Sample records for facile fabrication method

  1. 76 FR 65544 - Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ...The U.S. Nuclear Regulatory Commission (NRC or Commission) is issuing a revision to regulatory guide (RG) 3.39, ``Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This guide endorses the standard format and content for license applications and integrated safety analysis (ISA) summaries described in the current version of NUREG-1718, ``Standard Review Plan for the Review of an Application for a Mixed Oxide (MOX) Fuel Fabrication Facility,'' as a method that the NRC staff finds acceptable for meeting the regulatory requirements of Title 10 of the Code of Federal Regulations (10 CFR) part 70, ``Domestic Licensing of Special Nuclear Material'' for mixed oxide fuel fabrication facilities.

  2. Validation of cleaning method for various parts fabricated at a Beryllium facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Cynthia M.

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic berylliummore » disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.« less

  3. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Han, Mei; Li, Yubing; He, Jingjing; Wang, Bing; Wang, Kunjie; Feng, Huixia

    2017-12-01

    Herein, we report an ultra-facile fabrication method for a phosphorus doped egg-like hierarchic porous carbon by microwave irradiation combining with self-activation strategy under air atmosphere. Comparing with the traditional pyrolytic carbonization method, the reported method exhibits incomparable merits, such as high energy efficiency, ultra-fast and inert atmosphere protection absent fabrication process. Similar morphology and graphitization degree with the sample fabricated by the traditional pyrolytic carbonization method under inert atmosphere protection for 2 h can be easily achieved by the reported microwave irradiation method just for 3 min under ambient atmosphere. The samples fabricated by the reported method display a unique phosphorus doped egg-like hierarchic porous structure, high specific surface area (1642 m2 g-1) and large pore volume (2.04 cm3 g-1). Specific capacitance of the samples fabricated by the reported method reaches up to 209 F g-1, and over 96.2% of initial capacitance remains as current density increasing from 0.5 to 20 A g-1, indicating the superior capacitance performance of the fabricated samples. The hierarchic porous structure, opened microporosity, additional pseudocapacitance, high electrolyte-accessible surface area and good conductivity make essential contribution to its superior capacitance performance.

  4. Preparation of antibacterial textile using laser ablation method

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Rashidian, M.; Dorranian, D.

    2018-02-01

    A facile in situ laser ablation synthesis of Copper nanoparticles on cotton fabric is reported in this paper. This synthetic method is a laser ablation based fabrication of Cu nanoparticles on cotton fabric for improved performance and antibacterial activity. The treated cotton fabric was characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, UV-Visible spectroscopic techniques and antibacterial counting test. Very good antibacterial behavior of treated fabrics achieved. This fabric can be used as medical and industrial textiles.

  5. Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    NASA Technical Reports Server (NTRS)

    Daniels, J. B.; Dowdle, D. M.; Hahn, D. W.; Hildreth, E. N.; Lagerquist, D. R.; Mahagnoul, E. J.; Munson, J. B.; Origer, T. F.

    1977-01-01

    The designs and fabrication methods, equipment, facilities, economics, and schedules, for the square sail sheet alternate are evaluated. The baseline for the spinning sail blade design and related fabrication issues are assessed.

  6. A quiet flow Ludwieg tube for study of transition in compressible boundary layers: Design and feasibility

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1990-01-01

    Since Ludwieg tubes have been around for many years, and NASA has already established the feasibility of creating quiet-flow wind tunnels, the major question addressed was the cost of the proposed facility. Cost estimates were obtained for major system components, and new designs which allowed fabrication at lower cost were developed. A large fraction of the facility cost comes from the fabrication of the highly polished quiet-flow supersonic nozzle. Methods for the design of this nozzle were studied at length in an attempt to find an effective but less expensive design. Progress was sufficient to show that a quality facility can be fabricated at a reasonable cost.

  7. Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing

    NASA Astrophysics Data System (ADS)

    Li, Jin-Tao; Jia, Xian-Sheng; Yu, Gui-Feng; Yan, Xu; He, Xiao-Xiao; Yu, Miao; Gong, Mao-Gang; Ning, Xin; Long, Yun-Ze

    2016-09-01

    A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

  8. Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing.

    PubMed

    Li, Jin-Tao; Jia, Xian-Sheng; Yu, Gui-Feng; Yan, Xu; He, Xiao-Xiao; Yu, Miao; Gong, Mao-Gang; Ning, Xin; Long, Yun-Ze

    2016-12-01

    A facile method termed magneto-mechanical drawing is used to produce polymer composite microfibers. Compared with electrospinning and other fiber spinning methods, magneto-mechanical drawing uses magnetic force generated by a permanent magnet to draw droplets of polymer/magnetic nanoparticle suspensions, leading to fabrication of composite microfibers. In addition, because of the rotating collector, it is easy to control the fiber assembly such as fibrous array in parallel or crossed fibrous structure. The general applicability of this method has also been proved by spinning different polymers and magnetic nanoparticles. The resultant fibers exhibit good superparamagnetic behavior at room temperature and ultrahigh stretchability (~443.8 %). The results indicate that magneto-mechanical drawing is a promising technique to fabricate magnetic and stretchable microfibers and devices.

  9. A facile and low-cost micro fabrication material: flash foam.

    PubMed

    He, Yong; Xiao, Xiao; Wu, Yan; Fu, Jian-zhong

    2015-08-28

    Although many microfabrication methods have been reported, the preliminary replication templates used in most microfabrication still depend on the expensive and long-period photolithography. This paper explores an alternative replication templates based on a daily used material, flash foam (FF), and proposes a facile microfabrication method, flash foam stamp lithography (FFSL). When FF is exposed with a desired pattern mask, the negative of the pattern is transferred to its surface and micro structures are formed due to the shrinkage of the exposed area. As FF is commonly used in personal stamps, FFSL is very simple and cost-effective. In this paper, we demonstrated that FF is a good and low-cost template for many micro fabrication methods, such as micro casting and soft lithography. Thus, designing and fabricating micro structures at personal office immediately become possible with FFSL. Furthermore, we demonstrated that multi-scale micro structures can be easily fabricated by double exposure with FFSL. Skin textures is used as another case to demonstrate that FFSL can fabricate structures with different depth in a single exposure. As a result, FF shows a promising future in biology, and analytical chemistry, such as rapid fabrication of point of care diagnostics and microfluidic analytical devices with low cost.

  10. Fabrication of amorphous silica nanowires via oxygen plasma treatment of polymers on silicon

    NASA Astrophysics Data System (ADS)

    Chen, Zhuojie; She, Didi; Chen, Qinghua; Li, Yanmei; Wu, Wengang

    2018-02-01

    We demonstrate a facile non-catalytic method of fabricating silica nanowires at room temperature. Different polymers including photoresists, parylene C and polystyrene are patterned into pedestals on the silicon substrates. The silica nanowires are obtained via the oxygen plasma treatment on those pedestals. Compared to traditional strategies of silica nanowire fabrication, this method is much simpler and low-cost. Through designing the proper initial patterns and plasma process parameters, the method can be used to fabricate various regiment nano-scale silica structure arrays in any laboratory with a regular oxygen-plasma-based cleaner or reactive-ion-etching equipment.

  11. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Mirzaei, Ali; Kim, Hyoun Woo; Kim, Sang Sub

    2018-05-01

    Stainless steels are among the most common engineering materials and are used extensively in humid areas. Therefore, it is important that these materials must be robust to humidity and corrosion. This paper reports the fabrication of superhydrophobic surfaces from austenitic stainless steel (type AISI 304) using a facile two-step chemical etching method. In the first step, the stainless steel plates were etched in a HF solution, followed by a fluorination process, where they showed a water contact angle (WCA) of 166° and a sliding angle of 5° under the optimal conditions. To further enhance the superhydrophobicity, in the second step, they were dipped in a 0.1 wt.% NaCl solution at 100 °C, where the WCA was increased to 168° and the sliding angle was decreased to ∼2°. The long-term durability of the fabricated superhydrophobic samples for 1 month storage in air and water was investigated. The potential applicability of the fabricated samples was demonstrated by the excellent superhydrophobicity after 1 month. In addition, the self-cleaning properties of the fabricated superhydrophobic surface were also demonstrated. This paper outlines a facile, low-cost and scalable chemical etching method that can be adopted easily for large-scale purposes.

  12. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography

    NASA Astrophysics Data System (ADS)

    Wu, Yuanzi; Jiang, Ye; Zheng, Xiaoshan; Jia, Shasha; Zhu, Zhi; Ren, Bin; Ma, Hongwei

    2018-04-01

    We describe a facile and low-cost approach for a flexibly integrated surface-enhanced Raman scattering (SERS) substrate in microfluidic chips. Briefly, a SERS substrate was fabricated by the electrostatic assembling of gold nanoparticles, and shaped into designed patterns by subsequent lift-up soft lithography. The SERS micro-pattern could be further integrated within microfluidic channels conveniently. The resulting microfluidic SERS chip allowed ultrasensitive in situ SERS monitoring from the transparent glass window. With its advantages in simplicity, functionality and cost-effectiveness, this method could be readily expanded into optical microfluidic fabrication for biochemical applications.

  13. Facile fabrication of networked patterns and their superior application to realize the virus immobilized networked pattern circuit.

    PubMed

    Choi, Kyung Min; Lee, Seok Jae; Choi, Jung Hoon; Park, Tae Jung; Park, Jong Wan; Shin, Weon Ho; Kang, Jeung Ku

    2010-12-07

    A facile route to fabricate a protein-immobilized network pattern circuit for rapid and highly sensitive diagnosis was developed via the evaporation directed impromptu patterning method and selective avian influenza virus (AIV) immobilization. The response to the 10 fg mL(-1) anti-AI antibody demonstrates that this easy and simple circuit has about 1000 times higher sensitivity compared to those of conventional approaches.

  14. Respirator use and its impact on particulate matter exposure in aluminum manufacturing facilities.

    PubMed

    Liu, Sa; Noth, Elizabeth; Eisen, Ellen; Cullen, Mark R; Hammond, Katharine

    2018-05-31

    Objectives As part of a large epidemiologic study of particulate health effect, this study aimed to report respirator use among total particulate matter (TPM) samples collected in a major aluminum manufacturing company from 1966‒2013 and evaluate the impact of respirator-use adjustment on exposure estimation. Methods Descriptive analyses were performed to evaluate respirator use across facilities and by facility type and job. Protection factors were applied to TPM measurements for recorded respirator use. Estimated TPM exposure for each job ‒ before and after respirator-use adjustment ‒ were compared to assess the impact of adjustment on exposure estimation. Results Respirator use was noted for 37% of 12 402 full-shift personal TPM samples. Measured TPM concentration ranged from less than detectable to 8220 mg/m3, with arithmetic mean, median and standard deviation being 10.6, 0.87 and 130 mg/m 3 , respectively. Respirators were used more often in smelting facilities (52% of TPM measurements) than in fabricating (17%) or refinery facilities (28%) (P<0.01). Sixty-two percent of jobs in smelting facilities were subject to respirator-use adjustment, whereas it was 20% and 70% in fabricating and refinery facilities, respectively. Applying protection factors to TPM measurements significantly reduced estimated job mean TPM exposures and changed exposure categories in these facilities, with larger impact in smelting than fabricating facilities. Conclusions Respirator use varied by time, facility and job. Adjusting respirator use resulted in differential impact in smelting and fabricating facilities, which will need to be incorporated into ongoing epidemiologic studies accordingly.

  15. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances

    NASA Astrophysics Data System (ADS)

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-01

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d

  16. A facile and low-cost micro fabrication material: flash foam

    PubMed Central

    He, Yong; Xiao, Xiao; Wu, Yan; Fu, Jian-zhong

    2015-01-01

    Although many microfabrication methods have been reported, the preliminary replication templates used in most microfabrication still depend on the expensive and long-period photolithography. This paper explores an alternative replication templates based on a daily used material, flash foam (FF), and proposes a facile microfabrication method, flash foam stamp lithography (FFSL). When FF is exposed with a desired pattern mask, the negative of the pattern is transferred to its surface and micro structures are formed due to the shrinkage of the exposed area. As FF is commonly used in personal stamps, FFSL is very simple and cost-effective. In this paper, we demonstrated that FF is a good and low-cost template for many micro fabrication methods, such as micro casting and soft lithography. Thus, designing and fabricating micro structures at personal office immediately become possible with FFSL. Furthermore, we demonstrated that multi-scale micro structures can be easily fabricated by double exposure with FFSL. Skin textures is used as another case to demonstrate that FFSL can fabricate structures with different depth in a single exposure. As a result, FF shows a promising future in biology, and analytical chemistry, such as rapid fabrication of point of care diagnostics and microfluidic analytical devices with low cost. PMID:26314247

  17. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances.

    PubMed

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-28

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO(4) photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.

  18. Fabrication of (U, Zr) C-fueled/tungsten-clad specimens for irradiation in the Plum Brook Reactor Facility

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Fuel samples, 90UC - 10 ZrC, and chemically vapor deposited tungsten fuel cups were fabricated for the study of the long term dimensional stability and compatibility of the carbide-tungsten fuel-cladding systems under irradiation. These fuel samples and fuel cups were assembled into the fuel pins of two capsules, designated as V-2E and V-2F, for irradiation in NASA Plum Brook Reactor Facility at a fission power density of 172 watts/c.c. and a miximum cladding temperature of 1823 K. Fabrication methods and characteristics of the fuel samples and fuel cups prepared are described.

  19. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Ams, Martin; Dekker, Peter; Gross, Simon; Withford, Michael J.

    2017-01-01

    Optical waveguide Bragg gratings (WBGs) can be created in transparent materials using femtosecond laser pulses. The technique is conducted without the need for lithography, ion-beam fabrication methods, or clean room facilities. This paper reviews the field of ultrafast laser-inscribed WBGs since its inception, with a particular focus on fabrication techniques, WBG characteristics, WBG types, and WBG applications.

  20. One-step fabrication of multifunctional micromotors

    NASA Astrophysics Data System (ADS)

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-08-01

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k

  1. Facile fabrication of a poly(ethylene terephthalate) membrane filter with precise arrangement of through-holes

    NASA Astrophysics Data System (ADS)

    Kihara, Naoto; Odaka, Hidefumi; Kuboyama, Daiki; Onoshima, Daisuke; Ishikawa, Kenji; Baba, Yoshinobu; Hori, Masaru

    2018-03-01

    Although membrane filters are indispensable in biochemical analysis fields, most methods for through-hole fabrication are complex and inefficient. We developed a simple method of fabricating poly(ethylene terephthalate) (PET) membrane filters with a precise arrangement of through-holes for the isolation of circulating tumor cells (CTCs) based on their size. By photolithography and dry etching, highly packed 380,000 through-holes with a diameter of 7 µm were able to cover a whole area with a diameter of 13 mm. Device fabrication for the size-based capture of rare cells in blood such as CTCs is realized in this study.

  2. Fabrication of Bendable Circuits on a Polydimethylsiloxane (PDMS) Surface by Inkjet Printing Semi-Wrapped Structures

    PubMed Central

    Sun, Jiazhen; Jiang, Jieke; Bao, Bin; Wang, Si; He, Min; Zhang, Xingye; Song, Yanlin

    2016-01-01

    In this work, an effective method was developed to fabricate bendable circuits on a polydimethylsiloxane (PDMS) surface by inkjet printing semi-wrapped structures. It is demonstrated that the precured PDMS liquid film could influence the depositing morphology of coalesced silver precursor inkjet droplets. Accordingly, continuous and uniform lines with a semi-wrapped structure were fabricated on the PDMS surface. When the printed silver precursor was reduced to Ag nanoparticles, the fabricated conductive film exhibited good transparency and high bendability. This work presented a facile way to fabricate flexible patterns on a PDMS surface without any complicated modification or special equipment. Meanwhile, an in situ hydrazine reduction of Ag has been reported using the vapor phase method in the fabricating process. PMID:28773374

  3. Facile synthesis of carbon dots with superior sensing ability

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Li, Jingguo; Liu, Liyun; Wang, Zhenling; Zhang, Xingcai

    2018-04-01

    Carbon dots (CDs) have various applications in biomedical and environmental field, such as bio-imaging, bio-sensing and heavy metal detection. In this study, a novel class of CDs were synthesized using a one-step hydrothermal method. The fabricated CDs displayed stable photoluminescence, good water solubility, and photo stability. Moreover, the functional groups (carboxylic acid moieties and hydroxyls) on the surface of the obtained CDs enable it with superior sensing ability (e.g., very low detectable concentration for Pb2+: 5 nmol/L). With superior detection sensitivity, excellent fluorescent properties and facile fabrication method, the as-obtained CDs can find practical applications as cost-effective and sensitive chemo-sensors in water and food safety field.

  4. Facile Fabrication of 3D Layer-by-layer Graphene-gold Nanorod Hybrid Architecture for Hydrogen Peroxide Based Electrochemical Biosensor

    DTIC Science & Technology

    2015-01-01

    measurement techniques such as radioisotope tracing, NMR spectroscopy, and microfluorometry assay [12,25,18]. In recent years, electrochemical biosensors...control number. 1. REPORT DATE 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Facile Fabrication of 3D...Claussen, S. Jedlicka, J.L. Rickus, D.M. Porterfield, J. Neurosci. Methods 189 (2010) 14–22. [17] E.S. McLamore, J. Shi, D. Jaroch, J.C. Claussen, A

  5. 30 CFR 285.702 - What must I include in my Fabrication and Installation Report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Reports § 285.702 What must I include in my Fabrication and... fabricated and installed in accordance with the design criteria identified in the Facility Design Report...

  6. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  7. Facile fabrication of mesoporous silica micro-jets with multi-functionalities† †Electronic supplementary information (ESI) available: Detailed BET experiments, videos and supplementary data. See DOI: 10.1039/c7nr04527a

    PubMed Central

    Vilela, D.; Hortelao, A. C.; Balderas-Xicohténcatl, R.; Hirscher, M.; Hahn, K.

    2017-01-01

    Self-propelled micro/nano-devices have been proved as powerful tools in various applications given their capability of both autonomous motion and on-demand task fulfilment. Tubular micro-jets stand out as an important member in the family of self-propelled micro/nano-devices and are widely explored with respect to their fabrication and functionalization. A few methods are currently available for the fabrication of tubular micro-jets, nevertheless there is still a demand to explore the fabrication of tubular micro-jets made of versatile materials and with the capability of multi-functionalization. Here, we present a facile strategy for the fabrication of mesoporous silica micro-jets (MSMJs) for tubular micromotors which can carry out multiple tasks depending on their functionalities. The synthesis of MSMJs does not require the use of any equipment, making it facile and cost-effective for future practical use. The MSMJs can be modified inside, outside or both with different kinds of metal nanoparticles, which provide these micromotors with a possibility of additional properties, such as the anti-bacterial effect by silver nanoparticles, or biochemical sensing based on surface enhanced Raman scattering (SERS) by gold nanoparticles. Because of the high porosity, high surface area and also the easy surface chemistry process, the MSMJs can be employed for the efficient removal of heavy metals in contaminated water, as well as for the controlled and active drug delivery, as two proof-of-concept examples of environmental and biomedical applications, respectively. Therefore, taking into account the new, simple and cheap method of fabrication, highly porous structure, and multiple functionalities, the mesoporous silica based micro-jets can serve as efficient tools for desired applications. PMID:28891580

  8. One-step fabrication of multifunctional micromotors.

    PubMed

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y

    2015-09-07

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.

  9. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su

    2015-06-01

    Tricobalt tetroxide (Co3O4) nanoplate arrays (NPAs) were synthesized on flexible conductive fabric substrate (FCFs) by a facile two-electrode system based electrochemical deposition method, followed by a simple heat treatment process. Initially, cobalt hydroxide (Co(OH)2) NPAs were electrochemically deposited on FCFs by applying an external voltage of -1.5 V for 30 min. Then, the Co3O4 NPAs on FCFs was obtained by thermal treatment of as-deposited Co(OH)2 NPAs on FCFs at 200 °C for 2 h. From the analysis of morphological and crystal properties, the Co3O4 NPAs were well integrated and uniformly covered over the entire surface of substrate with good crystallinity in the cubic phase. Additionally, the fabricated sample was directly used as a binder-free electrode to examine the feasibility for electrochemical supercapacitors using cyclic voltammetry and galvanic charge-discharge measurements in 1 M KOH electrolyte solution. The Co3O4 NPAs coated FCFs electrode exhibited a maximum specific capacitance of 145.6 F/g at a current density of 1 A/g and an excellent rate capability after 1000 cycles at a current density of 3 A/g. This facile fabrication method for integrating the Co3O4 nanostructures on FCFs could be a promising approach for advanced flexible electronic and energy-storage device applications.

  10. Stretchable V2O5/PEDOT supercapacitors: a modular fabrication process and charging with triboelectric nanogenerators.

    PubMed

    Qi, Ruijie; Nie, Jinhui; Liu, Mingyang; Xia, Mengyang; Lu, Xianmao

    2018-04-26

    Stretchable energy storage devices are of great importance for the viable applications of wearable/stretchable electronics. Studies on stretchable energy storage devices, especially supercapacitors (SCs), have shown encouraging progress. However, challenges still remain in the pursuit of high specific capacitances and facile fabrication methods. Herein, we report a modular materials fabrication and assembly process for stretchable SCs. With a V2O5/PEDOT composite as the active material, the resulting stretchable SCs exhibited high areal specific capacitances up to 240 mF cm-2 and good capacitance retention at a strain of 50%. To demonstrate the facile assembly process, a stretchable wristband was fabricated by simply assembling SC cells in series to deliver a voltage higher than 2 V. Charging the wristband with a triboelectric nanogenerator (TENG) to light an LED was further demonstrated, indicating the potential to integrate our SCs with environmental energy harvesters for self-powered stretchable devices.

  11. Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.; ...

    2018-01-25

    The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less

  12. Progress Toward Fabrication of Machined Metal Shells for the First Double-Shell Implosions at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek W.; Loomis, Eric N.

    The double-shell platform fielded at the National Ignition Facility requires developments in new machining techniques and robotic assembly stations to meet the experimental specifications. Current double-shell target designs use a dense high-Z inner shell, a foam cushion, and a low-Z outer shell. The design requires that the inner shell be gas filled using a fill tube. This tube impacts the entire machining and assembly design. Other intermediate physics designs have to be fielded to answer physics questions and advance the technology to be able to fabricate the full point design in the near future. One of these intermediate designs ismore » a mid-Z imaging design. The methods of designing, fabricating, and characterizing each of the major components of an imaging double shell are discussed with an emphasis on the fabrication of the machined outer metal shell.« less

  13. Synthesis, surface modification and biological imaging of aggregation-induced emission (AIE) dye doped silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-05-01

    Fluorescent silica nanoparticles (FSNPs) have been extensively investigated for various biomedical applications in recently years. However, the aggregation of organic dyes in silica nanoparticles also leads the significant fluorescence quenching owing to the aggregation caused quenching effects of organic dyes. Herein, we developed a rather facile strategy to fabricate FSNPs with desirable fluorescent properties through non-covalent incorporation of fluorophores with aggregation-induced emission (AIE) feature into silica nanoparticles, which were subsequently modified with functional polymers. The resultant FSNPs polymer nanocomposites (named as FSNPs-poly(IA-co-PEGMA)) exhibited uniform spherical morphology, high water dispersiity, and bright red fluorescence. Cytotoxicity results indicate that FSNPs-poly(IA-co-PEGMA) possess excellent biocompatibility. Cell uptake behavior suggests FSNPs-poly(IA-co-PEGMA) are of great potential for biological imaging applications. Taken together, we have reported a facile method for the fabrication of FSNPs through non-covalent encapsulation using an AIE-active dye. These FSNPs can be further functionalized with functional polymers through ring-opening reaction and the resultant FSNPs-poly(IA-co-PEGMA) showed great potential for biological imaging. More importantly, we believe that many other functional components could also be integrated into these FSNPs through the facile ring-opening reaction. Therefore, this method should be a facile and general tool for fabrication of polymer functionalized AIE-active FSNPs.

  14. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    PubMed

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  15. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.S.

    1993-09-01

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  16. Biomedical microfluidic devices by using low-cost fabrication techniques: A review.

    PubMed

    Faustino, Vera; Catarino, Susana O; Lima, Rui; Minas, Graça

    2016-07-26

    One of the most popular methods to fabricate biomedical microfluidic devices is by using a soft-lithography technique. However, the fabrication of the moulds to produce microfluidic devices, such as SU-8 moulds, usually requires a cleanroom environment that can be quite costly. Therefore, many efforts have been made to develop low-cost alternatives for the fabrication of microstructures, avoiding the use of cleanroom facilities. Recently, low-cost techniques without cleanroom facilities that feature aspect ratios more than 20, for fabricating those SU-8 moulds have been gaining popularity among biomedical research community. In those techniques, Ultraviolet (UV) exposure equipment, commonly used in the Printed Circuit Board (PCB) industry, replaces the more expensive and less available Mask Aligner that has been used in the last 15 years for SU-8 patterning. Alternatively, non-lithographic low-cost techniques, due to their ability for large-scale production, have increased the interest of the industrial and research community to develop simple, rapid and low-cost microfluidic structures. These alternative techniques include Print and Peel methods (PAP), laserjet, solid ink, cutting plotters or micromilling, that use equipment available in almost all laboratories and offices. An example is the xurography technique that uses a cutting plotter machine and adhesive vinyl films to generate the master moulds to fabricate microfluidic channels. In this review, we present a selection of the most recent lithographic and non-lithographic low-cost techniques to fabricate microfluidic structures, focused on the features and limitations of each technique. Only microfabrication methods that do not require the use of cleanrooms are considered. Additionally, potential applications of these microfluidic devices in biomedical engineering are presented with some illustrative examples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 30 CFR 285.708 - What are the CVA's or project engineer's primary duties for fabrication and installation review?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified... Facility Design Report and Fabrication and Installation Report. (1) If the CVA or project engineer finds...

  18. A novel approach for fabricating NiO hollow spheres for gas sensors

    NASA Astrophysics Data System (ADS)

    Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong

    2018-03-01

    Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.

  19. Double arch mirror study. Part 3: Fabrication and test report

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, glass mirror was developed for infrared, astronomical telescopes such as the Space Infrared Telescope Facility (SIRTF). A 50 cm, fused silica mirror which was previously fabricated was modified for use with a new mount configuration. This mount concept was developed. The modification of the mirror, the fabrication of the mirror mount, and the room temperature testing of the mounted mirror are reported. A design for a SIRTF class primary mirror is suggested.

  20. Renovation of the hot press in the Plutonium Experimental Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.; Nelson, G.H.

    1990-03-05

    The Plutonium Experimental Facility (PEF) will be used to develop a new fuel pellet fabrication process and to evaluate equipment upgrades. The facility was used from 1978 until 1982 to optimize the parameters for fuel pellet production using a process which was developed at Los Alamos National Laboratory. The PEF was shutdown and essentially abandoned until mid-1987 when the facility renovations were initiated by the Actinide Technology Section (ATS) of SRL. A major portion of the renovation work was related to the restart of the hot press system. This report describes the renovations and modifications which were required to restartmore » the PEF hot press. The primary purpose of documenting this work is to help provide a basis for Separations to determine the best method of renovating the hot press in the Plutonium Fuel Fabrication (PuFF) facility. This report also includes several SRL recommendations concerning the renovation and modification of the PuFF hot press. 4 refs.« less

  1. ABR - Home

    Science.gov Websites

    Argonne National Laboratory Applied Battery Research for Transportation Program DOE Logo Home ; ABR > About ABR Projects News cell fabrication faciity posttest facility MERF Cell Fabrication Facility Post-Test Facility Materials Engineering Research Facility Battery News Recent Reports Funding

  2. Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing.

    PubMed

    Zhang, Shumin; Zhang, Pingping; Wang, Yun; Ma, Yanyun; Zhong, Jun; Sun, Xuhui

    2014-09-10

    Well-ordered Cu-doped and undoped SnO2 porous thin films with large specific surface areas have been fabricated on a desired substrate using a self-assembled soft template combined with simple physical cosputtering deposition. The Cu-doped SnO2 porous film gas sensor shows a significant enhancement in its sensing performance, including a high sensitivity, selectivity, and a fast response and recovery time. The sensitivity of the Cu-doped SnO2 porous sensor is 1 order of magnitude higher than that of the undoped SnO2 sensor, with average response and recovery times to 100 ppm of H2S of ∼ 10.1 and ∼ 42.4 s, respectively, at the optimal operating temperature of 180 °C. The well-defined porous sensors fabricated by the method also exhibit high reproducibility because of the accurately controlled fabrication process. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors with easy doping and multilayer porous nanostructure for practical sensing applications.

  3. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGES

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; ...

    2017-03-23

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD 2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD 2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils,more » with no primary signal saturation.« less

  4. Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage

    NASA Astrophysics Data System (ADS)

    Rana, Abu Ul Hassan Sarwar; Kang, Mingi; Kim, Hyun-Seok

    2016-04-01

    The time constraint in the growth of ZnO nanostructures when using a hydrothermal method is of paramount importance in contemporary research, where a long fabrication time rots the very essence of the research on ZnO nanostructures. In this study, we present the facile and ultrafast growth of ZnO nanostructures in a domestic microwave oven within a pressurized environment in just a few minutes. This method is preferred for the conventional solution-based method because of the ultrafast supersaturation of zinc salts and the fabrication of high-quality nanostructures. The study of the effect of seed layer density, growth time, and the solution’s molar concentration on the morphology, alignment, density, and aspect ratio of ZnO nanorods (ZNRs) is explored. It is found in a microwave-assisted direct growth method that ~5 mins is the optimum time beyond which homogeneous nucleation supersedes heterogeneous nucleation, which results in the growth stoppage of ZNRs. To deal with this issue, we propound different methods such as microwave-assisted solution-replacement, preheating, and PEI-based growth methods, where growth stoppage is addressed and ZNRs with a high aspect ratio can be grown. Furthermore, high-quality ZnO nanoflowers and ZnO nanowalls are fabricated via ammonium hydroxide treatment in a very short time.

  5. Polyurethane-acrylate-based hydrophobic film: Facile fabrication, characterization, and application

    NASA Astrophysics Data System (ADS)

    Park, Jongsung; Nguyen, Bui Quoc Huy; Kim, Ji-Kwan; Shanmugasundaram, Arunkumar; Lee, Dong-Weon

    2018-06-01

    Polyurethane-acrylate (PUA) is a versatile UV-curable polymer with a short curing time at room temperature, whose surface structure can be flexibly modified by applying various micropatterns. In this paper, we propose a facile and cost-effective fabrication method for the continuous production of an optically transparent PUA-based superhydrophobic thin film. Poly(dimethylsiloxane) (PDMS) was employed as a soft mold for the fabrication of PUA films through the roll-to-roll technique. In addition, nanosilica was spray-coated onto the PUA surface to further improve the hydrophobicity. The fabricated PUA thin film showed the highest static water contact angle (WCA) of ∼140°. The high durability of the PUA film was also demonstrated through mechanical impacting tests. Furthermore, only ∼2% of voltage loss was observed in the solar panel covered with the PUA-based superhydrophobic film. These obtained results indicate the feasibility of applying the film as a protective layer in applications requiring a high transparency and a self-cleaning effect.

  6. Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters

    NASA Astrophysics Data System (ADS)

    Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun

    2016-07-01

    We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.

  7. Carbon and metal nanotube hybrid structures on graphene as efficient electron field emitters.

    PubMed

    Heo, Kwang; Lee, Byung Yang; Lee, Hyungwoo; Cho, Dong-Guk; Arif, Muhammad; Kim, Kyu Young; Choi, Young Jin; Hong, Seunghun

    2016-07-08

    We report a facile and efficient method for the fabrication of highly-flexible field emission devices by forming tubular hybrid structures based on carbon nanotubes (CNTs) and nickel nanotubes (Ni NTs) on graphene-based flexible substrates. By employing an infiltration process in anodic alumina oxide (AAO) templates followed by Ni electrodeposition, we could fabricate CNT-wrapped Ni NT/graphene hybrid structures. During the electrodeposition process, the CNTs served as Ni nucleation sites, resulting in a large-area array of high aspect-ratio field emitters composed of CNT-wrapped Ni NT hybrid structures. As a proof of concepts, we demonstrate that high-quality flexible field emission devices can be simply fabricated using our method. Remarkably, our proto-type field emission devices exhibited a current density higher by two orders of magnitude compared to other devices fabricated by previous methods, while maintaining its structural integrity in various bending deformations. This novel fabrication strategy can be utilized in various applications such as optoelectronic devices, sensors and energy storage devices.

  8. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi

    2018-05-01

    Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10-6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.

  9. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing.

    PubMed

    Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi

    2018-05-04

    Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10 -6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.

  10. Fabrication of nickel-foam-supported layered zinc-cobalt hydroxide nanoflakes for high electrochemical performance in supercapacitors.

    PubMed

    Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Liu, Xiaohe; Ma, Renzhi; Qiu, Guanzhou

    2014-10-04

    Nickel foam supported Zn-Co hydroxide nanoflakes were fabricated by a facile solvothermal method. Benefited from the unique structure of Zn-Co hydroxide nanoflakes on a nickel foam substrate, the as prepared materials exhibited an excellent specific capacitance of 901 F g(-1) at 5 A g(-1) and remarkable cycling stability as electrode materials in supercapacitors.

  11. Facile Fabrication of Hierarchically Thermoresponsive Binary Polymer Pattern for Controlled Cell Adhesion.

    PubMed

    Hou, Jianwen; Cui, Lele; Chen, Runhai; Xu, Xiaodong; Chen, Jiayue; Yin, Ligang; Liu, Jingchuan; Shi, Qiang; Yin, Jinghua

    2018-03-01

    A versatile platform allowing capture and detection of normal and dysfunctional cells on the same patterned surface is important for accessing the cellular mechanism, developing diagnostic assays, and implementing therapy. Here, an original and effective method for fabricating binary polymer brushes pattern is developed for controlled cell adhesion. The binary polymer brushes pattern, composed of poly(N-isopropylacrylamide) (PNIPAAm) and poly[poly(ethylene glycol) methyl ether methacrylate] (POEGMA) chains, is simply obtained via a combination of surface-initiated photopolymerization and surface-activated free radical polymerization. This method is unique in that it does not utilize any protecting groups or procedures of backfilling with immobilized initiator. It is demonstrated that the precise and well-defined binary polymer patterns with high resolution are fabricated using this facile method. PNIPAAm chains capture and release cells by thermoresponsiveness, while POEGMA chains possess high capability to capture dysfunctional cells specifically, inducing a switch of normal red blood cells (RBCs) arrays to hemolytic RBCs arrays on the pattern with temperature. This novel platform composed of binary polymer brush pattern is smart and versatile, which opens up pathways to potential applications as microsensors, biochips, and bioassays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method.

    PubMed

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed

    2016-08-10

    Here, we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2·xH2O, Zn2(bdc)2·xH2O, HKUST-1, and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel, and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Therefore, paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  13. 30 CFR 285.710 - When conducting onsite installation inspections, what must the CVA or project engineer do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified Verification Agent... Facility Design Report and the Fabrication and Installation Report. (b) For a fixed or floating facility...

  14. Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes.

    PubMed

    Liu, Lihui; Shang, Wenjuan; Han, Chao; Zhang, Qing; Yao, Yao; Ma, Xiaoqian; Wang, Minghao; Yu, Hongtao; Duan, Yu; Sun, Jie; Chen, Shufen; Huang, Wei

    2018-02-28

    Graphene as one of the most promising transparent electrode materials has been successfully applied in organic light-emitting diodes (OLEDs). However, traditional poly(methyl methacrylate) (PMMA) transfer method usually results in hardly removed polymeric residues on the graphene surface, which induces unwanted leakage current, poor diode behavior, and even device failure. In this work, we proposed a facile and efficient two-in-one method to obtain clean graphene and fabricate OLEDs, in which the poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-(4-sec-butylphenyl)imino)-1,4-phenylene) (TFB) layer was inserted between the graphene and PMMA film both as a protector during the graphene transfer and a hole-injection layer in OLEDs. Finally, green OLED devices were successfully fabricated on the PMMA-free graphene/TFB film, and the device luminous efficiency was increased from 64.8 to 74.5 cd/A by using the two-in-one method. Therefore, the proposed two-in-one graphene transfer method realizes a high-efficient graphene transfer and device fabrication process, which is also compatible with the roll-to-roll manufacturing. It is expected that this work can enlighten the design and fabrication of the graphene-based optoelectronic devices.

  15. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    PubMed

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  16. Flexible and wearable electronic silk fabrics for human physiological monitoring

    NASA Astrophysics Data System (ADS)

    Mao, Cuiping; Zhang, Huihui; Lu, Zhisong

    2017-09-01

    The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.

  17. Simple and fast method for fabrication of endoscopic implantable sensor arrays.

    PubMed

    Tahirbegi, I Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2014-06-26

    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.

  18. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  19. A facile bacterial assisted electrochemical self-assembly of polypyrrole micro-pillars: towards underwater low adhesive superoleophobicity

    NASA Astrophysics Data System (ADS)

    Cheng, Zhe; Ding, Chunmei; Liu, Huan; Zhu, Ying; Jiang, Lei

    2013-12-01

    By taking advantage of bacterial extracellular electron transfer behavior, a facile method was developed to fabricate oriented polypyrrole micro-pillars (PPy-MP) with nanoscale surface roughness. Microbes acted as a living conductive template on which PPy was in situ polymerized. The as-prepared PPy-MP exhibit the distinctive underwater low adhesive superoleophobicity which is attributable to the unique hierarchical micro/nano-structures and the high surface energy by doping with inorganic small anions.By taking advantage of bacterial extracellular electron transfer behavior, a facile method was developed to fabricate oriented polypyrrole micro-pillars (PPy-MP) with nanoscale surface roughness. Microbes acted as a living conductive template on which PPy was in situ polymerized. The as-prepared PPy-MP exhibit the distinctive underwater low adhesive superoleophobicity which is attributable to the unique hierarchical micro/nano-structures and the high surface energy by doping with inorganic small anions. Electronic supplementary information (ESI) available: The shape of a water drop on PPy-MPA and cauliflower-like PPy film in air. See DOI: 10.1039/c3nr03788f

  20. Facile Method and Novel Dielectric Material Using a Nanoparticle-Doped Thermoplastic Elastomer Composite Fabric for Triboelectric Nanogenerator Applications.

    PubMed

    Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng

    2018-04-18

    The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.

  1. Facile and rapid method of synthesizing Lithium Titanate for the use in energy storage

    NASA Astrophysics Data System (ADS)

    Samuel, J. J.; Beh, K. P.; Yam, F. K.

    2018-04-01

    Batteries are an important facet in today’s world. With smaller devices being produced, the challenge to power it with long lasting batteries continue to be quite the task. Recently, a new compound has proved its usefulness in battery fabrication that is Lithium Titanate (LTO). In this study a facile method of producing LTO via hydrolysis of Lithium Nitride and Titanium n-Butoxide. The method used in this study produced LTO in under 7 hours, much quicker than the standard processing time for LTO. The produced LTO is characterized using Raman Spectroscopy.

  2. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoning; Ran, Fen; Shen, Kuiwen; Yang, Yunlong; Wu, Jiayu; Niu, Xiaoqin; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2016-10-01

    In this article, a facile method based on in-situ phase-separation was developed for the fabrication of ultrathin hybrid membranes for highly flexible supercapacitors. The structures and morphologies of the prepared electrodes were characterized by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements; and the electrochemical behaviors were examined in 2 M KOH solution. SEM and FTIR characterizations reveal that activated carbon was imbedded into the polymer membrane of polyethersulfone to form a uniform and flexible hybrid membrane. When the thin polymer-carbon membrane (PCM) was used as an electrode material for supercapacitor, a high specific capacitance of 169.4 Fg-1 was obtained at a current density of 0.5 Ag-1 along with good long-term cycle life of 94.6% capacity retention after 2000 charging-discharging cycles. Benefiting from these merits, the as-fabricated PCM//PCM cell shows an excellent electrochemical property. These results suggest a promising route towards the fabrication of highly flexible electrodes for high-performance supercapacitors.

  3. 30 CFR 285.700 - What reports must I submit to MMS before installing facilities described in my approved SAP, COP...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Reports... (§ 285.651): (1) A Facility Design Report; and (2) A Fabrication and Installation Report. (b) You may...

  4. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method.

    PubMed

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C

    2016-12-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  5. Extraordinary Thermoelectric Performance Realized in Hierarchically Structured AgSbSe2 with Ultralow Thermal Conductivity.

    PubMed

    Gao, Weihong; Wang, Zhenyou; Huang, Jin; Liu, Zihang

    2018-05-24

    Thermoelectric conversion from low-grade heat to electricity is regarded as the highly reliable and environmentally friendly technology in energy-harvesting area. However, how to develop efficient thermoelectric materials using a simple fabrication method is still a critical challenge in thermoelectric community. Here, we first fabricate the high thermoelectric performance of Ca-doped AgSbSe 2 with a hierarchical microstructure using a facile approach, namely, mechanical alloying (for only 30 min) and a quick hot-pressing method. The hierarchical microstructure, including point defects (atomic scale), dislocations, and nanoprecipitates (nanoscale) as well as grain boundaries (microscale), strongly scatters phonons with comparable sizes without deterioration of carrier mobility. Because of the higher carrier concentration of nanostructured AgSbSe 2 than that of coarse-grain AgSbSe 2 , power factor can also be improved slightly after nanostructuring. Ca doping further optimizes the carrier concentration and creates the point-defect scattering of phonons, leading to the ultralow lattice thermal conductivity ∼0.27 W m -1 K -1 at 673 K and thus largely improving the peak ZT up to 1.2. The high thermoelectric performance in combination with a facile fabrication method highlights AgSbSe 2 -based materials as robust thermoelectric candidates for energy harvesting.

  6. Double arch mirror study

    NASA Technical Reports Server (NTRS)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  7. Adhesive bonded structural repair. II - Surface preparation procedures, tools, equipment and facilities

    NASA Astrophysics Data System (ADS)

    Wegman, Raymond F.; Tullos, Thomas R.

    1993-10-01

    A development status report is presented on the surface preparation procedures, tools, equipment, and facilities used in adhesively-bonded repair of aerospace and similar high-performance structures. These methods extend to both metallic and polymeric surfaces. Attention is given to the phos-anodize containment system, paint removal processes, tools for cutting composite prepreg and fabric materials, autoclaves, curing ovens, vacuum bagging, and controlled atmospheres.

  8. Simple and Fast Method for Fabrication of Endoscopic Implantable Sensor Arrays

    PubMed Central

    Tahirbegi, I. Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2014-01-01

    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope. PMID:24971473

  9. 76 FR 22735 - Shaw AREVA MOX Services, Mixed Oxide Fuel Fabrication Facility; License Amendment Request, Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3098; NRC-2011-0081] Shaw AREVA MOX Services, Mixed... following methods: Federal Rulemaking Web site: Go to http://www.regulations.gov and search for documents... publicly available documents related to this notice using the following methods: NRC's Public Document Room...

