Sample records for facet augmentation device

  1. A minimally invasive technique for percutaneous lumbar facet augmentation: Technical description of a novel device

    PubMed Central

    Smith, Zachary A.; Armin, Sean; Raphael, Dan; Khoo, Larry T.

    2011-01-01

    Background: We describe a new posterior dynamic stabilizing system that can be used to augment the mechanics of the degenerating lumbar segment. The mechanism of this system differs from other previously described surgical techniques that have been designed to augment lumbar biomechanics. The implant and technique we describe is an extension-limiting one, and it is designed to support and cushion the facet complex. Furthermore, it is inserted through an entirely percutaneous technique. The purpose of this technical note is to demonstrate a novel posterior surgical approach for the treatment of lumbar degenerative. Methods: This report describes a novel, percutaneously placed, posterior dynamic stabilization system as an alternative option to treat lumbar degenerative disk disease with and without lumbar spinal stenosis. The system does not require a midline soft-tissue dissection, nor subperiosteal dissection, and is a truly minimally invasive means for posterior augmentation of the functional facet complex. This system can be implanted as a stand-alone procedure or in conjunction with decompression procedures. Results: One-year clinical results in nine individual patients, all treated for degenerative disease of the lower lumbar spine, are presented. Conclusions: This novel technique allows for percutaneous posterior dynamic stabilization of the lumbar facet complex. The use of this procedure may allow a less invasive alternative to traditional approaches to the lumbar spine as well as an alternative to other newly developed posterior dynamic stabilization systems. PMID:22145084

  2. Augmented Reality-Guided Lumbar Facet Joint Injections.

    PubMed

    Agten, Christoph A; Dennler, Cyrill; Rosskopf, Andrea B; Jaberg, Laurenz; Pfirrmann, Christian W A; Farshad, Mazda

    2018-05-08

    The aim of this study was to assess feasibility and accuracy of augmented reality-guided lumbar facet joint injections. A spine phantom completely embedded in hardened opaque agar with 3 ring markers was built. A 3-dimensional model of the phantom was uploaded to an augmented reality headset (Microsoft HoloLens). Two radiologists independently performed 20 augmented reality-guided and 20 computed tomography (CT)-guided facet joint injections each: for each augmented reality-guided injection, the hologram was manually aligned with the phantom container using the ring markers. The radiologists targeted the virtual facet joint and tried to place the needle tip in the holographic joint space. Computed tomography was performed after each needle placement to document final needle tip position. Time needed from grabbing the needle to final needle placement was measured for each simulated injection. An independent radiologist rated images of all needle placements in a randomized order blinded to modality (augmented reality vs CT) and performer as perfect, acceptable, incorrect, or unsafe. Accuracy and time to place needles were compared between augmented reality-guided and CT-guided facet joint injections. In total, 39/40 (97.5%) of augmented reality-guided needle placements were either perfect or acceptable compared with 40/40 (100%) CT-guided needle placements (P = 0.5). One augmented reality-guided injection missed the facet joint space by 2 mm. No unsafe needle placements occurred. Time to final needle placement was substantially faster with augmented reality guidance (mean 14 ± 6 seconds vs 39 ± 15 seconds, P < 0.001 for both readers). Augmented reality-guided facet joint injections are feasible and accurate without potentially harmful needle placement in an experimental setting.

  3. The future of intelligent assistive technologies for cognition: devices under development to support independent living and aging-with-choice.

    PubMed

    Boger, Jennifer; Mihailidis, Alex

    2011-01-01

    A person's ability to be independent is dependent on his or her overall health, mobility, and ability to complete activities of daily living. Intelligent assistive technologies (IATs) are devices that incorporate context into their decision-making process, which enables them to provide customised and dynamic assistance in an appropriate manner. IATs have tremendous potential to support people with cognitive impairments as they can be used to support many facets of well-being; from augmenting memory and decision making tasks to providing autonomous and early detection of possible changes in health. This paper presents IATs that are currently in development in the research community to support tasks that can be impacted by compromised cognition. While they are not yet ready for the general public, these devices showcase the capabilities of technologies one can expect to see in the consumer marketplace in the near future.

  4. Lumbar Spinal Stenosis Minimally Invasive Treatment with Bilateral Transpedicular Facet Augmentation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masala, Salvatore, E-mail: salva.masala@tiscali.it; Tarantino, Umberto; Nano, Giovanni, E-mail: gionano@gmail.com

    Purpose. The purpose of this study was to evaluate the effectiveness of a new pedicle screw-based posterior dynamic stabilization device PDS Percudyn System Trade-Mark-Sign Anchor and Stabilizer (Interventional Spine Inc., Irvine, CA) as alternative minimally invasive treatment for patients with lumbar spine stenosis. Methods. Twenty-four consecutive patients (8 women, 16 men; mean age 61.8 yr) with lumbar spinal stenosis underwent implantation of the minimally invasive pedicle screw-based device for posterior dynamic stabilization. Inclusion criteria were lumbar stenosis without signs of instability, resistant to conservative treatment, and eligible to traditional surgical posterior decompression. Results. Twenty patients (83 %) progressively improved duringmore » the 1-year follow-up. Four (17 %) patients did not show any improvement and opted for surgical posterior decompression. For both responder and nonresponder patients, no device-related complications were reported. Conclusions. Minimally invasive PDS Percudyn System Trade-Mark-Sign has effectively improved the clinical setting of 83 % of highly selected patients treated, delaying the need for traditional surgical therapy.« less

  5. Bone augmentation for cancellous bone- development of a new animal model

    PubMed Central

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative methods assured a standardized analysis of all samples. Conclusions This experimental animal model provides an excellent basis for testing new biomaterials for their suitability as bone augmentation materials. Concomitantly, similar cardiovascular changes occur during vertebroplasties as in humans, thus making it a suitable animal model for studies related to vertebroplasty. PMID:23819858

  6. Bone augmentation for cancellous bone- development of a new animal model.

    PubMed

    Klein, Karina; Zamparo, Enrico; Kronen, Peter W; Kämpf, Katharina; Makara, Mariano; Steffen, Thomas; von Rechenberg, Brigitte

    2013-07-02

    Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (Ø 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals. The harvesting and evaluative methods assured a standardized analysis of all samples. This experimental animal model provides an excellent basis for testing new biomaterials for their suitability as bone augmentation materials. Concomitantly, similar cardiovascular changes occur during vertebroplasties as in humans, thus making it a suitable animal model for studies related to vertebroplasty.

  7. Smart wearable body sensors for patient self-assessment and monitoring.

    PubMed

    Appelboom, Geoff; Camacho, Elvis; Abraham, Mickey E; Bruce, Samuel S; Dumont, Emmanuel Lp; Zacharia, Brad E; D'Amico, Randy; Slomian, Justin; Reginster, Jean Yves; Bruyère, Olivier; Connolly, E Sander

    2014-01-01

    Innovations in mobile and electronic healthcare are revolutionizing the involvement of both doctors and patients in the modern healthcare system by extending the capabilities of physiological monitoring devices. Despite significant progress within the monitoring device industry, the widespread integration of this technology into medical practice remains limited. The purpose of this review is to summarize the developments and clinical utility of smart wearable body sensors. We reviewed the literature for connected device, sensor, trackers, telemonitoring, wireless technology and real time home tracking devices and their application for clinicians. Smart wearable sensors are effective and reliable for preventative methods in many different facets of medicine such as, cardiopulmonary, vascular, endocrine, neurological function and rehabilitation medicine. These sensors have also been shown to be accurate and useful for perioperative monitoring and rehabilitation medicine. Although these devices have been shown to be accurate and have clinical utility, they continue to be underutilized in the healthcare industry. Incorporating smart wearable sensors into routine care of patients could augment physician-patient relationships, increase the autonomy and involvement of patients in regards to their healthcare and will provide for novel remote monitoring techniques which will revolutionize healthcare management and spending.

  8. Method for partially coating laser diode facets

    NASA Technical Reports Server (NTRS)

    Dholakia, Anil R. (Inventor)

    1990-01-01

    Bars of integral laser diode devices cleaved from a wafer are placed with their p regions abutting and n regions abutting. A thin BeCu mask having alternate openings and strips of the same width as the end facets is used to mask the n region interfaces so that multiple bars can be partially coated over their exposed p regions with a reflective or partial reflective coating. The partial coating permits identification of the emitting facet from the fully coated back facet during a later device mounting procedure.

  9. Kinematic and fatigue biomechanics of an interpositional facet arthroplasty device.

    PubMed

    Dahl, Michael C; Freeman, Andrew L

    2016-04-01

    Although approximately 30% of chronic lumbar pain can be attributed to the facets, limited surgical options exist for patients. Interpositional facet arthroplasty (IFA) is a novel treatment for lumbar facetogenic pain designed to provide patients who gain insufficient relief from medical interventional treatment options with long-term relief, filling a void in the facet pain treatment continuum. This study aimed to quantify the effect of IFA on segmental range of motion (ROM) compared with the intact state, and to observe device position and condition after 10,000 cycles of worst-case loading. In situ biomechanical analysis of the lumbar spine following implantation of a novel IFA device was carried out. Twelve cadaveric functional spinal units (L2-L3 and L5-S1) were tested in 7.5 Nm flexion-extension, lateral bending, and torsion while intact and following device implantation. Additionally, specimens underwent 10,000 cycles of worst-case complex loading and were testing in ROM again. Load-displacement and fluoroscopic data were analyzed to determine ROM and to evaluate device position during cyclic testing. Devices and facets were evaluated post testing. Institutional support for implant evaluation was received by Zyga Technology. Range of motion post implantation decreased versus intact, and then was restored post cyclic-testing. Of the tested devices, 6.5% displayed slight movement (0.5-2 mm), all from tight L2-L3 facet joints with misplaced devices or insufficient cartilage. No damage was observed on the devices, and wear patterns were primarily linear. The results from this in situ cadaveric biomechanics and cyclic fatigue study demonstrate that a low-profile, conformable IFA device can maintain position and facet functionality post implantation and through 10,000 complex loading cycles. In vivo conditions were not accounted for in this model, which may affect implant behavior not predictable via a biomechanical study. However, these data along with published 1-year clinical results suggest that IFA may be a valid treatment option in patients with chronic lumbar zygapophysial pain who have exhausted medical interventional options. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Optical fiber end-facet polymer suspended-mirror devices

    NASA Astrophysics Data System (ADS)

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  11. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    PubMed

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  12. Gravimetric wear analysis and particulate characterization of bilateral facet-augmentation system--PercuDyn™.

    PubMed

    Bhattacharya, Sanghita; Nayak, Aniruddh; Goel, Vijay K; Warren, Chris; Schlaegle, Steve; Ferrara, Lisa

    2010-01-01

    Dynamic stabilization systems are emerging as an alternative to fusion instrumentation. However, cyclic loading and micro-motion at various interfaces may produce wear debris leading to adverse tissue reactions such as osteolysis. Ten million cycles of wear test was performed for PercuDyn™ in axial rotation and the wear profile and the wear rate was mapped. A validation study was undertaken to assess the efficiency of wear debris collection which accounted for experimental errors. The mean wear debris measured at the end of 10 million cycles was 4.01 mg, based on the worst-case recovery rate of 68.2%. Approximately 40% of the particulates were less than 5 μm; 92% less than 10 μm. About 43% of particulates were spherical in shape, 27% particulates were ellipsoidal and the remaining particles were of irregular shapes. The PercuDyn™ exhibited an average polymeric wear rate of 0.4 mg/million cycles; substantially less than the literature derived studies for other motion preservation devices like the Bryan disc and Charité disc. Wear debris size and shape were also similar to these devices.

  13. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2012-07-24

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  14. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    DOEpatents

    Goyal, Amit

    2013-07-09

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  15. Engineering Controlled Spalling in (100)-Oriented GaAs for Wafer Reuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweet, Cassi A.; McNeely, Joshua E.; Gorman, Brian

    Controlled spalling offers a way to cleave thin, single-crystal films or devices from wafers, particularly if the fracture planes in the material are oriented parallel to the wafer surface. Unfortunately, misalignment between the favored fracture planes and the wafer surface preferred for photovoltaic growth in (100)-oriented GaAs produces a highly faceted surface when subject to controlled spalling. This highly faceted cleavage surface is problematic in several ways: (1) it can result in large variations of spall depth due to unstable crack propagation; (2) it may introduce defects into the device zone or underlying substrate; and (3) it consumes many micronsmore » of material outside of the device zone. We present the ways in which we have engineered controlled spalling for (100)-oriented GaAs to minimize these effects. We expand the operational window for controlled spalling to avoid spontaneous spalling, find no evidence of dislocation activity in the spalled film or the parent wafer, and reduce facet height and facet height irregularity. Resolving these issues provides a viable path forward for reducing III-V device cost through the controlled spalling of (100)-oriented GaAs devices and subsequent wafer reuse when these processes are combined with a high-throughput growth method such as Hydride Vapor Phase Epitaxy.« less

  16. Biomechanical analysis of a new lumbar interspinous device with optimized topology.

    PubMed

    Chen, Chen-Sheng; Shih, Shih-Liang

    2018-01-06

    Interspinous spacers used stand-alone preserve joint movement but provide little protection for diseased segments of the spine. Used as adjuncts with fusion, interspinous spacers offer rigid stability but may accelerate degeneration on adjacent levels. Our new device is intended to balance the stability and preserves motion provided by the implant. A new interspinous spacer was devised according to the results of topology optimization studies. Four finite element (FE) spine models were created that consisted of an intact spine without an implant, implantation of the novel, the device for intervertebral assisted motion (DIAM system), and the Dynesys system. All models were loaded with moments, and their range of motions (ROMs), peak disc stresses, and facet contact forces were analyzed. The limited motion segment ROMs, shielded disc stresses, and unloaded facet contact forces of the new devices were greater than those of the DIAM and Dynesys system at L3-L4 in almost all directions of movements. The ROMs, disc stresses, and facet contact forces of the new devices at L2-L3 were slightly greater than those in the DIAM system, but much lower than those in the Dynesys system in most directions. This study demonstrated that the new device provided more stability at the instrumented level than the DIAM system did, especially in lateral rotation and the bending direction. The device caused fewer adjacent ROMs, lower disc stresses, and lower facet contact forces than the Dynesys system did. Additionally, this study conducted topology optimization to design the new device and created a smaller implant for minimal invasive surgery.

  17. The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections.

    PubMed

    Yeo, Caitlin T; Ungi, Tamas; U-Thainual, Paweena; Lasso, Andras; McGraw, Robert C; Fichtinger, Gabor

    2011-07-01

    The purpose of this study was to determine if augmented reality image overlay and laser guidance systems can assist medical trainees in learning the correct placement of a needle for percutaneous facet joint injection. The Perk Station training suite was used to conduct and record the needle insertion procedures. A total of 40 volunteers were randomized into two groups of 20. 1) The Overlay group received a training session that consisted of four insertions with image and laser guidance, followed by two insertions with laser overlay only. 2) The Control group received a training session of six classical freehand insertions. Both groups then conducted two freehand insertions. The movement of the needle was tracked during the series of insertions. The final insertion procedure was assessed to determine if there was a benefit to the overlay method compared to the freehand insertions. The Overlay group had a better success rate (83.3% versus 68.4%, p=0.002), and potential for less tissue damage as measured by the amount of needle movement inside the phantom (3077.6 mm(2) versus 5607.9 mm(2) , p =0.01). These results suggest that an augmented reality overlay guidance system can assist medical trainees in acquiring technical competence in a percutaneous needle insertion procedure. © 2011 IEEE

  18. [INVITED] Surface plasmon cavities on optical fiber end-facets for biomolecule and ultrasound detection

    NASA Astrophysics Data System (ADS)

    Yang, Tian; He, Xiaolong; Zhou, Xin; Lei, Zeyu; Wang, Yalin; Yang, Jie; Cai, De; Chen, Sung-Liang; Wang, Xueding

    2018-05-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free sensing systems that have a simple dip-and-read configuration, a small form factor, high compatibility with fiber-optic techniques, and invasive testing capability. Such devices are not only low cost replacement of current equipments in centralized laboratories, but also highly desirable for opening paths to new applications of label-free optical sensing technologies, such as point-of-care immunological tests and intravascular ultrasound imaging. In this paper, we explain the requirements and challenges for such devices from the perspectives of biomolecule and ultrasound detection applications. In such a context, we review our recent work on SMF end-facet SPR cavities. This include a glue-and-strip fabrication method to transfer a nano-patterned thin gold film to the SMF end-facet with high yield, high quality and high alignment precision, the designs of distributed Bragg reflector (DBR) and distributed feedback (DFB) SPR cavities that couple efficiently with the SMF guided mode and reach quality factors of over 100, and the preliminary results for biomolecule interaction sensing and ultrasound detection. The particular advantages and potential values of these devices have been discussed, in terms of sensitivity, data reliability, reproducibility, bandwidth, etc.

  19. Constricted double-heterojunction AlGaAs diode lasers - Structures and electrooptical characteristics

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1981-01-01

    Constricted double-heterojunction (CDH) diode lasers are presented as a class of nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various CDH structures are discussed while treating such topics as liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers with positive-index lateral mode confinement provides single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C, while exhibiting light-current characteristics with second-harmonic distortions as low as -57 dB below the fundamental level. Semileaky guide CDH lasers with an asymmetric leaky cavity provide single-mode operation to 15-20 mW/facet CW, and to 50 mW/facet at 50% duty cycle.

  20. Rotary encoding device using polygonal mirror with diffraction gratings on each facet

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror each have a low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  1. Rotary encoding device

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1993-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets is presented. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  2. Rotary encoding device with polygonal reflector and centroid detection

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1994-01-01

    A device for positioning encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a light beam is directed towards the facets. The facets of the polygonal mirror reflect the light beam such that a light spot is created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spot on the spots on the linear array detector. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spot and to compute the position of the shaft based upon the data from the analog-to-digital converter.

  3. Vehicle design considerations for active control application to subsonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Hofmann, L. G.; Clement, W. F.

    1974-01-01

    The state of the art in active control technology is summarized. How current design criteria and airworthiness regulations might restrict application of this emerging technology to subsonic CTOL transports of the 1980's are discussed. Facets of active control technology considered are: (1) augmentation of relaxed inherent stability; (2) center-of-gravity control; (3) ride quality control; (4) load control; (5) flutter control; (6) envelope limiting, and (7) pilot interface with the control system. A summary and appraisal of the current state of the art, design criteria, and recommended practices, as well as a projection of the risk in applying each of these facets of active control technology is given. A summary of pertinent literature and technical expansions is included.

  4. Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime

    NASA Astrophysics Data System (ADS)

    Carpenter, Lewis G.; Rogers, Helen L.; Cooper, Peter A.; Holmes, Christopher; Gates, James C.; Smith, Peter G. R.

    2013-11-01

    The efficient production of high-quality facets for low-loss coupling is a significant production issue in integrated optics, usually requiring time consuming and manually intensive lapping and polishing steps, which add considerably to device fabrication costs. The development of precision dicing saws with diamond impregnated blades has allowed optical grade surfaces to be machined in crystalline materials such as lithium niobate and garnets. In this report we investigate the optimization of dicing machine parameters to obtain optical quality surfaces in a silica-on-silicon planar device demonstrating high optical quality in a commercially important glassy material. We achieve a surface roughness of 4.9 nm (Sa) using the optimized dicing conditions. By machining a groove across a waveguide, using the optimized dicing parameters, a grating based loss measurement technique is used to measure precisely the average free space interface loss per facet caused by scattering as a consequence of surface roughness. The average interface loss per facet was calculated to be: -0.63 dB and -0.76 dB for the TE and TM polarizations, respectively.

  5. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates

    NASA Astrophysics Data System (ADS)

    Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.

    2014-10-01

    Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.

  6. Transforming Polar Research with Google Glass Augmented Reality (Invited)

    NASA Astrophysics Data System (ADS)

    Ruthkoski, T.

    2013-12-01

    Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device

  7. Transforming Polar Research with Google Glass Augmented Reality (Invited)

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; McEniry, M.; Maskey, M.

    2011-12-01

    Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device

  8. The role of sensory augmentation for people with vestibular deficits: Real-time balance aid and/or rehabilitation device?

    PubMed

    Sienko, K H; Whitney, S L; Carender, W J; Wall, C

    2017-01-01

    This narrative review highlights findings from the sensory augmentation field for people with vestibular deficits and addresses the outstanding questions that are critical to the translation of this technology into clinical and/or personal use. Prior research has demonstrated that the real-time use of visual, vibrotactile, auditory, and multimodal sensory augmentation technologies can improve balance during static and dynamic stance tasks within a laboratory setting. However, its application in improving gait requires additional investigation, as does its efficacy as a rehabilitation device for people with vestibular deficits. In some locomotor studies involving sensory augmentation, gait velocity decreased and secondary task performance worsened, and subjects negatively altered their segmental control strategies when cues were provided following short training sessions. A further question is whether the retention and/or carry-over effects of training with a sensory augmentation technology exceed the retention and/or carry-over effects of training alone, thereby supporting its use as a rehabilitation device. Preliminary results suggest that there are short-term improvements in balance performance following a small number of training sessions with a sensory augmentation device. Long-term clinical and home-based controlled training studies are needed. It is hypothesized that sensory augmentation provides people with vestibular deficits with additional sensory input to promote central compensation during a specific exercise/activity; however, research is needed to substantiate this theory. Major obstacles standing in the way of its use for these critical applications include determining exercise/activity specific feedback parameters and dosage strategies. This paper summarizes the reported findings that support sensory augmentation as a balance aid and rehabilitation device, but does not critically examine efficacy or the quality of the research methods used in the reviewed studies.

  9. Stability-Augmentation Devices for Miniature Aircraft

    NASA Technical Reports Server (NTRS)

    Wood, RIchard M.

    2005-01-01

    Non-aerodynamic mechanical devices are under consideration as means to augment the stability of miniature autonomous and remotely controlled aircraft. Such aircraft can be used for diverse purposes, including military reconnaissance, radio communications, and safety-related monitoring of wide areas. The need for stability-augmentation devices arises because adverse meteorological conditions generally affect smaller aircraft more strongly than they affect larger aircraft: Miniature aircraft often become uncontrollable under conditions that would not be considered severe enough to warrant grounding of larger aircraft. The need for the stability-augmentation devices to be non-aerodynamic arises because there is no known way to create controlled aerodynamic forces sufficient to counteract the uncontrollable meteorological forces on miniature aircraft. A stability-augmentation device of the type under consideration includes a mass pod (a counterweight) at the outer end of a telescoping shaft, plus associated equipment to support the operation of the aircraft. The telescoping shaft and mass pod are stowed in the rear of the aircraft. When deployed, they extend below the aircraft. Optionally, an antenna for radio communication can be integrated into the shaft. At the time of writing this article, the deployment of the telescoping shaft and mass pod was characterized as passive and automatic, but information about the deployment mechanism(s) was not available. The feasibility of this stability-augmentation concept was demonstrated in flights of hand-launched prototype aircraft.

  10. Natural Environment Illumination: Coherent Interactive Augmented Reality for Mobile and Non-Mobile Devices.

    PubMed

    Rohmer, Kai; Jendersie, Johannes; Grosch, Thorsten

    2017-11-01

    Augmented Reality offers many applications today, especially on mobile devices. Due to the lack of mobile hardware for illumination measurements, photorealistic rendering with consistent appearance of virtual objects is still an area of active research. In this paper, we present a full two-stage pipeline for environment acquisition and augmentation of live camera images using a mobile device with a depth sensor. We show how to directly work on a recorded 3D point cloud of the real environment containing high dynamic range color values. For unknown and automatically changing camera settings, a color compensation method is introduced. Based on this, we show photorealistic augmentations using variants of differential light simulation techniques. The presented methods are tailored for mobile devices and run at interactive frame rates. However, our methods are scalable to trade performance for quality and can produce quality renderings on desktop hardware.

  11. Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.

    PubMed

    Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S

    2017-11-01

    Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.

  12. Human grasp assist device and method of use

    NASA Technical Reports Server (NTRS)

    Linn, Douglas Martin (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor)

    2012-01-01

    A grasp assist device includes a glove portion having phalange rings, contact sensors for measuring a grasping force applied by an operator wearing the glove portion, and a tendon drive system (TDS). The device has flexible tendons connected to the phalange rings for moving the rings in response to feedback signals from the sensors. The TDS is connected to each of the tendons, and applies an augmenting tensile force thereto via a microcontroller adapted for determining the augmenting tensile force as a function of the grasping force. A method of augmenting a grasping force of an operator includes measuring the grasping force using the sensors, encoding the grasping force as the feedback signals, and calculating the augmenting tensile force as a function of the feedback signals using the microcontroller. The method includes energizing at least one actuator of a tendon drive system (TDS) to thereby apply the augmenting tensile force.

  13. Human Augmentics: augmenting human evolution.

    PubMed

    Kenyon, Robert V; Leigh, Jason

    2011-01-01

    Human Augmentics (HA) refers to technologies for expanding the capabilities, and characteristics of humans. One can think of Human Augmentics as the driving force in the non-biological evolution of humans. HA devices will provide technology to compensate for human biological limitations either natural or acquired. The strengths of HA lie in its applicability to all humans. Its interoperability enables the formation of ecosystems whereby augmented humans can draw from other realms such as "the Cloud" and other augmented humans for strength. The exponential growth in new technologies portends such a system but must be designed for interaction through the use of open-standards and open-APIs for system development. We discuss the conditions needed for HA to flourish with an emphasis on devices that provide non-biological rehabilitation.

  14. Studies of single-mode injection lasers and of quaternary materials. Volume 1: Single-mode constricted double-heterojunction AlGaAs diode lasers

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1982-01-01

    Constricted double-heterojunction (CDH) lasers are presented as the class of single-mode nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various types of CDH structures are considered under three general topics: liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers have positive-index lateral-mode confinement and provide: single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C; light-current characteristics with second-harmonic distortion as low as -57 dB below the fundamental level; threshold-current temperature coefficients, as high as 375 C (pulsed) and 310 C (CW); constant external differential quantum efficiency to 100 C; and lasing operation to 170 C CW and 280 C pulsed. Semileakyguide CDH lasers have an asymmetric leaky cavity for lateral-mode confinement and provide single-mode operation to 15 to 20 mW/facet CW and to 50 mW/facet at 50% duty cycle. Modulation characteristics and preliminary reliability data are discussed.

  15. Physical interface dynamics alter how robotic exosuits augment human movement: implications for optimizing wearable assistive devices.

    PubMed

    Yandell, Matthew B; Quinlivan, Brendan T; Popov, Dmitry; Walsh, Conor; Zelik, Karl E

    2017-05-18

    Wearable assistive devices have demonstrated the potential to improve mobility outcomes for individuals with disabilities, and to augment healthy human performance; however, these benefits depend on how effectively power is transmitted from the device to the human user. Quantifying and understanding this power transmission is challenging due to complex human-device interface dynamics that occur as biological tissues and physical interface materials deform and displace under load, absorbing and returning power. Here we introduce a new methodology for quickly estimating interface power dynamics during movement tasks using common motion capture and force measurements, and then apply this method to quantify how a soft robotic ankle exosuit interacts with and transfers power to the human body during walking. We partition exosuit end-effector power (i.e., power output from the device) into power that augments ankle plantarflexion (termed augmentation power) vs. power that goes into deformation and motion of interface materials and underlying soft tissues (termed interface power). We provide empirical evidence of how human-exosuit interfaces absorb and return energy, reshaping exosuit-to-human power flow and resulting in three key consequences: (i) During exosuit loading (as applied forces increased), about 55% of exosuit end-effector power was absorbed into the interfaces. (ii) However, during subsequent exosuit unloading (as applied forces decreased) most of the absorbed interface power was returned viscoelastically. Consequently, the majority (about 75%) of exosuit end-effector work over each stride contributed to augmenting ankle plantarflexion. (iii) Ankle augmentation power (and work) was delayed relative to exosuit end-effector power, due to these interface energy absorption and return dynamics. Our findings elucidate the complexities of human-exosuit interface dynamics during transmission of power from assistive devices to the human body, and provide insight into improving the design and control of wearable robots. We conclude that in order to optimize the performance of wearable assistive devices it is important, throughout design and evaluation phases, to account for human-device interface dynamics that affect power transmission and thus human augmentation benefits.

  16. Factors affecting results of fluoroscopy-guided facet joint injection: Probable differences in the outcome of treatment between pure facet joint hypertrophy and concomitant diseases.

    PubMed

    Albayrak, Akif; Ozkul, Baris; Balioglu, Mehmet Bulent; Atici, Yunus; Gultekin, Muhammet Zeki; Albayrak, Merih Dilan

    2016-01-01

    Retrospective cohort study. Facet joints are considered a common source of chronic low-back pain. To determine whether pathogens related to the facet joint arthritis have any effect on treatment failure. Facet joint injection was applied to 94 patients treated at our hospital between 2011 and 2012 (mean age 59.5 years; 80 women and 14 men). For the purpose of analysis, the patients were divided into two groups. Patients who only had facet hypertrophy were placed in group A (47 patients, 41 women and 6 men, mean age 55.3 years) and patients who had any additional major pathology to facet hypertrophy were placed in group B (47 patients, 39 women and 8 men, mean age 58.9 years). Injections were applied around the facet joint under surgical conditions utilizing fluoroscopy device guidance. A mixture of methylprednisolone and lidocaine was used as the injection ingredient. In terms of Oswestry Disability Index (ODI) and visual analog scale (VAS) scores, no significant difference was found between preinjection and immediate postinjection values in both groups, and the scores of group A patients were significantly lower (P < 0.005) compared with that of group B patients at the end of the third, sixth, and twelfth month. For low-back pain caused by facet hypertrophy, steroid injection around the facet joint is an effective treatment, but if there is an existing major pathology, it is not as effective.

  17. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.

    PubMed

    Kansaku, Kenji; Hata, Naoki; Takano, Kouji

    2010-02-01

    A brain-machine interface (BMI) uses neurophysiological signals from the brain to control external devices, such as robot arms or computer cursors. Combining augmented reality with a BMI, we show that the user's brain signals successfully controlled an agent robot and operated devices in the robot's environment. The user's thoughts became reality through the robot's eyes, enabling the augmentation of real environments outside the anatomy of the human body.

  18. High Angular Sensitivity, Absolute Rotary Encoding Device with Polygonal Mirror and Stand-Alone Diffraction Gratings

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    1996-01-01

    A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror direct the light beam to a stand-alone low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-lo-digital converter.

  19. Understanding the true shape of Au-catalyzed GaAs nanowires.

    PubMed

    Jiang, Nian; Wong-Leung, Jennifer; Joyce, Hannah J; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-10-08

    With increasing interest in nanowire-based devices, a thorough understanding of the nanowire shape is required to gain tight control of the quality of nanowire heterostructures and improve the performance of related devices. We present a systematic study of the sidewalls of Au-catalyzed GaAs nanowires by investigating the faceting process from the beginning with vapor-liquid-solid (VLS) nucleation, followed by the simultaneous radial growth on the sidewalls, and to the end with sidewall transformation during annealing. The VLS nucleation interface of our GaAs nanowires is revealed by examining cross sections of the nanowire, where the nanowire exhibits a Reuleaux triangular shape with three curved surfaces along {112}A. These curved surfaces are not thermodynamically stable and adopt {112}A facets during radial growth. We observe clear differences in radial growth rate between the ⟨112⟩A and ⟨112⟩B directions with {112}B facets forming due to the slower radial growth rate along ⟨112⟩B directions. These sidewalls transform to {110} facets after high temperature (>500 °C) annealing. A nucleation model is proposed to explain the origin of the Reuleaux triangular shape of the nanowires, and the sidewall evolution is explained by surface kinetic and thermodynamic limitations.

  20. Light Augmentation Device: A New Surgical Tool for Improved Laparoscopic Visibility and Transillumination: Proof-of-Concept Study.

    PubMed

    Asti, Emanuele; Nebbia, Fabio; Sironi, Andrea; Bottino, Vincenzo; Bonitta, Gianluca; Bonavina, Luigi

    2016-12-01

    The light augmentation device (LAD ® ) is a new disposable tool designed to improve observation by transillumination in laparoscopic surgery. It can be introduced into the abdomen through an 11-12 mm port as a supplementary light source. The miniaturized design allows the surgeon to pick up the device with an endograsper and to place it under direct vision where needed. This proof-of-concept study demonstrated safety and efficacy of the device in the animal model.

  1. Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation.

    PubMed

    Zhang, Tiankai; Long, Mingzhu; Yan, Keyou; Zeng, Xiaoliang; Zhou, Fengrui; Chen, Zefeng; Wan, Xi; Chen, Kun; Liu, Pengyi; Li, Faming; Yu, Tao; Xie, Weiguang; Xu, Jianbin

    2016-11-30

    Quantification of intergrain length scale properties of CH 3 NH 3 PbI 3 (MAPbI 3 ) can provide further understanding of material physics, leading to improved device performance. In this work, we noticed that two typical types of facets appear in sequential deposited perovskite (SDP) films: smooth and steplike morphologies. By mapping the surface potential as well as the photoluminescence (PL) peak position, we revealed the heterogeneity of SDP thin films that smooth facets are almost intrinsic with a PL peak at 775 nm, while the steplike facets are p-type-doped with 5-nm blue-shifted PL peak. Considering the reaction process, we propose that the smooth facets have well-defined crystal lattices that resulted from the interfacial reaction between MAI and PbI 2 domains containing low trap states density. The steplike facets are MAI-rich originated from the grain boundaries of PbI 2 film and own more trap states. Conversion of steplike facets to smooth facets can be controlled by increasing the reaction time through Ostwald ripening. The improved stability, photoresponsivity up to 0.3 A/W, on/off ratio up to 3900, and decreased photo response time to ∼160 μs show that the trap states can be annihilated effectively to improve the photoelectrical conversion with prolonged reaction time and elimination of steplike facets. Our findings demonstrate the relationship between the facet heterogeneity of SDP films and crystal growth process for the first time, and imply that the systematic control of crystal grain modification will enable amelioration of crystallinity for more-efficient perovskite photoelectrical applications.

  2. Computer Augmented Learning; A Survey.

    ERIC Educational Resources Information Center

    Kindred, J.

    The report contains a description and summary of computer augmented learning devices and systems. The devices are of two general types programed instruction systems based on the teaching machines pioneered by Pressey and developed by Skinner, and the so-called "docile" systems that permit greater user-direction with the computer under student…

  3. Aerodynamic Control-Augmentation Devices For Saturn-Class Launch Vehicles With Aft Centers Of Gravity

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report describes study of aerodynamic flight-control-augmentation devices proposed for use in increasing payload capabilities of future launch vehicles by allowing more aft centers of gravity. Proposed all-movable devices not only provide increased control authority during ascent trajectory, but also reduce engine gimballing requirements and enhance crew safety. Report proposes various aerodynamic control surfaces mounted fore and aft on Saturn-class launch vehicle.

  4. Early augmented language intervention for children with developmental delays: potential secondary motor outcomes.

    PubMed

    Whitmore, Ani S; Romski, Mary Ann; Sevcik, Rose A

    2014-09-01

    This exploratory study examined the potential secondary outcome of an early augmented language intervention that incorporates speech-generating devices (SGD) on motor skill use for children with developmental delays. The data presented are from a longitudinal study by Romski and colleagues. Toddlers in the augmented language interventions were either required (Augmented Communication-Output; AC-O) or not required (Augmented Communication-Input; AC-I) to use the SGD to produce an augmented word. Three standardized assessments and five event-based coding schemes measured the participants' language abilities and motor skills. Toddlers in the AC-O intervention used more developmentally appropriate motor movements and became more accurate when using the SGD to communicate than toddlers in the AC-I intervention. AAC strategies, interventionist/parent support, motor learning opportunities, and physical feedback may all contribute to this secondary benefit of AAC interventions that use devices.

  5. Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices.

    PubMed

    Ponce, Brent A; Menendez, Mariano E; Oladeji, Lasun O; Fryberger, Charles T; Dantuluri, Phani K

    2014-11-01

    The authors describe the first surgical case adopting the combination of real-time augmented reality and wearable computing devices such as Google Glass (Google Inc, Mountain View, California). A 66-year-old man presented to their institution for a total shoulder replacement after 5 years of progressive right shoulder pain and decreased range of motion. Throughout the surgical procedure, Google Glass was integrated with the Virtual Interactive Presence and Augmented Reality system (University of Alabama at Birmingham, Birmingham, Alabama), enabling the local surgeon to interact with the remote surgeon within the local surgical field. Surgery was well tolerated by the patient and early surgical results were encouraging, with an improvement of shoulder pain and greater range of motion. The combination of real-time augmented reality and wearable computing devices such as Google Glass holds much promise in the field of surgery. Copyright 2014, SLACK Incorporated.

  6. Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes

    NASA Astrophysics Data System (ADS)

    Liang, De-Chun; An, Qi; Jin, Peng; Li, Xin-Kun; Wei, Heng; Wu, Ju; Wang, Zhan-Guo

    2011-10-01

    This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.

  7. A Collaborative Augmented Campus Based on Location-Aware Mobile Technology

    ERIC Educational Resources Information Center

    De Lucia, A.; Francese, R.; Passero, I.; Tortora, G.

    2012-01-01

    Mobile devices are changing the way people work and communicate. Most of the innovative devices offer the opportunity to integrate augmented reality in mobile applications, permitting the combination of the real world with virtual information. This feature can be particularly useful to enhance informal and formal didactic actions based on student…

  8. CW Performance of an InGaAs-GaAs-AlGaAs Laterally-Coupled Distributed Feedback (LC-DFB) Ridge Laser Diode

    NASA Technical Reports Server (NTRS)

    Martin, R. D.; Forouhar, S.; Keo, S.; Lang, R. J.; Hunsperger, R. G.; Tiberio, R. C.; Chapman, P. F.

    1995-01-01

    Single-mode distributed feedback (DFB) laser diodes typically require a two-step epitaxial growth or use of a corrugated substrate. We demonstrate InGaAs-GaAs-AlGaAs DFB lasers fabricated from a single epitaxial growth using lateral evanescent coupling of the optical field to a surface grating etehed along the sides of the ridge. A CW threshold current of 25 mA and external quantum efficiency of 0.48 mW/mA per facet were measured for a 1 mm cavity length device with anti-reflection coated facets. Single-mode output powers as high as 11 mW per facet at 935 nm wavelength were attained. A coupling coefficient of at least 5.8/cm was calculated from the subthreshold spectrum taking into account the 2% residual facet reflectivity.

  9. Au-Assisted Substrate-Faceting for Inclined Nanowire Growth.

    PubMed

    Kang, Jung-Hyun; Krizek, Filip; Zaluska-Kotur, Magdalena; Krogstrup, Peter; Kacman, Perla; Beidenkopf, Haim; Shtrikman, Hadas

    2018-06-12

    We study the role of gold droplets in the initial stage of nanowire growth via the vapor-liquid-solid method. Apart from serving as a collections center for growth species, the gold droplets carry an additional crucial role that necessarily precedes the nanowire emergence, that is, they assist the nucleation of nanocraters with strongly faceted {111}B side walls. Only once these facets become sufficiently large and regular, the gold droplets start nucleating and guiding the growth of nanowires. We show that this dual role of the gold droplets can be detected and monitored by high-energy electron diffraction during growth. Moreover, gold-induced formation of craters and the onset of nanowires growth on the {111}B facets inside the craters are confirmed by the results of Monte Carlo simulations. The detailed insight into the growth mechanism of inclined nanowires will help to engineer new and complex nanowire-based device architectures.

  10. Facet-Selective Epitaxy of Compound Semiconductors on Faceted Silicon Nanowires.

    PubMed

    Mankin, Max N; Day, Robert W; Gao, Ruixuan; No, You-Shin; Kim, Sun-Kyung; McClelland, Arthur A; Bell, David C; Park, Hong-Gyu; Lieber, Charles M

    2015-07-08

    Integration of compound semiconductors with silicon (Si) has been a long-standing goal for the semiconductor industry, as direct band gap compound semiconductors offer, for example, attractive photonic properties not possible with Si devices. However, mismatches in lattice constant, thermal expansion coefficient, and polarity between Si and compound semiconductors render growth of epitaxial heterostructures challenging. Nanowires (NWs) are a promising platform for the integration of Si and compound semiconductors since their limited surface area can alleviate such material mismatch issues. Here, we demonstrate facet-selective growth of cadmium sulfide (CdS) on Si NWs. Aberration-corrected transmission electron microscopy analysis shows that crystalline CdS is grown epitaxially on the {111} and {110} surface facets of the Si NWs but that the Si{113} facets remain bare. Further analysis of CdS on Si NWs grown at higher deposition rates to yield a conformal shell reveals a thin oxide layer on the Si{113} facet. This observation and control experiments suggest that facet-selective growth is enabled by the formation of an oxide, which prevents subsequent shell growth on the Si{113} NW facets. Further studies of facet-selective epitaxial growth of CdS shells on micro-to-mesoscale wires, which allows tuning of the lateral width of the compound semiconductor layer without lithographic patterning, and InP shell growth on Si NWs demonstrate the generality of our growth technique. In addition, photoluminescence imaging and spectroscopy show that the epitaxial shells display strong and clean band edge emission, confirming their high photonic quality, and thus suggesting that facet-selective epitaxy on NW substrates represents a promising route to integration of compound semiconductors on Si.

  11. The design of the layout of faceted multi-channel electro-optical spatial coordinates measuring instrument for point-like bright objects

    NASA Astrophysics Data System (ADS)

    Repin, Vladislav A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2017-06-01

    For many applied problems it is necessary to obtain information about the situation in a wide angular field in order to measure various parameters of objects: their spatial coordinates, instantaneous velocities, and so on. In this case, one interesting bionic approach can be used - a mosaic (or discrete, otherwise, facet) angular field. Such electro-optical system constructively imitates the visual apparatus of insects: many photodetectors like ommatidia (elements of the facet eye structure) are located on a non-planar surface. Such devices can be used in photogrammetry and aerial photography systems (if the space is sufficient), in the transport sector as vehicle orientation organs, as systems for monitoring in unmanned aerial vehicles, in endoscopy for obtaining comprehensive information on the state of various cavities, in intelligent robotic systems. In this manuscript discusses the advantages and disadvantages of multi-channeled optoelectronic systems with a mosaic angular field, presents possible options for their use, and discusses some of the design procedures performed when developing a layout of a coordinate measuring device.

  12. Augmented Reality in Education--Cases, Places and Potentials

    ERIC Educational Resources Information Center

    Bower, Matt; Howe, Cathie; McCredie, Nerida; Robinson, Austin; Grover, David

    2014-01-01

    Augmented Reality is poised to profoundly transform Education as we know it. The capacity to overlay rich media onto the real world for viewing through web-enabled devices such as phones and tablet devices means that information can be made available to students at the exact time and place of need. This has the potential to reduce cognitive…

  13. Augmented paper maps: Exploring the design space of a mixed reality system

    NASA Astrophysics Data System (ADS)

    Paelke, Volker; Sester, Monika

    Paper maps and mobile electronic devices have complementary strengths and shortcomings in outdoor use. In many scenarios, like small craft sailing or cross-country trekking, a complete replacement of maps is neither useful nor desirable. Paper maps are fail-safe, relatively cheap, offer superior resolution and provide large scale overview. In uses like open-water sailing it is therefore mandatory to carry adequate maps/charts. GPS based mobile devices, on the other hand, offer useful features like automatic positioning and plotting, real-time information update and dynamic adaptation to user requirements. While paper maps are now commonly used in combination with mobile GPS devices, there is no meaningful integration between the two, and the combined use leads to a number of interaction problems and potential safety issues. In this paper we explore the design space of augmented paper maps in which maps are augmented with additional functionality through a mobile device to achieve a meaningful integration between device and map that combines their respective strengths.

  14. High power blue laser diodes on semipolar (202¯1¯) GaN substrates

    NASA Astrophysics Data System (ADS)

    Pourhashemi, Seyed Arash

    High power blue laser didoes (LDs), among other applications, show the promise of realizing efficient and reliable solid state lighting systems. Since first GaN optoelectronic devices were demonstrated in early 1990s, GaN LDs were traditionally fabricated on polar c-plane. However in recent years there has been a growing interest in nonpolar and semipolar planes. Nonpolar and semipolar devices offer the prospect of achieving higher efficiencies though elimination or reduction of polarization-related electric fields. In this project I investigated semipolar (202 ¯1 ¯) plane of GaN for blue LDs fabrication. Results include blue LD (Lambda=450 nm) with highest output power, differential quantum efficiency (?d) and external quantum efficiency (EQE) reported for a GaN LD on a semipolar plane to date. Output power of 2.52 W, etad=50% and EQE=39% were achieved in pulsed mode and output power of 1.71 W was achieved in true CW mode. Moreover, use of indium tin oxide (ITO) as cladding layer in order to reduce the thickness of Mg-doped p-GaN layer was investigated. Blue LDs with ITO cladding were demonstrated in this work with highest output power, etad and EQE reported for a GaN LD with transparent conducting oxide (TCO) cladding layer to date. The lack of any natural cleavage plane orthogonal to the in-plane projection of the c-axis on semipolar planes has made Cl2-based dry etch processes the most common way to form mirror facets for semipolar LDs. However, mirror facets fabricated by dry etching can be inclined or rough. For this work, mechanical polishing was used to form LD mirror facets. The dependence of output power on current did not change with repeated CW measurements, indicating that the polished facets did not degrade under high power CW operation. These results show that polished facets are a viable alternative to cleaved or etched facets for high power CW semipolar LDs.

  15. Smartphones and Cognition: A Review of Research Exploring the Links between Mobile Technology Habits and Cognitive Functioning

    PubMed Central

    Wilmer, Henry H.; Sherman, Lauren E.; Chein, Jason M.

    2017-01-01

    While smartphones and related mobile technologies are recognized as flexible and powerful tools that, when used prudently, can augment human cognition, there is also a growing perception that habitual involvement with these devices may have a negative and lasting impact on users’ ability to think, remember, pay attention, and regulate emotion. The present review considers an intensifying, though still limited, area of research exploring the potential cognitive impacts of smartphone-related habits, and seeks to determine in which domains of functioning there is accruing evidence of a significant relationship between smartphone technology and cognitive performance, and in which domains the scientific literature is not yet mature enough to endorse any firm conclusions. We focus our review primarily on three facets of cognition that are clearly implicated in public discourse regarding the impacts of mobile technology – attention, memory, and delay of gratification – and then consider evidence regarding the broader relationships between smartphone habits and everyday cognitive functioning. Along the way, we highlight compelling findings, discuss limitations with respect to empirical methodology and interpretation, and offer suggestions for how the field might progress toward a more coherent and robust area of scientific inquiry. PMID:28487665

  16. Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices.

    PubMed

    O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram

    2018-03-01

    We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.

  17. [Intraoperative augmented reality visualization. Current state of development and initial experiences with the CamC].

    PubMed

    Weidert, S; Wang, L; von der Heide, A; Navab, N; Euler, E

    2012-03-01

    The intraoperative application of augmented reality (AR) has so far mainly taken place in the field of endoscopy. Here, the camera image of the endoscope was augmented by computer graphics derived mostly from preoperative imaging. Due to the complex setup and operation of the devices, they have not yet become part of routine clinical practice. The Camera Augmented Mobile C-arm (CamC) that extends a classic C-arm by a video camera and mirror construction is characterized by its uncomplicated handling. It combines its video live stream geometrically correct with the acquired X-ray. The clinical application of the device in 43 cases showed the strengths of the device in positioning for X-ray acquisition, incision placement, K-wire placement, and instrument guidance. With its new function and the easy integration into the OR workflow of any procedure that requires X-ray imaging, the CamC has the potential to become the first widely used AR technology for orthopedic and trauma surgery.

  18. Embedding Augmentative Communication within Early Childhood Classrooms.

    ERIC Educational Resources Information Center

    DiCarlo, Cynthia; Banajee, Meher; Stricklin, Sarintha Buras

    2000-01-01

    This article first describes various augmentative communication systems including sign language, picture symbols, and voice output communication devices. It then explains ways to embed augmentative communication within four types of early childhood classroom activities: (1) special or planned activities, (2) meal time, (3) circle time, and (4)…

  19. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    PubMed

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  20. Computer-Based Video Instruction to Teach the Use of Augmentative and Alternative Communication Devices for Ordering at Fast-Food Restaurants

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Cronin, Beth

    2006-01-01

    In the study reported on here, the authors used computer-based video instruction (CBVI) to teach 3 high school students with moderate or severe intellectual disabilities how to order in fast-food restaurants by using an augmentative, alternative communication device. The study employed a multiple probe design to institute CBVI as the only…

  1. The AIDLET Model: A Framework for Selecting Games, Simulations and Augmented Reality Environments in Mobile Learning

    ERIC Educational Resources Information Center

    Bidarra, José; Rothschild, Meagan; Squire, Kurt; Figueiredo, Mauro

    2013-01-01

    Smartphones and other mobile devices like the iPhone, Android, Kindle Fire, and iPad have boosted educators' interest in using mobile media for education. Applications from games to augmented reality are thriving in research settings, and in some cases schools and universities, but relatively little is known about how such devices may be used for…

  2. Laser-induced asymmetric faceting and growth of a nano-protrusion on a tungsten tip

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Hirofumi; Zadin, Vahur; Kunze, Karsten; Hafner, Christian; Aabloo, Alvo; Kim, Dong Eon; Kling, Matthias F.; Djurabekova, Flyura; Osterwalder, Jürg; Wuensch, Walter

    2016-12-01

    Irradiation of a sharp tungsten tip by a femtosecond laser and exposed to a strong DC electric field led to reproducible surface modifications. By a combination of field emission microscopy and scanning electron microscopy, we observed asymmetric surface faceting with sub-ten nanometer high steps. The presence of faceted features mainly on the laser-exposed side implies that the surface modification was driven by a laser-induced transient temperature rise on a scale of a couple of picoseconds in the tungsten tip apex. Moreover, we identified the formation of a nano-tip a few nanometers high located at one of the corners of a faceted plateau. The results of simulations emulating the experimental conditions are consistent with the experimental observations. The presented technique would be a new method to fabricate a nano-tip especially for generating coherent electron pulses. The features may also help to explain the origin of enhanced field emission, which leads to vacuum arcs, in high electric field devices such as radio-frequency particle accelerators.

  3. Second-order distributed-feedback surface plasmon resonator for single-mode fiber end-facet biosensing

    NASA Astrophysics Data System (ADS)

    Lei, Zeyu; Zhou, Xin; Yang, Jie; He, Xiaolong; Wang, Yalin; Yang, Tian

    2017-04-01

    Integrating surface plasmon resonance (SPR) devices upon single-mode fiber (SMF) end facets renders label-free biosensing systems that have a dip-and-read configuration, high compatibility with fiber-optic techniques, and in vivo monitoring capability, which however meets the challenge to match the performance of free-space counterparts. We report a second-order distributed feedback (DFB) SPR cavity on an SMF end facet and its application in protein interaction analysis. In our device, a periodic array of nanoslits in a gold film is used to couple fiber guided lightwaves to surface plasmon polaritons (SPPs) with its first order spatial Fourier component, while the second order spatial Fourier component provides DFB to SPP propagation and produces an SPP bandgap. A phase shift section in the DFB structure introduces an SPR defect state within the SPP bandgap, whose mode profile is optimized to match that of the SMF to achieve a reasonable coupling efficiency. We report an experimental refractive index sensitivity of 628 nm RIU-1, a figure-of-merit of 80 RIU-1, and a limit of detection of 7 × 10-6 RIU. The measurement of the real-time interaction between human immunoglobulin G molecules and their antibodies is demonstrated.

  4. Constructing Liminal Blends in a Collaborative Augmented-Reality Learning Environment

    ERIC Educational Resources Information Center

    Enyedy, Noel; Danish, Joshua A.; DeLiema, David

    2015-01-01

    In vision-based augmented-reality (AR) environments, users view the physical world through a video feed or device that "augments" the display with a graphical or informational overlay. Our goal in this manuscript is to ask "how" and "why" these new technologies create opportunities for learning. We suggest that AR is…

  5. Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air

    NASA Astrophysics Data System (ADS)

    Abdellatif, M. H.; Salerno, M.; Polovitsyn, Anatolii; Marras, Sergio; De Angelis, Francesco

    2017-05-01

    The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.

  6. Acoustic scattering from phononic crystals with complex geometry.

    PubMed

    Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J

    2016-05-01

    This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique.

  7. Sleeve reaction chamber system

    DOEpatents

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  8. High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W

    PubMed Central

    Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Von der Porten, S.; Pflügl, C.; Diehl, L.; Capasso, Federico; Patel, C. Kumar N.

    2010-01-01

    A strain-balanced, AlInAs/InGaAs/InP quantum cascade laser structure, designed for light emission at 4.0 μm using nonresonant extraction design approach, was grown by molecular beam epitaxy. Laser devices were processed in buried heterostructure geometry. An air-cooled laser system incorporating a 10-mm × 11.5-μm laser with antireflection-coated front facet and high-reflection-coated back facet delivered over 2 W of single-ended optical power in a collimated beam. Maximum continuous-wave room temperature wall plug efficiency of 5.0% was demonstrated for a high-reflection-coated 3.65-mm × 8.7-μm laser mounted on an aluminum nitride submount.

  9. Family members' perceptions of augmentative and alternative communication device use.

    PubMed

    Bailey, Rita L; Parette, Howard P; Stoner, Julia B; Angell, Maureen E; Carroll, Kathleen

    2006-01-01

    Although advancements in technology have expanded the use of augmentative and alternative communication (AAC) devices for children with disabilities, the use of AAC devices in school and home settings is often inconsistent. The purpose of this study was to examine family members' perceptions regarding the use of AAC devices. Factors that were perceived to affect student's use of AAC devices, family expectations, and benefits of AAC device use were explored. Semistructured interviews were conducted with 6 family members (primary caregivers) of 7 youth who primarily use AAC devices to communicate in the school environment. The interviews were analyzed using cross-case analysis. A variety of common perspectives emerged from the data, including four thematic categories: expectations, facilitators, barriers, and benefits of AAC device use. Information gained in this investigation may be used to improve professional-family and teaming relationships and serve to benefit AAC users in school and home settings.

