One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this...
One-Pot Synthesis of Fused Pyrroles via a Key Gold Catalysis-Triggered Cascade
Zheng, Zhitong; Tu, Huangfei
2014-01-01
A two-step, one-pot synthesis of fused pyrroles is realized by firstly condensing N-alkynylhydroxammonium salt with readily enolizable ketone under mild basic condition and then subjecting the reaction mixture to a gold catalyst, which triggers a cascade reaction featured by a facile initial 3.3-sigmatropic rearrangement of the gold catalysis product, i.e., an N,O-dialkenylhydroxamine. The reaction provides a facile access to polycyclic pyrroles in moderate to good yields. PMID:24482098
Sun, Xiuyun; Sun, Yonghui; Zhang, Chao; Rao, Yu
2014-02-07
A room-temperature Pd(II)-catalyzed regioselective chlorination reaction has been developed for a facile one-pot synthesis of a broad range of 2-chlorophenols. The reaction demonstrates an excellent regioselectivity and reactivity for C-H chlorination. This reaction represents one of the rare examples of mild C-H functionalization at ambient temperature.
Baig, R B Nasir; Varma, Rajender S
2012-06-25
One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involves the in situ generation of magnetic silica (Fe(3)O(4)@SiO(2)) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this catalyst which proceeds exclusively in aqueous medium under neutral conditions.
TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM
A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...
Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis
NASA Astrophysics Data System (ADS)
Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon
2016-08-01
Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.
Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis
Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon
2016-01-01
Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340
Shahrisa, Aziz; Teimuri-Mofrad, Reza; Gholamhosseini-Nazari, Mahdi
2015-02-01
A variety of organocatalysts has been screened for the synthesis of arylaminonaphthols. It has been shown that (N,N-dimethylethanolamine) is a highly efficient organocatalyst for the direct synthesis of a novel class of arylaminonaphthols via three-component condensation of 2-naphthol, aldehydes, and arylamines under solvent-free conditions. Mild, one-pot, and green reaction conditions, relatively short reaction times and good yields make this protocol highly significant. 25 new compounds have been synthesized by this method.
A facile one-pot high-yield protocol is described for the preparation of β- and γ-hydroxy sulfides directly from diaryliodonium salts, potassium thiocyanate, and ethane-1,2-diol (ethylene glycol)/propane-1,3-diol (β-propylene glycol) without the need for any addit...
A facile one-pot high-yield protocol is described for the preparation of β- and γ-hydroxy sulfides directly from diaryliodonium salts, potassium thiocyanate, and ethane-1,2-diol (ethylene glycol)/propane-1,3-diol (β-propylene glycol) without the need for any additional catalyst o...
Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.
Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng
2016-08-19
Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ghandi, Mehdi; Salahi, Saleh; Taheri, Abuzar; Abbasi, Alireza
2018-05-01
A facile one-pot method has been developed for the synthesis of novel pyrrolo[2,1-a]pyrazine scaffolds. A variety of 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives were obtained in moderate to high yields in methanol using a one-pot four-component condensation of 1-(2-bromoethyl)-1H-pyrrole-2-carbaldehyde, amine, isocyanide and sodium azide at room temperature. These reactions presumably proceed via a domino imine formation, intramolecular annulation and Ugi-azide reaction. Unambiguous assignment of the molecular structures was carried out by single-crystal X-ray diffraction.
Chen, Fengxia; Ren, Junkai; He, Qian; Liu, Jun; Song, Rui
2017-07-01
A facile, environment-friendly and one-pot synthesis method for the preparation of high performance PtRu electrocatalysts on the multiwalled carbon nanotubes (MWCNTs) is reported. Herein, bimetallic PtRu electrocatalysts are deposited onto polydopamine (Pdop) - functionalized MWCNTs by mildly stirring at room temperature. Without the use of expensive chemicals or corrosive acids, this noncovalent functionalization of MWCNTs by Pdop is simple, facile and eco-friendly, and thus preserving the integrity and electronic structure of MWCNTs. Due to the well improved dispersion and the decreased size of alloy nanoparticles, the PtRu electrocatalysts on Pdop-functionalized MWCNTs show much better dispersion, higher electrochemically active surface area, and higher electrocatalytic activity for the electrooxidation of methanol in direct methanol fuel cells, compared with the conventional acid-treated MWCNTs. Copyright © 2017 Elsevier Inc. All rights reserved.
