unclear. Here we present results of our extensive thermodynamic investigations, on well-characterized and oriented single crystals of UO2, focusing on magnetization M(T,H) measurements in DC and pulsed magnetic fields to up 65 T at the NHMFL. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division. The NHMFL Pulsed Field Facility is supported by the NSF, the U.S. D.O.E., and the State of Florida through NSF cooperative Grant DMR.

  11. Occurrence of rhombic prisms in some structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyman, H.

    1976-02-01

    An ideal rhombic prism is defined as two regular trigonal prisms sharing a square face. In terms of such rhombic prisms, the structures of CrB and ..cap alpha..-PdCl/sub 2/, U/sub 3/Si/sub 2/ and Au/sub 3/Zn, and CoCa/sub 3/ and PdS are easily described. A network of rhombic prisms, with cubic symmetry, is also used to describe the structures of CoAs/sub 3/, Sc(OH)/sub 3/, WAl/sub 12/, and NaMn/sub 7/O/sub 12/.

  12. Face-centred cubic to body-centred cubic phase transformation under [1 0 0] tensile loading

    NASA Astrophysics Data System (ADS)

    Xie, Hongxian; Yu, Jiayun; Yu, Tao; Yin, Fuxing

    2018-06-01

    Molecular dynamics simulation was used to verify a speculation of the existence of a certain face-centred cubic (FCC) to body-centred cubic (BCC) phase transformation pathway. Four FCC metals, Ni, Cu, Au and Ag, were stretched along the [1 0 0] direction at various strain rates and temperatures. Under high strain rate and low temperature, and beyond the elastic limit, the bifurcation of the FCC phase occurred with sudden contraction along one lateral direction and expansion along the other lateral direction. When the lattice constant along the expansion direction converged with that of the stretched direction, the FCC phase transformed into an unstressed BCC phase. By reducing the strain rate or increasing the temperature, dislocation or 'momentum-induced melting' mechanisms began to control the plastic deformation of the FCC metals, respectively.

  13. Monolithic photonic crystals created by partial coalescence of core-shell particles.

    PubMed

    Lee, Joon-Seok; Lim, Che Ho; Yang, Seung-Man; Kim, Shin-Hyun

    2014-03-11

    Colloidal crystals and their derivatives have been intensively studied and developed during the past two decades due to their unique photonic band gap properties. However, complex fabrication procedures and low mechanical stability severely limit their practical uses. Here, we report stable photonic structures created by using colloidal building blocks composed of an inorganic core and an organic shell. The core-shell particles are convectively assembled into an opal structure, which is then subjected to thermal annealing. During the heat treatment, the inorganic cores, which are insensitive to heat, retain their regular arrangement in a face-centered cubic lattice, while the organic shells are partially fused with their neighbors; this forms a monolithic structure with high mechanical stability. The interparticle distance and therefore stop band position are precisely controlled by the annealing time; the distance decreases and the stop band blue shifts during the annealing. The composite films can be further treated to give a high contrast in the refractive index. The inorganic cores are selectively removed from the composite by wet etching, thereby providing an organic film containing regular arrays of air cavities. The high refractive index contrast of the porous structure gives rise to pronounced structural colors and high reflectivity at the stop band position.

  14. High pressure phase transitions in the rare earth metal erbium to 151 GPa.

    PubMed

    Samudrala, Gopi K; Thomas, Sarah A; Montgomery, Jeffrey M; Vohra, Yogesh K

    2011-08-10

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence hcp → Sm type → dhcp → distorted fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  15. High pressure phase transitions in the rare earth metal erbium to 151 GPa

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Thomas, Sarah A.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2011-08-01

    High pressure x-ray diffraction studies have been performed on the heavy rare earth metal erbium (Er) in a diamond anvil cell at room temperature to a pressure of 151 GPa and Er has been compressed to 40% of its initial volume. The rare earth crystal structure sequence {hcp} \\to {Sm}~ {type} \\to {dhcp} \\to {distorted} fcc (hcp: hexagonal close packed; fcc: face centered cubic; dhcp: double hcp) is observed in Er below 58 GPa. We have carried out Rietveld refinement of crystal structures in the pressure range between 58 GPa and 151 GPa. We have examined various crystal structures that have been proposed for the distorted fcc (dfcc) phase and the post-dfcc phase in rare earth metals. We find that the hexagonal hR 24 structure is the best fit between 58 and 118 GPa. Above 118 GPa, a structural transformation from hR 24 phase to a monoclinic C 2/m phase is observed with a volume change of - 1.9%. We have also established a clear trend for the pressure at which a post-dfcc phase is formed in rare earth metals and show that there is a monotonic increase in this pressure with the filling of 4f shell.

  16. Synthesis and structural study of Ti-rich Mg-Ti hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, Kohta; Kim, Hyunjeong; Sakaki, Kouji

    2014-02-26

    Mg xTi 1-x (x = 0.15, 0.25, 0.35) alloys were synthesized by means of ball milling. Under a hydrogen pressure of 8 MPa at 423 K these Mg–Ti alloys formed a hydride phase with a face centered cubic (FCC) structure. The hydride for x = 0.25 consisted of single Mg 0.25Ti 0.75H 1.62 FCC phase but TiH 2 and MgH 2 phases were also formed in the hydrides for x = 0.15 and 0.35, respectively. X-ray diffraction patterns and the atomic pair distribution function indicated that numbers of stacking faults were introduced. There was no sign of segregation between Mgmore » and Ti in Mg 0.25Ti 0.75H 1.62. Electronic structure of Mg 0.25Ti 0.75H 1.62 was different from those of MgH 2 and TiH 2, which was demonstrated by 1H nuclear magnetic resonance. This strongly suggested that stable Mg–Ti hydride phase was formed in the metal composition of Mg 0.25Ti 0.75 without disproportion into MgH 2 and TiH 2.« less

  17. Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys

    NASA Astrophysics Data System (ADS)

    De Clercq, A.; Giorgio, S.; Mottet, C.

    2016-02-01

    The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.

  18. Electrodeposited Ni-Based Magnetic Mesoporous Films as Smart Surfaces for Atomic Layer Deposition: An "All-Chemical" Deposition Approach toward 3D Nanoengineered Composite Layers.

    PubMed

    Zhang, Jin; Quintana, Alberto; Menéndez, Enric; Coll, Mariona; Pellicer, Eva; Sort, Jordi

    2018-05-02

    Mesoporous Ni and Cu-Ni (Cu 20 Ni 80 and Cu 45 Ni 55 in at. %) films, showing a three-dimensional (3D) porous structure and tunable magnetic properties, are prepared by electrodeposition from aqueous surfactant solutions using micelles of P-123 triblock copolymer as structure-directing entities. Pores between 5 and 30 nm and dissimilar space arrangements (continuous interconnected networks, circular pores, corrugated mesophases) are obtained depending on the synthetic conditions. X-ray diffraction studies reveal that the Cu-Ni films have crystallized in the face-centered cubic structure, are textured, and exhibit certain degree of phase separation, particularly those with a higher Cu content. Atomic layer deposition (ALD) is used to conformally coat the mesopores of Cu 20 Ni 80 film with amorphous Al 2 O 3 , rendering multiphase "nano-in-meso" metal-ceramic composites without compromising the ferromagnetic response of the metallic scaffold. From a technological viewpoint, these 3D nanoengineered composite films could be appealing for applications like magnetically actuated micro/nanoelectromechanical systems (MEMS/NEMS), voltage-driven magneto-electric devices, capacitors, or as protective coatings with superior strength and tribological performance.

  19. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation

    NASA Astrophysics Data System (ADS)

    Hegde, Ganesh; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy; Klimeck, Gerhard

    2014-03-01

    Semi-empirical Tight Binding (TB) is known to be a scalable and accurate atomistic representation for electron transport for realistically extended nano-scaled semiconductor devices that might contain millions of atoms. In this paper, an environment-aware and transferable TB model suitable for electronic structure and transport simulations in technologically relevant metals, metallic alloys, metal nanostructures, and metallic interface systems are described. Part I of this paper describes the development and validation of the new TB model. The new model incorporates intra-atomic diagonal and off-diagonal elements for implicit self-consistency and greater transferability across bonding environments. The dependence of the on-site energies on strain has been obtained by appealing to the Moments Theorem that links closed electron paths in the system to energy moments of angular momentum resolved local density of states obtained ab initio. The model matches self-consistent density functional theory electronic structure results for bulk face centered cubic metals with and without strain, metallic alloys, metallic interfaces, and metallic nanostructures with high accuracy and can be used in predictive electronic structure and transport problems in metallic systems at realistically extended length scales.

  20. Structural, mechanical and tribocorrosion behaviour in artificial seawater of CrN/AlN nano-multilayer coatings on F690 steel substrates

    NASA Astrophysics Data System (ADS)

    Ma, Fuliang; Li, Jinlong; Zeng, Zhixiang; Gao, Yimin

    2018-01-01

    The CrN monolayer and CrN/AlN nano-multilayer coating were successfully fabricated by reactive magnetron sputtering on F690 steel. The results show that CrN monolayer exhibits a face centered cubic crystalline structure with (111) preferred orientation and CrN/AlN nano-multilayer coating has a (200) preferred orientation. This design of the nano-multilayer can interrupt the continuous growth of columnar crystals making the coating denser. The CrN/AlN nano-multilayer coating has a better wear resistance and corrosion resistance compared with the CrN monolayer coating. The tribocorrosion tests reveal that the evolution of potential and current density of F690 steel and CrN monolayer or CrN/AlN nano-multilayer coating see an opposite trend under the simultaneous action of wear and corrosion, which is attributed to that F690 steel is a non-passive material and PVD coatings is a passive material. The nano-multilayer structure has a good ;Pore Sealing Effect;, and the corrosive solution is difficult to pass through the coating to corrode the substrate.

  1. Structural properties and optical characterization of flower-like Mg doped NiO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaedini, Ghazaleh, E-mail: jiny-ghazaleh@yahoo.com; Tasirin, Siti Masrinda; Aminayi, Payam

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX)more » confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.« less

  2. Evolution of Excited-State Dynamics in Periodic Au 28, Au 36, Au 44, and Au 52 Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Meng; Zeng, Chenjie; Sfeir, Matthew Y.

    An understanding of the correlation between the atomic structure and optical properties of gold nanoclusters is essential for exploration of their functionalities and applications involving light harvesting and electron transfer. We report the femto-nanosecond excited state dynamics of a periodic series of face-centered cubic (FCC) gold nanoclusters (including Au 28, Au 36, Au 44, and Au 52), which exhibit a set of unique features compared with other similar sized clusters. Molecular-like ultrafast S n → S 1 internal conversions (i.e., radiationless electronic transitions) are observed in the relaxation dynamics of FCC periodic series. Excited-state dynamics with near-HOMO–LUMO gap excitation lacksmore » ultrafast decay component, and only the structural relaxation dominates in the dynamical process, which proves the absence of core–shell relaxation. Interestingly, both the relaxation of the hot carriers and the band-edge carrier recombination become slower as the size increases. The evolution in excited-state properties of this FCC series offers new insight into the structure-dependent properties of metal nanoclusters, which will benefit their optical energy harvesting and photocatalytic applications.« less

  3. Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6].mH2O

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.

    2016-05-01

    Molecular magnets, based on Prussian blue analogues, Fe1.5[Cr(CN)6].mH2O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (TC) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (CrIII-C≡N-FeII) to low spin (LS) FeII ions (CrIII-N≡C-FeII). Moreover, the TC and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.

  4. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  5. Evolution of Excited-State Dynamics in Periodic Au 28, Au 36, Au 44, and Au 52 Nanoclusters

    DOE PAGES

    Zhou, Meng; Zeng, Chenjie; Sfeir, Matthew Y.; ...

    2017-08-10

    An understanding of the correlation between the atomic structure and optical properties of gold nanoclusters is essential for exploration of their functionalities and applications involving light harvesting and electron transfer. We report the femto-nanosecond excited state dynamics of a periodic series of face-centered cubic (FCC) gold nanoclusters (including Au 28, Au 36, Au 44, and Au 52), which exhibit a set of unique features compared with other similar sized clusters. Molecular-like ultrafast S n → S 1 internal conversions (i.e., radiationless electronic transitions) are observed in the relaxation dynamics of FCC periodic series. Excited-state dynamics with near-HOMO–LUMO gap excitation lacksmore » ultrafast decay component, and only the structural relaxation dominates in the dynamical process, which proves the absence of core–shell relaxation. Interestingly, both the relaxation of the hot carriers and the band-edge carrier recombination become slower as the size increases. The evolution in excited-state properties of this FCC series offers new insight into the structure-dependent properties of metal nanoclusters, which will benefit their optical energy harvesting and photocatalytic applications.« less

  6. Study of the transformation sequence on a high temperature martensitic transformation Ni-Mn-Ga-Co shape memory alloy

    NASA Astrophysics Data System (ADS)

    Recarte, V.; Pérez-Landazábal, J. I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.