  10. Facile Hydrothermal Preparation of ZNO/CO3O4 Heterogeneous Nanostructures and its Photovoltaic Effect

    NASA Astrophysics Data System (ADS)

    Wei, Fanan; Jiang, Minlin; Liu, Lianqing

    2015-07-01

    Photovoltaic technology offers great potential in the replacement of fossil fuel resources, but still suffers from high device fabrication cost. Herein, we attempted to provide a solution to these issues with heterogeneous nanostructures. Firstly, Zinc oxide (ZnO)/cobalt oxide (Co3O4) heterojunction nanowires are prepared through facile fabrication methods. By assembling Co(OH)2 nanoplates on ZnO nanowire arrays, the ZnO/Co3O4 heterogeneous nanostructures are uniformly synthesized on ITO coated glass and wafer. Current (I)-voltage (V) measurement through conductive atomic force microscope shows excellent photovoltaic effect. And, the heterojunction nanostructures shows unprecedented high open circuit voltage. Therefore, the potential application of the heterogeneous nanostructures in solar cells is demonstrated.

  11. Facile one-step construction of covalently networked, self-healable, and transparent superhydrophobic composite films

    NASA Astrophysics Data System (ADS)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-07-01

    Despite the considerable demand for bioinspired superhydrophobic surfaces with highly transparent, self-cleaning, and self-healable properties, a facile and scalable fabrication method for multifunctional superhydrophobic films with strong chemical networks has rarely been established. Here, we report a rationally designed facile one-step construction of covalently networked, transparent, self-cleaning, and self-healable superhydrophobic films via a one-step preparation and single-reaction process of multi-components. As coating materials for achieving the one-step fabrication of multifunctional superhydrophobic films, we included two different sizes of Al2O3 nanoparticles for hierarchical micro/nano dual-scale structures and transparent films, fluoroalkylsilane for both low surface energy and covalent binding functions, and aluminum nitrate for aluminum oxide networked films. On the basis of stability tests for the robust film composition, the optimized, covalently linked superhydrophobic composite films with a high water contact angle (>160°) and low sliding angle (<1°) showed excellent thermal stability (up to 400 °C), transparency (≈80%), self-healing, self-cleaning, and waterproof abilities. Therefore, the rationally designed, covalently networked superhydrophobic composite films, fabricated via a one-step solution-based process, can be further utilized for various optical and optoelectronic applications.

  12. Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles.

    PubMed

    Choi, Won San; Koo, Hye Young; Kim, Dong-Yu

    2008-05-06

    Core-in-shell particles with controllable core size have been fabricated from core-shell particles by means of the controlled core-dissolution method. These cores in inorganic shells were employed as scaffolds for the synthesis of metal nanoparticles. After dissolution of the cores, metal nanoparticles embedded in cores were encapsulated into the interior of shell, without any damage or change. This article describes a very simple method for deriving core-in-shell particles with controllable core size and encapsulation of nanoparticles into the interior of shell.

  13. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    PubMed

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  14. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  15. Hydrophilicity Reinforced Adhesion of Anodic Alumina Oxide Template Films to Conducting Substrates for Facile Fabrication of Highly Ordered Nanorod Arrays.

    PubMed

    Wang, Chuanju; Wang, Guiqiang; Yang, Rui; Sun, Xiangyu; Ma, Hui; Sun, Shuqing

    2017-01-17

    Arrays of ordered nanorods are of special interest in many fields. However, it remains challenging to obtain such arrays on conducting substrates in a facile manner. In this article, we report the fabrication of highly ordered and vertically standing nanorod arrays of both metals and semiconductors on Au films and indium tin oxide glass substrates without an additional layering. In this approach, following the simple hydrophilic treatment of an anodic aluminum oxide (AAO) membrane and conducting substrates, the AAO membrane was transferred onto the modified substrates with excellent adhesion. Subsequently, nanorod arrays of various materials were electrodeposited on the conducting substrates directly. This method avoids any expensive and tedious lithographic and ion milling process, which provides a simple yet robust route to the fabrication of arrays of 1D materials with high aspect ratio on conducting substrates, which shall pave the way for many practical applications in a range of fields.

  16. Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate.

    PubMed

    Zhang, Huihui; Qiao, Yan; Lu, Zhisong

    2016-11-30

    Textile-based supercapacitors have recently attracted much attention owing to their great potential as energy storage components in wearable electronics. However, fabrication of a high-performance, fully printed, and ultraflexible supercapacitor based on a single textile still remains a great challenge. Herein, a facile, low-cost, and textile-compatible method involving screen printing and transfer printing is developed to construct all-solid-state supercapacitors on a single silk fabric. The system exhibits a high specific capacitance of 19.23 mF cm -2 at a current density of 1 mA cm -2 and excellent cycling stability with capacitance retention of 84% after 2000 charging/discharging cycles. In addition, the device possesses superior mechanical stability with stable performance and structures after 100 times of bending and twisting. A butterfly-patterned supercapacitor was manufactured to demonstrate the compatibility of the printing approaches to textile aesthetics. This work may provide a facile and versatile approach for fabricating rationally designed ultraflexible textile-based power-storage elements for potential applications in smart textiles and stretchable/flexible electronics.

  17. Development of parametric material, energy, and emission inventories for wafer fabrication in the semiconductor industry.

    PubMed

    Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E

    2003-12-01

    Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.

  18. Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution.

    PubMed

    Han, Shenjie; Sun, Qingfeng; Zheng, Huanhuan; Li, Jingpeng; Jin, Chunde

    2016-01-20

    Carbon-based aerogel fabricated from waste biomass is a potential absorbent material for solving organic pollution. Herein, the lightweight, hydrophobic and porous carbon aerogels (CAs) have been synthesized through freezing-drying and post-pyrolysis by using waste newspaper as the only raw materials. The as-prepared CAs exhibited a low density of 18.5 mg cm(-3) and excellent hydrophobicity with a water contact angle of 132° and selective absorption for organic reagents. The absorption capacity of CA for organic compounds can be 29-51 times its own weight. Moreover, three methods (e.g., squeezing, combustion, and distillation) can be employed to recycle CA and harvest organic pollutants. Combined with waste biomass as raw materials, green and facile fabrication process, excellent hydrophobicity and oleophilicity, CA used as an absorbent material has great potential in application of organic pollutant solvents absorption and environmental protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Flexible and stackable terahertz metamaterials via silver-nanoparticle inkjet printing

    NASA Astrophysics Data System (ADS)

    Kashiwagi, K.; Xie, L.; Li, X.; Kageyama, T.; Miura, M.; Miyashita, H.; Kono, J.; Lee, S.-S.

    2018-04-01

    There is presently much interest in tunable, flexible, or reconfigurable metamaterial structures that work in the terahertz frequency range. They can be useful for a range of applications, including spectroscopy, sensing, imaging, and communications. Various methods based on microelectromechanical systems have been used for fabricating terahertz metamaterials, but they typically require high-cost facilities and involve a number of time-consuming and intricate processes. Here, we demonstrate a simple, robust, and cost-effective method for fabricating flexible and stackable multiresonant terahertz metamaterials, using silver nanoparticle inkjet printing. Using this method, we designed and fabricated two arrays of split-ring resonators (SRRs) having different resonant frequencies on separate sheets of paper and then combined the two arrays by stacking. Through terahertz time-domain spectroscopy, we observed resonances at the frequencies expected for the individual SRR arrays as well as at a new frequency due to coupling between the two SRR arrays.

  20. A single blue nanorod light emitting diode.

    PubMed

    Hou, Y; Bai, J; Smith, R; Wang, T

    2016-05-20

    We report a light emitting diode (LED) consisting of a single InGaN/GaN nanorod fabricated by a cost-effective top-down approach from a standard LED wafer. The device demonstrates high performance with a reduced quantum confined Stark effect compared with a standard planar counterpart fabricated from the same wafer, confirmed by optical and electrical characterization. Current density as high as 5414 A cm(-2) is achieved without significant damage to the device due to the high internal quantum efficiency. The efficiency droop is mainly ascribed to Auger recombination, which was studied by an ABC model. Our work provides a potential method for fabricating compact light sources for advanced photonic integrated circuits without involving expensive or time-consuming fabrication facilities.

  1. Electro-pumped whispering gallery mode ZnO microlaser array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, G. Y.; State Key Laboratory of Bioelectronics, School of Electronic Science and Engineering, Southeast University, Nanjing 210096; Li, J. T.

    2015-01-12

    By employing vapor-phase transport method, ZnO microrods are fabricated and directly assembled on p-GaN substrate to form a heterostructural microlaser array, which avoids of the relatively complicated etching process comparing previous work. Under applied forward bias, whispering gallery mode ZnO ultraviolet lasing is obtained from the as-fabricated heterostructural microlaser array. The device's electroluminescence originates from three distinct electron-hole recombination processes in the heterojunction interface, and whispering gallery mode ultraviolet lasing is obtained when the applied voltage is beyond the lasing threshold. This work may present a significant step towards future fabrication of a facile technique for micro/nanolasers.

  2. Multiphoton writing of three-dimensional fluidic channels within a porous matrix.

    PubMed

    Lee, Jyh-Tsung; George, Matthew C; Moore, Jeffrey S; Braun, Paul V

    2009-08-19

    We demonstrate a facile method for fabricating novel 3D microfluidic channels by using two-photon-activated chemistry to locally switch the interior surface of a porous host from a hydrophobic state to a hydrophilic state. The 3D structures can be infilled selectively with water and/or hydrophobic oil with a minimum feature size of only a few micrometers. We envision that this approach may enable the fabrication of complex microfluidic structures that cannot be easily formed via current technologies.

  3. Electroless epitaxial etching for semiconductor applications

    DOEpatents

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  4. 30 CFR 285.709 - When conducting onsite fabrication inspections, what must the CVA or project engineer verify?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified...

  5. CdS-Nanowires Flexible Photo-detector with Ag-Nanowires Electrode Based on Non-transfer Process

    PubMed Central

    Pei, Yanli; Pei, Ruihan; Liang, Xiaoci; Wang, Yuhao; Liu, Ling; Chen, Haibiao; Liang, Jun

    2016-01-01

    In this study, UV-visible flexible resistivity-type photo-detectors were demonstrated with CdS-nanowires (NWs) percolation network channel and Ag-NWs percolation network electrode. The devices were fabricated on Mixed Cellulose Esters (MCE) membrane using a lithographic filtration method combined with a facile non-transfer process. The photo-detectors demonstrated strong adhesion, fast response time, fast decay time, and high photo sensitivity. The high performance could be attributed to the high quality single crystalline CdS-NWs, encapsulation of NWs in MCE matrix and excellent interconnection of the NWs. Furthermore, the sensing performance was maintained even the device was bent at an angle of 90°. This research may pave the way for the facile fabrication of flexible photo-detectors with high performances. PMID:26899726

  6. Heat flux instrumentation for Hyflite thermal protection system

    NASA Technical Reports Server (NTRS)

    Diller, T. E.

    1994-01-01

    Using Thermal Protection Tile core samples supplied by NASA, the surface characteristics of the FRCI, TUFI, and RCG coatings were evaluated. Based on these results, appropriate methods of surface preparation were determined and tested for the required sputtering processes. Sample sensors were fabricated on the RCG coating and adhesion was acceptable. Based on these encouraging results, complete Heat Flux Microsensors were fabricated on the RCG coating. The issue of lead attachment was addressed with the annnealing and welding methods developed at NASA Lewis. Parallel gap welding appears to be the best method of lead attachment with prior heat treatment of the sputtered pads. Sample Heat Flux Microsensors were submitted for testing in the NASA Ames arc jet facility. Details of the project are contained in two attached reports. One additional item of interest is contained in the attached AIAA paper, which gives details of the transient response of a Heat Flux Microsensors in a shock tube facility at Virginia Tech. The response of the heat flux sensor was measured to be faster than 10 micro-s.

  7. 30 CFR 285.710 - When conducting onsite installation inspections, what must the CVA or project engineer do?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and..., survey, or check, the installation items required by this section. (a) The CVA or project engineer must... according to the Facility Design Report and the Fabrication and Installation Report. (b) For a fixed or...

  8. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    NASA Astrophysics Data System (ADS)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  9. Manufacture and evaluation of Nb/sub 3/Sn conductors fabricated by the MJR method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, W.K.; Curtis, C.W.; Scanlan, R.M.

    1982-11-23

    The bronze matrix/niobium filament process has become established as a commercially viable method for producing multifilamentary Nb/sub 3/Sn superconductors. This paper describes a new method, the Modified Jelly-Roll (MJR) approach, which can produce a structure similar to that in a conventionally fabricated multifilamentary Nb/sub 3/Sn conductor. This approach utilizes alternate sheets of niobium expanded metal and bronze, which are rolled into a jelly-roll configuration and then extruded. During extrusion and subsequent drawing, the junctures in the niobium are elongated and the material develops a filamentary structure. This method may offer significant advantages in terms of reduced fabrication time and costmore » over the conventional approach. Results of a manufacturing development program will be presented in which two lengths of conductor were made to High-Field Test Facility conductor specifications. In addition, critical current and transition temperature measurements of the sub-elements used to construct the HFTF-type lengths will be reported.« less

  10. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil.

    PubMed

    Schuettler, M; Stiess, S; King, B V; Suaning, G J

    2005-03-01

    A new method for fabrication of microelectrode arrays comprised of traditional implant materials is presented. The main construction principle is the use of spun-on medical grade silicone rubber as insulating substrate material and platinum foil as conductor (tracks, pads and electrodes). The silicone rubber and the platinum foil are patterned by laser cutting using an Nd:YAG laser and a microcontroller-driven, stepper-motor operated x-y table. The method does not require expensive clean room facilities and offers an extremely short design-to-prototype time of below 1 day. First prototypes demonstrate a minimal achievable feature size of about 30 microm.

  11. An inexpensive and fast method for infiltration coating of complex geometry matrices for ISOL production target applications

    NASA Astrophysics Data System (ADS)

    Kawai, Y.; Alton, G. D.; Bilheux, J.-C.

    2005-12-01

    An inexpensive, fast, and close to universal infiltration coating technique has been developed for fabricating fast diffusion-release ISOL targets. Targets are fabricated by deposition of finely divided (∼1 μm) compound materials in a paint-slurry onto highly permeable, complex structure reticulated-vitreous-carbon-foam (RVCF) matrices, followed by thermal heat treatment. In this article, we describe the coating method and present information on the physical integrity, uniformity of deposition, and matrix adherence of SiC, HfC and UC2 targets, destined for on-line use as targets at the Holifield Radioactive Ion Beam Facility (HRIBF).

  12. Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Cui, Jiewu; Luo, Jinbao; Peng, Bangguo; Zhang, Xinyi; Zhang, Yong; Wang, Yan; Qin, Yongqiang; Zheng, Hongmei; Shu, Xia; Wu, Yucheng

    2015-12-01

    Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing.Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing. Electronic supplementary information (ESI) available: Optical photographs of the as-prepared samples, SEM, TEM, EDS, XRD and BET data of the samples are presented, I-t curves of glucose biosensors based on NiO and NiO/CeO2 NFAs, EIS results of different electrodes. See DOI: 10.1039/c5nr05924k

  13. Facile fabrication of superhydrophobic flower-like polyaniline architectures by using valine as a dopant in polymerization

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Bi, Hong

    2012-03-01

    A facile method was developed to fabricate superhydrophobic, flower-like polyanline (PANI) architectures with hierarchical nanostructures by adding valine in polymerization as a dopant. The water contact angle of the prepared PANI film was measured to be 155.3°, and the hydrophobic surface of the PANI architectures can be tuned easily by varying the polymerization time as well as valine doping quantity. It is believed that valine plays an important role in not only growth of the hierarchical PANI structures but also formation of the superhydrophobic surface, for it provides functional groups such as sbnd COOH, sbnd NH2 and a hydrophobic terminal group which may further increase intra-/inter-molecular interactions including hydrogen bonding, π-π stacking and hydrophobic properties. Similar flower-like PANI architectures have been prepared successfully by employing other amino acids such as threonine, proline and arginine. This method makes it possible for widespread applications of superhydrophobic PANI film due to its simplicity and practicability.

  14. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  15. Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters

    NASA Astrophysics Data System (ADS)

    Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James

    3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.

  16. Capsule review of the DOE research and development and field facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less

  17. Synthesis of porous inorganic hollow fibers without harmful solvents.

    PubMed

    Shukla, Sushumna; de Wit, Patrick; Luiten-Olieman, Mieke W J; Kappert, Emiel J; Nijmeijer, Arian; Benes, Nieck E

    2015-01-01

    A route for the fabrication of porous inorganic hollow fibers with high surface-area-to-volume ratio that avoids harmful solvents is presented. The approach is based on bio-ionic gelation of an aqueous mixture of inorganic particles and sodium alginate during wet spinning. In a subsequent thermal treatment, the bio-organic material is removed and the inorganic particles are sintered. The method is applicable to the fabrication of various inorganic fibers, including metals and ceramics. The route completely avoids the use of organic solvents, such as N-methyl-2-pyrrolidone, and additives associated with the currently used fiber fabrication methods. In addition, it inherently avoids the manifestation of so-called macro voids and allows the facile incorporation of additional metal oxides in the inorganic hollow fibers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Controllable Fabrication of Amorphous Co-Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors.

    PubMed

    Chen, Chen; Zhang, Ning; He, Yulu; Liang, Bo; Ma, Renzhi; Liu, Xiaohe

    2016-09-07

    Incorporation of two transition metals offers an effective method to enhance the electrochemical performance in supercapacitors for transition metal compound based electrodes. However, such a configuration is seldom concerned in pyrophosphates. Here, amorphous phase Co-Ni pyrophosphates are fabricated as electrodes in supercapacitors. Through controllably adjusting the ratios of Co and Ni as well as the calcination temperature, the electrochemical performance can be tuned. An optimized amorphous Ni-Co pyrophosphate exhibits much higher specific capacitance than monometallic Ni and Co pyrophosphates and shows excellent cycling ability. When employing Ni-Co pyrophosphates as positive electrode and activated carbon as a negative electrode, the fabricated asymmetric supercapacitor cell exhibits favorable capacitance and cycling ability. This study provides facile methods to improve the transition metal pyrophosphate electrodes for efficient electrodes in electrochemical energy storage devices.

  19. Solution-processed, Self-organized Organic Single Crystal Arrays with Controlled Crystal Orientation

    PubMed Central

    Kumatani, Akichika; Liu, Chuan; Li, Yun; Darmawan, Peter; Takimiya, Kazuo; Minari, Takeo; Tsukagoshi, Kazuhito

    2012-01-01

    A facile solution process for the fabrication of organic single crystal semiconductor devices which meets the demand for low-cost and large-area fabrication of high performance electronic devices is demonstrated. In this paper, we develop a bottom-up method which enables direct formation of organic semiconductor single crystals at selected locations with desired orientations. Here oriented growth of one-dimensional organic crystals is achieved by using self-assembly of organic molecules as the driving force to align these crystals in patterned regions. Based upon the self-organized organic single crystals, we fabricate organic field effect transistor arrays which exhibit an average field-effect mobility of 1.1 cm2V−1s−1. This method can be carried out under ambient atmosphere at room temperature, thus particularly promising for production of future plastic electronics. PMID:22563523

  20. SU-8 Lenses: Simple Methods of Fabrication and Application in Optical Interconnection Between Fiber/LED and Microstructures

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hang; Nguyen, Hai-Binh; Nguyen, Tuan-Hung; Vu, Xuan-Manh; Lai, Jain-Ren; Tseng, Fan-Gang; Chen, Te-Chang; Lee, Ming-Chang

    2016-05-01

    This paper presents two facile methods to fabricate off-plane lenses made of SU-8, an epoxy-based negative photoresist from MicroChem, on glass for optical interconnection. The methods allow the fabrication of lenses with flexible spot size and focal length depending on SU-8 well size and SU-8 drop volume and viscosity. In the first method, SU-8 drops were applied directly into patterned SU-8 wells with Teflon-coated micropipettes, and were baked to become (a)-spherical lenses. The lens shape and size were mainly determined by SU-8 viscosity, ratio of drop volume to well volume, and baking temperature and time. In the second method, a glass substrate with SU-8 patterned wells was emerged in diluted SU-8, then drawn up and baked to form lenses. The lens shapes and sizes were mainly determined by SU-8 viscosity and well volume. By the two methods, SU-8 lenses were successfully fabricated with spot sizes varying in range from micrometers to hundred micrometers, and focal lengths varying in range of several millimeters, depending on the lens rim diameters and aspheric sag height. Besides, on-plane SU-8 lenses were fabricated by photolithography to work in conjunction with the off-plane SU-8 lenses. The cascaded lenses produced light spots reduced to several micrometers, and they can be applied as a coupler for light coupling from fiber/Light-emitting diode (LED) to microstructures and nanostructures. The results open up the path for fabricating novel optical microsystems for optical communication and optical sensing applications.

  1. Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching.

    PubMed

    Chen, Yun; Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Xin; Gao, Jian; Wong, Ching-Ping

    2017-02-08

    Kinked silicon (Si) nanowires (NWs) have many special properties that make them attractive for a number of applications, such as microfluidics devices, microelectronic devices, and biosensors. However, fabricating NWs with controlled three-dimensional (3D) geometry has been challenging. In this work, a novel method called alternating metal-assisted chemical etching is reported for the fabrication of kinked Si NWs with controlled 3D geometry. By the use of multiple etchants with carefully selected composition, one can control the number of kinks, their locations, and their angles by controlling the number of etchant alternations and the time in each etchant. The resulting number of kinks equals the number times the etchant is alternated, the length of each segment separated by kinks has a linear relationship with the etching time, and the kinking angle is related to the surface tension and viscosity of the etchants. This facile method may provide a feasible and economical way to fabricate novel silicon nanowires, nanostructures, and devices for broad applications.

  2. Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing

    NASA Astrophysics Data System (ADS)

    Li, Chao; Chen, Huili; Shi, Huangang; Tade, Moses O.; Shao, Zongping

    2015-01-01

    The inkjet printing technique has numerous advantages and is attractive in solid oxide fuel cell (SOFC) fabrication, especially for the dense thin electrolyte layer because of its ultrafine powder size. In this study, we exploited the technique for the fabrication of a porous SDC/SSC composite cathode layer using environmentally friendly water-based ink. An optimized powder synthesis method was applied to the preparation of the well-dispersed suspension. In view of the easy sintering of the thin film layer prepared by inkjet printing, 10 wt.% pore former was introduced to the ink. The results indicate that the cell with the inkjet printing cathode layer exhibits a fantastic electrochemical performance, with a PPD as high as 940 mW cm-2 at 750 °C, which is comparable to that of a cell prepared using the conventional wet powder spraying method, suggesting a promising application of inkjet printing on electrode layer fabrication.

  3. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  4. Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium.

    PubMed

    Cheng, Chao-Min; Matsuura, Koji; Wang, I-Jan; Kuroda, Yuka; LeDuc, Philip R; Naruse, Keiji

    2009-11-21

    Polymeric curved structures are widely used in imaging systems including optical fibers and microfluidic channels. Here, we demonstrate that small-scale, poly(dimethylsiloxane) (PDMS)-based, curved structures can be fabricated through controlling interfacial free energy equilibrium. Resultant structures have a smooth, symmetric, curved surface, and may be convex or concave in form based on surface tension balance. Their curvatures are controlled by surface characteristics (i.e., hydrophobicity and hydrophilicity) of the molds and semi-liquid PDMS. In addition, these structures are shown to be biocompatible for cell culture. Our system provides a simple, efficient and economical method for generating integrateable optical components without costly fabrication facilities.

  5. Facile Synthesis of Porous Silicon Nanofibers by Magnesium Reduction for Application in Lithium Ion Batteries.

    PubMed

    Cho, Daehwan; Kim, Moonkyoung; Hwang, Jeonghyun; Park, Jay Hoon; Joo, Yong Lak; Jeong, Youngjin

    2015-12-01

    We report a facile fabrication of porous silicon nanofibers by a simple three-stage procedure. Polymer/silicon precursor composite nanofibers are first fabricated by electrospinning, a water-based spinning dope, which undergoes subsequent heat treatment and then reduction using magnesium to be converted into porous silicon nanofibers. The porous silicon nanofibers are coated with a graphene by using a plasma-enhanced chemical vapor deposition for use as an anode material of lithium ion batteries. The porous silicon nanofibers can be mass-produced by a simple and solvent-free method, which uses an environmental-friendly polymer solution. The graphene-coated silicon nanofibers show an improved cycling performance of a capacity retention than the pure silicon nanofibers due to the suppression of the volume change and the increase of electric conductivity by the graphene.

  6. Engineering study for a melting, casting, rolling and fabrication facility for recycled contaminated stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Castermore » for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.« less

  7. JSC Metal Finishing Waste Minimization Methods

    NASA Technical Reports Server (NTRS)

    Sullivan, Erica

    2003-01-01

    THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.

  8. Two-step fabrication of single-layer rectangular SnSe flakes

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Wong, Calvin Pei Yu; Zou, Jing; Li, Shisheng; Wang, Qixing; Chen, Jianyi; Qi, Dianyu; Wang, Hongyu; Eda, Goki; Chua, Daniel H. C.; Shi, Yumeng; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-06-01

    Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm  ×  50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm2 V-1 s-1. This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.

  9. Massive Fabrication of Polymer Microdiscs by Phase Separation and Freestanding Process.

    PubMed

    Zhang, Hong; Fujii, Mao; Okamura, Yosuke; Zhang, Li; Takeoka, Shinji

    2016-06-29

    We present a facile method to fabricate polymer thin films with tens of nanometers thickness and several micrometers size (also called "microdiscs" herein) by applying phase separation of polymer blend. A water-soluble supporting layer is employed to obtain a freestanding microdisc suspension. Owing to their miniaturized size, microdiscs can be injected through a syringe needle. Herein, poly(d,l-lactic acid) microdiscs were fabricated with various thicknesses and sizes, in the range from ca. 10 to 60 nm and from ca. 1.0 to 10.0 μm, respectively. Magnetic nanoparticles were deposited on polymer microdiscs with a surface coating method. The magnetic manipulation of microdiscs in a liquid environment under an external magnetic field was achieved with controllable velocity by adjusting the microdisc dimensions and the loading amount of magnetic components. Such biocompatible polymer microdiscs are expected to serve as injectable vehicles for targeted drug delivery.

  10. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    PubMed Central

    Craw, Pascal; Mackay, Ruth E.; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S. Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  11. Facile Fabrication of Electrically Conductive Low-Density Polyethylene/Carbon Fiber Tubes for Novel Smart Materials via Multiaxial Orientation.

    PubMed

    Li, Yijun; Nie, Min; Wang, Qi

    2018-01-10

    Electromechanical sensors are indispensable components in functional devices and robotics application. However, the fabrication of the sensors still maintains a challenging issue that high percolation threshold and easy failure of conductive network are derived from uniaxial orientation of conductive fillers in practical melt processing. Herein, we reported a facile fabrication method to prepare a multiaxial low-density polyethylene (LDPE)/carbon fibers (CFs) tube with bidirectional controllable electrical conductivity and sensitive strain-responsive performance via rotation extrusion technology. The multidimensional helical flow is confirmed in the reverse rotation extrusion, and the CFs readily respond to the flow field leading to a multiaxial orientation in the LDPE matrix. In contrast to uniaxial LDPE/CF composites, which perform a "head to head" conjunction, multiaxial-orientated CF networks exhibit a unique multilayer structure in which the CFs with distinct orientation direction intersect in the interface, endowing the LDPE/CF composites with a low percolation threshold (15 wt %) to those of the uniaxial ones (∼35 wt %). The angles between two axes play a vital role in determining the density of the conductive networks in the interface, which is predominant in tuning the bending-responsive behaviors with a gauge factor range from 12.5 to 56.3 and the corresponding linear respond region from ∼15 to ∼1%. Such a superior performance of conductive LDPE/CF tube confirms that the design of multiaxial orientation paves a novel way to facile fabrication of advanced cost-effective CF-based smart materials, shedding light on promising applications such as smart materials and intelligent engineering monitoring.

  12. Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes

    NASA Astrophysics Data System (ADS)

    van Ngoc, Huynh; Kang, Dae Joon

    2016-02-01

    Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices.Novel nanogenerator structures composed of ZnO nanoflakes of less than 10 nm thickness were fabricated using a novel method involving a facile synthetic route and a rational design. The fabricated nanogenerators exhibited a short-circuit current density of 67 μA cm-2, a peak-to-peak open-circuit voltage of 110 V, and an overall output power density exceeding 1.2 mW cm-2, and to the best of our knowledge, these are the best values that have been reported so far in the literature on ZnO-based nanogenerators. We demonstrated that our nanogenerator design could instantaneously power 20 commercial green light-emitting diodes without any additional energy storage processes. Both the facile synthetic route for the ZnO nanoflakes and the straightforward device fabrication process present great scaling potential in order to power mobile and personal electronics that can be used in smart wearable systems, transparent and flexible devices, implantable telemetric energy receivers, electronic emergency equipment, and other self-powered nano/micro devices. Electronic supplementary information (ESI) available: FE-SEM images of ZnO NFs grown on textile and FTO/glass substrates, XRD patterns of synthesized ZnO NFs, nitrogen adsorption isotherms for ZnO NWs and ZnO NFs, effect of different coating layers on ZnO NFNGs, P(VDF-TrFE) coating on ZnO NFs, output open-circuit voltages of a textile electrostatic NG based on P(VDF-TrFE) coated on ZnO NFs and a textile ZnO NFNG without an insulating layer generated by a sonic wave, NG-based triboelectric effects and PDMS-coated ZnO NF-based NGs grown on an ITO/PET substrate. See DOI: 10.1039/c5nr08324a

  13. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  14. CAD/CAM transtibial prosthetic sockets from central fabrication facilities: How accurate are they?

    PubMed Central

    Sanders, Joan E.; Rogers, Ellen L.; Sorenson, Elizabeth A.; Lee, Gregory S.; Abrahamson, Daniel C.

    2014-01-01

    This research compares transtibial prosthetic sockets made by central fabrication facilities with their corresponding American Academy of Orthotists and Prosthetists (AAOP) electronic shape files and assesses the central fabrication process. We ordered three different socket shapes from each of 10 manufacturers. Then we digitized the sockets using a very accurate custom mechanical digitizer. Results showed that quality varied considerably among the different manufacturers. Four of the companies consistently made sockets within +/−1.1% volume (approximately 1 sock ply) of the AAOP electronic shape file, while six other companies did not. Six of the companies showed consistent undersizing or oversizing in their sockets, which suggests a consistent calibration or manufacturing error. Other companies showed inconsistent sizing or shape distortion, a difficult problem that represents a most challenging limitation for central fabrication facilities. PMID:18247236

  15. Manufacturing PDMS micro lens array using spin coating under a multiphase system

    NASA Astrophysics Data System (ADS)

    Sun, Rongrong; Yang, Hanry; Rock, D. Mitchell; Danaei, Roozbeh; Panat, Rahul; Kessler, Michael R.; Li, Lei

    2017-05-01

    The development of micro lens arrays has garnered much interest due to increased demand of miniaturized systems. Traditional methods for manufacturing micro lens arrays have several shortcomings. For example, they require expensive facilities and long lead time, and traditional lens materials (i.e. glass) are typically heavy, costly and difficult to manufacture. In this paper, we explore a method for manufacturing a polydimethylsiloxane (PDMS) micro lens array using a simple spin coating technique. The micro lens array, formed under an interfacial tension dominated system, and the influence of material properties and process parameters on the fabricated lens shape are examined. The lenses fabricated using this method show comparable optical properties—including surface finish and image quality—with a reduced cost and manufacturing lead time.

  16. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Gao, Guang; Zhang, Xin

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (Ru xNi 1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophasemore » before pyrolysis and silica removal. The resulting Ru xNi 1–x–OMC materials are in-depth characterized with X-ray diffraction, N 2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru 0.9Ni 0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h –1) was obtained, and the Ru 0.9Ni 0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.« less

  17. A facile fabrication of nitrogen-doped electrospun In2O3 nanofibers with improved visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lu, Na; Shao, Changlu; Li, Xinghua; Miao, Fujun; Wang, Kexin; Liu, Yichun

    2017-01-01

    Semiconductor photocatalysis demonstrates to be an effective approach for eliminating most types of environment contaminants and for producing hydrogen. Herein, a facile synthesis route combining electrospinning technique and thermal treatment method under NH3 atmosphere has been presented as a straightforward protocol for the fabrication of nitrogen-doped In2O3 (N-In2O3) nanofibers, the nitrogen content of which can be well controlled by adjusting the annealing temperature. Photocatalytic tests show that the N-In2O3 nanofibers demonstrate an improved degradation rate of Rhodamine B (RB) compared with pure In2O3 nanofibers under visible-light irradiation. This can be attributed to the nitrogen atom introducing at interstitial sites as well as the generation of oxygen vacancy on the surface of In2O3 nanofibers, resulting in the enhanced utilization of visible light for the N-In2O3 nanofibers. Furthermore, the obtained N-In2O3 nanofibers with the advantage of ultra-long one-dimensional nanostructures can be recycled several times by facile sedimentation and hence present almost no decrease in photocatalytic activity indicative of a well regeneration capability. Therefore, the as-fabricated nitrogen-doped In2O3 nanofibers as a promising photocatalyst present good photocatalytic degradation of organic pollutant in waste water for practical application.

  18. 75 FR 51500 - Advisory Committee on Reactor Safeguards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ..., October 14, 2009 (74 FR 52829-52830). Thursday, September 9, 2010, Conference Room T2-B1, Two White Flint... Fabrication Facility and the Associated Safety Evaluation Report (Open/ Closed)--The Committee will hold... the MOX Fuel Fabrication Facility and the associated Safety Evaluation Report. [Note: A portion of...

  19. 78 FR 68055 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NESHAP...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... Polyurethane Foam Production and Fabrication, Lead Acid Battery Manufacturing, and Wood Preserving (Renewal... Polyurethane Foam Production and Fabrication, Lead Acid Battery Manufacturing, and Wood Preserving (40 CFR Part... battery manufacturing facilities, and 393 existing wood preserving facilities. The total annual responses...

  20. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    PubMed

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society.

  1. Fast and facile fabrication of antifouling and hemocompatible PVDF membrane tethered with amino-acid modified PEG film

    NASA Astrophysics Data System (ADS)

    Zhang, Shuyou; Cao, Jingjing; Ma, Na; You, Meng; Wang, Xushan; Meng, Jianqiang

    2018-01-01

    A fast and facile protocol is reported aiming at improving the antifouling property and hemocompatibility of poly(vinylidene fluoride) (PVDF) membranes by tethering PEG hydrogel and zwitterion immobilization. The coated PEG hydrogel was first prepared by interfacial polymerization and tethered on an alkali treated PVDF membrane (PVDFA) surface via a simultaneous thio-ene and thiol-epoxy reaction. Then, the thiol groups of cysteine reacted with the epoxy groups in PEG hydrogel to fabricate the PVDFA-g-Cys membrane. The membrane fabrication was complete within less than 20 min and was conducted in mild conditions. The successful preparation of PVDFA-g-Cys membrane was confirmed by ATR-FTIR and XPS. Raman spectroscopy showed that the hydrogels covalently bonded to the PVDF membrane surface. The membrane retained its mechanical strength after modification. The SEM measurements suggested that the membrane became denser after hydrogel coating, meanwhile, the EDX test verified that the functional species uniformly distributed in the membrane matrix. Water contact angle (WCA), protein adsorption and protein filtration tests showed significant improvements in hydrophilicity and antifouling properties for the modified membrane. The negativity of the membrane surface measured by the streaming potential method provides a basis for protein resistance and hemocompatibility. Moreover, the suppressed platelet adhesion and prolonged plasma coagulant time show that the PVDFA-g-Cys membrane has ultralow thrombotic potential and better hemocompatibility. The reported surface modification method combing thio-ene and thio-epoxy chemistry not only facilitates fabrication of hemocompatible PVDF membrane but also provide an universal chemical platform for multifunctionalization of porous membranes.

  2. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.

    PubMed

    Wang, Jintao; Wang, Hongfei

    2017-06-15

    The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Facilely Fabricating Multifunctional N-Enriched Carbon.

    PubMed

    Wan, Mi Mi; Sun, Xiao Dan; Li, Yan Yan; Zhou, Jun; Wang, Ying; Zhu, Jian Hua

    2016-01-20

    A new synthetic strategy, named "carbonization in limited space" and based on the specific interaction between eutectic salt and dual-ionic liquids (dual-ILs), is reported in this article. N-Containing dual-ILs (1,4-diethyl-1,4-diazaniabicyclo[2,2,2]octane imidazolide-4,5-dicyanoiazolide, [2C2DABCO](2+)[Im](-)[CN-Im](-)) were synthesized as new carbon-nitrogen precursors, while eutectic salt was chosen as a reuseable template in order to facilely fabricate the N-doped porous carbon with sheetlike morphology. Nitrogen can be directly and efficiently incorporated into the porous carbon, resulting in the materials with suitable N content, tunable pore structure, and controllable thickness of sheet as well as high surface area. They exhibited good performance as electrodes for supercapacitors, photocatalysts in degradation of methyl orange (MO) under visible light, and the sorbent to capture tobacco-specific N-nitrosamines (TSNAs) in solution, offering a new simplified but effective method to prepare versatile carbon material.

  4. Facile fabrication and electrical investigations of nanostructured p-Si/n-TiO2 hetero-junction diode

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara

    2018-05-01

    In this work, we have fabricated the nanostructured p-Si/n-TiO2 hetero-junction diode by using a facile spin-coating method. The XRD analysis suggests the presence of well crystalline anatase TiO2 film on Si with small grain size (˜16 nm). We have drawn the band alignment using Anderson model to understand the electrical transport across the junction. The current-voltage (J-V) characteristics analysis reveals the good rectification ratio (103 at ± 3 V) and slightly higher ideality factor (4.7) of our device. The interface states are responsible for the large ideality factor as Si/TiO2 form a dissimilar interface and possess a large number of dangling bonds. The study reveals the promises to be used Si/TiO2 diode as an alternative to the traditional p-n homo-junction diode, which typically require high budget.

  5. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  6. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed ofmore » nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.« less

  7. A Facile Method to Fabricate Anisotropic Hydrogels with Perfectly Aligned Hierarchical Fibrous Structures.

    PubMed

    Mredha, Md Tariful Islam; Guo, Yun Zhou; Nonoyama, Takayuki; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    2018-03-01

    Natural structural materials (such as tendons and ligaments) are comprised of multiscale hierarchical architectures, with dimensions ranging from nano- to macroscale, which are difficult to mimic synthetically. Here a bioinspired, facile method to fabricate anisotropic hydrogels with perfectly aligned multiscale hierarchical fibrous structures similar to those of tendons and ligaments is reported. The method includes drying a diluted physical hydrogel in air by confining its length direction. During this process, sufficiently high tensile stress is built along the length direction to align the polymer chains and multiscale fibrous structures (from nano- to submicro- to microscale) are spontaneously formed in the bulk material, which are well-retained in the reswollen gel. The method is useful for relatively rigid polymers (such as alginate and cellulose), which are susceptible to mechanical signal. By controlling the drying with or without prestretching, the degree of alignment, size of superstructures, and the strength of supramolecular interactions can be tuned, which sensitively influence the strength and toughness of the hydrogels. The mechanical properties are comparable with those of natural ligaments. This study provides a general strategy for designing hydrogels with highly ordered hierarchical structures, which opens routes for the development of many functional biomimetic materials for biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles.

    PubMed

    Rezaie, Ali Bashiri; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2017-11-01

    In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric. The treated fabrics showed very good antibacterial activities toward two pathogen bacteria including Staphylococcus aureus as a Gram-positive and Escherichia coli as a Gram-negative bacteria with no adverse effects on human dermal fibroblasts based on MTT test. The treated fabrics confirmed significant photocatalytic activity for degradation of methylene blue under sunlight, self-cleaning properties under UV light and also UV protection properties. Further a colorant effect along with an improvement in the wettability and mechanical properties of the treated fabrics were indicated. Overall, this method can be applied as a clean route for producing photo and bio active textiles protecting against UV irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A Coherent VLSI Design Environment

    DTIC Science & Technology

    1987-12-31

    contract the total research volume in VLSI rose from an estimated $3,000,000 to over 3 $10,000,000, and a state-of-the-art VLSI fabrication facility costing...Research" 11:30 John Melngailic , "Submicron Structures Research at M.I.T." 11:55 Dimitri A. Antoniadis, "Status of the M.I.T. LSI Fabrication Facility ...1984. Contributions were made by Prof. Antoniadis and, to a small degree, Pro£ Glasser. Objective: • To develop techniques for fabricating integrated

  10. Fabrication of Protein Microparticles and Microcapsules with Biomolecular Tools

    NASA Astrophysics Data System (ADS)

    Cheung, Kwan Yee; Lai, Kwok Kei; Mak, Wing Cheung

    2018-05-01

    Microparticles have attracted much attention for medical, analytical and biological applications. Calcium carbonate (CaCO3) templating method with the advantages of having narrow size distribution, controlled morphology and good biocompatibility that has been widely used for the synthesis of various protein-based microparticles. Despite CaCO3 template is biocompatible, most of the conventional methods to create stable protein microparticles are mainly driven by chemical crosslink reagents which may induce potential harmful effect and remains undesirable especially for biomedical or clinical applications. In this article, we demonstrate the fabrication of protein microparticles and microcapsules with an innovative method using biomolecular tools such as enzymes and affinity molecules to trigger the assembling of protein molecules within a porous CaCO3 template followed by a template removal step. We demonstrated the enzyme-assisted fabrication of collagen microparticles triggered by transglutaminase, as well as the affinity-assisted fabrication of BSA-biotin avidin microcapsules triggered by biotin-avidin affinity interaction, respectively. Based on the different protein assemble mechanisms, the collagen microparticles appeared as a solid-structured particles, while the BSA-biotin avidin microcapsules appeared as hollow-structured morphology. The fabrication procedures are simple and robust that allows producing protein microparticles or microcapsules under mild conditions at physiological pH and temperature. In addition, the microparticle morphologies, protein compositions and the assemble mechanisms were studied. Our technology provides a facile approach to design and fabricate protein microparticles and microcapsules that are useful in the area of biomaterials, pharmaceuticals and analytical chemistry.

  11. SuperCDMS Underground Detector Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less

  12. Wearable Fabrics with Self-Branched Bimetallic Layered Double Hydroxide Coaxial Nanostructures for Hybrid Supercapacitors.