  10. Adaptive Monocular Visual–Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices

    PubMed Central

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-01-01

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143

  11. Worldwide Experience with Erosion of the Magnetic Sphincter Augmentation Device.

    PubMed

    Alicuben, Evan T; Bell, Reginald C W; Jobe, Blair A; Buckley, F P; Daniel Smith, C; Graybeal, Casey J; Lipham, John C

    2018-04-17

    The magnetic sphincter augmentation device continues to become a more common antireflux surgical option with low complication rates. Erosion into the esophagus is an important complication to recognize and is reported to occur at very low incidences (0.1-0.15%). Characterization of this complication remains limited. We aim to describe the worldwide experience with erosion of the magnetic sphincter augmentation device including presentation, techniques for removal, and possible risk factors. We reviewed data obtained from the device manufacturer Torax Medical, Inc., as well as the Manufacturer and User Facility Device Experience (MAUDE) database. The study period was from February 2007 through July 2017 and included all devices placed worldwide. In total, 9453 devices were placed and there were 29 reported cases of erosions. The median time to presentation of an erosion was 26 months with most occurring between 1 and 4 years after placement. The risk of erosion was 0.3% at 4 years after device implantation. Most patients experienced new-onset dysphagia prompting evaluation. Devices were successfully removed in all patients most commonly via an endoscopic removal of the eroded portion followed by a delayed laparoscopic removal of the remaining beads. At a median follow-up of 58 days post-removal, there were no complications and 24 patients have returned to baseline. Four patients reported ongoing mild dysphagia. Erosion of the LINX device is an important but rare complication to recognize that has been safely managed via minimally invasive approaches without long-term consequences.

  12. Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.

  13. Analysis of the Effects of Individual Differences on Cognitive Performance for the Development of Military Socio-Cultural Performance Moderators

    ERIC Educational Resources Information Center

    Bagley, Katherine G.

    2012-01-01

    Technological devices are ubiquitous in nearly every facet of society. There are substantial investments made in organizations on a daily basis to improve information technology. From a military perspective, the ultimate goal of these highly sophisticated devices is to assist soldiers in achieving mission success across dynamic and often chaotic…

  14. Augmented Reality Comes to Physics

    ERIC Educational Resources Information Center

    Buesing, Mark; Cook, Michael

    2013-01-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as…

  15. Efficacy and Safety of Augmenting the Preclose Technique with a Collagen-Based Closure Device for Percutaneous Endovascular Aneurysm Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Rafiuddin, E-mail: rafiuddin.patel@ouh.nhs.uk; Juszczak, Maciej T.; Bratby, Mark J.

    PurposeTo report our experience of selectively augmenting the preclose technique for percutaneous endovascular aneurysm repair (p-EVAR) with an Angio-Seal device as a haemostatic adjunct in cases of significant bleeding after tensioning the sutures of the suture-mediated closure devices.Materials and MethodsProspectively collected data for p-EVAR patients at our institute were analysed. Outcomes included technical success and access site complications. A logistic regression model was used to analyse the effects of sheath size, CFA features and stent graft type on primary failure of the preclose technique necessitating augmentation and also on the development of complications.Resultsp-EVAR was attempted via 122 CFA access sitesmore » with a median sheath size of 18-French (range 12- to 28-French). Primary success of the preclose technique was 75.4 % (92/122). Angio-Seal augmentation was utilised as an adjunct to the preclose technique in 20.5 % (25/122). The overall p-EVAR success rate was 95.1 % (116/122). There was a statistically significant relationship (p = 0.0093) between depth of CFA and primary failure of preclose technique. CFA diameter, calcification, type of stent graft and sheath size did not have significant effects on primary preclose technique failure. Overall 4.9 % (6/122) required surgical conversion but otherwise there were no major complications.ConclusionAugmentation with an Angio-Seal device is a safe and effective adjunct to increase the success rate of the preclose technique in p-EVAR.« less

  16. Alveolar Ridge Augmentation with Three-Dimensional Printed Hydroxyapatite Devices: A Preclinical Study.

    PubMed

    Fiorellini, Joseph P; Norton, Michael R; Luan, Kevin WanXin; Kim, David Minjoon; Wada, Kei; Sarmiento, Hector L

    2018-02-14

    The objective of this study was to evaluate the effectiveness of precise three-dimensional hydroxyapatite printed micro- and macrochannel devices for alveolar ridge augmentation in a canine model. All grafts induced minimal inflammatory and fibrotic reactions. Examination of undecalcified sections revealed that both types of grafts demonstrated bone ingrowth. The majority of the bone growth into the block graft was into the channels, though a portion grew directly into the construct in the form of small bony spicules. In conclusion, bone ingrowth was readily demonstrated in the middle of the implanted printed devices.

  17. A biomechanical study of artificial cervical discs using computer simulation.

    PubMed

    Ahn, Hyung Soo; DiAngelo, Denis J

    2008-04-15

    A virtual simulation model of the subaxial cervical spine was used to study the biomechanical effects of various disc prosthesis designs. To study the biomechanics of different design features of cervical disc arthroplasty devices. Disc arthroplasty is an alternative approach to cervical fusion surgery for restoring and maintaining motion at a diseased spinal segment. Different types of cervical disc arthroplasty devices exist and vary based on their placement and degrees of motion offered. A virtual dynamic model of the subaxial cervical spine was used to study 3 different prosthetic disc designs (PDD): (1) PDD-I: The center of rotation of a spherical joint located at the mid C5-C6 disc, (2) PDD-II: The center of rotation of a spherical joint located 6.5 mm below the mid C5-C6 disc, and (3) PDD-III: The center of rotation of a spherical joint in a plane located at the C5-C6 disc level. A constrained spherical joint placed at the disc level (PDD-I) significantly increased facet loads during extension. Lowering the rotational axis of the spherical joint towards the subjacent body (PDD-II) caused a marginal increase in facet loading during flexion, extension, and lateral bending. Lastly, unconstraining the spherical joint to move freely in a plane (PDD-III) minimized facet load build up during all loading modes. The simulation model showed the impact simple design changes may have on cervical disc dynamics. The predicted facet loads calculated from computer model have to be validated in the experimental study.

  18. A Heads-Up Display for Diabetic Limb Salvage Surgery

    PubMed Central

    Rankin, Timothy M.; Giovinco, Nicholas A.; Mills, Joseph L.; Matsuoka, Yoky

    2014-01-01

    Although the use of augmented reality has been well described over the past several years, available devices suffer from high cost, an uncomfortable form factor, suboptimal battery life, and lack an app-based developer ecosystem. This article describes the potential use of a novel, consumer-based, wearable device to assist surgeons in real time during limb preservation surgery and clinical consultation. Using routine intraoperative, clinical, and educational case examples, we describe the use of a wearable augmented reality device (Google Glass; Google, Mountain View, CA). The device facilitated hands-free, rapid communication, documentation, and consultation. An eyeglass-mounted screen form factor has the potential to improve communication, safety, and efficiency of intraoperative and clinical care. We believe this represents a natural progression toward union of medical devices with consumer technology. PMID:24876445

  19. Multi-spectral investigation of bulk and facet failures in high-power single emitters at 980 nm

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Shamay, Moshe; Cohen, Shalom; Shkedy, Lior; Berk, Yuri; Tessler, Renana; Klumel, Genadi; Rappaport, Noam; Karni, Yoram

    2013-03-01

    Reliable single emitters delivering >10W in the 9xx nm spectral range, are common building blocks for fiber laser pumps. As facet passivation techniques can suppress or delay catastrophic optical mirror damage (COMD) extending emitter reliability into hundreds of thousands of hours, other, less dominant, failure modes such as intra-chip catastrophic optical bulk damage (COBD) become apparent. Based on our failure statistics in high current operation, only ~52% of all failures can be attributed to COMD. Imaging through a window opened in the metallization on the substrate (n) side of a p-side down mounted emitter provides valuable insight into both COMD and COBD failure mechanisms. We developed a laser ablation process to define a window on the n-side of an InGaAs/AlGaAs 980nm single emitter that is overlaid on the pumped 90μm stripe on the p-side. The ablation process is compatible with the chip wire-bonding, enabling the device to be operated at high currents with high injection uniformity. We analyzed both COMD and COBD failed emitters in the electroluminescence and mid-IR domains supported by FIB/SEM observation. The ablated devices revealed branching dark line patterns, with a line origin either at the facet center (COMD case) or near the stripe edge away from the facet (COBD case). In both cases, the branching direction is always toward the rear facet (against the photon density gradient), with SEM images revealing a disordered active layer structure. Absorption levels between 0.22eV - 0.55eV were observed in disordered regions by FT-IR spectroscopy. Temperature mapping of a single emitter in the MWIR domain was performed using an InSb detector. We also report an electroluminescence study of a single emitter just before and after failure.

  20. Assistive Devices for Students with Disabilities.

    ERIC Educational Resources Information Center

    Wisniewski, Lech; Sedlak, Robert

    1992-01-01

    Describes a variety of devices that can assist students with disabilities. Highlights recently developed devices for students with specific learning disabilities, and with vision, hearing, health, physical, and speech and language impairments. The devices can help rehabilitate, reeducate, facilitate normalcy, or augment current functioning. (GLR)

  1. Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun

    2018-03-01

    Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.

  2. Giant photoluminescence emission in crystalline faceted Si grains

    PubMed Central

    Faraci, Giuseppe; Pennisi, Agata R.; Alberti, Alessandra; Ruggeri, Rosa; Mannino, Giovanni

    2013-01-01

    Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized material consisting of crystalline faceted Si grains (fg-Si), a hundred nanometer in size, assembled in a porous and columnar configuration, without any post processing. A laser beam with wavelength 632.8 nm locally produce such a high temperature, determined on layers of a given thickness by Raman spectra, to induce giant PL radiation emission. The optical gain reaches the highest value ever, 0.14 cm/W, representing an increase of 3 orders of magnitude with respect to comparable data recently obtained in nanocrystals. Giant emission has been obtained from fg-Si deposited either on glass or on flexible, low cost, polymeric substrate opening the possibility to fabricate new devices. PMID:24056300

  3. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Donnelly, Chris; Aldrich, Jack

    2012-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10N) which is important for operation at low gravity. This device can be made as light as 400g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. Further, a large PARoD breadboard with 50.8 mm diameter bit was developed and its tests are currently underway. This paper presents the design, analysis and preliminary test results of the percussive augmenter.

  4. Direct transfer of metallic photonic structures onto end facets of optical fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Xinping; Liu, Feifei; Lin, Yuanhai

    2016-07-01

    We present a flexible approach to transfer metallic photonic crystals (MPCs) onto end facets of optical fibers. The MPCs were initially fabricated on a glass substrate with a spacer layer of indium tin oxide (ITO), which was used as a buffer layer in the transferring process. The fiber ends were firstly welded on the top surface of the MPCs by a drop of polymer solution after the solvent evaporated. The ITO layer was then etched by hydrochloric acid (HCl), so that the MPCs got off the substrate and were transferred to the fiber ends. Alternatively, the MPCs may be also etched off the substrate first by immersing the sample in HCl. The ultra-thin MPC sheet consisting of gold nanolines interlaced with photoresist gratings was then transferred to cap the fiber ends. In the later approach, we can choose which side of the MPCs to be used as the contact with the fiber facet. Such methods enabled convenient nanostructuring on optical fiber tips and achieving miniaturized MPC devices with compact integration, extending significantly applications of MPCs. In particular, the fabrications presented in this manuscript enrich the lab-on-fiber engineering techniques and the resultant devices have potential applications in remote sensing and detection systems.

  5. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure canmore » be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.« less

  6. TongueToSpeech (TTS): Wearable wireless assistive device for augmented speech.

    PubMed

    Marjanovic, Nicholas; Piccinini, Giacomo; Kerr, Kevin; Esmailbeigi, Hananeh

    2017-07-01

    Speech is an important aspect of human communication; individuals with speech impairment are unable to communicate vocally in real time. Our team has developed the TongueToSpeech (TTS) device with the goal of augmenting speech communication for the vocally impaired. The proposed device is a wearable wireless assistive device that incorporates a capacitive touch keyboard interface embedded inside a discrete retainer. This device connects to a computer, tablet or a smartphone via Bluetooth connection. The developed TTS application converts text typed by the tongue into audible speech. Our studies have concluded that an 8-contact point configuration between the tongue and the TTS device would yield the best user precision and speed performance. On average using the TTS device inside the oral cavity takes 2.5 times longer than the pointer finger using a T9 (Text on 9 keys) keyboard configuration to type the same phrase. In conclusion, we have developed a discrete noninvasive wearable device that allows the vocally impaired individuals to communicate in real time.

  7. Hands in space: gesture interaction with augmented-reality interfaces.

    PubMed

    Billinghurst, Mark; Piumsomboon, Tham; Huidong Bai

    2014-01-01

    Researchers at the Human Interface Technology Laboratory New Zealand (HIT Lab NZ) are investigating free-hand gestures for natural interaction with augmented-reality interfaces. They've applied the results to systems for desktop computers and mobile devices.

  8. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    DOEpatents

    Russell, Thomas P.; Hong, Sung Woo; Lee, Doug Hyun; Park, Soojin; Xu, Ting

    2015-10-13

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  9. Method of forming oriented block copolymer line patterns, block copolymer line patterns formed thereby, and their use to form patterned articles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Thomas P.; Hong, Sung Woo; Lee, Dong Hyun

    A block copolymer film having a line pattern with a high degree of long-range order is formed by a method that includes forming a block copolymer film on a substrate surface with parallel facets, and annealing the block copolymer film to form an annealed block copolymer film having linear microdomains parallel to the substrate surface and orthogonal to the parallel facets of the substrate. The line-patterned block copolymer films are useful for the fabrication of magnetic storage media, polarizing devices, and arrays of nanowires.

  10. Objective Metric Based Assessments for Efficient Evaluation of Auditory Situation Awareness Characteristics of Tactical Communications and Protective Systems (TCAPS) and Augmented Hearing Protective Devices (HPDs)

    DTIC Science & Technology

    2015-11-30

    Assessments for Efficient Evaluation of Auditory Situation Awareness Characteristics of Tactical Communications and Protective Systems (TCAPS) and Augmented...Hearing Protective Devices (HPDs) W81XWH-13-C-0193 John G. Casali, Ph.D, CPE & Kichol Lee, Ph.D Auditory Systems Lab, Industrial and Systems ...Suite 1 JBSA Lackland, TX 78236-9908 Approved for public release: distribution unlimited. The Virginia Tech Auditory Systems Laboratory (ASL

  11. Virtual patients in a real clinical context using augmented reality: impact on antibiotics prescription behaviors.

    PubMed

    Nifakos, Sokratis; Zary, Nabil

    2014-01-01

    The research community has called for the development of effective educational interventions for addressing prescription behaviour since antimicrobial resistance remains a global health issue. Examining the potential to displace the educational process from Personal Computers to Mobile devices, in this paper we investigated a new method of integration of Virtual Patients into Mobile devices with augmented reality technology, enriching the practitioner's education in prescription behavior. Moreover, we also explored which information are critical during the prescription behavior education and we visualized these information on real context with augmented reality technology, simultaneously with a running Virtual Patient's scenario. Following this process, we set the educational frame of experiential knowledge to a mixed (virtual and real) environment.

  12. Effects of tilted angle of Bragg facets on the performance of successive strips based Bragg concave diffraction grating

    NASA Astrophysics Data System (ADS)

    Du, Bingzheng; Zhu, Jingping; Mao, Yuzheng; Wang, Kai; Chen, Huibing; Hou, Xun

    2018-03-01

    The effects of the tilted angle of facets on the diffraction orders, diffraction spectra, dispersion power, and the neighbor channel crosstalk of successive etching strips based Bragg concave diffraction grating (Bragg-CDG) are studied in this paper. The electric field distribution and diffraction spectra of four Bragg-CDGs with different tilted angles are calculated by numerical simulations. With the reflection condition of Bragg facets constant, the blazing order cannot change with the titled angle. As the tilted angle increases, the number of diffraction orders of Bragg-CDG will decrease, thereby concentrating more energy on the blazing order and improving the uniformity of diffraction spectra. In addition, the dispersion power of Bragg-CDG can be improved and the neighbor channel crosstalk of devices can be reduced by increasing the tilted angle. This work is beneficial to optimize the performance of Bragg-CDG.

  13. Human Factors Experiments for Data Link : Final Report

    DOT National Transportation Integrated Search

    1975-11-01

    This report describes the results of a series of experiments to evaluate cockpit Input/Output devices for Data Link as Phase I of a larger project to explore all facets of the digital transmission of air traffic control information. Following prelimi...

  14. Augmented reality for the surgeon: Systematic review.

    PubMed

    Yoon, Jang W; Chen, Robert E; Kim, Esther J; Akinduro, Oluwaseun O; Kerezoudis, Panagiotis; Han, Phillip K; Si, Phong; Freeman, William D; Diaz, Roberto J; Komotar, Ricardo J; Pirris, Stephen M; Brown, Benjamin L; Bydon, Mohamad; Wang, Michael Y; Wharen, Robert E; Quinones-Hinojosa, Alfredo

    2018-04-30

    Since the introduction of wearable head-up displays, there has been much interest in the surgical community adapting this technology into routine surgical practice. We used the keywords augmented reality OR wearable device OR head-up display AND surgery using PubMed, EBSCO, IEEE and SCOPUS databases. After exclusions, 74 published articles that evaluated the utility of wearable head-up displays in surgical settings were included in our review. Across all studies, the most common use of head-up displays was in cases of live streaming from surgical microscopes, navigation, monitoring of vital signs, and display of preoperative images. The most commonly used head-up display was Google Glass. Head-up displays enhanced surgeons' operating experience; common disadvantages include limited battery life, display size and discomfort. Due to ergonomic issues with dual-screen devices, augmented reality devices with the capacity to overlay images onto the surgical field will be key features of next-generation surgical head-up displays. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Experimental Investigation of Turbojet Thrust Augmentation Using an Ejector

    DTIC Science & Technology

    2007-03-01

    mechanisms in which a particle can exchange energy. Thrust augmenting devices can be divided into two categories: ones that exchange net work or heat and...two categories from the energy equation discussion above. Thrust augmentation is achieved through turbulent entrainment where work and/or heat is...front sustained by compression waves from a trailing reaction zone. A deflagration wave is a subsonic flame front sustained by heat transfer

  16. Percussive Augmenter of Rotary Drills (PARoD)

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack

    2013-01-01

    Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10 N) which is important for operation at low gravity. This device can be made as light as 400 g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.

  17. Possible applications of the LEAP motion controller for more interactive simulated experiments in augmented or virtual reality

    NASA Astrophysics Data System (ADS)

    Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan

    2016-09-01

    Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.

  18. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOEpatents

    Hui, Rongqing [Lenexa, KS; Jiang, Hong-Xing [Manhattan, KS; Lin, Jing-Yu [Manhattan, KS

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  19. Design Principles for Augmented Reality Learning

    ERIC Educational Resources Information Center

    Dunleavy, Matt

    2014-01-01

    Augmented reality is an emerging technology that utilizes mobile, context-aware devices (e.g., smartphones, tablets) that enable participants to interact with digital information embedded within the physical environment. This overview of design principles focuses on specific strategies that instructional designers can use to develop AR learning…

  20. The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC

    NASA Technical Reports Server (NTRS)

    Little, William

    2017-01-01

    The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.

  1. Evaluation of a simplified augmented reality device for ultrasound-guided vascular access in a vascular phantom.

    PubMed

    Jeon, Yunseok; Choi, Seungpyo; Kim, Heechan

    2014-09-01

    To investigate whether a novel ultrasound device may be used with a simplified augmented reality technique, and to compare this device with conventional techniques during vascular access using a vascular phantom. Prospective, randomized study. Anesthesiology and Pain Medicine departments of a university-affiliated hospital. 20 physicians with no experience with ultrasound-guided techniques. All participants performed the vascular access technique on the vascular phantom model using both a conventional device and the new ultrasound device. Time and the number of redirections of the needle until aspiration of dye into a vessel of the vascular phantom were measured. The median/interquartile range of time was 39.5/41.7 seconds versus 18.6/10.0 seconds (P < 0.001) and number of redirections was 3/3.5 versus 1/0 (P < 0.001) for the conventional and novel ultrasound devices, respectively. During vascular access in a vascular phantom model, the novel device decreased the time and the number of redirections significantly. The device successfully improved the efficiency of the ultrasound-guided vascular access technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Secondary Breast Augmentation.

    PubMed

    Brown, Mitchell H; Somogyi, Ron B; Aggarwal, Shagun

    2016-07-01

    After studying this article, the participant should be able to: 1. Assess common clinical problems in the secondary breast augmentation patient. 2. Describe a treatment plan to correct the most common complications of breast augmentation. 3. Provide surgical and nonsurgical options for managing complications of breast augmentation. 4. Decrease the incidence of future complications through accurate assessment, preoperative planning, and precise surgical technique. Breast augmentation has been increasing steadily in popularity over the past three decades. Many of these patients present with secondary problems or complications following their primary breast augmentation. Two of the most common complications are capsular contracture and implant malposition. Familiarity and comfort with the assessment and management of these complications is necessary for all plastic surgeons. An up-to-date understanding of current devices and techniques may decrease the need to manage future complications from the current cohort of breast augmentation patients.

  3. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  4. Terraced-heterostructure large-optical-cavity AlGaAs diode laser - A new type of high-power CW single-mode device

    NASA Technical Reports Server (NTRS)

    Botez, D.; Connolly, J. C.

    1982-01-01

    A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.

  5. Augmented Reality: Sustaining Autonomous Way-Finding in the Community for Older Persons with Cognitive Impairment.

    PubMed

    Sejunaite, K; Lanza, C; Ganders, S; Iljaitsch, A; Riepe, M W

    2017-01-01

    Impairment of autonomous way-finding subsequent to a multitude of neurodegenerative and other diseases impedes independence of older persons and their everyday activities. It was the goal to use augmented reality to aid autonomous way-finding in a community setting. A spatial map and directional information were shown via head-up display to guide patients from the start zone on the hospital campus to a bakery in the nearby community. Hospital campus and nearby community. Patients with mild cognitive impairment (age 63 to 89). A head-up display was used to help patients find their way. Time needed to reach goal and number of assists needed. With use of augmented reality device, patients preceded along the correct path in 113 out of 120 intersections. Intermittent reassurance was needed for most patients. Patients affirmed willingness to use such an augmented reality device in everyday life if needed or even pay for it. Augmented reality guided navigation is a promising means to sustain autonomous way-finding as a prerequisite for autonomy of older persons in everyday activities. Thus, this study lays ground for a field trial in the community using assistive technology for older persons with cognitive impairment.

  6. Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands

    NASA Astrophysics Data System (ADS)

    Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.

    2018-01-01

    The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.

  7. Near-field control and imaging of free charge carrier variations in GaN nanowires

    NASA Astrophysics Data System (ADS)

    Berweger, Samuel; Blanchard, Paul T.; Brubaker, Matt D.; Coakley, Kevin J.; Sanford, Norman A.; Wallis, Thomas M.; Bertness, Kris A.; Kabos, Pavel

    2016-02-01

    Despite their uniform crystallinity, the shape and faceting of semiconducting nanowires (NWs) can give rise to variations in structure and associated electronic properties. Here, we develop a hybrid scanning probe-based methodology to investigate local variations in electronic structure across individual n-doped GaN NWs integrated into a transistor device. We perform scanning microwave microscopy (SMM), which we combine with scanning gate microscopy to determine the free-carrier SMM signal contribution and image local charge carrier density variations. In particular, we find significant variations in free carriers across NWs, with a higher carrier density at the wire facets. By increasing the local carrier density through tip-gating, we find that the tip injects current into the NW with strongly localized current when positioned over the wire vertices. These results suggest that the strong variations in electronic properties observed within NWs have significant implications for device design and may lead to new paths to optimization.

  8. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.

    PubMed

    Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-09-16

    Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.

  9. Augmented Reality Comes to Physics

    NASA Astrophysics Data System (ADS)

    Buesing, Mark; Cook, Michael

    2013-04-01

    Augmented reality (AR) is a technology used on computing devices where processor-generated graphics are rendered over real objects to enhance the sensory experience in real time. In other words, what you are really seeing is augmented by the computer. Many AR games already exist for systems such as Kinect and Nintendo 3DS and mobile apps, such as Tagwhat and Star Chart (a must for astronomy class). The yellow line marking first downs in a televised football game2 and the enhanced puck that makes televised hockey easier to follow3 both use augmented reality to do the job.

  10. An Augmented-Reality-Based Concept Map to Support Mobile Learning for Science

    ERIC Educational Resources Information Center

    Chen, Chien-Hsu; Chou, Yin-Yu; Huang, Chun-Yen

    2016-01-01

    Computer hardware and mobile devices have developed rapidly in recent years, and augmented reality (AR) technology has been increasingly applied in mobile learning. Although instructional AR applications have yielded satisfactory results and prompted students' curiosity and interest, a number of problems remain. The crucial topic for AR…

  11. CARE: Creating Augmented Reality in Education

    ERIC Educational Resources Information Center

    Latif, Farzana

    2012-01-01

    This paper explores how Augmented Reality using mobile phones can enhance teaching and learning in education. It specifically examines its application in two cases, where it is identified that the agility of mobile devices and the ability to overlay context specific resources offers opportunities to enhance learning that would not otherwise exist.…

  12. A novel osteogenic distraction device for the transversal correction of temporozygomatic hypoplasia.

    PubMed

    Pagnoni, Mario; Fadda, Maria Teresa; Cascone, Piero; Iannetti, Giorgio

    2014-07-01

    Hemifacial microsomia (HFM) is a congenital disorder characterized by craniofacial malformation of one or both sides of the lower face. Since these anomalies are associated with soft-tissue deficiencies, corrective surgery is often difficult. Bone grafts have typically been used for augmentation, but distraction osteogenesis now offers an alternative for many craniofacial deficiencies, but there are few if any appropriate distraction devices and surgical procedures for the augmentation of craniofacial transversal dimensions. The aim of this study was to evaluate a technique for guided augmentation of craniofacial transversal dimensions through distraction osteogenesis. We tested the efficacy of a prototype distractor, developed in collaboration with Medartis, using cadavers and demonstrated its application for the correction of the transverse dimension of the temporozygomatic region in a patient with Goldenhar syndrome. CT scans showed a 4-mm transverse augmentation of the bony surface after 9 days and a 10-mm increase after 30 days. Upon removal of the distractor (60 days after the first surgery) CT indicated good bony fusion and a stable result in the transverse plane. Six months after removal of the distractor, 3D computed tomography confirmed the success of the transverse augmentation, as it appeared to be stable and reliable. Distraction osteogenesis, using our device, can be used to correct the transverse dimension of the temporozygomatic region in HFM patients. It should also be considered for the correction of residual postsurgical skeletal deficiency due to surgical relapse or deficient growth, and unsatisfactory skeletal contour. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Parent-focused child maltreatment prevention: improving assessment, intervention, and dissemination with technology.

    PubMed

    Self-Brown, Shannon; Whitaker, Daniel J

    2008-11-01

    The goal of this article is to examine how technology has been and can be utilized to enhance parent-focused child maltreatment (CM) prevention efforts. The authors begin with a brief discussion of the current state of the CM prevention field. In the sections that follow, they review studies that have examined the use of technology across three facets of prevention: identification of CM, administration/augmentation of CM prevention programs, and broad dissemination and implementation of evidenced-based CM prevention programs. They conclude with a discussion of limitations and problems related to the use of technology as a tool to enhance CM prevention and future directions.

  14. Fostering ecologic perspectives in child psychiatry.

    PubMed

    Storck, Michael G; Stoep, Ann Vander

    2007-01-01

    In this article, the authors seek to instill a readiness and enthusiasm for appreciating the many-faceted influences in the lives and struggles of developing children and their families. A framework for clinical investigation is proposed that draws from ecologic, ethnographic and attributional perspectives and therein augments and extends contemporary notions of culturally competent care. This framework can be used to help illuminate the culturally-relevant geography of the child's world such as: 1) health care and social welfare zones, 2) child activity zones, and 3) cultural and religious spheres of influence. Training tools and strategies are offered for building insightful, respectful and convivial co-investigator partnerships with patients and their families.

  15. Diastereoselective Synthesis of a Strawberry Flavoring Agent by Epoxidation of Ethyl trans-b-Methylcinnamate

    NASA Astrophysics Data System (ADS)

    Pageau, Gayle J.; Mabaera, Rodwell; Kosuda, Kathryn M.; Sebelius, Tamara A.; Ghaffari, Ali H.; Kearns, Kenneth A.; McIntyre, Jean P.; Beachy, Tina M.; Thamattoor, Dasan M.

    2002-01-01

    The diastereoselective synthesis of ethyl (E)-3-methyl-3-phenylglycidate, a strawberry flavoring agent, is carried out by epoxidizing ethyl trans-b-methylcinnamate with m-chloroperbenzoic acid. This epoxidation is appropriate for the introductory organic laboratory and augments the small number of such experiments currently available for undergraduate education. In the course of performing this exercise, students are exposed to many important facets of organic chemistry such as synthesis, reaction mechanism, stereochemistry, chromatography, quantitative analysis, spectroscopy, and computational chemistry. The 1H NMR spectrum of this compound is especially interesting and presents instructive examples of diastereotopic protons and shielding effects of the aromatic ring current.

  16. Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core.

    PubMed

    Moumene, Missoum; Geisler, Fred H

    2007-08-01

    Finite element model. To estimate the effect of lumbar mobile-core and fixed-core artificial disc design and placement on the loading of the facet joints, and stresses on the polyethylene core. Although both mobile-core and fixed-core lumbar artificial disc designs have been used clinically, the effect of their design and the effect of placement within the disc space on the structural element loading, and in particular the facets and the implant itself, have not been investigated. A 3D nonlinear finite element model of an intact ligamentous L4-L5 motion segment was developed and validated in all 6 df based on previous experiments conducted on human cadavers. Facet loading of a mobile-core TDR and a fixed-core TDR were estimated with 4 different prosthesis placements for 3 different ranges of motion. Placing the mobile-core TDR anywhere within the disc space reduced facet loading by more than 50%, while the fixed-core TDR increased facet loading by more than 10% when compared with the intact disc in axial rotation. For central (ideal) placement, the mobile- and fixed-core implants were subjected to compressive stresses on the order of 3 MPa and 24 MPa, respectively. The mobile-core stresses were not affected by implant placement, while the fixed-core stresses increased by up to 40%. A mobile-core artificial disc design is less sensitive to placement, and unloads the facet joints, compared with a fixed-core design. The decreased core stress may result in a reduced potential for wear in a mobile-core prosthesis compared with a fixed-core prosthesis, which may increase the functional longevity of the device.

  17. Design and application of multimegawatt X -band deflectors for femtosecond electron beam diagnostics

    DOE PAGES

    Dolgashev, Valery A.; Bowden, Gordon; Ding, Yuantao; ...

    2014-10-02

    Performance of the x-ray free electron laser Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET) is determined by the properties of their extremely short electron bunches. Multi-GeV electron bunches in both LCLS and FACET are less than 100 fs long. Optimization of beam properties and understanding of free-electron laser operation require electron beam diagnostics with time resolution of about 10 fs. We designed, built and commissioned a set of high frequency X-band deflectors which can measure the beam longitudinal space charge distribution and slice energy spread to better than 10 fs resolution at fullmore » LCLS energy (14 GeV), and with 70 fs resolution at full FACET energy (20 GeV). Use of high frequency and high gradient in these devices allows them to reach unprecedented performance. We report on the physics motivation, design considerations, operational configuration, cold tests, and typical results of the X-band deflector systems currently in use at SLAC.« less

  18. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control.

    PubMed

    Ramezani-Dakhel, Hadi; Bedford, Nicholas M; Woehl, Taylor J; Knecht, Marc R; Naik, Rajesh R; Heinz, Hendrik

    2017-06-22

    Colloidal metal nanocrystals find many applications in catalysis, energy conversion devices, and therapeutics. However, the nature of ligand interactions and implications on shape control have remained uncertain at the atomic scale. Large differences in peptide adsorption strength and facet specificity were found on flat palladium surfaces versus surfaces of nanoparticles of 2 to 3 nm size using accurate atomistic simulations with the Interface force field. Folding of longer peptides across many facets explains the formation of near-spherical particles with local surface disorder, in contrast to the possibility of nanostructures of higher symmetry with shorter ligands. The average particle size in TEM correlates inversely with the surface coverage with a given ligand and with the strength of ligand adsorption. The role of specific amino acids and sequence mutations on the nanoparticle size and facet composition is discussed, as well as the origin of local surface disorder that leads to large differences in catalytic reactivity.

  19. A CTE matched hard solder passively cooled laser diode package combined with nXLT facet passivation enables high power, high reliability operation

    NASA Astrophysics Data System (ADS)

    Hodges, Aaron; Wang, Jun; DeFranza, Mark; Liu, Xingsheng; Vivian, Bill; Johnson, Curt; Crump, Paul; Leisher, Paul; DeVito, Mark; Martinsen, Robert; Bell, Jacob

    2007-04-01

    A conductively cooled laser diode package design with hard AuSn solder and CTE matched sub mount is presented. We discuss how this platform eliminates the failure mechanisms associated with indium solder. We present the problem of catastrophic optical mirror damage (COMD) and show that nLight's nXLT TM facet passivation technology effectively eliminates facet defect initiated COMD as a failure mechanism for both single emitter and bar format laser diodes. By combining these technologies we have developed a product that has high reliability at high powers, even at increased operation temperatures. We present early results from on-going accelerated life testing of this configuration that suggests an 808nm, 30% fill factor device will have a MTTF of more than 21khrs at 60W CW, 25°C operating conditions and a MTTF of more than 6.4khrs when operated under hard pulsed (1 second on, 1 second off) conditions.

  20. {1 1 1} facet growth laws and grain competition during silicon crystallization

    NASA Astrophysics Data System (ADS)

    Stamelou, V.; Tsoutsouva, M. G.; Riberi-Béridot, T.; Reinhart, G.; Regula, G.; Baruchel, J.; Mangelinck-Noël, N.

    2017-12-01

    Directional solidification from mono-crystalline Si seeds having different orientations along the growth direction is studied. Due to the frequent twinning phenomenon, new grains soon nucleate during growth. The grain competition is then characterized in situ by imaging the dynamic evolution of the grain boundaries and of the corresponding grain boundary grooves that are formed at the solid-liquid interface. To perform this study, an experimental investigation based on Bridgman solidification technique coupled with in situ X-ray imaging is conducted in an original device: GaTSBI (Growth at high Temperature observed by X-ray Synchrotron Beam Imaging). Imaging characterisation techniques using X-ray synchrotron radiation at ESRF (European Synchrotron Radiation Facility, Grenoble, France) are applied during the solidification to study the growth dynamics. Facetted/facetted grain boundary grooves only are studied due to their importance in the grain competition because of their implication in the twinning mechanism. The maximum undercooling inside the groove is calculated from the groove depth knowing the local temperature gradient. Additionally, thanks to dynamic X-ray images, the global solid-liquid interface growth rate and the normal growth rate of the {1 1 1} facets existing at the grooves and at the edges are measured. From these measurements, experimental growth laws that correlate the normal velocity of the {1 1 1} facets with the maximum undercooling of the groove are extracted and compared to existing theoretical models. Finally, the experimental laws found for the contribution to the undercooling of the {1 1 1} facets are in good agreement with the theoretical model implying nucleation and growth eased by the presence of dislocations. Moreover, it is shown that, for the same growth parameters, the undercooling at the level of the facets (always lower than 1 K) is higher at the edges so that there is a higher probability of twin nucleation at the edges which is in agreement with the grain structure development characterised in the present experiments as well as in the literature.

  1. A Portable Sensory Augmentation Device for Balance Rehabilitation Using Fingertip Skin Stretch Feedback.

    PubMed

    Pan, Yi-Tsen; Yoon, Han U; Hur, P

    2017-01-01

    Neurological disorders are the leading causes of poor balance. Previous studies have shown that biofeedback can compensate for weak or missing sensory information in people with sensory deficits. These biofeedback inputs can be easily recognized and converted into proper information by the central nervous system (CNS), which integrates the appropriate sensorimotor information and stabilizes the human posture. In this study, we proposed a form of cutaneous feedback which stretches the fingertip pad with a rotational contactor, so-called skin stretch. Skin stretch at a fingertip pad can be simply perceived and its small contact area makes it favored for small wearable devices. Taking advantage of skin stretch feedback, we developed a portable sensory augmentation device (SAD) for rehabilitation of balance. SAD was designed to provide postural sway information through additional skin stretch feedback. To demonstrate the feasibility of the SAD, quiet standing on a force plate was evaluated while sensory deficits were simulated. Fifteen healthy young adults were asked to stand quietly under six sensory conditions: three levels of sensory deficits (normal, visual deficit, and visual + vestibular deficits) combined with and without augmented sensation provided by SAD. The results showed that augmented sensation via skin stretch feedback helped subjects correct their posture and balance, especially as the deficit level of sensory feedback increased. These findings demonstrate the potential use of skin stretch feedback in balance rehabilitation.

  2. Using Augmented Reality Tools to Enhance Children's Library Services

    ERIC Educational Resources Information Center

    Meredith, Tamara R.

    2015-01-01

    Augmented reality (AR) has been used and documented for a variety of commercial and educational purposes, and the proliferation of mobile devices has increased the average person's access to AR systems and tools. However, little research has been done in the area of using AR to supplement traditional library services, specifically for patrons aged…

  3. ARTutor--An Augmented Reality Platform for Interactive Distance Learning

    ERIC Educational Resources Information Center

    Lytridis, Chris; Tsinakos, Avgoustos; Kazanidis, Ioannis

    2018-01-01

    Augmented Reality (AR) has been used in various contexts in recent years in order to enhance user experiences in mobile and wearable devices. Various studies have shown the utility of AR, especially in the field of education, where it has been observed that learning results are improved. However, such applications require specialized teams of…

  4. Augmented Reality in the Science Museum: Lessons Learned in Scaffolding for Conceptual and Cognitive Learning

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Elinich, Karen; Wang, Joyce; Van Schooneveld, Jacqueline G.

    2012-01-01

    This research follows on previous studies that investigated how digitally augmented devices and knowledge scaffolds enhance learning in a science museum. We investigated what combination of scaffolds could be used in conjunction with the unique characteristics of informal participation to increase conceptual and cognitive outcomes. 307 students…

  5. Communicative Competence Inventory for Students Who Use Augmentative and Alternative Communication: A Team Approach

    ERIC Educational Resources Information Center

    Chung, Yun-Ching; Douglas, Karen H.

    2014-01-01

    Students who use augmentative and alternative communication (AAC) represent a heterogonous group with complex communication needs. AAC--including aided communication means (e.g., pictures, devices) and unaided (e.g., signs, gestures)--is often used to support students who have difficulties with speech production, language comprehension, and…

  6. Planning and Implementing Augmentative Communication Service Delivery, 2: Proceedings of the National Planners Conference on Assistive Device Service Delivery.

    ERIC Educational Resources Information Center

    Coston, Caroline A., Ed.

    The document consists of 30 author contributed chapters concerned with augmentative communication service delivery. Chapter titles and authors are: "Communication Options for Persons Who Cannot Speak: Planning for Service Delivery" (David Beukelman); "Planning Service Delivery Systems" (Roland Hahn II); "Planning Ohio's…

  7. Repeated Reading, Turn Taking, and Augmentative and Alternative Communication (AAC)

    ERIC Educational Resources Information Center

    Edmister, Evette; Wegner, Jane

    2015-01-01

    This single participant multiple baseline research design measured the effects of repeatedly reading narrative books to children who used voice output augmentative communication devices to communicate. The study sought to determine if there was a difference observed in the number of turns taken when reading stories repeatedly. Three girls ranging…

  8. Augmented Learning: Research and Design of Mobile Educational Games

    ERIC Educational Resources Information Center

    Klopfer, Eric

    2008-01-01

    New technology has brought with it new tools for learning, and research has shown that the educational potential of video games resonates with scholars, teachers, and students alike. In "Augmented Learning", Eric Klopfer describes the largely untapped potential of mobile learning games--games played on such handheld devices as cell phones, Game…

  9. Spacecraft 3D Augmented Reality Mobile App

    NASA Technical Reports Server (NTRS)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  10. Tackling the challenges of fully immersive head-mounted AR devices

    NASA Astrophysics Data System (ADS)

    Singer, Wolfgang; Hillenbrand, Matthias; Münz, Holger

    2017-11-01

    The optical requirements of fully immersive head mounted AR devices are inherently determined by the human visual system. The etendue of the visual system is large. As a consequence, the requirements for fully immersive head-mounted AR devices exceeds almost any high end optical system. Two promising solutions to achieve the large etendue and their challenges are discussed. Head-mounted augmented reality devices have been developed for decades - mostly for application within aircrafts and in combination with a heavy and bulky helmet. The established head-up displays for applications within automotive vehicles typically utilize similar techniques. Recently, there is the vision of eyeglasses with included augmentation, offering a large field of view, and being unobtrusively all-day wearable. There seems to be no simple solution to reach the functional performance requirements. Known technical solutions paths seem to be a dead-end, and some seem to offer promising perspectives, however with severe limitations. As an alternative, unobtrusively all-day wearable devices with a significantly smaller field of view are already possible.

  11. Optical resonator and laser applications

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  12. High Performance Hermetic Package For LiNbO3 Electro-Optic Waveguide Devices

    NASA Astrophysics Data System (ADS)

    Preston, K. R.; Macdonald, B. M.; Harmon, R. A.; Ford, C. W.; Shaw, R. N.; Reid, I.; Davidson, J. H.; Beaumont, A. R.; Booth, R. C.

    1989-02-01

    A high performance fibre-tailed package for LiNbO3 electro-optic waveguide devices is described. The package is based around a hermetic metal submodule which contains no epoxy or other organic materials. The LiNbO3 chip is mounted using a soldering technique, and laser welding is used for fibre fixing to give stable, low loss optical coupling to single mode fibres. Optical reflections are minimised by the use of antireflective coatings on the fibre ends and waveguide facets. High speed electrical connections are made via coplanar glass-sealed leadthroughs to LiNb03 travelling wave devices, and packaged device operation to frequencies in excess of 4GHz is demonstrated.

  13. On-fiber plasmonic interferometer for multi-parameter sensing

    DOE PAGES

    Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; ...

    2015-01-01

    We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of –60more » pm/ °C is achieved with our device.« less

  14. The Domesday Dataset: Linked Open Data in Disability Studies

    ERIC Educational Resources Information Center

    Reddington, Joseph

    2013-01-01

    Augmentative and alternative communication (AAC) devices provide the ability for many people with disabilities to make themselves understood. For the large proportion of users with an intellectual disability, these devices may be their only means of communication. Estimates of the number of AAC devices in use are vague and lack transparency. This…

  15. Strong geometrical effects in submillimeter selective area growth and light extraction of GaN light emitting diodes on sapphire

    DOE PAGES

    Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; ...

    2015-11-27

    Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. Our detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates is reported here, and we utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO 2. We show that the mask opening diameter leads to as much as 4 times increasemore » in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We also observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Lastly, such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.« less

  16. Defect evolution during catastrophic optical damage in 450-nm emitting InGaN/GaN diode lasers

    NASA Astrophysics Data System (ADS)

    Tomm, Jens W.; Kernke, Robert; Löffler, Andreas; Stojetz, Bernhard; Lell, Alfred; König, Harald

    2018-02-01

    The catastrophic optical damage (COD) of 450-nm emitting InGaN/GaN diode lasers is investigated with special attention to the kinetics of the process. For this purpose, the COD is triggered artificially by applying individual current pulses. This makes it possible to achieve a sub-µs time resolution for processes monitored by cameras. COD appears as a "hot" process that involves decomposition of quantum well and waveguide materials. We observe the ejection of hot material from the front facets of the laser. This can be seen in two different wavelength ranges, visible/near infrared and mid infrared. The main contributions identified are both thermal radiation and 450-nm laser light scattered by the emitted material. Defect growth during COD is energized by the optical mode. Therefore, the defect pattern resembles its shape. Ultimately, the loss of material leads to the formation of an empty channel along the laser axis. COD in GaAs and GaN-based devices follows similar general scenarios. After ignition of the process, the defect propagation during the process is fed by laser energy. We observe defect propagation velocities of up to 30 m/s for GaAs-based devices and 110 m/s for GaN-based devices. The damage patterns of GaN and GaAs-based devices are completely different. For GaN-based devices, the front facets show holes. Behind them in the interior, we find an empty channel at the position of the optical mode surrounded by intact material. In contrast, earlier studies on GaAs-based devices that were degraded under almost identical conditions resulted in molten, phase separated and both recrystallized and amorphous materials with well-defined melting fronts.

  17. Nanostructures: a platform for brain repair and augmentation

    PubMed Central

    Vidu, Ruxandra; Rahman, Masoud; Mahmoudi, Morteza; Enachescu, Marius; Poteca, Teodor D.; Opris, Ioan

    2014-01-01

    Nanoscale structures have been at the core of research efforts dealing with integration of nanotechnology into novel electronic devices for the last decade. Because the size of nanomaterials is of the same order of magnitude as biomolecules, these materials are valuable tools for nanoscale manipulation in a broad range of neurobiological systems. For instance, the unique electrical and optical properties of nanowires, nanotubes, and nanocables with vertical orientation, assembled in nanoscale arrays, have been used in many device applications such as sensors that hold the potential to augment brain functions. However, the challenge in creating nanowires/nanotubes or nanocables array-based sensors lies in making individual electrical connections fitting both the features of the brain and of the nanostructures. This review discusses two of the most important applications of nanostructures in neuroscience. First, the current approaches to create nanowires and nanocable structures are reviewed to critically evaluate their potential for developing unique nanostructure based sensors to improve recording and device performance to reduce noise and the detrimental effect of the interface on the tissue. Second, the implementation of nanomaterials in neurobiological and medical applications will be considered from the brain augmentation perspective. Novel applications for diagnosis and treatment of brain diseases such as multiple sclerosis, meningitis, stroke, epilepsy, Alzheimer's disease, schizophrenia, and autism will be considered. Because the blood brain barrier (BBB) has a defensive mechanism in preventing nanomaterials arrival to the brain, various strategies to help them to pass through the BBB will be discussed. Finally, the implementation of nanomaterials in neurobiological applications is addressed from the brain repair/augmentation perspective. These nanostructures at the interface between nanotechnology and neuroscience will play a pivotal role not only in addressing the multitude of brain disorders but also to repair or augment brain functions. PMID:24999319

  18. Exploration of Two Training Paradigms Using Forced Induced Weight Shifting With the Tethered Pelvic Assist Device to Reduce Asymmetry in Individuals After Stroke: Case Reports.

    PubMed

    Bishop, Lauri; Khan, Moiz; Martelli, Dario; Quinn, Lori; Stein, Joel; Agrawal, Sunil

    2017-10-01

    Many robotic devices in rehabilitation incorporate an assist-as-needed haptic guidance paradigm to promote training. This error reduction model, while beneficial for skill acquisition, could be detrimental for long-term retention. Error augmentation (EA) models have been explored as alternatives. A robotic Tethered Pelvic Assist Device has been developed to study force application to the pelvis on gait and was used here to induce weight shift onto the paretic (error reduction) or nonparetic (error augmentation) limb during treadmill training. The purpose of these case reports is to examine effects of training with these two paradigms to reduce load force asymmetry during gait in two individuals after stroke (>6 mos). Participants presented with baseline gait asymmetry, although independent community ambulators. Participants underwent 1-hr trainings for 3 days using either the error reduction or error augmentation model. Outcomes included the Borg rating of perceived exertion scale for treatment tolerance and measures of force and stance symmetry. Both participants tolerated training. Force symmetry (measured on treadmill) improved from pretraining to posttraining (36.58% and 14.64% gains), however, with limited transfer to overground gait measures (stance symmetry gains of 9.74% and 16.21%). Training with the Tethered Pelvic Assist Device device proved feasible to improve force symmetry on the treadmill irrespective of training model. Future work should consider methods to increase transfer to overground gait.

  19. Augmented reality on poster presentations, in the field and in the classroom

    NASA Astrophysics Data System (ADS)

    Hawemann, Friedrich; Kolawole, Folarin

    2017-04-01

    Augmented reality (AR) is the direct addition of virtual information through an interface to a real-world environment. In practice, through a mobile device such as a tablet or smartphone, information can be projected onto a target- for example, an image on a poster. Mobile devices are widely distributed today such that augmented reality is easily accessible to almost everyone. Numerous studies have shown that multi-dimensional visualization is essential for efficient perception of the spatial, temporal and geometrical configuration of geological structures and processes. Print media, such as posters and handouts lack the ability to display content in the third and fourth dimensions, which might be in space-domain as seen in three-dimensional (3-D) objects, or time-domain (four-dimensional, 4-D) expressible in the form of videos. Here, we show that augmented reality content can be complimentary to geoscience poster presentations, hands-on material and in the field. In the latter example, location based data is loaded and for example, a virtual geological profile can be draped over a real-world landscape. In object based AR, the application is trained to recognize an image or object through the camera of the user's mobile device, such that specific content is automatically downloaded and displayed on the screen of the device, and positioned relative to the trained image or object. We used ZapWorks, a commercially-available software application to create and present examples of content that is poster-based, in which important supplementary information is presented as interactive virtual images, videos and 3-D models. We suggest that the flexibility and real-time interactivity offered by AR makes it an invaluable tool for effective geoscience poster presentation, class-room and field geoscience learning.

  20. Making the Invisible Visible in Science Museums through Augmented Reality Devices

    ERIC Educational Resources Information Center

    Yoon, Susan A.; Wang, Joyce

    2014-01-01

    Despite the potential of augmented reality (AR) in enabling students to construct new understanding, little is known about how the processes and interactions with the multimedia lead to increased learning. This study seeks to explore the affordances of an AR tool on learning that is focused on the science concept of magnets and magnetic fields.…

  1. PRISMA-MAR: An Architecture Model for Data Visualization in Augmented Reality Mobile Devices

    ERIC Educational Resources Information Center

    Gomes Costa, Mauro Alexandre Folha; Serique Meiguins, Bianchi; Carneiro, Nikolas S.; Gonçalves Meiguins, Aruanda Simões

    2013-01-01

    This paper proposes an extension to mobile augmented reality (MAR) environments--the addition of data charts to the more usual text, image and video components. To this purpose, we have designed a client-server architecture including the main necessary modules and services to provide an Information Visualization MAR experience. The server side…

  2. Pedagogical and Technological Augmentation of Mobile Learning for Young Children Interactive Learning Environments

    ERIC Educational Resources Information Center

    Kim, Yanghee; Smith, Diantha

    2017-01-01

    The ubiquity and educational potential of mobile applications are well acknowledged. This paper proposes six theory-based, pedagogical strategies to guide interaction design of mobile apps for young children. Also, to augment the capabilities of mobile devices, we used a humanoid robot integrated with a smartphone and developed an English-learning…

  3. Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.

    2006-01-01

    A parametric investigation has been made of thrust augmentation of a 1 in. diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentation ratios for each ejector were fitted using a polynomial response surface, from which the optimum ratios of ejector diameter to detonation tube diameter, and ejector length and nose radius to ejector diameter, were found. Thrust augmentation ratios above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.

  4. Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.

    2005-01-01

    A parametric investigation has been made of thrust augmentation of a 1 inch diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentations for each ejector were fitted using a polynomial response surface, from which the optimum ejector diameters, and nose radius, were found. Thrust augmentations above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.

  5. Effectiveness of Rice Agricultural Waste, Microbes and Wetland Plants in the Removal of Reactive Black-5 Azo Dye in Microcosm Constructed Wetlands.

    PubMed

    Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D

    2015-01-01

    Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes.

  6. Augmentation-related brain plasticity

    PubMed Central

    Di Pino, Giovanni; Maravita, Angelo; Zollo, Loredana; Guglielmelli, Eugenio; Di Lazzaro, Vincenzo

    2014-01-01

    Today, the anthropomorphism of the tools and the development of neural interfaces require reconsidering the concept of human-tools interaction in the framework of human augmentation. This review analyses the plastic process that the brain undergoes when it comes into contact with augmenting artificial sensors and effectors and, on the other hand, the changes that the use of external augmenting devices produces in the brain. Hitherto, few studies investigated the neural correlates of augmentation, but clues on it can be borrowed from logically-related paradigms: sensorimotor training, cognitive enhancement, cross-modal plasticity, sensorimotor functional substitution, use and embodiment of tools. Augmentation modifies function and structure of a number of areas, i.e., primary sensory cortices shape their receptive fields to become sensitive to novel inputs. Motor areas adapt the neuroprosthesis representation firing-rate to refine kinematics. As for normal motor outputs, the learning process recruits motor and premotor cortices and the acquisition of proficiency decreases attentional recruitment, focuses the activity on sensorimotor areas and increases the basal ganglia drive on the cortex. Augmentation deeply relies on the frontoparietal network. In particular, premotor cortex is involved in learning the control of an external effector and owns the tool motor representation, while the intraparietal sulcus extracts its visual features. In these areas, multisensory integration neurons enlarge their receptive fields to embody supernumerary limbs. For operating an anthropomorphic neuroprosthesis, the mirror system is required to understand the meaning of the action, the cerebellum for the formation of its internal model and the insula for its interoception. In conclusion, anthropomorphic sensorized devices can provide the critical sensory afferences to evolve the exploitation of tools through their embodiment, reshaping the body representation and the sense of the self. PMID:24966816

  7. 76 FR 17422 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ..., and vote on information related to the premarket approval application (PMA) for the Augment Bone Graft, sponsored by Biomimetic Therapeutics, Inc. The intended use of the device is as an alternative bone grafting substitute to autologous bone graft in applications to facilitate fusion in the ankle and foot without...