    2014-11-01

    Ni-Mn-Ga alloys show the highest magnetic-field-induced strain among ferromagnetic shape memory alloys. A great effort is being done in this alloy system to increase the application temperature range. In this sense, the addition of small amounts of Cobalt to NiMnGa alloys has been proved to increase the MT temperatures through the increase of the electron per atom relation (e/a). In this work, the analysis of the crystal structure of the present phases and the phase transformations has been performed on a Ni-Mn-Ga-Co alloy by neutron diffraction measurements from 10 K to 673 K. The study has been completed by means of calorimetric and magnetic measurements. On cooling the alloy undergoes a martensitic transformation from a face centered cubic structure to a nonmodulated tetragonal martensite. The appearance of intermartensite transformations can be disregarded in the whole temperature range below the martensitic transformation. However, a jump in the unit-cell volume of the tetragonal martensite has been observed at 325 K. Since this temperature is close to the Curie temperature of the alloy both, the structural and magnetic contributions are taken into account to explain the results.

  7. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE PAGES

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.; ...

    2018-06-08

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  8. Polytypism in the ground state structure of the Lennard-Jonesium.

    PubMed

    Pártay, Lívia B; Ortner, Christoph; Bartók, Albert P; Pickard, Chris J; Csányi, Gábor

    2017-07-26

    We present a systematic study of the stability of nineteen different periodic structures using the finite range Lennard-Jones potential model discussing the effects of pressure, potential truncation, cutoff distance and Lennard-Jones exponents. The structures considered are the hexagonal close packed (hcp), face centred cubic (fcc) and seventeen other polytype stacking sequences, such as dhcp and 9R. We found that at certain pressure and cutoff distance values, neither fcc nor hcp is the ground state structure as previously documented, but different polytypic sequences. This behaviour shows a strong dependence on the way the tail of the potential is truncated.

  9. The topology of fullerenes

    PubMed Central

    Schwerdtfeger, Peter; Wirz, Lukas N; Avery, James

    2015-01-01

    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems. WIREs Comput Mol Sci 2015, 5:96–145. doi: 10.1002/wcms.1207 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:25678935

  10. Packing of nonoverlapping cubic particles: Computational algorithms and microstructural characteristics

    NASA Astrophysics Data System (ADS)

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-12-01

    Packing of cubic particles arises in a variety of problems, ranging from biological materials to colloids and the fabrication of new types of porous materials with controlled morphology. The properties of such packings may also be relevant to problems involving suspensions of cubic zeolites, precipitation of salt crystals during CO2 sequestration in rock, and intrusion of fresh water in aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We present a detailed simulation and microstructural characterization of packings of nonoverlapping monodisperse cubic particles, following up on our preliminary results [H. Malmir et al., Sci. Rep. 6, 35024 (2016), 10.1038/srep35024]. A modification of the random sequential addition (RSA) algorithm has been developed to generate such packings, and a variety of microstructural descriptors, including the radial distribution function, the face-normal correlation function, two-point probability and cluster functions, the lineal-path function, the pore-size distribution function, and surface-surface and surface-void correlation functions, have been computed, along with the specific surface and mean chord length of the packings. The results indicate the existence of both spatial and orientational long-range order as the the packing density increases. The maximum packing fraction achievable with the RSA method is about 0.57, which represents the limit for a structure similar to liquid crystals.

  11. Theoretical investigation of the structural, electronic, dynamical and thermal properties of YSn3 and YPb3

    NASA Astrophysics Data System (ADS)

    Kılıçarslan, Aynur; Salmankurt, Bahadır; Duman, Sıtkı

    2017-02-01

    We have performed an ab initio study of the structural, electronic, dynamical and thermal properties of the cubic AuCu3-type YSn3 and YPb3 by using the density functional theory, plane-wave pseudopotential method and a linear response scheme, within the generalized gradient approximation. An analysis of the electronic density of states at the Fermi level is found to be governed by the p states of Sn and Pb atoms with some contributions from the d states of Y atoms. The obtained phonon figures indicate that these material are dynamically stable in the cubic structure. Due to the metallic behavior of the compounds, the calculated zone-center phonon modes are triply degenerate. Also the thermal properties have been examined.

  12. Principles determining the structure of high-pressure forms of metals: The structures of cesium(IV) and cesium(V)

    PubMed Central

    Pauling, Linus

    1989-01-01

    Consideration of the relation between bond length and bond number and the average atomic volume for different ways of packing atoms leads to the conclusion that the average ligancy of atoms in a metal should increase when a phase change occurs on increasing the pressure. Minimum volume for each value of the ligancy results from triangular coordination polyhedra (with triangular faces), such as the icosahedron and the Friauf polyhedron. Electron transfer may permit atoms of an element to assume different ligancies. Application of these principles to Cs(IV) and Cs(V), which were previously assigned structures with ligancy 8 and 6, respectively, has led to the assignment to Cs(IV) of a primitive cubic unit cell with a = 16.11 Å and with about 122 atoms in the cube and to Cs(V) of a primitive cubic unit cell resembling that of Mg32(Al,Zn)49, with a = 16.97 Å and with 162 atoms in the cube. PMID:16578839

  13. Structural hierarchy as a key to complex phase selection in Al-Sm

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Zhang, F.; Sun, Y.; Nguyen, M. C.; Zhou, S. H.; Zhou, L.; Meng, F.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z. J.; Mendelev, M. I.; Wang, C. Z.; Napolitano, R. E.; Ho, K. M.

    2017-10-01

    Investigating the unknown structure of the complex cubic phase, previously observed to crystallize from melt-spun amorphous Al-10 at.% Sm alloy, we determine the structure in full site-occupancy detail, highlighting several critical structural features that govern the far-from-equilibrium phase selection pathway. Using an efficient genetic algorithm combining molecular dynamics, density functional theory, and x-ray diffraction, the structure is clearly identified as body-centered cubic I m 3 ¯m (No. 229) with ˜140 atoms per cubic unit cell and a lattice parameter of 1.4 nm. The complex structure is further refined to elucidate the detailed site occupancy, revealing full Sm occupancy on 6b sites and split Sm/Al occupancy on 16f sites. Based on the refined site occupancy associated with the experimentally observed phase, we term this phase ɛ -A l60S m11 (bcc), corresponding to the limiting situation when all 16f sites are occupied by Sm. However, it should be recognized that the range of solubility enabled by split occupancy at Sm sites is an important feature in phase selection under experimental conditions, permitting an avenue for transition with little or no chemical partitioning. Our analysis shows that the ɛ -A l60S m11 (bcc) exhibits a "3-6-6-1" first-shell packing around Sm centers on 16f sites, the same dominant motif exhibited by the undercooled liquid. The coincident motif supports the notion that liquid/glass ordering at high undercooling may give rise to topological invariants between the noncrystalline and crystalline states that provide kinetic pathways to metastable phases that are not accessible during near-equilibrium processing.

  14. Structural hierarchy as a key to complex phase selection in Al-Sm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Z.; Zhang, F.; Sun, Y.

    Investigating the unknown structure of the complex cubic phase, previously observed to crystallize from melt-spun amorphous Al–10 at.% Sm alloy, we determine the structure in full site-occupancy detail, highlighting several critical structural features that govern the far-from-equilibrium phase selection pathway. Using an efficient genetic algorithm combining molecular dynamics, density functional theory, and x-ray diffraction, the structure is clearly identified as body-centered cubic Im¯3m (No. 229) with ~140 atoms per cubic unit cell and a lattice parameter of 1.4 nm. The complex structure is further refined to elucidate the detailed site occupancy, revealing full Sm occupancy on 6b sites and splitmore » Sm/Al occupancy on 16f sites. Based on the refined site occupancy associated with the experimentally observed phase, we term this phase ε–Al 60Sm 11(bcc), corresponding to the limiting situation when all 16f sites are occupied by Sm. However, it should be recognized that the range of solubility enabled by split occupancy at Sm sites is an important feature in phase selection under experimental conditions, permitting an avenue for transition with little or no chemical partitioning. Our analysis shows that the ε–Al 60Sm 11(bcc) exhibits a “3-6-6-1” first-shell packing around Sm centers on 16f sites, the same dominant motif exhibited by the undercooled liquid. Here, the coincident motif supports the notion that liquid/glass ordering at high undercooling may give rise to topological invariants between the noncrystalline and crystalline states that provide kinetic pathways to metastable phases that are not accessible during near-equilibrium processing.« less

  15. Structural hierarchy as a key to complex phase selection in Al-Sm

    DOE PAGES

    Ye, Z.; Zhang, F.; Sun, Y.; ...

    2017-10-12

    Investigating the unknown structure of the complex cubic phase, previously observed to crystallize from melt-spun amorphous Al–10 at.% Sm alloy, we determine the structure in full site-occupancy detail, highlighting several critical structural features that govern the far-from-equilibrium phase selection pathway. Using an efficient genetic algorithm combining molecular dynamics, density functional theory, and x-ray diffraction, the structure is clearly identified as body-centered cubic Im¯3m (No. 229) with ~140 atoms per cubic unit cell and a lattice parameter of 1.4 nm. The complex structure is further refined to elucidate the detailed site occupancy, revealing full Sm occupancy on 6b sites and splitmore » Sm/Al occupancy on 16f sites. Based on the refined site occupancy associated with the experimentally observed phase, we term this phase ε–Al 60Sm 11(bcc), corresponding to the limiting situation when all 16f sites are occupied by Sm. However, it should be recognized that the range of solubility enabled by split occupancy at Sm sites is an important feature in phase selection under experimental conditions, permitting an avenue for transition with little or no chemical partitioning. Our analysis shows that the ε–Al 60Sm 11(bcc) exhibits a “3-6-6-1” first-shell packing around Sm centers on 16f sites, the same dominant motif exhibited by the undercooled liquid. Here, the coincident motif supports the notion that liquid/glass ordering at high undercooling may give rise to topological invariants between the noncrystalline and crystalline states that provide kinetic pathways to metastable phases that are not accessible during near-equilibrium processing.« less

  16. Nanovoid growth in BCC α-Fe: influences of initial void geometry

    NASA Astrophysics Data System (ADS)

    Xu, Shuozhi; Su, Yanqing

    2016-12-01

    The growth of voids has a great impact on the mechanical properties of ductile materials by altering their microstructures. Exploring the process of void growth at the nanoscale helps in understanding the dynamic fracture of metals. While some very recent studies looked into the effects of the initial geometry of an elliptic void on the plastic deformation of face-centered cubic metals, a systematic study of the initial void ellipticity and orientation angle in body-centered cubic (BCC) metals is still lacking. In this paper, large scale molecular dynamics simulations with millions of atoms are conducted, investigating the void growth process during tensile loading of metallic thin films in BCC α-Fe. Our simulations elucidate the intertwined influences on void growth of the initial ellipticity and initial orientation angle of the void. It is shown that these two geometric parameters play an important role in the stress-strain response, the nucleation and evolution of defects, as well as the void size/outline evolution in α-Fe thin films. Results suggest that, together with void size, different initial void geometries should be taken into account if a continuum model is to be applied to nanoscale damage progression.

  17. Fully resolved simulations of expansion waves propagating into particle beds

    NASA Astrophysics Data System (ADS)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  18. Optimality of general lattice transformations with applications to the Bain strain in steel

    NASA Astrophysics Data System (ADS)

    Koumatos, K.; Muehlemann, A.

    2016-04-01

    This article provides a rigorous proof of a conjecture by E. C. Bain in 1924 on the optimality of the so-called Bain strain based on a criterion of least atomic movement. A general framework that explores several such optimality criteria is introduced and employed to show the existence of optimal transformations between any two Bravais lattices. A precise algorithm and a graphical user interface to determine this optimal transformation is provided. Apart from the Bain conjecture concerning the transformation from face-centred cubic to body-centred cubic, applications include the face-centred cubic to body-centred tetragonal transition as well as the transformation between two triclinic phases of terephthalic acid.

  19. Optimality of general lattice transformations with applications to the Bain strain in steel

    PubMed Central

    Koumatos, K.

    2016-01-01

    This article provides a rigorous proof of a conjecture by E. C. Bain in 1924 on the optimality of the so-called Bain strain based on a criterion of least atomic movement. A general framework that explores several such optimality criteria is introduced and employed to show the existence of optimal transformations between any two Bravais lattices. A precise algorithm and a graphical user interface to determine this optimal transformation is provided. Apart from the Bain conjecture concerning the transformation from face-centred cubic to body-centred cubic, applications include the face-centred cubic to body-centred tetragonal transition as well as the transformation between two triclinic phases of terephthalic acid. PMID:27274692

  20. Chemical Insights into the Design and Development of Face-Centered Cubic Ruthenium Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Li, Wei-Zhen; Liu, Jin-Xun; Gu, Jun; Zhou, Wu; Yao, Si-Yu; Si, Rui; Guo, Yu; Su, Hai-Yan; Yan, Chun-Hua; Li, Wei-Xue; Zhang, Ya-Wen; Ma, Ding

    2017-02-15

    Ruthenium is a promising low-temperature catalyst for Fischer-Tropsch synthesis (FTS). However, its scarcity and modest specific activity limit its widespread industrialization. We demonstrate here a strategy for tuning the crystal phase of catalysts to expose denser and active sites for a higher mass-specific activity. Density functional theory calculations show that upon CO dissociation there are a number of open facets with modest barrier available on the face-centered cubic (fcc) Ru but only a few step edges with a lower barrier on conventional hexagonal-closest packed (hcp) Ru. Guided by theoretical calculations, water-dispersible fcc Ru catalysts containing abundant open facets were synthesized and showed an unprecedented mass-specific activity in the aqueous-phase FTS, 37.8 mol CO ·mol Ru -1 ·h -1 at 433 K. The mass-specific activity of the fcc Ru catalysts with an average size of 6.8 nm is about three times larger than the previous best hcp catalyst with a smaller size of 1.9 nm and a higher specific surface area. The origin of the higher mass-specific activity of the fcc Ru catalysts is identified experimentally from the 2 orders of magnitude higher density of the active sites, despite its slightly higher apparent barrier. Experimental results are in excellent agreement with prediction of theory. The great influence of the crystal phases on site distribution and their intrinsic activities revealed here provides a rationale design of catalysts for higher mass-specific activity without decrease of the particle size.