    PubMed

    Nagaraju, Goli; Chandra Sekhar, S; Krishna Bharat, L; Yu, Jae Su

    2017-11-28

    We report a flexible battery-type electrode based on binder-free nickel cobalt layered double hydroxide nanosheets adhered to nickel cobalt layered double hydroxide nanoflake arrays on nickel fabric (NC LDH NFAs@NSs/Ni fabric) using facile and eco-friendly synthesis methods. Herein, we utilized discarded polyester fabric as a cost-effective substrate for in situ electroless deposition of Ni, which exhibited good flexibility, light weight, and high conductivity. Subsequently, the vertically aligned NC LDH NFAs were grown on Ni fabric by means of a hot-air oven-based method, and fluffy-like NC LDH NS branches are further decorated on NC LDH NFAs by a simple electrochemical deposition method. The as-prepared core-shell-like nanoarchitectures improve the specific surface area and electrochemical activity, which provides the ideal pathways for electrolyte diffusion and charge transportation. When the electrochemical performance was tested in 1 M KOH aqueous solution, the core-shell-like NC LDH NFAs@NSs/Ni fabric electrode liberated a maximum areal capacity of 536.96 μAh/cm 2 at a current density of 2 mA/cm 2 and excellent rate capability of 78.3% at 30 mA/cm 2 (420.5 μAh/cm 2 ) with a good cycling stability. Moreover, a fabric-based hybrid supercapacitor (SC) was assembled, which achieves a stable operational potential window of 1.6 V, a large areal capacitance of 1147.23 mF/cm 2 at 3 mA/cm 2 , and a high energy density of 0.392 mWh/cm 2 at a power density of 2.353 mW/cm 2 . Utilizing such high energy storage abilities and flexible properties, the fabricated hybrid SC operated the wearable digital watch and electric motor fan for real-time applications.

  13. Facile chemical approach to ZnO submicrometer particles with controllable morphologies.

    PubMed

    Bardhan, Rizia; Wang, Hui; Tam, Felicia; Halas, Naomi J

    2007-05-22

    We have developed a simple wet-chemistry approach to fabricating ZnO submicrometer particles with unique morphologies including rings, bowls, hemispheres, and disks. The size and morphology of the particles can be conveniently tailored by varying the concentrations of the zinc precursor. The reaction temperature, pH, and concentration of ammonia are also found to play critical roles in directing the formation of these particle morphologies. These submicrometer particles exhibit strong white-light emission upon UV excitation as a result of the presence of surface defect states resulting from the fabrication method and synthesis conditions.

  14. Requirements Doc for Refurb of JASPER Facility in B131HB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, Kenn M.

    The Joint Actinide Shock Physics Experimental Research (JASPER) Program target fabrication facility is currently located in building 131 (B131) of the Lawrence Livermore National Laboratory (LLNL). A portion of this current facility has been committed to another program as part of a larger effort to consolidate LLNL capabilities into newer facilities. This facility assembles precision targets for scientific studies at the Nevada National Security Site (NNSS). B131 is also going through a modernization project to upgrade the infrastructure and abate asbestos. These activities will interrupt the continuous target fabrication efforts for the JASPER Program. Several options are explored to meetmore » the above conflicting requirements, with the final recommendation to prepare a new facility for JASPER target fabrication operations before modernization efforts begin in the current facility assigned to JASPER. This recommendation fits within all schedule constraints and minimizes the disruption to the JASPER Program. This option is not without risk, as it requires moving an aged, precision coordinate measuring machine, which is essential to the JASPER Program’s success. The selected option balances the risk to the machine with continuity of operations.« less

  15. A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications.

    PubMed

    Kim, Jin-Oh; Kim, Heejin; Ko, Dong-Hyeon; Min, Kyoung-Ik; Im, Do Jin; Park, Soo-Young; Kim, Dong-Pyo

    2014-11-07

    A photocurable and viscous fluoropolymer with chemical stability is a highly desirable material for fabrication of microchemical devices. Lack of a reliable fabrication method, however, limits actual applications for organic reactions. Herein, we report fabrication of a monolithic and flexible fluoropolymer film microreactor and its use as a new microfluidic platform. The fabrication involves facile soft lithography techniques that enable partial curing of thin laminates, which can be readily bonded by conformal contact without any external forces. We demonstrate fabrication of various functional channels (~300 μm thick) such as those embedded with either a herringbone micromixer pattern or a droplet generator. Organic reactions under strongly acidic and basic conditions can be carried out in this film microreactor even at elevated temperature with excellent reproducibility. In particular, the transparent film microreactor with good deformability could be wrapped around a light-emitting lamp for close contact with the light source for efficient photochemical reactions with visible light, which demonstrates easy integration with optical components for functional miniaturized systems.

  16. Layer-by-layer 3-dimensional nanofiber tissue scaffold with controlled gap by electrospinning

    NASA Astrophysics Data System (ADS)

    Lin, Sai-Jun; Xue, Ya-Ping; Chang, Guoqing; Han, Qiao-Ling; Chen, Li-Fang; Jia, Yan-Bo; Zheng, Yu-Guo

    2018-02-01

    The development of three-dimensional (3D) nanofiber structures by electrospinning has drawn considerable attention in the field of tissue scaffolds. However, the generation of two dimensional mats using the conventional method limits electrospinning, the electrical charging of polymer liquids, as a means of nanofiber fabrication. In this study, we established a facile method of fabrication of layer-by-layer 3D polycaprolactone (PCL) nanofiber structures by utilizing a booklet collector with controlled morphology. Meanwhile, we explore the application of the manufactured 3D architectures in the field of tissue scaffolds. The approximately 20 μm layer-to-layer distance enhanced the ability of cells to migrate freely into tissues and induce cells in an ordered arrangement.

  17. Facile and Rapid Growth of Nanostructured Ln-BTC Metal-Organic Framework Films by Electrophoretic Deposition for Explosives sensing in Gas and Cr 3+ Detection in Solution.

    PubMed

    Feng, Ji-Fei; Yang, Xue; Gao, Shui-Ying; Shi, Jianlin; Cao, Rong

    2017-12-19

    Until now, it has been a challenge to prepare lanthanide metal-organic framework films on traditional substrates, like zinc plate, indium oxide (ITO), and fluorine-doped tin oxide (FTO) glasses in a rapid and facile method. In this paper, continuous and dense Ln-BTC MOFs films on unmodified low-cost substrates have been rapidly and easily fabricated though the newly developed electrophoretic deposition (EPD) method in 5 min. Moreover, the as-prepared luminescent films were successfully used for the detection of nitrobenzene (NB), trinitrotoluene (TNT) in gas phases, as well as NB, Cr 3+ ions for detection in solution.

  18. Facile fabrication of palladium-ionic liquids-nitrogen-doped graphene nanocomposites as enhanced electro-catalyst for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Shuwen; Yang, Honglei; Ren, Ren; Ma, Jianxin; Jin, Jun; Ma, Jiantai

    2015-10-01

    The palladium-ionic liquids-nitrogen-doped graphene nanocomposites are facile fabricated as enhanced electro-catalyst for ethanol oxidation. First, the ionic liquids functionalized nitrogen-doping graphene nanosheets (PDIL-NGS) with few layers is synthesized through a facile and effective one-pot hydrothermal method with graphene oxide as raw material, urea as reducing-doping agents and ionic liquids (ILs) derived from 3,4,9,10-perylene tetracarboxylic acid as functional molecules. The results of systematic characterization reveal that the PDIL molecules not only can functionalize NGS by π-π stacking with no affecting the nitrogen doping but also prevent the agglomeration of NGS. More importantly, the processing performance and the property of electron transfer are remarkably enhanced duo to introducing a large number of ILs groups. Then, the enhanced electrocatalytic Pd nanoparticles are successfully anchored on PDIL-NGS by a facile and surfactant-free synthetic technique. As an anode catalyst, the novel catalyst exhibits better kinetics, more superior electrocatalytic performance, higher tolerance and electrochemical stability than the other catalysts toward ethanol electrooxidation, owing to the role of PDIL molecules. Therefore, the new catalyst is believed to have the potential use for direct alcohol fuel cells in the future and the functionalized NGS is promising useful materials applied in other fields.

  19. Dip TIPS as a Facile and Versatile Method for Fabrication of Polymer Foams with Controlled Shape, Size and Pore Architecture for Bioengineering Applications

    PubMed Central

    Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M.; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František

    2014-01-01

    The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the “Dip TIPS” as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields. PMID:25275373

  20. Dip TIPS as a facile and versatile method for fabrication of polymer foams with controlled shape, size and pore architecture for bioengineering applications.

    PubMed

    Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František

    2014-01-01

    The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.

  1. Facile Fabrication of Binary Nanoscale Interface for No-Loss Microdroplet Transportation.

    PubMed

    Liang, Weitao; Zhu, Liqun; Li, Weiping; Xu, Chang; Liu, Huicong

    2016-06-07

    Binary nanoscale interfacial materials are fundamental issues in many applications for smart surfaces. A binary nanoscale interface with binary surface morphology and binary wetting behaviors has been prepared by a facile wet-chemical method. The prepared surface presents superhydrophobicity and high adhesion with the droplet at the same time. The composition, surface morphology, and wetting behaviors of the prepared surface have been systematic studied. The special wetting behaviors can be contributed to the binary nanoscale effect. The stability of the prepared surface was also investigated. As a primary application, a facile device based on the prepared binary nanoscale interface with superhydrophobicity and high adhesion was constructed for microdroplet transportation.

  2. Application of N-Doped Three-Dimensional Reduced Graphene Oxide Aerogel to Thin Film Loudspeaker.

    PubMed

    Kim, Choong Sun; Lee, Kyung Eun; Lee, Jung-Min; Kim, Sang Ouk; Cho, Byung Jin; Choi, Jung-Woo

    2016-08-31

    We built a thermoacoustic loudspeaker employing N-doped three-dimensional reduced graphene oxide aerogel (N-rGOA) based on a simple template-free fabrication method. A two-step fabrication process, which includes freeze-drying and reduction/doping, was used to realize a three-dimensional, freestanding, and porous graphene-based loudspeaker, whose macroscopic structure can be easily modulated. The simplified fabrication process also allows the control of structural properties of the N-rGOAs, including density and area. Taking advantage of the facile fabrication process, we fabricated and analyzed thermoacoustic loudspeakers with different structural properties. The anlayses showed that a N-rGOA with lower density and larger area can produce a higher sound pressure level (SPL). Furthermore, the resistance of the proposed loudspeaker can be easily controlled through heteroatom doping, thereby helping to generate higher SPL per unit driving voltage. Our success in constructing an array of optimized N-rGOAs able to withstand input power as high as 40 W demonstrates that a practical thermoacoustic loudspeaker can be fabricated using the proposed mass-producible solution-based process.

  3. ITER Central Solenoid Module Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, John

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort betweenmore » the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first ITER module is in progress. The seven modules will be individually shipped to Cadarache, France upon their completion. This paper describes the processes and status of the fabrication of the CS Modules for ITER.« less

  4. Soft tubular microfluidics for 2D and 3D applications

    PubMed Central

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Lim, Chwee Teck

    2017-01-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs. PMID:28923968

  5. Soft tubular microfluidics for 2D and 3D applications

    NASA Astrophysics Data System (ADS)

    Xi, Wang; Kong, Fang; Yeo, Joo Chuan; Yu, Longteng; Sonam, Surabhi; Dao, Ming; Gong, Xiaobo; Teck Lim, Chwee

    2017-10-01

    Microfluidics has been the key component for many applications, including biomedical devices, chemical processors, microactuators, and even wearable devices. This technology relies on soft lithography fabrication which requires cleanroom facilities. Although popular, this method is expensive and labor-intensive. Furthermore, current conventional microfluidic chips precludes reconfiguration, making reiterations in design very time-consuming and costly. To address these intrinsic drawbacks of microfabrication, we present an alternative solution for the rapid prototyping of microfluidic elements such as microtubes, valves, and pumps. In addition, we demonstrate how microtubes with channels of various lengths and cross-sections can be attached modularly into 2D and 3D microfluidic systems for functional applications. We introduce a facile method of fabricating elastomeric microtubes as the basic building blocks for microfluidic devices. These microtubes are transparent, biocompatible, highly deformable, and customizable to various sizes and cross-sectional geometries. By configuring the microtubes into deterministic geometry, we enable rapid, low-cost formation of microfluidic assemblies without compromising their precision and functionality. We demonstrate configurable 2D and 3D microfluidic systems for applications in different domains. These include microparticle sorting, microdroplet generation, biocatalytic micromotor, triboelectric sensor, and even wearable sensing. Our approach, termed soft tubular microfluidics, provides a simple, cheaper, and faster solution for users lacking proficiency and access to cleanroom facilities to design and rapidly construct microfluidic devices for their various applications and needs.

  6. Facile synthesis of Prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips.

    PubMed

    Yang, Pengqi; Peng, Jingmeng; Chu, Zhenyu; Jiang, Danfeng; Jin, Wanqin

    2017-06-15

    The large-scale fabrication of nanocomposite based biosensors is always a challenge in the technology commercialization from laboratory to industry. In order to address this issue, we have designed a facile chemical method of fabricated nanocomposite ink applied to the screen-printed biosensor chip. This ink can be derived in the water through the in-situ growth of Prussian blue nanocubes (PBNCs) on the silver nanowires (AgNWs) to construct a composite nanostructure by a facile chemical method. Then a miniature flexible biosensor chip was screen-printed by using the prepared nanocomposite ink. Due to the synergic effects of the large specific surface area, high conductivity and electrocatalytic activity from AgNWs and PBNCs, the as-prepared biosensor chip exhibited a fast response (<3s), a wider linear response from 0.01 to 1.3mM with an ultralow LOD=5µm, and the ultrahigh sensitivities of 131.31 and 481.20µAmM -1 cm -2 for the detections of glucose and hydrogen peroxide (H 2 O 2 ), respectively. Furthermore, the biosensor chip exhibited excellent stability, good reproducibility and high anti-interference ability towards physiological substances under a very low working potential of -0.05. Hence, the proposed biosensor chip also showed a promising potential for the application in practical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Block Copolymers as Templates for Arrays of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael; Hunt, Brian

    2003-01-01

    A method of manufacturing regular arrays of precisely sized, shaped, positioned, and oriented carbon nanotubes has been proposed. Arrays of carbon nanotubes could prove useful in such diverse applications as communications (especially for filtering of signals), biotechnology (for sequencing of DNA and separation of chemicals), and micro- and nanoelectronics (as field emitters and as signal transducers and processors). The method is expected to be suitable for implementation in standard semiconductor-device fabrication facilities.

  8. Facile fabrication of uniaxial nanopatterns on shape memory polymer substrates using a complete bottom-up approach

    NASA Astrophysics Data System (ADS)

    Chen, Zhongbi; Krishnaswamy, Sridhar

    2014-03-01

    In earlier work, we have demonstrated an assisted self-assembly fabrication method for unidirectional submicron patterns using pre-programmed shape memory polymers (SMP) as the substrate in an organic/inorganic bilayer structure. In this paper, we propose a complete bottom-up method for fabrication of uniaxial wrinkles whose wavelength is below 300 nm. The method starts with using the aforementioned self-assembled bi-layer wrinkled surface as the template to make a replica of surface wrinkles on a PDMS layer which is spin-coated on a pre-programmed SMP substrate. When the shape recovery of the substrate is triggered by heating it to its transition temperature, the substrate has been programmed in such a way that it shrinks uniaxially to return to its permanent shape. Consequently, the wrinkle wavelength on PDMS reduces accordingly. A subsequent contact molding process is carried out on the PDMS layer spin-coated on another pre-programmed SMP substrate, but using the wrinkled PDMS surface obtained in the previous step as the master. By activating the shape recovery of the substrate, the wrinkle wavelength is further reduced a second time in a similar fashion. Our experiments showed that the starting wavelength of 640 nm decreased to 290 nm after two cycles of recursive molding. We discuss the advantages and limitations of our recursive molding approach compared to the prevalent top-down fabrication methods represented by lithography. The present study is expected to o er a simple and cost-e ective fabrication method of nano-scale uniaxial wrinkle patterns with the potential for large-scale mass-production.

  9. Structural fabrication quality as a factor of industrial facilities safety

    NASA Astrophysics Data System (ADS)

    Tishkov, E. V.; Kardaev, E. M.; Stolbova, S. Yu; Shishova, O. S.

    2018-04-01

    In the conditions of industrial facilities high wear degree, it is very important to ensure the possibility of their safe operation in order to avoid various kinds of accidents and catastrophes. As practice shows, industrial plant collapses can occur suddenly under normal operating conditions. Usually, such accidents can take place at different stages of structures life cycle. One of the reasons for this is the initially low quality of reinforced concrete structures fabrication. The article considers the factors contributing to the collapse of reinforced concrete structures of water purification tanks located on the territory of the Omsk Region. The main surveys results on tank structures after collapse with the use of ultrasonic and physical methods of investigation are presented. On the basis of the obtained data analysis, it was found that the main cause of the accidents was the insufficient load-bearing capacity of typical reinforced concrete structures, caused by defects in their fabrication in the factory conditions because of exceeding the standard displacement from the design position of the working reinforcement. Recommendations are given on the identification of defective structures and the prevention of similar accidents when operating similar tanks at manufacturing plants constructed from standard designs.

  10. Large-scale fabrication of porous YBO3 hollow microspheres with tunable photoluminescence

    NASA Astrophysics Data System (ADS)

    Xu, Zhenhe; Yu, He; Ai, Feixue; Zhao, Guiyan; Bi, Yanfeng; Huang, Liangliang; Ding, Fu; Sun, Yaguang; Gao, Yu

    2018-04-01

    Hollow lanthanide-doped compounds are some of the most popular materials for high-performance luminescent devices. However, it is challenging to find an approach that can fabricate large-scale and well-crystallized lanthanide-doped hollow structures and that is facile, efficient and of low cost. In this study, YBO3: Eu3+/Tb3+ hollow microspheres were fabricated by using a novel multi-step transformation synthetic route for the first time with polystyrene spheres as the template, followed by the combination of a facile homogeneous precipitation method, an ion-exchange process and a calcination process. The results show that the as-obtained YBO3: Eu3+/Tb3+ hollow spheres have a uniform morphology with an average diameter of 1.65 µm and shell thickness of about 160 nm. When used as luminescent materials, the emission colours of YBO3: Eu3+/Tb3+ samples can be tuned from red, through orange, yellow and green-yellow, to green by simply adjusting the relative doping concentrations of the activator ions under the excitation of ultraviolet light, which might have potential applications in fields such as light display systems and optoelectronic devices.

  11. Next Generation Loading System for Detonators and Primers

    DTIC Science & Technology

    Designed , fabricated and installed next generation tooling to provide additional manufacturing capabilities for new detonators and other small...prototype munitions on automated, semi-automated and manual machines. Lead design effort, procured and installed a primary explosive Drying Oven for a pilot...facility. Designed , fabricated and installed a Primary Explosives Waste Treatment System in a pilot environmental processing facility. Designed

  12. Improved performance of mesostructured perovskite solar cells via an anti-solvent method

    NASA Astrophysics Data System (ADS)

    Hao, Jiabin; Hao, Huiying; Cheng, Feiyu; Li, Jianfeng; Zhang, Haiyu; Dong, Jingjing; Xing, Jie; Liu, Hao; Wu, Jian

    2018-06-01

    One-step solution process is a facile and widely used procedure to prepare organic-inorganic perovskite materials. However, the poor surface morphology of the films attributed to the uncontrollable nucleation and crystal growth in the process is unfavorable to solar cells. In this study, an anti-solvent treatment during the one-step solution process, in which ethyl acetate (EA) was dropped on the sample during spinning the precursor solution containing CH3NH3Cl, was adopted to fabricate perovskite materials and solar cells. It was found that the morphology of the perovskite film was significantly improved due to the rapid nucleation and slow crystal growth process. The modified process enabled us to fabricate the mesoporous solar cell with power conversion efficiency of 14%, showing an improvement of 40% over the efficiency of 9.7% of the device prepared by conventional one-step method. The controlling effect of annealing time on the morphology, crystal structure and transport properties of perovskite layer as well as the performance of device fabricated by the anti-solvent method were investigated and the possible mechanism was discussed.

  13. Simple, low-cost fabrication of semi-circular channel using the surface tension of solder paste and its application to microfluidic valves.

    PubMed

    Yan, Sheng; Li, Yuxing; Zhu, Yuanqing; Liu, Minsu; Zhao, Qianbin; Yuan, Dan; Yun, Guolin; Zhang, Shiwu; Wen, Weijia; Tang, Shi-Yang; Li, Weihua

    2018-06-01

    This work presents a simple, low-cost method to fabricate semi-circular channels using solder paste, which can amalgamate the cooper surface to form a half-cylinder mold using the surface tension of Sn-Pd alloy (the main component in solder paste). This technique enables semi-circular channels to be manufactured with different dimensions. These semi-circular channels will then be integrated with a polymethylmethacrylate frame and machine screws to create miniaturized, portable microfluidic valves for sequential liquid delivery and particle synthesis. This approach avoids complicated fabrication processes and expensive facilities and thus has the potential to be a useful tool for lab-on-a-chip applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Graphene interfaced perovskite solar cells: Role of graphene flake size

    NASA Astrophysics Data System (ADS)

    Sakorikar, Tushar; Kavitha, M. K.; Tong, Shi Wun; Vayalamkuzhi, Pramitha; Loh, Kian Ping; Jaiswal, Manu

    2018-04-01

    Graphene interfaced inverted planar heterojunction perovskite solar cells are fabricated by facile solution method and studied its potential as hole conducting layer. Reduced graphene oxide (rGO) with small and large flake size and Polyethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) are utilized as hole conducting layers in different devices. For the solar cell employing PEDOT:PSS as hole conducting layer, 3.8 % photoconversion efficiency is achieved. In case of solar cells fabricated with rGO as hole conducting layer, the efficiency of the device is strongly dependent on flake size. With all other fabrication conditions kept constant, the efficiency of graphene-interfaced solar cell improves by a factor of 6, by changing the flake size of graphene oxide. We attribute this effect to uniform coverage of graphene layer and improved electrical percolation network.

  15. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation

    NASA Astrophysics Data System (ADS)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-04-01

    Photoelectrochemical (PEC) water splitting based doping modified one dimensional (1D) titanium dioxide (TiO2) nanostructures provide an efficient method for hydrogen generation. Here we first successfully fabricated 1D Si-doped TiO2 (Ti-Si-O) nanotube arrays through anodizing Ti-Si alloys with different Si amount, and reported the PEC properties for water splitting. The Ti-Si-O nanotube arrays fabricated on Ti-5 wt.% Si alloy and annealed at 600 °C possess higher PEC activity, yielding a higher photocurrent density of 0.83 mA/cm2 at 0 V vs. Ag/AgCl. The maximum photoconversion efficiency was 0.54%, which was 2.7 times the photoconversion efficiency of undoped TiO2.

  16. Enabling antibacterial coating via bioinspired mineralization of nanostructured ZnO on fabrics under mild conditions.

    PubMed

    Manna, Joydeb; Begum, Gousia; Kumar, K Pranay; Misra, Sunil; Rana, Rohit K

    2013-05-22

    Herein, we present an environmentally benign method capable of mineralization and deposition of nanomaterials to introduce antibacterial functionalities into cotton fabrics under mild conditions. Similar to the way in which many naturally occurring biominerals evolve around the living organism under ambient conditions, this technique enables flexible substrates like the cotton fabric to be coated with inorganic-based functional materials. Specifically, our strategy involves the use of long-chain polyamines known to be responsible in certain biomineralization processes, to nucleate, organize, and deposit nanostructured ZnO on cotton bandage in an aqueous solution under mild conditions of room temperature and neutral pH. The ZnO-coated cotton bandages as characterized by SEM, confocal micro-Raman spectroscopy, XRD, UV-DRS, and fluorescence microscopy demonstrate the importance of polyamine in generating a stable and uniform coating of spindle-shaped ZnO particles on individual threads of the fabric. As the coating process requires only mild conditions, it avoids any adverse effect on the thermal and mechanical properties of the substrate. Furthermore, the ZnO particles on cotton fabric show efficient antibacterial activity against both gram-positive and gram-negetive bacteria. Therefore, the developed polyamine mediated bioinspired coating method provides not only a facile and "green" synthesis for coating on flexible substrate but also the fabrication of antibacterial enabled materials for healthcare applications.

  17. Recent Advances in 3D Printing of Aliphatic Polyesters.

    PubMed

    Chiulan, Ioana; Frone, Adriana Nicoleta; Brandabur, Călin; Panaitescu, Denis Mihaela

    2017-12-24

    3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHA), two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed.

  18. Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo

    2017-06-01

    To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.

  19. Semi-contact-writing of polymer molds for prototyping PDMS chips with low surface roughness, sharp edges and locally varying channel heights

    NASA Astrophysics Data System (ADS)

    Gutzweiler, Ludwig; Stumpf, Fabian; Tanguy, Laurent; Roth, Guenter; Koltay, Peter; Zengerle, Roland; Riegger, Lutz

    2016-04-01

    Microfluidic systems fabricated in polydimethylsiloxane (PDMS) enable a broad variety of applications and are widespread in the field of Lab-on-a-Chip. Here we demonstrate semi-contact-writing, a novel method for fabrication of polymer based molds for casting microfluidic PDMS chips in a highly flexible, time and cost-efficient manner. The method is related to direct-writing of an aqueous polymer solution on a planar glass substrate and substitutes conventional, time- and cost-consuming UV-lithography. This technique facilitates on-demand prototyping in a low-cost manner and is therefore ideally suited for rapid chip layout iterations. No cleanroom facilities and less expertise are required. Fabrication time from scratch to ready-to-use PDMS-chip is less than 5 h. This polymer writing method enables structure widths down to 140 μm and controllable structure heights ranging from 5.5 μm for writing single layers up to 98 μm by stacking. As a unique property, freely selectable height variations across a substrate can be achieved by application of local stacking. Furthermore, the molds exhibit low surface roughness (R a   =  24 nm, R RMS  =  28 nm) and high fidelity edge sharpness. We validated the method by fabrication of molds to cast PDMS chips for droplet based flow-through PCR with single-cell sensitivity.

  20. 77 FR 70193 - Shaw Areva MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing Board (Board) in the... Rockville, Maryland this 16th day of November 2012. E. Roy Hawkens, Chief Administrative Judge, Atomic...

  1. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2018-04-16

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  2. Facile synthesis of AIE-active amphiphilic polymers: Self-assembly and biological imaging applications.

    PubMed

    Long, Zi; Liu, Meiying; Wang, Ke; Deng, Fengjie; Xu, Dazhuang; Liu, Liangji; Wan, Yiqun; Zhang, Xiaoyong; Wei, Yen

    2016-09-01

    In this work, we reported a rather facile method for fabrication of ultrabright, well dispersible and biocompatible fluorescent organic nanoparticles (FONs) with aggregation-induced emission (AIE) properties through combination of esterification and ring-opening reaction. The hydroxyl groups of Pluronic F127 was first reacted with the chloride of trimellitic anhydride chloride (TMAC), and its anhydride groups were further reacted with the amino groups of amino-terminated AIE dye (PhNH2) through ring-opening reaction. The optical properties, biocompatibility as well as cell uptake behavior of these obtained AIE-active nanoparticles (F127-TMAC-PhNH2 FONs) were examined by a series of characterization techniques and assays. We demonstrated that uniform organic nanoparticles with high water dispersibility, strong luminescence and desirable biocompatibility can be facilely obtained, which are promising for biological imaging applications. More importantly, a number of carboxyl groups were introduced into these AIE-active nanoparticles, which can be further utilized for further conjugation reaction and carrying anticancer drugs such as cisplatin. Therefore, the strategy of described in this work should be a simple and useful route for fabrication of multifunctional AIE-active luminescent nanotheranostic systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. FFTF disposable solid waste cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in thismore » paper.« less

  4. Bioinspired Omnidirectional Self-Stable Reflectors with Multiscale Hierarchical Structures.

    PubMed

    Han, Zhiwu; Mu, Zhengzhi; Li, Bo; Feng, Xiaoming; Wang, Ze; Zhang, Junqiu; Niu, Shichao; Ren, Luquan

    2017-08-30

    Structured surfaces, demonstrating various wondrous physicochemical performances, are ubiquitous phenomena in nature. Butterfly wings with impressive structural colors are an interesting example for multiscale hierarchical structures (MHSs). However, most natural structural colors are relatively unstable and highly sensitive to incident angles, which limit their potential practical applications to a certain extent. Here, we reported a bioinspired color reflector with omnidirectional reflective self-stable (ORS) properties, which is inspired by the wing scales of Papilio palinurus butterfly. Through experimental exploration and theoretical analysis, it was found that the vivid colors of such butterfly wings are structure-based and possess novel ORS properties, which attributes to the multiple optical actions between light and the complex structures coupling the inverse opal-like structures (IOSs) and stacked lamellar ridges (SLRs). On the basis of this, we designed and successfully fabricated the SiO 2 -based bioinspired color reflectors (BCRs) through a facile and effective biotemplate method. It was confirmed that the MHSs in biotemplate are inherited by the obtained SiO 2 -based BCRs. More importantly, the SiO 2 -based BCRs also demonstrated the similar ORS properties in a wide wavelength range. We forcefully anticipate that the reported MHS-based ORS performance discovered in butterfly wing scales here could offer new thoughts for scientists to solve unstable reflection issues in particular optical field. The involved biotemplate fabrication method offers a facile and effective strategy for fabricating functional nanomaterials or bioinspired nanodevices with 3D complex nanostructures, such as structured optical devices, displays, and optoelectronic equipment.

  5. Tissue cell assisted fabrication of tubular catalytic platinum microengines

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Moo, James Guo Sheng; Pumera, Martin

    2014-09-01

    We report a facile platform for mass production of robust self-propelled tubular microengines. Tissue cells extracted from fruits of banana and apple, Musa acuminata and Malus domestica, are used as the support on which a thin platinum film is deposited by means of physical vapor deposition. Upon sonication of the cells/Pt-coated substrate in water, microscrolls of highly uniform sizes are spontaneously formed. Tubular microengines fabricated with the fruit cell assisted method exhibit a fast motion of ~100 bodylengths per s (~1 mm s-1). An extremely simple and affordable platform for mass production of the micromotors is crucial for the envisioned swarms of thousands and millions of autonomous micromotors performing biomedical and environmental remediation tasks.We report a facile platform for mass production of robust self-propelled tubular microengines. Tissue cells extracted from fruits of banana and apple, Musa acuminata and Malus domestica, are used as the support on which a thin platinum film is deposited by means of physical vapor deposition. Upon sonication of the cells/Pt-coated substrate in water, microscrolls of highly uniform sizes are spontaneously formed. Tubular microengines fabricated with the fruit cell assisted method exhibit a fast motion of ~100 bodylengths per s (~1 mm s-1). An extremely simple and affordable platform for mass production of the micromotors is crucial for the envisioned swarms of thousands and millions of autonomous micromotors performing biomedical and environmental remediation tasks. Electronic supplementary information (ESI) available: Related video. See DOI: 10.1039/c4nr03720k

  6. Strength evaluation of prosthetic check sockets, copolymer sockets, and definitive laminated sockets.

    PubMed

    Gerschutz, Maria J; Haynes, Michael L; Nixon, Derek; Colvin, James M

    2012-01-01

    A prosthesis encounters loading through forces and torques exerted by the person with amputation. International Organization for Standardization (ISO) standard 10328 was designed to test most lower-limb prosthetic components. However, this standard does not include prosthetic sockets. We measured static failure loads of prosthetic sockets using a modified ISO 10328 and then compared them with the criteria set by this standard for other components. Check socket (CS) strengths were influenced by thickness, material choice, and fabrication method. Copolymer socket (CP) strengths depended on thickness and fabrication methods. A majority of the CSs and all of the CPs failed to pass the ISO 10328 ductile loading criterion. In contrast, the strengths of definitive laminated sockets (DLs) were influenced more by construction material and technique. A majority of the DLs failed to pass the ISO 10328 brittle loading criterion. Analyzing prosthetic sockets from a variety of facilities demonstrated that socket performance varies considerably between and within facilities. The results from this article provide a foundation for understanding the quality of prosthetic sockets, some insight into possible routes for improving the current care delivered to patients, and a comparative basis for future technology.

  7. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer

    NASA Astrophysics Data System (ADS)

    Lee, Seong Yun; Kim, Jae Young; Lee, Jun Young; Song, Ho Jun; Lee, Sangkug; Choi, Kyung Ho; Shin, Gyojic

    2014-06-01

    An excellent transparent film with effective absorption property in near-infrared (NIR) region based on cesium-doped tungsten oxide nanoparticles was fabricated using a facile double layer coating method via the theoretical considerations. The optical performance was evaluated; the double layer-coated film exhibited 10% transmittance at 1,000 nm in the NIR region and over 80% transmittance at 550 nm in the visible region. To optimize the selectivity, the optical spectrum of this film was correlated with a theoretical model by combining the contributions of the Mie-Gans absorption-based localized surface plasmon resonance and reflections by the interfaces of the heterogeneous layers and the nanoparticles in the film. Through comparison of the composite and double layer coating method, the difference of the nanoscale distances between nanoparticles in each layer was significantly revealed. It is worth noting that the nanodistance between the nanoparticles decreased in the double layer film, which enhanced the optical properties of the film, yielding a haze value of 1% or less without any additional process. These results are very attractive for the nanocomposite coating process, which would lead to industrial fields of NIR shielding and thermo-medical applications.

  8. Fabrication of superhydrophobic polyaniline films with rapidly switchable wettability

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyan; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhu, Xiaotao; Xue, Qunji

    2011-10-01

    A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.

  9. Iodine Beam Dump Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Bradley, D. E.

    2017-01-01

    During the testing of electric thrusters, high-energy ions impacting the walls of a vacuum chamber can cause corrosion and/or sputtering of the wall materials, which can damage the chamber walls. The sputtering can also introduce the constituent materials of the chamber walls into an experiment, with those materials potentially migrating back to the test article and coating it with contaminants over time. The typical method employed in this situation is to install a beam dump fabricated from materials that have a lower sputter yield, thus reducing the amount of foreign material that could migrate towards the test article or deposit on anything else present in the vacuum facility.

  10. High performance printed oxide field-effect transistors processed using photonic curing.

    PubMed

    Garlapati, Suresh Kumar; Marques, Gabriel Cadilha; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Tahoori, Mehdi Baradaran; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho

    2018-06-08

    Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In 2 O 3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

  11. Templated electrokinetic directed chemical assembly for the fabrication of close-packed plasmonic metamolecules

    NASA Astrophysics Data System (ADS)

    Thrift, W. J.; Darvishzadeh-Varcheie, M.; Capolino, F.; Ragan, R.

    2017-08-01

    Colloidal self-assembly combined with templated surfaces holds the promise of fabricating large area devices in a low cost facile manner. This directed assembly approach improves the complexity of assemblies that can be achieved with self-assembly while maintaining advantages of molecular scale control. In this work, electrokinetic driving forces, i.e., electrohydrodynamic flow, are paired with chemical crosslinking between colloidal particles to form close-packed plasmonic metamolecules. This method addresses challenges of obtaining uniformity in nanostructure geometry and nanometer scale gap spacings in structures. Electrohydrodynamic flows yield robust driving forces between the template and nanoparticles as well as between nanoparticles on the surface promoting the assembly of close-packed metamolecules. Here, electron beam lithography defined Au pillars are used as seed structures that generate electrohydrodynamic flows. Chemical crosslinking between Au surfaces enables molecular control over gap spacings between nanoparticles and Au pillars. An as-fabricated structure is analyzed via full wave electromagnetic simulations and shown to produce large magnetic field enhancements on the order of 3.5 at optical frequencies. This novel method for directed self-assembly demonstrates the synergy between colloidal driving forces and chemical crosslinking for the fabrication of plasmonic metamolecules with unique electromagnetic properties.

  12. High performance printed oxide field-effect transistors processed using photonic curing

    NASA Astrophysics Data System (ADS)

    Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho

    2018-06-01

    Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

  13. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    PubMed Central

    Tehrani, Farshad; Bavarian, Behzad

    2016-01-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM–4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat. PMID:27306706

  14. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose

    NASA Astrophysics Data System (ADS)

    Tehrani, Farshad; Bavarian, Behzad

    2016-06-01

    A novel and highly sensitive disposable glucose sensor strip was developed using direct laser engraved graphene (DLEG) decorated with pulse deposited copper nanocubes (CuNCs). The high reproducibility (96.8%), stability (97.4%) and low cost demonstrated by this 3-step fabrication method indicates that it could be used for high volume manufacturing of disposable glucose strips. The fabrication method also allows for a high degree of flexibility, allowing for control of the electrode size, design, and functionalization method. Additionally, the excellent selectivity and sensitivity (4,532.2 μA/mM.cm2), low detection limit (250 nM), and suitable linear range of 25 μM-4 mM, suggests that these sensors may be a great potential platform for glucose detection within the physiological range for tear, saliva, and/or sweat.

  15. Controlled fabrication of luminescent and magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  16. Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure

    NASA Astrophysics Data System (ADS)

    Zhu, Zhu; Chen, Feng; Xu, Chunxiang; Yang, Guangcan; Zhu, Ye; Luo, Zhaoxu

    2017-12-01

    Monitoring the nucleation and growth of nanomaterials is a key technique for material synthesis design and control. An efficient fabrication method can be realized deeply understanding the growth mechanisms. Here, noble metal nanostructures, gold (Au) nanoparticles, silver nanostructures (Ag nanoparticles/Ag nanowires) and gold-silver alloy nanoparticles were prepared in a facile method at room temperature. The growth processes of the Au nanoparticles, Ag nanowires and Au-Ag alloy nanoparticles can be monitored real-timely through the ultraviolet visible absorption (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is found that the whole formation involved Digestive ripening and Ostwald ripening cooperative mechanism. Furthermore, the self-assembly growth is noticed in the oriented attachment of precursor Ag monomers into nanowires under the same synthetic conditions without external templates or rigorous conditions. This result can provide a platform to discover the underlying growth mechanism of wet-chemistry methods for metal nanostructure fabrication.

  17. Facile growth of a single-crystal pattern: a case study of HKUST-1.

    PubMed

    Li, Shaozhou; Lu, Guang; Huang, Xiao; Li, Hai; Sun, Yinghui; Zhang, Hua; Chen, Xiaodong; Huo, Fengwei

    2012-12-18

    In order to fabricate metal-organic framework (MOF) based devices, it is desirable to precisely position high-quality and mono-sized MOF crystals on supports. In this work, we demonstrate a facile solution procedure for the fabrication of oriented and monodispersed single-crystal MOF pattern. We expect that such capability will expand the scope of applications of MOFs to advanced fields.

  18. Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles

    NASA Astrophysics Data System (ADS)

    Shang, Qianqian; Hu, Lihong; Hu, Yun; Liu, Chengguo; Zhou, Yonghong

    2018-01-01

    A facile one-pot method for the fabrication of superhydrophobic fluorinated silica nanoparticles is reported. Fluorinated aggregated silica (A-SiO2/FAS) nanoparticles were synthesized by controlling the nanoparticles assembly, in situ fixation and overgrowth of particle seeds with the assist of tetraethoxysilane (TEOS) in ethanol/water solution and then modification with fluoroalkylsilane (FAS) molecules. Such kind of A-SiO2/FAS nanoparticles showed superhydrophobicity and was not wetted by water, thus it could be served as the encapsulating shells to manipulate liquid droplets. Liquid marbles fabricated from A-SiO2/FAS nanoparticles were used for ammonia gas sensing or emitting by taking advantage of the porosity and superhydrophobicity of the liquid marble shells. In addition, the posibility of A-SiO2/FAS-based liquid marbles as microreactor for dopamine polymerization also was explored.

  19. A facile method of fabricating mechanical durable anti-icing coatings based on CeO2 microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Pengren; Peng, Chaoyi; Wu, Binrui; Yuan, Zhiqing; Yang, Fubiao; Zeng, Jingcheng

    2015-07-01

    Compromising between hydrophobicity and mechanical durability may be a feasible approach to fabricating usable anti-icing coatings. This work improves the contact angle of current commercial anti-icing coatings applied to wind turbine blades dramatically and keeps relatively high mechanical durability. CeO2 microparticles and diluent were mixed with fluorocarbon resin to fabricate high hydrophobic coatings on the glass fiber reinforced epoxy composite substrates. The proportion of CeO2 microparticles and diluent influences the contact angles significantly. The optimum mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1, which leads to the highest contact angle close to 140°. The microscopy analysis shows that the CeO2 microparticles form nano/microscale hierarchical structure on the surface of the coatings.

  20. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity

    NASA Astrophysics Data System (ADS)

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-08-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  1. Facile Fabrication of Multi-hierarchical Porous Polyaniline Composite as Pressure Sensor and Gas Sensor with Adjustable Sensitivity.

    PubMed

    He, Xiao-Xiao; Li, Jin-Tao; Jia, Xian-Sheng; Tong, Lu; Wang, Xiao-Xiong; Zhang, Jun; Zheng, Jie; Ning, Xin; Long, Yun-Ze

    2017-12-01

    A multi-hierarchical porous polyaniline (PANI) composite which could be used in good performance pressure sensor and adjustable sensitivity gas sensor has been fabricated by a facile in situ polymerization. Commercial grade sponge was utilized as a template scaffold to deposit PANI via in situ polymerization. With abundant interconnected pores throughout the whole structure, the sponge provided sufficient surface for the growth of PANI nanobranches. The flexible porous structure helped the composite to show high performance in pressure detection with fast response and favorable recoverability and gas detection with adjustable sensitivity. The sensing mechanism of the PANI/sponge-based flexible sensor has also been discussed. The results indicate that this work provides a feasible approach to fabricate efficient sensors with advantages of low cost, facile preparation, and easy signal collection.

  2. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    NASA Astrophysics Data System (ADS)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  3. Design and Development of E3 Antenna Container,

    DTIC Science & Technology

    1985-09-03

    reinforced with square tubing. The walls and ceiling shall be insulated with expanded polystyrene . TEST LOCATION - This test will be performed at the...ceiling shall be insulated with expanded polystyrene . TEST LOCATION - This test will be performed at the Edgewater Machine & Fabricator’s facility...insulated with expanded polystyrene . TEST LOCATION - This test will be performed at the Edgewater Machine & Fabricator’s facility located at 200 N

  4. 40 CFR 410.51 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.51 Specialized... the knit fabric finishing subcategory for facilities that are engaged primarily in dyeing or finishing...

  5. 40 CFR 410.51 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.51 Specialized... the knit fabric finishing subcategory for facilities that are engaged primarily in dyeing or finishing...