Teimouri, Mohammad Bagher; Bazhrang, Reihaneh
2006-07-15
A simple and efficient synthesis of 1,4-bis(furo[2,3-d]pyrimidine-2,4(1H,3H)-dione-5-yl)benzene derivatives was achieved via a one-pot three-component reaction of isocyanides, N,N'-dimethylbarbituric acid, and terephthaldialdehyde in DMF at room temperature for 30 min. These improved reaction conditions allow the preparation of highly substituted furopyrimidinones in high yields and purity under mild reaction conditions.
Facile rhenium-peptide conjugate synthesis using a one-pot derived Re(CO)3 reagent.
Chanawanno, Kullapa; Kondeti, Vinay; Caporoso, Joel; Paruchuri, Sailaja; Leeper, Thomas C; Herrick, Richard S; Ziegler, Christopher J
2016-03-21
We have synthesized two Re(CO)3-modified lysine complexes (1 and 2), where the metal is attached to the amino acid at the Nε position, via a one-pot Schiff base formation reaction. These compounds can be used in the solid phase synthesis of peptides, and to date we have produced four conjugate systems incorporating neurotensin, bombesin, leutenizing hormone releasing hormone, and a nuclear localization sequence. We observed uptake into human umbilical vascular endothelial cells as well as differential uptake depending on peptide sequence identity, as characterized by fluorescence and rhenium elemental analysis.
Min, Ke; Gao, Haifeng
2012-09-26
A facile approach is presented for successful synthesis of hyperbranched polymers with high molecular weight and uniform structure by a one-pot polymerization of an inimer in a microemulsion. The segregated space in the microemulsion confined the inimer polymerization and particularly the polymer-polymer reaction within discrete nanoparticles. At the end of polymerization, each nanoparticle contained one hyperbranched polymer that had thousands of inimer units and low polydispersity. The hyperbranched polymers were used as multifunctional macroinitiators for synthesis of "hyper-star" polymers. When a degradable inimer was applied, the hyper-stars showed fast degradation into linear polymer chains with low molecular weight.
Saikia, Pallabi; Gogoi, Shyamalee; Gogoi, Sanjib; Boruah, Romesh C
2014-10-01
A facile strategy for the synthesis of steroidal A- and D-ring fused pyrimidines has been accomplished in high yields via a one-pot reaction of steroidal ketones, aromatic aldehydes and amidine derivatives in presence of potassium tert-butoxide in refluxing ethanol. The generality of the reaction was also extended to non-steroidal ketones. Copyright © 2014 Elsevier Inc. All rights reserved.
Shanmugaraju, Sankarasekaran; McAdams, Deirdre; Pancotti, Francesca; Hawes, Chris S; Veale, Emma B; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur
2017-09-13
We report here a novel one-pot synthetic strategy for the synthesis of a family of N-alkyl-1,8-naphthalimide based Tröger's bases via a nucleophilic substitution reaction of a common 'precursor' (or a 'synthon') N-aryl-1,8-naphthalimide Tröger's base heated at 80 °C in neat aliphatic primary amine, in overall yield of 65-96%. This methodology provides an efficient and one-step facile route to design 1,8-naphthalimide derived Tröger's base structures in analytically pure form without the use of column chromatography purification, that can be used in medicinal chemistry and as supramolecular scaffolds. We also report the formation of the corresponding anhydride, and the crystallographic analysis of two of the resulting products, that of the N-phenyl-4-amino-1,8-naphthalimide and the anhydride derived Tröger's bases.