  8. Long-term reliability study and failure analysis of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Nguyen, Hong-Ky; Leblanc, Herve; Hughes, Larry; Wang, Jie; Miller, Dean J.; Lascola, Kevin

    2017-02-01

    Here we present lifetime test results of 4 groups of quantum cascade lasers (QCL) under various aging conditions including an accelerated life test. The total accumulated life time exceeds 1.5 million device·hours, which is the largest QCL reliability study ever reported. The longest single device aging time was 46.5 thousand hours (without failure) in the room temperature test. Four failures were found in a group of 19 devices subjected to the accelerated life test with a heat-sink temperature of 60 °C and a continuous-wave current of 1 A. Visual inspection of the laser facets of failed devices revealed an astonishing phenomenon, which has never been reported before, which manifested as a dark belt of an unknown substance appearing on facets. Although initially assumed to be contamination from the environment, failure analysis revealed that the dark substance is a thermally induced oxide of InP in the buried heterostructure semiinsulating layer. When the oxidized material starts to cover the core and blocks the light emission, it begins to cause the failure of QCLs in the accelerated test. An activation energy of 1.2 eV is derived from the dependence of the failure rate on laser core temperature. With the activation energy, the mean time to failure of the quantum cascade lasers operating at a current density of 5 kA/cm2 and heat-sink temperature of 25°C is expected to be 809 thousand hours.

  9. Recent Development of Augmented Reality in Surgery: A Review.

    PubMed

    Vávra, P; Roman, J; Zonča, P; Ihnát, P; Němec, M; Kumar, J; Habib, N; El-Gendi, A

    2017-01-01

    The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms "augmented reality" and "surgery." Results . The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice.

  10. Reality Check: Basics of Augmented, Virtual, and Mixed Reality.

    PubMed

    Brigham, Tara J

    2017-01-01

    Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.

  11. Augmented reality application for industrial non-destructive inspection training

    NASA Astrophysics Data System (ADS)

    Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav

    2018-02-01

    Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.

  12. Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy.

    PubMed

    McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan

    2016-01-01

    Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the "wild". We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain's Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.

  13. Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy

    PubMed Central

    McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan

    2016-01-01

    Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the “wild”. We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain’s Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design. PMID:27242480

  14. PleurAlert: an augmented chest drainage system with electronic sensing, automated alerts and internet connectivity.

    PubMed

    Leeson, Cory E; Weaver, Robert A; Bissell, Taylor; Hoyer, Rachel; McClain, Corinne; Nelson, Douglas A; Samosky, Joseph T

    2012-01-01

    We have enhanced a common medical device, the chest tube drainage container, with electronic sensing of fluid volume, automated detection of critical alarm conditions and the ability to automatically send alert text messages to a nurse's cell phone. The PleurAlert system provides a simple touch-screen interface and can graphically display chest tube output over time. Our design augments a device whose basic function dates back 50 years by adding technology to automate and optimize a monitoring process that can be time consuming and inconvenient for nurses. The system may also enhance detection of emergency conditions and speed response time.

  15. Virtual Reality and Augmented Reality in Plastic Surgery: A Review.

    PubMed

    Kim, Youngjun; Kim, Hannah; Kim, Yong Oock

    2017-05-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed.

  16. Virtual Reality and Augmented Reality in Plastic Surgery: A Review

    PubMed Central

    Kim, Youngjun; Kim, Hannah

    2017-01-01

    Recently, virtual reality (VR) and augmented reality (AR) have received increasing attention, with the development of VR/AR devices such as head-mounted displays, haptic devices, and AR glasses. Medicine is considered to be one of the most effective applications of VR/AR. In this article, we describe a systematic literature review conducted to investigate the state-of-the-art VR/AR technology relevant to plastic surgery. The 35 studies that were ultimately selected were categorized into 3 representative topics: VR/AR-based preoperative planning, navigation, and training. In addition, future trends of VR/AR technology associated with plastic surgery and related fields are discussed. PMID:28573091

  17. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices.

    PubMed

    Wang, Yu-Jen; Chen, Po-Ju; Liang, Xiao; Lin, Yi-Hsin

    2017-03-27

    Augmented reality (AR), which use computer-aided projected information to augment our sense, has important impact on human life, especially for the elder people. However, there are three major challenges regarding the optical system in the AR system, which are registration, vision correction, and readability under strong ambient light. Here, we solve three challenges simultaneously for the first time using two liquid crystal (LC) lenses and polarizer-free attenuator integrated in optical-see-through AR system. One of the LC lens is used to electrically adjust the position of the projected virtual image which is so-called registration. The other LC lens with larger aperture and polarization independent characteristic is in charge of vision correction, such as myopia and presbyopia. The linearity of lens powers of two LC lenses is also discussed. The readability of virtual images under strong ambient light is solved by electrically switchable transmittance of the LC attenuator originating from light scattering and light absorption. The concept demonstrated in this paper could be further extended to other electro-optical devices as long as the devices exhibit the capability of phase modulations and amplitude modulations.

  18. A lateral-type spin-photodiode based on Fe/x-AlOx/p-InGaAs junctions with a refracting-facet side window

    NASA Astrophysics Data System (ADS)

    Roca, Ronel Christian; Nishizawa, Nozomi; Nishibayashi, Kazuhiro; Munekata, Hiro

    2018-06-01

    A lateral-type spin-photodiode having a refracting facet on a side edge of the device is proposed and demonstrated at room temperature. The light shed horizontally on the side of the device is refracted and introduced directly into a thin InGaAs active layer under the spin-detecting Fe contact in which spin-polarized carriers are generated and injected into the Fe contact through a crystalline AlOx tunnel barrier. Experiments have been carried out with a circular polarization spectrometry set up, through which the helicity-dependent photocurrent component, ΔI, is obtained with the conversion efficiency F ≈ 0.4%, where F is the ratio between ΔI and total photocurrent Iph. This value is the highest reported so far for pure lateral-type spin-photodiodes. It is discussed through the analysis with a model consisting of drift-diffusion and quantum tunneling equations that a factor that limits the F value is unoccupied spin-polarized density-of-states of Fe in energy region into which the spin-polarized electrons in a semiconductor are injected.

  19. Mobile devices, Virtual Reality, Augmented Reality, and Digital Geoscience Education.

    NASA Astrophysics Data System (ADS)

    Crompton, H.; De Paor, D. G.; Whitmeyer, S. J.; Bentley, C.

    2016-12-01

    Mobile devices are playing an increasing role in geoscience education. Affordances include instructor-student communication and class management in large classrooms, virtual and augmented reality applications, digital mapping, and crowd-sourcing. Mobile technologies have spawned the sub field of mobile learning or m-learning, which is defined as learning across multiple contexts, through social and content interactions. Geoscientists have traditionally engaged in non-digital mobile learning via fieldwork, but digital devices are greatly extending the possibilities, especially for non-traditional students. Smartphones and tablets are the most common devices but smart glasses such as Pivothead enable live streaming of a first-person view (see for example, https://youtu.be/gWrDaYP5w58). Virtual reality headsets such as Google Cardboard create an immersive virtual field experience and digital imagery such as GigaPan and Structure from Motion enables instructors and/or students to create virtual specimens and outcrops that are sharable across the globe. Whereas virtual reality (VR) replaces the real world with a virtual representation, augmented reality (AR) overlays digital data on the live scene visible to the user in real time. We have previously reported on our use of the AR application called FreshAiR for geoscientific "egg hunts." The popularity of Pokémon Go demonstrates the potential of AR for mobile learning in the geosciences.

  20. Aging behavior and surge endurance of 870-900 nm AlGaAs lasers with nonabsorbing mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadota, Y.; Chino, K.; Namizaki, M.

    1984-11-01

    The reliability of 870-900 nm AlGaAs TJS lasers has been investigated. An emission wavelength longer than 870 nm is realized by utilizing the band tailing effect due to heavy Zn-diffusion in the active region. A nonabsorbing mirror structure is employed to eliminate both gradual degradation and catastrophic damage of the facets. Stable continuous operation for over 10000 hours has been confirmed at ambient temperatures higher than 50/sup 0/C and output powers more than 5 mW/ facet. MTTF longer than 10/sup 5/ hours is expected for screened devices. Surge endurance has been improved to be nearly one order of magnitude highermore » than that for a conventional structure.« less

  1. The Use of Augmented Reality Games in Education: A Review of the Literature

    ERIC Educational Resources Information Center

    Koutromanos, George; Sofos, Alivisos; Avraamidou, Lucy

    2015-01-01

    This paper provides a review of the literature about the use of augmented reality in education and specifically in the context of formal and informal environments. It examines the research that has been conducted up to date on the use of those games through mobile technology devices such as mobile phones and tablets, both in primary and secondary…

  2. Contextualized Interdisciplinary Learning in Mainstream Schools Using Augmented Reality-Based Technology: A Dream or Reality?

    ERIC Educational Resources Information Center

    Ong, Alex

    2010-01-01

    The use of augmented reality (AR) tools, where virtual objects such as tables and graphs can be displayed and be interacted with in real scenes created from imaging devices, in mainstream school curriculum is uncommon, as they are potentially costly and sometimes bulky. Thus, such learning tools are mainly applied in tertiary institutions, such as…

  3. Exploring the Impact of Varying Levels of Augmented Reality to Teach Probability and Sampling with a Mobile Device

    ERIC Educational Resources Information Center

    Conley, Quincy

    2013-01-01

    Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR) delivered via mobile…

  4. Augmentative and Alternative Communication for Children with Autism Spectrum Disorder: An Evidence-Based Evaluation of the Language Acquisition through Motor Planning (LAMP) Programme

    ERIC Educational Resources Information Center

    Bedwani, Mary-Ann Naguib; Bruck, Susan; Costley, Debra

    2015-01-01

    Children diagnosed with autism spectrum disorder often have restricted verbal communication. For children who do not use functional speech, augmentative and alternative communication (AAC) devices can be an important support. We evaluated the effectiveness of one AAC programme, the Language Acquisition through Motor Planning (LAMP) using a Vantage…

  5. Saying the "F Word ... in the Nicest Possible Way": Augmentative Communication and Discourses of Disability

    ERIC Educational Resources Information Center

    Brewster, Stephanie

    2013-01-01

    This paper examines a case study of a severely physically disabled man, Ralph, in terms of his interaction with his carers. He communicates using various systems of augmentative and alternative communication (AAC, such as symbol boards and high-tech devices), the vocabulary for which has mostly been selected for him by others. The starting point…

  6. Aircrew Training Devices: Fidelity Features.

    DTIC Science & Technology

    1981-01-01

    providing artificial cues for glideslope and lineup . He found that an adaptive strategy for using augmenting cues, where the presence or absence of the...with continuously available sources of augmented information for lineup and glideslope in the simulatot, they performed more poorly on test trials...flown: fighting wing, barrel roll attack, sequential attack, free engagement, aileron roll and loop. Results indicated higher ratings of realism for

  7. Augmentative Device Helps Max Speak. PACER Center ACTion Information Sheets. PHP-c75

    ERIC Educational Resources Information Center

    PACER Center, 2014

    2014-01-01

    This Action Information Sheet follows a family's process of selecting and using augmentative and alternative communication to help their young son, Max, speak. Max is affected by global dyspraxia, which makes learning new motor skills--especially speech--quite difficult. For the first years of his life, Max could not say words. Before he and his…

  8. App-assisted external ventricular drain insertion.

    PubMed

    Eftekhar, Behzad

    2016-09-01

    The freehand technique for insertion of an external ventricular drain (EVD) is based on fixed anatomical landmarks and does not take individual variations into consideration. A patient-tailored approach based on augmented-reality techniques using devices such as smartphones can address this shortcoming. The Sina neurosurgical assist (Sina) is an Android mobile device application (app) that was designed and developed to be used as a simple intraoperative neurosurgical planning aid. It overlaps the patient's images from previously performed CT or MRI studies on the image seen through the device camera. The device is held by an assistant who aligns the images and provides information about the relative position of the target and EVD to the surgeon who is performing EVD insertion. This app can be used to provide guidance and continuous monitoring during EVD placement. The author describes the technique of Sina-assisted EVD insertion into the frontal horn of the lateral ventricle and reports on its clinical application in 5 cases as well as the results of ex vivo studies of ease of use and precision. The technique has potential for further development and use with other augmented-reality devices.

  9. The effects of error augmentation on learning to walk on a narrow balance beam.

    PubMed

    Domingo, Antoinette; Ferris, Daniel P

    2010-10-01

    Error augmentation during training has been proposed as a means to facilitate motor learning due to the human nervous system's reliance on performance errors to shape motor commands. We studied the effects of error augmentation on short-term learning of walking on a balance beam to determine whether it had beneficial effects on motor performance. Four groups of able-bodied subjects walked on a treadmill-mounted balance beam (2.5-cm wide) before and after 30 min of training. During training, two groups walked on the beam with a destabilization device that augmented error (Medium and High Destabilization groups). A third group walked on a narrower beam (1.27-cm) to augment error (Narrow). The fourth group practiced walking on the 2.5-cm balance beam (Wide). Subjects in the Wide group had significantly greater improvements after training than the error augmentation groups. The High Destabilization group had significantly less performance gains than the Narrow group in spite of similar failures per minute during training. In a follow-up experiment, a fifth group of subjects (Assisted) practiced with a device that greatly reduced catastrophic errors (i.e., stepping off the beam) but maintained similar pelvic movement variability. Performance gains were significantly greater in the Wide group than the Assisted group, indicating that catastrophic errors were important for short-term learning. We conclude that increasing errors during practice via destabilization and a narrower balance beam did not improve short-term learning of beam walking. In addition, the presence of qualitatively catastrophic errors seems to improve short-term learning of walking balance.

  10. Development and fabrication of an augmented power transistor

    NASA Technical Reports Server (NTRS)

    Geisler, M. J.; Hill, F. E.; Ostop, J. A.

    1983-01-01

    The development of device design and processing techniques for the fabrication of an augmented power transistor capable of fast switching and high voltage power conversion is discussed. The major device goals sustaining voltages in the range of 800 to 1000 V at 80 A and 50 A, respectively, at a gain of 14. The transistor switching rise and fall times were both to have been less than 0.5 microseconds. The development of a passivating glass technique to shield the device high voltage junction from moisture and ionic contaminants is discussed as well as the development of an isolated package that separates the thermal and electrical interfaces. A new method was found to alloy the transistors to the molybdenum disc at a relatively low temperature. The measured electrical performance compares well with the predicted optimum design specified in the original proposed design. A 40 mm diameter transistor was fabricated with seven times the emitter area of the earlier 23 mm diameter device.

  11. High-efficiency solar cells fabricated from direct-current magnetron sputtered n-indium tin oxide onto p-InP grown by atmospheric pressure metalorganic vapor phase epitaxy

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    An attempt is made to improve device efficiencies by depositing indium tin oxide onto epitaxially grown p-InP on p(+)-InP substrates. This leads to a reduction in the device series resistance, high-quality reproducible surfaces, and an improvement in the transport properties of the base layer. Moreover, many of the facets associated with badly characterized bulk liquid encapsulated Czochralski substrates used in previous investigations are removed in this way.

  12. Using virtual ridge augmentation and 3D printing to fabricate a titanium mesh positioning device: A novel technique letter.

    PubMed

    Al-Ardah, Aladdin; Alqahtani, Nasser; AlHelal, Abdulaziz; Goodacre, Brian; Swamidass, Rajesh; Garbacea, Antoanela; Lozada, Jaime

    2018-05-02

    This technique describes a novel approach for planning and augmenting a large bony defect using a titanium mesh (TiMe). A 3-dimensional (3D) surgical model was virtually created from a cone beam computed tomography (CBCT) and wax-pattern of the final prosthetic outcome. The required bone volume (horizontally and vertically) was digitally augmented and then 3D printed to create a bone model. The 3D model was then used to contour the TiMe in accordance with the digital augmentation. With the contoured / preformed TiMe on the 3D printed model a positioning jig was made to aid the placement of the TiMe as planned during surgery. Although this technique does not impact the final outcome of the augmentation procedure, it allows the clinician to virtually design the augmentation, preform and contour the TiMe, and create a positioning jig reducing surgical time and error.

  13. Adaptive multimodal interaction in mobile augmented reality: A conceptual framework

    NASA Astrophysics Data System (ADS)

    Abidin, Rimaniza Zainal; Arshad, Haslina; Shukri, Saidatul A'isyah Ahmad

    2017-10-01

    Recently, Augmented Reality (AR) is an emerging technology in many mobile applications. Mobile AR was defined as a medium for displaying information merged with the real world environment mapped with augmented reality surrounding in a single view. There are four main types of mobile augmented reality interfaces and one of them are multimodal interfaces. Multimodal interface processes two or more combined user input modes (such as speech, pen, touch, manual gesture, gaze, and head and body movements) in a coordinated manner with multimedia system output. In multimodal interface, many frameworks have been proposed to guide the designer to develop a multimodal applications including in augmented reality environment but there has been little work reviewing the framework of adaptive multimodal interface in mobile augmented reality. The main goal of this study is to propose a conceptual framework to illustrate the adaptive multimodal interface in mobile augmented reality. We reviewed several frameworks that have been proposed in the field of multimodal interfaces, adaptive interface and augmented reality. We analyzed the components in the previous frameworks and measure which can be applied in mobile devices. Our framework can be used as a guide for designers and developer to develop a mobile AR application with an adaptive multimodal interfaces.

  14. Recent Development of Augmented Reality in Surgery: A Review

    PubMed Central

    Vávra, P.; Zonča, P.; Ihnát, P.; El-Gendi, A.

    2017-01-01

    Introduction The development augmented reality devices allow physicians to incorporate data visualization into diagnostic and treatment procedures to improve work efficiency, safety, and cost and to enhance surgical training. However, the awareness of possibilities of augmented reality is generally low. This review evaluates whether augmented reality can presently improve the results of surgical procedures. Methods We performed a review of available literature dating from 2010 to November 2016 by searching PubMed and Scopus using the terms “augmented reality” and “surgery.” Results. The initial search yielded 808 studies. After removing duplicates and including only journal articles, a total of 417 studies were identified. By reading of abstracts, 91 relevant studies were chosen to be included. 11 references were gathered by cross-referencing. A total of 102 studies were included in this review. Conclusions The present literature suggest an increasing interest of surgeons regarding employing augmented reality into surgery leading to improved safety and efficacy of surgical procedures. Many studies showed that the performance of newly devised augmented reality systems is comparable to traditional techniques. However, several problems need to be addressed before augmented reality is implemented into the routine practice. PMID:29065604

  15. Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry

    PubMed Central

    Anderud, Jonas; Abrahamsson, Peter; Jimbo, Ryo; Isaksson, Sten; Adolfsson, Erik; Malmström, Johan; Naito, Yoshihito; Wennerberg, Ann

    2015-01-01

    The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. PMID:25792855

  16. Design and test of a situation-augmented display for an unmanned aerial vehicle monitoring task.

    PubMed

    Lu, Jen-Li; Horng, Ruey-Yun; Chao, Chin-Jung

    2013-08-01

    In this study, a situation-augmented display for unmanned aerial vehicle (UAV) monitoring was designed, and its effects on operator performance and mental workload were examined. The display design was augmented with the knowledge that there is an invariant flight trajectory (formed by the relationship between altitude and velocity) for every flight, from takeoff to landing. 56 participants were randomly assigned to the situation-augmented display or a conventional display condition to work on 4 (number of abnormalities) x 2 (noise level) UAV monitoring tasks three times. Results showed that the effects of situation-augmented display on flight completion time and time to detect abnormalities were robust under various workload conditions, but error rate and perceived mental workload were unaffected by the display type. Results suggest that the UAV monitoring task is extremely difficult, and that display devices providing high-level situation-awareness may improve operator monitoring performance.

  17. Collaborative Estimation in Distributed Sensor Networks

    ERIC Educational Resources Information Center

    Kar, Swarnendu

    2013-01-01

    Networks of smart ultra-portable devices are already indispensable in our lives, augmenting our senses and connecting our lives through real time processing and communication of sensory (e.g., audio, video, location) inputs. Though usually hidden from the user's sight, the engineering of these devices involves fierce tradeoffs between energy…

  18. Design of a Shape Memory Alloy deployment hinge for reflector facets

    NASA Technical Reports Server (NTRS)

    Anders, W. S.; Rogers, C. A.

    1991-01-01

    A design concept for a Shape Memory Alloy (SMA) actuated hinge mechanism for deploying segmented facet-type reflector surfaces on antenna truss structures is presented. The mechanism uses nitinol, a nickel-titanium shape memory alloy, as a displacement-force micro-actuator. An electrical current is used to resistively heat a 'plastically' elongated SMA actuator wire, causing it to contract in response to a thermally-induced phase transformation. The resulting tension creates a moment, imparting rotary motion between two adjacent panels. Mechanical stops are designed into the device to limit its range of motion and to establish positioning accuracy at the termination of deployment. The concept and its operation are discussed in detail, and an analytical dynamic simulation model is presented. The model has been used to perform nondimensionalized parametric design studies.

  19. High brightness angled cavity quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, D.; Bai, Y.; Bandyopadhyay, N.

    2015-03-02

    A quantum cascade laser (QCL) with an output power of 203 W is demonstrated in pulsed mode at 283 K with an angled cavity. The device has a ridge width of 300 μm, a cavity length of 5.8 mm, and a tilt angle of 12°. The back facet is high reflection coated, and the front facet is anti-reflection coated. The emitting wavelength is around 4.8 μm. In distinct contrast to a straight cavity broad area QCL, the lateral far field is single lobed with a divergence angle of only 3°. An ultrahigh brightness value of 156 MW cm{sup −2 }sr{sup −1} is obtained, which marks the brightestmore » QCL to date.« less

  20. Humidity Sensor Based on Bragg Gratings Developed on the End Facet of an Optical Fiber by Sputtering of One Single Material.

    PubMed

    Ascorbe, Joaquin; Corres, Jesus M; Arregui, Francisco J; Matias, Ignacio R

    2017-04-29

    The refractive index of sputtered indium oxide nanocoatings has been altered just by changing the sputtering parameters, such as pressure. These induced changes have been exploited for the generation of a grating on the end facet of an optical fiber towards the development of wavelength-modulated optical fiber humidity sensors. A theoretical analysis has also been performed in order to study the different parameters involved in the fabrication of this optical structure and how they would affect the sensitivity of these devices. Experimental and theoretical results are in good agreement. A sensitivity of 150 pm/%RH was obtained for relative humidity changes from 20% to 60%. This kind of humidity sensors shows a maximum hysteresis of 1.3% relative humidity.

  1. Precise Haptic Device Co-Location for Visuo-Haptic Augmented Reality.

    PubMed

    Eck, Ulrich; Pankratz, Frieder; Sandor, Christian; Klinker, Gudrun; Laga, Hamid

    2015-12-01

    Visuo-haptic augmented reality systems enable users to see and touch digital information that is embedded in the real world. PHANToM haptic devices are often employed to provide haptic feedback. Precise co-location of computer-generated graphics and the haptic stylus is necessary to provide a realistic user experience. Previous work has focused on calibration procedures that compensate the non-linear position error caused by inaccuracies in the joint angle sensors. In this article we present a more complete procedure that additionally compensates for errors in the gimbal sensors and improves position calibration. The proposed procedure further includes software-based temporal alignment of sensor data and a method for the estimation of a reference for position calibration, resulting in increased robustness against haptic device initialization and external tracker noise. We designed our procedure to require minimal user input to maximize usability. We conducted an extensive evaluation with two different PHANToMs, two different optical trackers, and a mechanical tracker. Compared to state-of-the-art calibration procedures, our approach significantly improves the co-location of the haptic stylus. This results in higher fidelity visual and haptic augmentations, which are crucial for fine-motor tasks in areas such as medical training simulators, assembly planning tools, or rapid prototyping applications.

  2. Residual mode correction in calibrating nonlinear damper for vibration control of flexible structures

    NASA Astrophysics Data System (ADS)

    Sun, Limin; Chen, Lin

    2017-10-01

    Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.

  3. Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review.

    PubMed

    Batty, Lachlan M; Norsworthy, Cameron J; Lash, Nicholas J; Wasiak, Jason; Richmond, Anneka K; Feller, Julian A

    2015-05-01

    The role of synthetic devices in the management of the cruciate ligament-injured knee remains controversial. The aim of this systematic review was to assess the safety and efficacy of synthetic devices in cruciate ligament surgery. A systematic review of the electronic databases Medline, Embase, and The Cochrane Library (issue 1, 2014) on January 13, 2014, was performed to identify controlled and uncontrolled trials. Trials that assessed the safety and efficacy of synthetic devices for cruciate ligament surgery were included. The main variables assessed included rates of failure, revision, and noninfective effusion and synovitis. Patient-reported outcome assessments and complications were also assessed where reported. From 511 records screened, we included 85 articles published between 1985 and 2013 reporting on 6 synthetic devices (ligament augmentation and reconstruction system [Ligament Augmentation and Reconstruction System (LARS; Surgical Implants and Devices, Arc-sur-Tille, France)]; Leeds-Keio [Xiros (formerly Neoligaments), Leeds, England]; Kennedy ligament augmentation device [3M, St Paul, MN]; Dacron [Stryker, Kalamazoo, MI]; Gore-Tex [W.L. Gore and Associates, Flagstaff, AZ]; and Trevira [Telos (limited liability company), Marburg, Germany]). The heterogeneity of the included studies precluded meta-analysis. The results were analyzed by device and then type of reconstruction (anterior cruciate ligament [ACL]/posterior cruciate ligament [PCL]/combined ACL and PCL). The lowest cumulative rates of failure were seen with the LARS device (2.6% for ACL and 1% for PCL surgery). The highest failure rate was seen in the Dacron ACL group (cumulative rate, 33.6%). Rates of noninfective synovitis and effusion ranged from 0.2% in the LARS ACL group to 27.6% in the Gore-Tex ACL group. Revision rates ranged from 2.6% (LARS) to 11.8% (Trevira-Hochfest; Telos). Recent designs, specifically the LARS, showed good improvement in the outcome scores. The mean preoperative and postoperative Lysholm knee scores were 54 and 88, respectively; the mean preoperative and postoperative Tegner activity scale scores were 3.3 and 6, respectively. Preliminary results for newer-generation devices, specifically the LARS, show lower reported rates of failure, revision, and sterile effusion/synovitis when compared with older devices. Level IV, systematic review of Level II through IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. The 1.1 micrometer and visible emission semiconductor diode lasers. [(AlGa)As lasers

    NASA Technical Reports Server (NTRS)

    Ladany, I.; Nuese, C. J.; Kressel, H.

    1978-01-01

    In (AlGa)As, the first of three alloy systems studied, Continuous Wave (CW) operation was obtained at room temperature at a wavelength as low as 7260 A. Reliability in this system was studied in the incoherent mode. Zinc doped devices had significant degradation, whereas Ge or Ge plus Zi doped devices had none. The Al2O3 facet coatings were shown to significantly reduce facet deterioration in all types of lasers, longer wavelength units of that type having accumulated (at the time of writing) 22,000 hours with little if any degradation. A CL study of thin (AlGa)As layers revealed micro fluctuation in composition. A macro-scale fluctuation was observed by electroreflectance. An experimental and theoretical study of the effect of stripe width on the threshold current was carried out. Emission below 7000 A was obtained in VPE grown Ga(AsP) (In,Ga)P with CW operation at 10 C. Lasers and LED's were made by LPE in (InGa) (AsP). Laser thresholds of 5 kA/cm2 were obtained, while LED efficiences were on the order of 2%. Incoherent life test over 6000 hours showed no degradation.

  5. Using Mobile Devices in Nursing Education.

    PubMed

    Day-Black, Crystal; Merrill, Earlene B

    2015-01-01

    The use of mobile device technology in nursing education is growing. These devices are becoming more important in the health care environment with an advantage of providing a compendium of drug, nursing procedures and treatments, and disease information to nursing students. Senior baccalaureate nursing students traditionally are prohibited from medication administration during psychiatric-mental health clinical rotations, but they are required to participate in simulated medication discussions and administration experiences. The incorporation of this mobile device technology to augment clinical learning experiences has advantages including potential reduction of medication errors, and improved patient safety during students' clinical rotation. The purpose of this project is to explain how the mobile device (iPod Touch, 4th generation wireless media player) may be used to enhance and augment comprehensive nursing care in a psychiatric-mental health clinical setting. Thirty-four (34) baccalaureate senior nursing students enrolled in a clinical psychiatric-mental nursing course at a mid-Atlantic public university school of nursing were used. Each student was provided a loaner mobile device with appropriate software and the necessary training. Data were collected on the student's ability to simulate medication administration to a psychiatric-mental health client. Surveys were administered before distribution, at mid-point and at the end of two (2) seven week semesters.

  6. Percutaneous Dorsal Instrumentation of Vertebral Burst Fractures: Value of Additional Percutaneous Intravertebral Reposition—Cadaver Study

    PubMed Central

    Krüger, Antonio; Schmuck, Maya; Noriega, David C.; Ruchholtz, Steffen; Baroud, Gamal; Oberkircher, Ludwig

    2015-01-01

    Purpose. The treatment of vertebral burst fractures is still controversial. The aim of the study is to evaluate the purpose of additional percutaneous intravertebral reduction when combined with dorsal instrumentation. Methods. In this biomechanical cadaver study twenty-eight spine segments (T11-L3) were used (male donors, mean age 64.9 ± 6.5 years). Burst fractures of L1 were generated using a standardised protocol. After fracture all spines were allocated to four similar groups and randomised according to surgical techniques (posterior instrumentation; posterior instrumentation + intravertebral reduction device + cement augmentation; posterior instrumentation + intravertebral reduction device without cement; and intravertebral reduction device + cement augmentation). After treatment, 100000 cycles (100–600 N, 3 Hz) were applied using a servohydraulic loading frame. Results. Overall anatomical restoration was better in all groups where the intravertebral reduction device was used (p < 0.05). In particular, it was possible to restore central endplates (p > 0.05). All techniques decreased narrowing of the spinal canal. After loading, clearance could be maintained in all groups fitted with the intravertebral reduction device. Narrowing increased in the group treated with dorsal instrumentation. Conclusions. For height and anatomical restoration, the combination of an intravertebral reduction device with dorsal instrumentation showed significantly better results than sole dorsal instrumentation. PMID:26137481

  7. High single-spatial-mode pulsed power from 980 nm emitting diode lasers

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Tomm, Jens W.; Elsaesser, Thomas; Bettiati, Mauro

    2012-11-01

    Single-spatial-mode pulsed powers as high as 13 W and 20 W in 150 and 50 ns pulses, respectively, are reported for 980 nm emitting lasers. In terms of energy, single-spatial-mode values of up to 2 μJ within 150 ns pulses are shown. In this high-power pulsed operation, the devices shield themselves from facet degradation, being the main degradation source in continuous wave (cw) operation. Our results pave the way towards additional applications while employing available standard devices, which have originally been designed as very reliable cw fiber pumps.

  8. Augmented Reality and Mobile Art

    NASA Astrophysics Data System (ADS)

    Gwilt, Ian

    The combined notions of augmented-reality (AR) and mobile art are based on the amalgamation of a number of enabling technologies including computer imaging, emergent display and tracking systems and the increased computing-power in hand-held devices such as Tablet PCs, smart phones, or personal digital assistants (PDAs) which have been utilized in the making of works of art. There is much published research on the technical aspects of AR and the ongoing work being undertaken in the development of faster more efficient AR systems [1] [2]. In this text I intend to concentrate on how AR and its associated typologies can be applied in the context of new media art practices, with particular reference to its application on hand-held or mobile devices.

  9. Application of Virtual, Augmented, and Mixed Reality to Urology.

    PubMed

    Hamacher, Alaric; Kim, Su Jin; Cho, Sung Tae; Pardeshi, Sunil; Lee, Seung Hyun; Eun, Sung-Jong; Whangbo, Taeg Keun

    2016-09-01

    Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected.

  10. Application of Virtual, Augmented, and Mixed Reality to Urology

    PubMed Central

    2016-01-01

    Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected. PMID:27706017

  11. Use and Acceptance of AAC Systems by Children with Angelman Syndrome

    ERIC Educational Resources Information Center

    Calculator, Stephen N.

    2013-01-01

    Background: This investigation of children with Angelman syndrome (AS) examined reported uses of electronic augmentative and alternative communication (AAC) devices (i.e. VOCAs), including speech generating devices, in relation to other aided and unaided methods of communication. Materials and Method: A total of 122 parents of children with AS,…

  12. Speech-Generating Devices versus Manual Signing for Children with Developmental Disabilities

    ERIC Educational Resources Information Center

    van der Meer, Larah; Kagohara, Debora; Achmadi, Donna; O'Reilly, Mark F.; Lancioni, Giulio E.; Sutherland, Dean; Sigafoos, Jeff

    2012-01-01

    We compared speed of acquisition and preference for using a speech-generating device (SGD) versus manual signing (MS) as augmentative and alternative communication (AAC) options. Four children with developmental disabilities (DD), aged 5-10 years, were taught to request preferred objects using an iPod[R]-based SGD and MS. Intervention was…

  13. Comparing Scanning Modes for Youths with Cerebral Palsy. Final Report.

    ERIC Educational Resources Information Center

    Ottenbacher, Kenneth J.; Angelo, Jennifer

    This study of 22 individuals (ages 13-20) with cerebral palsy investigated the use of scanning, an interface technique that allows access to assistive devices such as communication boards, electronic augmentative communication devices, and computers by using a pointer, either a finger or a cursor. This packet of information includes the findings…

  14. Using Mobile Technology to Increase the Math Achievement and Engagement of Students with Disabilities

    ERIC Educational Resources Information Center

    Tetzlaff, Dominique Marie

    2017-01-01

    The advent of advanced technologies provides new opportunities for delivering instruction to students with disabilities. Many classrooms have access to mobile devices, such as iPads and Kindles, and educators utilize these devices to differentiate instruction and augment teacher-led instruction. This delivery method, known as blended learning, can…

  15. Custom Titanium Ridge Augmentation Matrix (CTRAM): A Case Report.

    PubMed

    Connors, Christopher A; Liacouras, Peter C; Grant, Gerald T

    2016-01-01

    This is a case report of a custom titanium ridge augmentation matrix (CTRAM). Using cone beam computed tomography (CBCT), a custom titanium space-maintaining device was developed. Alveolar ridges were virtually augmented, a matrix was virtually designed, and the CTRAM was additively manufactured with titanium (Ti6Al4V). Two cases are presented that resulted in sufficient increased horizontal bone volume with successful dental implant placement. The CTRAM design allows for preoperative planning for increasing alveolar ridge dimensions to support dental implants, reduces surgical time, and prevents the need for a second surgical site to gain sufficient alveolar ridge bone volume for dental implant therapy.

  16. Augmentative and alternative communication in adolescents with severe intellectual disability: a clinical experience.

    PubMed

    Uliano, D; Falciglia, G; Del Viscio, C; Picelli, A; Gandolfi, M; Passarella, A

    2010-06-01

    Augmentative and alternative communication devices proved to be effective in patients with severe intellectual disability to overcome their communication impairments. In order to give a contribution for design of augmentative and alternative communication systems that better meet the needs of beginning communicators we decided to report our clinical experience about using augmentative and alternative communication in adolescents with severe intellectual disability. Five patients who underwent a long time traditional speech rehabilitation program (at least 5 years) with scant improvements in linguistic function were recruited and evaluated by means of the Vineland Adaptive Behaviour Scale before and after a three years augmentative and alternative communication intervention carried out by a multidisciplinary team. After the rehabilitative intervention patients showed an improvement in communication, daily living skills and socialization as measured by the Vineland Adaptive Behaviour Scale. Augmentative and alternative communication is an effective rehabilitation approach to people with severe intellectual disability and impairments in linguistic expression. Moreover augmentative and alternative communication is a useful tool allowing these patients to increase their social participation also enhancing their self-esteem. Our clinical experience confirmed these topics also in adolescents who underwent a long time traditional speech rehabilitation program with scant improvements, providing practical information to clinicians.

  17. Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces

    PubMed Central

    Hong, Sung Woo; Huh, June; Gu, Xiaodan; Lee, Dong Hyun; Jo, Won Ho; Park, Soojin; Xu, Ting; Russell, Thomas P.

    2012-01-01

    A simple, versatile approach to the directed self-assembly of block copolymers into a macroscopic array of unidirectionally aligned cylindrical microdomains on reconstructed faceted single crystal surfaces or on flexible, inexpensive polymeric replicas was discovered. High fidelity transfer of the line pattern generated from the microdomains to a master mold is also shown. A single-grained line patterns over arbitrarily large surface areas without the use of top-down techniques is demonstrated, which has an order parameter typically in excess of 0.97 and a slope error of 1.1 deg. This degree of perfection, produced in a short time period, has yet to be achieved by any other methods. The exceptional alignment arises from entropic penalties of chain packing in the facets coupled with the bending modulus of the cylindrical microdomains. This is shown, theoretically, to be the lowest energy state. The atomic crystalline ordering of the substrate is transferred, over multiple length scales, to the block copolymer microdomains, opening avenues to large-scale roll-to-roll type and nanoimprint processing of perfectly patterned surfaces and as templates and scaffolds for magnetic storage media, polarizing devices, and nanowire arrays. PMID:22307591

  18. Multiple Perforations of the Sinus Floor During Maxillary Sinus Floor Augmentation to Provide Access to the Bone Marrow Space: A Technical Report.

    PubMed

    Ulm, Christian; Bertl, Kristina; Strbac, Georg D; Esfandeyari, Azadeh; Stavropoulos, Andreas; Zechner, Werner

    2017-12-01

    Sinus floor augmentation is a routinely used surgical technique for increasing the bone height/volume of the atrophic posterior maxilla. Optimal integration of the implanted augmentation material within the newly formed bone will-at least partly-depend on adequate vascularization to ensure sufficient recruitment of osteoblast and osteoclast precursor cells. The present technical note describes a modification intended to facilitate increased blood inflow into the augmented space. After preparation of the lateral window and elevation of the Schneiderian membrane, the cortical bone of the sinus floor is perforated several times either by using a piezoelectric device or a microsurgical handpiece with the corresponding tip or bur; these perforations should extend into the trabecular bone. The experiences with this modified technique after 12 patients are presented and discussed. It is expected that by means of this relatively simple technique, increased blood and cell inflow into the augmented space is achieved. This may, in turn, enhance new bone formation and improve the integration of the augmentation material.

  19. [INVITED] Nanofabrication of phase-shifted Bragg gratings on the end facet of multimode fiber towards development of optical filters and sensors

    NASA Astrophysics Data System (ADS)

    Gallego, E. E.; Ascorbe, J.; Del Villar, I.; Corres, J. M.; Matias, I. R.

    2018-05-01

    This work describes the process of nanofabrication of phase-shifted Bragg gratings on the end facet of a multimode optical fiber with a pulsed DC sputtering system based on a single target. Several structures have been explored as a function of parameters such as the number of layers or the phase-shift. The experimental results, corroborated with simulations based on plane-wave propagation in a stack of homogeneous layers, indicate that the phase-shift can be controlled with a high degree of accuracy. The device could be used both in communications, as a filter, or in the sensors domain. As an example of application, a humidity sensor with wavelength shifts of 12 nm in the range of 30 to 90% relative humidity (200 pm/% relative humidity) is presented.

  20. Reliability of Semiconductor Laser Packaging in Space Applications

    NASA Technical Reports Server (NTRS)

    Gontijo, Ivair; Qiu, Yueming; Shapiro, Andrew A.

    2008-01-01

    A typical set up used to perform lifetime tests of packaged, fiber pigtailed semiconductor lasers is described, as well as tests performed on a set of four pump lasers. It was found that two lasers failed after 3200, and 6100 hours under device specified bias conditions at elevated temperatures. Failure analysis of the lasers indicates imperfections and carbon contamination of the laser metallization, possibly from improperly cleaned photo resist. SEM imaging of the front facet of one of the lasers, although of poor quality due to the optical fiber charging effects, shows evidence of catastrophic damage at the facet. More stringent manufacturing controls with 100% visual inspection of laser chips are needed to prevent imperfect lasers from proceeding to packaging and ending up in space applications, where failure can result in the loss of a space flight mission.

  1. Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump.

    PubMed

    Ong, Carmichael F; Hicks, Jennifer L; Delp, Scott L

    2016-05-01

    Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human-robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135, 365, and 297 Nm to the ankle, knee, and hip, respectively. Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Simulation can aid in the design of performance-enhancing technologies.

  2. Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.

    2003-01-01

    The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.

  3. Aluminum gallium nitride-cladding-free nonpolar m-plane gallium nitride-based laser diodes

    NASA Astrophysics Data System (ADS)

    Schmidt, Mathew Corey

    The recent demonstration of nonpolar GaN laser diode operation along with rapid device improvements signal a paradigm shift in GaN-based optoelectronic technology. Up until now, GaN optoelectronics have been trapped on the c-plane facet, where built-in polarization fields place limitations on device design and performance. The advent of bulk GaN substrates has allowed for the full exploration of not only the nonpolar m-plane facet, but all crystal orientations of GaN. This dissertation focuses on the development of some of the world's first nonpolar m-plane GaN laser diodes as well as on the AlGaN-cladding-free concept invented at UCSB. The absence of built-in electric fields allows for thicker quantum wells (≥8 nm) than those allowed on c-plane which improves the optical waveguiding characteristics and eliminates the need for AlGaN cladding layers. The benefits of this design include more uniform growth, more reproducible growth, no tensile cracking, lower operating voltages and currents, and higher yields. The first iteration of device design optimization is presented. Design and growth aspects investigated include quantum well number, quantum well thickness, Mg doping of the p-GaN cladding, aluminum composition of the AlGaN cladding layer and the implementation of an InGaN separate confined heterostructure. These optimizations led to threshold current densities as low as 2.4 kA/cm2.

  4. Oriented bottom-up growth of armchair graphene nanoribbons on germanium

    DOEpatents

    Arnold, Michael Scott; Jacobberger, Robert Michael

    2016-03-15

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a scalable, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of the germanium is used to orient the graphene nanoribbon crystals along the [110] directions of the germanium.

  5. Functional reasoning in diagnostic problem solving

    NASA Technical Reports Server (NTRS)

    Sticklen, Jon; Bond, W. E.; Stclair, D. C.

    1988-01-01

    This work is one facet of an integrated approach to diagnostic problem solving for aircraft and space systems currently under development. The authors are applying a method of modeling and reasoning about deep knowledge based on a functional viewpoint. The approach recognizes a level of device understanding which is intermediate between a compiled level of typical Expert Systems, and a deep level at which large-scale device behavior is derived from known properties of device structure and component behavior. At this intermediate functional level, a device is modeled in three steps. First, a component decomposition of the device is defined. Second, the functionality of each device/subdevice is abstractly identified. Third, the state sequences which implement each function are specified. Given a functional representation and a set of initial conditions, the functional reasoner acts as a consequence finder. The output of the consequence finder can be utilized in diagnostic problem solving. The paper also discussed ways in which this functional approach may find application in the aerospace field.

  6. Statistical study of the reliability of oxide-defined stripe cw lasers of (AlGa)As

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettenberg, M.

    1979-03-01

    In this report, we describe a statistical study of the reliability of oxide-defined stripe-contact cw injection lasers of (AlGa)As. These devices have one facet coated with Al/sub 2/O/sub 3/ and one facet coated with an Al/sub 2/O/sub 3//Si dichroic reflector; the lasers are optimized for cw low-threshold currents at room temperature, with values typically about 50 mA. Lifetests were carried out at 70 /sup 0/C ambient, in the cw mode of operation with about 5 mW output. Previous lifetests showed that the degradation rate followed a 0.95-eV activation energy so the 70 /sup 0/C environment provides a degradation acceleration factormore » of 190 over that at room temperature. We have found that the device failures follow a log-normal distribution, characterized by a mean time before failure of 4200 h and a standard deviation of 1.3. This corresponds to a mean time to failure (MTTF) of 10/sup 6/ h at room temperature. Failure is defined here as the inability of the device to emit 1 mW of stimulated cw output at 70 /sup 0/C, and assumes that optical feedback will be employed to adjust the laser current during operation. If a constant-current drive is envisioned, the failures for a 3-dB drop in light output also follow a log-normal distribution with a similar slope (standard deviation=1.1) and a MTTF of 2000 h at 70 /sup 0/C (500 000 h at room temperature). The failures were found to be mainly due to bulk gradual degradation and not facet or contact failure. Careful study of lasers before and after lifetest showed a significant increase in contact thermal resistance. However, this increase accounts for only a small portion of the nearly 70% increase in room-temperature cw threshold after failure at 70 /sup 0/C. After failure at 70 /sup 0/C, we also noted a degradation in the near-field and associated far-field pattern of the laser.« less

  7. On the use of virtual and augmented reality for upper limb prostheses training and simulation.

    PubMed

    Lamounier, Edgard; Lopes, Kenedy; Cardoso, Alexandre; Andrade, Adriano; Soares, Alcimar

    2010-01-01

    Accidents happen and unfortunately people may loose part of their body members. Studies have shown that in this case, most individuals suffer physically and psychologically. For this reason, actions to restore the patient's freedom and mobility are imperative. Traditional solutions require ways to adapt the individual to prosthetic devices. This idea is also applied to patients who have congenital limitations. However, one of the major difficulties faced by those who are fitted with these devices is the great mental effort needed during first stages of training. As a result, a meaningful number of patients give up the use of theses devices very soon. Thus, this article reports on a solution designed by the authors to help patients during the learning phases, without actually having to wear the prosthesis. This solution considers Virtual (VR) and Augmented Reality (AR) techniques to mimic the prosthesis natural counterparts. Thus, it is expected that problems such as weight, heat and pain should not contribute to an already hard task.

  8. Live texturing of augmented reality characters from colored drawings.

    PubMed

    Magnenat, Stéphane; Ngo, Dat Tien; Zünd, Fabio; Ryffel, Mattia; Noris, Gioacchino; Rothlin, Gerhard; Marra, Alessia; Nitti, Maurizio; Fua, Pascal; Gross, Markus; Sumner, Robert W

    2015-11-01

    Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video stream is augmented with an animated 3-D version of the character that is textured according to the child's coloring. This is possible thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies that examine the quality of our texturing algorithm and the overall App experience.

  9. Labor progress indices and dynamics of the individual uterine contraction during the active stage of labor.

    PubMed

    Ophir, Ella; Bornstein, Jacob; Odeh, Marwan; Kaminsky, Svetlana; Shnaider, Oleg; Megel, Yuri; Barnea, Ofer

    2014-03-01

    To obtain and study new data on the dynamics of the labor process and to develop a contraction-based index of labor progress. This study was carried out at the Delivery Room, Department of Obstetrics and Gynecology, Western Galilee Hospital, Nahariya, Israel, using a new device (Birth Track). We continuously monitored cervical dilatation (CD) and head descent (HD) in 30 nulliparaous women during active labor with (augmented group) and without (study group) oxytocin augmentation. This led to the development and validation of progress indices based on features extracted from continuous monitoring. There were no significant differences between the average of each parameter in the study and augmented groups, except for HD velocity. Average HD velocity was faster in the study group. Linear regression analyses demonstrated that head station (HS) amplitude and Toco amplitude were the best parameters for predicting HD velocity in both groups. In the study group, average HD velocity was also significantly related to Toco rate and contraction efficiency. In the augmented group, only a weak correlation with Toco rate was seen, and no correlation with contraction efficiency. With the assistance of the Birth Track device, we can obtain continuous data on the labor process and indices to estimate the labor progress process without the use of vaginal (manual) examination. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  10. Evaluation of a mobile augmented reality application for image guidance of neurosurgical interventions.

    PubMed

    Kramers, Matthew; Armstrong, Ryan; Bakhshmand, Saeed M; Fenster, Aaron; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-01-01

    Image guidance can provide surgeons with valuable contextual information during a medical intervention. Often, image guidance systems require considerable infrastructure, setup-time, and operator experience to be utilized. Certain procedures performed at bedside are susceptible to navigational errors that can lead to complications. We present an application for mobile devices that can provide image guidance using augmented reality to assist in performing neurosurgical tasks. A methodology is outlined that evaluates this mode of visualization from the standpoint of perceptual localization, depth estimation, and pointing performance, in scenarios derived from a neurosurgical targeting task. By measuring user variability and speed we can report objective metrics of performance for our augmented reality guidance system.

  11. Five-year Experience with Perma Facial Implant

    PubMed Central

    Raphael, Peter; Harris, Ryan

    2014-01-01

    Summary: Augmentation cheiloplasty is becoming an increasingly popular aesthetic procedure despite current methodologies having met with disappointment among surgeons and patients. The goal of this study was to examine the benefits and drawbacks of 1 device in particular—Perma Facial Implant (PFI). The senior authors (P.R. and S.W.H.) performed 832 consecutive PFI lip augmentations with excellent results based on photographic documentation, patient satisfaction surveys, unbiased surgeon ratings, and low complication rates. In addition to augmenting thin lips, PFIs hide excess dentition and improve vermilion rhytids and pout. Contrary to alternatives, they are both permanent and reversible. However, they do not level out asymmetries or benefit razor-thin lips without prior lifting or mucosal advancement. PMID:25289346

  12. NeuroRex: A Clinical Neural Interface Roadmap for EEG-based Brain Machine Interfaces to a Lower Body Robotic Exoskeleton*

    PubMed Central

    Contreras-Vidal, Jose L.; Grossman, Robert G.

    2013-01-01

    In this communication, a translational clinical brain-machine interface (BMI) roadmap for an EEG-based BMI to a robotic exoskeleton (NeuroRex) is presented. This multi-faceted project addresses important engineering and clinical challenges: It addresses the validation of an intelligent, self-balancing, robotic lower-body and trunk exoskeleton (Rex) augmented with EEG-based BMI capabilities to interpret user intent to assist a mobility-impaired person to walk independently. The goal is to improve the quality of life and health status of wheelchair-bounded persons by enabling standing and sitting, walking and backing, turning, ascending and descending stairs/curbs, and navigating sloping surfaces in a variety of conditions without the need for additional support or crutches. PMID:24110003

  13. The segmentation of the HMD market: optics for smart glasses, smart eyewear, AR and VR headsets

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Saeedi, Ehsan; Brac-de-la-Perriere, Vincent

    2014-09-01

    This paper reviews the various optical technologies that have been developed to implement HMDs (Head Mounted Displays), both as AR (Augmented Reality) devices, VR (Virtual Reality) devices and more recently as smart glasses, smart eyewear or connected glasses. We review the typical requirements and optical performances of such devices and categorize them into distinct groups, which are suited for different (and constantly evolving) market segments, and analyze such market segmentation.

  14. Interactive Near-Field Illumination for Photorealistic Augmented Reality with Varying Materials on Mobile Devices.

    PubMed

    Rohmer, Kai; Buschel, Wolfgang; Dachselt, Raimund; Grosch, Thorsten

    2015-12-01

    At present, photorealistic augmentation is not yet possible since the computational power of mobile devices is insufficient. Even streaming solutions from stationary PCs cause a latency that affects user interactions considerably. Therefore, we introduce a differential rendering method that allows for a consistent illumination of the inserted virtual objects on mobile devices, avoiding delays. The computation effort is shared between a stationary PC and the mobile devices to make use of the capacities available on both sides. The method is designed such that only a minimum amount of data has to be transferred asynchronously between the participants. This allows for an interactive illumination of virtual objects with a consistent appearance under both temporally and spatially varying real illumination conditions. To describe the complex near-field illumination in an indoor scenario, HDR video cameras are used to capture the illumination from multiple directions. In this way, sources of illumination can be considered that are not directly visible to the mobile device because of occlusions and the limited field of view. While our method focuses on Lambertian materials, we also provide some initial approaches to approximate non-diffuse virtual objects and thereby allow for a wider field of application at nearly the same cost.

  15. iPad: Efficacy of Electronic Devices to Help Children with Autism Spectrum Disorder to Communicate in the Classroom

    ERIC Educational Resources Information Center

    Sankardas, Sulata Ajit; Rajanahally, Jayashree

    2017-01-01

    Children with Autism Spectrum Disorder (ASD) are known to have difficulty in social communication, with research indicating that children with ASD fail to develop functional speech (Lord and Rutter, 1994). Over the years a number of Augmented and Alternate Communication (AAC) devices have been used with children with ASD to overcome this barrier…

  16. Systematic Review of Studies Promoting the Use of Assistive Technology Devices by Young Children with Disabilities. Practical Evaluation Reports, Volume 5, Number 1

    ERIC Educational Resources Information Center

    Dunst, Carl J.; Trivette, Carol M.; Hamby, Deborah W.; Simkus, Andrew

    2013-01-01

    Findings from a meta-analysis of studies investigating the use of five different assistive technology devices (switch interfaces, powered mobility, computers, augmentative communication, weighted/pressure vests) with young children with disabilities are reported. One hundred and nine studies including 1,342 infants, toddlers, and preschoolers were…

  17. Probing local work function of electron emitting Si-nanofacets

    NASA Astrophysics Data System (ADS)

    Basu, Tanmoy; Som, Tapobrata

    2017-10-01

    Large area, Si-nanofacets are synthesized by obliquely incident low energy Ar+-ion-beam bombardment at room temperature (RT). The field emission properties of such nanofacets are studied based on current-voltage measurements and the Fowler-Nordheim equation. Low turn-on field with relatively high current density is obtained due to the shape and an overall rough morphology. We demonstrate a tunable field emission property from the silicon nanofacets by varying the ion exposure time. Atomic force microscopy (AFM) in conjunction with Kelvin probe force microscopy (KPFM) measurements provide the information on the aspect ratio and confirms the presence of native oxide layer near the apexes of the facets, respectively. The inhomogeneous oxidation leads to an increase in the local work function at the apexes of the facets, restricting the electron emission from the same. Due to its room temperature fabrication, the present method is of great significance to the low-cost vacuum field emission devices fabrication.