  6. NRL (Naval Research Laboratory) Review

    DTIC Science & Technology

    1989-07-01

    newmatrial. Vriou difracion The division has recently developed the 475-ftto invent new materials. Various diffraction e-hdel(S- 5 noa dacdfr...study sample between 4 and 400 K without breaking the fabrication methods by using new and/or unusual vacuum. The facility is currently used for...combine the output of multiaperture HF laser amplifiers. 24 . 4 Relativistic Klystron Amplifier New , high-power RF klystron-like amplifiers have been

  7. Energy Systems Fabrication Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    Fabrication The fuel cell fabrication hub includes laboratory spaces with local exhaust and chemical fume hoods that support electrolysis and other chemical process research. Key Infrastructure Perchloric acid washdown hood, local exhaust, specialty gas manifolding, deionized water, chemical fume hoods, glassware

  8. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method.

    PubMed

    Kim, Jiseok; Lew, Brian; Kim, Woo Soo

    2011-12-06

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures.PACS: 05.70.Np, 68.55.am, 68.55.jm.

  9. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method

    PubMed Central

    2011-01-01

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures. PACS: 05.70.Np, 68.55.am, 68.55.jm PMID:22145673

  10. 3D printing of highly elastic strain sensors using polyurethane/multiwall carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Christ, Josef F.; Hohimer, Cameron J.; Aliheidari, Nahal; Ameli, Amir; Mo, Changki; Pötschke, Petra

    2017-04-01

    As the desire for wearable electronics increases and the soft robotics industry advances, the need for novel sensing materials has also increased. Recently, there have been many attempts at producing novel materials, which exhibit piezoresistive behavior. However, one of the major shortcomings in strain sensing technologies is in the fabrication of such sensors. While there is significant research and literature covering the various methods for developing piezoresistive materials, fabricating complex sensor platforms is still a manufacturing challenge. Here, we report a facile method to fabricate multidirectional embedded strain sensors using additive manufacturing technology. Pure thermoplastic polyurethane (TPU) and TPU/multiwall carbon nanotubes (MWCNT) nanocomposites were 3D printed in tandem using a low-cost multi-material FDM printer to fabricate uniaxial and biaxial strain sensors with conductive paths embedded within the insulative TPU platform. The sensors were then subjected to a series of cyclic strain loads. The results revealed excellent piezoresistive responses of the sensors with cyclic repeatability in both the axial and transverse directions and in response to strains as high as 50%. Further, while strain-softening did occur in the embedded printed strain sensors, it was predictable and similar to the results found in the literature for bulk polymer nanocomposites. This works demonstrates the possibility of manufacturing embedded and multidirectional flexible strain sensors using an inexpensive and versatile method, with potential applications in soft robotics and flexible electronics and health monitoring.

  11. Waste Estimates for a Future Recycling Plant in the US Based Upon AREVA Operating Experience - 13206

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foare, Genevieve; Meze, Florian; Bader, Sven

    2013-07-01

    Estimates of process and secondary wastes produced by a recycling plant built in the U.S., which is composed of a used nuclear fuel (UNF) reprocessing facility and a mixed oxide (MOX) fuel fabrication facility, are performed as part of a U.S. Department of Energy (DOE) sponsored study [1]. In this study, a set of common inputs, assumptions, and constraints were identified to allow for comparison of these wastes between different industrial teams. AREVA produced a model of a reprocessing facility, an associated fuel fabrication facility, and waste treatment facilities to develop the results for this study. These facilities were dividedmore » into a number of discrete functional areas for which inlet and outlet flow streams were clearly identified to allow for an accurate determination of the radionuclide balance throughout the facility and the waste streams. AREVA relied primarily on its decades of experience and feedback from its La Hague (reprocessing) and MELOX (MOX fuel fabrication) commercial operating facilities in France to support this assessment. However, to perform these estimates for a U.S. facility with different regulatory requirements and to take advantage of some technological advancements, such as in the potential treatment of off-gases, some deviations from this experience were necessary. A summary of AREVA's approach and results for the recycling of 800 metric tonnes of initial heavy metal (MTIHM) of LWR UNF per year into MOX fuel under the assumptions and constraints identified for this DOE study are presented. (authors)« less

  12. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    NASA Astrophysics Data System (ADS)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  13. Amorphous Silicon Based Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield usingmore » low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies developed here could be used to develop X-ray and neutron monitors that could be used in the future for security checks at the airports and other critical facilities. The project would lead to devices that could significantly enhance the performance of multi-billion dollar neutron source facilities in the US and bring our nation to the forefront of neutron beam sciences and technologies which have enormous impact to materials, life science and military research and applications.« less

  14. 40 CFR 52.2276 - Control strategy and regulations: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... its limestone quarry facilities near New Braunfels, Comal County, Texas shall install fabric filters... of the fabric filters, Parker Brothers and Co., Inc., shall not emit particulate matter in excess of 0.03 grains per standard cubic foot from the exhaust stack of the fabric filter on its primary...

  15. 40 CFR 52.2276 - Control strategy and regulations: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... its limestone quarry facilities near New Braunfels, Comal County, Texas shall install fabric filters... of the fabric filters, Parker Brothers and Co., Inc., shall not emit particulate matter in excess of 0.03 grains per standard cubic foot from the exhaust stack of the fabric filter on its primary...

  16. 40 CFR 52.2276 - Control strategy and regulations: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... its limestone quarry facilities near New Braunfels, Comal County, Texas shall install fabric filters... of the fabric filters, Parker Brothers and Co., Inc., shall not emit particulate matter in excess of 0.03 grains per standard cubic foot from the exhaust stack of the fabric filter on its primary...

  17. Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.

    1975-01-01

    Progress is reported during the apparatus design, fabrication, and assembly phases of a program to grow wide, thin silicon dendritic web. The growth facility was essentially completed with any significant problems arising. A complete set of detailed fabrication drawings is included as an appendix.

  18. Differential collision cross-sections for atomic oxygen: Analysis of space flight instruments for solar terrestrial physics

    NASA Technical Reports Server (NTRS)

    Torr, Douglas G.

    1991-01-01

    A summary of the status of the Cross-section Facility at MSFC is presented. A facility was designed, fabricated, assembled, tested, and operated for measurement of differential scattering cross sections important to understand the induced environment for a vehicle (e.g., Space Station) in low earth orbit. A user's manual for the facility is also presented. The performance of the facility was evaluated and found to be satisfactory in all the essential areas. Differential scattering cross sections were measured and results for the scattering measurements are included. Input to the development of the Ultraviolet Imager Optical System is also discussed. Design, fabrication, and evaluation of UV filters using a four-layer aluminum base are reported.

  19. Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers

    NASA Astrophysics Data System (ADS)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan

    2018-04-01

    Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.

  20. Electroluminescence in SrTiO3:Cr single-crystal nonvolatile memory cells

    NASA Astrophysics Data System (ADS)

    Alvarado, S. F.; La Mattina, F.; Bednorz, J. G.

    2007-10-01

    Materials chemistry has emerged as one of the most consistent fabrication tools for the rational delivery of high purity functional nanomaterials, engineered from molecular to microscopic scale at low cost and large scale. An overview of the major achievements and latest advances of a recently developed growth concept and low temperature aqueous synthesis method, for the fabrication of purpose-built large bandgap metal oxide semiconductor materials and oriented nano-arrays is presented. Important insight of direct relevance for semiconductor technology, optoelectronics, photovoltaics and photocatalysis for solar hydrogen generation, are revealed by in-depth investigations of the electronic structure of metal oxide nanostructures with new morphology and architecture, carried out at synchrotron radiation facilities.

  1. Long-Range Facilities - Plan

    DTIC Science & Technology

    1981-07-31

    3. DATES COVERED 00-00-1981 to 00-00-1981 4. TITLE AND SUBTITLE Long-Range Facilities - Plan 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...sternwheeler “Mark Twain” for Disneyland and fabrication of eight 52 foot submarines for the Disneyland “Navy.” This was followed by fabrication of the masts...converting the PRESIDENT GRANT , PRESIDENT McKINLEY and PRESIDENT FILLMORE to container ships for American President Lines, Ltd. These ships were designed to

  2. Recent Advances in 3D Printing of Aliphatic Polyesters

    PubMed Central

    Frone, Adriana Nicoleta; Brandabur, Călin

    2017-01-01

    3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHA), two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed. PMID:29295559

  3. An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Ren, Ziqiu; Zhu, Menghua; Li, Xin; Dong, Cunku

    2017-09-01

    As a promising photovoltaic device, perovskite solar cells have attracted numerous attention in recent years, where forming a compact and pinhole-free perovskite film in air is of great importance. Herein, we evaluate highly efficient and air stable planar perovskite solar cells in air (relative humidity over 50%) with the modified two-step sequential deposition method by adjusting the CH3NH3I (MAI) concentrations and regulating the crystallization process of the perovskite film. The optimum MAI concentration is 60 mg mL-1 in isopropanol. With a planar structure of FTO/TiO2/MAPbI3/spiro-OMeTAD/Au, the efficient devices composed of compact and pinhole-free perovskite films are constructed in air, achieving a high efficiency of up to 15.10% and maintaining over 80% after 20 days storing without any encapsulation in air. With a facile fabrication process and high photovoltaic performance, this work represents a promising method for fabricating low-cost, highly efficient and stable photovoltaic device.

  4. Facile Fabrication of Multifunctional Aramid Nanofiber Films by Spin Coating

    NASA Astrophysics Data System (ADS)

    Lyu, Jing; Liu, Lehao; Zhao, Xing; Shang, Yudong; Zhao, Tingkai; Li, Tiehu

    2016-11-01

    Polymer matrices with excellent mechanical properties, thermal stability and other features are highly demanded for the effective utilization within nanocomposites. Here, we fabricate free-standing aramid nanofiber films via spin coating of an aramid nanofiber/dimethyl sulfoxide solution. Compared with traditional film fabrication methods, this process is time-saving and also able to easily tune the thickness of the films. The resultant films show greatly improved stretchability than that of Kevlar threads and relatively high mechanical strength. Typically, these films with a thickness of 5.5 µm show an ultimate strength of 182 MPa with an ultimate tensile strain of 10.5%. We also apply a finite element modeling to simulate the strain and strength distributions of the films under uniaxial tension, and the results of the simulation are in accordance with the experimental data. Furthermore, the aramid nanofiber films exhibit outstanding thermostability (decomposition at 550 °C under N2 atmosphere and 500 °C in air) and chemical inertness, which would endure acid and alkali. The simple method demonstrated here provides an important way to prepare high-performance aramid nanofiber films for designing new composite systems.

  5. Facile electrodeposition of reduced graphene oxide hydrogels for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Pham, Viet Hung; Gebre, Tesfaye; Dickerson, James H.

    2015-03-01

    We report both a facile, scalable method to prepare reduced graphene oxide hydrogels through the electrodeposition of graphene oxide and its use as an electrode for high-performance supercapacitors. Such systems exhibited specific capacitances of 147 and 223 F g-1 at a current density of 10 A g-1 when using H2SO4 and H2SO4 + hydroquinone redox electrolytes, respectively.We report both a facile, scalable method to prepare reduced graphene oxide hydrogels through the electrodeposition of graphene oxide and its use as an electrode for high-performance supercapacitors. Such systems exhibited specific capacitances of 147 and 223 F g-1 at a current density of 10 A g-1 when using H2SO4 and H2SO4 + hydroquinone redox electrolytes, respectively. Electronic supplementary information (ESI) available: GO synthesis, characterization, fabrication of ERGO supercapacitor and electrochemical measurement, elemental composition, TGA and XRD of GO and ERGO. See DOI: 10.1039/c4nr07508k

  6. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    PubMed

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  7. Development of feedback-speed-control system of fixed-abrasive tool for mat-surface fabrication

    NASA Astrophysics Data System (ADS)

    Yanagihara, K.; Kita, R.

    2018-01-01

    This study deals with the new method to fabricate a mat-surface by using fixed-abrasive tool. Mat-surface is a surface with microscopic irregularities whose dimensions are close to the wavelengths of visible light (400-700 nanometers). In order to develop the new method to fabricate mat-surface without pre-masking and large scale back up facility, utilization of fixed-abrasive tool is discussed. The discussion clarifies that abrasives in shot blasting are given kinetic energy along to only plunge-direction while excluding traverse-direction. If the relative motion between tool and work in fixed-abrasive process can be realized as that in blasting, mat-surface will be accomplished with fixed-abrasive process. To realize the proposed idea, new surface-fabrication system to which is adopted feedback-speed-control of abrasive wheel has been designed. The system consists of micro-computer unit (MPU), work-speed sensor, fixed-abrasive wheel, and wheel driving unit. The system can control relative speed between work and wheel in optimum range to produce mat-surface. Finally experiment to verify the developed system is carried out. The results of experiments show that the developed system is effective and it can produce the surface from grinding to mat-surface seamlessly.

  8. Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji

    2016-10-01

    A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.

  9. A Facile Method to Fabricate Double Gyroid as A Polymer Template for Nanohybrids

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Fang; Ho, Rong-Ming

    2015-03-01

    Here, we suggest a facile method to acquire double gyroid (DG) phase from the self-assembly of chiral block copolymers (BCPs*), polystyrene- b-poly(L-lactide) (PS-PLLA). A wide region for the formation of DG can be found in the phase diagram of the BCPs*, suggesting that helical phase (H*) from the self-assembly of BCPs* can serve as a stepping stone for the formation of the DG due to an easy path for order-order transition from two-dimensional to three-dimensional (network) structure. Moreover, the order-order transition from metastable H* to stable DG can be expedited by blending the PS-PLLA with compatible entity. Moreover, PS-PLLA blends are prepared by using styrene oligomer (S) to fine-tune the morphologies of the blends at which the molecular weight ratio of the S and compatible PS block (r) is less than 0.1. Owing to the use of the low-molecular-weight oligomer, the increase of BCP chain mobility in the blends significantly reduces the transformation time for the order-order transition from H* to DG. Consequently, nanoporous gyroid SiO2 can be fabricated using hydrolyzed PS-PLLA blends as a template for sol-gel reaction followed by removal of the PS matrix.

  10. Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir; Center for Research in Climate Change and Global Warming; Maghami, Mostafa Ghaem

    Highlights: • We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. • MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. • The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy,more » X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup −1} was achieved at a scan rate of 5 mV s{sup −1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.« less

  11. Facile fabrication and characterization of chitosan-based zinc oxide nanoparticles and evaluation of their antimicrobial and antibiofilm activity

    NASA Astrophysics Data System (ADS)

    Dhillon, Gurpreet Singh; Kaur, Surinder; Brar, Satinder Kaur

    2014-06-01

    The present investigation deals with the facile synthesis and characterization of chitosan (CTS)-based zinc oxide (ZnO) nanoparticles (NPs) and their antimicrobial activities against pathogenic microorganisms. ZnO-CTS NPs were synthesized through two different methods: nano spray drying and precipitation, using various organic compounds (citric acid, glycerol, starch and whey powder) as stabilizers. Both the synthesis methods were simple and were devoid of any chemical usage. The detailed characterization of the NPs was carried out using UV-Vis spectroscopy, dynamic light scattering particle size analysis, zeta potential measurements and scanning electron microscopy, which confirmed the fabrication of NPs with different shapes and sizes. Antimicrobial assay of synthesized ZnO-CTS NPs was carried out against different pathogenic microbial strains ( Candida albicans, Micrococcus luteus and Staphylococcus aureus). The significant ( p < 0.05) inhibition of growth was observed for both M. luteus and S. aureus with ZnO-CTS NPs (with a concentration ranging from 0.625 to 0.156 mg/ml) as compared to control treatment. ZnO-CTS NPs also showed significant biofilm inhibition activity ( p < 0.05) against M. luteus and S. aureus. The study demonstrated the potential of ZnO-CTS NPs as antimicrobial and antibiofilm agents.

  12. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogash, Kevin

    2015-12-15

    Air Products carried out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications” with subcontractors Ceramatec, Penn State, and WorleyParsons. The scope of work under this award was aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration-scale facility known as the Oxygen Development Facility (ODF). Specific activities will help to enable design and construction of the ODF through advancement of a number of challenging technical elements that are required to manage risk in the initial deployment of ITMmore » technology. Major objectives of the work included developing ITM Oxygen ceramic membrane materials with improved performance and reliability, optimizing ceramic module geometry and fabrication methods, testing module performance, trialing the improved fabrication process at commercial scale in the Ceramic Membrane Module Fabrication Facility (CerFab), and advancing engineering development of the ITM oxygen production process, including vessel design and contaminant control measures to prepare for deployment of the ODF. The comprehensive report that follows details the team’s work, which includes several notable accomplishments: 1) compressive creep, a likely limiter of ceramic module lifetime in service, was demonstrated to be retarded by an order of magnitude by changes in material formulation, module joining dimensions, and internal wafer geometry; 2) two promising new materials were shown to be superior to the incumbent ITM material in a key material parameter related to oxygen flux; 3) module degradation mechanisms were identified following operation in large pilot-scale equipment; 4) options for utilizing ITM in a coal-to-liquids (CTL) facility to enable liquids production with carbon capture were identified and studied; and 5) the benefits of potential improvements to the technology were assessed for their cost impact on ITM Oxygen applications to clean power, fuels, and other applications.« less

  13. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogash, Kevin

    Air Products carried out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications” with subcontractors Ceramatec, Penn State, and WorleyParsons. The scope of work under this award was aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration-scale facility known as the Oxygen Development Facility (ODF). Specific activities will help to enable design and construction of the ODF through advancement of a number of challenging technical elements that are required to manage risk in the initial deployment of ITMmore » technology. Major objectives of the work included developing ITM Oxygen ceramic membrane materials with improved performance and reliability, optimizing ceramic module geometry and fabrication methods, testing module performance, trialing the improved fabrication process at commercial scale in the Ceramic Membrane Module Fabrication Facility (CerFab), and advancing engineering development of the ITM oxygen production process, including vessel design and contaminant control measures to prepare for deployment of the ODF. The comprehensive report that follows details the team’s work, which includes several notable accomplishments: 1) compressive creep, a likely limiter of ceramic module lifetime in service, was demonstrated to be retarded by an order of magnitude by changes in material formulation, module joining dimensions, and internal wafer geometry; 2) two promising new materials were shown to be superior to the incumbent ITM material in a key material parameter related to oxygen flux; 3) module degradation mechanisms were identified following operation in large pilot-scale equipment; 4) options for utilizing ITM in a coal-to-liquids (CTL) facility to enable liquids production with carbon capture were identified and studied; and 5) the benefits of potential improvements to the technology were assessed for their cost impact on ITM Oxygen applications to clean power, fuels, and other applications.« less

  14. Status report on the activities of National Balloon Facility at Hyderabad

    NASA Astrophysics Data System (ADS)

    Shankarnarayan, Sreenivasan; S, Sreenivasan; Shankarnarayan, Sreenivasan; Manchanda, R. K.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar

    National balloon facility at Hyderabad has been mandated to provide launch support for Indian and International scientific balloon experiments and also perform the necessary research and development in the design and fabrication of plastic balloons. In the last 4 years, since our last report, NBF has launched many successful balloon flights for the astronomy payloads and a large number of high altitude GPS Sonde flights at different places in the country. We have also continued our efforts on qualification of raw materials for zero-failure performance of our balloons and major focus on upgrading of various facilities and load-line instrumentation for launching from remote sites. We foresee a surge of balloon based experimental activity for in-situ measurements in atmospheric sciences and concept validation payloads for future space based instruments. A new centre for research in Environmental Sciences and Payload Engineering (ESPE) has also been set up at the National Balloon Facility campus to develop and conduct research in various aspects of Environmental sciences in collaboration with other groups, with a specific goal to identify, development of advanced technologies leading to an improved understanding of the earth system. The Payload Engineering facility is geared to the Design and Fabrication of Micro and Nano Satellites and will act as Inter -University Centre for payload fabrication. In this paper we present an overview of the present and planned activities in scientific ballooning at National Balloon Facility Hyderabad.

  15. Configurable UUV Sensor Network II

    DTIC Science & Technology

    2017-12-13

    the South Florida Ocean Test Facility (SFOMF). A larger 3”-diameter ball-shaped electric field sensor was developed and fabricated. A pre -amplifier...magnetic field sensors, and tested at the South Florida Ocean Test Facility (SFOMF). A larger 3”-diameter ball-shaped electric field sensor was developed...and fabricated. Testing of the 3”-diameter ball-shaped sensor at UI showed a noise floor of IpV/m RMS in the frequency band 0.02-20 Hz. UUV

  16. Rapid and high throughput fabrication of high temperature stable structures through PDMS transfer printing

    NASA Astrophysics Data System (ADS)

    Hohenberger, Erik; Freitag, Nathan; Korampally, Venumadhav

    2017-07-01

    We report on a facile and low cost fabrication approach for structures—gratings and enclosed nanochannels, through simple solution processed chemistries in conjunction with nanotransfer printing techniques. The ink formulation primarily consisting of an organosilicate polymeric network with a small percentage of added 3-aminopropyl triethoxysilane crosslinker allows one to obtain robust structures that are not only stable towards high temperature processing steps as high as 550 °C but also exhibit exceptional stability against a host of organic solvent washes. No discernable structure distortion was observed compared to the as-printed structures (room temperature processed) when printed structures were subjected to temperatures as high as 550 °C. We further demonstrate the applicability of this technique towards the fabrication of more complex nanostructures such as enclosed channels through a double transfer method, leveraging the exceptional room temperature cross-linking ability of the printed structures and their subsequent resistance to dissolution in organic solvent washes. The exceptional temperature and physico-chemical stability of the nanotransfer printed structures makes this a useful fabrication tool that may be applied as is, or integrated with conventional lithographic techniques for the large area fabrication of functional nanostructures and devices.

  17. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    PubMed

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle < 10 °) surfaces. The spray coated surfaces were found to exhibit much improved water jet resistance and thermal stability up to 400 °C compared to the surfaces fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  18. A facile method to fabricate a superhydrophobic surface with biomimetic structure on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Bai, Zigang; Zhu, Jiyuan

    2018-06-01

    Superhydrophobic surface was obtained via a convenient two-step method in this paper on magnesium alloy. The microstructured oxide or hydroxide layers were constructed on the Mg alloy though hydrothermal process. The treated sample was modified with low-energy surface material. After modification, the contact angle of water droplet on the surface is higher than 150° which indicates superhydrophobicity. With scanning electron microscope(SEM), mammillaria-herrerae-like rough structure was obtained. The composition of the superhydrophobic film was analyzed by using x-ray Diffraction instrument and Fourier-transform infrared spectrometer. Moreover, the superhydrophobic surface has good stability. The potentiodynamic polarization test shows that the corrosion current density of superhydrophobic surface was 1–2 order of magnitudes smaller than the bare substrate, which means the anti-corrosion performance has been improved significantly. This route offers an environmentally-benign and effective way to fabricate superhydrophobic surface without using complicated equipment and dangerous chemicals.

  19. Synthesis of hollow silica spheres with hierarchical shell structure by the dual action of liquid indium microbeads in vapor-liquid-solid growth.

    PubMed

    Wang, Jian-Tao; Wang, Hui; Ou, Xue-Mei; Lee, Chun-Sing; Zhang, Xiao-Hong

    2011-07-05

    Geometry-based adhesion arising from hierarchical surface structure enables microspheres to adhere to cells strongly, which is essential for inorganic microcapsules that function as drug delivery or diagnostic imaging agents. However, constructing a hierarchical structure on the outer shell of the products via the current microcapsule synthesis method is difficult. This work presents a novel approach to fabricating hollow microspheres with a hierarchical shell structure through the vapor-liquid-solid (VLS) process in which liquid indium droplets act as both templates for the formation of silica capsules and catalysts for the growth of hierarchical shell structure. This hierarchical shell structure offers the hollow microsphere an enhanced geometry-based adhesion. The results provide a facile method for fabricating hollow spheres and enriching their function through tailoring the geometry of their outer shells. © 2011 American Chemical Society

  20. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    NASA Astrophysics Data System (ADS)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  1. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-01

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  2. Facile fabrication of novel BiVO4/Bi2S3/MoS2 n-p heterojunction with enhanced photocatalytic activities towards pollutant degradation under natural sunlight.

    PubMed

    Wang, Jingzhen; Jin, Jia; Wang, Xiangguo; Yang, Shengnan; Zhao, Yinlan; Wu, Yawen; Dong, Shuying; Sun, Jingyu; Sun, Jianhui

    2017-11-01

    The novel three-component BiVO 4 /Bi 2 S 3 /MoS 2 heterojunction was successfully fabricated through a facile in-situ hydrothermal method based on the formation of the intermediate Bi 2 S 3 by coupling BiVO 4 and MoS 2 precursor. The Bi 2 S 3 was easily formed attributing to the strong interaction between Bi 3+ and S 2- ions with the aid of the hydrothermal reaction. The photocatalytic performances of samples were systematically investigated via the photocatalytic degradation of Rhodamine B (RhB), methylene blue (MB) and malachite green (MG) under solar light irradiation. As a result, the photocatalytic degradation rate of BM-10 for RhB, MB and MG are 97%, 93% and 94%, respectively. The enhanced photocatalytic activities could be due to the suppression of charge recombination and the enhanced the visible light absorption of BiVO 4 /Bi 2 S 3 /MoS 2 heterojunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations.

    PubMed

    Zhou, Chengjun; Lee, Sunyoung; Dooley, Kerry; Wu, Qinglin

    2013-12-15

    Porous nanocomposite gels were fabricated by a facile method consisting of the electrospinning and subsequent heat treatment based on partially hydrolyzed polyacrylamide (HPAM) of ultra-high molecular weight, with cellulose nanocrystals (CNCs) as crosslinker. The effects of three electrospinning parameters (i.e., solution concentration, composition of solvent mixture, and CNC loading level) on morphology and diameter of electrospun fibers were systematically investigated. The swelling properties of porous gels and their application in the removal of methylene blue dye (as a compound representative of contaminants) were evaluated. Electrospun fiber morphologies without beads, branches, and ribbons were achieved by optimizing the electrospinning solutions. The thermal crosslinking between HPAM and CNCs was realized through esterification, rendering the product nanocomposite membranes insoluble in water. Electrospun fibers of approximately 220 nm in diameter comprised the 3D porous nanocomposite gels, with porosity greater than 50%. The porous nanocomposite gels displayed a rapid swelling rate and an efficient adsorption capacity in removing methylene blue at low concentrations from aqueous solutions. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors.

    PubMed

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-27

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  5. Spectral X-ray Radiography for Safeguards at Nuclear Fuel Fabrication Facilities: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Andrew J.; McDonald, Benjamin S.; Smith, Leon E.

    The methods currently used by the International Atomic Energy Agency to account for nuclear materials at fuel fabrication facilities are time consuming and require in-field chemistry and operation by experts. Spectral X-ray radiography, along with advanced inverse algorithms, is an alternative inspection that could be completed noninvasively, without any in-field chemistry, with inspections of tens of seconds. The proposed inspection system and algorithms are presented here. The inverse algorithm uses total variation regularization and adaptive regularization parameter selection with the unbiased predictive risk estimator. Performance of the system is quantified with simulated X-ray inspection data and sensitivity of the outputmore » is tested against various inspection system instabilities. Material quantification from a fully-characterized inspection system is shown to be very accurate, with biases on nuclear material estimations of < 0.02%. It is shown that the results are sensitive to variations in the fuel powder sample density and detector pixel gain, which increase biases to 1%. Options to mitigate these inaccuracies are discussed.« less

  6. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

    PubMed Central

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  7. Electroactive crown ester-Cu2+ complex with in-situ modification at molecular beacon probe serving as a facile electrochemical DNA biosensor for the detection of CaMV 35s.

    PubMed

    Zhan, Fengping; Liao, Xiaolei; Gao, Feng; Qiu, Weiwei; Wang, Qingxiang

    2017-06-15

    A novel electrochemical DNA biosensor has been facilely constructed by in-situ assembly of electroactive 4'-aminobenzo-18-crown-6-copper(II) complex (AbC-Cu 2+ ) on the free terminal of the hairpin-structured molecule beacon. The 3'-SH modified molecule beacon probe was first immobilized on the gold electrode (AuE) surface through self-assembly chemistry of Au-S bond. Then the crow ester of AbC was covalently coupled with 5'-COOH on the molecule beacon, and served as a platform to attach the Cu 2+ by coordination with ether bond (-O-) of the crown cycle. Thus, an electroactive molecule beacon-based biosensing interface was constructed. In comparison with conventional methods for preparation of electroactive molecule beacon, the approach presented in this work is much simpler, reagent- and labor-saving. Selectivity study shows that the in-situ fabricated electroactive molecule beacon remains excellent recognition ability of pristine molecule beacon probe to well differentiate various DNA fragments. The target DNA can be quantatively determined over the range from 0.10pM to 0.50nM. The detection limit of 0.060pM was estimated based on signal-to-noise ratio of 3. When the biosensor was applied for the detection cauliflower mosaic virus 35s (CaMV 35s) in soybean extraction samples, satisfactory results are achieved. This work opens a new strategy for facilely fabricating electrochemical sensing interface, which also shows great potential in aptasensor and immurosensor fabrication. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Polythioether Particles Armored with Modifiable Graphene Oxide Nanosheets.

    PubMed

    Rodier, Bradley J; Mosher, Eric P; Burton, Spencer T; Matthews, Rachael; Pentzer, Emily

    2016-06-01

    Facile and scalable fabrication methods are attractive to prepare materials for diverse applications. Herein, a method is presented to prepare cross-linked polymeric nanoparticles with graphene oxide (GO) nanosheets covalently attached to the surface. Alkene-modified GO serves as a surfactant in a miniemulsion polymerization, and the alkene functionalities of GO exposed to the oil-phase are incorporated into the polymer particle through thiol-ene reactions, leaving the unreacted alkene functional groups of the other face of GO available for further functionalization. The surface of GO-armored polymer particles is then modified with a small molecule fluorophore or carboxylic acid functional groups that bind to Fe2 O3 and TiO2 nanoparticles. This methodology provides a facile route to preparing complex hybrid composite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 30 CFR 585.701 - What must I include in my Facility Design Report?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... design or installation, e.g., oceanographic and soil reports including the results of the surveys... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What must I include in my Facility Design... Facility Design, Fabrication, and Installation Reports § 585.701 What must I include in my Facility Design...

  10. 30 CFR 585.701 - What must I include in my Facility Design Report?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... design or installation, e.g., oceanographic and soil reports including the results of the surveys... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What must I include in my Facility Design... Facility Design, Fabrication, and Installation Reports § 585.701 What must I include in my Facility Design...

  11. 30 CFR 585.701 - What must I include in my Facility Design Report?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... design or installation, e.g., oceanographic and soil reports including the results of the surveys... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What must I include in my Facility Design... Facility Design, Fabrication, and Installation Reports § 585.701 What must I include in my Facility Design...

  12. Managing the visual effects of outer continental shelf and other petroleum-related coastal development

    Treesearch

    Philip A. Marcus; Ethan T. Smith

    1979-01-01

    Five petroleum-related facilities often sited in the coastal zone during development of Outer Continental oil and gas can change the visual appearance of coastal areas. These facilities are service bases, platform fabrication yards, marine terminals and associated storage facilities, oil and gas processing facilities, and liquified natural gas terminals. Examples of...

  13. Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride

    NASA Astrophysics Data System (ADS)

    Luo, Yuting; Luo, Jie; Duan, Guorong; Liu, Xiaoheng

    2017-12-01

    An efficient one-dimensional attapulgite (ATP)-based photocatalyst, Ag3VO4/ATP nanocomposite, was fabricated by a facile deposition precipitation method with well-dispersed Ag3VO4 nanoparticles anchored on the surface of natural ATP fibers. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-vis DRS) were employed to investigate the morphologies, structure, and optical property of the prepared photocatalysts. The photocatalytic experiments indicated that the Ag3VO4/ATP nanocomposites exhibited enhanced visible light-driven photocatalytic activity towards the degradation of rhodamine B (RhB), methyl orange (MO), and tetracycline hydrochloride (TCH), of which the 20 wt% Ag3VO4/ATP sample showed superb photocatalytic performance. As demonstrated by N2 adsorption-desorption, photocurrent measurements, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL) spectra analyses, the improved photocatalytic activity arose from the enlarged surface area, the facilitated charge transfer, and the suppressed recombination of photogenerated charge carriers in Ag3VO4/ATP system. Furthermore, radical scavengers trapping experiments and recycling tests were also conducted. This work gives a new insight into fabrication of highly efficient, stable, and cost-effective visible light-driven photocatalyst for practical application in wastewater treatment and environmental remediation.

  14. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yapuncich, F.; Ross, A.; Clark, R.H.

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less

  15. 30 CFR 285.706 - How do I nominate a CVA for MMS approval?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....706 Section 285.706 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design... whether the nomination is for the Facility Design Report, Fabrication and Installation Report...

  16. Fabrication of wafer-scale nanopatterned sapphire substrate through phase separation lithography

    NASA Astrophysics Data System (ADS)

    Guo, Xu; Ni, Mengyang; Zhuang, Zhe; Dai, Jiangping; Wu, Feixiang; Cui, Yushuang; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2016-04-01

    A phase separation lithography (PSL) based on polymer blend provides an extremely simple, low-cost, and high-throughput way to fabricate wafer-scale disordered nanopatterns. This method was introduced to fabricate nanopatterned sapphire substrates (NPSSs) for GaN-based light-emitting diodes (LEDs). The PSL process only involved in spin-coating of polystyrene (PS)/polyethylene glycol (PEG) polymer blend on sapphire substrate and followed by a development with deionized water to remove PEG moiety. The PS nanoporous network was facilely obtained, and the structural parameters could be effectively tuned by controlling the PS/PEG weight ratio of the spin-coating solution. 2-in. wafer-scale NPSSs were conveniently achieved through the PS nanoporous network in combination with traditional nanofabrication methods, such as O2 reactive ion etching (RIE), e-beam evaporation deposition, liftoff, and chlorine-based RIE. In order to investigate the performance of such NPSSs, typical blue LEDs with emission wavelengths of ~450 nm were grown on the NPSS and a flat sapphire substrate (FSS) by metal-organic chemical vapor deposition, respectively. The integral photoluminescence (PL) intensity of the NPSS LED was enhanced by 32.3 % compared to that of the FSS-LED. The low relative standard deviation of 4.7 % for PL mappings of NPSS LED indicated the high uniformity of PL data across the whole 2-in. wafer. Extremely simple, low cost, and high throughput of the process and the ability to fabricate at the wafer scale make PSL a potential method for production of nanopatterned sapphire substrates.

  17. Particle Size Distribution in Aluminum Manufacturing Facilities

    PubMed Central

    Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2015-01-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760

  18. Particle Size Distribution in Aluminum Manufacturing Facilities.

    PubMed

    Liu, Sa; Noth, Elizabeth M; Dixon-Ernst, Christine; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine

    2014-10-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM 2.5 measured by PMI was compared to PM 2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM 1.0 ) and quasi-ultrafine (PM 0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM 2.5 versus MiniMOUDI_PM 2.5 was 1.03 mg/m 3 per mg/m 3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM 10 which was PM 1.0 or PM 0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities.

  19. High-Strength Composite Fabric Tested at Structural Benchmark Test Facility

    NASA Technical Reports Server (NTRS)

    Krause, David L.

    2002-01-01

    Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.

  20. Cell module and fuel conditioner

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q., Jr.

    1980-01-01

    The computer code for the detailed analytical model of the MK-2 stacks is described. An ERC proprietary matrix is incorporated in the stacks. The mechanical behavior of the stack during thermal cycles under compression was determined. A 5 cell stack of the MK-2 design was fabricated and tested. Designs for the next three stacks were selected and component fabrication initiated. A 3 cell stack which verified the use of wet assembly and a new acid fill procedure were fabricated and tested. Components for the 2 kW test facility were received or fabricated and construction of the facility is underway. The definition of fuel and water is used in a study of the fuel conditioning subsystem. Kinetic data on several catalysts, both crushed and pellets, was obtained in the differential reactor. A preliminary definition of the equipment requirements for treating tap and recovered water was developed.

  1. Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property

    PubMed Central

    2013-01-01

    Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to 207 F g−1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery, and biosensor. PMID:23594724

  2. Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property

    NASA Astrophysics Data System (ADS)

    Meng, Fanhui; Yan, Xiuling; Zhu, Ye; Si, Pengchao

    2013-04-01

    Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to 207 F g-1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery, and biosensor.

  3. Design fabrication and installation of a yaw measuring device

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results of work performed in the development and testing of a yaw measuring device are summarized. A review of the yaw measurement method; and the techniques and hardware needed for its implementation are presented. A description and summary of the tests performed at the U.S. Bureau of Mines Bruceton facility are included. Conclusions are summarized and recommendations for a unit capable of operation in a mine environment are presented.

  4. 30 CFR 285.707 - What are the CVA's primary duties for facility design review?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... design review? 285.707 Section 285.707 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified Verification Agent § 285.707 What are the CVA's...

  5. Conical Magnetic Bearing Development and Magnetic Bearing Testing for Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Jansen, Mark

    2004-01-01

    The main proposed research of this grant were: to design a high-temperature, conical magnetic bearing facility, to test the high-temperature, radial magnetic bearing facility to higher speeds, to investigate different backup bearing designs and materials, to retrofit the high-temperature test facility with a magnetic thrust bearing, to evaluate test bearings at various conditions, and test several lubricants using a spiral orbit tribometer. A high-temperature, conical magnetic bearing facility has been fully developed using Solidworks. The facility can reuse many of the parts of the current high-temperature, radial magnetic bearing, helping to reduce overall build costs. The facility has the ability to measure bearing force capacity in the X, Y, and Z directions through a novel bearing mounting design. The high temperature coils and laminations, a main component of the facility, are based upon the current radial design and can be fabricated at Texas A&M University. The coil design was highly successful in the radial magnetic bearing. Vendors were contacted about fabrication of the high temperature lamination stack. Stress analysis was done on the laminations. Some of the components were procured, but due to budget cuts, the facility build up was stopped.

  6. Cryogenic Wind Tunnel Models. Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)

    1983-01-01

    The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.

  7. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    PubMed

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  8. Residual Strength Characterization of Unitized Structures Fabricated Using Different Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Seshadri, B. R.; Smith, S. W.; Johnston, W. M.

    2008-01-01

    This viewgraph presentation describes residual strength analysis of integral structures fabricated using different manufacturing procedures. The topics include: 1) Built-up and Integral Structures; 2) Development of Prediction Methodology for Integral Structures Fabricated using different Manufacturing Procedures; 3) Testing Facility; 4) Fracture Parameters Definition; 5) Crack Branching in Integral Structures; 6) Results and Discussion; and 7) Concluding Remarks.

  9. Ultrasonic linear array validation via concrete test blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegh, Kyle, E-mail: hoeg0021@umn.edu; Khazanovich, Lev, E-mail: hoeg0021@umn.edu; Ferraro, Chris

    2015-03-31

    Oak Ridge National Laboratory (ORNL) comparatively evaluated the ability of a number of NDE techniques to generate an image of the volume of 6.5′ X 5.0′ X 10″ concrete specimens fabricated at the Florida Department of Transportation (FDOT) NDE Validation Facility in Gainesville, Florida. These test blocks were fabricated to test the ability of various NDE methods to characterize various placements and sizes of rebar as well as simulated cracking and non-consolidation flaws. The first version of the ultrasonic linear array device, MIRA [version 1], was one of 7 different NDE equipment used to characterize the specimens. This paper dealsmore » with the ability of this equipment to determine subsurface characterizations such as reinforcing steel relative size, concrete thickness, irregularities, and inclusions using Kirchhoff-based migration techniques. The ability of individual synthetic aperture focusing technique (SAFT) B-scan cross sections resulting from self-contained scans are compared with various processing, analysis, and interpretation methods using the various features fabricated in the specimens for validation. The performance is detailed, especially with respect to the limitations and implications for evaluation of a thicker, more heavily reinforced concrete structures.« less

  10. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    PubMed

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  11. A facile approach for the fabrication of 3D flower-like Cu2S nanostructures on brass mesh with temperature-induced wetting transition for efficient oil-water separation

    NASA Astrophysics Data System (ADS)

    Niu, Lei; Kang, Zhixin

    2017-11-01

    3D flower-like Cu2S nanostructures on brass meshes have been fabricated for the first time, with a reversible wetting transition and excellent durability. In the present work, we demonstrated a simple and environmentally-benign method to fabricate the nanostructures utilizing an electrolyte containing CuSO4·5H2O, EDTA-2Na and CH3CSNH2. The superhydrophobicity was achieved by drying thoroughly at 200 °C, instead of using low surface energy materials. After annealing at 300 °C for 6 min, the superhydrophobic surface was oxidized and became superhydrophilic. However, the superhydrophobicity can be restored by heating at 200 °C for several hours. In simpler terms, the reversible wetting transition is responded to the temperature. Scanning electron microscopy, X-ray diffractometer, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the surfaces and analyze the wetting transition mechanism. Furthermore, different kinds of oily sewages were separated by as-prepared mesh with high separation efficiency. It is believed that this method should have a promising future in expanding the applications of copper alloys.

  12. Facile Synthesis of Ultralong and Thin Copper Nanowires and Its Application to High-Performance Flexible Transparent Conductive Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yaxiong; Liu, Ping; Zeng, Baoqing; Liu, Liming; Yang, Jianjun

    2018-03-01

    A hydrothermal method for synthesizing ultralong and thin copper nanowires (CuNWs) with average diameter of 35 nm and average length of 100 μm is demonstrated in this paper. The concerning raw materials include copric (II) chloride dihydrate (CuCl2·2H2O), octadecylamine (ODA), and ascorbic acid, which are all very cheap and nontoxic. The effect of different reaction time and different molar ratios to the reaction products were researched. The CuNWs prepared by the hydrothermal method were applied to fabricate CuNW transparent conductive electrode (TCE), which exhibited excellent conductivity-transmittance performance with low sheet resistance of 26.23 Ω /\\square and high transparency at 550 nm of 89.06% (excluding Polyethylene terephthalate (PET) substrate). The electrode fabrication process was carried out at room temperature, and there was no need for post-treatment. In order to decrease roughness and protect CuNW TCEs against being oxidized, we fabricated CuNW/poly(methyl methacrylate) (PMMA) hybrid TCEs (HTCEs) using PMMA solution. The CuNW/PMMA HTCEs exhibited low surface roughness and chemical stability as compared with CuNW TCEs.