  1. Icosahedral and decagonal quasicrystals of intermetallic compounds are multiple twins of cubic or orthorhombic crystals composed of very large atomic complexes with icosahedral point-group symmetry in cubic close packing or body-centered packing: Structure of decagonal Al6Pd

    PubMed Central

    Pauling, Linus

    1989-01-01

    A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al6Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 Å, b = 37.6 Å, and c = 33.24 Å, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction. Images PMID:16594092

  2. Icosahedral and decagonal quasicrystals of intermetallic compounds are multiple twins of cubic or orthorhombic crystals composed of very large atomic complexes with icosahedral point-group symmetry in cubic close packing or body-centered packing: Structure of decagonal Al(6)Pd.

    PubMed

    Pauling, L

    1989-12-01

    A doubly icosahedral complex involves roughly spherical clusters of atoms with icosahedral point-group symmetry, which are themselves, in parallel orientation, icosahedrally packed. These complexes may form cubic crystallites; three structures of this sort have been identified. Analysis of electron diffraction photographs of the decagonal quasicrystal Al(6)Pd has led to its description as involving pentagonal twinning of an orthorhombic crystal with a = 51.6 A, b = 37.6 A, and c = 33.24 A, with about 4202 atoms in the unit, comprising two 1980-atom doubly icosahedral complexes, each involving icosahedral packing of 45 44-atom icosahedral complexes (at 0 0 0 and 1/2 1/2 1/2) and 242 interstitial atoms. The complexes and clusters are oriented with one of their fivefold axes in the c-axis direction.

  3. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    PubMed

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  4. 49 CFR 575.103 - Truck-camper loading.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...

  5. 49 CFR 575.103 - Truck-camper loading.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...

  6. 49 CFR 575.103 - Truck-camper loading.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...

  7. 49 CFR 575.103 - Truck-camper loading.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...

  8. 49 CFR 575.103 - Truck-camper loading.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... weight ratings and the longitudinal limits within which the center of gravity for the cargo weight rating.... (______ lbs.) of bottled gas, and ______ cubic meters (______ cubic ft.) refrigerator (or icebox with... recommends a cargo center of gravity zone that will contain the camper's center of gravity when it is...

  9. The effect of 0.025 Al-doped in Li4Ti5O12 material on the performance of half cell lithium ion battery

    NASA Astrophysics Data System (ADS)

    Priyono, Slamet; Triwibowo, Joko; Prihandoko, Bambang

    2016-02-01

    The effect of 0.025 Al-doped Li4Ti5O12 as anode material for Lithium Ion battery had been studied. The pure and 0.025 Al-doped Li4Ti5O12 were synthesized through solid state process in air atmosphere. Physical characteristics of all samples were observed by XRD, FTIR, and PSA. The XRD analysis revealed that the obtained particle was highly crystalline and had a face-centered cubic spinel structure. The XRD pattern also showed that the 0.025 Al-doped on the Li4Ti5O12 did not change crystal structure of Li4Ti5O12. FTIR analysis confirmed that the spinel structure in fingerprint region was unchanged when the structure was doped by 0.025 Al. However the doping of 0.025 Al increased particle size significantly. The electrochemical performance was studied by using cyclic voltammetry (CV) and charge-discharge (CD) curves. Electrochemical analysis showed that pure Li4Ti5O12 has higher capacity than 0.025 Al-doped Li4Ti5O12 had. But 0.025 Al-doped Li4Ti5O12 possesses a better cycling stability than pure Li4Ti5O12.

  10. Ultrahigh-density sub-10 nm nanowire array formation via surface-controlled phase separation.

    PubMed

    Tian, Yuan; Mukherjee, Pinaki; Jayaraman, Tanjore V; Xu, Zhanping; Yu, Yongsheng; Tan, Li; Sellmyer, David J; Shield, Jeffrey E

    2014-08-13

    We present simple, self-assembled, and robust fabrication of ultrahigh density cobalt nanowire arrays. The binary Co-Al and Co-Si systems phase-separate during physical vapor deposition, resulting in Co nanowire arrays with average diameter as small as 4.9 nm and nanowire density on the order of 10(16)/m(2). The nanowire diameters were controlled by moderating the surface diffusivity, which affected the lateral diffusion lengths. High resolution transmission electron microscopy reveals that the Co nanowires formed in the face-centered cubic structure. Elemental mapping showed that in both systems the nanowires consisted of Co with undetectable Al or Si and that the matrix consisted of Al with no distinguishable Co in the Co-Al system and a mixture of Si and Co in the Co-Si system. Magnetic measurements clearly indicate anisotropic behavior consistent with shape anisotropy. The dynamics of nanowire growth, simulated using an Ising model, is consistent with the experimental phase and geometry of the nanowires.

  11. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Uberuaga, Blas P.

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  12. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE PAGES

    Martínez, Enrique; Uberuaga, Blas P.

    2015-03-13

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  13. Mobility and coalescence of stacking fault tetrahedra in Cu

    PubMed Central

    Martínez, Enrique; Uberuaga, Blas P.

    2015-01-01

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs can diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects. PMID:25765711

  14. Clustering on Magnesium Surfaces - Formation and Diffusion Energies.

    PubMed

    Chu, Haijian; Huang, Hanchen; Wang, Jian

    2017-07-12

    The formation and diffusion energies of atomic clusters on Mg surfaces determine the surface roughness and formation of faulted structure, which in turn affect the mechanical deformation of Mg. This paper reports first principles density function theory (DFT) based quantum mechanics calculation results of atomic clustering on the low energy surfaces {0001} and [Formula: see text]. In parallel, molecular statics calculations serve to test the validity of two interatomic potentials and to extend the scope of the DFT studies. On a {0001} surface, a compact cluster consisting of few than three atoms energetically prefers a face-centered-cubic stacking, to serve as a nucleus of stacking fault. On a [Formula: see text], clusters of any size always prefer hexagonal-close-packed stacking. Adatom diffusion on surface [Formula: see text] is high anisotropic while isotropic on surface (0001). Three-dimensional Ehrlich-Schwoebel barriers converge as the step height is three atomic layers or thicker. Adatom diffusion along steps is via hopping mechanism, and that down steps is via exchange mechanism.

  15. Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.

    2012-06-01

    The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.

  16. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis

    NASA Astrophysics Data System (ADS)

    Basu, Shibani; Maji, Priyankar; Ganguly, Jhuma

    2016-01-01

    The present study explores that the aqueous extract of the seeds of Nyctanthes arbor-tristis (aka night jasmine) is very efficient for the synthesis of stable AgNPs from aqueous solution of AgNO3. The extract acts as both reducing (from Ag+ to Ag0) and capping agent in the aqueous phase. The constituents in extract are mainly biomolecules like carbohydrates and phenolic compounds, which are responsible for the preparation of stable AgNPs within 20 min of reaction time at 25 °C using without any severe conditions. The synthesized silver nanoparticles were characterized with UV-Visible spectroscopy, FT-IR, XRD and SEM. UV-Vis spectroscopy analysis showed peak at 420 nm, which corresponds to the surface plasmon resonance of AgNPs. XRD results showed peaks at (111), (200), (220), which confirmed the presence of AgNPs with face-centered cubic structure. The uniform spherical nature of the AgNPs and size (between 50 and 80 nm) were further confirmed by SEM analysis.

  17. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  18. Improved magnetic and electrical properties of Cu doped Fe-Ni invar alloys synthesized by chemical reduction technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajjad; Ziya, Amer Bashir; Ashiq, Muhammad Naeem; Ibrahim, Ather; Atiq, Shabbar; Ahmad, Naseeb; Shakeel, Muhammad; Khan, Muhammad Azhar

    2016-12-01

    Fe-Ni-Cu invar alloys of various compositions (Fe65Ni35-xCux, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24-40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann-Franz law.

  19. Silver Nanoparticles Synthesized Using Caesalpinia sappan Extract as Potential Novel Nanoantibiotics Against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Jun, Sang Hui; Cha, Song-Hyun; Kim, Jae-Hyun; Yoon, Minho; Cho, Seonho; Park, Youmie

    2015-08-01

    Silver nanoparticles (AgNPs) have been shown to be effective antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). In this study, AgNPs were synthesized using Caesalpinia sappan extract as a reducing agent to convert Ag+ to AgNPs. Seven stabilizers (surfactants and polymers) were added during the reduction step to increase the colloidal stability and to enhance the antibacterial activity of the AgNPs. Spherical and amorphous particles were primarily observed, with estimated diameters ranging from 30.2 to 47.5 nm. X-ray diffraction confirmed the face centered cubic structures of the AgNPs. Among the employed stabilizers, the cationic surfactant cetyltrimethylammonium bromide (CTAB) exhibited the highest antibacterial activity against 19 strains of MRSA, followed by polyvinylpyrrolidone (PVP, average molecular weight of 10,000). In contrast, the anionic surfactants sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) did not exhibit any significant antibacterial activity, suggesting that the cationic surfactant head group contributed to the higher antibacterial activity of the AgNPs against MRSA.

  20. Photochemical cleavage of metal--carbon nanocrystals and their reconstruction into met--cars clusters

    NASA Astrophysics Data System (ADS)

    Pilgrim, J. S.; Duncan, M. A.

    1994-10-01

    Titanium and zirconium metal--carbon clusters are produced by laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. In addition to the now-familiar "met-cars" stoichiometry (M8C12), larger magic number clusters are produced with near 1:1 metal--carbon ratios. The special stoichiometries observed correspond to face-centered cubic crystal fragments, with a strong preference for fragments with symmetrical x,y,z dimensions. Mass-selected photodissociation experiments are used to investigate the structural patterns and stabilities of these systems. Photodissociation of the larger "nanocrystal" clusters leads to cleavage along crystal planes, producing smaller crystals also having highly symmetric dimensions. Photoexcitation of all these crystallites, in particular the 3 × 3 × 3 species, also leads to surface reconstruction, forming the M8C12 met-cars cluster and/or the M8C13 cluster, the latter of which is assigned to a met--cars cage with an endohedral carbon atom.

  1. Extremely Large Magnetoresistance in a Topological Semimetal Candidate Pyrite PtBi2

    NASA Astrophysics Data System (ADS)

    Gao, Wenshuai; Hao, Ningning; Zheng, Fa-Wei; Ning, Wei; Wu, Min; Zhu, Xiangde; Zheng, Guolin; Zhang, Jinglei; Lu, Jianwei; Zhang, Hongwei; Xi, Chuanying; Yang, Jiyong; Du, Haifeng; Zhang, Ping; Zhang, Yuheng; Tian, Mingliang

    2017-06-01

    While pyrite-type PtBi2 with a face-centered cubic structure has been predicted to be a three-dimensional (3D) Dirac semimetal, experimental study of its physical properties remains absent. Here we report the angular-dependent magnetoresistance measurements of a PtBi2 single crystal under high magnetic fields. We observed extremely large unsaturated magnetoresistance (XMR) up to (11.2 ×106)% at T =1.8 K in a magnetic field of 33 T, which is comparable to the previously reported Dirac materials, such as WTe2 , LaSb, and NbP. The crystals exhibit an ultrahigh mobility and significant Shubnikov-de Hass quantum oscillations with a nontrivial Berry phase. The analysis of Hall resistivity indicates that the XMR can be ascribed to the nearly compensated electron and hole. Our experimental results associated with the ab initio calculations suggest that pyrite PtBi2 is a topological semimetal candidate that might provide a platform for exploring topological materials with XMR in noble metal alloys.

  2. Luminescence and antibacterial studies of silver nanoparticles using the esterases-containing latex of E. Tirucalli plant via green route

    NASA Astrophysics Data System (ADS)

    Sudheerkumar, K. H.; Dhananjaya, N.; Reddy Yadav, L. S.

    2016-04-01

    Silver nanoparticles (Ag NPs) synthesized from silver nitrate solutions using the esterase-containing latex of the E. Tirucalli plant widely found in a large region in Karnataka, India. Plant-mediated synthesis of nanoparticles is a green chemistry approach that intercom-nects nanotechnology and plant biotechnology. The effect of extract concentration, contact time, and temperature on the reaction rate and the shape of the Ag nanoparticles was investigated. The nanoparticles have been characterized by powder X-ray diffraction, UV-visible spectroscopy, photoluminescence spectroscopy and morphology by scanning electron microscope, transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. Powder X-ray diffraction patterns show that the crystal structure obtained is face-centered cubic (fcc). The morphology of the silver nanoparticle was uniform with well-distributed elliptical particles with a range from 15 to 25nm. Ag NPs exhibit significant antibacterial activity against Bacillus cereus using the agar well diffusion method.