  18. Ultralow threshold graded-index separate-confinement heterostructure single quantum well (Al, Ga) As lasers

    NASA Technical Reports Server (NTRS)

    Derry, P. L.; Chen, H. Z.; Morkoc, H.; Yariv, A.; Lau, K. Y.

    1988-01-01

    Broad area graded-index separate-confinement heterostructure single quantum well lasers grown by molecular-beam epitaxy (MBE) with threshold current density as low as 93 A/sq cm (520 microns long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A CW threshold current of 0.55 mA was obtained for a laser with facet reflectivities of about 80 percent, a cavity length of 120 micron, and an active region stripe width of 1 micron. These devices driven directly with logic level signals have switch-on delays less than 50 ps without any current prebias. Such lasers permit fully on-off switching while at the same time obviating the need for bias monitoring and feedback control.

  19. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    PubMed Central

    Cheney, David J.; Douglas, Erica A.; Liu, Lu; Lo, Chien-Fong; Gila, Brent P.; Ren, Fan; Pearton, Stephen J.

    2012-01-01

    We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs) as well as Heterojunction Bipolar Transistors (HBTs) in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate), and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  20. Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector

    DTIC Science & Technology

    2017-04-18

    facet continuous wave emission at 15◦C. Apart from the general performance benets, this enables sensing techiques which rely on continuous wave...record achieved with strained material at this wavelength. Keywords quantum cascade laser, quantum cascade detector, lab- on -a-chip, monolithic integrated...materials, which makes their integration on Si particularly dicult. Heterogeneous integration using transfer techniques allows both single device and wafer

  1. Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump

    PubMed Central

    Ong, Carmichael F.; Hicks, Jennifer L.; Delp, Scott L.

    2017-01-01

    Goal Technologies that augment human performance are the focus of intensive research and development, driven by advances in wearable robotic systems. Success has been limited by the challenge of understanding human–robot interaction. To address this challenge, we developed an optimization framework to synthesize a realistic human standing long jump and used the framework to explore how simulated wearable robotic devices might enhance jump performance. Methods A planar, five-segment, seven-degree-of-freedom model with physiological torque actuators, which have variable torque capacity depending on joint position and velocity, was used to represent human musculoskeletal dynamics. An active augmentation device was modeled as a torque actuator that could apply a single pulse of up to 100 Nm of extension torque. A passive design was modeled as rotational springs about each lower limb joint. Dynamic optimization searched for physiological and device actuation patterns to maximize jump distance. Results Optimization of the nominal case yielded a 2.27 m jump that captured salient kinematic and kinetic features of human jumps. When the active device was added to the ankle, knee, or hip, jump distance increased to between 2.49 and 2.52 m. Active augmentation of all three joints increased the jump distance to 3.10 m. The passive design increased jump distance to 3.32 m by adding torques of 135 Nm, 365 Nm, and 297 Nm to the ankle, knee, and hip, respectively. Conclusion Dynamic optimization can be used to simulate a standing long jump and investigate human-robot interaction. Significance Simulation can aid in the design of performance-enhancing technologies. PMID:26258930

  2. Universal test fixture for monolithic mm-wave integrated circuits calibrated with an augmented TRD algorithm

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Shalkhauser, Kurt A.

    1989-01-01

    The design and evaluation of a novel fixturing technique for characterizing millimeter wave solid state devices is presented. The technique utilizes a cosine-tapered ridge guide fixture and a one-tier de-embedding procedure to produce accurate and repeatable device level data. Advanced features of this technique include nondestructive testing, full waveguide bandwidth operation, universality of application, and rapid, yet repeatable, chip-level characterization. In addition, only one set of calibration standards is required regardless of the device geometry.

  3. Test Operations Procedure (TOP) 02-1-100 Anthropomorphic Test Device Operation and Setup

    DTIC Science & Technology

    2016-02-09

    using the Data Acquisition for Anthropomorphic Test Devices (D4D) in vehicle vulnerability testing. The D4D is an onboard data acquisition system ( DAS ...for Anthropomorphic Test Devices (D4D)** in vehicle vulnerability testing. The D4D is an onboard data acquisition system ( DAS ) that is intended for...use with the Hybrid II/III ATD’s. The D4D was developed to augment the existing DAS system, the legacy Versatile Information Systems Integrated On

  4. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    PubMed

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

  5. Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques.

    PubMed

    Xu, Tao; Dick, Kimberly A; Plissard, Sébastien; Nguyen, Thanh Hai; Makoudi, Younes; Berthe, Maxime; Nys, Jean-Philippe; Wallart, Xavier; Grandidier, Bruno; Caroff, Philippe

    2012-03-09

    III-V antimonide nanowires are among the most interesting semiconductors for transport physics, nanoelectronics and long-wavelength optoelectronic devices due to their optimal material properties. In order to investigate their complex crystal structure evolution, faceting and composition, we report a combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning tunneling microscopy (STM) study of gold-nucleated ternary InAs/InAs(1-x)Sb(x) nanowire heterostructures grown by molecular beam epitaxy. SEM showed the general morphology and faceting, TEM revealed the internal crystal structure and ternary compositions, while STM was successfully applied to characterize the oxide-free nanowire sidewalls, in terms of nanofaceting morphology, atomic structure and surface composition. The complementary use of these techniques allows for correlation of the morphological and structural properties of the nanowires with the amount of Sb incorporated during growth. The addition of even a minute amount of Sb to InAs changes the crystal structure from perfect wurtzite to perfect zinc blende, via intermediate stacking fault and pseudo-periodic twinning regimes. Moreover, the addition of Sb during the axial growth of InAs/InAs(1-x)Sb(x) heterostructure nanowires causes a significant conformal lateral overgrowth on both segments, leading to the spontaneous formation of a core-shell structure, with an Sb-rich shell.

  6. 21 CFR 872.3950 - Glenoid fossa prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... A glenoid fossa prosthesis is a device that is intended to be implanted in the temporomandibular joint to augment a glenoid fossa or to provide an articulation surface for the head of a mandibular...

  7. 21 CFR 872.3950 - Glenoid fossa prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... A glenoid fossa prosthesis is a device that is intended to be implanted in the temporomandibular joint to augment a glenoid fossa or to provide an articulation surface for the head of a mandibular...

  8. Lift Augmentation on a Delta Wing via Leading Edge Fences and the Gurney Flap

    NASA Technical Reports Server (NTRS)

    Buchholz, Mark D.; Tso, Jin

    1993-01-01

    Wind tunnel tests have been conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve by as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.

  9. Vision-based augmented reality system

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Wang, Yongtian; Shi, Qi; Yan, Dayuan

    2003-04-01

    The most promising aspect of augmented reality lies in its ability to integrate the virtual world of the computer with the real world of the user. Namely, users can interact with the real world subjects and objects directly. This paper presents an experimental augmented reality system with a video see-through head-mounted device to display visual objects, as if they were lying on the table together with real objects. In order to overlay virtual objects on the real world at the right position and orientation, the accurate calibration and registration are most important. A vision-based method is used to estimate CCD external parameters by tracking 4 known points with different colors. It achieves sufficient accuracy for non-critical applications such as gaming, annotation and so on.

  10. An augmented reality haptic training simulator for spinal needle procedures.

    PubMed

    Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin

    2013-11-01

    This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.

  11. archAR: an archaeological augmented reality experience

    NASA Astrophysics Data System (ADS)

    Wiley, Bridgette; Schulze, Jürgen P.

    2015-03-01

    We present an application for Android phones or tablets called "archAR" that uses augmented reality as an alternative, portable way of viewing archaeological information from UCSD's Levantine Archaeology Laboratory. archAR provides a unique experience of flying through an archaeological dig site in the Levantine area and exploring the artifacts uncovered there. Using a Google Nexus tablet and Qualcomm's Vuforia API, we use an image target as a map and overlay a three-dimensional model of the dig site onto it, augmenting reality such that we are able to interact with the plotted artifacts. The user can physically move the Android device around the image target and see the dig site model from any perspective. The user can also move the device closer to the model in order to "zoom" into the view of a particular section of the model and its associated artifacts. This is especially useful, as the dig site model and the collection of artifacts are very detailed. The artifacts are plotted as points, colored by type. The user can touch the virtual points to trigger a popup information window that contains details of the artifact, such as photographs, material descriptions, and more.

  12. Mode control in photonic crystal surface emitting lasers (PCSELs) through in-plane feedback (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Taylor, Richard J. E.; Li, Guangrui; Ivanov, Pavlo; Childs, David T. D.; Stevens, Ben J.; Babazadeh, Nasser; Ignatova, Olesya; Hogg, Richard A.

    2017-02-01

    All-semiconductor photonic crystal surface-emitting lasers (PCSELs) operating in CW mode at room temperature and coherently coupled arrays of these lasers are reviewed. These PCSELs are grown via MOVPE on GaAs substrates and include QW active elements and GaAs/InGaP photonic crystal (PC) layer situated above this active zone. Atoms of triangular shapes have been shown to increase optical power from the PCSEL but are also shown to result in a competition between lasing modes. Simulation shows that the energy splitting of lasing modes is smaller for triangular atoms, than for circles making high power single-mode devices difficult to achieve. In this work we experimentally investigate the effect of lateral optical feedback introduced by a facet cleave along one or two perpendicular PCSEL edges. This cleavage plane is misaligned to the PC resulting in a periodic variation of facet phase along the side of the device. Results confirm that a single cleave selects the lowest threshold 2D lasing mode, resulting in a 20% reduction in threshold current and favours single-mode emission. The addition of a second cleave at right-angles to the first has no significant effect upon threshold current. The virgin device is shown to have a symmetric far-field (1 degree) whilst a single cleave produces a 1 degree divergence perpendicular to cleave and 5 degree parallel to cleave. The second orthogonal cleave results in the far field becoming symmetric again but with a divergence angle of 1 degree indicating that single-mode lasing is supported over a wider area.

  13. The Use of Computers and Augmentative and Alternative Communication Devices by Children and Young with Cerebral Palsy

    ERIC Educational Resources Information Center

    Garcia, Thais Pousada; Loureiro, Javier Pereira; Gonzalez, Betania Groba; Riveiro, Laura Nieto; Sierra, Alejandro Pazos

    2011-01-01

    The purpose of the study was to determine the use of computers and assistive devices amongst children with cerebral palsy (CP) and establish the satisfaction level of both users and educational staff. The study was carried out with 30 children with cerebral palsy. A questionnaire was designed to characterize the use of new technologies and…

  14. A Modern Magnetic Implant for Gastroesophageal Reflux Disease.

    PubMed

    Ganz, Robert A

    2017-09-01

    A magnetic implant for the treatment of gastroesophageal reflux disease (GERD) was Food and Drug Administration-approved in 2012 and has been extensively evaluated. The device is a ring of magnets that are placed around the gastroesophageal junction, augmenting the native lower esophageal sphincter and preventing reflux yet preserving lower esophageal sphincter physiologic function and allowing belching and vomiting. Magnetic force is advantageous, being permanent and precise, and forces between magnets decrease with esophageal displacement. Multiple patient cohorts have been studied using the magnetic device, and trials establish consistent, long-term improvement in pH data, GERD symptom scores, and proton-pump inhibitor use. A 5-year Food and Drug Administration trial demonstrated that most patients achieved normal pH scores, 85% stopped proton-pump inhibitors, and GERD health-related quality of life symptom scores improved from 27 to 4 at 5 years. Seven studies have compared magnetic augmentation with laparoscopic Nissen fundoplication and demonstrated that the magnetic device achieved comparable efficacy with regard to proton-pump inhibitor cessation, GERD symptom score improvement, and heartburn and regurgitation scores. However, to date there have been no randomized, controlled trials comparing the 2 techniques, and the study cohorts are not necessarily comparable regarding hiatal hernia size, severity of reflux, body mass index scores, or esophagitis scores. Dysphagia incidence was similar in both groups. Reoperation rates and safety profiles were also comparable, but the magnetic device demonstrated significant beneficial differences in allowing belching and vomiting. The magnetic device is safe, with the main adverse event being dysphagia with an approximate 3%-5% chronic incidence. Device removals in clinical trials have been between 0% and 7% and were uneventful. There have been no erosions, perforations, or infections in FDA clinical trials; erosions have rarely been noted in practice. Magnetic augmentation of the lower esophageal sphincter is a safe and effective operation for GERD, and should be considered a surgical option for those seeking a fundic-sparing operation, particularly those with parameters consistent with study cohorts. Additional randomized, controlled trials are underway. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. PLIF with a titanium cage and excised facet joint bone for degenerative spondylolisthesis--in augmentation with a pedicle screw.

    PubMed

    Okuyama, Koichiro; Kido, Tadato; Unoki, Eiki; Chiba, Mitsuho

    2007-02-01

    To determine the validity of posterior lumbar interbody fusion (PLIF) using a titanium cage filled with excised facet joint bone and a pedicle screw for degenerative spondylolisthesis. PLIF using a titanium cage filled with excised facet joint bone and a pedicle screw was performed in 28 consecutive patients (men 10, women 18). The mean age of the patients was 60 years (range, 52 to 75 y) at the time of surgery. The mean follow-up period was 2.3 years (range, 2.0 to 4.5 y). The operation was done at L3/4 in 5, L4/5 in 20, and L3/4/5 in 3 patients. The mean operative bleeding was 318+/-151 g (mean+/-standard deviation), and the mean operative time was 3.34+/-0.57 hours per fixed segment. Clinical outcome was assessed by Denis' Pain and Work scale. Radiologic assessment was done using Boxell's method. Fusion outcome was assessed using an established criteria. On Pain scale, 20 and 8 patients were rated P4 and P5 before surgery, and 11, 12, 2, 2, and 1 patients were rated P1, P2, P3, P4, and P5 at final follow-up, respectively. On Work scale (for only physical labors), 12 and 9 patients were rated W4 and W5, before surgery, and 12, 5, 1, and 3 patients were rated W1, W2, W3 and W5 at final follow-up, respectively. There was significant difference in clinical outcome (P<0.01, Wilcoxon singled-rank test) The mean %Slip and Slip Angle was 17.9+/-8.1% and 3.9+/-5.8 degrees before surgery. The mean % Slip and Slip Angle was 5.4+/-4.4% and -2.0+/-4.8 degrees at final follow-up. There was a significant difference between the values (P<0.01, paired t test). "Union" and "probable union" was determined in 29 (93.5%) and 2 (6.5%) of 31 operated segments at 2.3 years (range, 2.0 to 4.5 y), postoperatively. PLIF using a titanium cage filled with excised facet joint bone and a pedicle screw provided a satisfactory clinical outcome and an excellent union rate without harvesting and grafting the autologous iliac bone.

  16. Lens Coupled Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Lee, Alan Wei Min (Inventor); Hu, Qing (Inventor)

    2013-01-01

    Terahertz quantum cascade (QC) devices are disclosed that can operate, e.g., in a range of about 1 THz to about 10 THz. In some embodiments, QC lasers are disclosed in which an optical element (e.g., a lens) is coupled to an output facet of the laser's active region to enhance coupling of the lasing radiation from the active region to an external environment. In other embodiments, terahertz amplifier and tunable terahertz QC lasers are disclosed.

  17. Visual Image Sensor Organ Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.

    2014-01-01

    This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.

  18. Use of an augmented-vision device for visual search by patients with tunnel vision.

    PubMed

    Luo, Gang; Peli, Eli

    2006-09-01

    To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VFs) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF, 8 degrees -11 degrees wide) carried out the search over a 90 degrees x 74 degrees area, and nine subjects (VF, 7 degrees -16 degrees wide) carried out the search over a 66 degrees x 52 degrees area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in the larger and the smaller area searches. When using the device, a significant reduction in search time (28% approximately 74%) was demonstrated by all three subjects in the larger area search and by subjects with VFs wider than 10 degrees in the smaller area search (average, 22%). Directness and gaze speed accounted for 90% of the variability of search time. Although performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. Because improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks.

  19. Public Health Potential of Farmers’ Markets on Medical Center Campuses: A Case Study From Penn State Milton S. Hershey Medical Center

    PubMed Central

    Kraschnewski, Jennifer L.; Rovniak, Liza S.

    2011-01-01

    There are currently 7175 farmers’ markets in the United States, and these organizations are increasingly viewed as one facet of the solution to national health problems. There has been a recent trend toward establishing markets on medical center campuses, and such partnerships can augment a medical center's ability to serve community health. However, to our knowledge no studies have described the emergence of a market at a medical center, the barriers and challenges such an initiative has faced, or the nature of programming it may foster. We provide a qualitative description of the process of starting a seasonal, once-a-week, producers-only market at the Pennsylvania State Hershey Medical Center, and we call for greater public health attention to these emerging community spaces. PMID:22021298

  20. Public health potential of farmers' markets on medical center campuses: a case study from Penn State Milton S. Hershey Medical Center.

    PubMed

    George, Daniel R; Kraschnewski, Jennifer L; Rovniak, Liza S

    2011-12-01

    There are currently 7175 farmers' markets in the United States, and these organizations are increasingly viewed as one facet of the solution to national health problems. There has been a recent trend toward establishing markets on medical center campuses, and such partnerships can augment a medical center's ability to serve community health. However, to our knowledge no studies have described the emergence of a market at a medical center, the barriers and challenges such an initiative has faced, or the nature of programming it may foster. We provide a qualitative description of the process of starting a seasonal, once-a-week, producers-only market at the Pennsylvania State Hershey Medical Center, and we call for greater public health attention to these emerging community spaces.

  1. Biomedical device interfacing to clinical information systems: a primer.

    PubMed

    Moorman, Bridget

    2008-01-01

    I am pleased that we get to take advantage of Bridget Moorman's background, experience, and perspective in this installment of IT World. One of the most nerve-racking tasks we run into these days is getting disparate medical devices to talk to each other over a network. This is especially so if the device you're trying to communicate with doesn't support network connectivity. Bridget shares her experience here not only with a great high-level view of network interfacing, but also with references to dig into all the grim details. She shows us a lot of facets to consider when assembling such a network. You've got to convert to hit the ramp then translate and aggregate before gaining access to the clinical information system cloud. If that doesn't make sense, read on! -Jeff Kabachinski, IT World columnist.

  2. Magic cards: a new augmented-reality approach.

    PubMed

    Demuynck, Olivier; Menendez, José Manuel

    2013-01-01

    Augmented reality (AR) commonly uses markers for detection and tracking. Such multimedia applications associate each marker with a virtual 3D model stored in the memory of the camera-equipped device running the application. Application users are limited in their interactions, which require knowing how to design and program 3D objects. This generally prevents them from developing their own entertainment AR applications. The Magic Cards application solves this problem by offering an easy way to create and manage an unlimited number of virtual objects that are encoded on special markers.

  3. Development of concepts for satellite retrieval devices

    NASA Technical Reports Server (NTRS)

    Pruett, E. C.; Robertson, K. B., III; Loughead, T. E.

    1979-01-01

    The teleoperator being developed to augment the Space Transportation System (STS) for satellite placement, retrieval, or servicing at altitudes or orbital planes where it would be impractical to use the shuttle is primarily a general purpose propulsion stage that can be fitted with manipulator arms, automated servicers and satellite retrieval devices for particular missions. Design concepts for a general purpose retrieval device for docking with a satellite to which a grappling fixture has been attached, and for a retrieval device for docking with the Solar Maximum Mission (SMM) spacecraft were defined. The mechanical aspects of these two devices are discussed as well as the crew operations involved and problems created by the requirement for remote control. Drawings for the two retrieval device concepts are included.

  4. Efficient Verification of Holograms Using Mobile Augmented Reality.

    PubMed

    Hartl, Andreas Daniel; Arth, Clemens; Grubert, Jens; Schmalstieg, Dieter

    2016-07-01

    Paper documents such as passports, visas and banknotes are frequently checked by inspection of security elements. In particular, optically variable devices such as holograms are important, but difficult to inspect. Augmented Reality can provide all relevant information on standard mobile devices. However, hologram verification on mobiles still takes long and provides lower accuracy than inspection by human individuals using appropriate reference information. We aim to address these drawbacks by automatic matching combined with a special parametrization of an efficient goal-oriented user interface which supports constrained navigation. We first evaluate a series of similarity measures for matching hologram patches to provide a sound basis for automatic decisions. Then a re-parametrized user interface is proposed based on observations of typical user behavior during document capture. These measures help to reduce capture time to approximately 15 s with better decisions regarding the evaluated samples than what can be achieved by untrained users.

  5. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate.

    PubMed

    Chen, Haiwei; Weng, Yishi; Xu, Daming; Tabiryan, Nelson V; Wu, Shin-Tson

    2016-04-04

    We proposed a switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system. Such a CDW diffracts the incident circularly polarized light to the first order with over 95% efficiency. To convert the input linearly polarized light to right-handed or left-handed circular polarization, we developed a broadband polarization switch consisting of a twisted nematic liquid crystal cell and an achromatic quarter-wave retardation film. By cascading 2-3 CDWs together, multiple diffraction angles can be achieved. To suppress the color dispersion, we proposed two approaches to obtain the same diffraction angle for red, green, and blue LEDs-based full color displays. Our device exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost. It holds promise for the emerging VR/AR displays.

  6. Lift augmentation on a delta wing via leading edge fences and the Gurney flap. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Buchholz, Mark D.

    1992-01-01

    Wind tunnel tests were conducted on two devices for the purpose of lift augmentation on a 60 deg delta wing at low speed. Lift, drag, pitching moment, and surface pressures were measured. Detailed flow visualization was also obtained. Both the leading edge fence and the Gurney flap are shown to increase lift. The fences and flap shift the lift curve as much as 5 deg and 10 deg, respectively. The fences aid in trapping vortices on the upper surface, thereby increasing suction. The Gurney flap improves circulation at the trailing edge. The individual influences of both devices are roughly additive, creating high lift gain. However, the lower lift to drag ratio and the precipitation of vortex burst caused by the fences, and the nose down pitching moment created by the flap are also significant factors.

  7. A Mobile Outdoor Augmented Reality Method Combining Deep Learning Object Detection and Spatial Relationships for Geovisualization.

    PubMed

    Rao, Jinmeng; Qiao, Yanjun; Ren, Fu; Wang, Junxing; Du, Qingyun

    2017-08-24

    The purpose of this study was to develop a robust, fast and markerless mobile augmented reality method for registration, geovisualization and interaction in uncontrolled outdoor environments. We propose a lightweight deep-learning-based object detection approach for mobile or embedded devices; the vision-based detection results of this approach are combined with spatial relationships by means of the host device's built-in Global Positioning System receiver, Inertial Measurement Unit and magnetometer. Virtual objects generated based on geospatial information are precisely registered in the real world, and an interaction method based on touch gestures is implemented. The entire method is independent of the network to ensure robustness to poor signal conditions. A prototype system was developed and tested on the Wuhan University campus to evaluate the method and validate its results. The findings demonstrate that our method achieves a high detection accuracy, stable geovisualization results and interaction.

  8. Putting people first: re-thinking the role of technology in augmentative and alternative communication intervention.

    PubMed

    Light, Janice; McNaughton, David

    2013-12-01

    Current technologies provide individuals with complex communication needs with a powerful array of communication, information, organization, and social networking options. However, there is the danger that the excitement over these new devices will result in a misplaced focus on the technology, to the neglect of what must be the central focus - the people with complex communication needs who require augmentative and alternative communication (AAC). In order to truly harness the power of technology, rehabilitation and educational professionals must ensure that AAC intervention is driven, not by the devices, but rather by the communication needs of the individual. Furthermore, those involved in AAC research and development activities must ensure that the design of AAC technologies is driven by an understanding of motor, sensory, cognitive, and linguistic processing, in order to minimize learning demands and maximize communication power for individuals with complex communication needs across the life span.

  9. Progress Report for the Joint Services Electronics Program

    DTIC Science & Technology

    1991-06-30

    AIGaAs MODFET layers. Both wet etching and reactive ion etching have been used to fabricate the channels. The CAIBE method will also be investigated in...potential for fabricating nanometer scale device structures through surface modification of various types. Using this JSEP research as a foundation...Kerkhoven, "Calculation of velocity overshoot in submicron devices using an augmented drift-diffusion model," Solid-State Electron. (to appear). (JSEP/NSF

  10. Contingency power for small turboshaft engines using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  11. SaFaRI: sacral nerve stimulation versus the FENIX magnetic sphincter augmentation for adult faecal incontinence: a randomised investigation.

    PubMed

    Williams, Annabelle E; Croft, Julie; Napp, Vicky; Corrigan, Neil; Brown, Julia M; Hulme, Claire; Brown, Steven R; Lodge, Jen; Protheroe, David; Jayne, David G

    2016-02-01

    Faecal incontinence is a physically, psychologically and socially disabling condition. NICE guidance (2007) recommends surgical intervention, including sacral nerve stimulation (SNS), after failed conservative therapies. The FENIX magnetic sphincter augmentation (MSA) device is a novel continence device consisting of a flexible band of interlinked titanium beads with magnetic cores that is placed around the anal canal to augment anal sphincter tone through passive attraction of the beads. Preliminary studies suggest the FENIX MSA is safe, but efficacy data is limited. Rigorous evaluation is required prior to widespread adoption. The SaFaRI trial is a National Institute of Health Research (NIHR) Health Technology Assessment (HTA)-funded UK multi-site, parallel group, randomised controlled, unblinded trial that will investigate the use of the FENIX MSA, as compared to SNS, for adult faecal incontinence resistant to conservative management. Twenty sites across the UK, experienced in the treatment of faecal incontinence, will recruit 350 patients randomised equally to receive either SNS or FENIX MSA. Participants will be followed-up at 2 weeks post-surgery and at 6, 12 and 18 months post-randomisation. The primary endpoint is success, as defined by device in use and ≥50 % improvement in the Cleveland Clinic Incontinence Score (CCIS) at 18 months post-randomisation. Secondary endpoints include complications, quality of life and cost effectiveness. SaFaRI will rigorously evaluate a new technology for faecal incontinence, the FENIX™ MSA, allowing its safe and controlled introduction into current clinical practice. These results will inform the future surgical management of adult faecal incontinence.

  12. Seed-mediated growth of patterned graphene nanoribbon arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Michael Scott; Way, Austin James; Jacobberger, Robert Michael

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays, and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a seed-mediated, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of a semiconductor substrate and the orientation of the seed particles on the substrate are used to orient the graphene nanoribbon crystals preferentially along a single [110] direction of the substrate.

  13. Backward-gazing method for heliostats shape errors measurement and calibration

    NASA Astrophysics Data System (ADS)

    Coquand, Mathieu; Caliot, Cyril; Hénault, François

    2017-06-01

    The pointing and canting accuracies and the surface shape of the heliostats have a great influence on the solar tower power plant efficiency. At the industrial scale, one of the issues to solve is the time and the efforts devoted to adjust the different mirrors of the faceted heliostats, which could take several months if the current methods were used. Accurate control of heliostat tracking requires complicated and onerous devices. Thus, methods used to adjust quickly the whole field of a plant are essential for the rise of solar tower technology with a huge number of heliostats. Wavefront detection is widely use in adaptive optics and shape error reconstruction. Such systems can be sources of inspiration for the measurement of solar facets misalignment and tracking errors. We propose a new method of heliostat characterization inspired by adaptive optics devices. This method aims at observing the brightness distributions on heliostat's surface, from different points of view close to the receiver of the power plant, in order to calculate the wavefront of the reflection of the sun on the concentrated surface to determine its errors. The originality of this new method is to use the profile of the sun to determine the defects of the mirrors. In addition, this method would be easy to set-up and could be implemented without sophisticated apparatus: only four cameras would be used to perform the acquisitions.

  14. Allograft Fascia Lata as an Augmentation Device for Musculoskeletal Repairs

    DTIC Science & Technology

    2008-12-01

    TissueMend® ( fetal bovine dermis), Restore® (porcine small intestine submucosa), CuffPatch™ (crosslinked porcine small intestine submucosa) and...transfers, grafting lacerated muscles, periosteal coverage and wound healing. Providing an effective treatment for musculoskeletal conditions such

  15. Validation and augmentation of Inrix arterial travel time data using independent sources.

    DOT National Transportation Integrated Search

    2015-02-01

    Travel time data is a key input to Intelligent Transportation Systems (ITS) applications. Advancement in vehicle : tracking and identification technologies and proliferation of location-aware and connected devices has made network-wide travel time da...

  16. Toward a New Voice

    ERIC Educational Resources Information Center

    Murphy, Patti

    2007-01-01

    Frequently linked to sophisticated speech communication devices resembling laptop computers, augmentative and alternative communication (AAC) encompasses a spectrum of tools and strategies ranging from pointing, writing, gestures, and facial expressions to sign language, manual alphabet boards, picture symbols, and photographs used to convey…

  17. Flexible augmented reality architecture applied to environmental management

    NASA Astrophysics Data System (ADS)

    Correia, Nuno M. R.; Romao, Teresa; Santos, Carlos; Trabuco, Adelaide; Santos, Rossana; Romero, Luis; Danado, Jose; Dias, Eduardo; Camara, Antonio; Nobre, Edmundo

    2003-05-01

    Environmental management often requires in loco observation of the area under analysis. Augmented Reality (AR) technologies allow real time superimposition of synthetic objects on real images, providing augmented knowledge about the surrounding world. Users of an AR system can visualize the real surrounding world together with additional data generated in real time in a contextual way. The work reported in this paper was done in the scope of ANTS (Augmented Environments) project. ANTS is an AR project that explores the development of an augmented reality technological infrastructure for environmental management. This paper presents the architecture and the most relevant modules of ANTS. The system"s architecture follows the client-server model and is based on several independent, but functionally interdependent modules. It has a flexible design, which allows the transfer of some modules to and from the client side, according to the available processing capacities of the client device and the application"s requirements. It combines several techniques to identify the user"s position and orientation allowing the system to adapt to the particular characteristics of each environment. The determination of the data associated to a certain location involves the use of both a 3D Model of the location and the multimedia geo-referenced database.

  18. Intraoperative Comparison of Anatomical versus Round Implants in Breast Augmentation: A Randomized Controlled Trial.

    PubMed

    Hidalgo, David A; Weinstein, Andrew L

    2017-03-01

    The purpose of this randomized controlled trial was to determine whether anatomical implants are aesthetically superior to round implants in breast augmentation. Seventy-five patients undergoing primary breast augmentation had a round silicone implant of optimal volume, projection, and diameter placed in one breast and an anatomical silicone device of similar volume and optimal shape placed in the other. After intraoperative photographs were taken, the anatomical device was replaced by a round implant to complete the procedure. A survey designed to measure breast aesthetics was administered to 10 plastic surgeon and 10 lay reviewers for blind evaluation of the 75 cases. No observable difference in breast aesthetics between anatomical and round implants was reported by plastic surgeons in 43.6 percent or by lay individuals in 29.2 percent of cases. When a difference was perceived, neither plastic surgeons nor lay individuals preferred the anatomical side more often than the round side. Plastic surgeons judged the anatomical side superior in 51.1 percent of cases and the round side superior in 48.9 percent of cases (p = 0.496). Lay individuals judged the anatomical side superior in 46.7 percent of cases and the round side superior in 53.3 percent (p = 0.140). Plastic surgeons identified implant shape correctly in only 26.5 percent of cases. This study provides high-level evidence supporting no aesthetic superiority of anatomical over round implants. Given that anatomical implants have important and unique disadvantages, a lack of proven aesthetic superiority argues against their continued use in breast augmentation. Therapeutic, I.

  19. Tablet Computing in Clinical Training of Pediatric Residents.

    PubMed

    Howard, David J; Coovert, Sally A; Coovert, Michael D; Nelson, Robert M

    2015-07-01

    Medical residents receive both medical education and clinical skills training. New technologies and pedagogies are being developed to address each of these phases. Our research focuses on the efficacy of an iPad(®) (Apple, Cupertino, CA) for clinical skills training. For a period of 3 years, the University of South Florida provided incoming pediatric residents (n=94) with an iPad. At the end of the 3-year program, we surveyed the residents, measuring perceptions and satisfaction of iPad use in clinical training. Sixty percent of the residents responded to the survey. Ninety-three percent reported at least some iPad usage per day on clinical activities. We classified 13 facets of clinical training into three conceptual areas and provided figures detailing iPad use for each facet relative to other facets in the same cluster. The obtaining, management, and display of information are primary uses of iPad applications in clinical training. Finally, we provide information relative to perceived obstacles in clinical training, with weight of the device being the most frequently cited. The role of graduate medical education is changing with the introduction of new technologies. These technologies can differentially impact the various aspects of residency education and training. Residents reported using an iPad extensively in their clinical training. We argue that in addition to impacting traditional educational strategies, iPads can successfully facilitate aspects of clinical training in medical education.

  20. Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning.

    PubMed

    Badiali, Giovanni; Ferrari, Vincenzo; Cutolo, Fabrizio; Freschi, Cinzia; Caramella, Davide; Bianchi, Alberto; Marchetti, Claudio

    2014-12-01

    We present a newly designed, localiser-free, head-mounted system featuring augmented reality as an aid to maxillofacial bone surgery, and assess the potential utility of the device by conducting a feasibility study and validation. Our head-mounted wearable system facilitating augmented surgery was developed as a stand-alone, video-based, see-through device in which the visual features were adapted to facilitate maxillofacial bone surgery. We implement a strategy designed to present augmented reality information to the operating surgeon. LeFort1 osteotomy was chosen as the test procedure. The system is designed to exhibit virtual planning overlaying the details of a real patient. We implemented a method allowing performance of waferless, augmented-reality assisted bone repositioning. In vitro testing was conducted on a physical replica of a human skull, and the augmented reality system was used to perform LeFort1 maxillary repositioning. Surgical accuracy was measured with the aid of an optical navigation system that recorded the coordinates of three reference points (located in anterior, posterior right, and posterior left positions) on the repositioned maxilla. The outcomes were compared with those expected to be achievable in a three-dimensional environment. Data were derived using three levels of surgical planning, of increasing complexity, and for nine different operators with varying levels of surgical skill. The mean error was 1.70 ± 0.51 mm. The axial errors were 0.89 ± 0.54 mm on the sagittal axis, 0.60 ± 0.20 mm on the frontal axis, and 1.06 ± 0.40 mm on the craniocaudal axis. The simplest plan was associated with a slightly lower mean error (1.58 ± 0.37 mm) compared with the more complex plans (medium: 1.82 ± 0.71 mm; difficult: 1.70 ± 0.45 mm). The mean error for the anterior reference point was lower (1.33 ± 0.58 mm) than those for both the posterior right (1.72 ± 0.24 mm) and posterior left points (2.05 ± 0.47 mm). No significant difference in terms of error was noticed among operators, despite variations in surgical experience. Feedback from surgeons was acceptable; all tests were completed within 15 min and the tool was considered to be both comfortable and usable in practice. We used a new localiser-free, head-mounted, wearable, stereoscopic, video see-through display to develop a useful strategy affording surgeons access to augmented reality information. Our device appears to be accurate when used to assist in waferless maxillary repositioning. Our results suggest that the method can potentially be extended for use with many surgical procedures on the facial skeleton. Further, our positive results suggest that it would be appropriate to proceed to in vivo testing to assess surgical accuracy under real clinical conditions. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. High-Quality GaN Epilayers Achieved by Facet-Controlled Epitaxial Lateral Overgrowth on Sputtered AlN/PSS Templates.

    PubMed

    He, Chenguang; Zhao, Wei; Zhang, Kang; He, Longfei; Wu, Hualong; Liu, Ningyang; Zhang, Shan; Liu, Xiaoyan; Chen, Zhitao

    2017-12-13

    It is widely believed that the lack of high-quality GaN wafers severely hinders the progress in GaN-based devices, especially for defect-sensitive devices. Here, low-cost AlN buffer layers were sputtered on cone-shaped patterned sapphire substrates (PSSs) to obtain high-quality GaN epilayers. Without any mask or regrowth, facet-controlled epitaxial lateral overgrowth was realized by metal-organic chemical vapor deposition. The uniform coating of the sputtered AlN buffer layer and the optimized multiple modulation guaranteed high growth selectivity and uniformity of the GaN epilayer. As a result, an extremely smooth surface was achieved with an average roughness of 0.17 nm over 3 × 3 μm 2 . It was found that the sputtered AlN buffer layer could significantly suppress dislocations on the cones. Moreover, the optimized three-dimensional growth process could effectively promote dislocation bending. Therefore, the threading dislocation density (TDD) of the GaN epilayer was reduced to 4.6 × 10 7 cm -2 , which is about an order of magnitude lower than the case of two-step GaN on the PSS. In addition, contamination and crack in the light-emitting diode fabricated on the obtained GaN were also effectively suppressed by using the sputtered AlN buffer layer. All of these advantages led to a high output power of 116 mW at 500 mA with an emission wavelength of 375 nm. This simple, yet effective growth technique is believed to have great application prospects in high-performance TDD-sensitive optoelectronic and electronic devices.

  2. Restoring Segmental Biomechanics Through Nucleus Augmentation: An In Vitro Study.

    PubMed

    Pelletier, Matthew H; Cohen, Charles S; Ducheyne, Paul; Walsh, William R

    2016-12-01

    In vitro biomechanical laboratory study. The purpose of this study is to evaluate a mechanical treatment to create a degenerative motion segment and the ability of nucleus augmentation to restore biomechanics. In cases with an intact annulus fibrosus, the replacement or augmentation of the nucleus pulposus alone may provide a less invasive option to restore normal biomechanics and disk height when compared with spinal fusion or total disk replacement. Laboratory testing allows these changes to be fully characterized. However, without preexisting pathology, nucleus augmentation therapies are difficult to evaluate in vitro. The present study evaluated pure moment bending and compressive biomechanics in 3 states (n=6): (1) intact, (2) after creep loading and nucleus disruption to induce degenerative biomechanical changes, and (3) after nucleus augmentation through an injectable polymer (DiscCell). Neutral zone and ROM were increased in all modes of bending after the degenerative treatment. The most sensitive mode of bending was lateral bending, with intact ROM (20.0±2.9 degrees) increased to 22.3±2.6 degrees after degenerative treatment and reduced to 18.4±1.6 degrees after injection of the polymer. All bending ROM and NZ changes induced by the degenerative treatment were reversed by nucleus augmentation. This material was shown to be effective at altering motion segment biomechanics and restoring disk height during time zero tests. This technique may provide a model to examine the time zero performance of a nucleus augmentation device/material.

  3. Stabilization with the Dynamic Cervical Implant: a novel treatment approach following cervical discectomy and decompression.

    PubMed

    Matgé, Guy; Berthold, Christophe; Gunness, Vimal Raj Nitish; Hana, Ardian; Hertel, Frank

    2015-03-01

    Although cervical total disc replacement (TDR) has shown equivalence or superiority to anterior cervical discectomy and fusion (ACDF), potential problems include nonphysiological motion (hypermobility), accelerated degeneration of the facet joints, particulate wear, and compromise of the mechanical integrity of the endplate during device fixation. Dynamic cervical stabilization is a novel motion-preserving concept that facilitates controlled, limited flexion and extension, but prevents axial rotation and lateral bending, thereby reducing motion across the facet joints. Shock absorption of the Dynamic Cervical Implant (DCI) device is intended to protect adjacent levels from accelerated degeneration. The authors conducted a prospective evaluation of 53 consecutive patients who underwent DCI stabilization for the treatment of 1-level (n = 42), 2-level (n = 9), and 3-level (n = 2) cervical disc disease with radiculopathy or myelopathy. Forty-seven patients (89%) completed all clinical and radiographic outcomes at a minimum of 24 months. Clinical outcomes consisted of Neck Disability Index (NDI) and visual analog scale (VAS) scores, neurological function at baseline and at latest follow-up, as well as patient satisfaction. Flexion-extension radiography was evaluated for device motion, implant migration, subsidence, and heterotopic ossification. Cervical sagittal alignment (Cobb angle), functional spinal unit (FSU) angle, and range of motion (ROM) at index and adjacent levels were evaluated with WEB 1000 software. The NDI score, VAS neck and arm pain scores, and neurological deficits were significantly reduced at each postoperative time point compared with baseline (p < 0.0001). At 24 months postoperatively, 91% of patients were very satisfied and 9% somewhat satisfied, while 89% would definitely and 11% would probably elect to have the same surgery again. In 47 patients with 58 operated levels, the radiographic assessment showed good motion (5°-12°) of the device in 57%, reduced motion (2°-5°) in 34.5%, and little motion (0-2°) in 8.5%. The Cobb and FSU angles improved, showing a clear tendency for lordosis with the DCI. Motion greater than 2° of the treated segment could be preserved in 91.5%, while 8.5% had a near segmental fusion. Mean ROM at index levels demonstrated satisfying motion preservation with DCI. Mean ROM at upper and lower adjacent levels showed maintenance of adjacent-level kinematics. Heterotopic ossification, including 20% minor and 15% major, had no direct impact on clinical results. There were 2 endplate subsidences detected with an increased segmental lordosis. One asymptomatic anterior device migration required reoperation. Three patients underwent a secondary surgery in another segment during follow-up, twice for a new disc herniation and once for an adjacent degeneration. There was no posterior migration and no device breakage. Preliminary results indicate that the DCI implanted using a proper surgical technique is safe and facilitates excellent clinical outcomes, maintains index-and adjacent-level ROM in the majority of cases, improves sagittal alignment, and may be suitable for patients with facet arthrosis who would otherwise not be candidates for cervical TDR. Shock absorption together with maintained motion in the DCI may protect adjacent levels from early degeneration in longer follow-up.

  4. Use of an augmented-vision device for visual search by patients with tunnel vision

    PubMed Central

    Luo, Gang; Peli, Eli

    2006-01-01

    Purpose To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Methods Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VF) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF: 8º to 11º wide) carried out the search over a 90º×74º area, and nine subjects (VF: 7º to 16º wide) over a 66º×52º area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Results Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in both the larger and smaller area search. When using the device, a significant reduction in search time (28%~74%) was demonstrated by all 3 subjects in the larger area search and by subjects with VF wider than 10º in the smaller area search (average 22%). Directness and the gaze speed accounted for 90% of the variability of search time. Conclusions While performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. As improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks. PMID:16936136

  5. Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation.

    PubMed

    Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn

    2016-03-30

    Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors.

  6. Triangular Black Phosphorus Atomic Layers by Liquid Exfoliation

    PubMed Central

    Seo, Soonjoo; Lee, Hyun Uk; Lee, Soon Chang; Kim, Yooseok; Kim, Hyeran; Bang, Junhyeok; Won, Jonghan; Kim, Youngjun; Park, Byoungnam; Lee, Jouhahn

    2016-01-01

    Few-layer black phosphorus (BP) is the most promising material among the two-dimensional materials due to its layered structure and the excellent semiconductor properties. Currently, thin BP atomic layers are obtained mostly by mechanical exfoliation of bulk BP, which limits applications in thin-film based electronics due to a scaling process. Here we report highly crystalline few-layer black phosphorus thin films produced by liquid exfoliation. We demonstrate that the liquid-exfoliated BP forms a triangular crystalline structure on SiO2/Si (001) and amorphous carbon. The highly crystalline BP layers are faceted with a preferred orientation of the (010) plane on the sharp edge, which is an energetically most favorable facet according to the density functional theory calculations. Our results can be useful in understanding the triangular BP structure for large-area applications in electronic devices using two-dimensional materials. The sensitivity and selectivity of liquid-exfoliated BP to gas vapor demonstrate great potential for practical applications as sensors. PMID:27026070

  7. Head-Neck Biomechanics in Simulated Rear Impact

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Cusick, Joseph F.; Kleinberger, Michael

    1998-01-01

    The first objective of this study is to present an overview of the human cadaver studies aimed to determine the biomechanics of the head-neck in a simulated rear crash. The need for kinematic studies to better understand the mechanisms of load transfer to the human head-neck complex is emphasized. Based on this need, a methodology is developed to delineate the dynamic kinematics of the human head-neck complex. Intact human cadaver head-neck complexes were subjected to postero-anterior impact using a mini-sled pendulum device. The integrity of the soft tissues including the musculature and skin were maintained. The kinematic data were recorded using high-speed photography coupled with retroreflective targets placed at various regions of the human head-neck complex. The overall and segmental kinematics of the entire head-neck complex, and the localized facet joint motions were determined. During the initial stages of loading, a transient decoupling of the head occurred with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower cervical spinal column is in local extension. This establishes a reverse curvature to the cervical head-neck complex. With continued loading, head motion ensues and approximately at the end of the loading phase, the entire head-neck complex is under the extension mode with a single curvature. In contrast, the lower cervical spine facet joint kinematics show varying compression and sliding. While both the anterior and posterior-most regions of the facet joint slide, the posterior-most region (mean: 2.84 mm) of the joint compresses more than the anterior-most (mean: 2.02 mm) region. These varying kinematics at the ends of the facet joint result in a pinching mechanism. These biomechanical kinematic findings may be correlated to the presence of headaches and neck pain (Lord, Bogduk et al. 1992; Barnsley, Lord et al. 1995), based on the unique human head-neck anatomy at the upper cervical spine region and the associated facet joint characteristics, and clinical studies.

  8. FacetGist: Collective Extraction of Document Facets in Large Technical Corpora.

    PubMed

    Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei

    2016-10-01

    Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets ( e.g. , application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes.

  9. FacetGist: Collective Extraction of Document Facets in Large Technical Corpora

    PubMed Central

    Siddiqui, Tarique; Ren, Xiang; Parameswaran, Aditya; Han, Jiawei

    2017-01-01

    Given the large volume of technical documents available, it is crucial to automatically organize and categorize these documents to be able to understand and extract value from them. Towards this end, we introduce a new research problem called Facet Extraction. Given a collection of technical documents, the goal of Facet Extraction is to automatically label each document with a set of concepts for the key facets (e.g., application, technique, evaluation metrics, and dataset) that people may be interested in. Facet Extraction has numerous applications, including document summarization, literature search, patent search and business intelligence. The major challenge in performing Facet Extraction arises from multiple sources: concept extraction, concept to facet matching, and facet disambiguation. To tackle these challenges, we develop FacetGist, a framework for facet extraction. Facet Extraction involves constructing a graph-based heterogeneous network to capture information available across multiple local sentence-level features, as well as global context features. We then formulate a joint optimization problem, and propose an efficient algorithm for graph-based label propagation to estimate the facet of each concept mention. Experimental results on technical corpora from two domains demonstrate that Facet Extraction can lead to an improvement of over 25% in both precision and recall over competing schemes. PMID:28210517

  10. Providing IoT Services in Smart Cities through Dynamic Augmented Reality Markers.

    PubMed

    Chaves-Diéguez, David; Pellitero-Rivero, Alexandre; García-Coego, Daniel; González-Castaño, Francisco Javier; Rodríguez-Hernández, Pedro Salvador; Piñeiro-Gómez, Óscar; Gil-Castiñeira, Felipe; Costa-Montenegro, Enrique

    2015-07-03

    Smart cities are expected to improve the quality of life of citizens by relying on new paradigms, such as the Internet of Things (IoT) and its capacity to manage and interconnect thousands of sensors and actuators scattered across the city. At the same time, mobile devices widely assist professional and personal everyday activities. A very good example of the potential of these devices for smart cities is their powerful support for intuitive service interfaces (such as those based on augmented reality (AR)) for non-expert users. In our work, we consider a scenario that combines IoT and AR within a smart city maintenance service to improve the accessibility of sensor and actuator devices in the field, where responsiveness is crucial. In it, depending on the location and needs of each service, data and commands will be transported by an urban communications network or consulted on the spot. Direct AR interaction with urban objects has already been described; it usually relies on 2D visual codes to deliver object identifiers (IDs) to the rendering device to identify object resources. These IDs allow information about the objects to be retrieved from a remote server. In this work, we present a novel solution that replaces static AR markers with dynamic markers based on LED communication, which can be decoded through cameras embedded in smartphones. These dynamic markers can directly deliver sensor information to the rendering device, on top of the object ID, without further network interaction.

  11. Providing IoT Services in Smart Cities through Dynamic Augmented Reality Markers

    PubMed Central

    Chaves-Diéguez, David; Pellitero-Rivero, Alexandre; García-Coego, Daniel; González-Castaño, Francisco Javier; Rodríguez-Hernández, Pedro Salvador; Piñeiro-Gómez, Óscar; Gil-Castiñeira, Felipe; Costa-Montenegro, Enrique

    2015-01-01

    Smart cities are expected to improve the quality of life of citizens by relying on new paradigms, such as the Internet of Things (IoT) and its capacity to manage and interconnect thousands of sensors and actuators scattered across the city. At the same time, mobile devices widely assist professional and personal everyday activities. A very good example of the potential of these devices for smart cities is their powerful support for intuitive service interfaces (such as those based on augmented reality (AR)) for non-expert users. In our work, we consider a scenario that combines IoT and AR within a smart city maintenance service to improve the accessibility of sensor and actuator devices in the field, where responsiveness is crucial. In it, depending on the location and needs of each service, data and commands will be transported by an urban communications network or consulted on the spot. Direct AR interaction with urban objects has already been described; it usually relies on 2D visual codes to deliver object identifiers (IDs) to the rendering device to identify object resources. These IDs allow information about the objects to be retrieved from a remote server. In this work, we present a novel solution that replaces static AR markers with dynamic markers based on LED communication, which can be decoded through cameras embedded in smartphones. These dynamic markers can directly deliver sensor information to the rendering device, on top of the object ID, without further network interaction. PMID:26151215

  12. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; McKellip, Rodney; Brannon, David P.; Underwood, Lauren; Russell, Kristen J.

    2007-01-01

    In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near absolute zero instruments, including a wide variety of cryogenically based propulsion, energy, communication, sensing, and computing devices. The required burden of carrying massive life-supporting components from the Earth to the Moon for lunar exploration and research potentially could be reduced.

  13. Interaction devices for hands-on desktop design

    NASA Astrophysics Data System (ADS)

    Ju, Wendy; Madsen, Sally; Fiene, Jonathan; Bolas, Mark T.; McDowall, Ian E.; Faste, Rolf

    2003-05-01

    Starting with a list of typical hand actions - such as touching or twisting - a collection of physical input device prototypes was created to study better ways of engaging the body and mind in the computer aided design process. These devices were interchangeably coupled with a graphics system to allow for rapid exploration of the interplay between the designer's intent, body motions, and the resulting on-screen design. User testing showed that a number of key considerations should influence the future development of such devices: coupling between the physical and virtual worlds, tactile feedback, and scale. It is hoped that these explorations contribute to the greater goal of creating user interface devices that increase the fluency, productivity and joy of computer-augmented design.

  14. New-generation diabetes management: glucose sensor-augmented insulin pump therapy

    PubMed Central

    Cengiz, Eda; Sherr, Jennifer L; Weinzimer, Stuart A; Tamborlane, William V

    2011-01-01

    Diabetes is one of the most common chronic disorders with an increasing incidence worldwide. Technologic advances in the field of diabetes have provided new tools for clinicians to manage this challenging disease. For example, the development of continuous subcutaneous insulin infusion systems have allowed for refinement in the delivery of insulin, while continuous glucose monitors provide patients and clinicians with a better understanding of the minute to minute glucose variability, leading to the titration of insulin delivery based on this variability when applicable. Merging of these devices has resulted in sensor-augmented insulin pump therapy, which became a major building block upon which the artificial pancreas (closed-loop systems) can be developed. This article summarizes the evolution of sensor-augmented insulin pump therapy until present day and its future applications in new-generation diabetes management. PMID:21728731

  15. New-generation diabetes management: glucose sensor-augmented insulin pump therapy.

    PubMed

    Cengiz, Eda; Sherr, Jennifer L; Weinzimer, Stuart A; Tamborlane, William V

    2011-07-01

    Diabetes is one of the most common chronic disorders with an increasing incidence worldwide. Technologic advances in the field of diabetes have provided new tools for clinicians to manage this challenging disease. For example, the development of continuous subcutaneous insulin infusion systems have allowed for refinement in the delivery of insulin, while continuous glucose monitors provide patients and clinicians with a better understanding of the minute to minute glucose variability, leading to the titration of insulin delivery based on this variability when applicable. Merging of these devices has resulted in sensor-augmented insulin pump therapy, which became a major building block upon which the artificial pancreas (closed-loop systems) can be developed. This article summarizes the evolution of sensor-augmented insulin pump therapy until present day and its future applications in new-generation diabetes management.

  16. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  17. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    NASA Astrophysics Data System (ADS)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  18. Tube coupling device

    NASA Technical Reports Server (NTRS)

    Myers, William N. (Inventor); Hein, Leopold A. (Inventor)

    1987-01-01

    A first annular ring of a tube coupling device has a keyed opening sized to fit around the nut region of a male coupling, and a second annular ring has a keyed opening sized to fit around the nut of a female coupling. Each ring has mating ratchet teeth and these rings are biased together, thereby engaging these teeth and preventing rotation of these rings. This in turn prevents the rotation of the male nut region with respect to the female nut. For tube-to-bulkhead locking, one facet of one ring is notched, and a pin is pressed into an opening in the bulkhead. This pin is sized to fit within one of the notches in the ring, thereby preventing rotation of this ring with respect to the bulkhead.

  19. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR Crystallography approach.

    PubMed

    Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J

    2015-02-01

    We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Examining the DSM-5 Section III Criteria for Obsessive-Compulsive Personality Disorder in a Community Sample.

    PubMed

    Liggett, Jacqueline; Sellbom, Martin; Carmichael, Kieran L C

    2017-12-01

    The current study examined the extent to which the trait-based operationalization of obsessive-compulsive personality disorder (OCPD) in Section III of the DSM-5 describes the same construct as the one described in Section II. A community sample of 313 adults completed a series of personality inventories indexing the DSM-5 Sections II and III diagnostic criteria for OCPD, in addition to a measure of functional impairment modelled after the criteria in Section III. Results indicated that latent constructs representing Section II and Section III OCPD overlapped substantially (r = .75, p < .001). Hierarchical latent regression models revealed that at least three of the four DSM-5 Section III facets (Rigid Perfectionism, Perseveration, and Intimacy Avoidance) uniquely accounted for a large proportion of variance (53%) in a latent Section II OCPD variable. Further, Anxiousness and (low) Impulsivity, as well as self and interpersonal impairment, augmented the prediction of latent OCPD scores.