  13. 30 CFR 285.712 - What are the CVA's or project engineer's reporting requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified Verification Agent § 285.712 What are the...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Segeun; Yoon, Jungjin; Ha, Kyungyeon

    The capability of fabricating three dimensional (3-D) nanostructures with desired morphology is a key to realizing effective light-harvesting strategy in optical applications. In this work, we report a novel 3-D nanopatterning technique that combines ion-assisted aerosol lithography (IAAL) and soft lithography that serves as a facile method to fabricate 3-D nanostructures. Aerosol nanoparticles can be assembled into desired 3-D nanostructures via ion-induced electrostatic focusing and antenna effects from charged nanoparticle structures. Replication of the structures with a polymeric mold allows high throughput fabrication of 3-D nanostructures with various liquid-soluble materials. 3-D flower-patterned polydimethylsiloxane (PDMS) stamp was prepared using the reportedmore » technique and utilized for fabricating 3-D nanopatterned mesoporous TiO2 layer, which was employed as the electron transport layer in perovskite solar cells. By incorporating the 3-D nanostructures, absorbed photon-to-current efficiency of >95% at 650 nm wavelength and overall power conversion efficiency of 15.96% were achieved. The enhancement can be attributed to an increase in light harvesting efficiency in a broad wavelength range from 400 to 800 nm and more efficient charge collection from enlarged interfacial area between TiO2 and perovskite layers. This hybrid nanopatterning technique has demonstrated to be an effective method to create textures that increase light harvesting and charge collection with 3-D nanostructures in solar cells.« less

  15. Tension Structure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The fabric structure pictured is the Campus Center of La Verne College, La Verne, California. Unlike the facilities shown on the preceding pages, it is not air-supported. It is a "tension structure," its multi-coned fabric membrane supported by a network of cables attached to steel columns which function like circus tent poles. The spider-web in the accompanying photo is a computer graph of the tension pattern. The designers, Geiger-Berger Associates PC, of New York City, conducted lengthy computer analysis to determine the the best placement of columns and cables. The firm also served as structural engineering consultant on the Pontiac Silverdome and a number of other large fabric structures. Built by Birdair Structures, Inc., Buffalo, New York, the La Verne Campus Center was the first permanent facility in the United States enclosed by the space-spinoff fabric made of Owens-Corning Beta fiber glass coated with Du Pont Teflon TFE. The flexible design permits rearrangement of the interior to accommodate athletic events, student activities, theatrical productions and other recreational programs. Use of fabric covering reduced building cost 30 percent below conventional construction.

  16. A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation.

    PubMed

    Bian, Hao; Yang, Qing; Liu, Hewei; Chen, Feng; Du, Guangqing; Si, Jinhai; Hou, Xun

    2013-03-01

    Netlike or porous microstructures are highly desirable in metal implants and biomedical monitoring applications. However, realization of such microstructures remains technically challenging. Here, we report a facile and environmentally friendly method to prepare netlike microstructures on a stainless steel by taking the full advantage of the liquid-mediated femtosecond laser ablation. An unordered netlike structure and a quasi-ordered array of holes can be fabricated on the surface of stainless steel via an ethanol-mediated femtosecond laser line-scan method. SEM analysis of the surface morphology indicates that the porous netlike structure is in the micrometer scale and the diameter of the quasi-ordered holes ranges from 280 nm to 320 nm. Besides, we find that the obtained structures are tunable by altering the laser processing parameters especially scanning speed. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Facile Dry Surface Cleaning of Graphene by UV Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  18. Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells.

    PubMed

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-03-02

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells.

  19. Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells

    PubMed Central

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-01-01

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells. PMID:25728910

  20. 30 CFR 285.705 - When must I use a Certified Verification Agent (CVA)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified Verification Agent § 285.705 When must I use a Certified Verification Agent (CVA)? You must use a CVA to review and certify the Facility Design Report, the...

  1. Silver iodide microstructures of a uniform towerlike shape: morphology purification via a chemical dissolution, simultaneously boosted catalytic durability, and enhanced catalytic performances.

    PubMed

    Lei, Bin; Zhu, Mingshan; Chen, Penglei; Chen, Chuncheng; Ma, Wanhong; Li, Tiesheng; Liu, Minghua

    2014-03-26

    The fabrication of microstructures/nanostructures of a uniform yet well-defined morphology has attracted broad interest from a variety of fields of advanced functional materials, especially catalysts. Most of the conventional methods generally suffer from harsh synthesis conditions, requirement of bulky apparatus, or incapability of scalable production, etc. To meet these formidable challenges, it is strongly desired to develop a facile, cost-effective, scalable method to fulfill a morphology purification. By a precipitation reaction between AgNO3 and KI, we report that irregular AgI structures, or their mixture with towerlike AgI architectures could be fabricated. Compared to the former, the mixed structures exhibit enhanced catalytic reactivity toward the photodegradation of Methyl Orange pollutant. However, its catalytic durability, which is one of the most crucial criteria that are required by superior catalysts, is poor. We further show that the irregular structures could be facilely removed from the mixture via a KI-assisted chemical dissolution, producing AgI of a uniform towerlike morphology. Excitingly, after such simple morphology purification, our towerlike AgI displays not only a boosted catalytic durability but also an enhanced catalytic reactivity. Our chemical dissolution-based morphology purification protocol might be extended to other systems, wherein high-quality advanced functional materials of desired properties might be developed.

  2. Simultaneous sonosynthesis and sonofabrication of N-doped ZnO/TiO2 core-shell nanocomposite on wool fabric: Introducing various properties specially nano photo bleaching.

    PubMed

    Behzadnia, Amir; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2015-11-01

    In this study, N-doped ZnO/TiO2 core-shell nanocomposite was successfully sonosynthesized and sonofabricated on wool fabric through a facile one-step method under ambient pressure and low temperature (75-80°C) as a novel photo-catalyst nanocomposite on textile material. The differences between crystalline phase transformation of conventional and ultrasound synthesized N-ZnO/TiO2 has been compared. The influence of different zinc acetate and titanium isopropoxide precursors in the formation of nanocomposite was studied and optimized through response surface methodology. The photocatalytic activity of the sonofabricated catalyst on the wool fabric surface was evaluated through decomposition of Methylene Blue as a model compound under sunlight irradiation. Also, N-doped ZnO/TiO2 nanocomposite sonosynthesized on wool fabric led to photo bleaching of wool fabric due to decomposition of the naturally occurred pigments under daylight irradiation. Further, yellowness index, antibacterial and antifungal activity against Escherichia coli, Staphylococcus aureus and Candida albicans, cell viability, char residual, alkali solubility, mechanical properties and water drop absorption time on the treated wool fabrics were evaluated. Also, the acid solubility of the synthesized nanopowder obtained from sonobath after treatment was characterized in acetic acid indicating higher acid resistance on N-doped ZnO/TiO2 nanocomposite. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe3O4@SA sponge and its application in oil-water separations.

    PubMed

    Tran, Viet-Ha Thi; Lee, Byeong-Kyu

    2017-12-13

    We report a novel superhydrophobic material based on commercially available polyurethane (PU) sponge with high porosity, low density and good elasticity. The fabrication of a superhydrophobic sponge capable of efficiently separating oil from water was achieved by imitating or mimicking nature's designs. The original PU sponge was coated with zinc oxide (ZnO), stearic acid (SA) and iron oxide particles (Fe 3 O 4 ) via a facile and environmentally friendly method. After each treatment, the properties of the modified sponge were characterized, and the changes in wettability were examined. Water contact angle (WCA) measurements confirmed the excellent superhydrophobicity of the material withhigh static WCA of 161° andlow dynamic WCA (sliding WCA of 7° and shedding WCA of 8°). The fabricated sponge showed high efficiency in separation (over 99%) of different oils from water. Additionally, the fabricated PU@ZnO@Fe 3 O 4 @SA sponge could be magnetically guided to quickly absorb oil floating on the water surface. Moreover, the fabricated sponge showed excellent stability and reusability in terms of superhydrophobicity and oil absorption capacity. The durable, magnetic and superhydrophobic properties of the fabricated sponge render it applicable to the cleanup of marine oil spills and other oil-water separation issues, with eco-friendly recovery of the oil by simple squeezing process.

  4. Nanofabrication of Gate-defined GaAs/AlGaAs Lateral Quantum Dots

    PubMed Central

    Bureau-Oxton, Chloé; Camirand Lemyre, Julien; Pioro-Ladrière, Michel

    2013-01-01

    A quantum computer is a computer composed of quantum bits (qubits) that takes advantage of quantum effects, such as superposition of states and entanglement, to solve certain problems exponentially faster than with the best known algorithms on a classical computer. Gate-defined lateral quantum dots on GaAs/AlGaAs are one of many avenues explored for the implementation of a qubit. When properly fabricated, such a device is able to trap a small number of electrons in a certain region of space. The spin states of these electrons can then be used to implement the logical 0 and 1 of the quantum bit. Given the nanometer scale of these quantum dots, cleanroom facilities offering specialized equipment- such as scanning electron microscopes and e-beam evaporators- are required for their fabrication. Great care must be taken throughout the fabrication process to maintain cleanliness of the sample surface and to avoid damaging the fragile gates of the structure. This paper presents the detailed fabrication protocol of gate-defined lateral quantum dots from the wafer to a working device. Characterization methods and representative results are also briefly discussed. Although this paper concentrates on double quantum dots, the fabrication process remains the same for single or triple dots or even arrays of quantum dots. Moreover, the protocol can be adapted to fabricate lateral quantum dots on other substrates, such as Si/SiGe. PMID:24300661

  5. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor.

    PubMed

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-02-18

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe₃O₄-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe₃O₄-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe₃O₄-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM(-1)∙cm(-2) and good long-term stability.

  6. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    PubMed Central

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-01-01

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability. PMID:26901204

  7. Fabrication of selectively functionalized-graphene reinforced copper phthalocyanine nanocomposites with low dielectric loss and high dielectric constant

    NASA Astrophysics Data System (ADS)

    Wang, Zicheng; Wei, Renbo; Liu, Xiaobo

    2017-01-01

    A novel kind of selectively functionalized-graphene reinforced copper phthalocyanine (RGO-O-CuPc) nanocomposites was successfully fabricated through a facile and effective three-step method, involving preferential surficial modification and reduction of graphene oxide (GO) sheets, and followed by incorporating with CuPc via in situ polymerization. The results of SEM, AFM, XPS, FTIR, XRD and UV-vis confirmed that GO was effectively surficial functionalized by a ring-open covalent reaction between amino in 3-aminophenoxyphthalonitrile (3-APN) and epoxy groups on the GO sheets, and partly reduced back to graphene under solvothermal conditions. And the RGO-O-CuPc was successfully fabricated by self-assembling of CuPc molecule on graphene sheets via in situ polymerization. As a consequence, the selective surface functionalization and solvothermal reduction of GO facilitated the improvement in the dielectric constant and AC conductivity, and the decrease in the dielectric loss of the graphene/CuPc nanocomposites.

  8. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays.

    PubMed

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K

    2017-03-10

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ∼100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  9. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays

    NASA Astrophysics Data System (ADS)

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K.

    2017-03-01

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ˜100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  10. Tannin-immobilized cellulose hydrogel fabricated by a homogeneous reaction as a potential adsorbent for removing cationic organic dye from aqueous solution.

    PubMed

    Pei, Ying; Chu, Shan; Chen, Yue; Li, Zhidong; Zhao, Jin; Liu, Shuqi; Wu, Xingjun; Liu, Jie; Zheng, Xuejing; Tang, Keyong

    2017-10-01

    Tannin-immobilized cellulose (CT) hydrogels were successfully fabricated by homogeneous immobilization and crosslinking reaction via a simple method. The structures and properties of hydrogels were characterized by SEM and mechanical test. Methlyene Blue (MB) was selected as a cationic dye model, and the adsorption ability of CT hydrogel was evaluated. Tannins immobilized acted as adsorbent sites which combined MB by electrostatic attraction, resulting in the attractive adsorption ability of CT hydrogel. Adsorption kinetics could be better described by the pseudo-second-order model, and the absorption behaviors were in agreement with a Langmuir isotherm. The adsorption-desorption cycle of CT hydrogel was repeated six times without significant loss of adsorption capacity. In this work, both tannin immobilization and hydrogel formation were achieved simultaneously by a facile homogeneous reaction, providing a new pathway to fabricate tannin-immobilized materials for water treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    PubMed Central

    Randjbaran, Elias; Zahari, Rizal; Abdul Jalil, Nawal Aswan; Abang Abdul Majid, Dayang Laila

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers. PMID:24955400

  12. Biosynthesis of nano cupric oxide on cotton using Seidlitzia rosmarinus ashes utilizing bio, photo, acid sensing and leaching properties.

    PubMed

    Bashiri Rezaie, Ali; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2017-12-01

    In this research, a facile, rapid and eco-friendly method is introduced for synthesis and loading of cupric oxide on cellulosic chains of cotton fabric with functional properties. Seidlitzia rosmarinus ashes and copper acetate were employed as a natural source of alkaline and metal salt without further chemical materials. The treated samples indicated very good antibacterial activities toward both pathogen Staphylococcus aureus as Gram-positive and Escherichia coli as Gram-negative bacteria. Significant self-cleaning properties against degradation of methylene blue stain under UV irradiation were found. The sensing properties of high concentrated inorganic and organic acids such as sulfuric and formic acids based on colorimetric alterations of the treated fabrics were also confirmed showing acid leaching effects of the treated fabrics. Further, the treated samples showed coloring effects with an enhancement on the physio-mechanical properties including tensile strength, crease recovery angle and hydrophobocity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Industrial research for transmutation scenarios

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  14. Documentation and Analysis of IAEA (International Atomic Energy Agency) Safeguards Implementation at the Exxon Nuclear Fuel Fabrication Plant.

    DTIC Science & Technology

    1984-10-01

    SAFEGUARDS AT SIMILAR FACILTTIES ASEA -ATOM LEU FUEL FABRICATION PLANT IN VASTERAS, SWEDEN..................B-1 APPENDIX C - EFFECTS OF NONMEASUREMENT ERRORS...second visit was to the ASEA -ATOM’s fuel fabrication plant in Vasteras, Sweden. The safeguards specialists for those plants were interviewed by R...Facilities, ASEA -ATOM LEU Fuel Fabrication Plant in Vasteras, Sweden, by V. Andersson of ASEA -ATOM, Vasteras, Sweden and R. Nilson of Exxon Nuclear

  15. 40 CFR 63.5686 - How do I demonstrate that my facility is not a major source?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ownership or control with the boat manufacturing facility. (b) Material consumption option. This option can... coatings, aluminum wipedown solvents, application gun cleaning solvents, and carpet and fabric adhesives...

  16. 40 CFR 63.5686 - How do I demonstrate that my facility is not a major source?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ownership or control with the boat manufacturing facility. (b) Material consumption option. This option can... coatings, aluminum wipedown solvents, application gun cleaning solvents, and carpet and fabric adhesives...

  17. 40 CFR 63.5686 - How do I demonstrate that my facility is not a major source?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ownership or control with the boat manufacturing facility. (b) Material consumption option. This option can... coatings, aluminum wipedown solvents, application gun cleaning solvents, and carpet and fabric adhesives...

  18. 30 CFR 285.703 - What reports must I submit for project modifications and repairs?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Reports § 285.703 What reports must I submit for...

  19. 49 CFR 193.2703 - Design and fabrication.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Design and fabrication. 193.2703 Section 193.2703 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...

  20. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - MANUFACTURING AND FABRICATION REPAIR LABORATORY AT SANDIA NATIONAL LABORATORIES

    EPA Science Inventory

    These reports summarize pollution prevention opportunity assessments conducted jointly by EPA and DOE at the Geochemistry Laboratory and the Manufacturing and Fabrication Repair Laboratory at the Department of Energy's Sandia National Laboratories facility in Albuquerque, New Mex...

  1. Simple morphological control over functional diversity of SERS materials

    NASA Astrophysics Data System (ADS)

    Semenova, A. A.; Goodilin, E. A.

    2018-03-01

    Nowadays, surface-enhanced Raman spectroscopy (SERS) becomes a promising universal low-cost and real-time tool in biomedical applications, medical screening or forensic analysis allowing for detection of different molecules below nanomolar concentrations. Silver nanoparticles and nanostructures have proven to be a common choice for SERS measurements due to a tunable plasmon resonance, high stability and facile fabrication methods. However, a proper design of silver-based nanomaterials for highly sensitive SERS applications still remains a challenge. In this work, effective and simple preparation methods of various silver nanostructures are proposed and systematically developed using aqueous diamminesilver (I) hydroxide as a precursor.

  2. LLNL Contribution to Sandia Used Fuel Disposition - Security March 2011 Deliverable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blink, J A

    2011-03-23

    Cleary [2007] divides the proliferation pathway into stages: diversion, facility misuse, transportation, transformation, and weapons fabrication. King [2010], using Cleary's methodology, compares a deepburn fusion-driven blanket containing weapons-grade plutonium with a PWR burning MOX fuel enrichments of 5-9%. King considers the stages of theft, transportation, transformation, and nuclear explosive fabrication. In the current study of used fuel storage security, a similar approach is appropriate. First, one must consider the adversary's objective, which can be categorized as on-site radionuclide dispersion, theft of material for later radionuclide dispersion, and theft of material for later processing and fabrication into a nuclear explosive. Formore » on-site radionuclide dispersion, only a single proliferation pathway stage is appropriate: dispersion. That situation will be addressed in future reports. For later radionuclide dispersion, the stages are theft, transportation, and transformation (from oxide spent fuel containing both fission products and actinides to a material size and shape suitable for dispersion). For later processing and fabrication into a nuclear explosive, the stages are theft (by an outsider or by facility misuse by an insider), transportation, transformation (from oxide spent fuel containing both fission products and actinides to a metal alloy), and fabrication (of the alloy into a weapon). It should be noted that the theft and transportation stages are similar, and possibly identical, for later radionuclide dispersion and later processing and fabrication into a nuclear explosive. Each stage can be evaluated separately, and the methodology can vary for each stage. For example, King starts with the methodology of Cleary for the theft, transportation, transformation, and fabrication stages. Then, for each stage, King assembles and modifies the attributes and inputs suggested by Cleary. In the theft (also known as diversion) stage, Cleary has five high-level categories (material handling during diversion, difficulty of evading detection by the accounting system, difficulty of evading detection by the material control system, difficulty of conducting undeclared facility modifications for the purpose of diverting nuclear material, and difficulty of evading detection of the facility modifications for the purposes of diverting nuclear material). Each category has one or more subcategories. For example, the first category includes mass per significant quantity (SQ) of nuclear material, volume/SQ of nuclear material, number of items/SQ, material form (solid, liquid, powder, gas), radiation level in terms of dose, chemical reactivity, heat load, and process temperature. King adds the following two subcategories to that list: SQs available for theft, and interruptions/changes (normal and unexpected) in material stocks and flows. For the situation of an orphaned surface storage facility, this approach is applicable, with some of the categories and subcategories being modified to reflect the static situation (no additions or removals of fuel or containers). In addition, theft would require opening a large overpack and either removing a full container or opening that sealed container and then removing one or more spent nuclear fuel assemblies. These activities would require time without observation (detection), heavy-duty equipment, and some degree of protection of the thieves from radiological dose. In the transportation stage, Cleary has two high-level categories (difficulty of handling material during transportation, and difficulty of evading detection during transport). Each category has a number of subcategories. For the situation of an orphaned surface storage facility, these categories are applicable. The transformation stage of Cleary has three high-level categories (facilities and equipment needed to process diverted materials; knowledge, skills, and workforce needed to process diverted materials; and difficulty of evading detection of transformation activities). Again, there are subcategories. King [2007] adds a fourth high-level category: time required to transform the materials. For the situation of an orphaned surface storage facility, the categories are applicable, but the evaluations of each category and subcategory will be significantly different for later radionuclide dispersion than for later processing and fabrication into a nuclear explosive. The fabrication stage of Cleary has three high-level categories (difficulty associated with design, handling difficulties, and knowledge and skills needed to design and fabricate). King replaces the first two high-level categories with the Figure of Merit for Nuclear Explosives Utility (FOM), with subcategories of bare critical mass, heat content of transformed material, dose rate of transformed material, and SQs available for theft. The next section of this report describes the FOM in more detail.« less

  3. Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.

    1976-01-01

    A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.

  4. Recent advances in the fabrication and structure-specific applications of graphene-based inorganic hybrid membranes.

    PubMed

    Zhao, Xinne; Zhang, Panpan; Chen, Yuting; Su, Zhiqiang; Wei, Gang

    2015-03-12

    The preparation and applications of graphene (G)-based materials are attracting increasing interests due to their unique electronic, optical, magnetic, thermal, and mechanical properties. Compared to G-based hybrid and composite materials, G-based inorganic hybrid membrane (GIHM) offers enormous advantages ascribed to their facile synthesis, planar two-dimensional multilayer structure, high specific surface area, and mechanical stability, as well as their unique optical and mechanical properties. In this review, we report the recent advances in the technical fabrication and structure-specific applications of GIHMs with desirable thickness and compositions. In addition, the advantages and disadvantages of the methods utilized for creating GIHMs are discussed in detail. Finally, the potential applications and key challenges of GIHMs for future technical applications are mentioned.

  5. Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink.

    PubMed

    Hong, Sukjoon; Yeo, Junyeob; Kim, Gunho; Kim, Dongkyu; Lee, Habeom; Kwon, Jinhyeong; Lee, Hyungman; Lee, Phillip; Ko, Seung Hwan

    2013-06-25

    We introduce a facile approach to fabricate a metallic grid transparent conductor on a flexible substrate using selective laser sintering of metal nanoparticle ink. The metallic grid transparent conductors with high transmittance (>85%) and low sheet resistance (30 Ω/sq) are readily produced on glass and polymer substrates at large scale without any vacuum or high-temperature environment. Being a maskless direct writing method, the shape and the parameters of the grid can be easily changed by CAD data. The resultant metallic grid also showed a superior stability in terms of adhesion and bending. This transparent conductor is further applied to the touch screen panel, and it is confirmed that the final device operates firmly under continuous mechanical stress.

  6. Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.

    PubMed

    Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi

    2015-11-05

    Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Thermoresponsive wettability of photonic crystals fabricated by core-shell poly(styrene-acrylamide) nano/microspheres.

    PubMed

    Zhang, Yuqi; Gao, Loujun; Heng, Liping; Wei, Qingbo; Yang, Hua; Wang, Qiao

    2013-03-01

    The photonic crystals (PCs) films with tunable wettability were fabricated from self-assembly of an amphiphilic latex nano/microspheres poly(styrene-acrylamide) at different temperatures. The results demonstrate that the surface wettability of the PCs film can be tuned from high hydrophilic (CA, 17 degrees) to high hydrophobic (CA, 127.8 degrees) by controlling the assembly temperature from 30 degrees C to 90 degrees C, while the position of the photonic stopbands of the PCs films unchanged virtually. The obvious wettability transition is due to the change of the surface chemical component of the latex spheres, which mainly derives from the phase separation of polymer segments driven toward minimum interfacial energy. The facile method could open new application fields of PCs in diverse environments.

  8. One-pot biosynthesis of polymer-inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Geng, Jiaqing; Yang, Dong; Zhu, Yong; Cao, Lichao; Jiang, Zhongyi; Sun, Yan

    2011-06-01

    A biological method is demonstrated to fabricate the polymer-inorganic nanocomposites (PINCs) utilizing bacterium as an efficient and versatile biofactory. Gluconacetobacter xylinum that can produce bacterial cellulose is incubated in the culture medium containing titanium or silica precursor. The PINCs can be acquired under the elaborate control of the culturing condition of G. xylinum, in which the formation of inorganic nanoparticles about several tens of nanometers in size synchronizes the fabrication of reticulated bacterial cellulose membrane composed of dense and finely branched nanofibers about 60-120 nm in diameter. The composition and chemical states, morphology, thermal stability of the inorganic nanoparticles, and nanocomposites were extensively characterized. A tentative mechanism for the formation of PINCs is proposed. It is hoped that this study may establish a generic platform toward facile and green synthesis of nanocomposite materials.

  9. Facile synthesis of stable superhydrophobic nanocomposite based on multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mokarian, Zahra; Rasuli, Reza; Abedini, Yousefali

    2016-04-01

    A facile approach to fabricate a stable superhydrophobic composite comprising multi-walled carbon nanotubes and silicone rubber has been reported. Contact angle of de-ionized water droplets on the prepared surface was measured with the value of near 159°; while water droplets easily rolled off and bounced on it. Surface free energy of the superhydrophobic coating was examined by three methods about 26 mJ/m2. The prepared film shows good stability under high stress conditions such as ultraviolet exposure, heating, pencil hardness test, attacking with different pH value and ionic-strength solutions. In addition, remarkable stability of the coating was observed after soaking in condensed hydrochloric acid, 5 wt.% NaCl aqueous solution, boiling water and tape test.

  10. Facile synthesis of gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Long, Kailin; Du, Deyang; Luo, Xiaoguang; Zhao, Weiwei; Wu, Zhangting; Si, Lifang; Qiu, Teng

    2014-08-01

    This work reports a facile method to fabricate gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering (SERS) application. The effects of reaction parameters on the shape, size and surface morphology of the products are systematically investigated. The as-prepared 3D hierarchical structures have the advantage of a large surface area available for the formation of hot spots and the adsorption of target analytes, thus dramatically improving the Raman signals. The finite difference time domain calculations indicate that the pine-needle-like model pattern may demonstrate a high quality SERS property owing to the high density and abundant hot spot characteristic in closely spaced needle-like arms.

  11. 40 CFR 63.5686 - How do I demonstrate that my facility is not a major source?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturing facility and all other sources that are collocated and under common ownership or control with the... coatings, aluminum wipedown solvents, application gun cleaning solvents, and carpet and fabric adhesives...

  12. 40 CFR 63.5686 - How do I demonstrate that my facility is not a major source?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufacturing facility and all other sources that are collocated and under common ownership or control with the... coatings, aluminum wipedown solvents, application gun cleaning solvents, and carpet and fabric adhesives...

  13. 30 CFR 285.713 - What must I do after the CVA or project engineer confirms conformance with the Fabrication and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 285.713 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design...

  14. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

    PubMed Central

    Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei

    2016-01-01

    Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400–900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells. PMID:27924911

  15. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei

    2016-12-01

    Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400-900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells.

  16. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles. Electronic supplementary information (ESI) available: Synthesis and characterization of SPEK-C; effect of the sulfonation degree on membrane formation; structure and properties of the self-assembled membranes; separation of cyt.c by the self-assembled membranes; size-selective separation of gold nanoparticles by the self-assembled membranes; comparison with commercial flat sheet ultrafiltration membranes. See DOI: 10.1039/c3nr03362g

  17. 78 FR 9431 - Shaw AREVA MOX Services, LLC (Mixed Oxide Fuel Fabrication Facility); Order Approving Indirect...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... established pursuant to the policies duly authorized under the National Industrial Security Program. The proxy... Influence (FOCI) in order to maintain the Facility Security Clearance held by MOX Services. No physical... Facility Security Clearance, is in accordance with the provisions of the AEA of 1954, as amended. The...

  18. 30 CFR 285.701 - What must I include in my Facility Design Report?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I include in my Facility Design Report? 285.701 Section 285.701 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... Design, Fabrication, and Installation Reports § 285.701 What must I include in my Facility Design Report...

  19. Fabrication and characterization of Pickering emulsions and oil gels stabilized by highly charged zein/chitosan complex particles (ZCCPs).

    PubMed

    Wang, Li-Juan; Yin, Shou-Wei; Wu, Lei-Yan; Qi, Jun-Ru; Guo, Jian; Yang, Xiao-Quan

    2016-12-15

    Herein, we reported a facile method to fabricate ultra-stable, surfactant- and antimicrobial-free Pickering emulsions by designing and modulating emulsions' interfaces via zein/chitosan colloid particles (ZCCPs). Highly charged ZCCPs with neutral wettability were produced by a facile anti-solvent procedure. The ZCCPs were shown to be effective Pickering emulsifiers because the emulsions formed were highly resistant to coalescence over a 9-month storage period. The ZCCPs were adsorbed irreversibly at the interface during emulsification, forming a hybrid network framework in which zein particles were embedded within the chitosan network, yielding ultra-stable food-grade zein/chitosan colloid particles stabilized Pickering emulsions (ZCCPEs). Moreover, stable surfactant-free oil gels were obtained by a one-step freeze-drying process of the precursor ZCCPEs. This distinctive interfacial architecture accounted for the favourable physical performance, and potentially oxidative and microbial stability of the emulsions and/or oil gels. This work opens up a promising route via a food-grade Pickering emulsion-template approach to transform liquid oil into solid-like fats with zero trans-fat formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-05-01

    Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  1. Template-free fabrication of hierarchical In2O3 hollow microspheres with superior HCHO-sensing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Tian, Zhebin; Wang, Qi

    2018-05-01

    Hierarchical In2O3 hollow microspheres were successfully prepared via a facile and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the Brunauer-Emmett-Teller (BET) approach. The SEM and TEM results revealed that the as-obtained hollow In2O3 microspheres is composed of In2O3 nanospheres with 200-400 nm in diameter, and the size of In2O3 microspheres is about 2-4 μm. The specific surface area of the as-prepared In2O3 is about 40.94 m2/g. The sensor based on hierarchical In2O3 hollow microspheres displays excellent sensing properties to 10 ppm HCHO, and the optimum operating temperature is relatively low (200 °C). The response value of the as-fabricated sensor to 10 ppm HCHO is about 20. Due to the sensor based on hierarchical In2O3 hollow microspheres has many advantages, such as facile preparation and excellent gas-sensing properties, it has a wide range of prospects in practical applications.

  2. Synthesis of Tb{sub 4}O{sub 7} complexed with reduced graphene oxide for Rhodamine-B absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Hui, E-mail: hope@lzu.edu.cn; Zhou, Yang; Chen, Keqin

    2016-05-15

    Highlights: • Tb–rGO composite was fabricated via a facile thermally reduction process. • The green and blue emissions were both observed in the composite. • The composite exhibited efficient absorption capability for Rhodamine-B. - Abstract: Tb{sub 4}O{sub 7} complexed with reduced graphene oxide composite (Tb–rGO) had been designed and fabricated by a facile thermal reduction method. The formation of Tb{sub 4}O{sub 7} particles and reduction of graphene oxide (GO) occurred simultaneously, and partial terbium ions would be complexed with rGO via oxygen-containing function groups on rGO sheets. Introducing of terbium ions could effectively tune the photoluminescence properties of rGO, andmore » the composite exhibited the typical green emission of terbium ions as well as the blue self-luminescence of graphene entered at 440 nm. Moreover, Tb–rGO had demonstrated its high capability as an organic dye (Rhodamine-B) scavenger with high speed and efficiency. The findings showed the promising applications for large-scale removal of organic dye contaminants, especially in the field of waste water treatment.« less

  3. Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy

    PubMed Central

    Wang, Zhe; Shen, Xiaoping; Qian, Temeng; Wang, Junjie; Sun, Qingfeng; Jin, Chunde

    2018-01-01

    The disadvantages such as swelling after absorbing water and flammability restrict the widespread applications of lignocellulose composites (LC). Herein, a facile and effective method to fabricate superhydrophobic surfaces with flame retardancy on LC has been investigated by coating polydimethylsiloxane (PDMS) and stearic acid (STA) modified kaolin (KL) particles. The as-prepared coatings on the LC exhibited a good repellency to water (a contact angle = 156°). Owing to the excellent flame retardancy of kaolin particles, the LC coated with PDMS@STA-KL displayed a good flame retardancy during limiting oxygen index and cone calorimeter tests. After the coating treatment, the limiting oxygen index value of the LC increased to 41.0. Cone calorimetry results indicated that the ignition time of the LC coated with PDMS@STA-KL increased by 40 s compared with that of uncoated LC. Moreover, the peak heat release rate (PHRR) and the total heat release (THR) of LC coated with PDMS@STA-KL reduced by 18.7% and 19.2% compared with those of uncoated LC, respectively. This LC coating with improved water repellency and flame retardancy can be considered as a potential alternative to protect the lignocellulose composite. PMID:29751575

  4. CuIn(S,Se)(2) thin films prepared from a novel thioacetic acid-based solution and their photovoltaic application.

    PubMed

    Xie, Yian; Liu, Yufeng; Wang, Yaoming; Zhu, Xiaolong; Li, Aimin; Zhang, Lei; Qin, Mingsheng; Lü, Xujie; Huang, Fuqiang

    2014-04-28

    Low-cost and high-yield preparation of CuInSe2 films is the bottleneck for promising CuInSe2-based thin film solar cells. Here, we developed a simple, safe and cost-effective method using thioacetic acid to fabricate the absorber films of CuIn(S,Se)2 (CISSe). Dissolution of Cu2O and In(OH)3 in thioacetic acid was attributed to the strong coordination ability of S. The adhesive precursor solution can be prepared without any heating, centrifugation and inert gas protection, superior to the previously reported methods. The precursor CISSe layer was easily deposited in air by spin coating to ensure low cost. Uniform and compact CISSe thin films with well-crystallized and pure-phased CISSe grains were obtained after one step annealing. The as-prepared CISSe thin films were successfully applied to solar cells and a energy conversion efficiency of 6.75% was achieved. This facile preparation provides a low-cost and easy method to fabricate Cu-based thin film solar cells.

  5. Titanium plate supported MoS2 nanosheet arrays for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Wang, Lina; Ma, Ying; Yang, Min; Qi, Yanxing

    2017-02-01

    A promising new concept is to apply binder-free supercapacitor electrode by directly growing active materials on current collectors. However, there are many challenges to be solved, such as fabrication of well quality electronic contact and good mechanical stability films through a simple and feasible method. In this study, MoS2 nanosheet arrays supported on titanium plate has been synthesized by a hydrothermal method without other additives, surface active agents and toxic reagents. As the supercapacitor electrode, a good capacitance of 133 F g-1 is attained at a discharge current density of 1 A g-1. The specific energy density is 11.11 Wh kg-1 at a power density of 0.53 kW kg-1. Moreover, the electrode shows an excellent cyclic stability. The loss of capacity is only 7% even after 1000 cycles. In addition, the formation mechanism is proposed. The facile method of fabricating MoS2 nanosheet arrays on titanium plate affords an green and effective way to prepare other metal sulfides for the application in electrochemical capacitors.

  6. Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong

    2014-04-01

    An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.

  7. Fabrication of redox-responsive magnetic protein microcapsules from hen egg white by the sonochemical method.

    PubMed

    Zhong, Shuangling; Cui, Xuejun; Tian, Fangyuan

    2015-01-01

    Redox-responsive magnetic protein microcapsules with Fe3O4 magnetic nanoparticles (MNPs) encapsulated inside have been obtained using a facile, cost-effective and fast sonochemical method from hen egg white proteins. Such prepared redox-responsive magnetic hen egg white protein microcapsules (MHEWPMCs) could be easily manipulated to do magnetic-guided targeting delivery. The synchronous loading of the hydrophobic dye Coumarin 6 as a model of drug into MHEWPMCs was readily achieved during the fabrication of MHEWPMCs by dissolving them into the oil phase before ultrasonication. TEM images indicated that Fe3O4 MNPs were encapsulated in MHEWPMCs. Confocal laser scanning microscopic images indicated that the dye was distributed evenly in the MHEWPMCs and no leakage of dye from the MHEWPMCs was observed due to the protection of protein shells. The MHEWPMCs are potential candidates as attractive carriers for drug targeting delivery and stimuli-responsive release due to their magnetic and redox responsiveness of the disulfide in the microcapsule shells.

  8. Magnetic hybrid magnetite/metal organic framework nanoparticles: facile preparation, post-synthetic biofunctionalization and tracking in vivo with magnetic methods

    NASA Astrophysics Data System (ADS)

    Tregubov, A. A.; Sokolov, I. L.; Babenyshev, A. V.; Nikitin, P. I.; Cherkasov, V. R.; Nikitin, M. P.

    2018-03-01

    Multifunctional hybrid nanocomposites remain to be of great interest in biomedicine as a universal tool in a number of applications. As a promising example, the nanoparticles with magnetic core and porous shell have a potential as theranostic agents combining both the diagnostics probe and drug delivery vehicle properties. However, reported methods of the nanostructure preparation are complex and include tedious time-consuming growth of porous shell by means of layer by layer assembly technique. In this study, we develop new way of fabrication of the superparamagnetic magnetite core @ porous metal organic framework shell nanoparticles and demonstrate their application both as a multimodal (MRI contrasting, magnetometric and optical labeling) and multifunctional (in vivo bioimaging, biotargeting by coupled receptors, lateral flow assay) agents. The easiness of fabrication, controllable bioconjugation properties and low level of non-specific binding indicate high potential of the nanoparticles to be employed as multifunctional agents in theranostics, advanced biosensing and bioimaging.

  9. Laminated and infused Parafilm® - paper for paper-based analytical devices.

    PubMed

    Kim, Yong Shin; Yang, Yuanyuan; Henry, Charles S

    2018-02-01

    Numerous fabrication methods have been reported for microfluidic paper-based analytical devices (μPADs) using barrier materials ranging from photoresist to wax. While these methods have been used with wide success, consistently producing small, high-resolution features using materials and methods that are compatible with solvents and surfactants remains a challenge. Two new methods are presented here for generating μPADs with well-defined, high-resolution structures compatible with solvents and surfactant-containing solutions by partially or fully fusing paper with Parafilm® followed by cutting with a CO 2 laser cutter. Partial fusion leads to laminated paper ( l -paper) while the complete fusion results in infused paper ( i -paper). Patterned structures in l -paper were fabricated by selective removal of the paper but not the underlying Parafilm® using a benchtop CO 2 laser. Under optimized conditions, a gap as small as 137 ± 22 μm could be generated. Using this approach, a miniaturized paper 384-zone plate, consisting of circular detection elements with a diameter of 1.86 mm, was fabricated in 64 × 43 mm 2 area. Furthermore, these ablation-patterned substrates were confirmed to be compatible with surfactant solutions and common organic solvents (methanol, acetonitrile and dimethylformamide), which has been achieved by very few μPAD patterning techniques. Patterns in i -paper were created by completely cutting out zones of the i -paper and then fixing pre-cut paper into these openings similar to the strategy of fitting a jigsaw piece into a puzzle. Upon heating, unmodified paper was readily sealed into these openings due to partial reflow of the paraffin into the paper. This unique and simple bonding method was illustrated by two types of 3D μPADs, a push-on valve and a time-gated flow distributor, without adding adhesive layers. The free-standing jigsaw-patterned sheets showed good structural stability and solution compatibility, which provided a facile alternative method for fabricating complicated μPADs.

  10. Self-Assembled Multilayer Structure and Enhanced Thermochromic Performance of Spinodally Decomposed TiO2-VO2 Thin Film.

    PubMed

    Sun, Guangyao; Zhou, Huaijuan; Cao, Xun; Li, Rong; Tazawa, Masato; Okada, Masahisa; Jin, Ping

    2016-03-23

    Composite films of VO2-TiO2 were deposited on sapphire (11-20) substrate by cosputtering method. Self-assembled well-ordered multilayer structure with alternating Ti- and V-rich epitaxial thin layer was obtained by thermal annealing via a spinodal decomposition mechanism. The structured thermochromic films demonstrate superior optical modulation upon phase transition, with significantly reduced transition temperature. The results provide a facile and novel approach to fabricate smart structures with excellent performance.

  11. 30 CFR 285.704 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 285.704 Section 285.704 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation...

  12. 30 CFR 285.711 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false [Reserved] 285.711 Section 285.711 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation...

  13. An effective combined environment test facility

    NASA Technical Reports Server (NTRS)

    Deitch, A.

    1980-01-01

    A critical missile component required operational verification while subjected to combined environments within and beyond flight parameters. The testing schedule necessitated the design and fabrication of a test facility in order to provide the specified temperatures combined with humidity, altitude and vibration.

  14. Managing Inventory At A Transitional Facility

    NASA Technical Reports Server (NTRS)

    Hutchins, Henry A.

    1993-01-01

    Kennedy Inventory Management System, KIMS, geared to needs of facility in transition from research and development to manufacturing. Operated jointly by several contractors at Kennedy Space Center, KIMS designed to reduce cost and increase efficiency of fabrication and maintenance of spaceflight hardware.

  15. Four Fabric Structures. A Report.

    ERIC Educational Resources Information Center

    Green, Peter

    Photographs and descriptions of four projects using fabric to enclose large spaces are published so that administrators and designers looking for ways to build recreational facilities can consider these innovative shelters. Three of the four examples in this publication are air-supported structures: University of Santa Clara, Charles Wright…

  16. Vestergaard zerofly fabric for stable fly management outside of Africa

    USDA-ARS?s Scientific Manuscript database

    Vestergaard ZeroFly pesticide-impregnated fabric has been evaluated in zero-graze swine and cattle facilities in Sub-Saharan Africa for management of biting flies, particularly those capable of transmitting Nagana, i.e. tsetse. Other major blood-feeding flies encountered around these units are vario...

  17. 40 CFR 60.57c - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressure or induced air fabric filters, the bag leak detector shall be installed downstream of the fabric... 60.57c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... owner or operator of an affected facility using an air pollution control device other than a dry...

  18. 40 CFR 60.57c - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure or induced air fabric filters, the bag leak detector shall be installed downstream of the fabric... 60.57c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... owner or operator of an affected facility using an air pollution control device other than a dry...

  19. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics.

    PubMed

    Yu, Miao; Yang, Chao; Li, Xiao-Ming; Lei, Tian-Yu; Sun, Hao-Xuan; Dai, Li-Ping; Gu, Yu; Ning, Xue; Zhou, Ting; Wang, Chao; Zeng, Hai-Bo; Xiong, Jie

    2017-06-29

    The exploration of localized surface plasmon resonance (LSPR) beyond the usual visible waveband, for example within the ultraviolet (UV) or deep-ultraviolet (D-UV) regions, is of great significance due to its unique applications in secret communications and optics. However, it is still challenging to universally synthesize the corresponding metal nanostructures due to their high activity. Herein, we report a universal, eco-friendly, facile and rapid synthesis of various nano-metals encapsulated by ultrathin carbon shells, significantly with a remarkable deep-UV LSPR characteristic, via a liquid-phase laser fabrication method. Firstly, a new generation of the laser ablation in liquid (LAL) method has been developed with an emphasis on the elaborate selection of solvents to generate ultrathin carbon shells, and hence to stabilize the formed metal nanocrystals. As a result, a series of metal@carbon nanoparticles (NPs), including Cr@C, Ti@C, Fe@C, V@C, Al@C, Sn@C, Mn@C and Pd@C, can be fabricated by this modified LAL method. Interestingly, these NPs exhibit LSPR peaks in the range of 200-330 nm, which are very rare for localized surface plasmon resonance. Consequently, the UV plasmonic effects of these metal@carbon NPs were demonstrated both by the observed enhancement in UV photoluminescence (PL) from the carbon nanoshells and by the improvement of the photo-responsivity of UV GaN photodetectors. This work could provide a universal method for carbon shelled metal NPs and expand plasmonics into the D-UV waveband.