Yu, Mengqun; Zhu, Zheguo; Wang, Hong; Li, Linyao; Fu, Fei; Song, Yang; Song, Erqun
2017-05-15
In this paper, the cheap, easily obtained small antibiotic molecule of vancomycin was employed as reducer/stabilizer for facile one-pot synthesis of water exhibited a bluish fluorescence emission at 410nm within a short synthesis time about 50min. Based on the strong fluorescence quenching due to electron transfer mechanism by the introduction of ferric ions(Fe 3+ ), the Van-AuNCs were interestingly designed for sensitive and selective detecting Fe 3+ with a limit of 1.4μmol L -1 in the linear range of 2-100μmol L -1 within 20min. The Van-AuNCs based method was successfully applied to determine Fe 3+ in tap water, lake water, river water and sea water samples with the quantitative spike recoveries from 97.50-111.14% with low relative standard deviations ranging from 0.49-1.87%, indicating the potential application of this Van-AuNCs based fluorescent sensor for environmental sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.
Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine
2011-07-11
Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.
One-pot tandem Ugi-4CR/S(N)Ar approach to highly functionalized quino[2,3-b][1,5]benzoxazepines.
Ghandi, Mehdi; Zarezadeh, Nahid; Abbasi, Alireza
2016-05-01
We have developed a convenient and facile method for the synthesis of functionalized diverse quino[2,3-b][1,5]benzoxazepines. These new compounds were synthesized through a one-pot sequential Ugi-4CR/base-free intramolecular aromatic nucleophilic substitution (S(N)Ar) reaction in moderate to good yields from readily available starting materials. Structural confirmation of the products is confirmed by analytical data and X-ray crystallography.
Facile one-pot synthesis and characterization of nickel supported on hierarchically porous carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotbagi, Trupti V.; Hakat, Yasemin; Bakker, Martin G., E-mail: Bakker@ua.edu
2016-01-15
Highlights: • Novel, inexpensive, one-pot, synthesis method for Ni on hierarchically porous carbon. • Disappearance of surfactant mesopores seen with incorporation of nickel. • Distribution of Ni nanoparticles on the hierarchically porous carbon support was studied by SEM. • Nickel nanoparticles were dispersed on macropore walls and not within carbon. - Abstract: Described is a novel, facile route for the synthesis of nickel supported on hierarchically porous carbon (Ni/HPC) using a one-pot co-gelation sol–gel method. Ni/HPC with varying nickel loadings (0.5, 1, 2.5 and 5 wt% Ni) were synthesized and the materials characterized by nitrogen physisorption, X-ray diffraction (XRD), scanningmore » electron microscopy (SEM), and Fourier transform infrared (FTIR) and Raman spectroscopies. The results show a three-dimensional network of disordered carbon with fine nickel nanoparticles of sizes ranging from 8 nm to 13 nm at 0.5 wt% Ni loading which gradually increased with increase in the Ni loading. The carbon structure was retained at the macropore level, but not at the mesoscale where the ordered mesopores were lost on nickel addition. The nickel nanoparticles were observed to grow on the surface of the ligaments. This may make them particularly suitable for low pressure Ni-catalyzed organic transformations e.g., hydrogenations, C–C coupling, C-heteroatom coupling, etc.« less
NASA Astrophysics Data System (ADS)
Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju
2015-08-01
In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.
2013-01-01
Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176
Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu
2014-08-13
In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.
One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology.
Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Liberti, Emanuela; Allen, Christopher S; Kirkland, Angus I; Bruce, Peter G
2016-12-14
Lithium-rich transition metal oxides, Li 1+x TM 1-x O 2 (TM, transition metal), have attracted much attention as potential candidate cathode materials for next generation lithium ion batteries because their high theoretical capacity. Here we present the synthesis of Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 using a facile one-pot resorcinol-formaldehyde method. Structural characterization indicates that the material adopts a hierarchical porous morphology consisting of uniformly distributed small pores and disordered large pore structures. The material exhibits excellent electrochemical cycling stability and a good retention of capacity at high rates. The material has been shown to be both advantageous in terms of gravimetric and volumetric capacities over state of the art commercial cathode materials.
Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing
2016-02-01
Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.
Pot economy and one-pot synthesis.