  3. Electrochemical performance of potassium-doped wüstite nanoparticles supported on graphene as an anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Jung, Dong-Won; Jeong, Jae-Hoon; Han, Sang-Wook; Oh, Eun-Suok

    2016-05-01

    A graphene composite with potassium-doped FeO nanoparticles (K-FeO/graphene) is synthesized by the thermal diffusion of potassium into Fe2O3/graphene using polyol reduction. This is applied as anode material in lithium ion batteries in order to enhance the electrochemical performance of conventional iron oxides (hematite or magnetite). Rhombohedral Fe2O3 crystals are transformed into face-centered cubic FeO crystals, which show a broad d-spacing (5.2 Å) between their (111) crystal planes, by the calcination of potassium-added Fe2O3/graphene. Because of its structural characteristics, the K-FeO/graphene composite demonstrates an excellent discharge capacity of 1776 mA h g-1 at the 50th cycle at a current of 100 mA h g-1 with stable capacity retention. Even with the very high current density of 18.56 A g-1, its capacity remains at 851 mA h g-1 after 800 cycles.

  4. Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites.

    PubMed

    Xiao, Zewen; Meng, Weiwei; Wang, Jianbo; Yan, Yanfa

    2016-09-22

    Bismuth- or antimony-based lead-free double perovskites represented by Cs 2 AgBiBr 6 have recently been considered promising alternatives to the emerging lead-based perovskites for solar cell applications. These new perovskites belong to the Fm3‾ m space group and consist of two types of octahedra alternating in a rock-salt face-centered cubic structure. We show, by density functional theory calculations, that the stable chemical potential region for pure Cs 2 AgBiBr 6 is narrow. Ag vacancies are a shallow accepters and can easily form, leading to intrinsic p-type conductivity. Bi vacancies and Ag Bi antisites are deep acceptors and should be the dominant defects under the Br-rich growth conditions. Our results suggest that the growth of Cs 2 AgBiBr 6 under Br-poor/Bi-rich conditions is preferred for suppressing the formation of the deep defects, which is beneficial for maximizing the photovoltaic performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Icosahedral stereographic projections in three dimensions for use in dark field TEM.

    PubMed

    Bourdillon, Antony J

    2013-08-01

    Thermodynamics require that rapidly cooled crystals and quasicrystals are relatively defective. Yet, without convenient 3-dimensional indexation both at crystal poles and in diffraction planes, or Kikuchi maps, it is difficult to identify the defects by dark field transmission electron microscopy. For two phase Al6Mn, these maps are derived. They relate i-Al6Mn to the standard face centered cubic, matrix crystals. An example of their usefulness in determining interfacial characteristics is described. Indices are integral powers on an irrational number. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Metallic substrates for high temperature superconductors

    DOEpatents

    Truchan, Thomas G.; Miller, Dean J.; Goretta, Kenneth C.; Balachandran, Uthamalingam; Foley, Robert

    2002-01-01

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  7. Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales

    NASA Astrophysics Data System (ADS)

    Cui, Yi-Nan; Liu, Zhan-Li; Zhuang, Zhuo

    2013-04-01

    The operation mechanism of single cross slip multiplication (SCSM) is investigated by studying the response of one dislocation loop expanding in face-centered-cubic (FCC) single crystal using three-dimensional discrete dislocation dynamic (3D-DDD) simulation. The results show that SCSM can trigger highly correlated dislocation generation in a short time, which may shed some light on understanding the large strain burst observed experimentally. Furthermore, we find that there is a critical stress and material size for the operation of SCSM, which agrees with that required to trigger large strain burst in the compression tests of FCC micropillars.

  8. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study.

    PubMed

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-06-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.

  9. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study1

    PubMed Central

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-01-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755

  10. A first-passage scheme for determination of overall rate constants for non-diffusion-limited suspensions

    NASA Astrophysics Data System (ADS)

    Lu, Shih-Yuan; Yen, Yi-Ming

    2002-02-01

    A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.

  11. Percolation connectivity, pore size, and gas apparent permeability: Network simulations and comparison to experimental data

    NASA Astrophysics Data System (ADS)

    Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Li, T.

    2017-07-01

    We modeled single-phase gas flow through porous media using percolation networks. Gas permeability is different from liquid permeability. The latter is only related to the geometry and topology of the pore space, while the former depends on the specific gas considered and varies with gas pressure. As gas pressure decreases, four flow regimes can be distinguished as viscous flow, slip flow, transition flow, and free molecular diffusion. Here we use a published conductance model presumably capable of predicting the flow rate of an arbitrary gas through a cylindrical pipe in the four regimes. We incorporated this model into pipe network simulations. We considered 3-D simple cubic, body-centered cubic, and face-centered cubic lattices, in which we varied the pipe radius distribution and the bond coordination number. Gas flow was simulated at different gas pressures. The simulation results showed that the gas apparent permeability kapp obeys an identical scaling law in all three lattices, kapp (z-zc)β, where the exponent β depends on the width of the pipe radius distribution, z is the mean coordination number, and zc its critical value at the percolation threshold. Surprisingly, (z-zc) had a very weak effect on the ratio of the apparent gas permeability to the absolute liquid permeability, kapp/kabs, suggesting that the Klinkenberg gas slippage correction factor is nearly independent of connectivity. We constructed models of kapp and kapp/kabs based on the observed power law and tested them by comparison with published experimental data on glass beads and other materials.

  12. Discovery of a Frank-Kasper [sigma] Phase in Sphere-Forming Block Copolymer Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangwoo; Bluemle, Michael J.; Bates, Frank S.

    Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma ({sigma}) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the {sigma} phase in undiluted linear block copolymers (and certain branchedmore » dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.« less

  13. Hemispherical Anisotropic Patterns of the Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Mattesini, M.; Belonoshko, A. B.; Buforn, E.; Ramirez, M.; Simak, S. I.; Udias, A.; Mao, H.; Ahuja, R.

    2010-12-01

    It has been shown that the Earth's inner core has an axisymmetric anisotropic structure with seismic waves travelling ˜3% faster along polar paths than along equatorial directions. However, hemispherical anisotropic patterns of solid Earth's core are rather complex, and the commonly used hexagonal-close-packed (hcp) iron phase might be insufficient to account for seismological observations. We show that the data we collected are in good agreement with the presence of two anisotropically specular east and west core hemispheres. The detected travel-time anomalies can only be disclosed by a lattice preferred orientation of a body-centered-cubic iron aggregate (bcc), having a fraction of their [111] crystal axes parallel to the Earth's rotation axis. This is a compelling evidence for the presence of a body-centered-cubic Fe phase at the top 100 km of the Earth's inner core.

  14. Residual stresses and their effects on deformation

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1993-11-01

    Residual stresses induced by thermal expansion mismatch in metal-matrix composites are studied by three-dimensional (3-D) elastic-plastic finite element analyses. Typically, the stress-free state is 150 to 300 K above room temperature. The coefficient of thermal expansion of the matrix is 3 to 5 times larger than that of the ceramic inclusion, resulting in compressive stresses of order 200 MPa in the inclusions. Both compressive and tensile stresses can be found in the matrix. Since the stress may exceed the matrix yield strength near the particles, plastic flow occurs. The authors find a significant influence of this flow on the elastic and plastic properties of the composite. The calculated residual strains in TiC particles due to thermal expansion mismatch and external loads compare well with recent neutron diffraction experiments (Bourke et al.) The present work is the first reported three-dimensional analysis of spherical inclusions in different arrays (simple cubic (sc) and face-centered cubic (fcc)) that permit a study of particle interactions.

  15. The frustrated fcc antiferromagnet Ba 2 YOsO 6: Structural characterization, magnetic properties and neutron scattering studies

    DOE PAGES

    Kermarrec, E.; Marjerrison, Casey A.; Thompson, C. M.; ...

    2015-02-26

    Here we report the crystal structure, magnetization, and neutron scattering measurements on the double perovskite Ba 2 YOsO 6. The Fmmore » $$\\bar{3}$$m space group is found both at 290 K and 3.5 K with cell constants a 0=8.3541(4) Å and 8.3435(4) Å, respectively. Os 5+ (5d 3) ions occupy a nondistorted, geometrically frustrated face-centered-cubic (fcc) lattice. A Curie-Weiss temperature θ ~₋700 K suggests the presence of a large antiferromagnetic interaction and a high degree of magnetic frustration. A magnetic transition to long-range antiferromagnetic order, consistent with a type-I fcc state below T N~69 K, is revealed by magnetization, Fisher heat capacity, and elastic neutron scattering, with an ordered moment of 1.65(6) μ B on Os 5+. The ordered moment is much reduced from either the expected spin-only value of ~3 μ B or the value appropriate to 4d 3 Ru 5+ in isostructural Ba 2 YRuO 6 of 2.2(1) μ B, suggesting a role for spin-orbit coupling (SOC). Triple-axis neutron scattering measurements of the order parameter suggest an additional first-order transition at T=67.45 K, and the existence of a second-ordered state. We find time-of-flight inelastic neutron results reveal a large spin gap Δ~17 meV, unexpected for an orbitally quenched, d 3 electronic configuration. In conclusion, we discuss this in the context of the ~5 meV spin gap observed in the related Ru 5+,4d 3 cubic double perovskite Ba 2YRuO 6, and attribute the ~3 times larger gap to stronger SOC present in this heavier, 5d, osmate system.« less

  16. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations.

    PubMed

    Deng, Jiushuai; Li, Shimei; Zhou, Yuanyuan; Liang, Luyang; Zhao, Biao; Zhang, Xi; Zhang, Rui

    2018-01-01

    Core-shell flower-like composites were successfully prepared by a simple polyol method. These composites were formed by coating dual-phased (face-centered cubic [fcc] and hexagonal close-packed [hcp]) Co with amorphous CoO nanosheets. The microwave absorption properties of the flower-like Co@CoO paraffin composites with various Co@CoO amounts were then investigated. Results showed that the paraffin-based composite containing 70wt% flower-like Co@CoO displayed excellent microwave absorption properties (R E =24.74dB·GHz/mm). The minimum reflection loss of -30.4dB was obtained at 16.1GHz with a small thickness of 1.5mm, and 1.5mm bandwidth reached 4.6GHz (13.4-18GHz) below -10dB (90% microwave absorption). The excellent microwave absorption properties of flower-like Co@CoO are attributed to the synergetic effect between magnetic loss and dielectric loss, and the magnetic loss makes a main contribution to absorption. The core-shell flower-like structures with dual Co phases also contributed to microwave absorption. The amorphous CoO nanosheets were able to generate multiple reflections and exhibit scattering. In addition, the novel absorption mechanism that enhanced interfacial polarization was proposed. This enhancement resulted from the presence of interfaces between the hcp and fcc phases and between the core-shell Co@CoO composites. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Face-Sheet Quality Analysis and Thermo-Physical Property Characterization of OOA and Autoclave Panels

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.

    2012-01-01

    Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kilograms per square meters (3.1 pounds per cubic feet (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.

  18. High-resolution electron microscopy and electron energy-loss spectroscopy of giant palladium clusters

    NASA Astrophysics Data System (ADS)

    Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.

    1995-12-01

    Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 ±0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.

  19. Nanotwinned and hierarchical nanotwinned metals: a review of experimental, computational and theoretical efforts

    NASA Astrophysics Data System (ADS)

    Sun, Ligang; He, Xiaoqiao; Lu, Jian

    2018-02-01

    The recent studies on nanotwinned (NT) and hierarchical nanotwinned (HNT) face-centered cubic (FCC) metals are presented in this review. The HNT structures have been supposed as a kind of novel structure to bring about higher strength/ductility than NT counterparts in crystalline materials. We primarily focus on the recent developments of the experimental, atomistic and theoretical studies on the NT and HNT structures in the metallic materials. Some advanced bottom-up and top-down techniques for the fabrication of NT and HNT structures are introduced. The deformation induced HNT structures are available by virtue of severe plastic deformation (SPD) based techniques while the synthesis of growth HNT structures is so far almost unavailable. In addition, some representative molecular dynamics (MD) studies on the NT and HNT FCC metals unveil that the nanoscale effects such as twin spacing, grain size and plastic anisotropy greatly alter the performance of NT and HNT metals. The HNT structures may initiate unique phenomena in comparison with the NT ones. Furthermore, based on the phenomena and mechanisms revealed by experimental and MD simulation observations, a series of theoretical models have been proposed. They are effective to describe the mechanical behaviors of NT and HNT metals within the applicable scope. So far the development of manufacturing technologies of HNT structures, as well as the studies on the effects of HNT structures on the properties of metals are still in its infancy. Further exploration is required to promote the design of advanced materials.

  20. Three-Dimensional Self-Assembled Photonic Crystal Waveguide

    NASA Astrophysics Data System (ADS)

    Baek, Kang-Hyun

    Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.

  1. Composition design for Laves phase-related body-centered cubic-V solid solution alloys with large hydrogen storage capacities.

    PubMed

    Wang, H B; Wang, Q; Dong, C; Yuan, L; Xu, F; Sun, L X

    2008-03-19

    This paper analyzes the characteristics of alloy compositions with large hydrogen storage capacities in Laves phase-related body-centered cubic (bcc) solid solution alloy systems using the cluster line approach. Since a dense-packed icosahedral cluster A(6)B(7) characterizes the local structure of AB(2) Laves phases, in an A-B-C ternary system, such as Ti-Cr (Mn, Fe)-V, where A-B forms AB(2) Laves phases while A-C and B-C tend to form solid solutions, a cluster line A(6)B(7)-C is constructed by linking A(6)B(7) to C. The alloy compositions with large hydrogen storage capacities are generally located near this line and are approximately expressed with the cluster-plus-glue-atom model. The cluster line alloys (Ti(6)Cr(7))(100-x)V(x) (x = 2.5-70 at.%) exhibit different structures and hence different hydrogen storage capacities with increasing V content. The alloys (Ti(6)Cr(7))(95)V(5) and Ti(30)Cr(40)V(30) with bcc solid solution structure satisfy the cluster-plus-glue-atom model.