  20. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Fan, Yunde; Zhou, Ji; Zhang, Jin; Lou, Yaqin; Huang, Zhenwu; Ye, Yong; Jia, Li; Tang, Bin

    2018-05-01

    Graphite-like carbon nitride (g-C3N4) nanosheets have been facilely assembled via electrostatic interaction onto cotton fabrics for achieving multi-functionalities. The surface morphologies, chemical composition and optical features of the g-C3N4-coated fabrics were characterized. The treated cotton fabrics exhibited remarkable photocatalytic degradation activity and superior self-cleaning performance. A complete degradation of Rhodamine B (RhB) and removal of stains were accomplished under simulated sunlight irradiation. More importantly, the modified fabrics can be reused in catalysis reactions with great durability. The practical treatment approach demonstrated from this work has great potential to be applied in textile industry for functional fabrics manufacture.

  1. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  2. Optical Fabrication and Measurement AXAF and CIRS

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell

    1997-01-01

    This paper presents a final report on Optical Fabrication and Measurement AXAF (Advanced X-Ray Astrophysics Facility) and CIRS (Composite Infrared Spectrometer) from July 12, 1994 to August 16, 1996.. This paper includes specific tasks to be performed. The tasks are as follows: 1) Preparation and Characterization of Zerodur Glass Samples; 2) Develop and Fabricate AXAF and CIRS Metrology Tooling; 3) Update AXAF Technical Data Base; and 4) Perform Fabrication Related Metrology Tasks for CIRS. This paper also includes final activities from the July, 1996 report to August 1996.

  3. An Experimental Study of Upward Burning Over Long Solid Fuels: Facility Development and Comparison

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Yuan, Zeng-Guang

    2011-01-01

    As NASA's mission evolves, new spacecraft and habitat environments necessitate expanded study of materials flammability. Most of the upward burning tests to date, including the NASA standard material screening method NASA-STD-6001, have been conducted in small chambers where the flame often terminates before a steady state flame is established. In real environments, the same limitations may not be present. The use of long fuel samples would allow the flames to proceed in an unhindered manner. In order to explore sample size and chamber size effects, two large chambers were developed at NASA GRC under the Flame Prevention, Detection and Suppression (FPDS) project. The first was an existing vacuum facility, VF-13, located at NASA John Glenn Research Center. This 6350 liter chamber could accommodate fuels sample lengths up to 2 m. However, operational costs and restricted accessibility limited the test program, so a second laboratory scale facility was developed in parallel. By stacking additional two chambers on top of an existing combustion chamber facility, this 81 liter Stacked-chamber facility could accommodate a 1.5 m sample length. The larger volume, more ideal environment of VF-13 was used to obtain baseline data for comparison with the stacked chamber facility. In this way, the stacked chamber facility was intended for long term testing, with VF-13 as the proving ground. Four different solid fuels (adding machine paper, poster paper, PMMA plates, and Nomex fabric) were tested with fuel sample lengths up to 2 m. For thin samples (papers) with widths up to 5 cm, the flame reached a steady state length, which demonstrates that flame length may be stabilized even when the edge effects are reduced. For the thick PMMA plates, flames reached lengths up to 70 cm but were highly energetic and restricted by oxygen depletion. Tests with the Nomex fabric confirmed that the cyclic flame phenomena, observed in small facility tests, continued over longer sample. New features were also observed at the higher oxygen/pressure conditions available in the large chamber. Comparison of flame behavior between the two facilities under identical conditions revealed disparities, both qualitative and quantitative. This suggests that, in certain ranges of controlling parameters, chamber size and shape could be one of the parameters that affect the material flammability. If this proves to be true, it may limit the applicability of existing flammability data.

  4. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  5. 16. VIEW OF PLANT FABRICATED EQUIPMENT IN THE COATINGS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF PLANT FABRICATED EQUIPMENT IN THE COATINGS LABORATORY. A MASS SPECTROMETER IS TO THE LEFT OF THE PHOTO. (6/23/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  6. A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes

    NASA Astrophysics Data System (ADS)

    Cui, Jiewu; Wu, Yucheng; Wang, Yan; Zheng, Hongmei; Xu, Guangqing; Zhang, Xinyi

    2012-05-01

    The well aligned porous anodic aluminum oxide (AAO) membrane is fabricated by a two-step anodization method. The oxide barrier layer of AAO membrane must be removed to get through-hole membrane for synthesizing nanowires and nanotubes of metals, semiconductors and conducting polymers. Removal of the barrier layer of oxide and pore-extending is of significant importance for the preparation of AAO membrane with through-hole pore morphology and desired pore diameter. The conventional method for pore opening is that AAO membrane after removing of aluminum substrate is immersed in chemical etching solution, which is completely empirical and results in catastrophic damage for AAO membrane frequently. A very simple and efficient approach based on capillary action for detecting pore opening of AAO membrane is introduced in this paper, this method can achieve the detection for pore opening visually and control the pore diameter precisely to get desired morphology and the pore diameter of AAO membrane. Two kinds of AAO membranes with different pore shape were obtained by different pore opening methods. In addition, one-dimensional gradient gold nanowires are also fabricated by electrodeposition based on AAO membranes.

  7. Fabrication of CaFe2O4 nanofibers via electrospinning method with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Jianmin; Wang, Yunan; Liu, Yinglei; Li, Song; Cao, Feng; Qin, Gaowu

    CaFe2O4 nanofibers with diameters of about 130nm have been fabricated via a facile electrospinning method. The structures, morphologies and optical properties of the obtained CaF2O4 nanofibers have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible UV-Vis diffuse reflectance spectrum. The photocatalytic activities of the CaFe2O4 nanofibers are evaluated by the photo-degradation of Methyl orange (MO). The results show that the CaFe2O4 nanofibers (72%) exhibit much higher photocatalytic performance than the CaFe2O4 powders (27%) prepared by conventional method under visible light irradiation. The enhanced photocatalytic performance of CaFe2O4 nanofibers could be attributed to the large surface area, high photogenerated charge carriers density and low charge transfer resistance, as revealed by photoelectrochemical measurement. And fundamentally, it could be attributed to the decreased particle size and the fibrous nanostructure. This work not only provides an efficient way to improve the photocatalytic activity of CaFe2O4, but also provides a new method for preparing materials with nanofibrous structure.

  8. Novel β-C3N4/CuO nanoflakes: facile synthesis and unique photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zou, Lan-Rong; Huang, Gui-Fang; Li, Dong-Feng; Tian, Qing-Nan; Yang, Ke; Si, Yuan; Chang, Shengli; Zhang, Xue-Ao; Huang, Wei-Qing

    2017-09-01

    For the first time, novel β-C3N4/CuO composites with superior photocatalytic activity are successfully fabricated via a facile reflux method followed by a thermal process. The morphologies, particle size and microstructure of the synthesized β-C3N4/CuO composites largely depended upon copper chloride and the volume ratio of V water:V ethanol in the mixed precursors. The fabricated β-C3N4/CuO nanoflakes exhibited obviously enhanced visible light photocatalytic activity for the degradation of methylene blue (MB) with an  ˜3.4 and 1.9 fold increase in efficiency over that of pure g-C3N4 and commercial P25, respectively. The β-C3N4/CuO composite photocatalyst also showed photocatalytic activity for the degradation of methyl orange (MO). Moreover, the β-C3N4/CuO nanoflakes showed almost no loss of photocatalytic activity after three recycles of the degradation of the MB. A multiple synergetic mechanism in β-C3N4/CuO nanoflakes, which is featured by the highly reactive {0 0 2} facets, exposed many active sites of nanoflakes and the efficient charge separation are proposed to account for the distinguished photocatalytic activity. This work provides a facile and cost-effective strategy for designing novel β-C3N4/CuO photocatalysts for application in environmental purification.

  9. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.

    PubMed

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liang, Tao; Feng, Yuchun; Zeng, Xingrong

    2017-01-25

    Functional surfaces for reversibly switchable wettability and oil-water separation have attracted much interest with pushing forward an immense influence on fundamental research and industrial application in recent years. This article proposed a facile method to fabricate superhydrophobic surfaces on steel substrates via electroless replacement deposition of copper sulfate (CuSO 4 ) and UV curing of vinyl-terminated polydimethylsiloxane (PDMS). PDMS-based superhydrophobic surfaces exhibited water contact angle (WCA) close to 160° and water sliding angle (WSA) lower than 5°, preserving outstanding chemical stability that maintained superhydrophobicity immersing in different aqueous solutions with pH values from 1 to 13 for 12 h. Interestingly, the superhydrophobic surface could dramatically switch to the superhydrophilic state under UV irradiation and then gradually recover to the highly hydrophobic state with WCA at 140° after dark storage. The underlying mechanism was also investigated by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Additionally, the PDMS-based steel mesh possessed high separation efficiency and excellent reusability in oil-water separation. Our studies provide a simple, fast, and economical fabrication method for wettability-transformable superhydrophobic surfaces and have the potential applications in microfluidics, the biomedical field, and oil spill cleanup.

  10. Facile fabrication of superparamagnetic graphene/polyaniline/Fe3O4 nanocomposites for fast magnetic separation and efficient removal of dye.

    PubMed

    Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin

    2017-07-13

    Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.

  11. Fluorimetric Mercury Test Strips with Suppressed "Coffee Stains" by a Bio-inspired Fabrication Strategy.

    PubMed

    Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua

    2016-11-04

    A fluorimetric Hg 2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the "coffee stains" toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized "coffee stains". On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg 2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of "coffee stains" on test strips may expand the scope of applications of test strips-based "point-of-care" analysis methods or detection devices in the biomedical and environmental fields.

  12. Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor.

    PubMed

    Wei, Zhiqiang; Zhou, Zhang-Kai; Li, Qiuyu; Xue, Jiancai; Di Falco, Andrea; Yang, Zhongjian; Zhou, Jianhua; Wang, Xuehua

    2017-07-01

    Wearable plasmonic devices combine the advantages of high flexibility, ultrathinness, light weight, and excellent integration with the optical benefits mediated by plasmon-enhanced electric fields. However, two obstacles severely hinder further developments and applications of a wearable plasmonic device. One is the lack of efficient approach to obtaining devices with robust antimotion-interference property, i.e., the devices can work independently on the morphology changes of their working structures caused by arbitrary wearing conditions. The other issue is to seek a facile and high-throughput fabrication method to satisfy the financial requirement of industrialization. In order to overcome these two challenges, a functional flexible film of nanowire cluster is developed, which can be easily fabricated by taking the advantages of both conventional electrochemical and sputtering methods. Such flexible plasmonic films can be made into wearable devices that work independently on shape changes induced by various wearing conditions (such as bending, twisting and stretching). Furthermore, due to plasmonic advantages of color controlling and high sensitivity to environment changes, the flexible film of nanowire cluster can be used to fabricate wearable items (such as bracelet, clothes, bag, or even commercial markers), with the ability of wireless visualization for humidity sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ultrathin rhodium nanosheets.

    PubMed

    Duan, Haohong; Yan, Ning; Yu, Rong; Chang, Chun-Ran; Zhou, Gang; Hu, Han-Shi; Rong, Hongpan; Niu, Zhiqiang; Mao, Junjie; Asakura, Hiroyuki; Tanaka, Tsunehiro; Dyson, Paul Joseph; Li, Jun; Li, Yadong

    2014-01-01

    Despite significant advances in the fabrication and applications of graphene-like materials, it remains a challenge to prepare single-layered metallic materials, which have great potential applications in physics, chemistry and material science. Here we report the fabrication of poly(vinylpyrrolidone)-supported single-layered rhodium nanosheets using a facile solvothermal method. Atomic force microscope shows that the thickness of a rhodium nanosheet is <4 Å. Electron diffraction and X-ray absorption spectroscopy measurements suggest that the rhodium nanosheets are composed of planar single-atom-layered sheets of rhodium. Density functional theory studies reveal that the single-layered Rh nanosheet involves a δ-bonding framework, which stabilizes the single-layered structure together with the poly(vinylpyrrolidone) ligands. The poly(vinylpyrrolidone)-supported single-layered rhodium nanosheet represents a class of metallic two-dimensional structures that might inspire further fundamental advances in physics, chemistry and material science.

  14. A self-powered nano-photodetector based on PFH/ZnO nanorods organic/inorganic heterojunction

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyun; Liu, Wei; Li, Peigang; Song, Jia; An, Yuehua; Shen, Jingqin; Wang, Shunli; Guo, Daoyou

    2018-03-01

    PFH/ZnO nanorods heterojunctions were fabricated by spin-coating p-type Poly (9,9-dihexylfluorene) (PFH) on n-type vertically aligned ZnO nanorod arrays grown by a facile hydrothermal method on indium tin oxide (ITO) transparent conductive glass. A typical p-n junction behavior was observed in the fabricated heterojunction. The current of heterojunction increases and decreases dramatically by switching the illumination on and off at zero bias, showing potential self-powered photodetector applications. The heterojunction were capable of generating negative current when illuminated under an appropriate wavelength. The photoresponse properties of the heterojunction can be tuned by the applied bias. In vacuum, the rectifying behavior disappeared, and show only simple semiconductor behavior. Band structure of the heterojunction was schematic drawn and explain the mechanism of the properties of PFH/ZnO nanorods heterojunctions.

  15. Controllable fabrication of porous free-standing polypyrrole films via a gas phase polymerization.

    PubMed

    Lei, Junyu; Li, Zhicheng; Lu, Xiaofeng; Wang, Wei; Bian, Xiujie; Zheng, Tian; Xue, Yanpeng; Wang, Ce

    2011-12-15

    A facile gas phase polymerization method has been proposed in this work to fabricate porous free-standing polypyrrole (PPy) films. In the presence of pyrrole vapor, the films are obtained in the gas/water interface spontaneously through the interface polymerization with the oxidant of FeCl(3) in the water. Both the thickness of the film and the size of the pores could be controlled by adjusting the concentrations of the oxidant and the reaction time. The as-prepared PPy films exhibited a superhydrophilic behavior due to its composition and porous structures. We have demonstrated a possible formation mechanism for the porous free-standing PPy films. This gas phase polymerization is shown to be readily scalable to prepare large area of PPy films. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Facile EG/ionic liquid interfacial synthesis of uniform RE(3+) doped NaYF(4) nanocubes.

    PubMed

    Zhang, Chao; Chen, Ji

    2010-01-28

    Uniform multicolor upconversion luminescent RE(3+) doped NaYF(4) nanocubes are fabricated through a facile ethylene glycol (EG)/ionic liquid interfacial synthesis route at 80 degrees C, with the ionic liquids acting as both reagents and templates.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith

    ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in themore » expansion of United States operations for ECM Technologies.« less

  18. Final Environmental Assessment: Base-Wide Building Demolition Arnold Air Force Base, Tennessee

    DTIC Science & Technology

    2006-02-01

    Building • Engine Test Facility ( ETF )-B Exhauster • ETF -A Airside • ETF -A Exhauster • ETF -A Reefer • CE Facility • Rocket Storage • Von Karman Gas...Executive Order ESA Endangered Species Act ETF Engine Test Facility FamCamp Family Camping Area P:\\ARNOLDAFB\\333402DO42COMPLIANCE\\DEMOLITION...Fabrication Shop • Natural Resources Building • Salt Storage Building • Administration Building • Engine Test Facility ( ETF )-B Exhauster • ETF -A

  19. Facile Fabrication of a Silver Nanoparticle Immersed, Surface-Enhanced Raman Scattering Imposed Paper Platform through Successive Ionic Layer Absorption and Reaction for On-Site Bioassays.

    PubMed

    Kim, Wansun; Kim, Yeon-Hee; Park, Hun-Kuk; Choi, Samjin

    2015-12-23

    We introduce a novel, facile, rapid, low-cost, highly reproducible, and power-free synthesizable fabrication method of paper-based silver nanoparticle (AgNP) immersed surface-enhanced Raman scattering (SERS) platform, known as the successive ionic layer absorption and reaction (SILAR) method. The rough and porous properties of the paper led to direct synthesis of AgNPs on the surface as well as in the paper due to capillary effects, resulting in improved plasmon coupling with interparticles and interlayers. The proposed SERS platform showed an enhancement factor of 1.1 × 10(9), high reproducibility (relative standard deviation of 4.2%), and 10(-12) M rhodamine B highly sensitive detection limit by optimizing the SILAR conditions including the concentration of the reactive solution (20/20 mM/mM AgNO3/NaBH4) and the number of SILAR cycles (six). The applicability of the SERS platform was evaluated using two samples including human cervical fluid for clinical diagnosis of human papillomavirus (HPV) infection, associated with cervical cancer, and a malachite green (MG) solution for fungicide and parasiticide in aquaculture, associated with human carcinogenesis. The AgNP-immersed SERS-functionalized platform using the SILAR technique allowed for high chemical structure sensitivity without additional tagging or chemical modification, making it a good alternative for early clinical diagnosis of HPV infection and detection of MG-activated human carcinogenesis.

  20. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film.

    PubMed

    Chen, Junchen; Wang, Yaming; Cao, Jianyun; Liu, Yan; Zhou, Yu; Ouyang, Jia-Hu; Jia, Dechang

    2017-06-14

    A facile co-electrodeposition method has been developed to fabricate reduced graphene oxide/polypyrrole (rGO/PPy) composite films, with sodium dodecyl benzene sulfonate as both a surfactant and supporting electrolyte in the precursor solution. The introduction of rGO into the PPy films forms porous structure and enhances the conductivity across the film, leading to superior electrochemical performance. By controlling the deposition time and rGO concentration, the highest area capacitance can reach 411 mF/cm 2 (0.2 mA/cm 2 ) for rGO/PPy films, whereas optimized specific capacitance is as high as 361 F/g (0.2 mA/cm 2 ). All of the composite films exhibit excellent rate capability (at least 175 F/g at the current density of 12 mA/cm 2 ) compared with pure PPy film (only 12 F/g at the current density of 12 mA/cm 2 ). The rGO/PPy composite exhibits excellent cycling stability that maintains 104% of its initial capacitance after cycling for 2000 cycles and 80% for 5000 cycles. The two-electrode solid-state supercapacitor (SC) based on rGO/PPy composite electrodes demonstrates good rate performance, excellent cycling stability, as well as a high area capacitance of 222 mF/cm 2 . The solid-state planar SC based on the rGO/PPy composite exhibits an area capacitance of 9.4 mF/cm 2 , demonstrating great potential for fabrication of microsupercapacitors.

  1. Facile fabrication of novel silver-polypyrrole-multiwall carbon nanotubes nanocomposite for replacement of platinum in dye-sensitized solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba

    This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R{sub ct}(2.50 Ω cm{sup 2}) for I{sub 3}{sup −}/I{sup −} redox solution. Themore » four probe studies showed the large electrical conductivity (226S cm{sup −1}) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm{sup −2}) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.« less

  2. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    PubMed

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  3. Flow Charts for Determining Your Requirements: Nine Metal Fabrication and Finishing Source Categories Area Sources National Emission Standards for Hazardous Air Pollutants (NESHAP) Subpart XXXXXX

    EPA Pesticide Factsheets

    This page contains a July 2008 document that has flow charts to help determine if this National Emission Standards for Hazardous Air Pollutants (NESHAP) rule for Nine metal Fabrication and Finishing Area Source Categories applies to your facility.

  4. 40 CFR Table 1 to Subpart Xxxxxx... - Description of Source Categories Affected by This Subpart

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (except springs) made from purchased wire. These facilities also manufacture steel balls; nonferrous metal... manufacturing fabricated metal products, such as fire or burglary resistive steel safes and vaults and similar... in fabricating iron and steel or other metal for structural purposes, such as bridges, buildings, and...

  5. 40 CFR Table 1 to Subpart Xxxxxx... - Description of Source Categories Affected by This Subpart

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (except springs) made from purchased wire. These facilities also manufacture steel balls; nonferrous metal... manufacturing fabricated metal products, such as fire or burglary resistive steel safes and vaults and similar... in fabricating iron and steel or other metal for structural purposes, such as bridges, buildings, and...

  6. "Clickable" Polymeric Nanofibers through Hydrophilic-Hydrophobic Balance: Fabrication of Robust Biomolecular Immobilization Platforms.

    PubMed

    Kalaoglu-Altan, Ozlem I; Sanyal, Rana; Sanyal, Amitav

    2015-05-11

    Fabrication of hydrophilic polymeric nanofibers that undergo facile and selective functionalization through metal catalyst-free Diels-Alder "click" reaction in aqueous environment is outlined. Electrospinning of copolymers containing an electron-rich furan moiety, hydrophobic methyl methacrylate units and hydrophilic poly(ethylene glycol)s as side chains provide specifically functionalizable yet antibiofouling fibers that remain stable in aqueous media due to appropriate hydrophobic hydrophilic balance. Efficient functionalization of these nanofibers is accomplished through the Diels-Alder reaction by exposing them to maleimide-containing molecules and ligands. Diels-Alder conjugation based functionalization is demonstrated through attachment of fluorescein-maleimide and a maleimide tethered biotin ligand. Biotinylated nanofibers were utilized to mediate immobilization of the protein streptavidin, as well as streptavidin coated quantum dots. Facile fabrication from readily available polymers and their effective functionalization under mild and reagent-free conditions in aqueous media make these "clickable" nanofibers attractive candidates as functionalizable scaffolds for various biomedical applications.

  7. Control technology for integrated circuit fabrication at Honeywell Optoelectronics Division, Richardson, Texas

    NASA Astrophysics Data System (ADS)

    Smith, R. K.; Ungers, L. J.

    1984-07-01

    A walk through survey of the integrated circuit fabrication operation revealed that engineering controls consisted of general and local ventilation, and isolation enclosure of the epitaxy and gas cylinder storage areas. The gas storage room was maintained at a slight negative pressure and gas monitoring was conducted. Liquid wastes were segregated according to type. Acidic wastes were pumped to a drain that carried them to a waste treatment system where they were neutralized with sodium hydroxide. Organic wastes were placed in containers which were taken to an outdoor area behind the facility where they were emptied into drums for disposal. The facility had no routine industrial hygiene program. Smocks, gloves, and safety glasses were required in all fabrication areas. Respirators were available in case of emergency. Preplacement medical examinations were not administered. Quarterly urinalyses for arsenic (7440382) exposure were conducted on all employees performing sawing operations.

  8. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  9. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    NASA Astrophysics Data System (ADS)

    Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.

  10. Fabrication of functional devices using soft lithography and unconventional micropatterning

    NASA Astrophysics Data System (ADS)

    Deng, Tao

    In this thesis, I present part of our work in the fabrication of functional devices using soft lithography, and also describe unconventional micropatterning techniques involving photographic films. Soft lithography is a set of techniques that are complementary to photolithography, but not limited to planar patterning. It offers the capability of generating micro and nanostructures to a larger community than that familiar with conventional fabrication facilities. The first part of this thesis (chapter 1--4) focuses on the fabrication of microelectronic and micromagnetic devices. These successful demonstrations establish the compatibility of soft lithography with multilayer fabrication of functional devices, and open the door for the further development in these areas. Chapter 1 and 2 describe the use of microtransfer molding (muTM), micromolding in capillaries (MIMIC), and microcontact (muCP) for fabricating Schottky diodes and half-wave rectifier circuits. The fabrication processes involve multiple soft lithography steps and address the registrations between different layer of structures. Room temperature characteristics of these devices resemble those of diodes and rectifiers fabricated by photolithography. Chapter 3 and 4 demonstrate the fabrication of micromagnetic systems. In chapter 3, a one-dimensional bead motor is reported. Based on current-carrying wire systems, the bead motor can trap and transfer magnetic beads suspended in aqueous solutions. Chapter 4 shows a microfiltration system that uses arrays of nickel posts positioned in a polydimethylsiloxane (PDMS) microfluidic channel as the filtering elements. Turning on or off the magnetic field that is localized by these nickel posts can trap or release magnetic beads flowing by. The second part of this thesis (chapter 5--7) focuses on the development of unconventional microfabrication. The major objective underlying this work is to explore the simplest and most broadly available techniques that we could identify for forming patterns with features useful in functional microstructures. Chapter 5 and 6 describe the use of photographic films (microfiche and slide film) and transparencies printed using different printers as photomasks in the fabrication of PDMS stamps/molds for soft lithography. In chapter 6, we also compare different methods of generating microstructures using facilities readily and inexpensively available to chemistry and biology laboratories. Among the films and transparencies investigated, microfiche carries the highest resolution. It can generate structures as small as ˜10 mum in lateral dimensions. Chapter 7 shows a new rapid prototyping process for the fabrication of metallic microstructures using silver halide-based photographic film. The whole process, which involves photographic development and electrochemical deposition, only takes ˜2 hours, starting from a computer design file. It can generate electrically continuous structures with the smallest dimension of ˜30 mum in the plane of the film. The resulting structures---either supported on the film backing, or freed from it---are appropriate for use as passive, structural materials such as wire frames or meshes, and can also be used in microfluidic, microanalytical, and microelectromechanical systems (MEMS).

  11. Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices

    PubMed Central

    Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2016-01-01

    We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249

  12. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    NASA Astrophysics Data System (ADS)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  13. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion.

    PubMed

    Mandal, Jyotirmoy; Wang, Derek; Overvig, Adam C; Shi, Norman N; Paley, Daniel; Zangiabadi, Amirali; Cheng, Qian; Barmak, Katayun; Yu, Nanfang; Yang, Yuan

    2017-11-01

    A galvanic-displacement-reaction-based, room-temperature "dip-and-dry" technique is demonstrated for fabricating selectively solar-absorbing plasmonic-nanoparticle-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs' spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15°, to 0.97 at 35°, to 0.79 at 80°), and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200 °C. Along with the performance of the PNFs, the simplicity, inexpensiveness, and environmental friendliness of the "dip-and-dry" technique makes it an appealing alternative to current methods for fabricating selective solar absorbers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Facile fabrication of CNT-based chemical sensor operating at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  15. Structurally Engineered Nanoporous Ta2O5-x Selector-Less Memristor for High Uniformity and Low Power Consumption.

    PubMed

    Kwon, Soonbang; Kim, Tae-Wook; Jang, Seonghoon; Lee, Jae-Hwang; Kim, Nam Dong; Ji, Yongsung; Lee, Chul-Ho; Tour, James M; Wang, Gunuk

    2017-10-04

    A memristor architecture based on metal-oxide materials would have great promise in achieving exceptional energy efficiency and higher scalability in next-generation electronic memory systems. Here, we propose a facile method for fabricating selector-less memristor arrays using an engineered nanoporous Ta 2 O 5-x architecture. The device was fabricated in the form of crossbar arrays, and it functions as a switchable rectifier with a self-embedded nonlinear switching behavior and ultralow power consumption (∼2.7 × 10 -6 W), which results in effective suppression of crosstalk interference. In addition, we determined that the essential switching elements, such as the programming power, the sneak current, the nonlinearity value, and the device-to-device uniformity, could be enhanced by in-depth structural engineering of the pores in the Ta 2 O 5-x layer. Our results, on the basis of the structural engineering of metal-oxide materials, could provide an attractive approach for fabricating simple and cost-efficient memristor arrays with acceptable device uniformity and low power consumption without the need for additional addressing selectors.

  16. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy.

    PubMed

    Sheng, Zonghai; Song, Liang; Zheng, Jiaxiang; Hu, Dehong; He, Meng; Zheng, Mingbin; Gao, Guanhui; Gong, Ping; Zhang, Pengfei; Ma, Yifan; Cai, Lintao

    2013-07-01

    Theranostic agents are attracting a great deal of attention in personalized medicine. Here, we developed a protein-based, facile method for fabrication of nanosized, reduced graphene oxide (nano-rGO) with high stability and low cytotoxicity. We constructed highly integrated photoacoustic/ultrasonic dual-modality imaging and photothermal therapy platforms, and further demonstrated that the prepared nano-rGO can be used as ready-to-use theranostic agents for both photoacoustic imaging and photothermal therapy without further surface modification. Intravenous administration of nano-rGO in tumor-bearing mice showed rapid and significant photoacoustic signal enhancement in the tumor region, indicating its excellence for passive targeting and photoacoustic imaging. Meanwhile, using a continuous-wave near-infrared laser, cancer cells in vivo were efficiently ablated, due to the photothermal effect of nano-rGO. The results suggest that the nano-rGO with protein-assisted fabrication was well suited for photoacoustic imaging and photothermal therapy of tumor, which is promising for theranostic nanomedicine. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    PubMed

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bio-Based Artificial Nacre with Excellent Mechanical and Barrier Properties Realized by a Facile In Situ Reduction and Cross-Linking Reaction.

    PubMed

    Shahzadi, Kiran; Mohsin, Imran; Wu, Lin; Ge, Xuesong; Jiang, Yijun; Li, Hui; Mu, Xindong

    2017-01-24

    Demands for high strength integrated materials have substantially increased across various kinds of industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, a simple and facile method to fabricate high strength integrated artificial nacre based on sodium carboxymethylcellulose (CMC) and borate cross-linked graphene oxide (GO) sheets has been developed. The tensile strength and toughness of cellulose-based hybrid material reached 480.5 ± 13.1 MPa and 11.8 ± 0.4 MJm -3 by a facile in situ reduction and cross-linking reaction between CMC and GO (0.7%), which are 3.55 and 6.55 times that of natural nacre. This hybrid film exhibits better thermal stability and flame retardancy. More interestingly, the hybrid material showed good water stability compared to that in the original water-soluble CMC. This type of hybrid has great potential applications in aerospace, artificial muscle, and tissue engineering.

  19. A facile FeBr3 based photoATRP for surface modification of mesoporous silica nanoparticles for controlled delivery cisplatin

    NASA Astrophysics Data System (ADS)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Zeng, Guangjian; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-03-01

    Mesoporous silica nanoparticles (MSNs) should be one of the most important materials for biomedical application owing to their high specific surface area, regular porous structure, adjustable pore size and chemical inert. However, the biomedical applications of unmodified MSNs are largely impeded for their poor hydrophilicity and lack of functional groups. In this work, a novel photo-initiated atom transfer radical polymerization (ATRP) strategy has been reported for modified mesoporous silica nanoparticles (MSNs) with hydrophilicility copolymers using FeBr3 as the novel photocatalyst and itaconic acid (IA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) as monomers. Because of the hydrophilicity and anticancer agent cis-dichlorodiamineplatinum(II) (CDDP) loading capacity of poly(MPC-co-IA), the controlled drug delivery applications MSNs-NH2-poly(MPC-co-IA) composites toward CDDP were further investigated. A series of characterization results demonstrated that MSNs-NH2-poly(MPC-co-IA) composites can be successfully fabricated through the novel photo-initiated ATRP. MSNs-NH2-poly(MPC-co-IA) composites showed obvious enhancement of water dispersibility, desirable biocompatibility, high drug loading capability, making them great potential for controlled drug delivery of CDDP. Moreover, as compared with the traditional ATRP, that using the transition metal ions and organic ligands as the catalysis systems in elevated temperature, our method provides a more facile, benign and cost-effective route for fabrication of multifunctional MSNs with great potential for biomedical applications. Finally, this FeBr3 based photoATRP strategy should be further extended for the fabrication of many other polymeric composites owing to its good monomer adoptability.

  20. Facile synthesis of 3D few-layered MoS2 coated TiO2 nanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Zhao, Naiqin; Guo, Lichao; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2015-07-01

    Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications.Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications. Electronic supplementary information (ESI) available: Supplementary SEM, TEM, XPS and EIS analyses. See DOI: 10.1039/c5nr03334a

  1. Readiness Review of BWXT for Fabrication of AGR 5/6/7 Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas William; Sharp, Michelle Tracy

    In support of preparations for fabricating compacts for the Advanced Gas Reactor (AGR) fuel qualification irradiation experiments (AGR-5/6/7), Idaho National Laboratory (INL) conducted a readiness review of the BWX Technology (BWXT) procedures, processes, and equipment associated with compact fabrication activities at the BWXT Nuclear Operations Group (BWXT-NOG) facility outside Lynchburg, VirginiaVA. The readiness review used quality assurance requirements taken from the American Society of Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008/1a-2009) as a basis to assess readiness to start compact fabrication.

  2. Development of Low-Cost Method for Fabrication of Metal Neutron Guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhaupt, Darell; Khaykovich, Boris; Romaine, Suzanne

    Neutron scattering is one of the most useful methods of studying the structure and dynamics of matter. US DOE neutron scattering research facilities at Oak Ridge National Laboratory are among the World’s most advanced, providing researchers with unmatched capabilities for probing the structure and properties of materials, including engineering and biological systems. This task is to develop a lower cost process to optimize and produce the required neutron guides capable of efficiently delivering neutron beams for tens of meters between neutron moderators and instruments. Therefore, our effort is to improve the performance and lower the production cost of neutron guides.more » Our approach aims at improving guide quality while controlling their rising costs by adopting a novel electroforming replication approach to their fabrication. These guides will be especially advantageous when used near the neutron source since the radiation resistance of nickel is superior to glass. Additionally, we are depositing low-stress nickel from an extremely low impurity solution completely free of stress-reducing agents, which nominally contain and impart sulfur, carbon and other elements that potentially activate in the neutron environment. This is achieved by using a pulsed periodically reversed current methodology. The best guides quote waviness of 0.1 mrad. It is reasonable to prepare just one mandrel of about 0.5 m long, for production of tens of guide segments, saving both the cost and supply time of guides to neutron facilities. We estimate that we can fabricate a single mandrel for the current cost of an individual one-meter guide, but from this, we can produce tens of meters of guide very inexpensively without mandrel refurbishment. While a multilayer coating will add to the overall cost, we expect this will be less than that of commercially available guides today. Therefore, we will produce higher quality guides, which are less susceptible to radiation damage, at the lower cost than those available today.« less

  3. Development of Low-Cost Method for Fabrication of Metal Neutron Guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelhaupt, Darell; Khaykovich, Boris; Romaine, Suzanne

    2017-12-19

    Neutron scattering is one of the most useful methods of studying the structure and dynamics of matter. US DOE neutron scattering research facilities at Oak Ridge National Laboratory are among the World’s most advanced, providing researchers with unmatched capabilities for probing the structure and properties of materials, including engineering and biological systems. This task is to develop a lower cost process to optimize and produce the required neutron guides capable of efficiently delivering neutron beams for tens of meters between neutron moderators and instruments. Therefore, our effort is to improve the performance and lower the production cost of neutron guides.more » Our approach aims at improving guide quality while controlling their rising costs by adopting a novel electroforming replication approach to their fabrication. These guides will be especially advantageous when used near the neutron source since the radiation resistance of nickel is superior to glass. Additionally, we are depositing low-stress nickel from an extremely low impurity solution completely free of stress-reducing agents, which nominally contain and impart sulfur, carbon and other elements that potentially activate in the neutron environment. This is achieved by using a pulsed periodically reversed current methodology. The best guides quote waviness of 0.1 mrad. It is reasonable to prepare just one mandrel of about 0.5 m long, for production of tens of guide segments, saving both the cost and supply time of guides to neutron facilities. We estimate that we can fabricate a single mandrel for the current cost of an individual one-meter guide, but from this, we can produce tens of meters of guide very inexpensively without mandrel refurbishment. While a multilayer coating will add to the overall cost, we expect this will be less than that of commercially available guides today. Therefore, we will produce higher quality guides, which are less susceptible to radiation damage, at the lower cost than those available today.« less

  4. Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors.

    PubMed

    Kim, Chae Bin; Jeong, Ki Beom; Yang, Beom Joo; Song, Jong-Won; Ku, Bon-Cheol; Lee, Seunghyun; Lee, Seoung-Ki; Park, Chiyoung

    2017-12-18

    We herein report a facile, cost-competitive, and scalable method for producing viscoelastic conductors via one-pot melt-blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non-volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL-CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one-pot melt-blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene-b-butadiene-b-styrene) (SBS, styrene 30 wt %). The resulting composites displayed an excellent electromechanical sensory along with re-mendable properties. This simple method using cost-competitive EL components is expected to provide an alternative to the use of expensive ionic liquids as well as to facilitate the fabrication of novel composites for various purposes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe

    A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less

  6. Facile and Green Synthesis of Palladium Nanoparticles-Graphene-Carbon Nanotube Material with High Catalytic Activity

    NASA Astrophysics Data System (ADS)

    Sun, Tai; Zhang, Zheye; Xiao, Junwu; Chen, Chen; Xiao, Fei; Wang, Shuai; Liu, Yunqi

    2013-08-01

    We report a facile and green method to synthesize a new type of catalyst by coating Pd nanoparticles (NPs) on reduced graphene oxide (rGO)-carbon nanotube (CNT) nanocomposite. An rGO-CNT nanocomposite with three-dimensional microstructures was obtained by hydrothermal treatment of an aqueous dispersion of graphene oxide (GO) and CNTs. After the rGO-CNT composites have been dipped in K2PdCl4 solution, the spontaneous redox reaction between the GO-CNT and PdCl42- led to the formation of nanohybrid materials consisting rGO-CNT decorated with 4 nm Pd NPs, which exhibited excellent and stable catalytic activity: the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as a catalyst was completed in only 20 s at room temperature, even when the Pd content of the catalyst was 1.12 wt%. This method does not require rigorous conditions or toxic agents and thus is a rapid, efficient, and green approach to the fabrication of highly active catalysts.

  7. A Strategy for Fabricating Porous PdNi@Pt Core-shell Nanostructures and Their Enhanced Activity and Durability for the Methanol Electrooxidation

    PubMed Central

    Liu, Xinyu; Xu, Guangrui; Chen, Yu; Lu, Tianhong; Tang, Yawen; Xing, Wei

    2015-01-01

    Three-dimensionally (3D) porous morphology of nanostructures can effectively improve their electrocatalytic activity and durability for various electrochemical reactions owing to big surface area and interconnected structure. Cyanogel, a jelly-like inorganic polymer, can be used to synthesize various three-dimensionally (3D) porous alloy nanomaterials owing to its double-metal property and particular 3D backbone. Here, 3D porous PdNi@Pt core-shell nanostructures (CSNSs) are facilely synthesized by first preparing the Pd-Ni alloy networks (Pd-Ni ANWs) core via cyanogel-reduction method followed by a galvanic displacement reaction to generate the Pt-rich shell. The as-synthesized PdNi@Pt CSNSs exhibit a much improved catalytic activity and durability for the methanol oxidation reaction (MOR) in the acidic media compared to the commercial used Pt black because of their specific structural characteristics. The facile and mild method described herein is highly attractive for the synthisis of 3D porous core-shell nanostructures. PMID:25557190

  8. A facile route towards large area self-assembled nanoscale silver film morphologies and their applications towards metal enhanced fluorescence

    DOE PAGES

    Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel; ...

    2017-04-19

    Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less

  9. NNSA B-Roll: MOX Facility

    ScienceCinema

    None

    2017-12-09

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  10. NNSA B-Roll: MOX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  11. 30 CFR 285.705 - When must I use a Certified Verification Agent (CVA)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CVA)? 285.705 Section 285.705 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... the Facility Design Report, the Fabrication and Installation Report, and the Project Modifications and...

  12. 40 CFR 63.11419 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam...; § 63.8830 of subpart MMMMM; § 63.2 of subpart A; and in this section as follows: Flexible polyurethane foam fabrication facility means a facility where pieces of flexible polyurethane foam are cut, bonded...

  13. 40 CFR 63.11419 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam...; § 63.8830 of subpart MMMMM; § 63.2 of subpart A; and in this section as follows: Flexible polyurethane foam fabrication facility means a facility where pieces of flexible polyurethane foam are cut, bonded...

  14. 40 CFR 63.11419 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam...; § 63.8830 of subpart MMMMM; § 63.2 of subpart A; and in this section as follows: Flexible polyurethane foam fabrication facility means a facility where pieces of flexible polyurethane foam are cut, bonded...

  15. 40 CFR 63.11419 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam...; § 63.8830 of subpart MMMMM; § 63.2 of subpart A; and in this section as follows: Flexible polyurethane foam fabrication facility means a facility where pieces of flexible polyurethane foam are cut, bonded...

  16. 40 CFR 63.11419 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam...; § 63.8830 of subpart MMMMM; § 63.2 of subpart A; and in this section as follows: Flexible polyurethane foam fabrication facility means a facility where pieces of flexible polyurethane foam are cut, bonded...

  17. Facile fabrication of superhydrophobic films with fractal structures using epoxy resin microspheres

    NASA Astrophysics Data System (ADS)

    Quan, Yun-Yun; Zhang, Li-Zhi

    2014-02-01

    A simple method has been developed to fabricate superhydrophobic surfaces with fractal structures with epoxy resin microspheres (ERMs). The ERMs is produced by phase separation in an epoxy-amine curing system with a silica sol (SS) dispersant. The transparent epoxy solution becomes cloudy and turns into epoxy suspension (ES) in this process. The fractal structure (two tier structure) generated by synthetic epoxy resin microspheres (ERMs) and deposited nanoincrutations on the surfaces of these ERMs, which have been observed by scanning electron microscope (SEM). The curing time of ES is an important condition to obtain films with good comprehensive performances. Superhydrophobic films can be prepared by adding extra SS into ES with a curing time longer than 5 h. The optimal curing time is 10 h to fabricate a film with good mechanical stability and high superhydrophobicity. In addition, a surface with anti-wetting property of impacting microdroplets can be fabricated by prolonging the curing time of ES to 24 h. The gradually decreased hydrophilic groups resulted from a longer curing time enable the surface to have smaller surface adhesions to water droplets, which is the main reason to keep its superhydrophobicity under impacting conditions. The coated surface is highly hydrophobic and the impacting water droplets are bounced off from the surface.

  18. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    Bunker, S.

    1981-01-01

    A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.

  19. A facile method for high yield synthesis of carbon nano onions for designing binder-free flexible supercapacitor

    NASA Astrophysics Data System (ADS)

    Mohapatra, Debananda; Badrayyana, Subramanya; Parida, Smrutiranjan

    2017-05-01

    Carbon nano onion (CNO) is a promising material for diverse application areas such as energy devices, catalysis, lubrication, biology and gas storage, etc. However, its implementation is fraught with the production of high-quality powders in bulk quantity. Herein, we report a facile scalable and one-step "wick-and-oil" flame synthesis of pure and water dispersible CNO nanopowder. Other forms of carbon did not contaminate the as-prepared CNO; hence, a post processing purification procedure was not necessary. Brunauer Emmett Teller (BET) specific surface area of as-prepared CNO was 218 m2/g, which is higher as compared to other reported flame synthesis methods. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by "dipping and drying" process providing outstanding strechability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102.16 F/g, energy density 14.18 Wh/kg and power density 2448 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge -discharge cycles. Simple preparation of high-purity CNOs and excellent electrochemical behavior of functionalized CNOs make them a promising electrode material for supercapacitor applications. Furthermore, this unique method not only affords binder free - freestanding electrode, but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium ion batteries.

  20. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment.