Hayashi, Yujiro
2016-02-01
The one-pot synthesis of a target molecule in the same reaction vessel is widely considered to be an efficient approach in synthetic organic chemistry. In this review, the characteristics and limitations of various one-pot syntheses of biologically active molecules are explained, primarily involving organocatalytic methods as key tactics. Besides catalysis, the pot-economy concepts presented herein are also applicable to organometallic and organic reaction methods in general.
NASA Astrophysics Data System (ADS)
Muthu, K. Sudalai; Lakshminarasimhan, N.; Perumal, P.
2017-10-01
A facile, one-pot synthesis of nanocomposite of LaFeO3-NiFe2O4 was demonstrated by using egg-white method. The same method was adopted to synthesize the individual component oxide nanoparticles of LaFeO3 (LFO) and NiFe2O4 (NFO). The phase formation of individual components and the nanocomposite was confirmed using powder X-Ray diffraction (XRD) technique. The measured room temperature magnetic properties of LFO, NFO and LFO-NFO nanoparticles revealed an enhancement in the properties of the nanocomposite. The dielectric behaviours of LFO, NFO and LFO-NFO pellets sintered at different temperatures such as 800, 900 and 1000 °C were investigated and correlated with the microstructures.
Self-templating synthesis of hollow spheres of MOFs and their derived nanostructures.
Chuan Tan, Ying; Chun Zeng, Hua
2016-10-04
An aqueous one-pot self-templating synthesis method to prepare highly uniform ZIF-67 hollow spheres (ZIF-67-HS) and their transition metal-doped derivatives (M/ZIF-67-HS, M = Cu and/or Zn) was developed. Extension of this approach to another important class of MOFs (metal carboxylates; e.g., HKUST-1) and facile design of derived nanostructures with complex architectures were also achieved.
A FACILE ONE-POT SYNTHESIS OF β-KETO SULFONES FROM KETONES UNDER SOLVENT-FREE CONDITIONS
An easy solvent-free method is described for the conversion of ketones into β-keto sulfones in high yields that involves in situ generation of α-tosyloxyketones followed by nucleophilic substitution with sodium arene sulfinate in presence of tetra-butylammonium bromide at ...
A facile and regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles using click chemistry
The reaction of α-tosyloxy ketones, sodium azide and terminal alkynes in presence of copper(I) in aqueous polyethylene glycol afforded regioselectively 1,4-disubstituted 1,2,3-triazoles in good yield at ambient temperature. The one-pot exclusive formation of 1,4-disubstituted 1,2...
Park, Beomjin; Park, Jaesung; Son, Jin Gyeong; Kim, Yong-Jin; Yu, Seong Uk; Park, Hyo Ju; Chae, Dong-Hun; Byun, Jinseok; Jeon, Gumhye; Huh, Sung; Lee, Seoung-Ki; Mishchenko, Artem; Hyun, Seung; Lee, Tae Geol; Han, Sang Woo; Ahn, Jong-Hyun; Lee, Zonghoon; Hwang, Chanyong; Novoselov, Konstantin S; Kim, Kwang S; Hong, Byung Hee; Kim, Jin Kon
2015-08-25
Precise graphene patterning is of critical importance for tailor-made and sophisticated two-dimensional nanoelectronic and optical devices. However, graphene-based heterostructures have been grown by delicate multistep chemical vapor deposition methods, limiting preparation of versatile heterostructures. Here, we report one-pot synthesis of graphene/amorphous carbon (a-C) heterostructures from a solid source of polystyrene via selective photo-cross-linking process. Graphene is successfully grown from neat polystyrene regions, while patterned cross-linked polystyrene regions turn into a-C because of a large difference in their thermal stability. Since the electrical resistance of a-C is at least 2 orders of magnitude higher than that for graphene, the charge transport in graphene/a-C heterostructure occurs through the graphene region. Measurement of the quantum Hall effect in graphene/a-C lateral heterostructures clearly confirms the reliable quality of graphene and well-defined graphene/a-C interface. The direct synthesis of patterned graphene from polymer pattern could be further exploited to prepare versatile heterostructures.