  2. Phase Transformation in Tantalum under Extreme Laser Deformation

    PubMed Central

    Lu, C.-H.; Hahn, E. N.; Remington, B. A.; Maddox, B. R.; Bringa, E. M.; Meyers, M. A.

    2015-01-01

    The structural and mechanical response of metals is intimately connected to phase transformations. For instance, the product of a phase transformation (martensite) is responsible for the extraordinary range of strength and toughness of steel, making it a versatile and important structural material. Although abundant in metals and alloys, the discovery of new phase transformations is not currently a common event and often requires a mix of experimentation, predictive computations, and luck. High-energy pulsed lasers enable the exploration of extreme pressures and temperatures, where such discoveries may lie. The formation of a hexagonal (omega) phase was observed in recovered monocrystalline body-centered cubic tantalum of four crystallographic orientations subjected to an extreme regime of pressure, temperature, and strain-rate. This was accomplished using high-energy pulsed lasers. The omega phase and twinning were identified by transmission electron microscopy at 70 GPa (determined by a corresponding VISAR experiment). It is proposed that the shear stresses generated by the uniaxial strain state of shock compression play an essential role in the transformation. Molecular dynamics simulations show the transformation of small nodules from body-centered cubic to a hexagonal close-packed structure under the same stress state (pressure and shear). PMID:26478106

  3. Σ 3 (111 ) grain boundary of body-centered cubic Ti-Mo and Ti-V alloys: First-principles and model calculations

    NASA Astrophysics Data System (ADS)

    Yan, Jia-Yi; Ehteshami, Hossein; Korzhavyi, Pavel A.; Borgenstam, Annika

    2017-07-01

    The energetics and atomic structures of Σ 3 [1 1 ¯0 ] (111 ) grain boundary (GB) of body-centered cubic (bcc) Ti-Mo and Ti-V alloys are investigated using density-functional-theory calculations and virtual crystal approximation. The electron density in bcc structure and the atomic displacements and excess energy of the GB are correlated to bcc-ω phase stability. Model calculations based on pairwise interplanar interactions successfully reproduce the chemical part of GB energy. The chemical GB energy can be expressed as a sum of excess pairwise interactions between bcc (111) layers, which are obtained from Gaussian elimination of the total energies of a number of periodic structures. The energy associated with the relaxation near the GB is solved by numerical minimization using the derivatives of the excess interactions. Anharmonic interlayer interactions are necessary for obtaining accurate relaxation energy and excess GB volume from model calculations. The effect of GB on vibrational spectrum is also investigated. Segregation energies of B and Y to a substitutional site on the GB plane are calculated. Preliminary results suggest that Y tends to segregate, while B tends to antisegregate.

  4. Hybrid Cu(2)O diode with orientation-controlled C(60) polycrystal.

    PubMed

    Izaki, Masanobu; Saito, Takamasa; Ohata, Tatsuya; Murata, Kazufumi; Fariza, Binti Mohamad; Sasano, Junji; Shinagawa, Tsutomu; Watase, Seiji

    2012-07-25

    We report on a hybrid diode composed of a 2.1 eV bandgap p-cupric oxide (Cu2O) semiconductor and fullerene (C60) layer with a face-centered cubic configuration. The hybrid diode has been constructed by electrodeposition of the 500 nm thick Cu2O layer in a basic aqueous solution containing a copper acetate hydrate and lactic acid followed by a vacuum evaporation of the 50 nm thick C60 layer at the evaporation rate from 0.25 to 1.0 Å/s. The C60 layers prepared by the evaporation possessed a face-centered cubic configuration with the lattice constant of 14.19 A, and the preferred orientation changed from random to (111) plane with decrease in the C60 evaporation rate from 1.0 to 0.25 Å/s. The hybrid p-Cu2O/C60 diode showed a rectification feature regardless of the C60 evaporation rate, and both the rectification ratio and forward current density improved with decrease in the C60 evaporation rate. The excellent rectification with the ideality factor of approximately 1 was obtained for the 500 nm thick (111)-Cu2O/50 nm thick (111)-fcc-C60/bathocuproine (BCP) diode at the C60 evaporation rate of 0.25 Å /s. The hybrid Cu2O/C60 diode prepared by stacking the C60 layer at the evaporation rate of 0.25 Å/s revealed the photovoltaic performance of 8.7 × 10(-6)% in conversion efficiency under AM1.5 illumination, and the conversion efficiency changed depending on the C60 evaporation rate.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Joseph E.; Emery, John M.; Battaile, Corbett C.

    Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cellmore » represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Furthermore, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.« less

  6. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE PAGES

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin; ...

    2017-12-07

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  7. Influence of Annealing on Microstructure and Mechanical Properties of a Nanocrystalline CrCoNi Medium-Entropy Alloy

    PubMed Central

    Schuh, Benjamin; Völker, Bernhard; Todt, Juraj; Kormout, Karoline S.; Schell, Norbert; Hohenwarter, Anton

    2018-01-01

    An equiatomic CrCoNi medium-entropy alloy was subjected to high-pressure torsion. This process led to a refinement of the microstructure to a grain size of about 50 nm, combined with a strong increase in the materials hardness. Subsequently, the thermodynamic stability of the medium entropy alloy was evaluated by isothermal and isochronal heat treatments. Annealed samples were investigated by scanning and transmission electron microscopy as well as X-ray diffraction, and were subjected to tensile tests to establish microstructure-property relationships. Furthermore, a comparison of mechanical properties with a grade 316L stainless steel was performed in order to evaluate if the CrCoNi alloy is competitive with commercially available structural materials in the nanocrystalline state. A minority phase embedded in the face-centered cubic matrix of the CrCoNi alloy could be observed in multiple annealed states, as well as the as-received and high-pressure torsion processed material. For 200 h of annealing at 500 °C, it was determined that the minority phase has a hexagonal-closed-packed crystal structure. A possible explanation for the formation of the phase is a preferential segregation of Co to stacking faults. PMID:29695142

  8. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.

    PubMed

    Wang, Cheng; Wang, Huiyuan; Huang, Tianlong; Xue, Xuena; Qiu, Feng; Jiang, Qichuan

    2015-05-22

    Although solid Au is usually most stable as a face-centered cubic (fcc) structure, pure hexagonal close-packed (hcp) Au has been successfully fabricated recently. However, the phase stability and mechanical property of this new material are unclear, which may restrict its further applications. Here we present the evidence that hcp → fcc phase transformation can proceed easily in Au by first-principles calculations. The extremely low generalized-stacking-fault (GSF) energy in the basal slip system implies a great tendency to form basal stacking faults, which opens the door to phase transformation from hcp to fcc. Moreover, the Au lattice extends slightly within the superficial layers due to the self-assembly of alkanethiolate species on hcp Au (0001) surface, which may also contribute to the hcp → fcc phase transformation. Compared with hcp Mg, the GSF energies for non-basal slip systems and the twin-boundary (TB) energies for and twins are larger in hcp Au, which indicates the more difficulty in generating non-basal stacking faults and twins. The findings provide new insights for understanding the nature of the hcp → fcc phase transformation and guide the experiments of fabricating and developing materials with new structures.

  9. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study

    NASA Astrophysics Data System (ADS)

    Choi, Won-Mi; Jo, Yong Hee; Sohn, Seok Su; Lee, Sunghak; Lee, Byeong-Joo

    2018-01-01

    Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.

  10. Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Sean S.-Y.; Kim, Do Heui; Ha, Su Y.

    2009-02-28

    The catalytic activity of cobalt in the production of hydrogen via ethanol steam reforming has been investigated in its relation to the crystalline structure of metallic cobalt. At a reaction temperature of 350 8C, the specific hydrogen production rates show that hexagonal close-packed (hcp) cobalt possesses higher activity than face-centered cubic (fcc) cobalt. However, at typical reaction temperatures (400– 500 8C) for ethanol steam reforming, hcp cobalt is transformed to less active fcc cobalt, as confirmed by in situ X-ray diffractometry (XRD). The addition of CeO2 promoter (10 wt.%) stabilizes the hcp cobalt structure at reforming temperatures up to 600more » 8C. Moreover, during the pre-reduction process, CeO2 promoter prevents sintering during the transformation of Co3O4 to hcp cobalt. Both reforming experiments and in situ diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the surface reactions were modified by CeO2 promoter on 10% Ce–Co (hcp) to give a lower CO selectivity and a higher H2 yield as compared with the unpromoted hcp Co.« less

  11. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  12. L1 0 Fe -Pd Synthetic Antiferromagnet through an fcc Ru Spacer Utilized for Perpendicular Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Zhang, De-Lin; Sun, Congli; Lv, Yang; Schliep, Karl B.; Zhao, Zhengyang; Chen, Jun-Yang; Voyles, Paul M.; Wang, Jian-Ping

    2018-04-01

    Magnetic materials that possess large bulk perpendicular magnetic anisotropy (PMA) are essential for the development of magnetic tunnel junctions (MTJs) used in future spintronic memory and logic devices. The addition of an antiferromagnetic layer to these MTJs was recently predicted to facilitate ultrafast magnetization switching. Here, we report a demonstration of a bulk perpendicular synthetic antiferromagnetic (PSAFM) structure comprised of a (001) textured Fe -Pd /Ru /Fe -Pd trilayer with a face-centered-cubic (fcc) phase Ru spacer. The L1 0 Fe -Pd PSAFM structure shows a large bulk PMA (Ku˜10.2 Merg /cm3 ) and strong antiferromagnetic coupling (-JIEC˜2.60 erg /cm2 ). Full perpendicular magnetic tunnel junctions (PMTJs) with a L1 0 Fe -Pd PSAFM layer are then fabricated. Tunneling magnetoresistance ratios of up to approximately 25% (approximately 60%) are observed at room temperature (5 K) after postannealing at 350 °C . Exhibiting high thermal stabilities and large Ku , the bulk PMTJs with an L1 0 Fe -Pd PSAFM layer could pave a way for next-generation ultrahigh-density and ultralow-energy spintronic applications.

  13. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang

    2018-06-01

    In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.

  14. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  15. Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework

    PubMed Central

    2017-01-01

    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed “double cluster” (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal–organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal–organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials. PMID:28343394

  16. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  17. External electric field effects on Schottky barrier at Gd3N@C80/Au interface

    NASA Astrophysics Data System (ADS)

    Onishi, Koichi; Nakashima, Fumihiro; Jin, Ge; Eto, Daichi; Hattori, Hayami; Miyoshi, Noriko; Kirimoto, Kenta; Sun, Yong

    2017-08-01

    The effects of the external electric field on the height of the Schottky barrier at the Gd3N@C80/Au interface were studied by measuring current-voltage characteristics at various temperatures from 200 K to 450 K. The Gd3N@C80 sample with the conduction/forbidden/valence energy band structure had a face-centered cubic crystal structure with the average grain size of several nanometers. The height of the Gd3N@C80/Au Schottky barrier was confirmed to be 400 meV at a low electric field at room temperature. Moreover, the height decreases with the increasing external electric field through a change of permittivity in the Gd3N@C80 sample due to a polarization of the [Gd3] 9 +-[N3 -+("separators="|C80 ) 6 -] dipoles in the Gd3N@C80 molecule. The field-dependence of the barrier height can be described using a power math function of the electric field strength. The results of the field-dependent barrier height indicate that the reduction in the Schottky barrier is due to an image force effect of the transport charge carrier at the Gd3N@C80/Au interface.

  18. Microstructure and corrosion resistance of nitrogen-rich surface layers on AISI 304 stainless steel by rapid nitriding in a hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Li, Yang; He, Yongyong; Zhang, Shangzhou; Wang, Wei; Zhu, Yijie

    2018-01-01

    Nitriding treatments have been successfully applied to austenitic stainless steels to improve their hardness and tribological properties. However, at temperatures above 450 °C, conventional plasma nitriding processes decrease the corrosion resistance due to the formation of CrN phases within the modified layer. In this work, AISI 304 austenitic stainless steels were efficiently treated by rapid plasma nitriding at a high temperature of 530 °C in a hollow cathode discharge. The enhanced ionization obtained in the hollow cathode configuration provided a high current density and, consequently, a high temperature could be attained in a short time. The nitrided layers were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The results indicated that the dual-layer structure of the nitrided layer consists of a high-N face-centered cubic structure with a free CrN precipitate outer (top) layer and a nitrogen-expanded austenite S-phase bottom layer. The rapid nitriding-assisted hollow cathode discharge technique permits the use of high temperatures, as high as 530 °C, without promoting degradation in the corrosion resistance of stainless steel.