  1. Using augmented reality as a clinical support tool to assist combat medics in the treatment of tension pneumothoraces.

    PubMed

    Wilson, Kenneth L; Doswell, Jayfus T; Fashola, Olatokunbo S; Debeatham, Wayne; Darko, Nii; Walker, Travelyan M; Danner, Omar K; Matthews, Leslie R; Weaver, William L

    2013-09-01

    This study was to extrapolate potential roles of augmented reality goggles as a clinical support tool assisting in the reduction of preventable causes of death on the battlefield. Our pilot study was designed to improve medic performance in accurately placing a large bore catheter to release tension pneumothorax (prehospital setting) while using augmented reality goggles. Thirty-four preclinical medical students recruited from Morehouse School of Medicine performed needle decompressions on human cadaver models after hearing a brief training lecture on tension pneumothorax management. Clinical vignettes identifying cadavers as having life-threatening tension pneumothoraces as a consequence of improvised explosive device attacks were used. Study group (n = 13) performed needle decompression using augmented reality goggles whereas the control group (n = 21) relied solely on memory from the lecture. The two groups were compared according to their ability to accurately complete the steps required to decompress a tension pneumothorax. The medical students using augmented reality goggle support were able to treat the tension pneumothorax on the human cadaver models more accurately than the students relying on their memory (p < 0.008). Although the augmented reality group required more time to complete the needle decompression intervention (p = 0.0684), this did not reach statistical significance. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  2. Digital Environment for Movement Control in Surgical Skill Training.

    PubMed

    Juanes, Juan A; Gómez, Juan J; Peguero, Pedro D; Ruisoto, Pablo

    2016-06-01

    Intelligent environments are increasingly becoming useful scenarios for handling computers. Technological devices are practical tools for learning and acquiring clinical skills as part of the medical training process. Within the framework of the advanced user interface, we present a technological application using Leap Motion, to enhance interaction with the user in the process of a laparoscopic surgical intervention and integrate the navigation through augmented reality images using manual gestures. Thus, we intend to achieve a more natural interaction with the objects that participate in a surgical intervention, which are augmented and related to the user's hand movements.

  3. Using mixed reality, force feedback and tactile augmentation to improve the realism of medical simulation.

    PubMed

    Fisher, J Brian; Porter, Susan M

    2002-01-01

    This paper describes an application of a display approach which uses chromakey techniques to composite real and computer-generated images allowing a user to see his hands and medical instruments collocated with the display of virtual objects during a medical training simulation. Haptic feedback is provided through the use of a PHANTOM force feedback device in addition to tactile augmentation, which allows the user to touch virtual objects by introducing corresponding real objects in the workspace. A simplified catheter introducer insertion simulation was developed to demonstrate the capabilities of this approach.

  4. Research note: attitudes of teachers and undergraduate students regarding three augmentative and alternative communication modalities.

    PubMed

    Schäfer, Martina Christina Marion; Sutherland, Dean; McLay, Laurie; Achmadi, Donna; van der Meer, Larah; Sigafoos, Jeff; Lancioni, Giulio E; O'Reilly, Mark F; Schlosser, Ralf W; Marschik, Peter B

    2016-12-01

    The social validity of different communication modalities is a potentially important variable to consider when designing augmentative and alternative communication (AAC) interventions. To assess the social validity of three AAC modes (i.e., manual signing, picture exchange, and an iPad ® -based speech-generating device), we asked 59 undergraduate students (pre-service teachers) and 43 teachers to watch a video explaining each mode. They were then asked to nominate the mode they perceived to be easiest to learn as well as the most intelligible, effective, and preferred. Participants were also asked to list the main reasons for their nominations and report on their experience with each modality. Most participants (68-86%) nominated the iPad-based speech-generating device (SGD) as easiest to learn, as well as the most intelligible, effective, and preferred. This device was perceived to be easy to understand and use and to have familiar and socially acceptable technology. Results suggest that iPad-based SGDs were perceived as more socially valid among this sample of teachers and undergraduate students. Information of this type may have some relevance to designing AAC supports for people who use AAC and their current and future potential communication partners.

  5. Perception-based synthetic cueing for night vision device rotorcraft hover operations

    NASA Astrophysics Data System (ADS)

    Bachelder, Edward N.; McRuer, Duane

    2002-08-01

    Helicopter flight using night-vision devices (NVDs) is difficult to perform, as evidenced by the high accident rate associated with NVD flight compared to day operation. The approach proposed in this paper is to augment the NVD image with synthetic cueing, whereby the cues would emulate position and motion and appear to be actually occurring in physical space on which they are overlaid. Synthetic cues allow for selective enhancement of perceptual state gains to match the task requirements. A hover cue set was developed based on an analogue of a physical target used in a flight handling qualities tracking task, a perceptual task analysis for hover, and fundamentals of human spatial perception. The display was implemented on a simulation environment, constructed using a virtual reality device, an ultrasound head-tracker, and a fixed-base helicopter simulator. Seven highly trained helicopter pilots were used as experimental subjects and tasked to maintain hover in the presence of aircraft positional disturbances while viewing a synthesized NVD environment and the experimental hover cues. Significant performance improvements were observed when using synthetic cue augmentation. This paper demonstrates that artificial magnification of perceptual states through synthetic cueing can be an effective method of improving night-vision helicopter hover operations.

  6. High-technology augmentative communication for adults with post-stroke aphasia: a systematic review.

    PubMed

    Russo, Maria Julieta; Prodan, Valeria; Meda, Natalia Nerina; Carcavallo, Lucila; Muracioli, Anibal; Sabe, Liliana; Bonamico, Lucas; Allegri, Ricardo Francisco; Olmos, Lisandro

    2017-05-01

    Augmentative and alternative communication (AAC) systems were introduced into clinical practice by therapists to help compensate for persistent language deficits in people with aphasia. Although, there is currently a push towards an increased focus on compensatory approaches in an attempt to maximize communication function for social interaction, available studies including AAC systems, especially technologically advanced communication tools and systems, known as 'high-technology AAC', show key issues and obstacles for these tools to become utilized in mainstream clinical practice. Areas covered: The current review synthesizes communication intervention studies that involved the use of high-technology communication devices to enhance linguistic communication skills for adults with post-stroke aphasia. The review focuses on compensatory approaches that emphasized functional communication. It also summarizes recommendations for the report of studies evaluating high-technology devices that may be potentially relevant for other researchers working with adults with post-stroke aphasia. Expert commentary: Taken together with positive results in heterogeneous studies, high-technology devices represent a compensatory strategy to enhance communicative skills in individuals with post-stroke aphasia. Improvements in the design of studies and reporting of results may lead to better interpretation of the already existing scientific results from aphasia management.

  7. Design of a lattice-based faceted classification system

    NASA Technical Reports Server (NTRS)

    Eichmann, David A.; Atkins, John

    1992-01-01

    We describe a software reuse architecture supporting component retrieval by facet classes. The facets are organized into a lattice of facet sets and facet n-tuples. The query mechanism supports precise retrieval and flexible browsing.

  8. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    NASA Astrophysics Data System (ADS)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  9. A survey of particle contamination in electronic devices

    NASA Technical Reports Server (NTRS)

    Adolphsen, J. W.; Kagdis, W. A.; Timmins, A. R.

    1976-01-01

    The experiences are given of a number of National Aeronautics and Space Administration (NASA) and Space and Missile System Organization (SAMSO) contractors with particle contamination, and the methods used for its prevention and detection, evaluates the bases for the different schemes, assesses their effectiveness, and identifies the problems associated with each. It recommends specific short-range tests or approaches appropriate to individual part-type categories and recommends that specific tasks be initiated to refine techniques and to resolve technical and application facets of promising solutions.

  10. Strong Optical Injection Locking of Edge-Emitting Lasers and Its Applications

    DTIC Science & Technology

    2006-08-18

    investigated for communications applications. Using AlGaAs lasers, Kobayashi et al. demonstrated stable single-mode operation of Fabry - Perot (F-P...modulation (AM) efficiency is obtained at the expense of linearity. Furthermore, the previous gain-lever devices were Fabry - Perot (F-P) lasers operating in...coating of ~ 0.2-μm Zirconium dioxide (ZrO2) layer with a reflectivity of less than 0.1% is deposited on one facet to suppress the Fabry - Perot (F-P

  11. Innovative Techniques for the Production of Low Cost 2D Laser Diode Arrays. Supplies or Services and Prices/Costs

    DTIC Science & Technology

    1991-12-31

    continue on facet coatings, PL correlation to device performance, and CVD diamond. All global issues mentioned in Section 2.0 will be addresses and...The CVD diamond submounts will be hermetically sealed, electrically isolated and liquid cooled. (Deliverables: 5 5-bar arrays.) The following global ... issues not mentioned above will be investigated continuously throughout all four phases of this program: (1) design and development of a mask set to

  12. The investigation and implementation of real-time face pose and direction estimation on mobile computing devices

    NASA Astrophysics Data System (ADS)

    Fu, Deqian; Gao, Lisheng; Jhang, Seong Tae

    2012-04-01

    The mobile computing device has many limitations, such as relative small user interface and slow computing speed. Usually, augmented reality requires face pose estimation can be used as a HCI and entertainment tool. As far as the realtime implementation of head pose estimation on relatively resource limited mobile platforms is concerned, it is required to face different constraints while leaving enough face pose estimation accuracy. The proposed face pose estimation method met this objective. Experimental results running on a testing Android mobile device delivered satisfactory performing results in the real-time and accurately.

  13. Finding a Voice

    ERIC Educational Resources Information Center

    Stuart, Shannon

    2012-01-01

    Schools have struggled for decades to provide expensive augmentative and alternative communication (AAC) resources for autistic students with communication challenges. Clunky voice output devices, often included in students' individualized education plans, cost about $8,000, a difficult expense to cover in hard times. However, mobile technology is…

  14. Quantitative morphometric analysis of the lumbar vertebral facets and evaluation of feasibility of lumbar spinal nerve root and spinal canal decompression using the Goel intraarticular facetal spacer distraction technique: A lumbar/cervical facet comparison

    PubMed Central

    Satoskar, Savni R.; Goel, Aimee A.; Mehta, Pooja H.; Goel, Atul

    2014-01-01

    Objective: The authors evaluate the anatomic subtleties of lumbar facets and assess the feasibility and effectiveness of use of ‘Goel facet spacer’ in the treatment of degenerative spinal canal stenosis. Materials and Methods: Twenty-five lumbar vertebral cadaveric dried bones were used for the purpose. A number of morphometric parameters were evaluated both before and after the introduction of Goel facet spacers within the confines of the facet joint. Results: The spacers achieved distraction of facets that was more pronounced in the vertical perspective. Introduction of spacers on both sides resulted in an increase in the intervertebral foraminal height and a circumferential increase in the spinal canal dimensions. Additionally, there was an increase in the disc space or intervertebral body height. The lumbar facets are more vertically and anteroposteriorly oriented when compared to cervical facets that are obliquely and transversely oriented. Conclusions: Understanding the anatomical peculiarities of the lumbar and cervical facets can lead to an optimum utilization of the potential of Goel facet distraction arthrodesis technique in the treatment of spinal degenerative canal stenosis. PMID:25558146

  15. Analyzing GAIAN Database (GaianDB) on a Tactical Network

    DTIC Science & Technology

    2015-11-30

    we connected 3 Raspberry Pi’s running GaianDB and our augmented version of splatform to a network of 3 CSRs. The Raspberry Pi is a low power, low...based on Debian from a connected secure digital high capacity (SDHC) card or a universal serial bus (USB) device. The Raspberry Pi comes equipped with...requirements, capabilities, and cost make the Raspberry Pi a useful device for sensor experimentation. From there, we performed 3 types of benchmarks

  16. Study and Design of High G Augmentation Devices for Flight Simulators

    DTIC Science & Technology

    1981-12-01

    experiments . Non-invasive blood pressure moni- toring devices ave discussed in a following section (4.2.4). itI may be useful to conduct these experiments ...have experience in pressure suits and space suits. They also built a collapsible LBNP for Cooper and Ord (51) for their LBNP experiments . USE OF LBNP...the target illumination approaches the 42 mL level used in his dial reading experiments . Consequently, the model requires illumination level as an

  17. State of the art in nuclear telerobotics: focus on the man/machine connection

    NASA Astrophysics Data System (ADS)

    Greaves, Amna E.

    1995-12-01

    The interface between the human controller and remotely operated device is a crux of telerobotic investigation today. This human-to-machine connection is the means by which we communicate our commands to the device, as well as the medium for decision-critical feedback to the operator. The amount of information transferred through the user interface is growing. This can be seen as a direct result of our need to support added complexities, as well as a rapidly expanding domain of applications. A user interface, or UI, is therefore subject to increasing demands to present information in a meaningful manner to the user. Virtual reality, and multi degree-of-freedom input devices lend us the ability to augment the man/machine interface, and handle burgeoning amounts of data in a more intuitive and anthropomorphically correct manner. Along with the aid of 3-D input and output devices, there are several visual tools that can be employed as part of a graphical UI that enhance and accelerate our comprehension of the data being presented. Thus an advanced UI that features these improvements would reduce the amount of fatigue on the teleoperator, increase his level of safety, facilitate learning, augment his control, and potentially reduce task time. This paper investigates the cutting edge concepts and enhancements that lead to the next generation of telerobotic interface systems.

  18. Sensory Augmentation for the Blind

    PubMed Central

    Kärcher, Silke M.; Fenzlaff, Sandra; Hartmann, Daniela; Nagel, Saskia K.; König, Peter

    2012-01-01

    Common navigational aids used by blind travelers during large-scale navigation divert attention away from important cues of the immediate environment (i.e., approaching vehicles). Sensory augmentation devices, relying on principles similar to those at work in sensory substitution, can potentially bypass the bottleneck of attention through sub-cognitive implementation of a set of rules coupling motor actions with sensory stimulation. We provide a late blind subject with a vibrotactile belt that continually signals the direction of magnetic north. The subject completed a set of behavioral tests before and after an extended training period. The tests were complemented by questionnaires and interviews. This newly supplied information improved performance on different time scales. In a pointing task we demonstrate an instant improvement of performance based on the signal provided by the device. Furthermore, the signal was helpful in relevant daily tasks, often complicated for the blind, such as keeping a direction over longer distances or taking shortcuts in familiar environments. A homing task with an additional attentional load demonstrated a significant improvement after training. The subject found the directional information highly expedient for the adjustment of his inner maps of familiar environments and describes an increase in his feeling of security when exploring unfamiliar environments with the belt. The results give evidence for a firm integration of the newly supplied signals into the behavior of this late blind subject with better navigational performance and more courageous behavior in unfamiliar environments. Most importantly, the complementary information provided by the belt lead to a positive emotional impact with enhanced feeling of security. The present experimental approach demonstrates the positive potential of sensory augmentation devices for the help of handicapped people. PMID:22403535

  19. Sensing Super-position: Visual Instrument Sensor Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Schipper, John F.

    2006-01-01

    The coming decade of fast, cheap and miniaturized electronics and sensory devices opens new pathways for the development of sophisticated equipment to overcome limitations of the human senses. This project addresses the technical feasibility of augmenting human vision through Sensing Super-position using a Visual Instrument Sensory Organ Replacement (VISOR). The current implementation of the VISOR device translates visual and other passive or active sensory instruments into sounds, which become relevant when the visual resolution is insufficient for very difficult and particular sensing tasks. A successful Sensing Super-position meets many human and pilot vehicle system requirements. The system can be further developed into cheap, portable, and low power taking into account the limited capabilities of the human user as well as the typical characteristics of his dynamic environment. The system operates in real time, giving the desired information for the particular augmented sensing tasks. The Sensing Super-position device increases the image resolution perception and is obtained via an auditory representation as well as the visual representation. Auditory mapping is performed to distribute an image in time. The three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. This paper details the approach of developing Sensing Super-position systems as a way to augment the human vision system by exploiting the capabilities of the human hearing system as an additional neural input. The human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns. The known capabilities of the human hearing system to learn and understand complicated auditory patterns provided the basic motivation for developing an image-to-sound mapping system.

  20. Nine-Year Core Study Data for Sientra's FDA-Approved Round and Shaped Implants with High-Strength Cohesive Silicone Gel.

    PubMed

    Stevens, W Grant; Calobrace, M Bradley; Harrington, Jennifer; Alizadeh, Kaveh; Zeidler, Kamakshi R; d'Incelli, Rosalyn C

    2016-04-01

    Since approval in March 2012, data on Sientra's (Santa Barbara, CA) silicone gel implants have been updated and published regularly to provide immediate visibility to the continued safety and performance of these devices. The 9 year follow-up data support the previously published data confirming the ongoing safety and efficacy of Sientra silicone gel breast implants. The authors provide updated 9 year study data for Sientra's round and shaped silicone gel breast implants. The Core Study is an ongoing 10 year study that enrolled 1788 patients with 3506 Sientra implants across four indications (primary augmentation, revision-augmentation, primary reconstruction, and revision-reconstruction). For the safety analysis, Kaplan-Meier risk rates were calculated to evaluate postoperative complications, including all breast implant-related adverse effects. For the effectiveness analyses, results were presented through 8 years as patient satisfaction scores were assessed at even years. Through 9 years, the overall risk of capsular contracture was 12.6%. Smooth devices (16.6%, 95% CI, 14.2%, 19.5%) had a statistically significantly higher rate of capsular contracture compared to textured devices (8.0%, 95% CI, 6.2%, 10.4%). Out of the 610 reoperations in 477 patients, over half of all reoperations were due to cosmetic reasons (n = 315; 51.6%). Patient satisfaction remains high through 8 years, with 90% of primary augmentation patients indicating their breast implants look natural and feel soft. The 9-year follow-up data from the ongoing Core Study of the Sientra portfolio of HSC and HSC+ silicone gel breast implants reaffirm the very strong safety profile as well as continued patient satisfaction. 2 Therapeutic. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  1. Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration.

    PubMed

    Van Vlasselaer, Nicolas; Van Roy, Peter; Cattrysse, Erik

    2017-01-01

    Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t -test and the Pearson correlation. On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry.

  2. Geospatial Augmented Reality for the interactive exploitation of large-scale walkable orthoimage maps in museums

    NASA Astrophysics Data System (ADS)

    Wüest, Robert; Nebiker, Stephan

    2018-05-01

    In this paper we present an app framework for augmenting large-scale walkable maps and orthoimages in museums or public spaces using standard smartphones and tablets. We first introduce a novel approach for using huge orthoimage mosaic floor prints covering several hundred square meters as natural Augmented Reality (AR) markers. We then present a new app architecture and subsequent tests in the Swissarena of the Swiss National Transport Museum in Lucerne demonstrating the capabilities of accurately tracking and augmenting different map topics, including dynamic 3d data such as live air traffic. The resulting prototype was tested with everyday visitors of the museum to get feedback on the usability of the AR app and to identify pitfalls when using AR in the context of a potentially crowded museum. The prototype is to be rolled out to the public after successful testing and optimization of the app. We were able to show that AR apps on standard smartphone devices can dramatically enhance the interactive use of large-scale maps for different purposes such as education or serious gaming in a museum context.

  3. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  4. Implementation of Markerless Augmented Reality Technology Based on Android to Introduction Lontara in Marine Society

    NASA Astrophysics Data System (ADS)

    Jumarlis, Mila; Mirfan, Mirfan

    2018-05-01

    Local language learning had been leaving by people especially young people had affected technology advances so that involved lack of interest to learn culture especially local language. So required interactive and interest learning media for introduction Lontara. This research aims to design and implement augmented reality on introduction Lontara on mobile device especially android. Application of introduction Lontara based on Android was designed by Vuforia and Unity. Data collection method were observation, interview, and literature review. That data was analysed for being information. The system was designed by Unified Modeling Language (UML). The method used is a marker. The test result found that application of Augmented Reality on introduction Lontara based on Android could improve public interest for introducing local language particularly young people in learning about Lontara because of using technology. Application of introduction of Lontara based on Android used augmented reality occurred sound and how to write Lontara with animation. This application could be running without an internet connection, so that its used more efficient and could maximize from user.

  5. Augmented reality three-dimensional object visualization and recognition with axially distributed sensing.

    PubMed

    Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram

    2016-01-15

    An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.

  6. Eliminating "Hotspots" in Digital Image Processing

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.

    1984-01-01

    Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.

  7. An Improvised Eye-Pointing Communication System for Temporary Use.

    ERIC Educational Resources Information Center

    King, Thomas W.

    1990-01-01

    The construction and use of an improvised eye-pointing communication device is described. It is suggested for temporary use to establish and enhance initial communication with communication-disabled clients in situations where no other augmentative communication system or assistive technology is yet available. (Author)

  8. Wearable computer for mobile augmented-reality-based controlling of an intelligent robot

    NASA Astrophysics Data System (ADS)

    Turunen, Tuukka; Roening, Juha; Ahola, Sami; Pyssysalo, Tino

    2000-10-01

    An intelligent robot can be utilized to perform tasks that are either hazardous or unpleasant for humans. Such tasks include working in disaster areas or conditions that are, for example, too hot. An intelligent robot can work on its own to some extent, but in some cases the aid of humans will be needed. This requires means for controlling the robot from somewhere else, i.e. teleoperation. Mobile augmented reality can be utilized as a user interface to the environment, as it enhances the user's perception of the situation compared to other interfacing methods and allows the user to perform other tasks while controlling the intelligent robot. Augmented reality is a method that combines virtual objects into the user's perception of the real world. As computer technology evolves, it is possible to build very small devices that have sufficient capabilities for augmented reality applications. We have evaluated the existing wearable computers and mobile augmented reality systems to build a prototype of a future mobile terminal- the CyPhone. A wearable computer with sufficient system resources for applications, wireless communication media with sufficient throughput and enough interfaces for peripherals has been built at the University of Oulu. It is self-sustained in energy, with enough operating time for the applications to be useful, and uses accurate positioning systems.

  9. Personalized augmented reality for anatomy education.

    PubMed

    Ma, Meng; Fallavollita, Pascal; Seelbach, Ina; Von Der Heide, Anna Maria; Euler, Ekkehard; Waschke, Jens; Navab, Nassir

    2016-05-01

    Anatomy education is a challenging but vital element in forming future medical professionals. In this work, a personalized and interactive augmented reality system is developed to facilitate education. This system behaves as a "magic mirror" which allows personalized in-situ visualization of anatomy on the user's body. Real-time volume visualization of a CT dataset creates the illusion that the user can look inside their body. The system comprises a RGB-D sensor as a real-time tracking device to detect the user moving in front of a display. In addition, the magic mirror system shows text information, medical images, and 3D models of organs that the user can interact with. Through the participation of 7 clinicians and 72 students, two user studies were designed to respectively assess the precision and acceptability of the magic mirror system for education. The results of the first study demonstrated that the average precision of the augmented reality overlay on the user body was 0.96 cm, while the results of the second study indicate 86.1% approval for the educational value of the magic mirror, and 91.7% approval for the augmented reality capability of displaying organs in three dimensions. The usefulness of this unique type of personalized augmented reality technology has been demonstrated in this paper. © 2015 Wiley Periodicals, Inc.

  10. Safety and efficacy of caffeine-augmented ECT in elderly depressives: a retrospective study.

    PubMed

    Kelsey, M C; Grossberg, G T

    1995-07-01

    Prior studies have shown that in younger depressives undergoing ECT whose seizure durations declined despite maximum settings on three different ECT devices, pretreatment with caffeine lengthened seizures and resulted in clinical improvement. Caffeine (half life, 140-270 minutes) was well tolerated even in patients with pre-existing cardiovascular disease. The purpose of this retrospective study was to determine the safety and efficacy of caffeine augmented ECT in elderly depressed patients. The charts of 14 elderly depressives (average age 75.6, range 59-83; 2 males, 12 females) who received caffeine-augmented ECT were reviewed. Patients pre- and post-ECT medications, blood pressure, pulse, and seizure times (cuff and EEG) for each ECT performed were noted. The following conclusions were drawn from our study: (1) Caffeine definitely increases the seizure length and was useful in our setting when the energy settings could not be increased anymore. (2) Caffeine augmentation inconsistently causes an increase in pulse rate, on average, in the elderly. (3) Caffeine inconsistently produces an increase in mean arterial pressure. (4) Caffeine did not consistently produce an increase in the maximum rate-pressure product. We conclude from this study that caffeine-augmented ECT is safe and effective in increasing seizure duration in the elderly. However, more research needs to be done to determine optimal dosing and tolerability.

  11. Augmented Reality to Preserve Hidden Vestiges in Historical Cities. a Case Study

    NASA Astrophysics Data System (ADS)

    Martínez, J. L.; Álvareza, S.; Finat, J.; Delgado, F. J.; Finat, J.

    2015-02-01

    Mobile devices provide an increasingly sophisticated support to enhanced experiences and understanding the remote past in an interactive way. The use of augmented reality technologies allows to develop mobile applications for indoor exploration of virtually reconstructed archaeological places. In our work we have built a virtual reconstruction of a Roman Villa with data arising from an urgent partial excavation which were performed in order to build a car parking in the historical city of Valladolid (Spain). In its current state, the archaeological site is covered by an urban garden. Localization and tracking are performed using a combination of GPS and inertial sensors of the mobile device. In this work we prove how to perform an interactive navigation around the 3D virtual model showing an interpretation of the way it was. The user experience is enhanced by answering some simple questions, performing minor tasks and puzzles which are presented with multimedia contents linked to key features of the archaeological site.

  12. Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis.

    PubMed

    Masharawi, Youssef; Rothschild, Bruce; Dar, Gali; Peleg, Smadar; Robinson, Dror; Been, Ella; Hershkovitz, Israel

    2004-08-15

    Thoracolumbar facet orientations were measured and analyzed. To establish a comprehensive database for facet orientation in the thoracolumbar vertebrae and to determine the normal human condition. Most studies on facet orientation have based their conclusions on two-dimensional measurements, in small samples or isolated vertebrae. The amount of normal asymmetry in facet orientation is poorly addressed. Transverse and longitudinal facet angles were measured directly from 240 human vertebral columns (males/females, blacks/whites). The specimens' osteologic material is part of the Hamann-Todd Osteological Collection housed at the Cleveland Museum of Natural History (Cleveland, OH). A total of 4,080 vertebrae (T1-L5) from the vertebral columns of individuals 20 to 80 years of age were measured, using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA). Data were recorded directly on computer software. Statistical analysis included paired t tests and analysis of variance. RESULTS.: Facet orientation is independent of gender, age, and ethnic group. Asymmetry in facet orientation is found in the thorax. All thoracolumbar facets are positioned in an oblique plane. In the transverse plane, all facets from T1 to T11 are positioned with an anterior inclination of approximately 25 degrees to 30 degrees from the frontal plane. The facets of T12-L2 are oriented closer to the midsagittal plane of the vertebral body (mean range, 25.89 degrees-33.87 degrees), while the facets of L3-L5 are oriented away from that plane (mean range, 40.40 degrees-56.30 degrees). Facet transverse orientation at the thoracolumbar junction is highly variable (approximately 80% with approximately 101 degrees and approximately 20% with 35 degrees). All facets are oriented more vertically from T1 (approximately 150 degrees) to L5 (approximately 170 degrees). The facet sagittal orientations of the lumbar zygoapophyseal joints are not equivalent. CONCLUSIONS.: Asymmetry in facet orientation is a normal characteristic in the thorax.

  13. Actuation Using Piezoelectric Materials: Application in Augmenters, Energy Harvesters, and Motors

    NASA Technical Reports Server (NTRS)

    Hasenoehrl, Jennifer

    2012-01-01

    Piezoelectric actuators are used in many manipulation, movement, and mobility applications as well as transducers and sensors. When used at the resonance frequencies of the piezoelectric stack, the actuator performs at its maximum actuation capability. In this Space Grant internship, three applications of piezoelectric actuators were investigated including hammering augmenters of rotary drills, energy harvesters, and piezo-motors. The augmenter shows improved drill performance over rotation only. The energy harvesters rely on moving fluid to convert mechanical energy into electrical power. Specific designs allow the harvesters more freedom to move, which creates more power. The motor uses the linear movement of the actuator with a horn applied to the side of a rotor to create rotational motion. Friction inhibits this motion and is to be minimized for best performance. Tests and measurements were made during this internship to determine the requirements for optimal performance of the studied mechanisms and devices.

  14. Visualization of molecular structures using HoloLens-based augmented reality

    PubMed Central

    Hoffman, MA; Provance, JB

    2017-01-01

    Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109

  15. Stereoscopic augmented reality with pseudo-realistic global illumination effects

    NASA Astrophysics Data System (ADS)

    de Sorbier, Francois; Saito, Hideo

    2014-03-01

    Recently, augmented reality has become very popular and has appeared in our daily life with gaming, guiding systems or mobile phone applications. However, inserting object in such a way their appearance seems natural is still an issue, especially in an unknown environment. This paper presents a framework that demonstrates the capabilities of Kinect for convincing augmented reality in an unknown environment. Rather than pre-computing a reconstruction of the scene like proposed by most of the previous method, we propose a dynamic capture of the scene that allows adapting to live changes of the environment. Our approach, based on the update of an environment map, can also detect the position of the light sources. Combining information from the environment map, the light sources and the camera tracking, we can display virtual objects using stereoscopic devices with global illumination effects such as diffuse and mirror reflections, refractions and shadows in real time.

  16. Augmented reality (AR) and virtual reality (VR) applied in dentistry.

    PubMed

    Huang, Ta-Ko; Yang, Chi-Hsun; Hsieh, Yu-Hsin; Wang, Jen-Chyan; Hung, Chun-Cheng

    2018-04-01

    The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR) and augmented reality (AR) starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Copyright © 2018. Published by Elsevier Taiwan.

  17. An adaptive brain actuated system for augmenting rehabilitation

    PubMed Central

    Roset, Scott A.; Gant, Katie; Prasad, Abhishek; Sanchez, Justin C.

    2014-01-01

    For people living with paralysis, restoration of hand function remains the top priority because it leads to independence and improvement in quality of life. In approaches to restore hand and arm function, a goal is to better engage voluntary control and counteract maladaptive brain reorganization that results from non-use. Standard rehabilitation augmented with developments from the study of brain-computer interfaces could provide a combined therapy approach for motor cortex rehabilitation and to alleviate motor impairments. In this paper, an adaptive brain-computer interface system intended for application to control a functional electrical stimulation (FES) device is developed as an experimental test bed for augmenting rehabilitation with a brain-computer interface. The system's performance is improved throughout rehabilitation by passive user feedback and reinforcement learning. By continuously adapting to the user's brain activity, similar adaptive systems could be used to support clinical brain-computer interface neurorehabilitation over multiple days. PMID:25565945

  18. Performance Thresholds for Application of MEMS Inertial Sensors in Space

    NASA Technical Reports Server (NTRS)

    Smit, Geoffrey N.

    1995-01-01

    We review types of inertial sensors available and current usage of inertial sensors in space and the performance requirements for these applications. We then assess the performance available from micro-electro-mechanical systems (MEMS) devices, both in the near and far term. Opportunities for the application of these devices are identified. A key point is that although the performance available from MEMS inertial sensors is significantly lower than that achieved by existing macroscopic devices (at least in the near term), the low cost, low size, and power of the MEMS devices opens up a number of applications. In particular, we show that there are substantial benefits to using MEMS devices to provide vibration, and for some missions, attitude sensing. In addition, augmentation for global positioning system (GPS) navigation systems holds much promise.

  19. Multiqubit subradiant states in N -port waveguide devices: ɛ-and-μ-near-zero hubs and nonreciprocal circulators

    NASA Astrophysics Data System (ADS)

    Liberal, Iñigo; Engheta, Nader

    2018-02-01

    Quantum emitters interacting through a waveguide setup have been proposed as a promising platform for basic research on light-matter interactions and quantum information processing. We propose to augment waveguide setups with the use of multiport devices. Specifically, we demonstrate theoretically the possibility of exciting N -qubit subradiant, maximally entangled, states with the use of suitably designed N -port devices. Our general methodology is then applied based on two different devices: an epsilon-and-mu-near-zero waveguide hub and a nonreciprocal circulator. A sensitivity analysis is carried out to assess the robustness of the system against a number of nonidealities. These findings link and merge the designs of devices for quantum state engineering with classical communication network methodologies.

  20. Virtually-augmented interfaces for tactical aircraft.

    PubMed

    Haas, M W

    1995-05-01

    The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.

  1. MultiFacet: A Faceted Interface for Browsing Large Multimedia Collections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Michael J.; Hampton, Shawn D.; Endert, Alexander

    2013-10-31

    Faceted browsing is a common technique for exploring collections where the data can be grouped into a number of pre-defined categories, most often generated from textual metadata. Historically, faceted browsing has been applied to a single data type such as text or image data. However, typical collections contain multiple data types, such as information from web pages that contain text, images, and video. Additionally, when browsing a collection of images and video, facets are often created based on the metadata which may be incomplete, inaccurate, or missing altogether instead of the actual visual content contained within those images and video.more » In this work we address these limitations by presenting MultiFacet, a faceted browsing interface that supports multiple data types. MultiFacet constructs facets for images and video in a collection from the visual content using computer vision techniques. These visual facets can then be browsed in conjunction with text facets within a single interface to reveal relationships and phenomena within multimedia collections. Additionally, we present a use case based on real-world data, demonstrating the utility of this approach towards browsing a large multimedia data collection.« less

  2. Morphological Asymmetry of the Superior Cervical Facets from C3 through C7 due to Degeneration

    PubMed Central

    Van Roy, Peter

    2017-01-01

    Introduction Knowledge about facet morphology has already been discussed extensively in literature but is limited regarding asymmetry and its relation to facet degeneration. Method Facet dimensions, surface area, curvature, and degeneration of the superior facets were measured in 85 dried human vertebrae from the anatomical collection of the Vrije Universiteit Brussel. The vertebrae were analysed using the Microscribe G2X digitizer (Immersion Co., San Jose, CA) and a grading system for the evaluation of cervical facet degeneration. Coordinates were processed mathematically to evaluate articular tropism. The statistical analysis includes the paired t-test and the Pearson correlation. Results On average, no systematic differences between the left and right facets were found concerning morphology and degeneration. However, there were significant differences regardless of the side-occurrence. There was a significant correlation between the dimensions of the total facet surface and the degree of degeneration but not for the recognizable joint surface. Conclusions Facet tropism of the upper joint facets occurred often in the cervical spine but without side preference. A bigger difference in degeneration asymmetry was associated with a bigger difference in facet joint dimension asymmetry. PMID:29359153

  3. FreshAiR and Field Studies—Augmenting Geological Reality with Mobile Devices

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Crompton, H.; Dunleavy, M.

    2014-12-01

    During the last decade, mobile devices have fomented a revolution in geological mapping. Present Clinton set the stage for this revolution in the year 2000 when he ordered a cessation to Selective Availability, making reliable GPS available for civilian use. Geologists began using personal digital assistants and ruggedized tablet PCs for geolocation and data recording and the pace of change accelerated with the development of mobile apps such as Google Maps, digital notebooks, and digital compass-clinometers. Despite these changes in map-making technologies, most students continue to learn geology in the field the old-fashioned way, by following a field trip leader as a group and trying to hear and understand lecturettes at the outcrop. In this presentation, we demonstrate the potential of a new Augment Reality (AR) mobile app called "FreshAiR" to change fundamentally the way content-knowledge and learning objectives are delivered to students in the field. FreshAiR, which was developed by co-author and ODU alumnus M.D., triggers content delivery to mobile devices based on proximity. Students holding their mobile devices to the horizon see trigger points superimposed on the field of view of the device's built-in camera. When they walk towards the trigger, information about the location pops up. This can include text, images, movies, and quiz questions (multiple choice and fill-in-the-blank). Students can use the app to reinforce the field trip leader's presentations or they can visit outcrops individuals at different times. This creates the possibility for asynchronous field class, a concept that has profound implications for distance education in the geosciences.

  4. Correlation of the Features of the Lumbar Multifidus Muscle With Facet Joint Osteoarthritis.

    PubMed

    Yu, Bo; Jiang, Kaibiao; Li, Xinfeng; Zhang, Jidong; Liu, Zude

    2017-09-01

    Facet joint osteoarthritis is considered a consequence of the aging process; however, there is evidence that it may be associated with degenerative changes of other structures. The goal of this study was to investigate the correlation between lumbar multifidus muscle features and facet joint osteoarthritis. This retrospective study included 160 patients who had acute or chronic low back pain and were diagnosed with facet joint osteoarthritis on computed tomography scan. Morphometric parameters, including cross-sectional area, muscle-fat index, and percentage of bilateral multifidus asymmetry at L3-L4, L4-L5, and L5-S1, were evaluated with T2-weighted magnetic resonance imaging. Patients with facet joint osteoarthritis had a smaller cross-sectional area and a higher muscle-fat index than those without facet joint osteoarthritis (P<.001). In multivariate regression analysis, older age and higher muscle-fat index were independently associated with facet joint osteoarthritis at all 3 spinal levels (P<.001). Smaller cross-sectional area was independently associated with facet joint osteoarthritis only at L4-L5 (P=.005). Asymmetry of the bilateral multifidus cross-sectional area was independently associated with facet joint osteoarthritis at L5-S1 (P=.009), but did not seem to be responsible for asymmetric degeneration of the bilateral facet joints. A higher multifidus muscle-fat index was independently associated with facet joint osteoarthritis, and bilateral multifidus size asymmetry was associated with the development of facet joint osteoarthritis at L5-S1. It seems more accurate to consider facet joint osteoarthritis a failure of the whole joint structure, including the paraspinal musculature, rather than simply a failure of the facet joint cartilage. [Orthopedics. 2017; 40(5):e793-e800.]. Copyright 2017, SLACK Incorporated.

  5. Feasibility of Augmented Reality in Clinical Simulations: Using Google Glass With Manikins.

    PubMed

    Chaballout, Basil; Molloy, Margory; Vaughn, Jacqueline; Brisson Iii, Raymond; Shaw, Ryan

    2016-03-07

    Studies show that students who use fidelity-based simulation technology perform better and have higher retention rates than peers who learn in traditional paper-based training. Augmented reality is increasingly being used as a teaching and learning tool in a continual effort to make simulations more realistic for students. The aim of this project was to assess the feasibility and acceptability of using augmented reality via Google Glass during clinical simulation scenarios for training health science students. Students performed a clinical simulation while watching a video through Google Glass of a patient actor simulating respiratory distress. Following participation in the scenarios students completed two surveys and were questioned if they would recommend continued use of this technology in clinical simulation experiences. We were able to have students watch a video in their field of vision of a patient who mimicked the simulated manikin. Students were overall positive about the implications for being able to view a patient during the simulations, and most students recommended using the technology in the future. Overall, students reported perceived realism with augmented reality using Google Glass. However, there were technical and usability challenges with the device. As newer portable and consumer-focused technologies become available, augmented reality is increasingly being used as a teaching and learning tool to make clinical simulations more realistic for health science students. We found Google Glass feasible and acceptable as a tool for augmented reality in clinical simulations.

  6. Exploring Communication Technology Behaviour of Adolescents with Cerebral Palsy in Singapore

    ERIC Educational Resources Information Center

    rasid, Nadia natasha binte mohamed; Nonis, Karen P.

    2015-01-01

    Communication among adolescents with cerebral palsy can be restricted with traditional Augmentative and Alternative Communication (AAC) device coupled with environmental and social barriers. The advance of communication technology offer solutions to reduce such barriers. Given that there is limited research in communication behaviours of…

  7. Utilization of Facet Joint and Sacroiliac Joint Interventions in Medicare Population from 2000 to 2014: Explosive Growth Continues!

    PubMed

    Manchikanti, Laxmaiah; Hirsch, Joshua A; Pampati, Vidyasagar; Boswell, Mark V

    2016-10-01

    Increasing utilization of interventional techniques in managing chronic spinal pain, specifically facet joint interventions and sacroiliac joint injections, is a major concern of healthcare policy makers. We analyzed the patterns of utilization of facet and sacroiliac joint interventions in managing chronic spinal pain. The results showed significant increase of facet joint interventions and sacroiliac joint injections from 2000 to 2014 in Medicare FFS service beneficiaries. Overall, the Medicare population increased 35 %, whereas facet joint and sacroiliac joint interventions increased 313.3 % per 100,000 Medicare population with an annual increase of 10.7 %. While the increases were uniform from 2000 to 2014, there were some decreases noted for facet joint interventions in 2007, 2010, and 2013, whereas for sacroiliac joint injections, the decreases were noted in 2007 and 2013. The increases were for cervical and thoracic facet neurolysis at 911.5 % compared to lumbosacral facet neurolysis of 567.8 %, 362.9 % of cervical and thoracic facet joint blocks, 316.9 % of sacroiliac joints injections, and finally 227.3 % of lumbosacral facet joint blocks.

  8. Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Kumar, Sudheer; Chauhan, Neha; Sakthi Kumar, D.; Kumar, Vikram; Singh, R.

    2017-08-01

    The formation of GaN nanowires from β-Ga2O3 nanowires and photoconduction in a fabricated single GaN nanowire device has been studied. Wurtzite phase GaN were formed from monoclinic β-Ga2O3 nanowires with or without catalyst particles at their tips. The formation of faceted nanostructures from catalyst droplets presented on a nanowire tip has been discussed. The nucleation of GaN phases in β-Ga2O3 nanowires and their subsequent growth due to interfacial strain energy has been examined using a high resolution transmission electron microscope. The high quality of the converted GaN nanowire is confirmed by fabricating single nanowire photoconducting devices which showed ultra high responsivity under ultra-violet illumination.

  9. Biomechanical analyses of whiplash injuries using an experimental model.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Cusick, Joseph F

    2002-09-01

    Neck pain and headaches are the two most common symptoms of whiplash. The working hypothesis is that pain originates from excessive motions in the upper and lower cervical segments. The research design used an intact human cadaver head-neck complex as an experimental model. The intact head-neck preparation was fixed at the thoracic end with the head unconstrained. Retroreflective targets were placed on the mastoid process, anterior regions of the vertebral bodies, and lateral masses at every spinal level. Whiplash loading was delivered using a mini-sled pendulum device. A six-axis load cell and an accelerometer were attached to the inferior fixation of the specimen. High-speed video cameras were used to obtain the kinematics. During the initial stages of loading, a transient decoupling of the head occurs with respect to the neck exhibiting a lag of the cranium. The upper cervical spine-head undergoes local flexion concomitant with a lag of the head while the lower column is in local extension. This establishes a reverse curvature to the head-neck complex. With continuing application of whiplash loading, the inertia of the head catches up with the neck. Later, the entire head-neck complex is under an extension mode with a single extension curvature. The lower cervical facet joint kinematics demonstrates varying local compression and sliding. While the anterior- and posterior-most regions of the facet joint slide, the posterior-most region of the joint compresses more than the anterior-most region. These varying kinematics at the two ends of the facet joint result in a pinching mechanism. Excessive flexion of the posterior upper cervical regions can be correlated to headaches. The pinching mechanism of the facet joints can be correlated to neck pain. The kinematics of the soft tissue-related structures explain the mechanism of these common whiplash associated disorders.

  10. Multiple-cycle Simulation of a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Perkins, H. D.

    2002-01-01

    This paper presents the results of a study involving single and multiple-cycle numerical simulations of various PDE-ejector configurations utilizing hydrogen-oxygen mixtures. The objective was to investigate the thrust, impulse and mass flow rate characteristics of these devices. The results indicate that ejector systems can utilize the energy stored in the strong shock wave exiting the detonation tube to augment the impulse obtained from the detonation tube alone. Impulse augmentation ratios of up to 1.9 were achieved. The axial location of the converging-diverging ejectors relative to the end of the detonation tube were shown to affect the performance of the system.

  11. HBIM and augmented information: towards a wider user community of image and range-based reconstructions

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Banfi, F.; Brumana, R.; Oreni, D.; Previtali, M.; Roncoroni, F.

    2015-08-01

    This paper describes a procedure for the generation of a detailed HBIM which is then turned into a model for mobile apps based on augmented and virtual reality. Starting from laser point clouds, photogrammetric data and additional information, a geometric reconstruction with a high level of detail can be carried out by considering the basic requirements of BIM projects (parametric modelling, object relations, attributes). The work aims at demonstrating that a complex HBIM can be managed in portable devices to extract useful information not only for expert operators, but also towards a wider user community interested in cultural tourism.

  12. Recovery of multiple impacted maxillary teeth in a hyperdivergent Class I patient using Temporary Skeletal Anchorage Devices and augmented corticotomy.

    PubMed

    Kim, Kyung A; Hwang, Hyeon-Shik; Chung, Kyu-Rhim; Kim, Seong-Hun; Nelson, Gerald

    2018-01-01

    Treatment of multiple impacted teeth is challenging. Three-dimensional treatment planning can help in delivering a better outcome. This case report presents a patient with an incomplete dental transposition between the canine and lateral incisor of the maxillary right side associated with the impaction of a dilacerated right central incisor. Using a two-stage surgical exposure and augmented corticotomy, the patient's occlusion and smile esthetics were significantly improved, and Class I occlusal relationships with optimal overjet and overbite were achieved after 50 months of orthodontic treatment. Thirty-month posttreatment records revealed a stable result.

  13. Bipolar Radiofrequency Facet Ablation of the Lumbar Facet Capsule: An Adjunct to Conventional Radiofrequency Ablation for Pain Management

    PubMed Central

    Palea, Ovidiu; Granville, Michelle

    2017-01-01

    Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated. PMID:29119066

  14. Bipolar Radiofrequency Facet Ablation of the Lumbar Facet Capsule: An Adjunct to Conventional Radiofrequency Ablation for Pain Management.

    PubMed

    Jacobson, Robert E; Palea, Ovidiu; Granville, Michelle

    2017-09-01

    Radiofrequency facet ablation (RFA) has been performed using the same technique for over 50 years. Except for variations in electrode size, tip shape, and change in radiofrequency (RF) stimulation parameters, using standard, pulsed, and cooled RF wavelengths, the target points have remained absolutely unchanged from the original work describing RFA for lumbar pain control. Degenerative changes in the facet joint and capsule are the primary location for the majority of lumbar segmental pathology and pain. Multiple studies show that the degenerated facet joint is richly innervated as a result of the inflammatory overgrowth of the synovium. The primary provocative clinical test to justify an RFA is to perform an injection with local anesthetic into the facet joint and the posterior capsule and confirm pain relief. However, after a positive response, the radiofrequency lesion is made not to the facet joint but to the more proximal fine nerve branches that innervate the joint. The accepted target points for the recurrent sensory branch ignore the characteristic rich innervation of the pathologic lumbar facet capsule and assume that lesioning of these recurrent branches is sufficient to denervate the painful pathologic facet joint. This report describes the additional targets and technical steps for further coagulation points along the posterior capsule of the lumbar facet joint and the physiologic studies of the advantage of the bipolar radiofrequency current in this location. Bipolar RF to the facet capsule is a simple, extra step that easily creates a large thermo-coagulated lesion in this capsule region of the pathologic facet joint. Early studies demonstrate bipolar RF to the facet capsule can provide long-term pain relief when used alone for specific localized facet joint pain, to coagulate lumbar facet cysts to prevent recurrence, and to get more extensive pain control by combining it with traditional lumbar RFA, especially when RFA is repeated.

  15. Alignment and focus of mirrored facets of a heliosat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B

    2013-11-12

    Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoreticalmore » image.« less

  16. The variable magnetic baffle as a control device for Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1972-01-01

    The variable magnetic baffle described in this paper aids in control of electron flow from the hollow cathode plasma into the main discharge region by augmenting the fringe magnetic field which impedes this electron flow in conventionally baffled Kaufman thrusters. A passive, low loss, and automatic control device is obtained by using the discharge current to excite the control winding. Used in conjunction with typical thruster control loops, stable operation has been obtained over a 10:1 throttling range with a 30 cm thruster. Discharge ignition and overcurrent recycling is also facilitated through use of this device in a permanent magnet thruster.

  17. Rotational injury of cervical facets: CT analysis of fracture patterns with implications for management and neurologic outcome.

    PubMed

    Shanmuganathan, K; Mirvis, S E; Levine, A M

    1994-11-01

    Imaging studies of patients with rotational facet injuries of the cervical spine were retrospectively reviewed to determine the prevalence and pattern of associated fractures, to correlate injury pattern with recommended surgical stabilization, and to assess neurologic outcome. Radiographs and CT scans obtained for 40 consecutive patients with rotational facet injuries of the cervical spine during a 70-month period were retrospectively reviewed to determine injury level, presence, and orientation of facet fractures, and concurrent nonfacet injuries. Imaging findings were reviewed to assess the likelihood of instability and to determine the most appropriate stabilization requirement. Medical records were reviewed to ascertain mechanism of injury, initial neurologic deficit, and surgical findings. Among the 40 patients with cervical rotational facet injuries, 11 (27%) had pure unilateral facet dislocation or subluxation without associated fractures, and 29 (73%) had concurrent facet fractures involving the inferior facet of the rotated vertebra (n = 13), the superior facet of the subjacent vertebra (n = 9), or both (n = 7). Injury of the rotated vertebra was unilateral in 22 patients but bilateral in 18 patients. Facet fractures frequently extended into the ipsilateral lamina or articular pillar or both. An avulsion fracture from the posteroinferior aspect of the rotated vertebral body, indicating disk disruption, occurred in 10 patients (25%), and seven patients (17%) had complete isolation of an articular pillar. Facet fractures were confirmed for 27 patients who underwent surgical stabilization. Neurologic deficits developed in 29 (73%) of the 40 patients and included radiculopathy in 11 patients and cord syndromes in 18 patients. Pure dislocation without a facet fracture was more likely to lead to a cord syndrome (p = .006). Cervical rotational facet injuries are often accompanied by facet fractures and bilateral damage of the rotated vertebra. These injuries contribute to rotational instability and require specific internal fixation based on a precise delineation of all injuries. Facet dislocations without fractures have a significantly higher association with cord syndromes than do rotational facet injuries with fractures. CT, particularly with parasagittal reformations, is valuable in identifying all injuries of the rotated and subjacent vertebrae.

  18. Augmented Reality versus Virtual Reality for 3D Object Manipulation.

    PubMed

    Krichenbauer, Max; Yamamoto, Goshiro; Taketom, Takafumi; Sandor, Christian; Kato, Hirokazu

    2018-02-01

    Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5 percent on average compared to AR ( ). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3 percent slower in VR than in AR ( ). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.

  19. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  20. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  1. Augmenting Classroom Practices with QR Codes

    ERIC Educational Resources Information Center

    Thorne, Tristan

    2016-01-01

    The use of mobile devices in the language classroom can help accomplish innumerable learning objectives, yet many teachers regard smartphones and tablets as obstacles to lesson goals. However, as portable technology continues to infiltrate classroom boundaries, it is becoming increasingly clear that educators should find ways to take advantage of…

  2. Perceptions of the Design of Voice Output Communication Aids

    ERIC Educational Resources Information Center

    Judge, Simon; Townend, Gillian

    2013-01-01

    Background: Voice output communication aids (VOCAs) are a key form of aided communication within the field of augmentative and alternative communication (AAC). In recent years, rapid developments in technology have resulted in an explosion of devices available commercially, yet little research has been conducted into what people who use VOCAs…

  3. Detecting Symptoms of Low Performance Using Production Rules

    ERIC Educational Resources Information Center

    Bravo, Javier; Ortigosa, Alvaro

    2009-01-01

    E-Learning systems offer students innovative and attractive ways of learning through augmentation or substitution of traditional lectures and exercises with online learning material. Such material can be accessed at any time from anywhere using different devices, and can be personalized according to the individual student's needs, goals and…

  4. Augmented Reality in Education and Training

    ERIC Educational Resources Information Center

    Lee, Kangdon

    2012-01-01

    There are many different ways for people to be educated and trained with regard to specific information and skills they need. These methods include classroom lectures with textbooks, computers, handheld devices, and other electronic appliances. The choice of learning innovation is dependent on an individual's access to various technologies and the…

  5. Participatory Scaling through Augmented Reality Learning through Local Games

    ERIC Educational Resources Information Center

    Martin, John; Dikkers, Seann; Squire, Kurt; Gagnon, David

    2014-01-01

    The proliferation of broadband mobile devices, which many students bring to school with them as mobile phones, makes the widespread adoption of AR pedagogies a possibility, but pedagogical, distribution, and training models are needed to make this innovation an integrated part of education, This paper employs Social Construction of Technology…

  6. 49 CFR 178.345-10 - Pressure relief.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cargo tank must be provided with a primary pressure relief system consisting of one or more reclosing... parallel with the primary pressure relief system may be used to augment the total venting capacity of the cargo tank. Non-reclosing pressure relief devices are not authorized in any cargo tank except when in...

  7. 49 CFR 178.345-10 - Pressure relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cargo tank must be provided with a primary pressure relief system consisting of one or more reclosing... parallel with the primary pressure relief system may be used to augment the total venting capacity of the cargo tank. Non-reclosing pressure relief devices are not authorized in any cargo tank except when in...

  8. 49 CFR 178.345-10 - Pressure relief.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cargo tank must be provided with a primary pressure relief system consisting of one or more reclosing... parallel with the primary pressure relief system may be used to augment the total venting capacity of the cargo tank. Non-reclosing pressure relief devices are not authorized in any cargo tank except when in...

  9. 49 CFR 178.345-10 - Pressure relief.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cargo tank must be provided with a primary pressure relief system consisting of one or more reclosing... parallel with the primary pressure relief system may be used to augment the total venting capacity of the cargo tank. Non-reclosing pressure relief devices are not authorized in any cargo tank except when in...