    PubMed

    Hussain, Mohammad Musarraf; Rahman, Mohammed M; Asiri, Abdullah M

    2017-03-01

    Nickel oxide nanoparticles decorated carbon nanotube nanocomposites (NiO·CNT NCs) were prepared in a basic medium by using facile wet-chemical routes. The optical, morphological, and structural properties of NiO·CNT NCs were characterized using Fourier transformed infra-red (FT-IR), Ultra-violet visible (UV/Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray energy dispersed spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD) methods. Selective 4-aminophenol (4-AP) chemical sensor was developed by a flat glassy carbon electrode (GCE, surface area: 0.0316cm 2 ) fabricated with a thin-layer of NCs. Electrochemical responses including higher sensitivity, large dynamic range (LDR), limit of detection (LOD), and long-term stability towards 4-AP were obtained using the fabricated chemical sensors. The calibration curve was found linear (R 2 =0.914) over a wide range of 4-AP concentration (0.1nmol/L-0.1mol/L). In perspective of slope (2×10 -5 μA/μM), LOD and sensitivity were calculated as 15.0±0.1pM and ~6.33×10 -4 μA/(μM·cm) respectively. The synthesized NiO·CNT NCs using a wet-chemical method is a significant route for the development of ultrasensitive and selective phenolic sensor based on nano-materials for environmental toxic substances. It is suggested that a pioneer and selective development of 4-AP sensitive sensor using NiO·CNT NCs by a facile and reliable current vs voltage (I-V) method for the major application of toxic agents in biological, green environmental, and health-care fields in near future. Copyright © 2016. Published by Elsevier B.V.

  1. Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.

    PubMed

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes

    PubMed Central

    2014-01-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701

  3. Well-Defined Peapod-like Magnetic Nanoparticles and Their Controlled Modification for Effective Imaging Guided Gene Therapy.

    PubMed

    Wang, Ranran; Hu, Yang; Zhao, Nana; Xu, Fu-Jian

    2016-05-11

    Due to their unique properties, one-dimensional (1D) magnetic nanostructures are of great significance for biorelated applications. A facile and straightforward strategy to fabricate 1D magnetic structure with special shapes is highly desirable. In this work, well-defined peapod-like 1D magnetic nanoparticles (Fe3O4@SiO2, p-FS) are readily synthesized by a facile method without assistance of any templates, magnetic string or magnetic field. There are few reports on 1D gene carriers based on Fe3O4 nanoparticles. BUCT-PGEA (ethanolamine-functionalized poly(glycidyl methacrylate) is subsequently grafted from the surface of p-FS nanoparticles by atom transfer radical polymerization to construct highly efficient gene vectors (p-FS-PGEA) for effective biomedical applications. Peapod-like p-FS nanoparticles were proven to largely improve gene transfection performance compared with ordinary spherical Fe3O4@SiO2 nanoparticles (s-FS). External magnetic field was also utilized to further enhance the transfection efficiency. Moreover, the as-prepared p-FS-PGEA gene carriers could combine the magnetic characteristics of p-FS to well achieve noninvasive magnetic resonance imaging (MRI). We show here novel and multifunctional magnetic nanostructures fabricated for biomedical applications that realized efficient gene delivery and real-time imaging at the same time.

  4. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.; ...

    2017-12-22

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  5. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  6. Facile and Low-Temperature Fabrication of Thermochromic Cr2O3/VO2 Smart Coatings: Enhanced Solar Modulation Ability, High Luminous Transmittance and UV-Shielding Function.

    PubMed

    Chang, Tianci; Cao, Xun; Li, Ning; Long, Shiwei; Gao, Xiang; Dedon, Liv R; Sun, Guangyao; Luo, Hongjie; Jin, Ping

    2017-08-09

    In the pursuit of energy efficient materials, vanadium dioxide (VO 2 ) based smart coatings have gained much attention in recent years. For smart window applications, VO 2 thin films should be fabricated at low temperature to reduce the cost in commercial fabrication and solve compatibility problems. Meanwhile, thermochromic performance with high luminous transmittance and solar modulation ability, as well as effective UV shielding function has become the most important developing strategy for ideal smart windows. In this work, facile Cr 2 O 3 /VO 2 bilayer coatings on quartz glasses were designed and fabricated by magnetron sputtering at low temperatures ranging from 250 to 350 °C as compared with typical high growth temperatures (>450 °C). The bottom Cr 2 O 3 layer not only provides a structural template for the growth of VO 2 (R), but also serves as an antireflection layer for improving the luminous transmittance. It was found that the deposition of Cr 2 O 3 layer resulted in a dramatic enhancement of the solar modulation ability (56.4%) and improvement of luminous transmittance (26.4%) when compared to single-layer VO 2 coating. According to optical measurements, the Cr 2 O 3 /VO 2 bilayer structure exhibits excellent optical performances with an enhanced solar modulation ability (ΔT sol = 12.2%) and a high luminous transmittance (T lum,lt = 46.0%), which makes a good balance between ΔT sol and T lum for smart windows applications. As for UV-shielding properties, more than 95.8% UV radiation (250-400 nm) can be blocked out by the Cr 2 O 3 /VO 2 structure. In addition, the visualized energy-efficient effect was modeled by heating a beaker of water using infrared imaging method with/without a Cr 2 O 3 /VO 2 coating glass.

  7. 2. VIEW OF THE GLOVE BOX WHERE, ON SEPTEMBER 11, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF THE GLOVE BOX WHERE, ON SEPTEMBER 11, 1957, A FIRE STARTED. THE FIRE SPREAD TO THE REST OF THE BUILDING, RESULTING IN THE TRANSFER OF PLUTONIUM FOUNDRY, FABRICATION, AND ASSEMBLY OPERATIONS TO BUILDING 776/777. (9/16/57) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  8. Preparation of highly luminescent and biocompatible carbon dots using a new extraction method

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Liu, Ying-Bo; Sun, Shu-Qing

    2013-10-01

    C dots (CDs) are among the most promising emerging fluorescent labels for biological imaging and sensing. A facile new synthesis method was developed using common organic solvents for fabricating CDs from candle soot. The common organic solvents were used as extractants and the obtained CDs have a narrow size distribution with average diameters of about 3.4 nm for ethylene glycol, 3.5 nm for ethanol, and 3.4 nm for n-butanol. This approach is simpler, easier, and more effective than other methods currently used for CD fabrication. The obtained CDs had a high quantum yield (38 %), tunable emission and are water-soluble. The mechanism for the luminescence of the CDs was investigated and the results indicate that the ability of the solvent to disperse the CDs plays a very important role in the photoluminescence of these CDs. The type of organic solvent and the surface groups on the CDs also influenced the optical properties of the CDs. Different emissive traps are shown to play the major role in the luminescence of the carbon materials. An in vitro hemolysis assay was performed and showed that the CDs are biocompatible.

  9. Fabrication and Characterizations of Ethanol Sensor Based on CuO Nanoparticles.

    PubMed

    Al-Hadeethi, Yas; Umar, Ahmad; Kumar, Rajesh; Al-Heniti, Saleh H; Raffah, Bahaaudin M

    2018-04-01

    In this paper, we report the synthesis, characterization and ethanol sensing applications of CuO nanoparticles. The CuO nanoparticles were prepared by a facile, low-temperature hydrothermal method and characterized in detail in terms of their structural, morphological, compositional and crystalline properties, through different characterization techniques including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) attached with energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The detailed studies revealed that the synthesized CuO nanoparticles were well-crystalline and possessed monoclinic crystal structure. The synthesized CuO nanoparticles were utilized for the fabrication of highly sensitive ethanol gas sensor. At an optimized temperature of 320 °C, high sensitivity (Ra/Rg) of 39.29 was observed for 200 ppm of ethanol gas. Additionally, very low response (τres = 14 s) and recovery (τrec = 30 s) times were observed for 100 ppm of ethanol.

  10. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors

    PubMed Central

    2014-01-01

    Hierarchical mesoporous NiCo2O4 nanoneedle arrays on carbon cloth have been fabricated by a simple hydrothermal approach combined with a post-annealing treatment. Such unique array nanoarchitectures exhibit remarkable electrochemical performance with high capacitance and desirable cycle life at high rates. When evaluated as an electrode material for supercapacitors, the NiCo2O4 nanoneedle arrays supported on carbon cloth was able to deliver high specific capacitance of 660 F g-1 at current densities of 2 A g-1 in 2 M KOH aqueous solution. In addition, the composite electrode shows excellent mechanical behavior and long-term cyclic stability (91.8% capacitance retention after 3,000 cycles). The fabrication method presented here is facile, cost-effective, and scalable, which may open a new pathway for real device applications. PMID:24661431

  11. Multicolor emission from large-area porous thin films constructed of nanowires of small organic molecules

    NASA Astrophysics Data System (ADS)

    Wang, Zhe-Chen; Xiao, Wen-Chang; Ding, Xun-Lei; Ma, Yan-Ping; Xue, Wei; He, Sheng-Gui

    2008-12-01

    We describe a facile low-temperature physical vapor deposition approach to fabricate porous network thin films constructed of nanowires of small organic molecules on a large area. Supermolecular assemblies of pyrene nanowires based on a combination of van der Waals forces and π-π stacking tend to hierarchically self-assemble to form uniform porous films using our techniques. The morphology of the films is studied and we also study several reasons influencing the process of assembly such as evaporation temperature, deposition temperature, and different kinds of substrate. The deposition temperature is determined to be the main reason for hierarchical aggregation. Typically prepared films exhibit unique optical properties, that is, multicolor red-green-blue emissions. This novel method can be applied to other organic molecular systems and may be potentially used to place nanoscaled building blocks directly on solid surfaces for fabricating large-area nanostructure-based flat screens.

  12. Synthesis of p-type nickel oxide nanosheets on n-type titanium dioxide nanorod arrays for p-n heterojunction-based UV photosensor

    NASA Astrophysics Data System (ADS)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.

  13. Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: Suppressed hysteresis and flexible photovoltaic application

    NASA Astrophysics Data System (ADS)

    Chen, Zhiliang; Yang, Guang; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Ma, Junjie; Wang, Hao; Fang, Guojia

    2017-05-01

    Perovskite solar cells have developed rapidly in recent years as the third generation solar cells. In spite of the great improvement achieved, there still exist some issues such as undesired hysteresis and indispensable high temperature process. In this work, bulk heterojunction perovskite-phenyl-C61-butyric acid methyl ester solar cells have been prepared to diminish hysteresis using a facile two step spin-coating method. Furthermore, high quality tin oxide films are fabricated using pulse laser deposition technique at room temperature without any annealing procedure. The as fabricated tin oxide film is successfully applied in bulk heterojunction perovskite solar cells as a hole blocking layer. Bulk heterojunction devices based on room temperature tin oxide exhibit almost hysteresis-free characteristics with power conversion efficiency of 17.29% and 14.0% on rigid and flexible substrates, respectively.

  14. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies.

  15. Accurate electron gun-positioning mechanism for electron beam-mapping of large cross-section magnetic surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, F. S. B.; Middleton, F.; Colchin, R. J.; Million, D.

    1989-04-01

    A method of accurately supporting and positioning an electron source inside a large cross-sectional area magnetic field which provides very low electron beam occlusion is reported. The application of electrical discharge machining to the fabrication of a 1-m truss support structure has provided an extremely long, rigid and mechanically strong electron gun support. Reproducible electron gun positioning to within 1 mm has been achieved at any location within a 1×0.6-m2 area. The extremely thin sections of the support truss (≤1.5 mm) have kept the electron beam occlusion to less than 3 mm. The support and drive mechanism have been designed and fabricated at the University of Wisconsin for application to the mapping of the magnetic surface structure of the Advanced Toroidal Facility torsatron1 at the Oak Ridge National Laboratory.

  16. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-01

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm-2 at 5 mA cm-2 and quality specific capacitance of 466.6 F g-1 at 0.125 A g-1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm-2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  17. Hierarchical Macro-meso-microporous ZSM-5 Zeolite Hollow Fibers With Highly Efficient Catalytic Cracking Capability

    PubMed Central

    Liu, Jia; Jiang, Guiyuan; Liu, Ying; Di, Jiancheng; Wang, Yajun; Zhao, Zhen; Sun, Qianyao; Xu, Chunming; Gao, Jinsen; Duan, Aijun; Liu, Jian; Wei, Yuechang; Zhao, Yong; Jiang, Lei

    2014-01-01

    Zeolite fibers have attracted growing interest for a range of new applications because of their structural particularity while maintaining the intrinsic performances of the building blocks of zeolites. The fabrication of uniform zeolite fibers with tunable hierarchical porosity and further exploration of their catalytic potential are of great importance. Here, we present a versatile and facile method for the fabrication of hierarchical ZSM-5 zeolite fibers with macro-meso-microporosity by coaxial electrospinning. Due to the synergistic integration of the suitable acidity and the hierarchical porosity, high yield of propylene and excellent anti-coking stability were demonstrated on the as-prepared ZSM-5 hollow fibers in the catalytic cracking reaction of iso-butane. This work may also provide good model catalysts with uniform wall thickness and tunable porosity for studying a series of important catalytic reactions. PMID:25450726

  18. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells.

    PubMed

    Tai, Qidong; Chen, Bolei; Guo, Feng; Xu, Sheng; Hu, Hao; Sebo, Bobby; Zhao, Xing-Zhong

    2011-05-24

    Highly uniform and transparent polyaniline (PANI) electrodes that can be used as counter electrodes in dye-sensitized solar cells (DSSCs) were prepared by a facile in situ polymerization method. They were used to fabricate a novel bifacially active transparent DSSC, which showed conversion efficiencies of 6.54 and 4.26% corresponding to front- and rear-side illumination, respectively. Meanwhile, the efficiency of the same photoanode employing a Pt counter electrode was 6.69%. Compared to conventional Pt-based DSSCs, the design of the bifacial DSSC fabricated in this work would help to bring down the cost of energy production due to the lower cost of the materials and the higher power-generating efficiency of such devices for their capabilities of utilizing the light from both sides. These promising results highlight the potential application of PANI in cost-effective, transparent DSSCs.

  19. Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring

    NASA Astrophysics Data System (ADS)

    Dinh, Toan; Phan, Hoang-Phuong; Nguyen, Tuan-Khoa; Qamar, Afzaal; Woodfield, Peter; Zhu, Yong; Nguyen, Nam-Trung; Viet Dao, Dzung

    2017-06-01

    In this paper, we report on a low-cost, environment-friendly and wearable thermal flow sensor, which can be manufactured in-house using pencil graphite as a sensing hot film and biodegradable printing paper as a substrate, without using any toxic solvents or cleanroom facilities. The hot film flow sensor offers excellent performance such as high signal-to-noise ratio (≥slant 40 for an air flow velocity of 1 m s-1), high sensitivity to airflow (53.7 mV(m s-1)-0.8) and outstanding long-term stability (almost no drift in 24 h). The sensor can be comfortably affixed to the philtrum of patients and measures human respiration in realtime. The results indicate that the wearable thermal flow sensors fabricated by this solvent-free and user-friendly method could be employed in human respiratory monitoring.

  20. Single-Step Reagentless Laser Scribing Fabrication of Electrochemical Paper-Based Analytical Devices.

    PubMed

    de Araujo, William R; Frasson, Carolina M R; Ameku, Wilson A; Silva, José R; Angnes, Lúcio; Paixão, Thiago R L C

    2017-11-20

    A single-step laser scribing process is used to pattern nanostructured electrodes on paper-based devices. The facile and low-cost technique eliminates the need for chemical reagents or controlled conditions. This process involves the use of a CO 2 laser to pyrolyze the surface of the paperboard, producing a conductive porous non-graphitizing carbon material composed of graphene sheets and composites with aluminosilicate nanoparticles. The new electrode material was extensively characterized, and it exhibits high conductivity and an enhanced active/geometric area ratio; it is thus well-suited for electrochemical purposes. As a proof-of-concept, the devices were successfully employed for different analytical applications in the clinical, pharmaceutical, food, and forensic fields. The scalable and green fabrication method associated with the features of the new material is highly promising for the development of portable electrochemical devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Three-dimensional cotton-like nickel nanowire@Ni-Co hydroxide nanosheet arrays as binder-free electrode for high-performance asymmetric supercapacitor.

    PubMed

    Wan, Houzhao; Li, Lang; Xu, Yang; Tan, Qiuyang; Liu, Xiang; Zhang, Jun; Wang, Hanbin; Wang, Hao

    2018-05-11

    Three-dimensional (3D) cotton-like Ni-Co layered double hydroxide nanosheet arrays/nickel nanowires (3D Ni-Co LDH/NiNw) were successfully fabricated through a facile chemical bath deposition method. The 3D nickel nanowires are used as a conductive substrate with robust adhesion for high-pseudocapacitance Ni-Co LDH. The 3D Ni-Co LDH/NiNw electrode shows a high areal specific capacitance of 14 F cm -2 at 5 mA cm -2 and quality specific capacitance of 466.6 F g -1 at 0.125 A g -1 with respect to the whole quality of the electrode. The fabricated asymmetric supercapacitor exhibits a remarkable energy density of 0.387 mWh cm -2 using Ni-Co LDH/NiNw as the negative electrode. This high-performance composite electrode presents a new and affordable general approach for supercapacitors.

  2. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation

    NASA Astrophysics Data System (ADS)

    Bu, Yiming; Huang, Jingjing; Zhang, Shiyu; Wang, Yinghua; Gu, Shaojin; Cao, Genyang; Yang, Hongjun; Ye, Dezhan; Zhou, Yingshan; Xu, Weilin

    2018-05-01

    With the ever-increasing oil spillages, oil-water separation has attracted widespread concern in recent years. In this work, a nature-inspired polyphenol method has been developed to fabricate the durable superhydrophobic surfaces for the oil-water separation. Inspiring from the adhesion of polyphenol and reducing capacity of free catechol/pyrogallol groups in polyphenol, firstly, the simple immersion of commercial materials (melamine sponge, PET, and nonwoven cotton fabrics) in tannic acid (TA) solution allows to form a multifunctional coating on the surface of sponge or fabrics, which was used as reducing reagent to generate Ag nanoparticles (NPs). Then, decoration of 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) molecules produced superhydrophobic surfaces. The surface topological structure, chemical composition, and superhydrophobic property of the as-prepared surface are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and water contact angle (WCA) measurements. The WCAs of as-prepared sponge and fabrics were higher than 150°. The stability, absorption capacity, and recyclability of as-prepared sponge and fabrics were investigated. The as-prepared sponge demonstrates high oil/water selectivity and high absorption capacity (66-150 g/g) for a broad variety of oils and organic solvents, and was chemically resistant, robust against abrasion, and long-term durability in harsh environments. Most important of all, it can continuously separate various kinds of oils or organic pollutants from the surface of water. This study presents a facile strategy to fabricate superhydrophobic materials for continuous oil-water separation, displaying great potential in large-scale practical application.

  3. Fabrication of superhydrophilic and underwater superoleophobic metal mesh by laser treatment and its application

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong

    2018-04-01

    In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.

  4. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications.

    PubMed

    Zampini, Massimiliano; Mur, Luis A J; Rees Stevens, Pauline; Pachebat, Justin A; Newbold, C James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-05-25

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology.

  5. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2016-12-01

    In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation.

  6. Soft Lithographic Procedure for Producing Plastic Microfluidic Devices with View-ports Transparent to Visible and Infrared Light.

    PubMed

    Suryana, Mona; Shanmugarajah, Jegan V; Maniam, Sivakumar M; Grenci, Gianluca

    2017-08-17

    Infrared (IR) spectro-microscopy of living biological samples is hampered by the absorption of water in the mid-IR range and by the lack of suitable microfluidic devices. Here, a protocol for the fabrication of plastic microfluidic devices is demonstrated, where soft lithographic techniques are used to embed transparent Calcium Fluoride (CaF2) view-ports in connection with observation chamber(s). The method is based on a replica casting approach, where a polydimethylsiloxane (PDMS) mold is produced through standard lithographic procedures and then used as the template to produce a plastic device. The plastic device features ultraviolet/visible/infrared (UV/Vis/IR) -transparent windows made of CaF2 to allow for direct observation with visible and IR light. The advantages of the proposed method include: a reduced need for accessing a clean room micro-fabrication facility, multiple view-ports, an easy and versatile connection to an external pumping system through the plastic body, flexibility of the design, e.g., open/closed channels configuration, and the possibility to add sophisticated features such as nanoporous membranes.

  7. Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth

    PubMed Central

    Lee, Lynn; Baek, Jangmi; Park, Kyung Sun; Lee, Yong-EunKoo; Shrestha, Nabeen K.; Sung, Myung M.

    2017-01-01

    We report a facile roll-printing method, geometrically confined lateral crystal growth, for the fabrication of large-scale, single-crystal CH3NH3PbI3 perovskite thin films. Geometrically confined lateral crystal growth is based on transfer of a perovskite ink solution via a patterned rolling mould to a heated substrate, where the solution crystallizes instantly with the immediate evaporation of the solvent. The striking feature of this method is that the instant crystallization of the feeding solution under geometrical confinement leads to the unidirectional lateral growth of single-crystal perovskites. Here, we fabricated single-crystal perovskites in the form of a patterned thin film (3 × 3 inch) with a high carrier mobility of 45.64 cm2 V−1 s−1. We also used these single-crystal perovskite thin films to construct solar cells with a lateral configuration. Their active-area power conversion efficiency shows a highest value of 4.83%, which exceeds the literature efficiency values of lateral perovskite solar cells. PMID:28691697

  8. Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.

    1999-01-01

    Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.

  9. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature.

    PubMed

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Huang, Qiang; Huang, Long; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-02-01

    In recent years, the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) feature have been extensively exploited in various biomedical fields owing to their advantages, such as low toxicity, biodegradation, excellent biocompatibility, good designability and optical properties. Therefore, development of a facile, efficient and well designable strategy should be of great importance for the biomedical applications of these AIE-active FPNs. In this work, a novel method for the fabrication of AIE-active FPNs has been developed through the self-catalyzed photo-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using an AIE dye containing chain transfer agent (CTA), which could initiate the RAFT polymerization under light irradiation. The results suggested that the final AIE-active FPNs (named as TPE-poly(St-PEGMA)) showed great potential for biomedical applications owing to their optical and biological properties. More importantly, the method described in the work is rather simple and effective and can be further extended to prepare many other different AIE-active FPNs owing to the good monomer adoptability of RAFT polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

    PubMed Central

    Tavakoli, Mohammad Mahdi; Gu, Leilei; Gao, Yuan; Reckmeier, Claas; He, Jin; Rogach, Andrey L.; Yao, Yan; Fan, Zhiyong

    2015-01-01

    Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and time resolved photoluminescence data showed that the perovskite films have a large grain size of more than 1 micrometer, and carrier life-times of 10 ns and 120 ns for CH3NH3PbI3 and CH3NH3PbI3-xClx, respectively. This is the first demonstration of a highly efficient perovskite solar cell using one step CVD and there is likely room for significant improvement of device efficiency. PMID:26392200

  11. PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. T. Khericha

    2007-04-01

    The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed tomore » achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.« less

  12. Robust and durable superhydrophobic cotton fabrics for oil/water separation.

    PubMed

    Zhou, Xiaoyan; Zhang, Zhaozhu; Xu, Xianghui; Guo, Fang; Zhu, Xiaotao; Men, Xuehu; Ge, Bo

    2013-08-14

    By introducing the incorporation of polyaniline and fluorinated alkyl silane to the cotton fabric via a facile vapor phase deposition process, the fabric surface possessed superhydrophobicity with the water contact angle of 156° and superoleophilicity with the oil contact angle of 0°. The as-prepared fabric can be applied as effective materials for the separation of water and oil mixture with separation efficiency as high as 97.8%. Compared with other materials for oil/water separation, the reported process was simple, time-saving, and repeatable for at least 30 times. Moreover, the obtained fabric kept stable superhydrophobicity and high separation efficiency under extreme environment conditions of high temperature, high humidity, strong acidic or alkaline solutions, and mechanical forces. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.

  13. Proceedings of the twelfth target fabrication specialists` meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of anmore » ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.« less

  14. Propulsion Systems Panel

    NASA Technical Reports Server (NTRS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.

    1993-01-01

    Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.

  15. Propulsion Systems Panel

    NASA Astrophysics Data System (ADS)

    Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; McGaw, Mike; Munafo, Paul M.

    1993-02-01

    Topics addressed are: (1) cryogenic tankage; (2) launch vehicle TPS/insulation; (3) durable passive thermal control devices and/or coatings; (4) development and characterization of processing methods to reduce anisotropy of material properties in Al-Li; (5) durable thermal protection system (TPS); (6) unpressurized Al-Li structures (interstages, thrust structures); (7) near net shape sections; (8) pressurized structures; (9) welding and joining; (10) micrometeoroid and debris hypervelocity shields; (11) state-of-the-art shell buckling structure optimizer program to serve as a rapid design tool; (12) test philosophy; (13) reduced load cycle time; (14) structural analysis methods; (15) optimization of structural criteria; and (16) develop an engineering approach to properly trade material and structural concepts selection, fabrication, facilities, and cost.

  16. Orbital construction demonstration study. Volume 3: Requirements document

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A comprehensive set of requirements that defines the objective, scope and configuration of the orbital test facility needed to demonstrate the necessary automated fabrication, construction and assembly technology is provided. In addition to the requirements for the orbital demonstration facility, a detailed list of experiment requirements is included for various areas of technology.

  17. 30 CFR 285.708 - What are the CVA's or project engineer's primary duties for fabrication and installation review?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the CVA's or project engineer's...

  18. Preliminary risk assessment for nuclear waste disposal in space, volume 2

    NASA Technical Reports Server (NTRS)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.

    1982-01-01

    Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.

  19. 30 CFR 285.714 - What records relating to SAPs, COPs, and GAPs must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Certified Verification Agent § 285.714 What records relating..., all of the following: (1) The as-built drawings; (2) The design assumptions and analyses; (3) A...

  20. 1. VIEW LOOKING SOUTH AT BUILDING 771 UNDER CONSTRUCTION. BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTH AT BUILDING 771 UNDER CONSTRUCTION. BUILDING 771 WAS ONE OF THE FIRST FOUR MAJOR BUILDINGS AT THE ROCKY FLATS PLANT, BUILDING 771 WAS ORIGINALLY THE PRIMARY FACILITY FOR PLUTONIUM OPERATIONS. (5/29/52) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  1. NATIONAL INCINERATOR TESTING AND EVALUATION PROGRAM: THE ENVIRONMENTAL CHARACTERIZATION OF REFUSE-DERIVED FUEL (RDF) COMBUSTION TECHNOLOGY - MID-CONNECTICUT FACILITY,

    EPA Science Inventory

    The report gives results of an environmental characterization of refuse-derived, semi-suspension burning technology at a facility in Hartford, CT, that represents state-of-the-art technology, including a spray dryer/fabric filter flue gas cleaning (FGC) system for each unit. The ...

  2. Solution deposited and modified iron oxide for enhanced solar water splitting

    NASA Astrophysics Data System (ADS)

    Abel, Anthony J.

    Growing worldwide energy demand coupled with an increasing awareness of anthropogenic climate change has driven research into carbon-neutral and solar-derived energy sources. One attractive strategy is the storage of solar energy in the bonds of H2 formed by photoelectrochemical (PEC) water splitting. Hematite, an iron oxide, has been widely investigated as a candidate material for PEC water splitting due to its stability, non-toxicity, earth abundance and consequent low cost, and a theoretical 15% solar-to-hydrogen conversion efficiency. However, poor electrical properties and slow rates of the water oxidation reaction have limited its potential as an economical water splitting catalyst. Additionally, the most efficient hematite-based devices are fabricated via expensive, vacuum-phase techniques, limiting scalability to broad integration into the energy supply. In this thesis, I develop a new, solution-based deposition method for high quality, planar hematite thin films using successive ionic layer adsorption and reaction (SILAR). The constant geometry and tight control over layer thickness possible with SILAR makes these films ideal model systems to understand the two key steps of PEC water oxidation: charge separation and interfacial hole transfer. In Chapter 3, I report on facile annealing treatments to dope hematite with Ti and Sn, and I show that these impurity atoms at the hematite/electrolyte interface increase hole transfer efficiency from nearly 0 to above 60%. However, charge separation remains below 15% with these dopants incorporated via solid state diffusion, mainly due to low hole mobility. To overcome this associated small transport length, extremely thin hematite coatings were deposited on Sb:SnO2 monolayer inverse opal scaffolds. With this modified substrate, photocurrent increased proportionately to the surface area of the scaffold. While Chapter 3 discusses incorporation of dopants via solid state diffusion, Chapter 4 examines methods to incorporate Ti via modified SILAR solutions. With this method, hematite films with well-controlled, uniform doping profiles were successfully fabricated. An optimal Ti concentration of 4.2% in the film enabled a charge separation efficiency of >20%, and I show that holes generated within 3 nm of the depletion region are separated with unity efficiency. With the addition of an ultrathin FeOOH overlayer, hole transfer efficiency is increased to 100% as a result of an increased concentration of reactive holes at the hematite/electrolyte interface. These combined effects lead to photocurrents >0.85 mAcm-2 at 1.23 VRHE, which is competitive with champion planar films regardless of fabrication method. Importantly, the methods of fabrication and analysis described in this thesis are applicable to a wide range of materials for a variety of applications. The SILAR method can be applied to many compounds, provided their constituent atoms are soluble in liquid solvents. Additionally, the facile optical and electrochemical measurements used to analyze hematite in Chapters 3 and 4 can be readily adapted to other semiconductor materials with the aim of understanding their charge transport properties.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented withinmore » flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.« less

  4. Fluorimetric Mercury Test Strips with Suppressed “Coffee Stains” by a Bio-inspired Fabrication Strategy

    PubMed Central

    Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua

    2016-01-01

    A fluorimetric Hg2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the “coffee stains” toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized “coffee stains”. On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of “coffee stains” on test strips may expand the scope of applications of test strips-based “point-of-care” analysis methods or detection devices in the biomedical and environmental fields. PMID:27812040

  5. Chitosan-Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies.

    PubMed

    Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie

    2018-06-20

    The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.

  6. I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Frank

    The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were produced concentrated salt products that acted as the feed material for development of advanced waste forms investigated in this proposal. Accomplishments from the first year activities associated with this I-NERI project included the down selection of candidate waste forms to immobilize fission products separated from electrorefiner salt, and the design of equipment to fabricate actual waste forms in the Hot Fuels Examination Facility (HFEF) at the INL. Reported in this document are accomplishments from the second year (FY10) work performed at the INL, and includes the testing of waste form fabrication equipment, repeating the fission product precipitation experiment, and initial waste form fabrication efforts.« less

  7. Fabrication of Thermoplastic Composite Laminates Having Film Interleaves By Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. B.; Tiwari, S. N.; Marchello, J. M.; Johnston, Norman J. (Technical Monitor)

    2001-01-01

    Experiments were carried out at the NASA Langley Research Center automated Fiber placement facility to determine an optimal process for the fabrication of composite materials having polymer film interleaves. A series of experiments was conducted to determine an optimal process for the composite prior to investigation of a process to fabricate laminates with polymer films. The results of the composite tests indicated that a well-consolidated, void-free laminate could be attained. Preliminary interleaf processing trials were then conducted to establish some broad guidelines for film processing. The primary finding of these initial studies was that a two-stage process was necessary in order to process these materials adequately. A screening experiment was then performed to determine the relative influence of the process variables on the quality of the film interface as determined by the wedge peel test method. Parameters that were found to be of minor influence on specimen quality were subsequently held at fixed values enabling a more rapid determination of an optimal process. Optimization studies were then performed by varying the remaining parameters at three film melt processing rates. The resulting peel data were fitted with quadratic response surfaces. Additional specimens were fabricated at levels of high peel strength as predicted by the regression models in an attempt to gage the accuracy of the predicted response and to assess the repeatability of the process. The overall results indicate that quality laminates having film interleaves can be successfully and repeatably fabricated by automated fiber placement.

  8. Invisible metallic microfiber in clothing presents unrecognized MRI risk for cutaneous burn.

    PubMed

    Pietryga, J A; Fonder, M A; Rogg, J M; North, D L; Bercovitch, L G

    2013-05-01

    We report a case of a thermal burn that occurred during MR imaging likely caused by invisible silver-embedded microfibers in the fabric of an undershirt. As the prevalence of fabric containing nondetectable metallic microfiber increases in athletic and "tech" clothing, the importance of having patients change into safe facility-provided garments before MR imaging is emphasized.

  9. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The completion of assembly of the beam builder and its first automatic production of truss is discussed. A four bay, hand assembled, roll formed members truss was built and tested to ultimate load. Detail design of the fabrication facility (beam builder) was completed and designs for subsystem debugging are discussed. Many one bay truss specimens were produced to demonstrate subsystem operation and to detect problem areas.

  10. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress in the development of a beam builder to be deployed by space shuttle for assembly of large structures in space is reported. The thermal coating for the structural truss was selected and the detail truss design and analysis completed. Data acquired during verification of the design of the basic 'building block' truss are included as well as design layouts for various fabrication facility subsystems.

  11. Using template/hotwire cutting to demonstrate moldless composite fabrication

    NASA Technical Reports Server (NTRS)

    Coleman, J. Mario

    1990-01-01

    The objective of this experiment is to provide a simple, inexpensive composite fabrication technique which can be easily performed with a minimum of equipment and facilities. This process eliminates expensive female molds and uses only male molds which are easily formed from foam blocks. Once the mold is shaped, it is covered with fiberglass and becomes a structural component of the product.

  12. Fabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive

    PubMed Central

    Li, Zuohua; Cui, Yanhui; Chen, Jun; Deng, Lianlin

    2016-01-01

    Binary transition metal oxides have been regarded as one of the most promising candidates for high-performance electrodes in energy storage devices, since they can offer high electrochemical activity and high capacity. Rational designing nanosized metal oxide/carbon composite architectures has been proven to be an effective way to improve the electrochemical performance. In this work, the (Co,Mn)3O4 spinel was synthesized and anchored on reduced graphene oxide (rGO) nanosheets using a facile and single hydrothermal step with H2O2 as additive, no further additional calcination required. Analysis showed that this method gives a mixed spinel, i.e. (Co,Mn)3O4, having 2+ and 3+ Co and Mn ions in both the octahedral and tetrahedral sites of the spinel structure, with a nanocubic morphology roughly 20 nm in size. The nanocubes are bound onto the rGO nanosheet uniformly in a single hydrothermal process, then the as-prepared (Co,Mn)3O4/rGO composite was characterized as the anode materials for Li-ion battery (LIB). It can deliver 1130.6 mAh g-1 at current density of 100 mA g-1 with 98% of coulombic efficiency after 140 cycles. At 1000 mA g-1, the capacity can still maintain 750 mAh g-1, demonstrating excellent rate capabilities. Therefore, the one-step process is a facile and promising method to fabricate metal oxide/rGO composite materials for energy storage applications. PMID:27788161

  13. Fabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive.

    PubMed

    Li, Zuohua; Cui, Yanhui; Chen, Jun; Deng, Lianlin; Wu, Junwei

    2016-01-01

    Binary transition metal oxides have been regarded as one of the most promising candidates for high-performance electrodes in energy storage devices, since they can offer high electrochemical activity and high capacity. Rational designing nanosized metal oxide/carbon composite architectures has been proven to be an effective way to improve the electrochemical performance. In this work, the (Co,Mn)3O4 spinel was synthesized and anchored on reduced graphene oxide (rGO) nanosheets using a facile and single hydrothermal step with H2O2 as additive, no further additional calcination required. Analysis showed that this method gives a mixed spinel, i.e. (Co,Mn)3O4, having 2+ and 3+ Co and Mn ions in both the octahedral and tetrahedral sites of the spinel structure, with a nanocubic morphology roughly 20 nm in size. The nanocubes are bound onto the rGO nanosheet uniformly in a single hydrothermal process, then the as-prepared (Co,Mn)3O4/rGO composite was characterized as the anode materials for Li-ion battery (LIB). It can deliver 1130.6 mAh g-1 at current density of 100 mA g-1 with 98% of coulombic efficiency after 140 cycles. At 1000 mA g-1, the capacity can still maintain 750 mAh g-1, demonstrating excellent rate capabilities. Therefore, the one-step process is a facile and promising method to fabricate metal oxide/rGO composite materials for energy storage applications.

  14. Enhanced photocatalytic activity of wool-ball-like TiO2 microspheres on carbon fabric and FTO substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Gu, Jian; Zhang, Mengqi

    2018-06-01

    The wool-ball-like TiO2 microspheres on carbon fabric (TiO2-CF) and FTO substrates (TiO2-FTO) have been synthesized by a facile hydrothermal method in alkali environment, using commercial TiO2 (P25) as precursors. The XRD results indicate that the as-prepared TiO2 have good crystallinity. And the SEM images show that the wool-ball-like TiO2 microspheres with a diameter of 2-3 μm are composed of TiO2 nanowires, which have a diameter of 50 nm. The photocatalytic behavior of the wool-ball-like TiO2 microspheres, TiO2-CF and TiO2-FTO under ultraviolet light was investigated by a pseudo first-order kinetic model, using methyl orange (MO) as pollutant. The wool-ball-like TiO2 microspheres obtained a degradation rate constant (Kap) of 6.91×10-3 min-1 . The Kap values of TiO2-FTO and TiO2-CF reach 13.97×10-3 min-1 and 11.80×10-3 min-1, which are 2.0 and 1.7 times higher than that of pristine wool-ball-like TiO2 microspheres due to the "sum effect" between TiO2 and substrates. This study offers a facile hydrothermal method to prepare wool-ball-like TiO2 microspheres on CF and FTO substrates, which will improve the recyclability of phtocatalysts and can be extended to other fields.

  15. Fabrication, characterization, and modeling of comixed films for NXS calibration targets [Fabrication and metrology of the NXS calibration targets

    DOE PAGES

    Jaquez, Javier; Farrell, Mike; Huang, Haibo; ...

    2016-08-01

    In 2014/2015 at the Omega laser facility, several experiments took place to calibrate the National Ignition Facility (NIF) X-ray spectrometer (NXS), which is used for high-resolution time-resolved spectroscopic experiments at NIF. The spectrometer allows experimentalists to measure the X-ray energy emitted from high-energy targets, which is used to understand key data such as mixing of materials in highly compressed fuel. The purpose of the experiments at Omega was to obtain information on the instrument performance and to deliver an absolute photometric calibration of the NXS before it was deployed at NIF. The X-ray emission sources fabricated for instrument calibration weremore » 1-mm fused silica spheres with precisely known alloy composition coatings of Si/Ag/Mo, Ti/Cr/Ag, Cr/Ni/Zn, and Zn/Zr, which have emission in the 2- to 18-keV range. Critical to the spectrometer calibration is a known atomic composition of elements with low uncertainty for each calibration sphere. This study discusses the setup, fabrication, and precision metrology of these spheres as well as some interesting findings on the ternary magnetron-sputtered alloy structure.« less

  16. Fabrication, characterization, and modeling of comixed films for NXS calibration targets [Fabrication and metrology of the NXS calibration targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaquez, Javier; Farrell, Mike; Huang, Haibo

    In 2014/2015 at the Omega laser facility, several experiments took place to calibrate the National Ignition Facility (NIF) X-ray spectrometer (NXS), which is used for high-resolution time-resolved spectroscopic experiments at NIF. The spectrometer allows experimentalists to measure the X-ray energy emitted from high-energy targets, which is used to understand key data such as mixing of materials in highly compressed fuel. The purpose of the experiments at Omega was to obtain information on the instrument performance and to deliver an absolute photometric calibration of the NXS before it was deployed at NIF. The X-ray emission sources fabricated for instrument calibration weremore » 1-mm fused silica spheres with precisely known alloy composition coatings of Si/Ag/Mo, Ti/Cr/Ag, Cr/Ni/Zn, and Zn/Zr, which have emission in the 2- to 18-keV range. Critical to the spectrometer calibration is a known atomic composition of elements with low uncertainty for each calibration sphere. This study discusses the setup, fabrication, and precision metrology of these spheres as well as some interesting findings on the ternary magnetron-sputtered alloy structure.« less

  17. A metal-organic framework derived hierarchical nickel-cobalt sulfide nanosheet array on Ni foam with enhanced electrochemical performance for supercapacitors.

    PubMed

    Tao, Kai; Han, Xue; Ma, Qingxiang; Han, Lei

    2018-03-06

    Metal-organic frameworks (MOFs) have emerged as a new platform for the construction of various functional materials for energy related applications. Here, a facile MOF templating method is developed to fabricate a hierarchical nickel-cobalt sulfide nanosheet array on conductive Ni foam (Ni-Co-S/NF) as a binder-free electrode for supercapacitors. A uniform 2D Co-MOF nanowall array is first grown in situ on Ni foam in aqueous solution at room temperature, and then the Co-MOF nanowalls are converted into hierarchical Ni-Co-S nanoarchitectures via an etching and ion-exchange reaction with Ni(NO 3 ) 2 , and a subsequent solvothermal sulfurization. Taking advantage of the compositional and structural merits of the hierarchical Ni-Co-S nanosheet array and conductive Ni foam, such as fast electron transportation, short ion diffusion path, abundant active sites and rich redox reactions, the obtained Ni-Co-S/NF electrode exhibits excellent electrochemical capacitive performance (1406.9 F g -1 at 0.5 A g -1 , 53.9% retention at 10 A g -1 and 88.6% retention over 1000 cycles), which is superior to control CoS/NF. An asymmetric supercapacitor (ASC) assembled by using the as-fabricated Ni-Co-S/NF as the positive electrode and activated carbon (AC) as the negative electrode delivers a high energy density of 24.8 W h kg -1 at a high power density of 849.5 W kg -1 . Even when the power density is as high as 8.5 kW kg -1 , the ASC still exhibits a high energy density of 12.5 W h kg -1 . This facile synthetic strategy can also be extended to fabricate other hierarchical integrated electrodes for high-efficiency electrochemical energy conversion and storage devices.

  18. ENGINEERING AND CONSTRUCTING THE HALLAM NUCLEAR POWER FACILITY REACTOR STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahlmeister, J E; Haberer, W V; Casey, D F

    1960-12-15

    The Hallam Nuclear Power Facility reactor structure, including the cavity liner, is described, and the design philosophy and special design requirements which were developed during the preliminary and final engineering phases of the project are explained. The structure was designed for 600 deg F inlet and 1000 deg F outlet operating sodium temperatures and fabricated of austenitic and ferritic stainless steels. Support for the reactor core components and adequate containment for biological safeguards were readily provided even though quite conservative design philosophy was used. The calculated operating characteristics, including heat generation, temperature distributions and stress levels for full-power operation, aremore » summarized. Ship fabrication and field installation experiences are also briefly related. Results of this project have established that the sodium graphite reactor permits practical and economical fabrication and field erection procedures; considerably higher operating design temperatures are believed possible without radical design changes. Also, larger reactor structures can be similarly constructed for higher capacity (300 to 1000 Mwe) nuclear power plants. (auth)« less

  19. Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement.