  19. Synthesis and characterization of magnesium aluminate (MgAl2O4) spinel (MAS) thin films

    NASA Astrophysics Data System (ADS)

    Ahmad, Syed Muhammad; Hussain, Tousif; Ahmad, Riaz; Siddiqui, Jamil; Ali, Dilawar

    2018-01-01

    In a quest to identify more economic routes for synthesis of magnesium aluminate (MgAl2O4) spinel (MAS) thin films, dense plasma focus device was used with multiple plasma focus shots. Structural, bonding between composite films, surface morphological, compositional and hardness properties of MAS thin films were investigated by using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive x-rays (EDX) analysis and Vickers micro hardness test respectively. In XRD graph, the presence of MgAl2O4 diffraction peaks in crystallographic orientations (222), (400) and (622) pointed out the successful formation of polycrystalline thin films of MgAl2O4 with face centered cubic structure. The FTIR spectrums showed a major common transmittance band at 697.95 cm-1 which belongs to MgAl2O4. SEM micrographs illustrated a mesh type, granular and multi layers microstructures with significant melting effects. EDX spectrum confirmed the existence of magnesium, oxygen and aluminum in MAS films. A common increasing behavior in micro-hardness of composite MgAl2O4 films by increasing number of plasma focus shots was found.

  20. Preparation and characterization of Pt/C and Pt sbnd Ru/C electrocatalysts for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming

    Nano-sized Pt and Pt sbnd Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt sbnd Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt sbnd Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt sbnd Ru catalysts (except Pt 23sbnd Ru 77) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt 23sbnd Ru 77 alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt 52sbnd Ru 48/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt sbnd Ru catalysts.

  1. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    NASA Astrophysics Data System (ADS)

    Sarac, U.; Kaya, M.; Baykul, M. C.

    2016-10-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density.

  2. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst.

    PubMed

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-12-14

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishige, Ryohei; Williams, Gregory A.; Higaki, Yuji

    A molded film of single-component polymer-grafted nanoparticles (SPNP), consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated byin situultra-small-angle X-ray scattering (USAXS) measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c.) lattice structure with the [11-1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis ofin situUSAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction inmore » proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.« less

  4. Bonding properties of FCC-like Au 44 (SR) 28 clusters from X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Chevrier, Daniel M.; Zeng, Chenjie

    Thiolate-protected gold clusters with precisely controlled atomic composition have recently emerged as promising candidates for a variety of applications because of their unique optical, electronic, and catalytic properties. The recent discovery of the Au44(SR)28 total structure is considered as an interesting finding in terms of the face-centered cubic (FCC)-like core structure in small gold-thiolate clusters. Herein, the unique bonding properties of Au44(SR)28 is analyzed using temperature-dependent X-ray absorption spectroscopy (XAS) measurements at the Au L3-edge and compared with other FCC-like clusters such as Au36(SR)24 and Au28(SR)20. A negative thermal expansion was detected for the Au–Au bonds of the metal coremore » (the first Au–Au shell) and was interpreted based on the unique Au core structure consisting of the Au4 units. EXAFS fitting results from Au28(SR)20, Au36(SR)24, and Au44(SR)28 show a size-dependent negative thermal expansion behavior in the first Au–Au shell, further highlighting the importance of the Au4 units in determining the Au core bonding properties and shedding light on the growth mechanism of these FCC-like Au clusters.« less

  5. Anti-iridescent colloidal photonic nanostructure from thermal gradients and polymeric brush effects

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yeol; Kim, Hyoungsoo; Kim, Shin-Hyun; Stone, Howard

    2017-11-01

    Colloidal nanostructures induced by self-assembly are important in reflective displays, plasmonic or photonic sensors, and color pigments. During the evaporation of droplets of colloidal suspension, due to the non-uniform evaporation rate along the droplet interface, a radially outward flow is created and it carries colloidal particles to the pinned contact line of the droplet. We document that the packing at the contact line is a face-center-cubic (fcc) colloidal nanostructure in a ring shape. The fcc structure of the colloidal nanoparticles exhibits angle-dependent color. In particular, we introduce a novel method to suppress the familiar coffee-ring effect and modify colloidal nanostructures to exhibit angle-independent optical properties. A suspension of polyethylene oxide (PEO)-coated silica nanoparticles dispersed in ethanol-water mixture is prepared. The droplet containing the nanoparticles dries on a heated substrate, which creates a thermal gradient along the interface of the droplet. This thermal gradient induces thermal-Marangoni stresses that suppress the coffee-ring effects. PEO adsorbed on the surface of silica nanoparticles produces an additional interaction between colloidal nanoparticles, which makes the final structure disordered. The disordered photonic nanostructures in our experiments exhibit angle-independent structural color. This technique can be applied to printing or optical filtering systems.

  6. Large-area photonic crystals

    NASA Astrophysics Data System (ADS)

    Ruhl, Tilmann; Spahn, Peter; Hellmann, Gotz P.; Winkler, Holger

    2004-09-01

    Materials with a periodically modulated refractive index, with periods on the scale of light wavelengths, are currently attracting much attention because of their unique optical properties which are caused by Bragg scattering of the visible light. In nature, 3d structures of this kind are found in the form of opals in which monodisperse silica spheres with submicron diameters form a face-centered-cubic (fcc) lattice. Artificial opals, with the same colloidal-crystalline fcc structure, have meanwhile been prepared by crystallizing spherical colloidal particles via sedimentation or drying of dispersions. In this report, colloidal crystalline films are introduced that were produced by a novel technique based on shear flow in the melts of specially designed submicroscopic silica-polymer core-shell hybrid spheres: when the melt of these spheres flows between the plates of a press, the spheres crystallize along the plates, layer by layer, and the silica cores assume the hexagonal order corresponding to the (111) plane of the fcc lattice. This process is fast and yields large-area films, thin or thick. To enhance the refractive index contrast in these films, the colloidal crystalline structure was inverted by etching out the silica cores with hydrofluoric acid. This type of an inverse opal, in which the fcc lattice is formed by mesopores, is referred to as a polymer-air photonic crystal.

  7. Gas-Sensing Devices Based on Zn-Doped NiO Two-Dimensional Grainy Films with Fast Response and Recovery for Ammonia Molecule Detection

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wei, Xiaowei; Wangyang, Peihua

    2015-12-01

    Zn-doped NiO two-dimensional grainy films on glass substrates are shown to be an ammonia-sensing material with excellent comprehensive performance, which could real-time detect and monitor ammonia (NH3) in the surrounding environment. The morphology and structure analysis indicated that the as-fabricated semiconductor films were composed of particles with diameters ranging from 80 to 160 nm, and each particle was composed of small crystalline grain with a narrow size about 20 nm, which was the face-centered cubic single crystal structure. X-ray diffraction peaks shifted toward lower angle, and the size of the lattice increased compared with undoped NiO, which demonstrated that zinc ions have been successfully doped into the NiO host structure. Simultaneously, we systematically investigated the gas-sensing properties of the Zn-doped NiO sensors for NH3 detection at room temperature. The sensor based on doped NiO sensing films gave four to nine times faster response and four to six times faster recovery speeds than those of sensor with undoped NiO films, which is important for the NiO sensor practical applications. Moreover, we found that the doped NiO sensors owned outstanding selectivity toward ammonia.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Pan, Cheng-Ling; Xiao, Li-Na

    Three new supramolecular compounds based on triethylenediamine and different polyoxometalates [W{sup VI}{sub 3}V{sup V}{sub 3}O{sub 19}H]{l_brace}[Cu(HDABCO)]{sub 2}(H{sub 2}O){r_brace} (1), [P{sub 2}Mo{sup VI}{sub 18}O{sub 62}][HDABCO]{sub 2}[H{sub 2}DABCO]{sub 2}.12 H{sub 2}O (2) and [Mo{sup VI}{sub 7.5}W{sup VI}{sub 0.5}O{sub 27}][Cu(HDABCO)]{sub 2}.2 H{sub 3}O.2 H{sub 2}O (3) (DABCO=triethylenediamine) have been synthesized hydrothermally and characterized by IR, TG, XPS and X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 exhibits a face-centered cubic packing motif, compound 2 displays a supramolecular structure constructed form the 'chains' arranged hexagonally, compound 3 contains [Mo{sub 7.5}W{sub 0.5}O{sub 27}]{sub {infinity}} chain decorated by [Cu(HDABCO)]{sup 2+} cations, which was thenmore » packed into a layer structure. These results show that the same organonitrogen combining with the different POMs will yield different supramolecular networks. -- Graphical abstract: Three new supramolecular compounds based on triethylenediamine and different polyoxometalates have been hydrothermally synthesized and characterized by IR, XPS, TG, elemental analysis and X-ray diffraction analysis.« less

  9. On the nature of the phase transition in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Gofryk, K.; Mast, D.; Antonio, D.; Shrestha, K.; Andersson, D.; Stanek, C.; Jaime, M.

    Uranium dioxide (UO2) is by far the most studied actinide material as it is a primary fuel used in light water nuclear reactors. Its thermal and magnetic properties remain, however, a puzzle resulting from strong couplings between magnetism and lattice vibrations. UO2 crystalizes in the face-centered-cubic fluorite structure and is a Mott-Hubbard insulator with well-localized uranium 5 f-electrons. In addition, below 30 K, a long range antiferromagnetic ordering of the electric-quadrupole of the uranium moments is observed, forming complex non-collinear 3-k magnetic structure. This transition is accompanied by Jahn-Teller distortion of oxygen atoms. It is believed that the first order nature of the transition results from the competition between the exchange interaction and the Jahn-Teller distortion. Here we present results of our extensive thermodynamic investigations on well-characterized and oriented single crystals of UO2+x (x = 0, 0.033, 0.04, and 0.11). By focusing on the transition region under applied magnetic field we are able to study the interplay between different competing interactions (structural, magnetic, and electrical), its dynamics, and relationship to the oxygen content. We will discuss implications of these results. Work supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division.

  10. Analyzing multistep homogeneous nucleation in vapor-to-solid transitions using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tanaka, Kyoko K.; Diemand, Jürg; Tanaka, Hidekazu; Angélil, Raymond

    2017-08-01

    In this paper, we present multistep homogeneous nucleations in vapor-to-solid transitions as revealed by molecular dynamics simulations on Lennard-Jones molecules, where liquidlike clusters are created and crystallized. During a long, direct N V E (constant volume, energy, and number of molecules) involving the integration of (1.9 -15 )× 106 molecules in up to 200 million steps (=4.3 μ s ), crystallization in many large, supercooled nanoclusters is observed once the liquid clusters grow to a certain size (˜800 molecules for the case of T ≃0.5 ɛ /k ). In the simulations, we discovered an interesting process associated with crystallization: the solid clusters lost 2-5 % of their mass during crystallization at low temperatures below their melting temperatures. Although the crystallized clusters were heated by latent heat, they were stabilized by cooling due to evaporation. The clusters crystallized quickly and completely except at surface layers. However, they did not have stable crystal structures, rather they had metastable structures such as icosahedral, decahedral, face-centered-cubic-rich (fcc-rich), and hexagonal-close-packed-rich (hcp-rich). Several kinds of cluster structures coexisted in the same size range of ˜1000 -5000 molecules. Our results imply that multistep nucleation is a common first stage of condensation from vapor to solid.

  11. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    NASA Astrophysics Data System (ADS)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  12. Computational Meso-Scale Study of Representative Unit Cubes for Inert Spheres Subject to Intense Shocks

    NASA Astrophysics Data System (ADS)

    Stewart, Cameron; Najjar, Fady; Stewart, D. Scott; Bdzil, John

    2012-11-01

    Modern-engineered high explosive (HE) materials can consist of a matrix of solid, inert particles embedded into an HE charge. When this charge is detonated, intense shock waves are generated. As these intense shocks interact with the inert particles, large deformations occur in the particles while the incident shock diffracts around the particle interface. We will present results from a series of 3-D DNS of an intense shock interacting with unit-cube configurations of inert particles embedded into nitromethane. The LLNL multi-physics massively parallel hydrodynamics code ALE3D is used to carry out high-resolution (4 million nodes) simulations. Three representative unit-cube configurations are considered: primitive cubic, face-centered and body-centered cubic for two particle material types of varying impedance ratios. Previous work has only looked at in-line particles configurations. We investigate the time evolution of the unit cell configurations, vorticity being generated by the shock interaction, as well as the velocity and acceleration of the particles until they reach the quasi-steady regime. LLNL-ABS-567694. CSS was supported by a summer internship through the HEDP program at LLNL. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Plastic fluctuations in empty crystals formed by cubic wireframe particles

    NASA Astrophysics Data System (ADS)

    McBride, John M.; Avendaño, Carlos

    2018-05-01

    We present a computer simulation study of the phase behavior of colloidal hard cubic frames, i.e., particles with nonconvex cubic wireframe geometry interacting purely by excluded volume. Despite the propensity of cubic wireframe particles to form cubic phases akin to their convex counterparts, these particles exhibit unusual plastic fluctuations in which a random and dynamic fraction of particles rotate around their lattice positions in the crystal lattice while the remainder of the particles remains fully ordered. We argue that this unexpected effect stems from the nonconvex geometry of the particles in which the faces of a particle can be penetrated by the vertices of the nearest neighbors even at high number densities.

  14. Insight into the defects of cage-type silica mesoporous crystals with Fd3m symmetry: TEM observations and a new proposal of "polyhedron packing" for the crystals.