  10. Implementing Tablet-Based Devices to Improve Communication Skills of Students with Autism

    ERIC Educational Resources Information Center

    Alzrayer, Nouf M.; Banda, Devender R.

    2017-01-01

    Students with autism spectrum disorder (ASD) have difficulties in communication that limit their opportunities to participate in daily living and educational activities. Augmentative alternative communication is one of the strategies used to strengthen the communication skills of students with limited communication skills. Students with ASD…

  11. (Re)Conceptualizing Design Approaches for Mobile Language Learning

    ERIC Educational Resources Information Center

    Hoven, Debra; Palalas, Agnieszka

    2011-01-01

    An exploratory study conducted at George Brown College in Toronto, Canada between 2007 and 2009 investigated language learning with mobile devices as an approach to augmenting ESP learning by taking learning outside the classroom into the real-world context. In common with findings at other community colleges, this study identified inadequate…

  12. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction

    PubMed Central

    Lipton-Duffin, J. A.; Miwa, J. A.; Kondratenko, M.; Cicoira, F.; Sumpter, B. G.; Meunier, V.; Perepichka, D. F.; Rosei, F.

    2010-01-01

    One of the great challenges in surface chemistry is to assemble aromatic building blocks into ordered structures that are mechanically robust and electronically interlinked—i.e., are held together by covalent bonds. We demonstrate the surface-confined growth of ordered arrays of poly(3,4-ethylenedioxythiophene) (PEDOT) chains, by using the substrate (the 110 facet of copper) simultaneously as template and catalyst for polymerization. Copper acts as promoter for the Ullmann coupling reaction, whereas the inherent anisotropy of the fcc 110 facet confines growth to a single dimension. High resolution scanning tunneling microscopy performed under ultrahigh vacuum conditions allows us to simultaneously image PEDOT oligomers and the copper lattice with atomic resolution. Density functional theory calculations confirm an unexpected adsorption geometry of the PEDOT oligomers, which stand on the sulfur atom of the thiophene ring rather than lying flat. This polymerization approach can be extended to many other halogen-terminated molecules to produce epitaxially aligned conjugated polymers. Such systems might be of central importance to develop future electronic and optoelectronic devices with high quality active materials, besides representing model systems for basic science investigations. PMID:20534511

  13. Rapidly reconfigurable all-optical universal logic gate

    DOEpatents

    Goddard, Lynford L.; Bond, Tiziana C.; Kallman, Jeffrey S.

    2010-09-07

    A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.

  14. Water Injected Turbomachinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.

  15. Visible Light Emitting Materials and Injection Devices

    DTIC Science & Technology

    1993-01-01

    view to preventing the occurrence of faceting in these films. (II) MOCVD growth of II-VI materials (Tim Anderson) (11.1) Growth of novel Zn ZCd SSeI ...E.J. Stofko and R.J, Paff, "Synthesis and some properties of BeTe, BeSe, and BeS", J, Phys, Chem. Soiid. 33 (1972) 501. 2. R. Yamamoto, M . Inoue, K...Technology," SID Seminar Lecture Notes, 1988, Vol. 1 7. R.M. Park, M ,B. Troffer, and C.M. Rouleau, "p-type ZnSe by nitrogen atom beam doping during molecular

  16. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  17. Superior performance of a paraaortic counterpulsation device compared to the intraaortic balloon pump.

    PubMed

    Terrovitis, John V; Charitos, Christos E; Tsolakis, Elias J; Dolou, Paraskevi; Pierrakos, Charalampos N; Siafakas, Kostas X; Nanas, John N

    2003-12-01

    The purpose of this study was to compare the hemodynamic effectiveness of a 30-ml stroke volume paraaortic counterpulsation device (PACD), presenting the advantages of ease of implantation and driving by a standard intraaortic balloon pump (IABP) console (Datascope 96, Datascope Corp., Montvale, NJ, USA) to that of a 40-ml IABP, in the setting of experimental heart failure. In an acute heart failure model, the IABP was placed in the descending aorta and the PACD in the ascending aorta of eight pigs. Both devices were driven by the same system, and hemodynamic measurements were obtained with and without mechanical assistance. The two pumps significantly reduced the systolic and end-diastolic aortic pressures, but the PACD reduced the latter more effectively (42.6 +/- 18.1% vs 11.0 +/- 9.9%, p = 0.0001). Both pumps provided significant aortic diastolic augmentation, but the counterpulsation wave of the PACD was significantly greater (augmentation of 44.8 +/- 22.2% vs 37.6 +/- 15.6%, p = 0.031). Both lowered the end-diastolic left ventricular pressure with a trend toward PACD superiority (24.2 +/- 13.7% vs 19.7 +/- 13.5%, p = 0.064). It is concluded that the PACD, even with smaller stroke volume, is more effective than the IABP. The simplicity of its implantation, together with the ability of the standard IABP consoles to control its function, make it a promising device for mechanical assistance of the failing heart.

  18. Evaluation of Wearable Haptic Systems for the Fingers in Augmented Reality Applications.

    PubMed

    Maisto, Maurizio; Pacchierotti, Claudio; Chinello, Francesco; Salvietti, Gionata; De Luca, Alessandro; Prattichizzo, Domenico

    2017-01-01

    Although Augmented Reality (AR) has been around for almost five decades, only recently we have witnessed AR systems and applications entering in our everyday life. Representative examples of this technological revolution are the smartphone games "Pokémon GO" and "Ingress" or the Google Translate real-time sign interpretation app. Even if AR applications are already quite compelling and widespread, users are still not able to physically interact with the computer-generated reality. In this respect, wearable haptics can provide the compelling illusion of touching the superimposed virtual objects without constraining the motion or the workspace of the user. In this paper, we present the experimental evaluation of two wearable haptic interfaces for the fingers in three AR scenarios, enrolling 38 participants. In the first experiment, subjects were requested to write on a virtual board using a real chalk. The haptic devices provided the interaction forces between the chalk and the board. In the second experiment, subjects were asked to pick and place virtual and real objects. The haptic devices provided the interaction forces due to the weight of the virtual objects. In the third experiment, subjects were asked to balance a virtual sphere on a real cardboard. The haptic devices provided the interaction forces due to the weight of the virtual sphere rolling on the cardboard. Providing haptic feedback through the considered wearable device significantly improved the performance of all the considered tasks. Moreover, subjects significantly preferred conditions providing wearable haptic feedback.

  19. Structural Equation Modelling of Multiple Facet Data: Extending Models for Multitrait-Multimethod Data

    ERIC Educational Resources Information Center

    Bechger, Timo M.; Maris, Gunter

    2004-01-01

    This paper is about the structural equation modelling of quantitative measures that are obtained from a multiple facet design. A facet is simply a set consisting of a finite number of elements. It is assumed that measures are obtained by combining each element of each facet. Methods and traits are two such facets, and a multitrait-multimethod…

  20. Cervical facet force analysis after disc replacement versus fusion.

    PubMed

    Patel, Vikas V; Wuthrich, Zachary R; McGilvray, Kirk C; Lafleur, Matthew C; Lindley, Emily M; Sun, Derrick; Puttlitz, Christian M

    2017-05-01

    Cervical total disc replacement was developed to preserve motion and reduce adjacent-level degeneration relative to fusion, yet concerns remain that total disc replacement will lead to altered facet joint loading and long-term facet joint arthrosis. This study is intended to evaluate changes in facet contact force, pressure and surface area at the treated and superior adjacent levels before and after discectomy, disc replacement, and fusion. Ten fresh-frozen human cadaveric cervical spines were potted from C2 to C7 with pressure sensors placed into the facet joints of C3-C4 and C4-C5 via slits in the facet capsules. Moments were applied to the specimens to produce axial rotation, lateral bending and extension. Facet contact force and pressure were measured at both levels for intact, discectomy at C4-C5, disc replacement with ProDisc-C (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5, and anterior discectomy and fusion with Cervical Spine Locking Plate (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5. Facet contact area was calculated from the force and pressure measurements. An analysis of variance was used to determine significant differences with P-values <0.05 indicating significance. Facet contact force was elevated at the treated level under extension following both discectomy and disc replacement, while facet contact pressure and area were relatively unchanged. Facet contact force and area were decreased at the treated level following fusion for all three loading conditions. Total disc replacement preserved facet contact force for all scenarios except extension at the treated level, highlighting the importance of the anterior disco-ligamentous complex. This could promote treated-level facet joint disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides

    NASA Technical Reports Server (NTRS)

    Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.

    2007-01-01

    Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers

  2. Polar Lunar Regions: Exploiting Natural and Augmented Thermal Environments

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; McKellip, R. C.; Brannon, D. P.; Underwood, L. W.; Russell, K. J.

    2007-12-01

    In polar regions of the Moon, there are areas within craters that are permanently shadowed from solar illumination, which can reach temperatures of 100K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50K in many cases. Temperatures observed in theses regions suggest that they could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high vacuum cryogenic environments, which in their current state could support cryogenic applications. The unique conditions at the lunar poles, besides ice stores, harbor an environment that provides an opportunity to reduce the power, weight and total mass that needs to be carried from the Earth to the moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few man-made augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist there. Our analysis reveals that lightweight thermal shielding, within shaded craters, could create an environment several Kelvin above absolute zero. The temperature ranges of naturally shaded craters and thermally augmented ones could enable the long-term storage of most gases, low temperature superconductors for large magnetic fields, devices and advanced high speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were to be used to facilitate the operation of near absolute zero instruments, including wide variety of cryogenically based propulsion, energy, communication, sensing and computing devices. Potentially, the required burden of carrying massive life-supporting components from the Earth to the moon for lunar exploration and research could be reduced.

  3. Migrating lumbar facet joint cysts.

    PubMed

    Palmieri, Francesco; Cassar-Pullicino, Victor N; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; McCall, Iain W

    2006-04-01

    The majority of lumbar facet joint cysts (LFJCs) are located in the spinal canal, on the medial aspect of the facet joint with characteristic diagnostic features. When they migrate away from the joint of origin, they cause diagnostic problems. In a 7-year period we examined by computed tomography (CT) and magnetic resonance (MR) imaging five unusual cases of facet joint cysts which migrated from the facet joint of origin. Three LFJCs were identified in the right S1 foramen, one in the right L5-S1 neural foramen and one in the left erector spinae and multifidus muscles between the levels of L2-L4 spinous process. Awareness that spinal lesions identified at MRI and CT could be due to migrating facet joint cyst requires a high level of suspicion. The identification of the appositional contact of the cyst and the facet joint needs to be actively sought in the presence of degenerative facet joints.

  4. [Feasibility and accuracy of ultrasound-guided methodology in the examination of lumbar spine facet joints].

    PubMed

    Wen, Chuan-Bing; Li, Yong-Zhong; Tang, Qin-Qin; Sun, Lin; Xiao, Hong; Yang, Bang-Xiang; Song, Li; Liu, Hui

    2013-03-01

    To investigate the feasibility, accuracy of B ultrasound in the examination of joint space of lumbar spine facet joints compared with CT scan. Ten healthy adult volunteers were enrolled. The joint space of lumbar facet joints was measured by ultrasound. To identify the spinal levels, the posterior parasagittal sonograms were obtained at levels L1 to S1. The lumbar facet joints were delineated with the help of transverse sonograms at each level. Meanwhile, the lumbar facet joints were evaluated by spiral CT on the same plane, reformatted to 1-mm axial slices. A total of 88 lumbar facet joints from L1 to S1 were clearly visualized in the 10 volunteers. Both ultrasound and CT measurements showed the same average depth and lateral distance of lumbar facet joint space (P > 0.05). The lumbar facet joint space can be accurately demonstrated by ultrasound.

  5. Fabrication of lithographically defined optical coupling facets for silicon-on-insulator waveguides by inductively coupled plasma etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yap, K.P.; Lamontagne, B.; Delage, A.

    2006-05-15

    We present a technique to lithographically define and fabricate all required optical facets on a silicon-on-insulator photonic integrated circuit by an inductively coupled plasma etch process. This technique offers 1 {mu}m positioning accuracy of the facets at any location within the chip and eliminates the need of polishing. Facet fabrication consists of two separate steps to ensure sidewall verticality and minimize attack on the end surfaces of the waveguides. Protection of the waveguides by a thermally evaporated aluminum layer before the 40-70 {mu}m deep optical facet etching has been proven essential in assuring the facet smoothness and integrity. Both scanningmore » electron microscopy analysis and optical measurement results show that the quality of the facets prepared by this technique is comparable to the conventional facets prepared by polishing.« less

  6. Efficient mRNA-Based Genetic Engineering of Human NK Cells with High-Affinity CD16 and CCR7 Augments Rituximab-Induced ADCC against Lymphoma and Targets NK Cell Migration toward the Lymph Node-Associated Chemokine CCL19.

    PubMed

    Carlsten, Mattias; Levy, Emily; Karambelkar, Amrita; Li, Linhong; Reger, Robert; Berg, Maria; Peshwa, Madhusudan V; Childs, Richard W

    2016-01-01

    For more than a decade, investigators have pursued methods to genetically engineer natural killer (NK) cells for use in clinical therapy against cancer. Despite considerable advances in viral transduction of hematopoietic stem cells and T cells, transduction efficiencies for NK cells have remained disappointingly low. Here, we show that NK cells can be genetically reprogramed efficiently using a cGMP-compliant mRNA electroporation method that induces rapid and reproducible transgene expression in nearly all transfected cells, without negatively influencing their viability, phenotype, and cytotoxic function. To study its potential therapeutic application, we used this approach to improve key aspects involved in efficient lymphoma targeting by adoptively infused ex vivo-expanded NK cells. Electroporation of NK cells with mRNA coding for the chemokine receptor CCR7 significantly promoted migration toward the lymph node-associated chemokine CCL19. Further, introduction of mRNA coding for the high-affinity antibody-binding receptor CD16 (CD16-158V) substantially augmented NK cell cytotoxicity against rituximab-coated lymphoma cells. Based on these data, we conclude that this approach can be utilized to genetically modify multiple modalities of NK cells in a highly efficient manner with the potential to improve multiple facets of their in vivo tumor targeting, thus, opening a new arena for the development of more efficacious adoptive NK cell-based cancer immunotherapies.

  7. Augmentative and alternative communication in children with Down's syndrome: a systematic review.

    PubMed

    Barbosa, Renata Thaís de Almeida; de Oliveira, Acary Souza Bulle; de Lima Antão, Jennifer Yohanna Ferreira; Crocetta, Tânia Brusque; Guarnieri, Regiani; Antunes, Thaiany Pedrozo Campos; Arab, Claudia; Massetti, Thaís; Bezerra, Italla Maria Pinheiro; de Mello Monteiro, Carlos Bandeira; de Abreu, Luiz Carlos

    2018-05-11

    The use of technology to assist in the communication, socialization, language, and motor skills of children with Down's syndrome (DS) is required. The aim of this study was to analyse research findings regarding the different instruments of 'augmentative and alternative communication' used in children with Down's syndrome. This is a systematic review of published articles available on PubMed, Web of Science, PsycInfo, and BVS using the following descriptors: assistive technology AND syndrome, assistive technology AND down syndrome, down syndrome AND augmentative and alternative communication. Studies published in English were selected if they met the following inclusion criteria: (1) study of children with a diagnosis of DS, and (2) assistive technology and/or augmentative and alternative communication analysis in this population. A total of 1087 articles were identified. Thirteen articles met the inclusion criteria. The instruments most used by the studies were speech-generating devices (SGDs) and the Picture Exchange Communication System (PECS). Twelve instruments that provided significant aid to the process of communication and socialization of children with DS were identified. These instruments increase the interaction between individuals among this population and their peers, contributing to their quality of life and self-esteem.

  8. See-through 3D technology for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Lee, Seungjae; Li, Gang; Jang, Changwon; Hong, Jong-Young

    2017-06-01

    Augmented reality is recently attracting a lot of attention as one of the most spotlighted next-generation technologies. In order to get toward realization of ideal augmented reality, we need to integrate 3D virtual information into real world. This integration should not be noticed by users blurring the boundary between the virtual and real worlds. Thus, ultimate device for augmented reality can reconstruct and superimpose 3D virtual information on the real world so that they are not distinguishable, which is referred to as see-through 3D technology. Here, we introduce our previous researches to combine see-through displays and 3D technologies using emerging optical combiners: holographic optical elements and index matched optical elements. Holographic optical elements are volume gratings that have angular and wavelength selectivity. Index matched optical elements are partially reflective elements using a compensation element for index matching. Using these optical combiners, we could implement see-through 3D displays based on typical methodologies including integral imaging, digital holographic displays, multi-layer displays, and retinal projection. Some of these methods are expected to be optimized and customized for head-mounted or wearable displays. We conclude with demonstration and analysis of fundamental researches for head-mounted see-through 3D displays.

  9. Hierarchical representations of the five-factor model of personality in predicting job performance: integrating three organizing frameworks with two theoretical perspectives.

    PubMed

    Judge, Timothy A; Rodell, Jessica B; Klinger, Ryan L; Simon, Lauren S; Crawford, Eean R

    2013-11-01

    Integrating 2 theoretical perspectives on predictor-criterion relationships, the present study developed and tested a hierarchical framework in which each five-factor model (FFM) personality trait comprises 2 DeYoung, Quilty, and Peterson (2007) facets, which in turn comprise 6 Costa and McCrae (1992) NEO facets. Both theoretical perspectives-the bandwidth-fidelity dilemma and construct correspondence-suggest that lower order traits would better predict facets of job performance (task performance and contextual performance). They differ, however, as to the relative merits of broad and narrow traits in predicting a broad criterion (overall job performance). We first meta-analyzed the relationship of the 30 NEO facets to overall job performance and its facets. Overall, 1,176 correlations from 410 independent samples (combined N = 406,029) were coded and meta-analyzed. We then formed the 10 DeYoung et al. facets from the NEO facets, and 5 broad traits from those facets. Overall, results provided support for the 6-2-1 framework in general and the importance of the NEO facets in particular. (c) 2013 APA, all rights reserved.

  10. FACETS: multi-faceted functional decomposition of protein interaction networks.

    PubMed

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes

    2012-10-15

    The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein-protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Supplementary data are available at the Bioinformatics online. Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/~assourav/Facets/

  11. Combining physical and virtual contexts through augmented reality: design and evaluation of a prototype using a drug box as a marker for antibiotic training

    PubMed Central

    Tomson, Tanja; Zary, Nabil

    2014-01-01

    Introduction. Antimicrobial resistance is a global health issue. Studies have shown that improved antibiotic prescription education among healthcare professionals reduces mistakes during the antibiotic prescription process. The aim of this study was to investigate novel educational approaches that through the use of Augmented Reality technology could make use of the real physical context and thereby enrich the educational process of antibiotics prescription. The objective is to investigate which type of information related to antibiotics could be used in an augmented reality application for antibiotics education. Methods. This study followed the Design-Based Research Methodology composed of the following main steps: problem analysis, investigation of information that should be visualized for the training session, and finally the involvement of the end users the development and evaluation processes of the prototype. Results. Two of the most important aspects in the antibiotic prescription process, to represent in an augmented reality application, are the antibiotic guidelines and the side effects. Moreover, this study showed how this information could be visualized from a mobile device using an Augmented Reality scanner and antibiotic drug boxes as markers. Discussion. In this study we investigated the usage of objects from a real physical context such as drug boxes and how they could be used as educational resources. The logical next steps are to examine how this approach of combining physical and virtual contexts through Augmented Reality applications could contribute to the improvement of competencies among healthcare professionals and its impact on the decrease of antibiotics resistance. PMID:25548733

  12. Combining physical and virtual contexts through augmented reality: design and evaluation of a prototype using a drug box as a marker for antibiotic training.

    PubMed

    Nifakos, Sokratis; Tomson, Tanja; Zary, Nabil

    2014-01-01

    Introduction. Antimicrobial resistance is a global health issue. Studies have shown that improved antibiotic prescription education among healthcare professionals reduces mistakes during the antibiotic prescription process. The aim of this study was to investigate novel educational approaches that through the use of Augmented Reality technology could make use of the real physical context and thereby enrich the educational process of antibiotics prescription. The objective is to investigate which type of information related to antibiotics could be used in an augmented reality application for antibiotics education. Methods. This study followed the Design-Based Research Methodology composed of the following main steps: problem analysis, investigation of information that should be visualized for the training session, and finally the involvement of the end users the development and evaluation processes of the prototype. Results. Two of the most important aspects in the antibiotic prescription process, to represent in an augmented reality application, are the antibiotic guidelines and the side effects. Moreover, this study showed how this information could be visualized from a mobile device using an Augmented Reality scanner and antibiotic drug boxes as markers. Discussion. In this study we investigated the usage of objects from a real physical context such as drug boxes and how they could be used as educational resources. The logical next steps are to examine how this approach of combining physical and virtual contexts through Augmented Reality applications could contribute to the improvement of competencies among healthcare professionals and its impact on the decrease of antibiotics resistance.

  13. Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training.

    PubMed

    Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A; Karim, Naz; Merck, Derek L

    2018-01-01

    Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients' de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based "blind insertion" invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner's AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices.

  14. Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training

    PubMed Central

    Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A.; Karim, Naz; Merck, Derek L.

    2018-01-01

    Introduction Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Methods Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. Results The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients’ de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based “blind insertion” invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner’s AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Conclusion Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices. PMID:29383074

  15. Clinical benefits of remote versus transtelephonic monitoring of implanted pacemakers.

    PubMed

    Crossley, George H; Chen, Jane; Choucair, Wassim; Cohen, Todd J; Gohn, Douglas C; Johnson, W Ben; Kennedy, Eleanor E; Mongeon, Luc R; Serwer, Gerald A; Qiao, Hongyan; Wilkoff, Bruce L

    2009-11-24

    The purpose of this study was to evaluate remote pacemaker interrogation for the earlier diagnosis of clinically actionable events compared with traditional transtelephonic monitoring and routine in-person evaluation. Pacemaker patient follow-up procedures have evolved from evaluating devices with little programmability and diagnostic information solely in person to transtelephonic rhythm strip recordings that allow monitoring of basic device function. More recently developed remote monitoring technology leverages expanded device capabilities, augmenting traditional transtelephonic monitoring to evaluate patients via full device interrogation. The time to first diagnosis of a clinically actionable event was compared in patients who were followed by remote interrogation (Remote) and those who were followed per standard of care with office visits augmented by transtelephonic monitoring (Control). Patients were randomized 2:1. Remote arm patients transmitted pacemaker information at 3-month intervals. Control arm patients with a single-chamber pacemaker transmitted at 2-month intervals. Control arm patients with dual-chamber devices transmitted at 2-month intervals with an office visit at 6 months. All patients were seen in office at 12 months. The mean time to first diagnosis of clinically actionable events was earlier in the Remote arm (5.7 months) than in the Control arm (7.7 months). Three (2%) of the 190 events in the Control arm and 446 (66%) of 676 events in the Remote arm were identified remotely. The strategic use of remote pacemaker interrogation follow-up detects actionable events that are potentially important more quickly and more frequently than transtelephonic rhythm strip recordings. The use of transtelephonic rhythm strips for pacemaker follow-up is of little value except for battery status determinations. (PREFER [Pacemaker Remote Follow-up Evaluation and Review]; NCT00294645).

  16. Facet joint laser radiation: tissue effects of a new clinical laser application

    NASA Astrophysics Data System (ADS)

    Werkmann, Klaus; Thal, Dietmar R.

    1996-01-01

    Chronic unilateral and bilateral back pain with pseudoradicular symptoms, is a common clinical syndrome, which in many cases can be related to the facet joint syndrome. The pain is caused by mechanical affection of synovial and capsular nerve terminals. Therefore, current therapeutical attempts including physical therapy, intra-articular injection of local anesthetics and steroids and thermocoagulation of the facet joint with a thermocoagulator, are performed. We confirmed laser coagulation of the facet joint. Porcine cadaveric spines were treated immediately after death by intra-articular facet joint laser radiation. With the pulsed Nd:YAG laser (1064 nm) altogether 600 J were applied in three different places 4 mm apart at the top of the facet joint. The results showed that facet joint laser radiation leads to a small (about 1 - 2 mm diameter) lesion restricted to the facet joint cavity and its synovia. Histologically, we found a central carbonization zone and necrosis, including almost the whole cartilage and approximately 0.2 mm of the adjacent bone. These changes are similar to Nd:Yag-laser applications in other skeletal regions. It is suggested that these changes may lead to facet joint denervation by coagulation of the synovial nerve terminals. Cicatration of the laser lesion might cause ankylosis of this joint. In sum, facet joint laser radiation could be an alternative therapeutical tool for lower back pain of the facet joint syndrome type. Therefore, future clinical application of this technique seems to be very promising.

  17. Kinetics-Driven Crystal Facets Evolution at the Tip of Nanowires: A New Implementation of the Ostwald-Lussac Law.

    PubMed

    Yin, Xin; Wang, Xudong

    2016-11-09

    Nanocrystal facets evolution is critical for designing nanomaterial morphology and controlling their properties. In this work, we report a unique high-energy crystal facets evolution phenomenon at the tips of wurtzite zinc oxide nanowires (NWs). As the zinc vapor supersaturation decreased at the NW deposition region, the NW tip facets evolved from the (0001) surface to the {101̅3} surface and subsequently to the {112̅2} surface and eventually back to the flat (0001) surface. A series of NW tip morphology was observed in accordance to the different combinations of exposed facets. Exposure of the high-energy facets was attributed to the fluctuation of the energy barriers for the formation of different crystal facets during the layer-by-layer growth of the NW tip. The energy barrier differences between these crystal facets were quantified from the surface area ratios as a function of supersaturation. On the basis of the experimental observation and kinetics analysis, we argue that at appropriate deposition conditions exposure of the crystal facets at NW growth front is not merely determined by the surface energy. Instead, the NW may choose to expose the facets with minimal formation energy barrier, which can be determined by the Ehrlich-Schwoebel barrier variation. This empirical law for the NW tip facet formation was in analogy to the Ostwald-Lussac law of phase transformation, which brings a new insight toward nanostructure design and controlled synthesis.

  18. Automated Forensic Animal Family Identification by Nested PCR and Melt Curve Analysis on an Off-the-Shelf Thermocycler Augmented with a Centrifugal Microfluidic Disk Segment.

    PubMed

    Keller, Mark; Naue, Jana; Zengerle, Roland; von Stetten, Felix; Schmidt, Ulrike

    2015-01-01

    Nested PCR remains a labor-intensive and error-prone biomolecular analysis. Laboratory workflow automation by precise control of minute liquid volumes in centrifugal microfluidic Lab-on-a-Chip systems holds great potential for such applications. However, the majority of these systems require costly custom-made processing devices. Our idea is to augment a standard laboratory device, here a centrifugal real-time PCR thermocycler, with inbuilt liquid handling capabilities for automation. We have developed a microfluidic disk segment enabling an automated nested real-time PCR assay for identification of common European animal groups adapted to forensic standards. For the first time we utilize a novel combination of fluidic elements, including pre-storage of reagents, to automate the assay at constant rotational frequency of an off-the-shelf thermocycler. It provides a universal duplex pre-amplification of short fragments of the mitochondrial 12S rRNA and cytochrome b genes, animal-group-specific main-amplifications, and melting curve analysis for differentiation. The system was characterized with respect to assay sensitivity, specificity, risk of cross-contamination, and detection of minor components in mixtures. 92.2% of the performed tests were recognized as fluidically failure-free sample handling and used for evaluation. Altogether, augmentation of the standard real-time thermocycler with a self-contained centrifugal microfluidic disk segment resulted in an accelerated and automated analysis reducing hands-on time, and circumventing the risk of contamination associated with regular nested PCR protocols.

  19. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.

    PubMed

    Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H

    2017-12-01

    There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.

  20. Domains and facets: hierarchical personality assessment using the revised NEO personality inventory.

    PubMed

    Costa, P T; McCrae, R R

    1995-02-01

    Personality traits are organized hierarchically, with narrow, specific traits combining to define broad, global factors. The Revised NEO Personality Inventory (NEO-PI-R; Costa & McCrae, 1992c) assesses personality at both levels, with six specific facet scales in each of five broad domains. This article describes conceptual issues in specifying facets of a domain and reports evidence on the validity of NEO-PI-R facet scales. Facet analysis-the interpretation of a scale in terms of the specific facets with which it correlates-is illustrated using alternative measures of the five-factor model and occupational scales. Finally, the hierarchical interpretation of personality profiles is discussed. Interpretation on the domain level yields a rapid understanding of the individual interpretation of specific facet scales gives a more detailed assessment.

  1. iPads, mobile technologies, and communication applications: a survey of family wants, needs, and preferences.

    PubMed

    Meder, Allison M; Wegner, Jane R

    2015-03-01

    Families of children with communication disabilities were surveyed to explore wants and preferences relative to mobile media technology, including iPads, as a form of augmentative and alternative communication (AAC). The families surveyed reported wanting information and support from professionals, including speech language pathologists (SLPs), who are knowledgeable about AAC. These families wanted devices to meet their children's individual needs and reported that ease of use and affordability were the most influential characteristics in the purchase of mobile media devices and communication applications. SLPs who understand family decision making can utilize collaborative clinical decision making that respects families' wants and needs, while also focusing on device feature matching and family education.

  2. A model for the geomorphic development of normal-fault facets

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Hobley, D. E. J.; McCoy, S. W.

    2014-12-01

    Triangular facets are among the most striking landforms associated with normal faulting. The genesis of facets is of great interest both for the information facets contain about tectonic motion, and because the progressive emergence of facets makes them potential recorders of both geomorphic and tectonic history. In this report, we present observations of triangular facets in the western United States and in the Italian Central Apennines. Facets in these regions typically form quasi-planar surfaces that are aligned in series along and above the trace of an active fault. Some facet surfaces consist mainly of exposed bedrock, with a thin and highly discontinuous cover of loose regolith. Other facets are mantled by a several-decimeter-thick regolith cover. Over the course of its morphologic development, a facet slope segment may evolve from a steep (~60 degree) bedrock fault scarp, well above the angle of repose for soil, to a gentler (~20-40 degree) slope that can potentially sustain a coherent regolith cover. This evolutionary trajectory across the angle of repose renders nonlinear diffusion theory inapplicable. To formulate an alternative process-based theory for facet evolution, we use a particle-based approach that acknowledges the possibility for both short- and long-range sediment-grain motions, depending on the topography. The processes of rock weathering, grain entrainment, and grain motion are represented as stochastic state-pair transitions with specified transition rates. The model predicts that facet behavior can range smoothly along the spectrum from a weathering-limited mode to a transport-limited mode, depending on the ratio of fault-slip rate to bare-bedrock regolith production rate. The model also implies that facets formed along a fault with pinned tips should show systematic variation in slope angle that correlates with along-fault position and slip rate. Preliminary observations from central Italy and the eastern Basin and Range are consistent with this prediction.

  3. T2 mapping in patellar chondromalacia.

    PubMed

    Ruiz Santiago, Fernando; Pozuelo Calvo, Rocío; Almansa López, Julio; Guzmán Álvarez, Luis; Castellano García, María Del Mar

    2014-06-01

    To study the correlation between the T2 relaxation times of the patellar cartilage and morphological MRI findings of chondromalacia. This prospective study comprises 50 patients, 27 men and 23 women suffering of anterior knee pain (mean age: 29.7, SD 8.3 years; range: 16-45 years). MRI of 97 knees were performed in these patients at 1.5T magnet including sagittal T1, coronal intermediate, axial intermediate fat sat and T2 mapping. Chondromalacia was assessed using a modified version of Noyes classification. The relaxation time, T2, was studied segmenting the full thickness of the patellar cartilage in 12 areas: 4 proximal (external facet-proximal-lateral (EPL), external facet-proximal-central (EPC), internal facet-proximal-central (IPC), internal facet-proximal-medial (IPM), 4 in the middle section (external facet-middle-lateral (EML), external facet-middle-central (EMC), internal facet-middle-central (IMC), internal facet-middle-medial (IMM) and 4 distal (external facet-distal-lateral (EDL), external facet-distal-central (EDC), internal facet-distal-central (IDC), internal facet-distal-medial (IDM). T2 values showed a significant increase in mild chondromalacia regarding normal cartilage in most of the cartilage areas (p<0.05), except in the internal distal facet (IDC and IDM), EPC, EDL, and IMM. Severe chondromalacia was characterized by a fall of T2 relaxation times with loss of statistical significant differences in comparison with normal cartilage, except in EMC and IMC, where similar values as mild chondromalacia were maintained (p<0.05). Steepest increase in T2 values of patellar cartilage occurs in early stages of patellar cartilage degeneration. Progression of morphologic changes of chondromalacia to more severe degrees is associated to a new drop of T2 relaxation times approaching basal values in most of the areas of the patellar cartilage, except in the central area of the middle section, where T2 values remain increased. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Facet tropism and interfacet shape in the thoracolumbar vertebrae: characterization and biomechanical interpretation.

    PubMed

    Masharawi, Youssef; Rothschild, Bruce; Salame, Khalil; Dar, Gali; Peleg, Smadar; Hershkovitz, Israel

    2005-06-01

    Thoracolumbar facet and interfacet linear dimensions were measured and analyzed. To characterize and analyze the thoracolumbar facet and interfacet size and shape in relation to gender, ethnic group, and age and to detect the extent of normal facet tropism along the thoracolumbar spine. Knowledge on facet tropism and interfacet shape is limited in the literature as most data are based on 2-dimensional measurements, small samples, or isolated vertebrae. Facet shape as represented by width, length, width/length ratio and interfacet distances was obtained directly from dry vertebrae of 240 adult human spines. The specimen's osteologic material is part of the Hamann-Todd Osteological Collection housed at the Cleveland Museum of Natural History, Cleveland, OH. A total of 4080 vertebrae (T1-L5) from the vertebral columns of individuals 20 to 80 years of age were measured, using a Microscribe 3-dimensional apparatus (Immersion Co., San Jose, CA). Data were recorded directly on computer software. Statistical analysis included paired t tests and ANOVA. A significant correlation was found between all thoracolumbar facet dimensions and an individual's height and weight. Facet tropism is a major characteristic of the thoracolumbar spine, the left being longer in the thorax while the right is longer in the lumbar. In general, facet size is age-independent and greater in males compared with females with a significant ethnic component. Facet length is similar for all thoracic vertebrae, whereas it sharply and continuously increases in the lumbar vertebrae. Facet dimension manifests a bipolar distribution along the thoracolumbar vertebrae. Width/length ratio indicates that facets are longer than wider for most verte-brae. The interarticular area manifests a marked inverted trapezoidal shape at T1-T2, a rectangular shape at T3-L3, and an ordinary trapezoidal shape at L4-L5. Facet tropism is a normal characteristic in humans, yet it varies along the thoracolumbar spine.

  5. Technology Opens New Doors--Literally

    ERIC Educational Resources Information Center

    Murphy, Patti

    2008-01-01

    Augmentative and alternative communication (AAC) devices can be of huge benefit to people with verbal communication challenges and is applicable in making a living space more accessible. This article presents the story of Sara Pyszka. Sara, 22, wanted a place where she could dance in her wheelchair with no onlookers and have friends over to watch…

  6. Devices for Deviling Classes in Theatre History.

    ERIC Educational Resources Information Center

    Bryan, George B.

    In addition to the use of the lecture-discussion method of teaching theatre history, the author contends that this approach can be augmented by the process of "deviling" (adding spice to) the learning situation. At the University of Vermont, theatre history courses have been taught with a variety of deviling exercises, which include: (1)…

  7. Bringing Abstract Academic Integrity and Ethical Concepts into Real-Life Situations

    ERIC Educational Resources Information Center

    Kwong, Theresa; Wong, Eva; Yue, Kevin

    2017-01-01

    This paper reports the learning analytics on the initial stages of a large-scale, government-funded project which inducts university students in Hong Kong into consideration of academic integrity and ethics through mobile Augmented Reality (AR) learning trails--Trails of Integrity and Ethics (TIEs)--accessed on smart devices. The trails immerse…

  8. Living Meaningfully while Earning a Living

    ERIC Educational Resources Information Center

    Murphy, Patti

    2011-01-01

    This article profiles Joseph Jerome "Joe" Steffy, who has autism, and describes how he uses his augmentative and alternative communication (AAC) device on the job (a successful business selling his Kettle Korn at festivals). There is more to Joe's story than his autism, Down syndrome, and epilepsy. It is also about resourcefulness, family and…

  9. Cybernetic anthropomorphic machine systems

    NASA Technical Reports Server (NTRS)

    Gray, W. E.

    1974-01-01

    Functional descriptions are provided for a number of cybernetic man machine systems that augment the capacity of normal human beings in the areas of strength, reach or physical size, and environmental interaction, and that are also applicable to aiding the neurologically handicapped. Teleoperators, computer control, exoskeletal devices, quadruped vehicles, space maintenance systems, and communications equipment are considered.

  10. Young Adult Books: Helping to Prepare Teachers for Augmentative Alternative Communication

    ERIC Educational Resources Information Center

    Donne, Vicki

    2016-01-01

    Many educators have reported limited education in their training or preparation programs on assistive technology and communication devices. The present study reported on action research conducted in this area using book study groups. Participants included graduate students enrolled in a face-to-face course required within their special education…

  11. Augmented reality enabling intelligence exploitation at the edge

    NASA Astrophysics Data System (ADS)

    Kase, Sue E.; Roy, Heather; Bowman, Elizabeth K.; Patton, Debra

    2015-05-01

    Today's Warfighters need to make quick decisions while interacting in densely populated environments comprised of friendly, hostile, and neutral host nation locals. However, there is a gap in the real-time processing of big data streams for edge intelligence. We introduce a big data processing pipeline called ARTEA that ingests, monitors, and performs a variety of analytics including noise reduction, pattern identification, and trend and event detection in the context of an area of operations (AOR). Results of the analytics are presented to the Soldier via an augmented reality (AR) device Google Glass (Glass). Non-intrusive AR devices such as Glass can visually communicate contextually relevant alerts to the Soldier based on the current mission objectives, time, location, and observed or sensed activities. This real-time processing and AR presentation approach to knowledge discovery flattens the intelligence hierarchy enabling the edge Soldier to act as a vital and active participant in the analysis process. We report preliminary observations testing ARTEA and Glass in a document exploitation and person of interest scenario simulating edge Soldier participation in the intelligence process in disconnected deployment conditions.

  12. High-technology augmentative and alternative communication for individuals with intellectual and developmental disabilities and complex communication needs: a meta-analysis.

    PubMed

    Ganz, Jennifer B; Morin, Kristi L; Foster, Margaret J; Vannest, Kimberly J; Genç Tosun, Derya; Gregori, Emily V; Gerow, Stephanie L

    2017-12-01

    The use of mobile technology is ubiquitous in modern society and is rapidly increasing in novel use. The use of mobile devices and software applications ("apps") as augmentative and alternative communication (AAC) is rapidly expanding in the community, and this is also reflected in the research literature. This article reports the social-communication outcome results of a meta-analysis of single-case experimental research on the use of high-tech AAC, including mobile devices, by individuals with intellectual and developmental disabilities, including autism spectrum disorder. Following inclusion determination, and excluding studies with poor design quality, raw data from 24 publications were extracted and included 89 A-B phase contrasts. Tau-U nonparametric, non-overlap effect size was used to aggregate the results across all studies for an omnibus and moderator analyses. Kendall's S was calculated for confidence intervals, p-values, and standard error. The omnibus analysis indicated overall low to moderate positive effects on social-communication outcomes for high-tech AAC use by individuals with intellectual and developmental disabilities.

  13. Haptic wearables as sensory replacement, sensory augmentation and trainer - a review.

    PubMed

    Shull, Peter B; Damian, Dana D

    2015-07-20

    Sensory impairments decrease quality of life and can slow or hinder rehabilitation. Small, computationally powerful electronics have enabled the recent development of wearable systems aimed to improve function for individuals with sensory impairments. The purpose of this review is to synthesize current haptic wearable research for clinical applications involving sensory impairments. We define haptic wearables as untethered, ungrounded body worn devices that interact with skin directly or through clothing and can be used in natural environments outside a laboratory. Results of this review are categorized by degree of sensory impairment. Total impairment, such as in an amputee, blind, or deaf individual, involves haptics acting as sensory replacement; partial impairment, as is common in rehabilitation, involves haptics as sensory augmentation; and no impairment involves haptics as trainer. This review found that wearable haptic devices improved function for a variety of clinical applications including: rehabilitation, prosthetics, vestibular loss, osteoarthritis, vision loss and hearing loss. Future haptic wearables development should focus on clinical needs, intuitive and multimodal haptic displays, low energy demands, and biomechanical compliance for long-term usage.

  14. The comparison of measurement between ultrasound and computed tomography for abnormal degenerative facet joints: A STROBE-compliant article.

    PubMed

    Shi, Wen; Tian, Dan; Liu, Da; Yin, Jing; Huang, Ying

    2017-08-01

    Besides the study on examining facet joints of lumbar spine by ultrasound in normal population, there has not been any related report about examining normal facet joints of lumbar spine by ultrasound so far. This study was aimed to explore the feasibility of ultrasound assessment of lumber spine facet joints by comparing ultrasound measure values of normal and degenerative lumber spine facet joints, and by comparing measure values of ultrasound and computed tomography (CT) of degenerative lumber spine facet joints.This study included 15 patients who had chronic low back pain because of degenerative change in lumbar vertebrae, and 19 volunteers who did not have low back pain or pain in the lower limb. The ultrasound measure values (height [H] and width [W]) of normal and degenerative lumber spine facet joints were compared. And the differentiation between measure values (H and W) of ultrasound and CT of degenerative lumber spine facet joints was also analyzed.The ultrasound clearly showed abnormal facet joints lesion, which was characterized by hyperostosis on the edge of joints, bone destruction under joints, and thinner or thicker articular cartilage. There were significant differences between the ultrasound measure values of the normal (H: 1.26 ± 0.03 cm, W: 0.18 ± 0.01 cm) and abnormal facet joints (H: 1.43 ± 0.05 cm, W: 0.15 ± 0.02 cm) (all P < .05). However, there were no significant differences between the measure values of the ultrasound (H: 1.43 ± 0.17 cm, W: 0.15 ± 0.03 cm) and CT (H: 1.42 ± 0.16, W: 0.14 ± 0.03) of the degenerative lumber spine facet joints (all P > .05).Ultrasound can clearly show the structure of facet joints of lumbar spine. It is precise and feasible to assess facet joints of lumbar spine by ultrasound. This study has important significance for the diagnosis of lumbar facet joint degeneration.

  15. Facet joint geometry and intervertebral disk degeneration in the L5-S1 region of the vertebral column in German Shepherd dogs.

    PubMed

    Seiler, Gabriela S; Häni, Hansjürg; Busato, André R; Lang, Johann

    2002-01-01

    To evaluate the possible association between facet joint geometry and intervertebral disk degeneration in German Shepherd Dogs. 25 German Shepherd Dogs and 11 control dogs of similar body weight and condition. Facet joint angles in the caudal portion of the lumbar region of the vertebral column (L5-S1) were measured by use of computed tomography, and the intervertebral discs were evaluated microscopically. The relationship between facet joint geometry and disk degeneration was evaluated by use of statistical methods. German Shepherd Dogs had significantly more facet joint tropism than control dogs, but an association with disk degeneration was not found. However, German Shepherd Dogs had a different facet joint conformation, with more sagittally oriented facet joints at L5-L6 and L6-L7 and a larger angle difference between the lumbar and lumbosacral facet joints, compared with control dogs. A large difference between facet joint angles at L6-L7 and L7-S1 in German Shepherd Dogs may be associated with the frequent occurrence of lumbosacral disk degeneration in this breed.

  16. [Does the French Big Five Inventory evaluate facets other than the Big Five factors?

    PubMed

    Courtois, R; Petot, J-M; Lignier, B; Lecocq, G; Plaisant, O

    2017-03-29

    The Big Five Inventory (BFI) developed by John et al. (1991) is one of the most widely accepted tools for assessing dimensions of personality. It comprises 44 items that assess five broad dimensions of personality (the Big Five Factors): Extraversion, Agreeableness, Conscientiousness, Neuroticism and Openness to experience. Based on correlations with the facets described in the NEO Personality Inventory Revised (NEO PI-R), another Big Five assessment tool with 240 items and 6 facets per dimension, Soto and John (2009) showed that the dimensions in the BFI could be divided into two facets each (ten facets altogether). These results are in line with those of DeYoung et al. (2007), who ran factorial analyses with all the NEO PI-R facets and the International Personality Item Pool (IPIP) and identified ten intermediate factors (between facets and dimensions) which they called "aspects" (two per dimension). The goal of the present study is to investigate the ten facets described by Soto and John in a French sample, using the French version of the BFI (BFI-Fr), which has good psychometric properties, and to check whether the pattern of correlations of these facets with the NEO PI-R match those of the American version. We created three groups. The first comprised 360 students from the Institut libre d'éducation physique supérieure (ILEPS) and Tours University (psychology undergraduates). Participants (mean age 21.1 years±2.30; 58% women) completed the BFI-Fr and the NEO PI-R. The second comprised 142 psychology students from Tours University (mean age 20.6 years±1.78; 81% women); they completed the BFI-Fr twice, two weeks apart (test and retest). The third comprised 252 psychology students from Paris-Nanterre University (mean age 23 years±4.2; 89% women) who described a total of 405 people they knew well (mean age 35.2±10.8; 49% women) using the peer-report format of the BFI-Fr. In the self-report format, eight of Soto and John's ten aspects had acceptable internal consistency (based on Guildford's (1954) internal consistency criteria, due to the small number of items), with Cronbach's α between 0.60 and 0.86 and test-retest correlations between 0.71 and 0.89, showing satisfactory temporal stability. We found a single facet for Extraversion (Assertiveness), two for Agreeableness (Altruism and Compliance), two for Conscientiousness (Self-Discipline and Order), one for Neuroticism (Anxiety), and two for Openness to Experience (Openness to aesthetics and Openness to ideas). Based on their convergence with the corresponding facets in the NEO PI-R, these eight facets showed satisfactory external validity. With regard to the peer-report format, the Activity facet of Extraversion, which did not have sufficient internal consistency in the self-report format, had acceptable properties (i.e. 9 out of 10 facets). Only the Depression facet of Neuroticism still had insufficient internal consistency. In this study, we proposed an improvement of two facets (Activity and Compliance) and added one facet specific to the French version (Emotional Instability) in place of the Depression facet. We showed that the BFI-Fr can be used to assess nine of the ten facets described by Soto and John. We also identified an Emotional Instability facet, replacing the Depression facet of Neuroticism. DeYoung et al. (2007) considered that anxiety and depression are indissociable and can be represented by a Neuroticism aspect they labeled Withdrawal. They suggested a second aspect of this dimension they called Volatility (with the N2 Angry Hostility facet of the NEO PI-R as main marker and the N5 Impulsiveness and N3 Depression as secondary markers). The Emotional Instability facet we found corresponds closely to the N2 Angry Hostility facet of the NEO PI-R and appears to be a satisfactory marker of DeYoung et al.'s (2007) Volatility aspect. Although this study has limitations, particularly related to the samples (students), the BFI-Fr facets (derived from those defined by Soto and John in the BFI or proposed as improvements on the original facets) match the corresponding NEO PI-R facets and can also be seen as main markers of the aspects defined by DeYoung et al. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  17. Facet orientation and tropism: Associations with asymmetric lumbar paraspinal and psoas muscle parameters in patients with chronic low back pain.

    PubMed

    Xu, W B; Chen, S; Fan, S W; Zhao, F D; Yu, X J; Hu, Z J

    2016-08-10

    Many studies have explored the relationship between facet tropism and facet joint osteoarthritis, disc degeneration and degenerative spondylolisthesis. However, the associations between facet orientation and tropism, and paraspinal muscles have not been studied. To analyze the associations between facet orientation and tropism, and parameters of paraspinal muscles in patients with chronic low back pain. Ninety-five patients with chronic low back pain were consecutively enrolled. Their facet joint angles were measured on computed tomography (CT) while gross cross-sectional area (GCSA), functional cross-sectional area (FCSA) and T2 signal intensity of lumbar paraspinal and psoas muscle were evaluated on magnetic resonance imaging (MRI). The GCSA and FCSA were significantly smaller for multifidus muscle (P< 0.001), but significantly larger for erector spinae and psoas muscles (P< 0.001), in coronally-orientated group than those in sagittally-orientated group. The differences of bilateral GCSA and FCSA of multifidus muscle were significantly larger in facet tropism group than those in no facet tropism group (P= 0.009 and P= 0.019). Muscular asymmetries may develop in the lumbar region of the spine, which are associated with facet asymmetry in patients with chronic low back pain. Longitudinal studies are needed to understand the causal relationship between facet orientation and tropism and muscular asymmetry in future.

  18. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    PubMed

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  19. Review of Our National Heritage of Launch Vehicles Using Aerodynamic Surfaces and Current Use of These by Other Nations. Part II; Center Director's Discretionary Fund Project Numbe

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1996-01-01

    Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability and for flight control. Recently, due to the aft center-of-gravity (cg) locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that can be provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability and payload capability. As a starting point for the novel design of aerodynamic flight control augmentors for a Saturn class, aft cg launch vehicle, this report undertakes a review of our national heritage of launch vehicles using aerodynamic surfaces, along with a survey of current use of aerodynamic surfaces on large launch vehicles of other nations. This report presents one facet of Center Director's Discretionary Fund Project 93-05 and has a previous and subsequent companion publication.

  20. Smooth and vertical facet formation for AlGaN-based deep-UV laser diodes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogart, Katherine Huderle Andersen; Shul, Randy John; Stevens, Jeffrey

    2008-10-01

    Using a two-step method of plasma and wet chemical etching, we demonstrate smooth, vertical facets for use in Al{sub x} Ga{sub 1-x} N-based deep-ultraviolet laser-diode heterostructures where x = 0 to 0.5. Optimization of plasma-etching conditions included increasing both temperature and radiofrequency (RF) power to achieve a facet angle of 5 deg from vertical. Subsequent etching in AZ400K developer was investigated to reduce the facet surface roughness and improve facet verticality. The resulting combined processes produced improved facet sidewalls with an average angle of 0.7 deg from vertical and less than 2-nm root-mean-square (RMS) roughness, yielding an estimated reflectivity greatermore » than 95% of that of a perfectly smooth and vertical facet.« less

  1. Within-trait heterogeneity in age group differences in personality domains and facets: implications for the development and coherence of personality traits.

    PubMed

    Mõttus, René; Realo, Anu; Allik, Jüri; Esko, Tõnu; Metspalu, Andres; Johnson, Wendy

    2015-01-01

    The study investigated differences in the Five-Factor Model (FFM) domains and facets across adulthood. The main questions were whether personality scales reflected coherent units of trait development and thereby coherent personality traits more generally. These questions were addressed by testing if the components of the trait scales (items for facet scales and facets for domain scales) showed consistent age group differences. For this, measurement invariance (MI) framework was used. In a sample of 2,711 Estonians who had completed the NEO Personality Inventory 3 (NEO PI-3), more than half of the facet scales and one domain scale did not meet the criterion for weak MI (factor loading equality) across 12 age groups spanning ages from 18 to 91 years. Furthermore, none of the facet and domain scales met the criterion for strong MI (intercept equality), suggesting that items of the same facets and facets of the same domains varied in age group differences. When items were residualized for their respective facets, 46% of them had significant (p < 0.0002) residual age-correlations. When facets were residualized for their domain scores, a majority had significant (p < 0.002) residual age-correlations. For each domain, a series of latent factors were specified using random quarters of their items: scores of such latent factors varied notably (within domains) in correlations with age. We argue that manifestations of aetiologically coherent traits should show similar age group differences. Given this, the FFM domains and facets as embodied in the NEO PI-3 do not reflect aetiologically coherent traits.

  2. Within-Trait Heterogeneity in Age Group Differences in Personality Domains and Facets: Implications for the Development and Coherence of Personality Traits

    PubMed Central

    Mõttus, René; Realo, Anu; Allik, Jüri; Esko, Tõnu; Metspalu, Andres; Johnson, Wendy

    2015-01-01

    The study investigated differences in the Five-Factor Model (FFM) domains and facets across adulthood. The main questions were whether personality scales reflected coherent units of trait development and thereby coherent personality traits more generally. These questions were addressed by testing if the components of the trait scales (items for facet scales and facets for domain scales) showed consistent age group differences. For this, measurement invariance (MI) framework was used. In a sample of 2,711 Estonians who had completed the NEO Personality Inventory 3 (NEO PI-3), more than half of the facet scales and one domain scale did not meet the criterion for weak MI (factor loading equality) across 12 age groups spanning ages from 18 to 91 years. Furthermore, none of the facet and domain scales met the criterion for strong MI (intercept equality), suggesting that items of the same facets and facets of the same domains varied in age group differences. When items were residualized for their respective facets, 46% of them had significant (p < 0.0002) residual age-correlations. When facets were residualized for their domain scores, a majority had significant (p < 0.002) residual age-correlations. For each domain, a series of latent factors were specified using random quarters of their items: scores of such latent factors varied notably (within domains) in correlations with age. We argue that manifestations of aetiologically coherent traits should show similar age group differences. Given this, the FFM domains and facets as embodied in the NEO PI-3 do not reflect aetiologically coherent traits. PMID:25751273

  3. Lumbar facet anatomy changes in spondylolysis: a comparative skeletal study.

    PubMed

    Masharawi, Youssef; Dar, Gali; Peleg, Smadar; Steinberg, Nili; Alperovitch-Najenson, Dvora; Salame, Khalil; Hershkovitz, Israel

    2007-07-01

    Opinions differ as to the exact mechanism responsible for spondylolysis (SP) and whether individuals with specific morphological characteristics of the lumbar vertebral neural arch are predisposed to SP. The aim of our study was to reveal the association between SP and the architecture of lumbar articular facets and the inter-facet region. Using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA, USA), length, width and depth of all articular facets and all inter-facet distances in the lumbar spine (L1-L5) were measured. From the Hamann-Todd Human Osteological Collection (Cleveland Museum of Natural History, OH, USA) 120 normal male skeletons with lumbar spines in the control group and 115 with bilateral SP at L5 were selected. Analysis of variance was employed to examine the differences between spondylolytic and normal spines. Three profound differences between SP and the norm appeared: (1) in individuals with SP, the size and shape of L4's neural arch had significantly greater inter-facet widths, significantly shorter inter-facet heights and significantly shorter and narrower articular facets; (2) only in the L4 vertebra in individuals with SP was the inferior inter-facet width greater in size than the superior inter-facet width of the vertebra below (L5) (38.7 mm versus 40 mm); (3) in all lumbar vertebrae, the right inferior articular facets in individuals with SP were flatter compared to the control group. Individuals with L4 "SP" characteristics are at a greater risk of developing fatigue fractures in the form of spondylolysis at L5.