Shim, Hyun-Woo; Lim, Ah-Hyeon; Kim, Jae-Chan; Jang, Eunjin; Seo, Seung-Deok; Lee, Gwang-Hee; Kim, T. Doohun; Kim, Dong-Wan
2013-01-01
Template-driven strategy has been widely used to synthesize inorganic nano/micro materials. Here, we used a bottom-up controlled synthesis route to develop a powerful solution-based method of fabricating three-dimensional (3D), hierarchical, porous-Co3O4 superstructures that exhibit the morphology of flower-like microspheres (hereafter, RT-Co3O4). The gram-scale RT-Co3O4 was facilely prepared using one-pot synthesis with bacterial templating at room temperature. Large-surface-area RT-Co3O4 also has a noticeable pseudocapacitive performance because of its high mass loading per area (~10 mg cm−2), indicating a high capacitance of 214 F g−1 (2.04 F cm−2) at 2 A g−1 (19.02 mA cm−2), a Coulombic efficiency averaging over 95%, and an excellent cycling stability that shows a capacitance retention of about 95% after 4,000 cycles. PMID:23900049
A versatile platform for precise synthesis of asymmetric molecular brush in one shot.
Xu, Binbin; Feng, Chun; Huang, Xiaoyu
2017-08-24
Asymmetric molecular brushes emerge as a unique class of nanostructured polymers, while their versatile synthesis keeps a challenge for chemists. Here we show the synthesis of well-defined asymmetric molecular double-brushes comprising two different side chains linked to the same repeat unit along the backbone by one-pot concurrent atom transfer radical polymerization (ATRP) and Cu-catalyzed azide/alkyne cycloaddition (CuAAC) reaction. The double-brushes are based on a poly(Br-acrylate-alkyne) homopolymer possessing an alkynyl for CuAAC reaction and a 2-bromopropionate initiating group for ATRP in each repeat unit. The versatility of this one-shot approach is demonstrated by CuAAC reaction of alkynyl/poly(ethylene oxide)-N 3 and ATRP of various monomers. We also show the quantitative conversion of pentafluorophenyl ester groups to amide groups in side chains, allowing for the further fabrication of diverse building blocks. This work provides a versatile platform for facile synthesis of Janus-type double-brushes with structural and functional control, in a minimum number of reactions.Producing well-defined polymer compositions and structures facilitates their use in many different applications. Here the authors show the synthesis of well-defined asymmetric double-brushes by a one-pot concurrent atom transfer radical polymerization and Cu-catalyzed Click reaction.
One-pot synthesis of MnO2-chitin hybrids for effective removal of methylene blue.
Dassanayake, Rohan S; Rajakaruna, Erandathi; Moussa, Hanna; Abidi, Noureddine
2016-12-01
Manganese dioxide (MnO 2 )-chitin-hybrid material was prepared by a facile "one-pot" synthesis method. MnO 2 -chitin hybrid was used for the effective removal of methylene blue (MB) from liquid solution as model for wastewater treatment. The hybrid obtained was characterized by field emission scanning electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The effect of pH and temperature were studied. MnO 2 -chitin hybrid showed high performance for oxidative decolorization and removal of MB. Typically, 25mL of MB (20mg/L) can be completely decolorized in 2.5min with 8.5mg of the MnO 2 -chitin hybrid. The hybrid material exhibited excellent recyclability and durability with the degradation value of 99% for MB after ten consecutive cycles. Copyright © 2016 Elsevier B.V. All rights reserved.
Santra, Soumava; Andreana, Peter R
2011-04-01
A rapid, cascade reaction process has been developed to access biologically validated spiro-2,5-diketopiperazines. The facile and environmentally benign method capitalizes on commercially available starting reagents for a sequential Ugi/6-exo-trig aza-Michael reaction, water as a solvent, and microwave irradiation without any extraneous additives.