    PubMed

    Liu, Weiyu; Miao, Peng; Xiong, Lu; Du, Yunchen; Han, Xijiang; Xu, Ping

    2014-11-07

    We demonstrate here a facile fabrication of n-dodecyl mercaptan-modified superhydrophobic Ag nanostructures on polyaniline membranes for molecular detection based on SERS technique, which combines the superhydrophobic condensation effect and the high enhancement factor. It is calculated that the as-fabricated superhydrophobic substrate can exhibit a 21-fold stronger molecular condensation, and thus further amplifies the SERS signal to achieve more sensitive detection. The detection limit of the target molecule, methylene blue (MB), on this superhydrophobic substrate can be 1 order of magnitude higher than that on the hydrophilic substrate. With high reproducibility, the feasibility of using this SERS-active superhydrophobic substrate for quantitative molecular detection is explored. A partial least squares (PLS) model was established for the quantification of MB by SERS, with correlation coefficient R(2) = 95.1% and root-mean-squared error of prediction (RMSEP) = 0.226. We believe this superhydrophobic SERS substrate can be widely used in trace analysis due to its facile fabrication, high signal reproducibility and promising SERS performance.

  20. Turbine blade and vane heat flux sensor development, phase 2

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  1. Nanoparticles meet electrospinning: recent advances and future prospects.

    PubMed

    Zhang, Chuan-Ling; Yu, Shu-Hong

    2014-07-07

    Nanofibres can be fabricated by various methods and perhaps electrospinning is the most facile route. In past years, electrospinning has been used as a synthesis technique and the fibres have been prepared from a variety of starting materials and show various properties. Recently, incorporating functional nanoparticles (NPs) with electrospun fibres has emerged as one of most exciting research topics in the field of electrospinning. When NPs are incorporated, on the one hand the NPs endow the electrospun fibres/mats novel or better performance, on the other hand the electrospun fibres/mats could preserve the NPs from corrosion and/or oxidation, especially for NPs with anisotropic structures. More importantly, electrospinning shows potential applications in self-assembly of nanoscale building blocks for generating new functions, and has some obvious advantages that are not available by other self-assembly methods, i.e., the obtained free-standing hybrid mats are usually flexible and with large area, which is favourable for their commercial applications. In this critical review, we will focus on the fabrication and applications of NPs-electrospun fibre composites and give an overview on this emerging field combining nanoparticles and electrospinning. Firstly, two main strategies for producing NPs-electrospun fibres will be discussed, i.e., one is preparing the NPs-electrospun fibres after electrospinning process that is usually combined with other post-processing methods, and the other is fabricating the composite nanofibres during the electrospinning process. In particular, the NPs in the latter method will be classified and introduced to show the assembling effect of electrospinning on NPs with different anisotropic structures. The subsequent section describes the applications of these NPs-electrospun fibre mats and nanocomposites, and finally a conclusion and perspectives of the future research in this emerging field is given.

  2. Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics.

    PubMed

    Yoon, Jinsu; Han, Jungmin; Choi, Bongsik; Lee, Yongwoo; Kim, Yeamin; Park, Jinhee; Lim, Meehyun; Kang, Min-Ho; Kim, Dae Hwan; Kim, Dong Myong; Kim, Sungho; Choi, Sung-Jin

    2018-05-25

    Electronics that degrade after stable operation for a desired operating time, called transient electronics, are of great interest in many fields, including biomedical implants, secure memory devices, and environmental sensors. Thus, the development of transient materials is critical for the advancement of transient electronics and their applications. However, previous reports have mostly relied on achieving transience in aqueous solutions, where the transience time is largely predetermined based on the materials initially selected at the beginning of the fabrication. Therefore, accurate control of the transience time is difficult, thereby limiting their application. In this work, we demonstrate transient electronics based on a water-soluble poly(vinyl alcohol) (PVA) substrate on which carbon nanotube (CNT)-based field-effect transistors were fabricated. We regulated the structural parameters of the PVA substrate using a three-dimensional (3D) printer to accurately control and program the transience time of the PVA substrate in water. The 3D printing technology can produce complex objects directly, thus enabling the efficient fabrication of a transient substrate with a prescribed and controlled transience time. In addition, the 3D printer was used to develop a facile method for the selective and partial destruction of electronics.

  3. Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs.

    PubMed

    Li, Moxiao; Yang, Qingzhen; Liu, Hao; Qiu, Mushu; Lu, Tian Jian; Xu, Feng

    2016-09-01

    Hydrogels have found broad applications in various engineering and biomedical fields, where the shape and size of hydrogels can profoundly influence their functions. Although numerous methods have been developed to tailor 3D hydrogel structures, it is still challenging to fabricate complex 3D hydrogel constructs. Inspired by the capillary origami phenomenon where surface tension of a droplet on an elastic membrane can induce spontaneous folding of the membrane into 3D structures along with droplet evaporation, a facile strategy is established for the fabrication of complex 3D hydrogel constructs with programmable shapes and sizes by crosslinking hydrogels during the folding process. A mathematical model is further proposed to predict the temporal structure evolution of the folded 3D hydrogel constructs. Using this model, precise control is achieved over the 3D shapes (e.g., pyramid, pentahedron, and cube) and sizes (ranging from hundreds of micrometers to millimeters) through tuning membrane shape, dimensionless parameter of the process (elastocapillary number Ce ), and evaporation time. This work would be favorable to multiple areas, such as flexible electronics, tissue regeneration, and drug delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bio-functionalized silk hydrogel microfluidic systems.

    PubMed

    Zhao, Siwei; Chen, Ying; Partlow, Benjamin P; Golding, Anne S; Tseng, Peter; Coburn, Jeannine; Applegate, Matthew B; Moreau, Jodie E; Omenetto, Fiorenzo G; Kaplan, David L

    2016-07-01

    Bio-functionalized microfluidic systems were developed based on a silk protein hydrogel elastomeric materials. A facile multilayer fabrication method using gelatin sacrificial molding and layer-by-layer assembly was implemented to construct interconnected, three dimensional (3D) microchannel networks in silk hydrogels at 100 μm minimum feature resolution. Mechanically activated valves were implemented to demonstrate pneumatic control of microflow. The silk hydrogel microfluidics exhibit controllable mechanical properties, long-term stability in various environmental conditions, tunable in vitro and in vivo degradability in addition to optical transparency, providing unique features for cell/tissue-related applications than conventional polydimethylsiloxane (PDMS) and existing hydrogel-based microfluidic options. As demonstrated in the work here, the all aqueous-based fabrication process at ambient conditions enabled the incorporation of active biological substances in the bulk phase of these new silk microfluidic systems during device fabrication, including enzymes and living cells, which are able to interact with the fluid flow in the microchannels. These silk hydrogel-based microfluidic systems offer new opportunities in engineering active diagnostic devices, tissues and organs that could be integrated in vivo, and for on-chip cell sensing systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Hou, Haoqing; Chen, Wei

    2015-04-01

    3D porous and self-supported carbon hybrids are promising electrode materials for supercapacitor application attributed to their prominent properties such as binder-free electrode fabrication process, excellent electric conductivity and high power density etc. We present here a facile chemical vapor deposition method to fabricate a novel 3D flexible carbon hybrid nanostructure by growing a monolayer of nitrogen-doped carbon nanotubes on the skeleton of carbon foam (N-CNTs/CF) with Fe nanoparticle as catalyst. With such 3D porous, flexible and ultralight carbon nanostructure as binder-free electrode material, large surface area is available and fast ionic transport is facilitated. Moreover, the carbon-based network can provide excellent electronic conductivity. The electrochemical studies demonstrate that the supercapacitor constructed from the N-CNTs/CF hybrid exhibit high power density of 69.3 kW kg-1 and good stability with capacitance retention ration above 95% after cycled at 50 A g-1 for 5000 cycles. Therefore, the prepared porous N-CNTs/CF nanostructure is expected to be a type of excellent electrode material for electrical double layer capacitors.

  6. Facile fabrication of uniform hierarchical structured (UHS) nanocomposite surface with high water repellency and self-cleaning properties

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Aliofkhazraei, M.; Forooshani, H. Mojiri; Rouhaghdam, A. Sabour

    2018-04-01

    In the present study, two-stage process for the fabrication of superhydrophobic Ni-Cu-TiO2 nanocomposite coatings on the copper substrate has been introduced. Surface modification was performed on the electrodeposited coatings by myristic acid-ethanol solution to achieve superhydrophobicity. Additionally, in order to further study the roughness effect, instead of addition of copper ions in electrodeposition bath, three substrates were roughened by electrochemical etching method. Water repellency properties were studied through measurement of static and dynamic contact angles, and performing bouncing test, self-cleaning and water-jet evaluation. The samples were electrodeposited in various current densities, and the highest corrosion resistance and water repellency properties were obtained for the sample which was electrodeposited in two consecutive steps and modified by a fatty acid called myristic acid (which significantly reduces surface energy of the coating). The highest water contact angle (161°) and the lowest contact angle hysteresis (3°) were obtained for the sample which was coated by 10 mA/cm2 (144 min) and 20 mA/cm2 (18 min), respectively. Since this approach does not require any sophisticated equipment and materials, it shows promising future in the fabrication of superhydrophobic coatings.

  7. Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon.

    PubMed

    Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping

    2017-02-01

    Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe 3 O 4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe 3 O 4 /PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe 3 O 4 /PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.

  8. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  9. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE PAGES

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua; ...

    2018-04-24

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  10. Experimental study of UC polycrystals in the prospect of improving the as-fabricated sample purity

    NASA Astrophysics Data System (ADS)

    Raveu, Gaëlle; Martin, Guillaume; Fiquet, Olivier; Garcia, Philippe; Carlot, Gaëlle; Palancher, Hervé; Bonnin, Anne; Khodja, Hicham; Raepsaet, Caroline; Sauvage, Thierry; Barthe, Marie-France

    2014-12-01

    Uranium and plutonium carbides are candidate fuels for Generation IV nuclear reactors. This study is focused on the characterization of uranium monocarbide samples. The successive fabrication steps were carried out under atmospheres containing low oxygen and moisture concentrations (typically less than 100 ppm) but sample transfers occurred in air. Six samples were sliced from four pellets elaborated by carbothermic reaction under vacuum. Little presence of UC2 is expected in these samples. The α-UC2 phase was indeed detected within one of these UC samples during an XRD experiment performed with synchrotron radiation. Moreover, oxygen content at the surface of these samples was depth profiled using a recently developed nuclear reaction analysis method. Large oxygen concentrations were measured in the first micron below the sample surface and particularly in the first 100-150 nm. UC2 inclusions were found to be more oxidized than the surrounding matrix. This work points out to the fact that more care must be given at each step of UC fabrication since the material readily reacts with oxygen and moisture. A new glovebox facility using a highly purified atmosphere is currently being built in order to obtain single phase UC samples of better purity.

  11. Simple, rapid and, cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) as photoresist master.

    PubMed

    Lobo-Júnior, Eulício O; Gabriel, Ellen F M; Dos Santos, Rodrigo A; de Souza, Fabrício R; Lopes, Wanderson D; Lima, Renato S; Gobbi, Angelo L; Coltro, Wendell K T

    2017-01-01

    This study describes a simple, rapid, and cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) (PVAc) emulsion as photoresist master. High-relief microfluidic structures were defined on poly(vinyl acetate) previously deposited on printed circuit boards surfaces without cleanroom facilities and sophisticated instrumentation. After a UV exposure, channels with heights ranging from 30 to 140 μm were obtained by controlling the emulsion mass deposited on the master surface. The developing stage was performed using water rather than the organic solvents that are applied for conventional masks. The surface morphology was characterized by optical imaging, profilometry, and SEM. Based on the achieved results, the proposed method offers suitable reproducibility for the prototyping of electrophoresis microchips in PDMS. The feasibility of the resulting PDMS electrophoresis chips was successfully demonstrated with the separation of major inorganic cations within 100 s using a contactless conductivity detection system. The separation efficiencies ranged from ca. 67 900 to 125 600 plates/m. Due to the satisfactory performance and simplified instrumentation, we believe this fabrication protocol presents potential to be implemented in any chemical, biochemical, or biological laboratory. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fabrication of hollow nanorod electrodes based on RuO2//Fe2O3 for an asymmetric supercapacitor.

    PubMed

    Wang, Qiufan; Liang, Xiao; Ma, Yun; Zhang, Daohong

    2018-06-12

    In this work, hollow RuO2 nanotube arrays were successfully grown on carbon cloth by using a facile two-step method to fabricate a binder-free electrode. The well-aligned electrode displays excellent electrochemical performance. By using RuO2 hollow nanotube arrays as the positive electrode and Fe2O3 as the negative electrode, a flexible solid-state asymmetric supercapacitor (ASC) has been fabricated which exhibited excellent electrochemical performance, such as a high capacitance of 4.9 F cm-3, a high energy density of 1.5 mW h cm-3 and a high power density of 9.1 mW cm-3. In addition, the two-electrode SC shows high cycling stability with 97% capacitance retention after 5000 charge-discharge cycles. These excellent electrochemical performances are ascribed to the unique hollow structural design of electrodes, which can shorten the ion diffusion length, provide a fast ion transport channel, and offer a large electrode/electrolyte interface for the charge-transfer reaction. The structural design and the synthesis approach are general and can be extended to synthesizing a broad range of materials systems.

  13. Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release.

    PubMed

    Ren, Hong; Zhang, Lingyu; An, Jiping; Wang, Tingting; Li, Lu; Si, Xiaoyan; He, Liu; Wu, Xiaotong; Wang, Chungang; Su, Zhongmin

    2014-01-28

    The polyacrylic acid@zeolitic imidazolate framework-8 (PAA@ZIF-8) nanoparticles (NPs) were first fabricated using a facile and simple route. It is worthwhile noting that the as-fabricated PAA@ZIF-8 NPs possessed ultrahigh doxorubicin (DOX) loading capability (1.9 g DOX g(-1) NPs), which were employed as pH-dependent drug delivery vehicles.

  14. 2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 3; Fabrication and Test Report

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis

    1997-01-01

    The Solar Dynamic Ground Test Demonstration (SDGTD) project has successfully designed and fabricated a complete solar-powered closed Brayton electrical power generation system and tested it in a relevant thermal vacuum facility at NASA Lewis Research Center (LeRC). In addition to completing technical objectives, the project was completed 3-l/2 months early, and under budget.

  15. Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels

    DTIC Science & Technology

    2015-04-30

    and/or excellent cyclic fatigue behavior: stainless - steel 316L and 17-4PH. Additive materials were fabricated at a leading-edge facility using their...Tensile deformation Representative engineering stress- strain data from measurements obtained with our stainless steel specimens are shown in... fatigue behavior Cyclic fatigue strengths demonstrated by the DMLS stainless steels fabricated in the horizontal orientation were almost equal to

  16. Space Fabrication Demonstration System

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress on fabrication facility (beam builder) support structure control, clamp/weld block, and welding and truss cut off is discussed. The brace attachment design was changed and the design of the weld mechanism was modified which achieved the following system benefits: (1) simplified weld electrode life; (2) reduced weld power requirements; and (3) simplified brace attachment mechanisms. Static and fatigue characteristics of spot welded 2024T3 aluminum joints are evaluated.

  17. Liquid oxygen (LO2) propellant conditioning concept testing

    NASA Technical Reports Server (NTRS)

    Perry, Gretchen L. E.; Orth, Michael S.; Mehta, Gopal K.

    1993-01-01

    Testing of a simplified LO2 propellant conditioning concept for future expendable launch vehicles is discussed. Four different concepts are being investigated: no-bleed, low-bleed, use of a recirculation line, and He bubbling. A full-scale test article, which is a facsimile of a propellant feed duct with an attached section to simulate heat input from an LO2 turbopump, is to be tested at the Cold Flow Facility of the Marshall Space Flight Center West Test Area. Work to date includes: design and fabrication of the test article, design of the test facility and initial fabrication, development of a test matrix and test procedures, initial predictions of test output, and heat leak calibration and heat exchanger tests on the test articles.

  18. Facile fabrication of corrosion-resistant superhydrophobic and superoleophilic surfaces with MnWO(4):Dy(3+) microbouquets.

    PubMed

    Li, Taohai; Li, Quanguo; Yan, Jing; Li, Feng

    2014-04-21

    Superhydrophobic and superoleophilic MnWO4:Dy(3+) microbouquets were successfully fabricated via a facile hydrothermal process. The surface morphologies and chemical composition were investigated by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The wettability of the as-synthesized MnWO4:Dy(3+) microbouquet film was studied by measuring the water contact angle (CA). A static CA for water of 165° and a very low sliding angle (SA) were observed, which were closely related to both the MnWO4:Dy(3+) microbouquet structure and chemical modification. Furthermore, the as-prepared MnWO4:Dy(3+) surface showed superhydrophobicity for some corrosive liquids such as aqueous basic and salt solutions.

  19. X-ray mask fabrication advancements at the Microlithographic Mask Development Center

    NASA Astrophysics Data System (ADS)

    Kimmel, Kurt R.; Hughes, Patrick J.

    1996-05-01

    The Microlithographic Mask Development Center (MMD) was established as the X-ray mask manufacturing facility at the IBM Microelectronics Division semiconductor fabricator in Essex Junction, Vermont. This center, in operation for over two years, produces high yielding, defect-free X-ray masks for competitive logic and memory products at 250nm groundrules and below. The MMD is a complete mask facility that manufactures silicon membrane mask blanks in the NIST format and finished masks with electroplated gold X-ray absorber. Mask patterning, with dimensions as small as 180 nm, is accomplished using IBM-built variable shaped spot e-beam systems. Masks are routinely inspected and repaired using state-of-the-art equipment: two KLA SEM Specs for defect inspection, a Leica LMS 2000 for image placement characterization, an Amray 2040c for image dimension characterization and a Micrion 8000 XMR for defect repair. This facility maintains a baseline mask process with daily production of 250nm, 32Mb SRAM line monitor masks for the continuous improvement of mask quality and processes. Development masks are produced for several semiconductor manufacturers including IBM, Motorola, Loral, and Sanders. Masks for 64Mb and 256Mb DRAM (IBM) and advanced logic/SRAM (IBM and Motorola) designs have also been delivered. This paper describes the MMD facility and its technical capabilities. Key manufacturing metrics such as mask turnaround time, parametric yield learning and defect reduction activities are highlighted. The challenges associated with improved mask quality, sub-180nm mask fabrication, and the transition to refractory metal absorber are discussed.

  20. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO(2) nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties.

    PubMed

    Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Cao, Tieping; Liu, Yichun

    2011-02-01

    In the present work, 2,9,16,23-tetranitrophthalocyanine copper(II) (TNCuPc)/TiO(2) hierarchical nanostructures were successfully fabricated by a simple combination method of electrospinning technique and solvothermal processing. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), UV-vis diffuse reflectance (DR), Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric and differential thermal analysis (TG-DTA) were used to characterize the as-synthesized TNCuPc/TiO(2) hierarchical nanostructures. The results showed that the secondary TNCuPc nanostructures were not only successfully grown on the primary TiO(2) nanofibers substrates but also uniformly distributed without aggregation. By adjusting the solvothermal fabrication parameters, the TNCuPc nanowires or nanoflowers were facilely fabricated, and also the loading amounts of TNCuPc could be controlled on the TNCuPc/TiO(2) hierarchical nanostructural nanofibers. And, there might exist the interaction between TNCuPc and TiO(2). A possible mechanism for the formation of TNCuPc/TiO(2) hierarchical nanostructures was suggested. The photocatalytic studies revealed that the TNCuPc/TiO(2) hierarchical nanostructures exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TNCuPc or TiO(2) nanofibers under visible-light irradiation.

  1. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    PubMed Central

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-01-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283

  2. In situ fabrication of Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays and their application in supercapacitors.

    PubMed

    Zheng, Xiaoyu; Quan, Honglin; Li, Xiaoxin; He, Hai; Ye, Qinglan; Xu, Xuetang; Wang, Fan

    2016-09-29

    Three-dimensional (3D) hybrid nanostructured arrays grown on a flexible substrate have recently attracted great attention owing to their potential application as supercapacitor electrodes in portable and wearable electronic devices. Here, we report an in situ conversion of Ni-Co active electrode materials for the fabrication of high-performance electrodes. Ni-Co carbonate hydroxide nanowire arrays on carbon cloth were initially synthesized via a hydrothermal method, and they were gradually converted to Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays after soaking in an alkaline solution. The evolution of the supercapacitor performance of the soaked electrode was investigated in detail. The areal capacitance increases from 281 mF cm -2 at 1 mA cm -2 to 3710 and 3900 mF cm -2 after soaking for 36 h and 48 h, respectively. More interestingly, the electrode also shows an increased capacitance with charge/discharge cycles due to the long-time soaking in KOH solution, suggesting novel cycling durability. The enhancement in capacitive performance should be related to the formation of a unique nanowire-supported nanoflake array architecture, which controls the agglomeration of nanoflakes, making them fully activated. As a result, the facile in situ fabrication of the hybrid architectural design in this study provides a new approach to fabricate high-performance Ni/Co based hydroxide nanostructure arrays for next-generation energy storage devices.

  3. Mechanically tunable aspheric lenses via additive manufacture of hanging elastomeric droplets for microscopic applications

    NASA Astrophysics Data System (ADS)

    Fuh, Yiin-Kuen; Chen, Pin-Wen; Lai, Zheng-Hong

    2016-07-01

    Mechanically deformable lenses with dynamically tunable focal lengths have been developed in this work. The fabricated five types of aspheric polydimethylsiloxane (PDMS) lenses presented here have an initial focal length of 7.0, 7.8, 9.0, 10.0 and 10.2 mm. Incorporating two modes of operation in biconvex and concave-convex configurations, the focal lengths can be tuned dynamically as 5.2-10.2, 5.5-9.9, 6.6-11.9, 6.1-13.5 and 6.6-13.5 mm respectively. Additive manufacturing was utilized to fabricate these five types of aspheric lenses (APLs) via sequential layering of PDMS materials. Complex structures with three-dimensional features and shorter focal lengths can be successfully produced by repeatedly depositing, inverting and curing controlled PDMS volume onto previously cured PDMS droplets. From our experiments, we empirically found a direct dependence of the focal length of the lenses with the amount (volume) of deposited PDMS droplets. This new mouldless, low-cost, and flexible lens fabrication method is able to transform an ordinary commercial smartphone camera into a low-cost portable microscope. A few microscopic features can be readily visualized, such as wrinkles of ladybird pupa and printed circuit board. The fabrication technique by successively applying hanging droplet and facile mechanical focal-length-tuning set-up can be easily adopted in the development of high-performance optical lenses.

  4. Facile way in fabricating a cotton fabric membrane for switchable oil/water separation and water purification

    NASA Astrophysics Data System (ADS)

    Li, Yubin; Feng, Ziliang; He, Yi; Fan, Yi; Ma, Jing; Yin, Xiangying

    2018-05-01

    With dopamine and NiFe2O4 particles, a novel modified cotton fabric (PDA-NiFe2O4@CF) was prepared by one-pot method. Surface morphology, composition of the PDA-NiFe2O4@CF were investigated with SEM, EDX, XRD and FT-IR, respectively. According to the results, the cotton fiber surface was well coated with NiFe2O4 particles. Subsequently, wetting behavior of the modified cotton fabric was determined. The PDA-NiFe2O4@CF is superamphiphilic in air, and a dual lyophobic behavior was indicated with an oil contact angle (OCA) of 153° under water and a water contact angle (WCA) of 145° under oil. The rough micro-nano scale surface structure and high-surface-energy compositions of the PDA-NiFe2O4@CF makes the surface to be easily covered by one medium and enables it to repel other unmixable medium simultaneously. Therefore, water-oil mixtures can be separated on demand. Besides, with the unusual dual lyophobic surface of PDA-NiFe2O4@CF, both two types of emulsions were separated by gravity driven. On the other hand, it was also found that the as-prepared PDA-NiFe2O4@CF had good adsorption performance for methylene blue.

  5. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance

    NASA Astrophysics Data System (ADS)

    Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi

    2016-03-01

    Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm-2 & 19.1 Wh Kg-1 and 194 mF cm-2 & 4.5 Wh Kg-1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm-2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices.

  6. A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition

    NASA Astrophysics Data System (ADS)

    Seth, Sudipta; Samanta, Anunay

    2016-11-01

    A facile and highly reproducible room temperature, open atmosphere synthesis of cesium lead halide perovskite nanocrystals of six different morphologies is reported just by varying the solvent, ligand and reaction time. Sequential evolution of the quantum dots, nanoplates and nanobars in one medium and nanocubes, nanorods and nanowires in another medium is demonstrated. These perovskite nanoparticles are shown to be of excellent crystalline quality with high fluorescence quantum yield. A mechanism of the formation of nanoparticles of different shapes and sizes is proposed. Considering the key role of morphology in nanotechnology, this simple method of fabrication of a wide range of high quality nanocrystals of different shapes and sizes of all-inorganic lead halide perovskites, whose potential is already demonstrated in light emitting and photovoltaic applications, is likely to help widening the scope and utility of these materials in optoelectronic devices.

  7. Numerical analysis of the beam position monitor pickup for the Iranian light source facility

    NASA Astrophysics Data System (ADS)

    Shafiee, M.; Feghhi, S. A. H.; Rahighi, J.

    2017-03-01

    In this paper, we describe the design of a button type Beam Position Monitor (BPM) for the low emittance storage ring of the Iranian Light Source Facility (ILSF). First, we calculate sensitivities, induced power and intrinsic resolution based on solving Laplace equation numerically by finite element method (FEM), in order to find the potential at each point of BPM's electrode surface. After the optimization of the designed BPM, trapped high order modes (HOM), wakefield and thermal loss effects are calculated. Finally, after fabrication of BPM, it is experimentally tested by using a test-stand. The results depict that the designed BPM has a linear response in the area of 2×4 mm2 inside the beam pipe and the sensitivity of 0.080 and 0.087 mm-1 in horizontal and vertical directions. Experimental results also depict that they are in a good agreement with numerical analysis.

  8. Facile Preparation of Porous WO3 Film for Photoelectrochemical Splitting of Natural Seawater

    NASA Astrophysics Data System (ADS)

    Shi, Yonghong; Li, Yuangang; Wei, Xiaoliang; Feng, Juan; Li, Huajing; Zhou, Wanyi

    2017-12-01

    Sunlight-driven natural seawater splitting provides a promising way for large-scale conversion and storage of solar energy. Here, we develop a facile and low-cost method via a deposition-annealing technique to fabricate porous WO3 film and demonstrate its application as a photoanode for natural seawater splitting. The WO3 film yields a photocurrent density of 1.95 mA cm-2 and possesses excellent stability at 1.23 V (versus RHE), under the illumination of 100 mW cm-2 (AM 1.5G). The photoelectrochemical performance is ascribed to the large surface area and good permeation of the electrolyte into the porous film. Furthermore, the photocurrent density remains almost the same during 3 h continuous light irradiation. The evolution of chlorine gas from seawater splitting was determined with qualitative and quantitative analyses, with a Faradic efficiency of about 56%.

  9. Facile fabrication of high-quality Ag/PS coaxial nanocables based on the mixed mode of soft/hard templates

    NASA Astrophysics Data System (ADS)

    Wan, Mimi; Zhao, Wenbo; Peng, Fang; Wang, Qi; Xu, Ping; Mao, Chun; Shen, Jian

    2016-08-01

    A new kind of high-quality Ag/PS coaxial nanocables can be facilely synthesized by using soft/hard templates method. In order to effectively introduce Ag sources into porous polystyrene (PS) nanotubes which were trapped in porous anodic aluminum oxide (AAO) hard template, Pluronic F127 (F127) was used as guiding agent, soft template and reductant. Meanwhile, ethylene glycol solution was also used as solvent and co-reducing agent to assist in the formation of silver nanowires. The influences of concentration of F127 and reducing reaction time on the formation of Ag/PS coaxial nanocables were discussed. Results indicated that the high-quality Ag/PS coaxial nanocables can be obtained by the mixed mode of soft/hard templates under optimized conditions. This strategy is expected to be extended to design more metal/polymer coaxial nanocables for the benefit of creation of complex and functional nanoarchitectures and components.

  10. Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation

    DOE PAGES

    Reynolds, Hannah; Baxamusa, Salmaan; Haan, Steven W.; ...

    2016-02-24

    Recent simulations predict surface oxygen may be a significant source of disruptive perturbations in the implosion process of glow-discharge polymers (GDP) ablators at the National Ignition Facility. GDP material held in ambient atmospheric conditions showed an increase in mass when stored in light transparent containers, which suggests that photo exposure is a driving force for oxygen absorption. To investigate if surface oxygen is a contributing factor of disruptive perturbations during implosion, we developed a method to imprint a periodic micropattern of oxygen on the surface of GDP and used it to fabricate a flat sample for empirical testing.

  11. Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Zou, Ping; Cao, Jian; Sun, Yunfei; Han, Donglai; Yang, Shuo; Chen, Gang; Kong, Xiangwang; Yang, Jinghai

    2014-12-01

    The Fe3O4@SiO2 core-shell nanoparticles (NPs) had been successfully fabricated via direct decomposition of tetraethyl orthosilicate (TEOS) in solution under the presence of as-synthesized Fe3O4 NPs prepared by chemical coprecipitation method. The structure and magnetic properties of Fe3O4@SiO2 NPs were characterized and the result indicated that Fe3O4@SiO2 NPs are about 12 nm in size with paramagnetic property. The possible growth and magnetic mechanism was discussed in detail.

  12. Dental laboratory communication regarding removable dental prosthesis design in the UAE.

    PubMed

    Haj-Ali, Reem; Al Quran, Firas; Adel, Omar

    2012-07-01

    The purpose of this study was to determine the methods dental practitioners in the United Arab Emirates (UAE) use to communicate cast removable dental prosthesis (RDP) design to dental laboratories; identify common practices taken by dentists/dental technicians prior to fabrication of RDP framework; and seek out dental technicians' attitudes toward their role in RDP design decisions. All dental laboratories (n = 28) listed in a local telephone directory were invited to complete a questionnaire through a face-to-face interview. They were also requested to examine RDP cases fabricated in the past 2 months and identify steps taken by dentists/dental technicians prior to fabrication of the framework. Descriptive statistics were used to report frequencies and percentages. Twenty-one (75%) dental laboratories agreed to participate, out of which 19 had the facilities to fabricate chrome-cobalt RDPs. Cast RDPs comprised approximately 4.04% (±2.67) of services provided. A reported 84.2% of dentists frequently communicate through generic lab script, with 89.5% rarely/never giving details regarding RDP design. While 52.6% of labs agree/strongly agree that it is the dentist's responsibility to decide the final RDP design, 94.7% agree/strongly agree that dentists should depend on dental technicians for design-making decisions. A total of 19 RDP cases were reviewed. All 19 were surveyed and designed by dental technicians but received dentist approval of design prior to fabrication. Thirteen (68.4%) had rest-seat preparations done by dentists after approval, and new impressions sent to the lab. No other tooth modifications were noted. The responsibility of RDP design appeared to be largely delegated to dental technicians. Importance of tooth modifications seemed to be undervalued and not completed prior to framework fabrication. © 2012 by the American College of Prosthodontists.

  13. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  14. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  15. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  16. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  17. 14 CFR 23.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 23.605 Section 23.605... Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a... fabrication method must be substantiated by a test program. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR...

  18. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  19. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  20. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  1. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  2. 14 CFR 29.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 29.605 Section 29.605... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process...

  3. A comparative study of spin coated and floating film transfer method coated poly (3-hexylthiophene)/poly (3-hexylthiophene)-nanofibers based field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Shashi; Balasubramanian, S. K.; Takashima, Wataru

    2014-09-07

    A comparative study on electrical performance, optical properties, and surface morphology of poly(3-hexylthiophene) (P3HT) and P3HT-nanofibers based “normally on” type p-channel field effect transistors (FETs), fabricated by two different coating techniques has been reported here. Nanofibers are prepared in the laboratory with the approach of self-assembly of P3HT molecules into nanofibers in an appropriate solvent. P3HT (0.3 wt. %) and P3HT-nanofibers (∼0.25 wt. %) are used as semiconductor transport materials for deposition over FETs channel through spin coating as well as through our recently developed floating film transfer method (FTM). FETs fabricated using FTM show superior performance compared to spin coated devices;more » however, the mobility of FTM films based FETs is comparable to the mobility of spin coated one. The devices based on P3HT-nanofibers (using both the techniques) show much better performance in comparison to P3HT FETs. The best performance among all the fabricated organic field effect transistors are observed for FTM coated P3HT-nanofibers FETs. This improved performance of nanofiber-FETs is due to ordering of fibers and also due to the fact that fibers offer excellent charge transport facility because of point to point transmission. The optical properties and structural morphologies (P3HT and P3HT-nanofibers) are studied using UV-visible absorption spectrophotometer and atomic force microscopy , respectively. Coating techniques and effect of fiber formation for organic conductors give information for fabrication of organic devices with improved performance.« less

  4. All About MOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-07-29

    In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  5. Sandia QIS Capabilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Richard P.

    2017-07-01

    Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.

  6. All About MOX

    ScienceCinema

    None

    2018-01-16

    In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  7. Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method

    PubMed Central

    Dang, Baokang; Chen, Yipeng; Shen, Xiaoping; Chen, Bo; Sun, Qingfeng; Jin, Chunde

    2017-01-01

    A polyethylene/wood-fiber composite loaded with nano-ZnO was prepared by a facile hot-press method and was used for the photocatalytic degradation of organic compounds as well as for microwave absorption. ZnO nanoparticles with an average size of 29 nm and polyethylene (PE) powders were dispersed on the wood fibers’ surface through a viscous cationic polyacrylamide (CPAM) solution. The reflection loss (RL) value of the resulting composite was −21 dB, with a thickness of 3.5 mm in the frequency of 17.17 GHz. The PE/ZnO/wood-fiber (PZW) composite exhibited superior photocatalytic activity (84% methyl orange degradation within 300 min) under UV light irradiation. ZnO nanoparticels (NPs) increased the storage modulus of the PZW composite, and the damping factor was transferred to the higher temperature region. The PZW composite exhibited the maximum flexural strength of 58 MPa and a modulus of elasticity (MOE) of 9625 MPa. Meanwhile, it also displayed dimensional stability (thickness swelling value of 9%). PMID:29099777

  8. A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property.

    PubMed

    Li, Hui; Yang, Jin; Li, Pan; Lan, Tianqing; Peng, Lincai

    2017-03-15

    We proposed a green and facile method to fabricate superhydrophobic paper in this study, which is layer-by-layer (LBL) deposition of TiO 2 nanoparticles/sodium alginate (ALG) multilayers on paper surface followed by an adsorption treatment of colloidal carnauba wax. The formation of TiO 2 /ALG multilayers on paper surface was characterized by X-ray photoelectron spectroscopy (XPS), zeta potential measurement, scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. The wetting property of modified paper was investigated by water contact angle (WCA) measurement. Moreover, the modified paper tensile strength has been evaluated. The results showed that WCA of paper modified with a wax-treated (TiO 2 /ALG) 3.5 multilayer reached up to 151.5°, and this obtained superhydrophobic paper exhibited improved tensile strength (increased by 4.1% compared to the pristine paper), excellent moisture-proofing property and high strength stability under high relative humidity condition, which might has a great potential for use in the liquid paper packaging and moisture-proof paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Grouped and Multistep Nanoheteroepitaxy: Toward High-Quality GaN on Quasi-Periodic Nano-Mask.

    PubMed

    Feng, Xiaohui; Yu, Tongjun; Wei, Yang; Ji, Cheng; Cheng, Yutian; Zong, Hua; Wang, Kun; Yang, Zhijian; Kang, Xiangning; Zhang, Guoyi; Fan, Shoushan

    2016-07-20

    A novel nanoheteroepitaxy method, namely, the grouped and multistep nanoheteroepitaxy (GM-NHE), is proposed to attain a high-quality gallium nitride (GaN) epilayer by metal-organic vapor phase epitaxy. This method combines the effects of sub-100 nm nucleation and multistep lateral growth by using a low-cost but unique carbon nanotube mask, which consists of nanoscale growth windows with a quasi-periodic 2D fill factor. It is found that GM-NHE can facilely reduce threading dislocation density (TDD) and modulate residual stress on foreign substrate without any regrowth. As a result, high-quality GaN epilayer is produced with homogeneously low TDD of 4.51 × 10(7) cm(-2) and 2D-modulated stress, and the performance of the subsequent 410 nm near-ultraviolet light-emitting diode is greatly boosted. In this way, with the facile fabrication of nanomask and the one-off epitaxy procedure, GaN epilayer is prominently improved with the assistance of nanotechnology, which demonstrates great application potential for high-efficiency TDD-sensitive optoelectronic and electronic devices.

  10. Gold Nanoparticle-Based Facile Detection of Human Serum Albumin and Its Application as an INHIBIT Logic Gate.

    PubMed

    Huang, Zhenzhen; Wang, Haonan; Yang, Wensheng

    2015-05-06

    In this work, a facile colorimetric method is developed for quantitative detection of human serum albumin (HSA) based on the antiaggregation effect of gold nanoparticles (Au NPs) in the presence of HSA. The citrate-capped Au NPs undergo a color change from red to blue when melamine is added as a cross-linker to induce the aggregation of the NPs. Such an aggregation is efficiently suppressed upon the adsorption of HSA on the particle surface. This method provides the advantages of simplicity and cost-efficiency for quantitative detection of HSA with a detection limit of ∼1.4 nM by monitoring the colorimetric changes of the Au NPs with UV-vis spectroscopy. In addition, this approach shows good selectivity for HSA over various amino acids, peptides, and proteins and is qualified for detection of HSA in a biological sample. Such an antiaggregation effect can be further extended to fabricate an INHIBIT logic gate by using HSA and melamine as inputs and the color changes of Au NPs as outputs, which may have application potentials in point-of-care medical diagnosis.

  11. A facile approach to fabricate flexible all-solid-state supercapacitors based on MnFe2O4/graphene hybrids

    NASA Astrophysics Data System (ADS)

    Cai, Weihua; Lai, Ting; Dai, Wanlin; Ye, Jianshan

    2014-06-01

    A critical challenge for the construction of flexible electrochemical capacitors is the preparation of flexible electrodes with large specific capacitance and robust mechanical strength. Here, we demonstrate a facile approach to make high performance and flexible electrodes by dropping MnFe2O4/graphene hybrid inks onto flexible graphite sheets (as current collectors and substrates) and drying under an infrared lamp. MnFe2O4/graphene hybrid inks are synthesized by immobilizing the MnFe2O4 microspheres on the graphene nanosheets via a simple solvothermal route. Electrochemical studies show that MnFe2O4/graphene exhibits a high capacitance of 300 F g-1 at a current density of 0.3 A g-1. In addition, the excellent electrochemical performance of a supercapacitor consisting of a sandwich structure of two pieces of MnFe2O4/graphene hybrids modified electrodes separated by polyvinyl alcohol (PVA)-H2SO4 gel electrolyte is further explored. Our studies reveal that the flexible supercapacitor device with 227 μm thickness can achieve a maximum specific capacitance of 120 F g-1 at a current density of 0.1 A g-1 and excellent cycle performance retaining 105% capacitance after 5000 cycles. This research may offer a method for the fabrication of lightweight, stable, flexible and high performance energy storage devices.

  12. Ames Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.

  13. Role of tool marks inside spherical mitigation pit fabricated by micro-milling on repairing quality of damaged KH2PO4 crystal

    PubMed Central

    Chen, Ming-Jun; Cheng, Jian; Yuan, Xiao-Dong; Liao, Wei; Wang, Hai-Jun; Wang, Jing-He; Xiao, Yong; Li, Ming-Quan

    2015-01-01

    Repairing initial slight damage site into stable structures by engineering techniques is the leading strategy to mitigate the damage growth on large-size components used in laser-driven fusion facilities. For KH2PO4 crystals, serving as frequency converter and optoelectronic switch-Pockels cell, micro-milling has been proven the most promising method to fabricate these stable structures. However, tool marks inside repairing pit would be unavoidably introduced due to the wearing of milling cutter in actual repairing process. Here we quantitatively investigate the effect of tool marks on repairing quality of damaged crystal components by simulating its induced light intensification and testing the laser-induced damage threshold. We found that due to the formation of focusing hot spots and interference ripples, the light intensity is strongly enhanced with the presence of tool marks, especially for those on rear surfaces. Besides, the negative effect of tool marks is mark density dependent and multiple tool marks would aggravate the light intensification. Laser damage tests verified the role of tool marks as weak points, reducing the repairing quality. This work offers new criterion to comprehensively evaluate the quality of repaired optical surfaces to alleviate the bottleneck issue of low laser damage threshold for optical components in laser-driven fusion facilities. PMID:26399624

  14. Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.

    PubMed

    Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

    2014-06-01

    Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Novel ternary g-C3N4/Ag3VO4/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications

    NASA Astrophysics Data System (ADS)

    Barzegar, Javid; Habibi-Yangjeh, Aziz; Akhundi, Anise; Vadivel, S.

    2018-04-01

    Novel visible-light-induced photocatalysts were fabricated by integration of Ag3VO4 and AgBr semiconductors with graphitic carbon nitride (g-C3N4) through a facile refluxing method. The fabricated photocatalysts were extensively characterized by XRD, EDX, SEM, TEM, FT-IR, UV-vis DRS, BET, TGA, and PL instruments. The photocatalytic performance of these samples was studied by degradations of three dye contaminants under visible-light exposure. Among the ternary photocatalysts, the g-C3N4/Ag3VO4/AgBr (10%) nanocomposite displayed the maximum activity for RhB degradation with rate constant of 1366.6 × 10-4 min-1, which is 116, 7.23, and 38.5 times as high as those of the g-C3N4, g-C3N4/AgBr (10%), and g-C3N4/Ag3VO4 (30%) photocatalysts, respectively. The effects of synthesis time and calcination temperature were also investigated and discussed. Furthermore, according to the trapping experiments, it was found that superoxide anion radicals were the predominant reactive species in this system. Finally, the ternary photocatalyst displayed superlative activity in removal of the contaminants under visible-light exposure, displaying great potential of this ternary photocatalyst for environmental remediation, because of a facile synthesis route and outstanding photocatalytic performance.

  16. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  17. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

  18. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  19. 14 CFR 27.605 - Fabrication methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fabrication methods. 27.605 Section 27.605... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.605 Fabrication methods. (a) The methods of fabrication used must produce consistently sound structures. If a fabrication process (such as...

  20. 14 CFR 25.605 - Fabrication methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fabrication methods. 25.605 Section 25.605... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction General § 25.605 Fabrication methods. (a) The methods of fabrication used must produce a consistently sound structure. If a fabrication process...

Top