  4. Lumbar Facet Tropism: A Comprehensive Review.

    PubMed

    Alonso, Fernando; Kirkpatrick, Christina M; Jeong, William; Fisahn, Christian; Usman, Sameera; Rustagi, Tarush; Loukas, Marios; Chapman, Jens R; Oskouian, Rod J; Tubbs, R Shane

    2017-06-01

    Scattered reports exist in the medical literature regarding facet tropism. However, this finding has had mixed conclusions regarding its origin and impact on the normal spine. We performed a literature review of the anatomy, embryology, biomechanics, and pathology related to lumbar facet tropism. Facet tropism is most commonly found at L4-L5 vertebral segments and there is some evidence that this condition may lead to facet degenerative spondylolisthesis, intervertebral disc disease, and other degenerative conditions. Long-term analyses of patients are necessary to elucidate relationships between associated findings and facet tropism. In addition, a universally agreed definition that is more precise should be developed for future investigative studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of ZnO facet on ethanol steam reforming over Co/ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ning; Zhang, He; Davidson, Stephen D.

    2016-01-01

    The effects of ZnO facets on ethanol steam reforming (ESR) were investigated over Co/ZnO catalysts synthesized using ZnO with different fractions of (10-10) non-polar facet. Co supported on ZnO with a higher fraction of (10-10) non-polar facet shows higher C-C cleavage activity and higher selectivity to CO2 (lower selectivity to CO) compared with Co supported on ZnO with less (10-10) non-polar facet exposed. The improved ethanol steam reforming performances are attributed to the high fraction of metallic Co stabilized by the ZnO (10-10) non-polar facet, which enhanced C-C cleavage and water-gas-shift (WGS) activities.

  6. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.

    PubMed

    Lehmann, Fritz-Olaf; Pick, Simon

    2007-04-01

    Flying insects may enhance their flight force production by contralateral wing interaction during dorsal stroke reversal ('clap-and-fling'). In this study, we explored the forces and moments due to clap-and-fling at various wing tip trajectories, employing a dynamically scaled electromechanical flapping device. The 17 tested bio-inspired kinematic patterns were identical in stroke amplitude, stroke frequency and angle of attack with respect to the horizontal stroke plane but varied in heaving motion. Clap-and-fling induced vertical force augmentation significantly decreased with increasing vertical force production averaged over the entire stroke cycle, whereas total force augmentation was independent from changes in force produced by a single wing. Vertical force augmentation was also largely independent of forces produced due to wing rotation at the stroke reversals, the sum of rotational circulation and wake capture force. We obtained maximum (17.4%) and minimum (1.4%) vertical force augmentation in two types of figure-eight stroke kinematics whereby rate and direction of heaving motion during fling may explain 58% of the variance in vertical force augmentation. This finding suggests that vertical wing motion distinctly alters the flow regime at the beginning of the downstroke. Using an analytical model, we determined pitching moments acting on an imaginary body of the flapping device from the measured time course of forces, the changes in length of the force vector's moment arm, the position of the centre of mass and body angle. The data show that pitching moments are largely independent from mean vertical force; however, clap-and-fling reinforces mean pitching moments by approximately 21%, compared to the moments produced by a single flapping wing. Pitching moments due to clap-and-fling significantly increase with increasing vertical force augmentation and produce nose-down moments in most of the tested patterns. The analytical model, however, shows that algebraic sign and magnitude of these moments may vary distinctly depending on both body angle and the distance between the wing hinge and the animal's centre of mass. Altogether, the data suggest that the benefit of clap-and-fling wing beat for vertical force enhancement and pitch balance may change with changing heaving motion and thus wing tip trajectory during manoeuvring flight. We hypothesize that these dependencies may have shaped the evolution of wing kinematics in insects that are limited by aerodynamic lift rather than by mechanical power of their flight musculature.

  7. A comparison of outcomes involving highly cohesive, form-stable breast implants from two manufacturers in patients undergoing primary breast augmentation.

    PubMed

    Jewell, Mark L; Jewell, James L

    2010-01-01

    Although there have been reports of single-surgeon outcomes with highly cohesive, form-stable silicone gel implants in women undergoing primary breast augmentation, there has been only one study published that compares the outcomes between the Allergan 410 and the Mentor CPG devices. The goal of the study is to compare outcomes in each cohort and to determine if quality systems and processes would have an impact on lowering the surgical revision rate, as compared to published reports for round gel implants and form-stable implants. Patients selected for the study were required to meet predefined inclusion criteria and general indications for breast augmentation. All subjects were treated uniformly with extensive informed consent prior to surgery. The entire process of breast augmentation (patient assessment, informed consent, the surgical procedure itself and postoperative instructions) was identical between the two groups. Patients were not randomized, as the studies did not start at the same time. The process for management of each patient was based on adaptation of the Toyota Production System and Lean Manufacturing, with emphasis on achieving operational excellence in the use of planning templates for surgery, including accurate management of patient expectations regarding size outcome. Outcomes data included physical breast measurements, quality of life metrics, and patient/surgeon satisfaction assessment. Adverse events were compared against published data for breast implants. Follow-up ranged between 20-77 months (Allergan 410) and 16-77 months (Mentor CPG). The outcome data indicate that these devices produce natural-appearing breasts with extremely low aggregate reoperation rate (4.2%). Only 0.8% of the reoperations were attributable to surgeon-related factors. There were no reoperations to correct mismanaged size expectations during the course of each study. There were 13 pregnancies and no difficulties with lactation were reported. Rippling (lateral/medial, palpable and/or visible) was encountered in both cohorts. The Mentor CPG cohort had a fivefold greater incidence of rippling (37.3% versus 7.6% in Allergan 410 cohort). This was highly statistically significant (P < .001). Provided that there is adherence to core principles and avoidance of errors in planning, patient expectations, and surgery, highly cohesive, form-stable breast implants can deliver excellent long term outcomes in primary breast augmentation in a diverse patient population. The impact of quality processes such as Toyota Production System and Lean Manufacturing was substantive in delivering operational excellence in primary breast augmentation.

  8. Foundations of reusable and interoperable facet models using category theory

    PubMed Central

    2016-01-01

    Faceted browsing has become ubiquitous with modern digital libraries and online search engines, yet the process is still difficult to abstractly model in a manner that supports the development of interoperable and reusable interfaces. We propose category theory as a theoretical foundation for faceted browsing and demonstrate how the interactive process can be mathematically abstracted. Existing efforts in facet modeling are based upon set theory, formal concept analysis, and light-weight ontologies, but in many regards, they are implementations of faceted browsing rather than a specification of the basic, underlying structures and interactions. We will demonstrate that category theory allows us to specify faceted objects and study the relationships and interactions within a faceted browsing system. Resulting implementations can then be constructed through a category-theoretic lens using these models, allowing abstract comparison and communication that naturally support interoperability and reuse. PMID:27942248

  9. Position paper: Management of men complaining of a small penis despite an actually normal size.

    PubMed

    Ghanem, Hussein; Glina, Sidney; Assalian, Pierre; Buvat, Jacques

    2013-01-01

    With the worldwide increase in penile augmentation procedures and claims of devices designed to elongate the penis, it becomes crucial to study the scientific basis of such procedures or devices, as well as the management of a complaint of a small penis in men with a normal penile size. The aim of this work is to study the scientific basis of opting to penile augmentation procedures and to develop guidelines based on the best available evidence for the management of men complaining of a small penis despite an actually normal size. We reviewed the literature and evaluated the evidence about what the normal penile size is, what patients complaining of a small penis usually suffer from, benefits vs. complications of surgery, penile stretching or traction devices, and outcome with patient education and counseling. Repeated presentation and detailed discussions within the Standard Committee of the International Society for Sexual Medicine were performed. Recommendations are based on the evaluation of evidence-based medical literature, widespread standards committee discussion, public presentation, and debate. We propose a practical approach for evaluating and counseling patients complaining of a small-sized penis. Based on the current status of science, penile lengthening procedure surgery is still considered experimental and should only be limited to special circumstances within research or university institutions with supervising ethics committees. © 2012 International Society for Sexual Medicine.

  10. Formulation and Application of the Generalized Multilevel Facets Model

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Liu, Chih-Yu

    2007-01-01

    In this study, the authors develop a generalized multilevel facets model, which is not only a multilevel and two-parameter generalization of the facets model, but also a multilevel and facet generalization of the generalized partial credit model. Because the new model is formulated within a framework of nonlinear mixed models, no efforts are…

  11. Job Stress, Employee Health, and Organizational Effectiveness: A Facet Analysis, Model, and Literature Review.

    ERIC Educational Resources Information Center

    Beehr, Terry A.; Newman, John E.

    1978-01-01

    The empirical research on job stress and employee health is reviewed within the context of six facets (environmental, personal, process, human consequences, organizational consequences, and time) of a seven facet conceptualization of the job stress-employee health research domain. Models are proposed for tying the facets together. (Author/SJL)

  12. Impact of Growth in the Universe of Subjects on Classification.

    ERIC Educational Resources Information Center

    Ranganathan, Shiyali Ramamritam

    The development of the removal of rigidity in library classification is traced from the Enumerative Classification of DC (1876) through the Nearly-Faceted Classification of UDC (1896), the rigidly, though fully faceted version of CC (1933), the generalized faceted structure of version 2 of CC (1949), down to the Freely Faceted Classification of…

  13. Auralization of Tonal Rotor Noise Components of a Quadcopter Flyover

    NASA Technical Reports Server (NTRS)

    Christian, Andrew W.; Boyd, David D.; Zawodny, Nikolas S.; Rizzi, Stephen A.

    2015-01-01

    The capabilities offered by small unmanned vertical lift aerial vehicles, for example, quadcopters, continue to captivate entrepreneurs across the private, public, and civil sectors. As this industry rapidly expands, the public will be exposed to these devices (and to the noise these devices generate) with increasing frequency and proximity. Accordingly, an assessment of the human response to these machines will be needed shortly by decision makers in many facets of this burgeoning industry, from hardware manufacturers all the way to government regulators. One factor of this response is that of the annoyance to the noise that is generated by these devices. This paper presents work currently being pursued by NASA toward this goal. First, physics-based (CFD) predictions are performed on a single isolated rotor typical of these devices. The result of these predictions are time records of the discrete tonal components of the rotor noise. These time records are calculated for a number of points that appear on a lattice of locations spread over the lower hemisphere of the rotor. The source noise is then generated by interpolating between these time records. The sound from four rotors are combined and simulated-propagation techniques are used to produce complete flyover auralizations.

  14. Nanophotonic enhanced quantum emitters

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Zhang-Kai; Yu, Ying; Gather, Malte; Di Falco, Andrea

    2017-08-01

    Quantum dots are excellent solid-state quantum sources, because of their stability, their narrow spectral linewidth, and radiative lifetime in the range of 1ns. Most importantly, they can be integrated into more complex nanophononics devices, to realize high quality quantum emitters of single photons or entangled photon sources. Recent progress in nanotechnology materials and devices has opened a number of opportunities to increase, optimize and ultimately control the emission property of single quantum dot. In this work, we present an approach that combines the properties of quantum dots with the flexibility of light control offered by nanoplasmonics and metamaterials structuring. Specifically, we show the nanophotonic enhancement of two types of quantum dots devices. The quantum dots are inserted into optical-positioned micropillar cavities, or decorated on the facets of core-shell GaAs/AlGaAs nanowires, fabricated with a bottom-up approach. In both cases, the metallic nanofeatures, which are designed to control the emission and the polarization state of the emitted light, are realized via direct electron-beam-induced deposition. This approach permits to create three-dimensional features with nanometric resolution and positional accuracy, and does not require wet lithographic steps and previous knowledge of the exact spatial arrangement of the quantum devices.

  15. A novel technique of intra-spinous process injection of PMMA to augment the strength of an inter-spinous process device such as the X STOP.

    PubMed

    Idler, Cary; Zucherman, James F; Yerby, Scott; Hsu, Ken Y; Hannibal, Matthew; Kondrashov, Dimitriy

    2008-02-15

    Biomechanical. To determine if cement injection into the spinous process will improve compression strength. The X STOP (St. Francis Medical Technologies) has been shown to be a safe and effective means for decompressing 1- or 2-level lumbar spinal stenosis (LSS). The X STOP is indicated for LSS patients with osteoporosis, but contraindicated for patients with severe osteoporosis. In an attempt to address these LSS patients with demonstrably weaker bone, a technique to strengthen the spinous process with polymethylmethacrylate (PMMA) injection is presented. Nine pairs of adjacent fresh frozen cadaveric lumbar vertebrae were DEXA scanned before testing. They were randomly assigned to the PMMA group and a control group. Nine of the specimens were injected with PMMA. Each spinous process was then compressed between 2 X STOPs. The testing model was designed to simulate the loading of a 2-level X STOP placement. The mean load to failure and stiffness values of the treated and untreated groups were calculated. The specimens were inspected carefully for PMMA infiltration and extrusion. The mean bone mineral density (BMD) values of the control and PMMA treatment groups were 0.99 +/- 0.13 g/cm and 0.98 +/- 0.10 g/cm, respectively; P > 0.616. The mean volume of cement injected was 2.2 +/- 0.3 cc. The mean failure load values of the control and PMMA treatment groups were 1250 +/- 627 N and 2386 +/- 1034 N, respectively; P < 0.001. The mean stiffness values of the control and PMMA treatment groups were 296 +/- 139 N/mm and 381 +/- 131 N/mm, respectively; P > 0.059. Most specimens had flow of the cement into the laminae and some into the facet and pedicle. No PMMA was found within the spinal canal. This first reported technique of posterior element vertebroplasty may increase the indications and success for patients with decreased BMD who seek an interspinous implant such as the X STOP. A possible role may exist in increasing the effectiveness of such devices. However, clinical trials have yet been performed. These results demonstrate that PMMA injection in the spinous processes is effective in increasing resistance to compressive forces in an X STOP model.

  16. Quantitative in vivo MRI evaluation of lumbar facet joints and intervertebral discs using axial T2 mapping.

    PubMed

    Stelzeneder, David; Messner, Alina; Vlychou, Marianna; Welsch, Goetz H; Scheurecker, Georg; Goed, Sabine; Pieber, Karin; Pflueger, Verena; Friedrich, Klaus M; Trattnig, Siegfried

    2011-11-01

    To assess the feasibility of T2 mapping of lumbar facet joints and intervertebral discs in a single imaging slab and to compare the findings with morphological grading. Sixty lumbar spine segments from 10 low back pain patients and 5 healthy volunteers were examined by axial T2 mapping and morphological MRI at 3.0 Tesla. Regions of interest were drawn on a single slice for the facet joints and the intervertebral discs (nucleus pulposus, anterior and posterior annulus fibrosus). The Weishaupt grading was used for facet joints and the Pfirrmann score was used for morphological disc grading ("normal" vs. "abnormal" discs). The inter-rater agreement was excellent for the facet joint T2 evaluation (r = 0.85), but poor for the morphological Weishaupt grading (kappa = 0.15). The preliminary results show similar facet joint T2 values in segments with normal and abnormal Pfirrmann scores. There was no difference in mean T2 values between facet joints in different Weishaupt grading groups. Facet joint T2 values showed a weak correlation with T2 values of the posterior annulus (r = 0.32) This study demonstrates the feasibility of a combined T2 mapping approach for the facet joints and intervertebral discs using a single axial slab.

  17. Proximal attrition facets: morphometric, demographic, and aging characteristics.

    PubMed

    Sarig, Rachel; Hershkovitz, Israel; Shvalb, Nir; Sella-Tunis, Tatiana; May, Hila; Vardimon, Alexander D

    2014-08-01

    Although interproximal attrition is considered to be limited in modern populations, it has important clinical implications. However, in contrast to occlusal attrition, proximal attrition receives limited scientific attention. The main purpose of the current study was to fill this void. Seven-hundred and sixty-five teeth were collected from 255 skulls of subjects 18-75 yr of age. For each individual, three mandibular teeth (the first and second premolars and the first molar) were examined for proximal attrition facets (PAFs). The results provide detailed information on the size, shape, and location of the facets according to age cohort, gender, and ethnicity. The validity of the method used to measure the facets was also examined. The major findings were as follows: PAFs are usually located on the upper half of the crown proximal aspect; in each tooth, the mesial facet is more lingually positioned and the distal facet is more buccally positioned; the majority of the facets are subrectangular in shape; the size of the facets tends to increase in an anteroposterior direction (from premolars to molars); and facet size and location are age- and sex-dependent and ethnicity-independent. It is our recommendation that dentists bear in mind that interproximal attrition is a dynamic, long-term process and needs to be considered in many clinical scenarios. © 2014 Eur J Oral Sci.

  18. Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing.

    PubMed

    Shang, Yang; Guo, Lin

    2015-10-01

    Shape-dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low-index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu 2 O nanocrystals, including the three basic Cu 2 O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu 2 O nanocrystals enclosed by high-index planes. We then discuss in detail the three main facet-controlled synthetic strategies (deposition, etching and templating) to fabricate Cu 2 O-based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet-controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet-dependent properties of the Cu 2 O and Cu 2 O-based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet-related directions.

  19. Facet control of gold nanorods

    DOE PAGES

    Zhang, Qingfeng; Han, Lili; Jing, Hao; ...

    2016-01-21

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less

  20. FACETS: multi-faceted functional decomposition of protein interaction networks

    PubMed Central

    Seah, Boon-Siew; Bhowmick, Sourav S.; Forbes Dewey, C.

    2012-01-01

    Motivation: The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein–protein interaction (PPI) network using graph theoretic analysis. Despite the recent progress, systems level analysis of high-throughput PPIs remains a daunting task because of the amount of data they present. In this article, we propose a novel PPI network decomposition algorithm called FACETS in order to make sense of the deluge of interaction data using Gene Ontology (GO) annotations. FACETS finds not just a single functional decomposition of the PPI network, but a multi-faceted atlas of functional decompositions that portray alternative perspectives of the functional landscape of the underlying PPI network. Each facet in the atlas represents a distinct interpretation of how the network can be functionally decomposed and organized. Our algorithm maximizes interpretative value of the atlas by optimizing inter-facet orthogonality and intra-facet cluster modularity. Results: We tested our algorithm on the global networks from IntAct, and compared it with gold standard datasets from MIPS and KEGG. We demonstrated the performance of FACETS. We also performed a case study that illustrates the utility of our approach. Contact: seah0097@ntu.edu.sg or assourav@ntu.edu.sg Supplementary information: Supplementary data are available at the Bioinformatics online. Availability: Our software is available freely for non-commercial purposes from: http://www.cais.ntu.edu.sg/∼assourav/Facets/ PMID:22908217

  1. Broad Bandwidth or High Fidelity? Evidence from the Structure of Genetic and Environmental Effects on the Facets of the Five Factor Model

    PubMed Central

    Briley, Daniel A.; Tucker-Drob, Elliot M.

    2017-01-01

    The Five Factor Model (FFM) of personality is well-established at the phenotypic level, but much less is known about the coherence of the genetic and environmental influences within each personality domain. Univariate behavioral genetic analyses have consistently found the influence of additive genes and nonshared environment on multiple personality facets, but the extent to which genetic and environmental influences on specific facets reflect more general influences on higher order factors is less clear. We applied a multivariate quantitative-genetic approach to scores on the CPI-Big Five facets for 490 monozygotic and 317 dizygotic twins who took part in the National Merit Twin Study. Our results revealed a complex genetic structure for facets composing all five factors, with both domain-general and facet-specific genetic and environmental influences. Models that required common genetic and environmental influences on each facet to occur by way of effects on a higher order trait did not fit as well as models allowing for common genetic and environmental effects to act directly on the facets for three of the Big Five domains. These results add to the growing body of literature indicating that important variation in personality occurs at the facet level which may be overshadowed by aggregating to the trait level. Research at the facet level, rather than the factor level, is likely to have pragmatic advantages in future research on the genetics of personality. PMID:22695681

  2. Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations

    DOE PAGES

    Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...

    2015-04-13

    A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less

  3. Cervical facet oedema: prevalence, correlation to symptoms, and follow-up imaging.

    PubMed

    Nevalainen, M T; Foran, P J; Roedl, J B; Zoga, A C; Morrison, W B

    2016-06-01

    To evaluate the prevalence of cervical facet oedema in patients referred for magnetic resonance imaging (MRI) to investigate neck pain and/or radiculopathy, and to investigate whether there is a correlation between the presence of oedema and patients' symptoms. A retrospective report review of 1885 patients undergoing cervical spine MRI between July 2008 and June 2015 was performed. Exclusion criteria included acute trauma, surgery, neoplastic disease, or infection in the cervical spine. One hundred and seventy-three MRI studies with cervical facet oedema were evaluated by each of the two radiologists. In these patients, the grade of bone marrow oedema (BMO) and corresponding neuroforaminal narrowing at the cervical facets was assessed. Correlation with symptoms was performed based on pre-MRI questionnaire. The prevalence of cervical facet oedema was 9%; the most commonly affected levels were C3-4, C4-5, and C2-3. A total of 202 cervical facets were evaluated: mild BMO was seen in 35%, moderate in 41%, and severe in 24% of cases. Surrounding soft-tissue oedema was observed in 36%, 69%, and 92% of the BMO grades, respectively. The correlations between unilateral radiculopathy and ipsilateral facet BMO grades were 79%, 83%, and 73% (chi-square, p<0.001), respectively. Furthermore, neuroforaminal narrowing on the corresponding level was found in 35%, 38%, and 11% of cases, respectively. At follow-up imaging, facet oedema was most likely to remain unchanged or to decrease. The prevalence of cervical facet oedema is 9%. Cervical facet oedema is associated with ipsilateral radiculopathy. Neuroforaminal narrowing, however, is not associated with facet oedema. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Lumbar facet anatomy changes in spondylolysis: a comparative skeletal study

    PubMed Central

    Dar, Gali; Peleg, Smadar; Steinberg, Nili; Alperovitch-Najenson, Dvora; Salame, Khalil; Hershkovitz, Israel

    2007-01-01

    Opinions differ as to the exact mechanism responsible for spondylolysis (SP) and whether individuals with specific morphological characteristics of the lumbar vertebral neural arch are predisposed to SP. The aim of our study was to reveal the association between SP and the architecture of lumbar articular facets and the inter-facet region. Methods: Using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA, USA), length, width and depth of all articular facets and all inter-facet distances in the lumbar spine (L1–L5) were measured. From the Hamann-Todd Human Osteological Collection (Cleveland Museum of Natural History, OH, USA) 120 normal male skeletons with lumbar spines in the control group and 115 with bilateral SP at L5 were selected. Analysis of variance was employed to examine the differences between spondylolytic and normal spines. Results: Three profound differences between SP and the norm appeared: (1) in individuals with SP, the size and shape of L4’s neural arch had significantly greater inter-facet widths, significantly shorter inter-facet heights and significantly shorter and narrower articular facets; (2) only in the L4 vertebra in individuals with SP was the inferior inter-facet width greater in size than the superior inter-facet width of the vertebra below (L5) (38.7 mm versus 40 mm); (3) in all lumbar vertebrae, the right inferior articular facets in individuals with SP were flatter compared to the control group. Conclusions: Individuals with L4 “SP” characteristics are at a greater risk of developing fatigue fractures in the form of spondylolysis at L5. PMID:17440753

  5. Facet joint disturbance induced by miniscrews in plated cervical laminoplasty

    PubMed Central

    Chen, Hua; Li, Huibo; Wang, Beiyu; Li, Tao; Gong, Quan; Song, Yueming; Liu, Hao

    2016-01-01

    Abstract A retrospective cohort study. Plated cervical laminoplasty is an increasingly common technique. A unique facet joint disturbance induced by lateral mass miniscrews penetrating articular surface was noticed. Facet joints are important to maintain cervical spine stability and kinetic balance. Whether this facet joint disturbance could affect clinical and radiologic results is still unknown. The objective of this study is to investigate the clinical and radiologic outcomes of patients with facet joints disturbance induced by miniscrews in plated cervical laminoplasty. A total of 105 patients who underwent cervical laminoplasty with miniplate fixation between May 2010 and February 2014 were comprised. Postoperative CT images were used to identify whether facet joints destroyed by miniscrews. According to facet joints destroyed number, all the patients were divided into: group A (none facet joint destroyed), group B (1–2 facet joints destroyed), and group C (≥3 facet joints destroyed). Clinical data (JOA, VAS, and NDI scores), radiologic data (anteroposterior diameter and Palov ratio), and complications (axial symptoms and C5 palsy) were evaluated and compared among the groups. There were 38, 40, and 27 patients in group A, B, and C, respectively. The overall facet joints destroyed rate was 30.7%. All groups gained significant JOA and NDI scores improvement postoperatively. The preoperative JOA, VAS, NDI scores, and postoperative JOA scores did not differ significantly among the groups. The group C recorded significant higher postoperative VAS scores than group A (P = 0.002) and B (P = 0.014) and had significant higher postoperative NDI scores than group A (P = 0.002). The pre- and postoperative radiologic data were not significant different among the groups. The group C had a significant higher axial symptoms incidence than group A (12/27 vs 8/38, P = 0.041). Facet joints disturbance caused by miniscrews in plated cervical laminoplasty may not influence neurological recovery and spinal canal expansion, but may negatively affect postoperative axial symptoms. PMID:27661016

  6. Oxidation of CO by NO on planar and faceted Ir(210)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wenhua; Bartynski, Robert A.; Kaghazchi, Payam

    2012-06-11

    Oxidation of CO by pre-adsorbed NO has been studied on planar Ir(210) and nanofaceted Ir(210) with average facet sizes of 5 nm and 14 nm by temperature programmed desorption (TPD). Both surfaces favor oxidation of CO to CO 2, which is accompanied by simultaneous reduction of NO with high selectivity to N 2. At low NO pre-coverage, the temperature (T i) for the onset of CO 2 desorption as well as CO 2 desorption peak temperature (T p) decreases with increasing CO exposure, and NO dissociation is affected by co-adsorbed CO. At high NO pre-coverage, T i and T pmore » are independent of CO exposure, and co-adsorbed CO has no influence on dissociation of NO. Moreover, at low NO pre-coverage, planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO 2: T i and T p are much lower on planar Ir(210) than that on faceted Ir(210). In addition, faceted Ir(210) with an average facet size of 5 nm is more active for oxidation of CO to CO 2 than faceted Ir(210) with an average facet size of 14 nm, i.e., oxidation of CO by pre-adsorbed NO on faceted Ir(210) exhibits size effects on the nanometer scale. In comparison, at low O pre-coverage planar Ir(210) is more active than faceted Ir(210) for oxidation of CO to CO 2 but no evidence has been found for size effects in oxidation of CO by pre-adsorbed oxygen on faceted Ir(210) for average facet sizes of 5 nm and 14 nm. The TPD data indicate the same reaction pathway for CO 2 formation from CO + NO and CO + O reactions on planar Ir(210). Lastly, the adsorption sites of CO, NO, O, CO + O, and CO + NO on Ir are characterized by density functional theory.« less

  7. Evolving faceted surfaces: From continuum modeling, to geometric simulation, to mean-field theory

    NASA Astrophysics Data System (ADS)

    Norris, Scott A.

    We first consider the directional solidification, in two dimensions, of a dilute binary alloy having a large anisotropy of surface energy, where the sample is pulled in a high-energy direction such that the planar state is thermodynamically prohibited. Analyses including reduction of dynamics, matched asymptotic analysis, and energy minimization are used to show that the interface assumes a faceted profile with small wavelength. Questions on stability and other dynamic behavior lead to the derivation of a facet-velocity law. This shows the that faceted steady solutions are stable in the absence of constitutional supercooling, while in its presence, coarsening replaces cell formation as the mechanism of instability. We next proceed to introduce a computational-geometry tool which, given a facet-velocity law, performs large-scale simulations of fully-faceted coarsening surfaces, first in the special case with only three allowed facet orientations (threefold symmetry), and then for arbitrary surfaces. Topological events including coarsening are comprehensively considered, and are treated explicitly by our method using both a priori knowledge of event outcomes and a novel graph-rewriting algorithm. While careful attention must be paid to both non-unique topological events and the imposition of a discrete time-stepping scheme, the resulting method allows rapid simulation of large surfaces and easy extraction of statistical data. Example statistics are provided for the threefold case based on simulations totaling one million facets. Finally, a mean-field theory is developed for the scale-invariant length distributions observed during the coarsening of one-dimensional faceted surfaces. This theory closely follows the LSW theory of Ostwald ripening in two-phase systems, but the mechanism of coarsening in faceted surfaces requires the derivation of additional terms to model the coalescence of facets. The model is solved by the exponential distribution, but agreement with experiment is limited by the assumption that neighboring facet lengths are uncorrelated. However, the method concisely describes the essential processes operating in the scaling state, illuminates a clear path for future refinement, and offers a generic framework for the investigation of faceted surfaces evolving under arbitrary dynamics.

  8. Biomechanical evaluation of the impact of various facet joint lesions on the primary stability of anterior plate fixation in cervical dislocation injuries: a cadaver study: Laboratory investigation.

    PubMed

    Oberkircher, Ludwig; Born, Sebastian; Struewer, Johannes; Bliemel, Christopher; Buecking, Benjamin; Wack, Christina; Bergmann, Martin; Ruchholtz, Steffen; Krüger, Antonio

    2014-10-01

    Injuries of the subaxial cervical spine including facet joints and posterior ligaments are common. Potential surgical treatments consist of anterior, posterior, or anterior-posterior fixation. Because each approach has its advantages and disadvantages, the best treatment is debated. This biomechanical cadaver study compared the effect of different facet joint injuries on primary stability following anterior plate fixation. Fractures and plate fixation were performed on 15 fresh-frozen intact cervical spines (C3-T1). To simulate a translation-rotation injury in all groups, complete ligament rupture and facet dislocation were simulated by dissecting the entire posterior and anterior ligament complex between C-4 and C-5. In the first group, the facet joints were left intact. In the second group, one facet joint between C-4 and C-5 was removed and the other side was left intact. In the third group, both facet joints between C-4 and C-5 were removed. The authors next performed single-level anterior discectomy and interbody grafting using bone material from the respective thoracic vertebral bodies. An anterior cervical locking plate was used for fixation. Continuous loading was performed using a servohydraulic test bench at 2 N/sec. The mean load failure was measured when the implant failed. In the group in which both facet joints were intact, the mean load failure was 174.6 ± 46.93 N. The mean load failure in the second group where only one facet joint was removed was 127.8 ± 22.83 N. In the group in which both facet joints were removed, the mean load failure was 73.42 ± 32.51 N. There was a significant difference between the first group (both facet joints intact) and the third group (both facet joints removed) (p < 0.05, Kruskal-Wallis test). In this cadaver study, primary stability of anterior plate fixation for dislocation injuries of the subaxial cervical spine was dependent on the presence of the facet joints. If the bone in one or both facet joints is damaged in the clinical setting, anterior plate fixation in combination with bone grafting might not provide sufficient stabilization; additional posterior stabilization may be needed.

  9. A racetrack mode-locked silicon evanescent laser.

    PubMed

    Fang, Alexander W; Koch, Brian R; Gan, Kian-Giap; Park, Hyundai; Jones, Richard; Cohen, Oded; Paniccia, Mario J; Blumenthal, Daniel J; Bowers, John E

    2008-01-21

    By utilizing a racetrack resonator topography, an on-chip mode locked silicon evanescent laser (ML-SEL) is realized that is independent of facet polishing. This enables integration with other devices on silicon and precise control of the ML-SEL's repetition rate through lithographic definition of the cavity length. Both passive and hybrid mode-locking have been achieved with transform limited, 7 ps pulses emitted at a repetition rate of 30 GHz. Jitter and locking range are measured under hybrid mode locking with a minimum absolute jitter and maximum locking range of 364 fs, and 50 MHz, respectively.

  10. A New Selective Area Lateral Epitaxy Approach for Depositing a-Plane GaN over r-Plane Sapphire

    NASA Astrophysics Data System (ADS)

    Chen, Changqing; Zhang, Jianping; Yang, Jinwei; Adivarahan, Vinod; Rai, Shiva; Wu, Shuai; Wang, Hongmei; Sun, Wenhong; Su, Ming; Gong, Zheng; Kuokstis, Edmundas; Gaevski, Mikhail; Khan, Muhammad Asif

    2003-07-01

    We report a new epitaxy procedure for growing extremely low defect density a-plane GaN films over r-plane sapphire. By combining selective area growth through a SiO2 mask opening to produce high height to width aspect ratio a-plane GaN pillars and lateral epitaxy from their c-plane facets, we obtained fully coalesced a-plane GaN films. The excellent structural, optical and electrical characteristics of these selective area lateral epitaxy (SALE) deposited films make them ideal for high efficiency III-N electronic and optoelectronic devices.

  11. Facile and rapid method of synthesizing Lithium Titanate for the use in energy storage

    NASA Astrophysics Data System (ADS)

    Samuel, J. J.; Beh, K. P.; Yam, F. K.

    2018-04-01

    Batteries are an important facet in today’s world. With smaller devices being produced, the challenge to power it with long lasting batteries continue to be quite the task. Recently, a new compound has proved its usefulness in battery fabrication that is Lithium Titanate (LTO). In this study a facile method of producing LTO via hydrolysis of Lithium Nitride and Titanium n-Butoxide. The method used in this study produced LTO in under 7 hours, much quicker than the standard processing time for LTO. The produced LTO is characterized using Raman Spectroscopy.

  12. Perform light and optic experiments in Augmented Reality

    NASA Astrophysics Data System (ADS)

    Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan; Javahiraly, Nicolas; Israel, Kai

    2015-10-01

    In many scientific studies lens experiments are part of the curriculum. The conducted experiments are meant to give the students a basic understanding for the laws of optics and its applications. Most of the experiments need special hardware like e.g. an optical bench, light sources, apertures and different lens types. Therefore it is not possible for the students to conduct any of the experiments outside of the university's laboratory. Simple optical software simulators enabling the students to virtually perform lens experiments already exist, but are mostly desktop or web browser based. Augmented Reality (AR) is a special case of mediated and mixed reality concepts, where computers are used to add, subtract or modify one's perception of reality. As a result of the success and widespread availability of handheld mobile devices, like e.g. tablet computers and smartphones, mobile augmented reality applications are easy to use. Augmented reality can be easily used to visualize a simulated optical bench. The students can interactively modify properties like e.g. lens type, lens curvature, lens diameter, lens refractive index and the positions of the instruments in space. Light rays can be visualized and promote an additional understanding of the laws of optics. An AR application like this is ideally suited to prepare the actual laboratory sessions and/or recap the teaching content. The authors will present their experience with handheld augmented reality applications and their possibilities for light and optic experiments without the needs for specialized optical hardware.

  13. Computerised mirror therapy with Augmented Reflection Technology for early stroke rehabilitation: clinical feasibility and integration as an adjunct therapy.

    PubMed

    Hoermann, Simon; Ferreira Dos Santos, Luara; Morkisch, Nadine; Jettkowski, Katrin; Sillis, Moran; Devan, Hemakumar; Kanagasabai, Parimala S; Schmidt, Henning; Krüger, Jörg; Dohle, Christian; Regenbrecht, Holger; Hale, Leigh; Cutfield, Nicholas J

    2017-07-01

    New rehabilitation strategies for post-stroke upper limb rehabilitation employing visual stimulation show promising results, however, cost-efficient and clinically feasible ways to provide these interventions are still lacking. An integral step is to translate recent technological advances, such as in virtual and augmented reality, into therapeutic practice to improve outcomes for patients. This requires research on the adaptation of the technology for clinical use as well as on the appropriate guidelines and protocols for sustainable integration into therapeutic routines. Here, we present and evaluate a novel and affordable augmented reality system (Augmented Reflection Technology, ART) in combination with a validated mirror therapy protocol for upper limb rehabilitation after stroke. We evaluated components of the therapeutic intervention, from the patients' and the therapists' points of view in a clinical feasibility study at a rehabilitation centre. We also assessed the integration of ART as an adjunct therapy for the clinical rehabilitation of subacute patients at two different hospitals. The results showed that the combination and application of the Berlin Protocol for Mirror Therapy together with ART was feasible for clinical use. This combination was integrated into the therapeutic plan of subacute stroke patients at the two clinical locations where the second part of this research was conducted. Our findings pave the way for using technology to provide mirror therapy in clinical settings and show potential for the more effective use of inpatient time and enhanced recoveries for patients. Implications for Rehabilitation Computerised Mirror Therapy is feasible for clinical use Augmented Reflection Technology can be integrated as an adjunctive therapeutic intervention for subacute stroke patients in an inpatient setting Virtual Rehabilitation devices such as Augmented Reflection Technology have considerable potential to enhance stroke rehabilitation.

  14. A Quantitative Examination of User Experience as an Antecedent to Student Perception in Technology Acceptance Modeling

    ERIC Educational Resources Information Center

    Butler, Rory

    2013-01-01

    Internet-enabled mobile devices have increased the accessibility of learning content for students. Given the ubiquitous nature of mobile computing technology, a thorough understanding of the acceptance factors that impact a learner's intention to use mobile technology as an augment to their studies is warranted. Student acceptance of mobile…

  15. Optimising Service Delivery of AAC AT Devices and Compensating AT for Dyslexia.

    PubMed

    Roentgen, Uta R; Hagedoren, Edith A V; Horions, Katrien D L; Dalemans, Ruth J P

    2017-01-01

    To promote successful use of Assistive Technology (AT) supporting Augmentative and Alternative Communication (AAC) and compensating for dyslexia, the last steps of their provision, delivery and instruction, use, maintenance and evaluation, were optimised. In co-creation with all stakeholders based on a list of requirements an integral method and tools were developed.

  16. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    ERIC Educational Resources Information Center

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  17. Location-Based Augmented Reality for Mobile Learning: Algorithm, System, and Implementation

    ERIC Educational Resources Information Center

    Tan, Qing; Chang, William; Kinshuk

    2015-01-01

    AR technology can be considered as mainly consisting of two aspects: identification of real-world object and display of computer-generated digital contents related the identified real-world object. The technical challenge of mobile AR is to identify the real-world object that mobile device's camera aim at. In this paper, we will present a…

  18. Repair of a deep digital tendon deficit in a horse using a polypropylene implant.

    PubMed Central

    Crawford, W H; Ingle, J E

    1997-01-01

    A yearling horse was treated for a chronic wound with a 4 cm deficit in the deep digital tendon. The gap in the tendon was bridged with paired polypropylene braided implants designed for use as a ligament augmentation device. Uncomplicated healing and return to function occurred. Images Figure 1. PMID:9167878

  19. Switch on the Learning: Teaching Students with Significant Disabilities to Use Switches

    ERIC Educational Resources Information Center

    Schaefer, John M.; Andzik, Natalie R.

    2016-01-01

    Students with significant disabilities often struggle to communicate their wants and needs but can be taught widely recognizable communication with the aid of augmentative and alternative communication (AAC) supports. Simple speech generating devices (SGDs) such as Step-by-Step switches or GoTalk can be used by students to send specific messages.…

  20. Mobile Voting Tools for Creating Collaboration Environment and a New Educational Design of the University Lecture

    ERIC Educational Resources Information Center

    Titova, Svetlana

    2014-01-01

    Mobile devices can enhance learning experience in many ways: provide instant feedback and better diagnosis of learning problems; enhance learner autonomy; create mobile networking collaboration; help design enquiry-based activities based on augmented reality, geo-location awareness and video-capture. One of the main objectives of the international…

  1. Improving Personality Facet Scores with Multidimensional Computer Adaptive Testing: An Illustration with the Neo Pi-R

    ERIC Educational Resources Information Center

    Makransky, Guido; Mortensen, Erik Lykke; Glas, Cees A. W.

    2013-01-01

    Narrowly defined personality facet scores are commonly reported and used for making decisions in clinical and organizational settings. Although these facets are typically related, scoring is usually carried out for a single facet at a time. This method can be ineffective and time consuming when personality tests contain many highly correlated…

  2. Surgical Tips to Preserve the Facet Joint during Microdiscectomy

    PubMed Central

    Park, Man-Kyu; Cho, Dae-Chul; Sung, Joo-Kyung

    2013-01-01

    Lumbar microdiscectomy (MD) is the gold standard for treatment of lumbar disc herniation. Generally, the surgeon attempts to protect the facet joint in hopes of avoiding postoperative pain/instability and secondary degenerative arthropathy. We believe that preserving the facet joint is especially important in young patients, owing to their life expectancy and activity. However, preserving the facet joint is not easy during lumbar MD. We propose several technical tips (superolateral extension of conventional laminotomy, oblique drilling for laminotomy, and additional foraminotomy) for facet joint preservation during lumbar MD. PMID:24294466

  3. Proof of concept of a workflow methodology for the creation of basic canine head anatomy veterinary education tool using augmented reality.

    PubMed

    Christ, Roxie; Guevar, Julien; Poyade, Matthieu; Rea, Paul M

    2018-01-01

    Neuroanatomy can be challenging to both teach and learn within the undergraduate veterinary medicine and surgery curriculum. Traditional techniques have been used for many years, but there has now been a progression to move towards alternative digital models and interactive 3D models to engage the learner. However, digital innovations in the curriculum have typically involved the medical curriculum rather than the veterinary curriculum. Therefore, we aimed to create a simple workflow methodology to highlight the simplicity there is in creating a mobile augmented reality application of basic canine head anatomy. Using canine CT and MRI scans and widely available software programs, we demonstrate how to create an interactive model of head anatomy. This was applied to augmented reality for a popular Android mobile device to demonstrate the user-friendly interface. Here we present the processes, challenges and resolutions for the creation of a highly accurate, data based anatomical model that could potentially be used in the veterinary curriculum. This proof of concept study provides an excellent framework for the creation of augmented reality training products for veterinary education. The lack of similar resources within this field provides the ideal platform to extend this into other areas of veterinary education and beyond.

  4. Proof of concept of a workflow methodology for the creation of basic canine head anatomy veterinary education tool using augmented reality

    PubMed Central

    Christ, Roxie; Guevar, Julien; Poyade, Matthieu

    2018-01-01

    Neuroanatomy can be challenging to both teach and learn within the undergraduate veterinary medicine and surgery curriculum. Traditional techniques have been used for many years, but there has now been a progression to move towards alternative digital models and interactive 3D models to engage the learner. However, digital innovations in the curriculum have typically involved the medical curriculum rather than the veterinary curriculum. Therefore, we aimed to create a simple workflow methodology to highlight the simplicity there is in creating a mobile augmented reality application of basic canine head anatomy. Using canine CT and MRI scans and widely available software programs, we demonstrate how to create an interactive model of head anatomy. This was applied to augmented reality for a popular Android mobile device to demonstrate the user-friendly interface. Here we present the processes, challenges and resolutions for the creation of a highly accurate, data based anatomical model that could potentially be used in the veterinary curriculum. This proof of concept study provides an excellent framework for the creation of augmented reality training products for veterinary education. The lack of similar resources within this field provides the ideal platform to extend this into other areas of veterinary education and beyond. PMID:29698413

  5. A framework for breast cancer visualization using augmented reality x-ray vision technique in mobile technology

    NASA Astrophysics Data System (ADS)

    Rahman, Hameedur; Arshad, Haslina; Mahmud, Rozi; Mahayuddin, Zainal Rasyid

    2017-10-01

    Breast Cancer patients who require breast biopsy has increased over the past years. Augmented Reality guided core biopsy of breast has become the method of choice for researchers. However, this cancer visualization has limitations to the extent of superimposing the 3D imaging data only. In this paper, we are introducing an Augmented Reality visualization framework that enables breast cancer biopsy image guidance by using X-Ray vision technique on a mobile display. This framework consists of 4 phases where it initially acquires the image from CT/MRI and process the medical images into 3D slices, secondly it will purify these 3D grayscale slices into 3D breast tumor model using 3D modeling reconstruction technique. Further, in visualization processing this virtual 3D breast tumor model has been enhanced using X-ray vision technique to see through the skin of the phantom and the final composition of it is displayed on handheld device to optimize the accuracy of the visualization in six degree of freedom. The framework is perceived as an improved visualization experience because the Augmented Reality x-ray vision allowed direct understanding of the breast tumor beyond the visible surface and direct guidance towards accurate biopsy targets.

  6. Does Augmented Reality Affect High School Students' Learning Outcomes in Chemistry?

    NASA Astrophysics Data System (ADS)

    Renner, Jonathan Christopher

    Some teens may prefer using a self-directed, constructivist, and technologic approach to learning rather than traditional classroom instruction. If it can be demonstrated, educators may adjust their teaching methodology. The guiding research question for this study focused on how augmented reality affects high school students' learning outcomes in chemistry, as measured by a pretest and posttest methodology when ensuring that the individual outcomes were not the result of group collaboration. This study employed a quantitative, quasi-experimental study design that used a comparison and experimental group. Inferential statistical analysis was employed. The study was conducted at a high school in southwest Colorado. Eighty-nine respondents returned completed and signed consent forms, and 78 participants completed the study. Results demonstrated that augmented reality instruction caused posttest scores to significantly increase, as compared to pretest scores, but it was not as effective as traditional classroom instruction. Scores did improve under both types of instruction; therefore, more research is needed in this area. The present study was the first quantitative experiment controlling for individual learning to validate augmented reality using mobile handheld digital devices that affected individual students' learning outcomes without group collaboration. This topic was important to the field of education as it may help educators understand how students learn and it may also change the way students are taught.

  7. Inattentional blindness and augmented-vision displays: Effects of cartoon-like filtering and attended scene

    PubMed Central

    Apfelbaum, Henry L.; Apfelbaum, Doris H.; Woods, Russell L.; Peli, Eli

    2007-01-01

    Augmented-vision devices that we are developing to aid people with low vision (impaired vision) employ vision multiplexing – the simultaneous presentation of two different views to one or both eyes. This approach enables compensation for vision deficits without depriving the wearers of their normal views of the scene. Ideally, wearers would make use of the simultaneous views to alert them to potential mobility hazards, without a need to divide attention consciously. Inattentional blindness, the frequent inability to notice otherwise-obvious events in one scene while paying attention to another, overlapping, scene, works against that sort of augmentation, so we are investigating ways to mitigate it. In this study we filtered the augmented view, creating cartoon-like representations, to make it easier to detect significant features in that view and to minimise interference with the normal view. We reproduced a classic inattentional blindness experiment to evaluate the effect, and found that, surprisingly, edge filtering had no detectable effect – positive or negative – on the noticing of unexpected events in the unattended scene. We then modified the experiment to determine if the inattentional blindness was due to the confusion of overlaid views or simply a matter of attention, and found the latter to be the case. PMID:18426419

  8. Design, architecture and application of nanorobotics in oncology.

    PubMed

    Saxena, S; Pramod, B J; Dayananda, B C; Nagaraju, K

    2015-01-01

    Oncologists all over the globe, relentlessly research on methodologies for detection of cancer and precise localization of cancer therapeutics with minimal adverse effects on healthy tissues. Since the previous decade, the fast growing research in nanotechnology has shown promising possibilities for achieving this dream of every oncologist.Nanorobots (or nanobots) are typical devices ranging in size from 0.1 to 10 μm and constructed of nanoscale or molecular components. Robots will augment the surgeon's motor performance, diagnostic capability and sensations with haptics and augmented reality. The article here aims in briefly describing the architecture of the nanorobots and their role in oncotherapy. Although, research into nanorobots is still in its preliminary stages, the promise of such technology is endless.

  9. Augmented Virtual Reality Laboratory

    NASA Technical Reports Server (NTRS)

    Tully-Hanson, Benjamin

    2015-01-01

    Real time motion tracking hardware has for the most part been cost prohibitive for research to regularly take place until recently. With the release of the Microsoft Kinect in November 2010, researchers now have access to a device that for a few hundred dollars is capable of providing redgreenblue (RGB), depth, and skeleton data. It is also capable of tracking multiple people in real time. For its original intended purposes, i.e. gaming, being used with the Xbox 360 and eventually Xbox One, it performs quite well. However, researchers soon found that although the sensor is versatile, it has limitations in real world applications. I was brought aboard this summer by William Little in the Augmented Virtual Reality (AVR) Lab at Kennedy Space Center to find solutions to these limitations.

  10. Social interactions of students with disabilities who use augmentative and alternative communication in inclusive classrooms.

    PubMed

    Chung, Yun-Ching; Carter, Erik W; Sisco, Lynn G

    2012-09-01

    The purpose of this study was to explore the naturally occurring social interactions for students with disabilities who use augmentative and alternative communication (AAC) in general education classrooms. We observed 16 students who used AAC and received services under the categories of autism or intellectual disability. Participants primarily interacted with their support personnel and infrequently conversed with peers despite often being in close proximity. Few interaction episodes were initiated by students who used AAC, and initiations to peers and adults appeared to serve somewhat different functions. Students with disabilities relied more heavily on facial expressions and gestures than on the use of their AAC devices. Recommendations for promoting interaction opportunities among students are offered, and future research directions are suggested.

  11. Implementing augmentative and alternative communication in inclusive educational settings: a case study.

    PubMed

    Stoner, Julia B; Angell, Maureen E; Bailey, Rita L

    2010-06-01

    The purpose of this study was to describe a single case of augmentative and alternative communication (AAC) implementation. Case study methodology was used to describe the perspectives of educational team members regarding AAC implementation for Joey, a high school junior with athetoid cerebral palsy. Benefits included greater intelligibility for Joey and subsequent comfort of the staff. Facilitators of Joey's AAC system use included the team's student-focused disposition and willingness to implement use of the device, Joey's increased intelligibility, peers' acceptance of the technology, and the resulting increase in Joey's socialization. Limited team cohesiveness, problem solving, and communication were the true barriers in this case. Implications of these facilitators and barriers are discussed and recommendations for school-based AAC implementation are made.

  12. Augmented reality & gesture-based architecture in games for the elderly.

    PubMed

    McCallum, Simon; Boletsis, Costas

    2013-01-01

    Serious games for health and, more specifically, for elderly people have developed rapidly in recent years. The recent popularization of novel interaction methods of consoles, such as the Nintendo Wii and Microsoft Kinect, has provided an opportunity for the elderly to engage in computer and video games. These interaction methods, however, still present various challenges for elderly users. To address these challenges, we propose an architecture consisted of Augmented Reality (as an output mechanism) combined with gestured-based devices (as an input method). The intention of this work is to provide a theoretical justification for using these technologies and to integrate them into an architecture, acting as a basis for potentially creating suitable interaction techniques for the elderly players.

  13. [AOR characterization and zoning: a dosimeter for blue light].

    PubMed

    Dario, R; Uva, J; Di Lecce, V; Quarto, A

    2011-01-01

    The paper presents the results obtained thanks to an innovative experimental device for the assessment of artificial optical radiation (AOR) exposure in workplace. This . device was developed by 'Politecnico di Bari-DIASS'. The wearable personal dosimeter has three sensors: one is used for measuring head position/movement, therefore there is a color light sensor to determine the AOR and finally there is a video camera to localize sources. Our system is connected to a netbook via USB cable that allows one to obtain the real and extimated value of worker's exposure, also with "augmented reality". The aim of this paper is realizing work place safety zoning for the classifacation of not only specific dangerous areas through the analysis of overlapping information from the device.

  14. Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector

    PubMed Central

    2017-01-01

    Bifunctional active regions, capable of light generation and detection at the same wavelength, allow a straightforward realization of the integrated mid-infrared photonics for sensing applications. Here, we present a high performance bifunctional device for 8 μm capable of 1 W single facet continuous wave emission at 15 °C. Apart from the general performance benefits, this enables sensing techniques which rely on continuous wave operation, for example, heterodyne detection, to be realized within a monolithic platform and demonstrates that bifunctional operation can be realized at longer wavelength, where wavelength matching becomes increasingly difficult and that the price to be paid in terms of performance is negligible. In laser operation, the device has the same or higher efficiency compared to the best lattice-matched QCLs without same wavelength detection capability, which is only 30% below the record achieved with strained material at this wavelength. PMID:28540324

  15. Lessons learned: mobile device encryption in the academic medical center.

    PubMed

    Kusche, Kristopher P

    2009-01-01

    The academic medical center is faced with the unique challenge of meeting the multi-faceted needs of both a modern healthcare organization and an academic institution, The need for security to protect patient information must be balanced by the academic freedoms expected in the college setting. The Albany Medical Center, consisting of the Albany Medical College and the Albany Medical Center Hospital, was challenged with implementing a solution that would preserve the availability, integrity and confidentiality of business, patient and research data stored on mobile devices. To solve this problem, Albany Medical Center implemented a mobile encryption suite across the enterprise. Such an implementation comes with complexities, from performance across multiple generations of computers and operating systems, to diversity of application use mode and end user adoption, all of which requires thoughtful policy and standards creation, understanding of regulations, and a willingness and ability to work through such diverse needs.