Ansari, Anam; Ali, Abad; Asif, Mohd; Rauf, Mohd Ahmar; Owais, Mohammad; Shamsuzzaman
2018-06-01
A series of steroidal oxazole and thiazole derivatives have been synthesized employing thiosemicarbazide/semicarbazide hydrochloride and ethyl 2-chloroacetoacetate with a simple and facile one-pot multicomponent reaction pathway. The antimicrobial activity of newly synthesized compounds were evaluated against four bacterial strains namely Gram-negative (Escherichia coliand Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) in addition to pathogenic fungi (Candida albicans and Cryptococcus neoformans). Bioactivity assay manifested that most of the compounds exhibited good antimicrobial activity. To provide additional insight into antimicrobial activity, the compounds were also tested for their antibiofilm activity against S. aureus biofilm. Moreover, molecular docking study shows binding of compounds with amino acid residues of DNA gyrase and glucosamine-6-phosphate synthase (promising antimicrobial target) through hydrogen bonding interactions. Hemolytic activity have been also investigated to ascertain the effect of compounds over RBC lysis and results indicate good prospects for biocompatibility. The expedient synthesis of steroidal heterocycles, effective antibacterial and antifungal behavior against various clinically relevant human pathogens, promising biocompatibility offer opportunities for further modification and potential applications as therapeutic agents. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei
2017-03-13
A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.
Molla, Mijanur R; Böser, Alexander; Rana, Akshita; Schwarz, Karina; Levkin, Pavel A
2018-04-18
Efficient delivery of nucleic acids into cells is of great interest in the field of cell biology and gene therapy. Despite a lot of research, transfection efficiency and structural diversity of gene-delivery vectors are still limited. A better understanding of the structure-function relationship of gene delivery vectors is also essential for the design of novel and intelligent delivery vectors, efficient in "difficult-to-transfect" cells and in vivo clinical applications. Most of the existing strategies for the synthesis of gene-delivery vectors require multiple steps and lengthy procedures. Here, we demonstrate a facile, three-component one-pot synthesis of a combinatorial library of 288 structurally diverse lipid-like molecules termed "lipidoids" via a thiolactone ring opening reaction. This strategy introduces the possibility to synthesize lipidoids with hydrophobic tails containing both unsaturated bonds and reducible disulfide groups. The whole synthesis and purification are convenient, extremely fast, and can be accomplished within a few hours. Screening of the produced lipidoids using HEK293T cells without addition of helper lipids resulted in identification of highly stable liposomes demonstrating ∼95% transfection efficiency with low toxicity.
Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol
2014-01-01
A facile one-pot approach for synthesis of gold nanoparticles with narrow size distribution and good stability was presented by reducing chloroauric acid with a polysaccharide, konjac glucomannan (KGM) in alkaline solution, which is green and economically viable. Here, KGM served both as reducing agent and stabilizer. The effects of KGM on the formation and stabilization of as-synthesized gold nanoparticles were studied systematically by a combination of UV-visible (UV-vis) absorption spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering, and Fourier transform infrared spectroscopy. Furthermore, the gold nanoparticles exhibited a notable catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol. PMID:25177220
Kamal, Ahmed; Tangella, Yellaiah; Manasa, Kesari Lakshmi; Sathish, Manda; Srinivasulu, Vunnam; Chetna, Jadala; Alarifi, Abdullah
2015-08-28
Iodobenzene diacetate was employed as a mild and efficient reagent for one-pot oxidative decarboxylation of tetrahydro-β-carboline acids and dehydrogenation of tetrahydro-β-carbolines to access the corresponding aromatic β-carbolines. To the best of our knowledge this is the first synthesis of β-carbolines via a one-pot oxidative decarboxylation at ambient temperature. The utility of this protocol has been demonstrated in the synthesis of β-carboline alkaloids norharmane (2o), harmane (2p), eudistomin U (9) and eudistomin I (12).