    PubMed

    Han, Lu; Sakamoto, Yasuhiro; Che, Shunai; Terasaki, Osamu

    2009-01-01

    Silica mesoporous crystals were synthesized by using a gemini cationic surfactant (C(18-3-1)) as the directing agent, carboxyethylsilanetriol sodium salt as the co-structure directing agent (CSDA), and varying amounts of HCl. By using transmission electron microscopy (TEM) we observed 1) a structural change from the close-packed structures of spherical micelles--face-centered cubic (Fm3m) and hexagonal close-packed (P6(3)/mmc)--to Fd3m structures with an increase of HCl and 2) a few structural defects in the crystals with Fd3m symmetry. The structure of a crystal with Fd3m symmetry is described as one of the tetrahedrally close-packed (tcp) structures consisting of 5(12) and 5(12)6(4) polyhedra. The observed TEM images of the structural defects were explained well through use of simulated TEM images by introducing new 13-15 polyhedra comprising 5(12)6(2), 5(12)6(3), 4(1)5(10)6(2), 4(2)5(8)6(5), and 4(1)5(10)6(4), which have been observed in bubbles by Matzke. The mesostructural changes and defect formation are discussed in terms of the hardness of micelles composed of surfactant/CSDA/silica species that have formed through a change of the interaction between the surfactant and CSDA, which causes the micelles to change from a regime of close-packing to one of minimum-area packing.

  15. Formation of prismatic loops from C15 Laves phase interstitial clusters in body-centered cubic iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Bai, Xian-Ming; Tonks, Michael R.

    2015-03-01

    This Letter reports the transition of C15 phase self-interstitial clusters to loops in body-centered-cubic Iron. Molecular dynamics simulations are performed to evaluate the relative stabilities of difference interstitial cluster configurations including C15 phase structure and <100> and <111>/2 loops. Within a certain size range, C15 cluster are found more stable than loops, and the relative stabilities are reversed beyond that range. In accordance to the crossover in relative stabilities, C15 clusters may grow by absorbing individual interstitials at small sizes and transitions into loops eventually. The transition takes place by nucleation and reaction of <111>/2 loop segments. These observations explainmore » the absence of C15 phase interstitial clusters predicted by density-functional-theory calculations in previous experimental observations. More importantly, the current results provide a new formation mechanism of <100> loops which requires no interaction of loops.« less

  16. Effect of Al content on structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurchenko, N.Yu.

    2016-11-15

    In present study, structure and mechanical properties of the Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) high-entropy alloys after arc melting and annealing at 1200 °C for 24 h are investigated. The CrNbTiVZr alloy is composed of body centered cubic (bcc) and C15 (face centered cubic) Laves phases while the Al{sub x}CrNbTiVZr (x = 0.25; 0.5; 1) alloys consist of bcc and two C14 (hexagonal close packed) Laves phases with different chemical compositions. Thermodynamic modeling predicts existence of two phases – bcc and C15 Laves phase and broadening of single bcc phase field due to Al addition. The densitymore » of the alloys decreases with the increase of Al content. The alloys are found to be extremely brittle at room temperature and 600 °C. The alloys have high strength at temperatures of 800–1000 °C. For example, yield strength at 800 °C increases from 440 MPa for the CrNbTiVZr alloy to 1250 MPa for the AlCrNbTiVZr alloy. The experimental phase composition of the Al{sub x}CrNbTiVZr alloys is compared with predicted equilibrium phases and the factors governing the transformation of C15 to C14 Laves phases due to Al addition to the CrNbTiVZr alloy analyzed. Specific properties of the alloys are compared with other high-entropy alloys and commercial Ni-based superalloys. - Highlights: •Al{sub x}CrNbTiVZr (x = 0; 0.25; 0.5; 1) alloys are arc melted and annealed at 1200 °C. •The CrNbTiVZr alloy has bcc and C15 Laves phases. •The Al-containing alloys are composed of bcc and two C14 Laves phases. •The alloys demonstrate high specific strength at temperatures of 800 °C and 1000 °C. •The strength of the alloys increases in proportion with increase of Al content.« less

  17. Green synthesis of silver nanoparticles using tannins

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  18. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    DOE PAGES

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; ...

    2017-05-25

    High pressure x-ray diffraction measurements reveal that the face-centered cubic (fcc) high-entropy alloy CrMnFeCoNi transforms martensitically to a hexagonal close-packed (hcp) phase at ~14 GPa. We attribute this to suppression of the local magnetic moments, destabilizing the fcc phase. Similar to fcc-to-hcp transformations in Al and the noble gases, this transformation is sluggish, occurring over a range of >40 GPa. But, the behavior of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures.

  19. Stability of vacancy-type defect clusters in Ni based on first-principles and molecular dynamics simulations

    DOE PAGES

    Zhao, Shijun; Zhang, Yanwen; Weber, William J.

    2017-10-17

    Using first-principles calculations based on density-functional theory, the energetics of different vacancy-type defects, including voids, stacking fault tetrahedra (SFT) and vacancy loops, in Ni are investigated. It is found that voids are more stable than SFT at 0 K, which is also the case after taking into account the volumetric strains. By carrying out ab initio molecular dynamics simulations at temperatures up to 1000 K, direct transformations from vacancy loops and voids into SFT are observed. Our results suggest the importance of temperature effects in determining thermodynamic stability of vacancy clusters in face-centered cubic metals.

  20. Constitutive Modeling of Superalloy Single Crystals and Directionally Solidified Materials

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Jordan, E. H.

    1985-01-01

    A unified viscoplastic constitutive relation based on crystallographic slip theory was developed for the deformation analysis of nickel base face centered cubic superalloy single crystals at elevated temperature. The single crystal theory is embedded in a self consistent method to derive a constitutive relation for a directionally solidified material comprised of a polycrystalline aggregate of columnar cylindrical grains. One of the crystallographic axes of the cylindrical crystals points in the columnar direction while the remaining crystallographic axes are oriented at random in the basal plane perpendicular to the columnar direction. These constitutive formulations are coded in FORTRAN for use in nonlinear finite element and boundary element programs.

  1. Characterization of iron ferromagnetism by the local atomic volume: from three-dimensional structures to isolated atoms.

    PubMed

    Zhang, Lei; Sob, M; Wu, Zhe; Zhang, Ying; Lu, Guang-Hong

    2014-02-26

    We present a comprehensive study of the relationship between the ferromagnetism and the structural properties of Fe systems from three-dimensional ones to isolated atoms based on the spin-density functional theory. We have found a relation between the magnetic moment and the volume of the Voronoi polyhedron, determining, in most cases, the value of the total magnetic moment as a function of this volume with an average accuracy of ±0.28 μ(B) and of the 3d magnetic moment with an average accuracy of ±0.07 μ(B) when the atomic volume is larger than 22 ų. It is demonstrated that this approach is applicable for many three-dimensional systems, including high-symmetry structures of perfect body-centered cubic (bcc), face-centered cubic (fcc), hexagonal close-packed (hcp), double hexagonal close-packed (dhcp), and simple cubic (sc) crystals, as well as for lower-symmetry ones, for example atoms near a grain boundary (GB) or a surface, around a vacancy or in a linear chain (for low-dimensional cases, we provide a generalized definition of the Voronoi polyhedron). Also, we extend the validity of the Stoner model to low-dimensional structures, such as atomic chains, free-standing monolayers and surfaces, determining the Stoner parameter for these systems. The ratio of the 3d-exchange splitting to the magnetic moment, corresponding to the Stoner parameter, is found to be I(3d) = (0.998 ± 0.006) eV /μ(B) for magnetic moments up to 3.0 μ(B). Further, the 3d exchange splitting changes nearly linearly in the region of higher magnetic moments (3.0-4.0 μ(B)) and the corresponding Stoner exchange parameter equals I(h)(3d) = (0.272 ± 0.006) eV /μ(B). The existence of these two regions reflects the fact that, with increasing Voronoi volume, the 3d bands separate first and, consequently, the 3d magnetic moment increases. When the Voronoi volume is sufficiently large (≥22 ų), the separation of the 3d bands is complete and the magnetic moment reaches a value of 3.0 μ(B). Then, when the volume further increases, the 4s bands start to separate, increasing thus the 4s magnetic moment. Surprisingly, in the region of higher magnetic moments (≥3.0 μ(B)), there is also a linear relationship between the 4s exchange splitting and the total magnetic moment with a slope of I(h)(4s) = (1.053 ± 0.016) eV /μ(B), which is nearly identical to I(3d) for magnetic moments up to 3.0 μB. These linear relations can be considered as an extension of the Stoner model for low-dimensional systems.

  2. Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes.

    PubMed

    Wang, Da; Hermes, Michiel; Kotni, Ramakrishna; Wu, Yaoting; Tasios, Nikos; Liu, Yang; de Nijs, Bart; van der Wee, Ernest B; Murray, Christopher B; Dijkstra, Marjolein; van Blaaderen, Alfons

    2018-06-08

    Self-assembly of nanoparticles (NPs) inside drying emulsion droplets provides a general strategy for hierarchical structuring of matter at different length scales. The local orientation of neighboring crystalline NPs can be crucial to optimize for instance the optical and electronic properties of the self-assembled superstructures. By integrating experiments and computer simulations, we demonstrate that the orientational correlations of cubic NPs inside drying emulsion droplets are significantly determined by their flat faces. We analyze the rich interplay of positional and orientational order as the particle shape changes from a sharp cube to a rounded cube. Sharp cubes strongly align to form simple-cubic superstructures whereas rounded cubes assemble into icosahedral clusters with additionally strong local orientational correlations. This demonstrates that the interplay between packing, confinement and shape can be utilized to develop new materials with novel properties.

  3. Evaluation of ZnSe(S) Quantum Dots on the Cell Viability of Prostate Cancer Cell (PC3)

    NASA Astrophysics Data System (ADS)

    Calderón-Ortiz, E. R.; Bailón-Ruiz, S.; Martínez-Ferrer, M.; Rodríguez-Orengo, J. F.; Perales-Pérez, O.

    2018-05-01

    Nanomedicine is described as the process of diagnosing, treating, and preventing disease using nanostructured materials to improve human health. Quantum dots (QDs) host suitable optical properties for light-driven therapies, e.g., photo-dynamic therapy (PDT), for cancer treatment. The efficacy of QDs-assisted PDT relies on the capability of QDs to generate reactive oxygen species, which can be enhanced by inducing structural defects at the atomic level. Furthermore, data concerning the applicability of QDs-PDT in medicine is scarce, particularly for prostate cancer cells (PC3). On this basis, and as a first step in this research, the present report focused on the direct aqueous-synthesis of water-stable ZnSe(S) QDs via a microwave-assisted synthesis approach in the presence of thioglycolic acid (TGA) and mercaptopropionic acid (MPA). XRD analysis confirmed the face centered cubic structure in host ZnS; the average crystallite size was estimated at 10 nm. The photoluminescence of MPA-capped ZnSe(S) showed a strong main emission peak around 363 nm and a trap emission, attributed to structural defects, centered on 450 nm. The photoluminescence spectrum for TGA-capped ZnSe(S) QDs exhibited only the band gap peak around 390 nm, suggesting the absence of major structural defects. In turn, cell viability assays TGA-capped ZnSe(S) were not toxic at concentrations up to 100 ppm, whereas MPA-capped ZnSe(S) evidenced cytotoxicity at a concentration of 10 ppm. The lethal dose (LD50) for the MPA-capped ZnSe(S) in the PC3 cell line was 36 ppm and 35 ppm for 24 h and 48 h, respectively.

  4. Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis

    DOE PAGES

    Uchida, Masaki; McCoy, Kimberly; Fukuto, Masafumi; ...

    2017-11-13

    The assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here, we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy: the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays. The structure of the assembled arrays was successfully altered from anmore » amorphous aggregate to an ordered structure, with a face-centered cubic lattice, by modifying the exterior surface of the VLP without changing its overall morphology, to modulate interparticle interactions. The assembly behavior and resultant lattice structure was a consequence of interparticle interaction between exterior surfaces of individual particles and thus independent of the enzyme cargos encapsulated within the VLPs. These superlattice materials, composed of two populations of enzyme-packaged VLP modules, retained the coupled catalytic activity in a two-step reaction for isobutanol synthesis. As a result, this study demonstrates a significant step toward the bottom-up fabrication of functional superlattice materials using a self-assembly process across multiple length scales and exhibits properties and function that arise from the interaction between individual building blocks.« less

  5. Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis

    PubMed Central

    Uchida, Masaki; McCoy, Kimberly; Fukuto, Masafumi; Yang, Lin; Yoshimura, Hideyuki; Miettinen, Heini M.; LaFrance, Ben; Patterson, Dustin P.; Schwarz, Benjamin; Karty, Jonathan A.; Prevelige, Peter E.; Lee, Byeongdu; Douglas, Trevor

    2018-01-01

    The assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy; the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays. The structure of the assembled arrays was successfully altered from an amorphous aggregate to an ordered structure, with a face-centered cubic lattice, by modifying the exterior surface of the VLP without changing its overall morphology, to modulate interparticle interactions. The assembly behavior and resultant lattice structure was a consequence of interparticle interaction between exterior surfaces of individual particles, and thus independent of the enzyme cargos encapsulated within the VLPs. These superlattice materials, composed of two populations of enzyme packaged VLP modules, retained the coupled catalytic activity in a two-step reaction for isobutanol synthesis. This study demonstrates a significant step toward the bottom-up fabrication of functional superlattice materials using a self-assembly process across multiple length scales, and exhibits properties and function that arise from the interaction between individual building blocks. PMID:29131580

  6. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  7. Fabrication of a Stable New Polymorph Gold Nanowire with Sixfold Rotational Symmetry.