  16. Neuromorphic computing enabled by physics of electron spins: Prospects and perspectives

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Roy, Kaushik

    2018-03-01

    “Spintronics” refers to the understanding of the physics of electron spin-related phenomena. While most of the significant advancements in this field has been driven primarily by memory, recent research has demonstrated that various facets of the underlying physics of spin transport and manipulation can directly mimic the functionalities of the computational primitives in neuromorphic computation, i.e., the neurons and synapses. Given the potential of these spintronic devices to implement bio-mimetic computations at very low terminal voltages, several spin-device structures have been proposed as the core building blocks of neuromorphic circuits and systems to implement brain-inspired computing. Such an approach is expected to play a key role in circumventing the problems of ever-increasing power dissipation and hardware requirements for implementing neuro-inspired algorithms in conventional digital CMOS technology. Perspectives on spin-enabled neuromorphic computing, its status, and challenges and future prospects are outlined in this review article.

  17. A new technique to transfer metallic nanoscale patterns to small and non-planar surfaces: Application to a fiber optic device for surface enhanced Raman scattering detection

    NASA Astrophysics Data System (ADS)

    Smythe, Elizabeth Jennings

    This thesis focuses on the development of a bidirectional fiber optic probe for the detection of surface enhanced Raman scattering (SERS). One facet of this fiber-based probe featured an array of coupled optical antennas, which we designed to enhance the Raman signal of nearby analytes. When this array interacted with an analyte, it generated SERS signals specific to the chemical composition of the sample; some of these SERS signals coupled back into the fiber. We used the other facet of the probe to input light into the fiber and collect the SERS signals that coupled into the probe. In this dissertation, the development of the probe is broken into three sections: (i) characterization of antenna arrays, (ii) fabrication of the probe, and (iii) device measurements. In the first section we present a comprehensive study of metallic antenna arrays. We carried out this study to determine the effects of antenna geometry, spacing, and composition on the surface plasmon resonance (SPR) of a coupled antenna array; the wavelength range and strength of the SPR are functions of the shape and interactions of the antennas. The SPR of the array ultimately amplified the Raman signal of analytes and produced a measurable SERS signal, thus determination of the optimal array geometries for SERS generation was an important first step in the development of the SERS fiber probe. We then introduce a new technique developed to fabricate the SERS fiber probes. This technique involves transferring antenna arrays (created by standard lithographic methods) from a large silicon substrate to a fiber facet. We developed this fabrication technique to bypass many of the limitations presented by previously developed methods for patterning unconventional substrates (i.e. small and/or non-planar substrates), such as focused ion-beam milling and soft lithography. In the third section of this thesis, we present SERS measurements taken with the fiber probe. We constructed a measurement system to couple light into the probe and filter out background noise; this allowed simultaneous detection of multiple chemicals. Antenna array enhancement factor (EF) calculations are shown; these allowed us to determine that the probe efficiently collected SERS signals.

  18. Power degradation and reliability study of high-power laser bars at quasi-CW operation

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyu; Fan, Yong; Liu, Hui; Wang, Jingwei; Zah, Chungen; Liu, Xingsheng

    2017-02-01

    The solid state laser relies on the laser diode (LD) pumping array. Typically for high peak power quasi-CW (QCW) operation, both energy output per pulse and long term reliability are critical. With the improved bonding technique, specially Indium-free bonded diode laser bars, most of the device failures were caused by failure within laser diode itself (wearout failure), which are induced from dark line defect (DLD), bulk failure, point defect generation, facet mirror damage and etc. Measuring the reliability of LD under QCW condition will take a rather long time. Alternatively, an accelerating model could be a quicker way to estimate the LD life time under QCW operation. In this report, diode laser bars were mounted on micro channel cooler (MCC) and operated under QCW condition with different current densities and junction temperature (Tj ). The junction temperature is varied by modulating pulse width and repetition frequency. The major concern here is the power degradation due to the facet failure. Reliability models of QCW and its corresponding failures are studied. In conclusion, QCW accelerated life-time model is discussed, with a few variable parameters. The model is compared with CW model to find their relationship.

  19. Patterns of astragalar fibular facet orientation in extant and fossil primates and their evolutionary implications.

    PubMed

    Boyer, Doug M; Seiffert, Erik R

    2013-07-01

    A laterally sloping fibular facet of the astragalus (=talus) has been proposed as one of few osteological synapomorphies of strepsirrhine primates, but the feature has never been comprehensively quantified. We describe a method for calculating fibular facet orientation on digital models of astragali as the angle between the planes of the fibular facet and the lateral tibial facet. We calculated this value in a sample that includes all major extant primate clades, a diversity of Paleogene primates, and nonprimate euarchontans (n = 304). Results show that previous characterization of a divide between extant haplorhines and strepsirrhines is accurate, with little overlap even when individual data points are considered. Fibular facet orientation is conserved in extant strepsirrhines despite major differences in locomotion and body size, while extant anthropoids are more variable (e.g., low values for catarrhines relative to non-callitrichine platyrrhines). Euprimate outgroups exhibit a mosaic of character states with Cynocephalus having a more obtuse strepsirrhine-like facet and sampled treeshrews and plesiadapiforms having more acute haplorhine-like facets. Surprisingly, the earliest species of the adapiform Cantius have steep haplorhine-like facets as well. We used a Bayesian approach to reconstruct the evolution of fibular facet orientation as a continuous character across a supertree of living and extinct primates. Mean estimates for crown Primatomorpha (97.9°), Primates (99.5°), Haplorhini (98.7°), and Strepsirrhini (108.2°) support the hypothesis that the strepsirrhine condition is derived, while lower values for crown Anthropoidea (92.8°) and Catarrhini (88.9°) are derived in the opposite direction. Copyright © 2013 Wiley Periodicals, Inc.

  20. Facet joint hypertrophy is a misnomer: A retrospective study.

    PubMed

    An, Sang Joon; Seo, Mi Sook; Choi, Soo Il; Lim, Tae-Ha; Shin, So Jin; Kang, Keum Nae; Kim, Young Uk

    2018-06-01

    One of the major causes of lumbar spinal canal stenosis (LSCS) has been considered facet joint hypertrophy (FJH). However, a previous study asserted that "FJH" is a misnomer because common facet joints are no smaller than degenerative facet joints; however, this hypothesis has not been effectively demonstrated. Therefore, in order to verify that FJH is a misnomer in patients with LSCS, we devised new morphological parameters that we called facet joint thickness (FJT) and facet joint cross-sectional area (FJA).We collected FJT and FJA data from 114 patients with LSCS. A total of 86 control subjects underwent lumbar magnetic resonance imaging (MRI) as part of routine medical examinations, and axial T2-weighted MRI images were obtained from all participants. We measured FJT by drawing a line along the facet area and then measuring the narrowest point at L4-L5. We measured FJA as the whole cross-sectional area of the facet joint at the stenotic L4-L5 level.The average FJT was 1.60 ± 0.36 mm in the control group and 1.11 ± 0.32 mm in the LSCS group. The average FJA was 14.46 ± 5.17 mm in the control group and 9.31 ± 3.47 mm in the LSCS group. Patients with LSCS had significantly lower FJTs (P < .001) and FJAs (P < .001).FJH, a misnomer, should be renamed facet joint area narrowing. Using this terminology would eliminate confusion in descriptions of the facet joint.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingfeng; Han, Lili; Jing, Hao

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less

  2. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less

  3. Optimization and Control of Burning Plasmas Through High Performance Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankin, Alexei

    This project has revived the FACETS code, that has been developed under SciDAC fund- ing in 2008-2012. The code has been dormant for a number of years after the SciDAC funding stopped. FACETS depends on external packages. The external packages and libraries such as PETSc, FFTW, HDF5 and NETCDF that are included in FACETS have evolved during these years. Some packages in FACETS are also parts of other codes such as PlasmaState, NUBEAM, GACODES, and UEDGE. These packages have been also evolved together with their host codes which include TRANSP, TGYRO and XPTOR. Finally, there is also a set ofmore » packages in FACETS that are being developed and maintained by Tech-X. These packages include BILDER, SciMake, and FcioWrappers. Many of these packages evolved significantly during the last several years and FACETS had to be updated to synchronize with the re- cent progress in the external packages. The PI has introduced new changes to the BILDER package to support the updated interfaces to the external modules. During the last year of the project, the FACETS version of the UEDGE code has been extracted from FACETS as a standalone package. The PI collaborates with the scientists from LLNL on the updated UEDGE model in FACETS. Drs. T. Rognlien, M. Umansky and A. Dimits from LLNL are contributing to this task.« less

  4. Long-Term Developmental Changes in Children's Lower-Order Big Five Personality Facets.

    PubMed

    de Haan, Amaranta; De Pauw, Sarah; van den Akker, Alithe; Deković, Maja; Prinzie, Peter

    2017-10-01

    This study examined long-term developmental changes in mother-rated lower-order facets of children's Big Five dimensions. Two independent community samples covering early childhood (2-4.5 years; N = 365, 39% girls) and middle childhood to the end of middle adolescence (6-17 years; N = 579, 50% girls) were used. All children had the Belgian nationality. Developmental changes were examined using cohort-sequential latent growth modeling on the 18 facets of the Hierarchical Personality Inventory for Children. In early childhood, changes were mostly similar across child gender. Between 2 and 4.5 years, several facets showed mean-level stability; others changed in the direction of less Extraversion and Emotional Stability, and more Benevolence and Imagination. The lower-order facets of Conscientiousness showed opposite changes. Gender differences became more apparent from middle childhood onward for facets of all dimensions except Imagination, for which no gender differences were found. Between 6 and 17 years, same-dimension facets showed different shapes of growth. Facets that changed linearly changed mostly in the direction of less Extraversion, Benevolence, Conscientiousness, Emotional Stability, and Imagination. Changes in facets for which nonlinear growth was found generally moved in direction or magnitude during developmental transitions. This study provides comprehensive, fine-grained knowledge about personality development during the first two decades of life. © 2016 Wiley Periodicals, Inc.

  5. Data augmentation-assisted deep learning of hand-drawn partially colored sketches for visual search

    PubMed Central

    Muhammad, Khan; Baik, Sung Wook

    2017-01-01

    In recent years, image databases are growing at exponential rates, making their management, indexing, and retrieval, very challenging. Typical image retrieval systems rely on sample images as queries. However, in the absence of sample query images, hand-drawn sketches are also used. The recent adoption of touch screen input devices makes it very convenient to quickly draw shaded sketches of objects to be used for querying image databases. This paper presents a mechanism to provide access to visual information based on users’ hand-drawn partially colored sketches using touch screen devices. A key challenge for sketch-based image retrieval systems is to cope with the inherent ambiguity in sketches due to the lack of colors, textures, shading, and drawing imperfections. To cope with these issues, we propose to fine-tune a deep convolutional neural network (CNN) using augmented dataset to extract features from partially colored hand-drawn sketches for query specification in a sketch-based image retrieval framework. The large augmented dataset contains natural images, edge maps, hand-drawn sketches, de-colorized, and de-texturized images which allow CNN to effectively model visual contents presented to it in a variety of forms. The deep features extracted from CNN allow retrieval of images using both sketches and full color images as queries. We also evaluated the role of partial coloring or shading in sketches to improve the retrieval performance. The proposed method is tested on two large datasets for sketch recognition and sketch-based image retrieval and achieved better classification and retrieval performance than many existing methods. PMID:28859140

  6. Automated Forensic Animal Family Identification by Nested PCR and Melt Curve Analysis on an Off-the-Shelf Thermocycler Augmented with a Centrifugal Microfluidic Disk Segment

    PubMed Central

    Zengerle, Roland; von Stetten, Felix; Schmidt, Ulrike

    2015-01-01

    Nested PCR remains a labor-intensive and error-prone biomolecular analysis. Laboratory workflow automation by precise control of minute liquid volumes in centrifugal microfluidic Lab-on-a-Chip systems holds great potential for such applications. However, the majority of these systems require costly custom-made processing devices. Our idea is to augment a standard laboratory device, here a centrifugal real-time PCR thermocycler, with inbuilt liquid handling capabilities for automation. We have developed a microfluidic disk segment enabling an automated nested real-time PCR assay for identification of common European animal groups adapted to forensic standards. For the first time we utilize a novel combination of fluidic elements, including pre-storage of reagents, to automate the assay at constant rotational frequency of an off-the-shelf thermocycler. It provides a universal duplex pre-amplification of short fragments of the mitochondrial 12S rRNA and cytochrome b genes, animal-group-specific main-amplifications, and melting curve analysis for differentiation. The system was characterized with respect to assay sensitivity, specificity, risk of cross-contamination, and detection of minor components in mixtures. 92.2% of the performed tests were recognized as fluidically failure-free sample handling and used for evaluation. Altogether, augmentation of the standard real-time thermocycler with a self-contained centrifugal microfluidic disk segment resulted in an accelerated and automated analysis reducing hands-on time, and circumventing the risk of contamination associated with regular nested PCR protocols. PMID:26147196

  7. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Maldonado, Jaime J.

    1994-04-01

    Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.

  8. Projector-based augmented reality for intuitive intraoperative guidance in image-guided 3D interstitial brachytherapy.

    PubMed

    Krempien, Robert; Hoppe, Harald; Kahrs, Lüder; Daeuber, Sascha; Schorr, Oliver; Eggers, Georg; Bischof, Marc; Munter, Marc W; Debus, Juergen; Harms, Wolfgang

    2008-03-01

    The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. In a first clinical study, we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.

  9. Numerical comparison of convective heat transfer augmentation devices used in cooling channels of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Maldonado, Jaime J.

    1994-01-01

    Hypersonic vehicles are exposed to extreme thermal conditions compared to subsonic aircraft; therefore, some level of thermal management is required to protect the materials used. Normally, hypersonic vehicles experience the highest temperatures in the nozzle throat, and aircraft and propulsion system leading edges. Convective heat transfer augmentation techniques can be used in the thermal management system to increase heat transfer of the cooling channels in those areas. The techniques studied in this report are pin-fin, offset-fin, ribbed and straight roughened channel. A smooth straight channel is used as the baseline for comparing the techniques. SINDA '85, a lumped parameter finite difference thermal analyzer, is used to model the channels. Subroutines are added to model the fluid flow assuming steady one dimensional compressible flow with heat addition and friction. Correlations for convective heat transfer and friction are used in conjunction with the fluid flow analysis mentioned. As expected, the pin-fin arrangement has the highest heat transfer coefficient and the largest pressure drop. All the other devices fall in between the pin-fin and smooth straight channel. The selection of the best heat augmentation method depends on the design requirements. A good approach may be a channel using a combination of the techniques. For instance, several rows of pin-fins may be located at the region of highest heat flux, surrounded by some of the other techniques. Thus, the heat transfer coefficient is maximized at the region of highest heat flux while the pressure drop is not excessive.

  10. Localized cervical facet joint kinematics under physiological and whiplash loading.

    PubMed

    Stemper, Brian D; Yoganandan, Narayan; Gennarelli, Thomas A; Pintar, Frank A

    2005-12-01

    Although facet joints have been implicated in the whiplash injury mechanism, no investigators have determined the degree to which joint motions in whiplash are nonphysiological. The purpose of this investigation was to quantify the correlation between facet joint and segmental motions under physiological and whiplash loading. Human cadaveric cervical spine specimens were exercise tested under physiological extension loading, and intact human head-neck complexes were exercise tested under whiplash loading to correlate the localized component motions of the C4-5 facet joint with segmental extension. Facet joint shear and distraction kinematics demonstrated a linear correlation with segmental extension under both loading modes. Facet joints responded differently to whiplash and physiological loading, with significantly increased kinematics for the same-segmental angulation. The limitations of this study include removal of superficial musculature and the limited sample size for physiological testing. The presence of increased facet joint motions indicated that synovial joint soft-tissue components (that is, synovial membrane and capsular ligament) sustain increased distortion that may subject these tissues to a greater likelihood of injury. This finding is supported by clinical investigations in which lower cervical facet joint injury resulted in similar pain patterns due to the most commonly reported whiplash symptoms.

  11. Tailoring molecular specificity toward a crystal facet: a lesson from biorecognition toward Pt{111}.

    PubMed

    Ruan, Lingyan; Ramezani-Dakhel, Hadi; Chiu, Chin-Yi; Zhu, Enbo; Li, Yujing; Heinz, Hendrik; Huang, Yu

    2013-02-13

    Surfactants with preferential adsorption to certain crystal facets have been widely employed to manipulate morphologies of colloidal nanocrystals, while mechanisms regarding the origin of facet selectivity remain an enigma. Similar questions exist in biomimetic syntheses concerning biomolecular recognition to materials and crystal surfaces. Here we present mechanistic studies on the molecular origin of the recognition toward platinum {111} facet. By manipulating the conformations and chemical compositions of a platinum {111} facet specific peptide, phenylalanine is identified as the dominant motif to differentiate {111} from other facets. The discovered recognition motif is extended to convert nonspecific peptides into {111} specific peptides. Further extension of this mechanism allows the rational design of small organic molecules that demonstrate preferential adsorption to the {111} facets of both platinum and rhodium nanocrystals. This work represents an advance in understanding the organic-inorganic interfacial interactions in colloidal systems and paves the way to rational and predictable nanostructure modulations for many applications.

  12. Enhanced carbon monoxide sensing properties of TiO2 with exposed (0 0 1) facet: A combined first-principle and experimental study

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Zeng, Wen; Ye, Hong; Li, Yanqiong

    2018-06-01

    In the present study, crystal-facet-dependent gas sensing performance was thoroughly investigated and sensing mechanism of TiO2 was elaborated in depth. Anatase TiO2 nano-polyhedron with highly reactive (0 0 1) facet was successfully synthesized via a one-pot hydrothermal method using fluoride as facet stabilizer and was utilized for fabrication of carbon monoxide gas sensors, followed by characterization of microstructure, phase-purity and gas-sensing properties. Chemiresistive properties of (0 0 1)-dominated gas sensor exhibit superior response to CO with a maximum response of 27.9 at 300 ppm in optimum working temperature as 350 °C. Particularly, first-principle calculation was carried out to expound the sensing mechanism, which shows that CO adsorption on (0 0 1) facet is more stable and favorable than that on normally exposed (1 0 1) facet, corroborating the reactive nature of (0 0 1) facet.

  13. Mindfulness facets, trait emotional intelligence, emotional distress, and multiple health behaviors: A serial two-mediator model.

    PubMed

    Jacobs, Ingo; Wollny, Anna; Sim, Chu-Won; Horsch, Antje

    2016-06-01

    In the present study, we tested a serial mindfulness facets-trait emotional intelligence (TEI)-emotional distress-multiple health behaviors mediation model in a sample of N = 427 German-speaking occupational therapists. The mindfulness facets-TEI-emotional distress section of the mediation model revealed partial mediation for the mindfulness facets Act with awareness (Act/Aware) and Accept without judgment (Accept); inconsistent mediation was found for the Describe facet. The serial two-mediator model included three mediational pathways that may link each of the four mindfulness facets with multiple health behaviors. Eight out of 12 indirect effects reached significance and fully mediated the links between Act/Aware and Describe to multiple health behaviors; partial mediation was found for Accept. The mindfulness facet Observe was most relevant for multiple health behaviors, but its relation was not amenable to mediation. Implications of the findings will be discussed. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  14. Facet Annotation by Extending CNN with a Matching Strategy.

    PubMed

    Wu, Bei; Wei, Bifan; Liu, Jun; Guo, Zhaotong; Zheng, Yuanhao; Chen, Yihe

    2018-06-01

    Most community question answering (CQA) websites manage plenty of question-answer pairs (QAPs) through topic-based organizations, which may not satisfy users' fine-grained search demands. Facets of topics serve as a powerful tool to navigate, refine, and group the QAPs. In this work, we propose FACM, a model to annotate QAPs with facets by extending convolution neural networks (CNNs) with a matching strategy. First, phrase information is incorporated into text representation by CNNs with different kernel sizes. Then, through a matching strategy among QAPs and facet label texts (FaLTs) acquired from Wikipedia, we generate similarity matrices to deal with the facet heterogeneity. Finally, a three-channel CNN is trained for facet label assignment of QAPs. Experiments on three real-world data sets show that FACM outperforms the state-of-the-art methods.

  15. Synchrotron radiation microbeam X-ray diffraction for nondestructive assessments of local structural properties of faceted InGaN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Sakaki, Atsushi; Funato, Mitsuru; Kawamura, Tomoaki; Araki, Jun; Kawakami, Yoichi

    2018-03-01

    Synchrotron radiation (SR) X-ray diffraction with a sub-µm spatial resolution is used to nondestructively evaluate the local thickness and alloy composition of three-dimensionally faceted InGaN/GaN quantum wells (QWs). The (0001) facet QW on a trapezoidal structure composed of (0001), \\{ 11\\bar{2}2\\} , and \\{ 11\\bar{2}0\\} facets is nonuniform, most likely owing to the migration of adatoms between facets. The thickness and composition markedly vary within a short distance for the \\{ 11\\bar{2}2\\} facet QW of another pyramidal structure. The QW parameters acquired by SR microbeam X-ray diffraction reproduce the local emission property assessed by cathodoluminescence, thereby indicating the high reliability of this method.

  16. Facet-Specific Ligand Interactions on Ternary AgSbS 2 Colloidal Quantum Dots

    DOE PAGES

    Choi, Hyekyoung; Kim, Sungwoo; Luther, Joseph M.; ...

    2017-11-07

    Silver dimetal chalcogenide (Ag-V-VI 2) ternary quantum dots (QDs) are emerging lead-free materials for optoelectronic devices due to their NIR band gaps, large absorption coefficients, and superior electronic properties. However, thin film-based devices of the ternary QDs still lag behind due to the lack of understanding of the surface chemistry, compared to that of lead chalcogenide QDs even with the same crystal structure. Here in this paper, the surface ligand interactions of AgSbS 2 QDs, synthesized with 1-dodecanethiol used as a stabilizer, are studied. For nonpolar (1 0 0) surfaces, it is suggested that the thiolate ligands are associated withmore » the crystal lattices, thus preventing surface oxidation by protecting sulfur after air-exposure, as confirmed through optical and surface chemical analysis. Otherwise, silver rich (1 1 1) surfaces are passivated by thiolate ligands, allowing ligand exchange processes for the conductive films. This in-depth investigation of the surface chemistry of ternary QDs will prompt the performance enhancement of their optoelectronic devices.« less

  17. Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.

    PubMed

    Brumberg, Jonathan S; Nguyen, Anh; Pitt, Kevin M; Lorenz, Sean D

    2018-01-31

    We investigated how overt visual attention and oculomotor control influence successful use of a visual feedback brain-computer interface (BCI) for accessing augmentative and alternative communication (AAC) devices in a heterogeneous population of individuals with profound neuromotor impairments. BCIs are often tested within a single patient population limiting generalization of results. This study focuses on examining individual sensory abilities with an eye toward possible interface adaptations to improve device performance. Five individuals with a range of neuromotor disorders participated in four-choice BCI control task involving the steady state visually evoked potential. The BCI graphical interface was designed to simulate a commercial AAC device to examine whether an integrated device could be used successfully by individuals with neuromotor impairment. All participants were able to interact with the BCI and highest performance was found for participants able to employ an overt visual attention strategy. For participants with visual deficits to due to impaired oculomotor control, effective performance increased after accounting for mismatches between the graphical layout and participant visual capabilities. As BCIs are translated from research environments to clinical applications, the assessment of BCI-related skills will help facilitate proper device selection and provide individuals who use BCI the greatest likelihood of immediate and long term communicative success. Overall, our results indicate that adaptations can be an effective strategy to reduce barriers and increase access to BCI technology. These efforts should be directed by comprehensive assessments for matching individuals to the most appropriate device to support their complex communication needs. Implications for Rehabilitation Brain computer interfaces using the steady state visually evoked potential can be integrated with an augmentative and alternative communication device to provide access to language and literacy for individuals with neuromotor impairment. Comprehensive assessments are needed to fully understand the sensory, motor, and cognitive abilities of individuals who may use brain-computer interfaces for proper feature matching as selection of the most appropriate device including optimization device layouts and control paradigms. Oculomotor impairments negatively impact brain-computer interfaces that use the steady state visually evoked potential, but modifications to place interface stimuli and communication items in the intact visual field can improve successful outcomes.

  18. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study.

    PubMed

    Zhu, Q A; Park, Y B; Sjovold, S G; Niosi, C A; Wilson, D C; Cripton, P A; Oxland, T R

    2008-02-01

    Experimental measurement of the load-bearing patterns of the facet joints in the lumbar spine remains a challenge, thereby limiting the assessment of facet joint function under various surgical conditions and the validation of computational models. The extra-articular strain (EAS) technique, a non-invasive measurement of the contact load, has been used for unilateral facet joints but does not incorporate strain coupling, i.e. ipsilateral EASs due to forces on the contralateral facet joint. The objectives of the present study were to establish a bilateral model for facet contact force measurement using the EAS technique and to determine its effectiveness in measuring these facet joint contact forces during three-dimensional flexibility tests in the lumbar spine. Specific goals were to assess the accuracy and repeatability of the technique and to assess the effect of soft-tissue artefacts. In the accuracy and repeatability tests, ten uniaxial strain gauges were bonded to the external surface of the inferior facets of L3 of ten fresh lumbar spine specimens. Two pressure-sensitive sensors (Tekscan) were inserted into the joints after the capsules were cut. Facet contact forces were measured with the EAS and Tekscan techniques for each specimen in flexion, extension, axial rotation, and lateral bending under a +/- 7.5 N m pure moment. Four of the ten specimens were tested five times in axial rotation and extension for repeatability. These same specimens were disarticulated and known forces were applied across the facet joint using a manual probe (direct accuracy) and a materials-testing system (disarticulated accuracy). In soft-tissue artefact tests, a separate set of six lumbar spine specimens was used to document the virtual facet joint contact forces during a flexibility test following removal of the superior facet processes. Linear strain coupling was observed in all specimens. The average peak facet joint contact forces during flexibility testing was greatest in axial rotation (71 +/- 25 N), followed by extension (27 +/- 35 N) and lateral bending (25 +/- 28 N), and they were most repeatable in axial rotation (coefficient of variation, 5 per cent). The EAS accuracy was about 20 per cent in the direct accuracy assessment and about 30 per cent in the disarticulated accuracy test. The latter was very similar to the Tekscan accuracy in the same test. Virtual facet loads (r.m.s.) were small in axial rotation (12 N) and lateral bending (20 N), but relatively large in flexion (34 N) and extension (35 N). The results suggested that the bilateral EAS model could be used to determine the facet joint contact forces in axial rotation but may result in considerable error in flexion, extension, and lateral bending.

  19. Enhanced Visible-Light Photocatalytic H2 Evolution in Cu2O/Cu2Se Multilayer Heterostructure Nanowires Having {111} Facets and Physical Mechanism.

    PubMed

    Liu, Bin; Ning, Lichao; Zhang, Congjie; Zheng, Hairong; Liu, Shengzhong Frank; Yang, Heqing

    2018-06-21

    It is rather challenging to develop photocatalysts based on narrow-band-gap semiconductors for water splitting under solar irradiation. Herein, we synthesized the Cu 2 O/Cu 2 Se multilayer heterostructure nanowires exposing {111} crystal facets by a hydrothermal reaction of Se with Cu and KBH 4 in ethanol amine aqueous solution and subsequent annealing in air. The photocatalytic H 2 production activity of Cu 2 O/Cu 2 Se multilayer heterostructure nanowires is dramatically improved, with an increase on the texture coefficient of Cu 2 O(111) and Cu 2 Se(111) planes, and thus the exposed {111} facets may be the active surfaces for photocatalytic H 2 production. On the basis of the polar structure of Cu 2 O {111} and Cu 2 Se {111} surfaces, we presented a model of charge separation between the Cu-Cu 2 Se(111) and O-Cu 2 O(1̅ 1̅ 1̅) polar surfaces. An internal electric field is created between Cu-Cu 2 Se(111) and O-Cu 2 O(1̅ 1̅ 1̅) polar surfaces, because of spontaneous polarization. As a result, this internal electric field drives the photocreated charge separation. The oxidation and reduction reactions selectively occur at the negative O-Cu 2 O(1̅ 1̅ 1̅) and the positive Cu-Cu 2 Se(111) surfaces. The polar surface-engineering may be a general strategy for enhancing the photocatalytic H 2 -production activity of semiconductor photocatalysts. The charge separation mechanism not only can deepen the understanding of photocatalytic H 2 production mechanism but also provides a novel insight into the design of advanced photocatalysts, other photoelectric devices, and solar cells.

  20. Biomechanics of a Fixed–Center of Rotation Cervical Intervertebral Disc Prosthesis

    PubMed Central

    Crawford, Neil R.; Baek, Seungwon; Sawa, Anna G.U.; Safavi-Abbasi, Sam; Sonntag, Volker K.H.; Duggal, Neil

    2012-01-01

    Background Past in vitro experiments studying artificial discs have focused on range of motion. It is also important to understand how artificial discs affect other biomechanical parameters, especially alterations to kinematics. The purpose of this in vitro investigation was to quantify how disc replacement with a ball-and-socket disc arthroplasty device (ProDisc-C; Synthes, West Chester, Pennsylvania) alters biomechanics of the spine relative to the normal condition (positive control) and simulated fusion (negative control). Methods Specimens were tested in multiple planes by use of pure moments under load control and again in displacement control during flexion-extension with a constant 70-N compressive follower load. Optical markers measured 3-dimensional vertebral motion, and a strain gauge array measured C4-5 facet loads. Results Range of motion and lax zone after disc replacement were not significantly different from normal values except during lateral bending, whereas plating significantly reduced motion in all loading modes (P < .002). Plating but not disc replacement shifted the location of the axis of rotation anteriorly relative to the intact condition (P < 0.01). Coupled axial rotation per degree of lateral bending was 25% ± 48% greater than normal after artificial disc replacement (P = .05) but 37% ± 38% less than normal after plating (P = .002). Coupled lateral bending per degree of axial rotation was 37% ± 21% less than normal after disc replacement (P < .001) and 41% ± 36% less than normal after plating (P = .001). Facet loads did not change significantly relative to normal after anterior plating or arthroplasty, except that facet loads were decreased during flexion in both conditions (P < .03). Conclusions In all parameters studied, deviations from normal biomechanics were less substantial after artificial disc placement than after anterior plating. PMID:25694869

  1. Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications.

    PubMed

    Tsai, Chin-Yi; Lai, Jyong-Di; Feng, Shih-Wei; Huang, Chien-Jung; Chen, Chien-Hsun; Yang, Fann-Wei; Wang, Hsiang-Chen; Tu, Li-Wei

    2017-01-01

    In this work, textured, well-faceted ZnO materials grown on planar Si(100), planar Si(111), and textured Si(100) substrates by low-pressure chemical vapor deposition (LPCVD) were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and cathode luminescence (CL) measurements. The results show that ZnO grown on planar Si(100), planar Si(111), and textured Si(100) substrates favor the growth of ZnO(110) ridge-like, ZnO(002) pyramid-like, and ZnO(101) pyramidal-tip structures, respectively. This could be attributed to the constraints of the lattice mismatch between the ZnO and Si unit cells. The average grain size of ZnO on the planar Si(100) substrate is slightly larger than that on the planar Si(111) substrate, while both of them are much larger than that on the textured Si(100) substrate. The average grain sizes (about 10-50 nm) of the ZnO grown on the different silicon substrates decreases with the increase of their strains. These results are shown to strongly correlate with the results from the SEM, AFM, and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this work provide important information for optimized growth of textured and well-faceted ZnO grown on wafer-based silicon solar cells and can be utilized for efficiency enhancement and optimization of device materials and structures, such as heterojunction with intrinsic thin layer (HIT) solar cells.

  2. Obtaining Content Weights for Test Specifications from Job Analysis Task Surveys: An Application of the Many-Facets Rasch Model

    ERIC Educational Resources Information Center

    Wang, Ning; Stahl, John

    2012-01-01

    This article discusses the use of the Many-Facets Rasch Model, via the FACETS computer program (Linacre, 2006a), to scale job/practice analysis survey data as well as to combine multiple rating scales into single composite weights representing the tasks' relative importance. Results from the Many-Facets Rasch Model are compared with those…

  3. The results of a consecutive series of dynamic posterior stabilizations using the PercuDyn device.

    PubMed

    Canero, Gianfranco; Carbone, Stefano

    2015-11-01

    To evaluate the results of a consecutive series of patients affected by lumbar discogenic pain associated with facet pain and canal stenosis surgically treated with the PercuDyn device. From 2009, 129 consecutive patients (96 M, 33 F, mean age 62) were treated with posterior dynamic stabilization screws (PercuDyn). Inclusion criteria were minimum follow-up of 24 months; pain localized at the lumbar spine column alone or in association to lower limb radicular pain; magnetic resonance evidence of disc degeneration associated with facet degeneration and canal stenosis. Patients were clinically studied using VAS scale and Oswestry Disability Index (ODI); CT assessment of the neuroforamina and spinal canal areas was done at 1 month of follow-up. At 24 months of follow-up, 96 patients fulfilled the inclusion criteria. 96 intervertebral spaces were treated (85 levels L5-S1, 11 levels L4-L5). The VAS scale showed a statistically significant difference at 1 month, 6 months and 2 years with respect to the pre-operative value (p < 0.001). The ODI score registered a significant difference with the same fashion (p < 0.001 both at 1- and 6-month, and 2-year follow-up with respect to the pre-operatory). At 1-month follow-up, neuroforamina and spinal canal areas were considerably wider (p < 0.05). 70 (72.5 %) patients were satisfied of the procedure. In this wide cohort study, the PercuDyn ensured good clinical and radiological results, with more than 70 % of patients satisfied of the procedure. Very few complications were noted, with an immediate return to daily activities. At longer follow-ups, 10 % of patients received revision surgery.

  4. Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics.

    PubMed

    Kempa, Thomas J; Cahoon, James F; Kim, Sun-Kyung; Day, Robert W; Bell, David C; Park, Hong-Gyu; Lieber, Charles M

    2012-01-31

    Silicon nanowires (NWs) could enable low-cost and efficient photovoltaics, though their performance has been limited by nonideal electrical characteristics and an inability to tune absorption properties. We overcome these limitations through controlled synthesis of a series of polymorphic core/multishell NWs with highly crystalline, hexagonally-faceted shells, and well-defined coaxial (p/n) and p/intrinsic/n (p/i/n) diode junctions. Designed 200-300 nm diameter p/i/n NW diodes exhibit ultralow leakage currents of approximately 1 fA, and open-circuit voltages and fill-factors up to 0.5 V and 73%, respectively, under one-sun illumination. Single-NW wavelength-dependent photocurrent measurements reveal size-tunable optical resonances, external quantum efficiencies greater than unity, and current densities double those for silicon films of comparable thickness. In addition, finite-difference-time-domain simulations for the measured NW structures agree quantitatively with the photocurrent measurements, and demonstrate that the optical resonances are due to Fabry-Perot and whispering-gallery cavity modes supported in the high-quality faceted nanostructures. Synthetically optimized NW devices achieve current densities of 17 mA/cm(2) and power-conversion efficiencies of 6%. Horizontal integration of multiple NWs demonstrates linear scaling of the absolute photocurrent with number of NWs, as well as retention of the high open-circuit voltages and short-circuit current densities measured for single NW devices. Notably, assembly of 2 NW elements into vertical stacks yields short-circuit current densities of 25 mA/cm(2) with a backside reflector, and simulations further show that such stacking represents an attractive approach for further enhancing performance with projected efficiencies of > 15% for 1.2 μm thick 5 NW stacks.

  5. Biochemical and biomechanical characterisation of equine cervical facet joint cartilage.

    PubMed

    O'Leary, S A; White, J L; Hu, J C; Athanasiou, K A

    2018-04-15

    The equine cervical facet joint is a site of significant pathology. Located bilaterally on the dorsal spine, these diarthrodial joints work in conjunction with the intervertebral disc to facilitate appropriate spinal motion. Despite the high prevalence of pathology in this joint, the facet joint is understudied and thus lacking in viable treatment options. The goal of this study was to characterise equine facet joint cartilage and provide a comprehensive database describing the morphological, histological, biochemical and biomechanical properties of this tissue. Descriptive cadaver studies. A total of 132 facet joint surfaces were harvested from the cervical spines of six skeletally mature horses (11 surfaces per animal) for compiling biomechanical and biochemical properties of hyaline cartilage of the equine cervical facet joints. Gross morphometric measurements and histological staining were performed on facet joint cartilage. Creep indentation and uniaxial strain-to-failure testing were used to determine the biomechanical compressive and tensile properties. Biochemical assays included quantification of total collagen, sulfated glycosaminoglycan and DNA content. The facet joint surfaces were ovoid in shape with a flat articular surface. Histological analyses highlighted structures akin to articular cartilage of other synovial joints. In general, biomechanical and biochemical properties did not differ significantly between the inferior and superior joint surfaces as well as among spinal levels. Interestingly, compressive and tensile properties of cervical facet articular cartilage were lower than those of articular cartilage from other previously characterised equine joints. Removal of the superficial zone reduced the tissue's tensile strength, suggesting that this zone is important for the tensile integrity of the tissue. Facet surfaces were sampled at a single, central location and do not capture the potential topographic variation in cartilage properties. This is the first study to report the properties of equine cervical facet joint cartilage and may serve as the foundation for the development of future tissue-engineered replacements as well as other treatment strategies. © 2018 EVJ Ltd.

  6. Magnetic resonance-guided focused ultrasound treatment of facet joint pain: summary of preclinical phase

    PubMed Central

    2014-01-01

    Study design A phantom experiment, two thermocouple experiments, three in vivo pig experiments, and a simulated treatment on a healthy human volunteer were conducted to test the feasibility, safety, and efficacy of magnetic resonance-guided focused ultrasound (MRgFUS) for treating facet joint pain. Objective The goal of the current study was to develop a novel method for accurate and safe noninvasive facet joint ablation using MRgFUS. Summary of background data Facet joints are a common source of chronic back pain. Direct facet joint interventions include medial branch nerve ablation and intra-articular injections, which are widely used, but limited in the short and long term. MRgFUS is a breakthrough technology that enables accurate delivery of high-intensity focused ultrasound energy to create a localized temperature rise for tissue ablation, using MR guidance for treatment planning and real-time feedback. Methods We validated the feasibility, safety, and efficacy of MRgFUS for facet joint ablation using the ExAblate 2000® System (InSightec Ltd., Tirat Carmel, Israel) and confirmed the system's ability to ablate the edge of the facet joint and all terminal nerves innervating the joint. A phantom experiment, two thermocouple experiments, three in vivo pig experiments, and a simulated treatment on a healthy human volunteer were conducted. Results The experiments showed that targeting the facet joint with energies of 150–450 J provides controlled and accurate heating at the facet joint edge without penetration to the vertebral body, spinal canal, or root foramina. Treating with reduced diameter of the acoustic beam is recommended since a narrower beam improves access to the targeted areas. Conclusions MRgFUS can safely and effectively target and ablate the facet joint. These results are highly significant, given that this is the first study to demonstrate the potential of MRgFUS to treat facet joint pain. PMID:24921048

  7. In vivo facet joint loading of the canine lumbar spine.

    PubMed

    Buttermann, G R; Schendel, M J; Kahmann, R D; Lewis, J L; Bradford, D S

    1992-01-01

    This study describes a technique to measure in vivo loads and the resultant load-contact locations in the facet joint of the canine lumbar spine. The technique is a modification of a previously described in vitro method that used calibrated surface strains of the lateral aspect of the right L3 cranial articular process. In the present study, strains were measured during various in vivo static and dynamic activities 3 days after strain gage implantation. The in vivo recording technique and its errors, which depend on the location of the applied facet loads, is described. The results of applying the technique to five dogs gave the following results. Relative resultant contact load locations on the facet tended to be in the central and caudal portion of the facet in extension activities, central and cranial in standing, and cranial and ventral in flexion or right-turning activities. Right-turning contact locations were ventral and cranial to left-turning locations. Resultant load locations at peak loading during walking were in the central region of the facet, whereas resultant load locations at minimum loading during walking were relatively craniad. This resultant load-contact location during a walk gait cycle typically migrated in an arc with a displacement of 4 mm from minimum to maximum loading. Static tests resulted in a range of facet loads of 0 N in flexion and lying to 185 N for two-legged standing erect, and stand resulted in facet loads of 26 +/- 15 N (mean +/- standard deviation [SD]). Dynamic tests resulted in peak facet loads ranging from 55 N while walking erect to 170 N for climbing up stairs. Maximum walk facet loads were 107 +/- 27 N. The technique is applicable to in vivo studies of a canine facet joint osteoarthritis model and may be useful for establishing an understanding of the biomechanics of low-back pain.

  8. Evolution of triangular topographic facets along active normal faults

    NASA Astrophysics Data System (ADS)

    Balogun, A.; Dawers, N. H.; Gasparini, N. M.; Giachetta, E.

    2011-12-01

    Triangular shaped facets, which are generally formed by the erosion of fault - bounded mountain ranges, are arguably one of the most prominent geomorphic features on active normal fault scarps. Some previous studies of triangular facet development have suggested that facet size and slope exhibit a strong linear dependency on fault slip rate, thus linking their growth directly to the kinematics of fault initiation and linkage. Other studies, however, generally conclude that there is no variation in triangular facet geometry (height and slope) with fault slip rate. The landscape of the northeastern Basin and Range Province of the western United States provides an opportunity for addressing this problem. This is due to the presence of well developed triangular facets along active normal faults, as well as spatial variations in fault scale and slip rate. In addition, the Holocene climatic record for this region suggests a dominant tectonic regime, as the faulted landscape shows little evidence of precipitation gradients associated with tectonic uplift. Using GIS-based analyses of USGS 30 m digital elevation data (DEMs) for east - central Idaho and southwestern Montana, we analyze triangular facet geometries along fault systems of varying number of constituent segments. This approach allows us to link these geometries with established patterns of along - strike slip rate variation. For this study, we consider major watersheds to include only catchments with upstream and downstream boundaries extending from the drainage divide to the mapped fault trace, respectively. In order to maintain consistency in the selection criteria for the analyzed triangular facets, only facets bounded on opposite sides by major watersheds were considered. Our preliminary observations reflect a general along - strike increase in the surface area, average slope, and relief of triangular facets from the tips of the fault towards the center. We attribute anomalies in the along - strike geometric measurements of the triangular facets to represent possible locations of fault segment linkage associated with normal fault evolution.

  9. INTRA-ARTICULAR NERVE GROWTH FACTOR REGULATES DEVELOPMENT, BUT NOT MAINTENANCE, OF INJURY-INDUCED FACET JOINT PAIN & SPINAL NEURONAL HYPERSENSITIVITY

    PubMed Central

    Kras, Jeffrey V.; Kartha, Sonia; Winkelstein, Beth A.

    2015-01-01

    Objective The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Method Male Holtzman rats underwent painful cervical facet joint distraction or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. Results NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint’s mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Conclusion Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. PMID:26521746

  10. Intra-articular nerve growth factor regulates development, but not maintenance, of injury-induced facet joint pain & spinal neuronal hypersensitivity.

    PubMed

    Kras, J V; Kartha, S; Winkelstein, B A

    2015-11-01

    The objective of the current study is to define whether intra-articular nerve growth factor (NGF), an inflammatory mediator that contributes to osteoarthritic pain, is necessary and sufficient for the development or maintenance of injury-induced facet joint pain and its concomitant spinal neuronal hyperexcitability. Male Holtzman rats underwent painful cervical facet joint distraction (FJD) or sham procedures. Mechanical hyperalgesia was assessed in the forepaws, and NGF expression was quantified in the C6/C7 facet joint. An anti-NGF antibody was administered intra-articularly in additional rats immediately or 1 day following facet distraction or sham procedures to block intra-articular NGF and test its contribution to initiation and/or maintenance of facet joint pain and spinal neuronal hyperexcitability. NGF was injected into the bilateral C6/C7 facet joints in separate rats to determine if NGF alone is sufficient to induce these behavioral and neuronal responses. NGF expression increases in the cervical facet joint in association with behavioral sensitivity after that joint's mechanical injury. Intra-articular application of anti-NGF immediately after a joint distraction prevents the development of both injury-induced pain and hyperexcitability of spinal neurons. Yet, intra-articular anti-NGF applied after pain has developed does not attenuate either behavioral or neuronal hyperexcitability. Intra-articular NGF administered to the facet in naïve rats also induces behavioral hypersensitivity and spinal neuronal hyperexcitability. Findings demonstrate that NGF in the facet joint contributes to the development of injury-induced joint pain. Localized blocking of NGF signaling in the joint may provide potential treatment for joint pain. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Percutaneous Facet Screw Fixation in the Treatment of Symptomatic Recurrent Lumbar Facet Joint Cyst: A New Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoretti, Nicolas, E-mail: amorettinicolas@yahoo.fr; Gallo, Giacomo, E-mail: giacomo.gallo83@gmail.com; Bertrand, Anne-Sophie, E-mail: asbertrand3@hotmail.com

    We present a case of percutaneous treatment of symptomatic recurrent lumbar facet joint cyst resistant to all medical treatments including facet joint steroid injection. Percutaneous transfacet fixation was then performed at L4–L5 level with a cannulated screw using CT and fluoroscopy guidance. The procedure time was 30 min. Using the visual analog scale (VAS), pain decreased from 9.5, preoperatively, to 0 after the procedure. At 6-month follow-up, an asymptomatic cystic recurrence was observed, which further reduced at the 1-year follow-up. Pain remained stable (VAS at 0) during all follow-ups. CT- and fluoroscopy-guided percutaneous cyst rupture associated with facet screw fixation couldmore » be an alternative to surgery in patients suffering from a symptomatic recurrent lumbar facet joint cyst.« less

  12. A prospective, randomized pilot study on the safety and efficacy of recombinant human growth and differentiation factor-5 coated onto β-tricalcium phosphate for sinus lift augmentation.

    PubMed

    Koch, Felix P; Becker, Jürgen; Terheyden, Hendrik; Capsius, Björn; Wagner, Wilfried

    2010-11-01

    The aim of this prospective, randomized clinical trial was to investigate the potential of recombinant human growth and differentiation factor-5 (rhGDF-5) coated onto β-tricalcium phosphate (β-TCP) (rhGDF-5/β-TCP) to support bone formation after sinus lift augmentation. In total, 31 patients participated in this multicenter clinical trial. They required a two-stage unilateral maxillary sinus floor augmentation (residual bone height <5 mm). According to a parallel-group design, the patients were randomized to three treatment groups: (a) augmentation with rhGDF-5/β-TCP and a 3-month healing period, (b) augmentation with rhGDF-5/β-TCP and a 4-month healing period and (c) medical device β-TCP mixed with autologous bone and a 4-month healing period. The primary study objective was the area of newly formed bone within the augmented area as assessed by histomorphometric evaluation of trephine bur biopsies. The osseous regeneration was similar in each treatment group; the amount of newly formed bone ranged between 28% (± 15.5%) and 31.8% (± 17.9%). Detailed analysis of histological data will be published elsewhere. As secondary efficacy variables, the augmentation height at the surgery site was measured by radiography. The largest augmentation was radiologically achieved in the rhGDF-5/β-TCP - 3-month and the rhGDF-5/β-TCP - 4-month treatment groups. As safety parameters, adverse events were recorded and anti-drug antibody levels were evaluated. Most of the adverse events were judged as unrelated to the study medication. Four out of 47 (8.5%) implants failed in patients treated with rhGDF-5/β-TCP, a result that is in agreement with the general implant failure rate of 5-15%. Transiently very low amounts of anti-rhGDF-5 antibodies were detected in some patients who received rhGDF-5, which was not related to the bone formation outcome. rhGDF-5/β-TCP was found to be effective and safe as the control treatment with autologous bone mixed β-TCP in sinus floor augmentation. Thus, further investigation regarding efficacy and safety will be carried out in larger patient populations. © 2010 John Wiley & Sons A/S.

  13. Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces

    DOE PAGES

    Kaghazchi, Payam; Jacob, Timo; Chen, Wenhua; ...

    2013-06-03

    Here, we report adsorption and desorption of hydrogen on planar Ir(210) and faceted Ir(210), consisting of nanoscale {311} and (110) facets, by means of temperature programmed desorption (TPD) and density functional theory (DFT) in combination with the ab initio atomistic thermodynamics approach. TPD spectra show that only one H 2 peak is seen from planar Ir(210) at all coverages whereas a single H 2 peak is observed at around 440 K (F1) at fractional monolayer (ML) coverage and an additional H 2 peak appears at around 360 K (F2) at 1 ML coverage on faceted Ir(210), implying structure sensitivity inmore » recombination and desorption of hydrogen on faceted Ir(210) versus planar Ir(210), but no evidence is found for size effects in recombination and desorption of hydrogen on faceted Ir(210) for average facet sizes of 5-14 nm. Calculations indicate that H prefers to bind at the two-fold short-bridge sites of the Ir surfaces. In addition, we studied the stability of the Ir surfaces in the presence of hydrogen at different H coverages through surface free energy plots as a function of the chemical potential, which is also converted to a temperature scale. Moreover, the calculations revealed the origin of the two TPD peaks of H 2 from faceted Ir(210): F1 from desorption of H 2 on {311} facets while F2 from desorption of H 2 on (110) facets.« less

  14. A simple technique for measurement of pressure in the tympanitic rumen of cattle.

    PubMed

    Turner, C B; Whyte, T D

    1978-05-13

    The construction and method of use of a simple device for the non-invasive measurement of intra-rumenal pressure is outlined. Results obtained from calves suffering from increased intra-rumenal pressure (bloat) are shown. The method is capable of quantifying pressures involved in bloat and could be used to augment the visual assessment of bloat scoring.

  15. Augmentative and Alternative Communication in Autism: A Comparison of the Picture Exchange Communication System and Speech-Output Technology

    ERIC Educational Resources Information Center

    Boesch, Miriam Chacon

    2011-01-01

    The purpose of this comparative efficacy study was to investigate the Picture Exchange Communication System (PECS) and a speech-generating device (SGD) in developing requesting skills, social-communicative behavior, and speech for three elementary-age children with severe autism and little to no functional speech. Requesting was selected as the…

  16. Effects of Peer Assisted Communication Application Training on the Communicative and Social Behaviors of Children with Autism

    ERIC Educational Resources Information Center

    Strasberger, Sean

    2013-01-01

    Non-verbal children with autism are candidates for augmentative and alternative communication (AAC). One type of AAC device is a voice output communication aid (VOCA). The primary drawbacks of past VOCAs were their expense and portability. Newer iPod-based VOCAs alleviate these concerns. This dissertation sought to extend the iPod-based VOCA…

  17. Application of Human Augmentics: A Persuasive Asthma Inhaler.

    PubMed

    Grossman, Brent; Conner, Steve; Mosnaim, Giselle; Albers, Joshua; Leigh, Jason; Jones, Steve; Kenyon, Robert

    2017-03-01

    This article describes a tailored health intervention delivered on a mobile phone platform, integrating low-literacy design strategies and basic principles of behavior change, to promote increased adherence and asthma control among underserved minority adolescents. We based the intervention and design principles on theories of Human Augmentics and the Elaboration Likelihood Model. We tested the efficacy of using electronic monitoring devices that incorporate informative and persuasive elements to improve adherence to a prescribed daily medication regimen intended to reduce use of asthma rescue medications. We describe the theoretical framework, hardware and software systems, and results of user testing for design purposes and a clinical pilot study incorporating use of the device and software by the targeted population. The results of the clinical pilot study showed an 83% completion rate for the treatment as well as improved adherence. Of note, 8% and 58% of participants achieved clinically significant adherence targets at baseline and last week of the study, respectively. Rescue asthma medication use decreased from a median of 3 puffs per week at baseline to 0 puffs per week during the last week of the study. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Wearable Improved Vision System for Color Vision Deficiency Correction

    PubMed Central

    Riccio, Daniel; Di Perna, Luigi; Sanniti Di Baja, Gabriella; De Nino, Maurizio; Rossi, Settimio; Testa, Francesco; Simonelli, Francesca; Frucci, Maria

    2017-01-01

    Color vision deficiency (CVD) is an extremely frequent vision impairment that compromises the ability to recognize colors. In order to improve color vision in a subject with CVD, we designed and developed a wearable improved vision system based on an augmented reality device. The system was validated in a clinical pilot study on 24 subjects with CVD (18 males and 6 females, aged 37.4 ± 14.2 years). The primary outcome was the improvement in the Ishihara Vision Test score with the correction proposed by our system. The Ishihara test score significantly improved (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p = 0.03$ \\end{document}) from 5.8 ± 3.0 without correction to 14.8 ± 5.0 with correction. Almost all patients showed an improvement in color vision, as shown by the increased test scores. Moreover, with our system, 12 subjects (50%) passed the vision color test as normal vision subjects. The development and preliminary validation of the proposed platform confirm that a wearable augmented-reality device could be an effective aid to improve color vision in subjects with CVD. PMID:28507827

  19. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    PubMed

    Stone, Scott A; Tata, Matthew S

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  20. Communication skills intervention: promoting effective communication between nurses and mechanically ventilated patients.

    PubMed

    Dithole, K S; Thupayagale-Tshweneagae, Gloria; Akpor, Oluwaseyi A; Moleki, Mary M

    2017-01-01

    Patients in the Intensive Care Unit (ICU) often experience communication difficulties - usually associated with mechanical ventilation - resulting in psychological problems such as anxiety, fear, and depression. Good communication between nurses and patients is critical for success from personalised nursing care of each patient. The purpose of this study is to describe nurses' experience of a communication skills training intervention. A convenience sample of twenty intensive care nurses participated in the study. Data was collected by means of interviews with nurses. Data from the interviews were analysed using qualitative thematic content analysis. Six themes emerged: (1) acceptance of knowledge and skills developed during workshops; (2) management support; (3) appreciation of augmentative and alternative communication (AAC) devices; (4) change in attitudes; and (5) the need to share knowledge with others and (6) inclusion of communication skills workshop training as an integral part of an orientation programme for all nurses. The findings of this study indicated that the application of augmentative and alternative communication devices and strategies can improve nurse-patient communication in intensive care units. Therefore, the implementation of communication skills training for intensive care nurses should constantly be encouraged and, indeed, introduced as a key element of ICU care training.

Top