    PubMed

    Lee, Seonhee; Bae, Changdeuck; Lee, Jubok; Lee, Subin; Oh, Sang Ho; Kim, Jeongyong; Park, Gyeong-Su; Jung, Hyun Suk; Shin, Hyunjung

    2018-04-01

    Gold is known as the most noblest metal with only face-centered cubic (fcc) structure in ambient conditions. Here, stable hexagonal non-close-packed (ncp) gold nanowires (NWs), having a diameter of about 50 nm and aspect ratios of well over 400, are reported. Au NWs are grown in the confined system of nanotubular TiO 2 arrays via photoelectrochemical reduction of HAuCl 4 precursors. Some of the resulting Au NWs are proved to have sixfold rotational symmetry, observed by transmission electron microscopy tilting experiments. This new polymorph is identified as a hexagonal ncp-structure with lattice parameters of a = 2.884 Å and c = 7.150 Å, showing quite a large interplanar spacing (c/a ≈ 2.48). That is, Au atoms are close-packed along the ab plane, but each plane is not closely stacked along the c axis like in graphite. The structure is usually expected to be unstable, but the present ncp-2H gold is stable under ambient conditions and intense electron beam irradiation, and shows thermal stability up to 400 °C. Moreover, the resulting physical properties as a result of the corresponding change in electronic structures are investigated by comparing the optical properties of fcc and ncp-2H Au NWs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, Masaki; McCoy, Kimberly; Fukuto, Masafumi

    The assembly of individual molecules into hierarchical structures is a promising strategy for developing three-dimensional materials with properties arising from interaction between the individual building blocks. Virus capsids are elegant examples of biomolecular nanostructures, which are themselves hierarchically assembled from a limited number of protein subunits. Here, we demonstrate the bio-inspired modular construction of materials with two levels of hierarchy: the formation of catalytically active individual virus-like particles (VLPs) through directed self-assembly of capsid subunits with enzyme encapsulation, and the assembly of these VLP building blocks into three-dimensional arrays. The structure of the assembled arrays was successfully altered from anmore » amorphous aggregate to an ordered structure, with a face-centered cubic lattice, by modifying the exterior surface of the VLP without changing its overall morphology, to modulate interparticle interactions. The assembly behavior and resultant lattice structure was a consequence of interparticle interaction between exterior surfaces of individual particles and thus independent of the enzyme cargos encapsulated within the VLPs. These superlattice materials, composed of two populations of enzyme-packaged VLP modules, retained the coupled catalytic activity in a two-step reaction for isobutanol synthesis. As a result, this study demonstrates a significant step toward the bottom-up fabrication of functional superlattice materials using a self-assembly process across multiple length scales and exhibits properties and function that arise from the interaction between individual building blocks.« less

  9. Passive advection-dispersion in networks of pipes: Effect of connectivity and relationship to permeability

    NASA Astrophysics Data System (ADS)

    Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.

    2016-02-01

    The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.

  10. A Firefly-Inspired Method for Protein Structure Prediction in Lattice Models

    PubMed Central

    Maher, Brian; Albrecht, Andreas A.; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen

    2014-01-01

    We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa–Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models. PMID:24970205

  11. A firefly-inspired method for protein structure prediction in lattice models.

    PubMed

    Maher, Brian; Albrecht, Andreas A; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen

    2014-01-07

    We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa-Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models.

  12. Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Davoud; Whittle, Andrew J.; Pellenq, Roland J.-M.

    2014-04-01

    Face-to-face and edge-to-edge free energy interactions of Wyoming Na-montmorillonite platelets were studied by calculating potential of mean force along their center to center reaction coordinate using explicit solvent (i.e., water) molecular dynamics and free energy perturbation methods. Using a series of configurations, the Gay-Berne potential was parametrized and used to examine the meso-scale aggregation and properties of platelets that are initially random oriented under isothermal-isobaric conditions. Aggregates of clay were defined by geometrical analysis of face-to-face proximity of platelets with size distribution described by a log-normal function. The isotropy of the microstructure was assessed by computing a scalar order parameter. The number of platelets per aggregate and anisotropy of the microstructure both increases with platelet plan area. The system becomes more ordered and aggregate size increases with increasing pressure until maximum ordered state at confining pressure of 50 atm. Further increase of pressure slides platelets relative to each other leading to smaller aggregate size. The results show aggregate size of (3-8) platelets for sodium-smectite in agreement with experiments (3-10). The geometrical arrangement of aggregates affects mechanical properties of the system. The elastic properties of the meso-scale aggregate assembly are reported and compared with nanoindentation experiments. It is found that the elastic properties at this scale are close to the cubic systems. The elastic stiffness and anisotropy of the assembly increases with the size of the platelets and the level of external pressure.

  13. Radiationless Transitions and Excited-State Absorption in Tunable Laser Materials

    DTIC Science & Technology

    1992-09-01

    chromium - doped halide elpasolites K2 NaGaF 6 , K2 NaScF6 and Cs2NaYCl 6 , and on the laser-active TI0 (l) color center in KCI. Luminescence lifetime...Non-radiative transitions, transition metals, chromium , ¶SLWmER o E tunable lasers, high pressure, luminescence, color centers ൙. SECURITY O...quenching and excited-state absorption are major loss mechanisms. Low-crystal-field chromium complexes in ordered perovskites of cubic elpasolite structure

  14. Electrodeposited Ni-Co films from electrolytes with different Co contents

    NASA Astrophysics Data System (ADS)

    Karpuz, Ali; Kockar, Hakan; Alper, Mursel; Karaagac, Oznur; Haciismailoglu, Murside

    2012-02-01

    The properties of electrodeposited Ni-Co films produced from electrolyte consisted of nickel sulfamate, cobalt sulfate and boric acid were investigated as a function of Co content in the films. The compositional analysis performed by an energy dispersive X-ray spectroscopy demonstrated that the Co content of the films increases as the cobalt sulfate concentration in the electrolyte increases. The anomalous codeposition behavior was observed for all concentrations. The crystal structure was analyzed using an X-ray diffraction technique. The face centered cubic (fcc) structure was observed in the films containing from 0 at.% Co to 58 at.% Co. For the higher atomic Co contents (64 at.% and 80 at.%), a mixed phase of dominantly fcc and hexagonal closed packed (hcp) structure was observed although the (10.0) and (10.1) hcp peaks had minor intensities in the patterns. Surface micrographs obtained from a scanning electron microscope revealed that the film surface has a rougher appearance as the Co content increases. Magnetic measurements showed that the saturation magnetization gradually increased with increasing Co content of the films. The coercivity, Hc can be controlled by the structural parameters such as average grain size and crystal structure. The results also indicated that the optimum film composition was 28-40 at.% Co since the lower Hc and higher magnetoresistance (MR) values with very smooth or slightly granular surfaces were achieved at this Co content. It is revealed that Co content has an important effect on structural, magnetic and MR properties of the Ni-Co films.

  15. Electron microscopic and optical studies of prism faces of synthetic quartz

    NASA Technical Reports Server (NTRS)

    Buzek, B. C.; Vagh, A. S.

    1977-01-01

    Application of electron and optical microscopic techniques to the study of growth spirals on quartz crystal faces is described. Attention is centered on the centers of the spirals and on screw ledges; overhanging kinks are revealed on one side of the spiral centers. The possibility that these special features may have developed after growth of the crystals went to completion is explored. The conjecture is raised that such structures might result from adsorption of growth-inhibiting impurities at the center of the growth spiral on the quartz habit faces.

  16. Order-disorder phenomena in the low-temperature phase of BaTiO3

    NASA Astrophysics Data System (ADS)

    Völkel, G.; Müller, K. A.

    2007-09-01

    X - and Q -band electron paramagnetic resonance measurements are reported on Mn4+ -doped BaTiO3 single crystals in the rhombohedral low-temperature phase. The Mn4+ probe ion is statistically substitute for the isovalent Ti4+ ion. The critical line broadening observed when approaching the phase transition to the orthorhombic phase demonstrates the presence of order-disorder processes within the off-center Ti subsystem and the formation of dynamic precursor clusters with a structure compatible with one of the orthorhombic phase. From the data it is concluded that BaTiO3 shows a special type of phase transition where displacive and order-disorder character are not only present at the cubic-tetragonal transition, but also at the orthorhombic-rhombohedral transition at low temperatures. The disappearance of the Mn4+ spectrum in the orthorhombic, tetragonal, and cubic phases can be interpreted as the consequence of the strong line broadening caused by changes of the instantaneous off-center positions in time around the averaged off-center position along a body diagonal.

  17. Corrosion behaviour of Al-Fe-Ti-V medium entropy alloy

    NASA Astrophysics Data System (ADS)

    Bodunrin, M. O.; Obadele, B. A.; Chown, L. H.; Olubambi, P. A.

    2017-12-01

    Alloys containing up to four multi-principal elements in equiatomic ratios are referred to as medium entropy alloys (MEA). These alloys have attracted the interest of many researchers due to the superior mechanical properties it offers over the traditional alloys. The design approach of MEA often results to simple solid solution with either body centered cubic; face centered cubic structures or both. As the consideration for introducing the alloys into several engineering application increases, there have been efforts to study the corrosion behaviour of these alloys. Previous reports have shown that some of these alloys are more susceptible to corrosion when compared with traditional alloys due to lack of protective passive film. In this research, we have developed AlFeTiV medium entropy alloys containing two elements (Ti and Al) that readily passivate when exposed to corrosive solutions. The alloys were produced in vacuum arc furnace purged with high purity argon. Open circuit potential and potentiodynamic polarisation tests were used to evaluate the corrosion behaviour of the as-cast AlFeTiV alloy in 3.5 wt% NaCl and 1 M H2SO4. The corrosion performance of the alloy was compared with Ti-6Al-4V alloy tested under similar conditions. The results show that unlike in Ti-6Al-4V alloy, the open circuit potential of the AlFeTiV alloy move towards the negative values in both 3.5 wt% NaCl and 1 M H2SO4 solutions indicating that self-activation occurred rapidly on immersion. Anodic polarisation of the alloys showed that AlFeTiV alloy exhibited a narrow range of passivity in both solutions. In addition, the alloys exhibited lower Ecorr and higher Icorr when compared with traditional Ti-6Al-4V alloy. The traditional Ti-6Al-4V alloy showed superior corrosion resistant to the AlFeTiV alloy in both 3.5 wt.% NaCl and 1 M H2SO4 solutions.

  18. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been identified for precise acid copolymers and ionomers at room temperature: (1) liquid-like order of aggregates dispersed throughout an amorphous PE matrix, (2) one-dimensional long-range order of aggregates in layers coexisting with PE crystals, and (3) three-dimensional periodicity of aggregates in cubic lattices in a PE matrix featuring defective packing. The liquid-like morphology is a result of high content of acid or ionic substituents deterring PE crystallinity due to steric hindrance. The layered morphology occurs when the content of pendants is low and the PE segments are long enough to crystallize. The cubic morphologies occur in precise copolymers with geminal substitution of phosphonic acid (PA) groups and long, flexible PE segments. At temperatures above the thermal transitions of the PE matrix, all but one material present a liquid-like morphology. Those conditions are ideal to study the evolution of the interaggregate spacing (d*) in X-ray scattering as a function of PE segment length between pendants, pendant type and pendant architecture (specifically, mono or geminal substitution). Also at elevated temperatures, the morphologies of precise acrylic acid (AA) copolymers and ionomers were investigated further via atomistic molecular dynamics (MD) simulations. The simulations complement X-ray scattering by providing real space visualization of the aggregates, demonstrating the occurrence of isolated, string-like and even percolated aggregate structures. This is the first dissertation completely devoted to the morphology of precise acid copolymers and precise ionomers. The complete analysis of the morphologies in these novel materials provides new insights into the shapes of aggregates in acid copolymers and ionomers in general. A key aspect of this thesis is the complementary use of experimental and simulation methods to unlock a wealth of new understanding.

  19. Canted antiferromagnetism in phase-pure CuMnSb

    NASA Astrophysics Data System (ADS)

    Regnat, A.; Bauer, A.; Senyshyn, A.; Meven, M.; Hradil, K.; Jorba, P.; Nemkovski, K.; Pedersen, B.; Georgii, R.; Gottlieb-Schönmeyer, S.; Pfleiderer, C.

    2018-05-01

    We report the low-temperature properties of phase-pure single crystals of the half-Heusler compound CuMnSb grown by means of optical float zoning. The magnetization, specific heat, electrical resistivity, and Hall effect of our single crystals exhibit an antiferromagnetic transition at TN=55 K and a second anomaly at a temperature T*≈34 K. Powder and single-crystal neutron diffraction establish an ordered magnetic moment of (3.9 ±0.1 ) μB/f .u . , consistent with the effective moment inferred from the Curie-Weiss dependence of the susceptibility. Below TN, the Mn sublattice displays commensurate type-II antiferromagnetic order with propagation vectors and magnetic moments along <111 > (magnetic space group R [I ]3 c ). Surprisingly, below T*, the moments tilt away from <111 > by a finite angle δ ≈11∘ , forming a canted antiferromagnetic structure without uniform magnetization consistent with magnetic space group C [B ]c . Our results establish that type-II antiferromagnetism is not the zero-temperature magnetic ground state of CuMnSb as may be expected of the face-centered cubic Mn sublattice.

  20. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

Top