Steinle, Dominik; Friedrich, Laura; Bevilacqua, Nico; von Hauff, Elizabeth; Gschwind, Fabienne
2016-01-01
One of the problems that arise with bifluoride- or fluoride-containing compounds is their poor solubility in non-aqueous solvents. We report herein a facile one-pot synthesis and the chemical analysis of fluoride/bifluoride-containing polymers, which are soluble in MeCN. Different polymers, such as Polyvinylacetate or Polyethylene imine and saccharides, such as maltodextrin, were complexed with ammonium (bi)fluoride using hydrogen bonds to form the desired (bi)fluoride-containing compounds. The newly formed hydrogen bonding (bi)fluoride-doped polymer matrices were analyzed using infrared and nuclear magnetic resonance spectroscopies, and X-ray diffraction. The promising materials also underwent impedance spectroscopy, conductivity measurements and preliminary tests as electrolytes for room temperature fluoride ion batteries along with an analysis of their performance. PMID:28774092
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lin, Ting
2014-09-15
Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method via a redox reaction between NaClO{sub 3} and MnSO{sub 4} in sulfuric acid solution without using any surfactants or templates. The products were characterized in detail by various techniques including X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, surface area analyzer, field emission scanning electron microscopy and transmission electron microscopy. Results show that the obtained β-MnO{sub 2} nanopincers consist of two sharp nanorods with a diameter of 100–200 nm and a length of 1–2 μm. The concentration of H{sub 2}SO{sub 4} solution plays anmore » important role in controlling the crystal phase and morphology of the final product. A possible formation mechanism for the β-MnO{sub 2} nanopincers was proposed. Moreover, these β-MnO{sub 2} nanostructures exhibited better catalytic performance than the commercial MnO{sub 2} particles to decompose methyl blue (MB) in the presence of H{sub 2}O{sub 2}. - Graphical abstract: Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method through oxidizing MnSO{sub 4} with NaClO{sub 3} in H2SO{sub 4} condition without using any surfactants or templates. - Highlights: {sup •} Branched β-MnO{sub 2} nanopincers were prepared by a facile one-pot hydrothermal method. {sup •} Morphology and crystal phase of MnO{sub 2} were controlled by the H{sub 2}SO{sub 4} concentration. {sup •} A possible formation mechanism for the obtained β-MnO{sub 2} nanopincers was proposed. {sup •} The products showed great catalytic performance in degradation of methylene blue.« less
Sharma, Bhavana; Deswal, Renu
2018-04-04
A facile one-pot green synthesis of gold nanoparticles (AuNPs) with different geometries was achieved using an underutilized Himalayan bioresource Hippophae rhamnoides. Aqueous leaf (LE) and berry extracts (BE) showed rapid synthesis of monodispersed spherical LEAuNPs (27 ± 3.2 nm) and anisotropic BEAuNPs (55 ± 4.5 nm) within 2 and 15 min, respectively. The Fourier-transform infrared (FTIR) spectroscopy showed involvement of polyphenolics/flavonoids in AuNPs reduction. LE AuNPs (IC 50 49 µg) exhibited higher antioxidant potential than BE AuNPs (IC 50 57 µg). Both BE nanotriangles and LE nanospheres exhibited cytotoxicity against Jurkat cell lines. These nanocatalysts also exhibited effective (80-99%) reductive degradation of structurally different carcinogenic azo dyes. Kinetic studies revealed that BE nanotriangles exhibited higher catalytic efficiency (14-67%) than LE nanospheres suggesting shape-dependent regulation of biological activities. The gas chromatography-mass spectrometry (GC-MS) analysis confirmed conversion of toxic methyl orange dye to non-toxic intermediates. Probable degradation mechanism involving adsorption and catalytic reduction of azo bonds was proposed. The present synthesis protocol provided a facile and energy saving procedure for rapid synthesis of highly stable nanoparticles with significant antioxidant and anticancer potential. This is the first report of H. rhamnoides-mediated green synthesis of multipurpose AuNPs as antioxidant, anticancer and nanocatalytic agents for treatment of dye contaminated waste water and future therapeutic applications.
A Facile One-Pot Synthesis of Au/Cu2O Nanocomposites for Nonenzymatic Detection of Hydrogen Peroxide
NASA Astrophysics Data System (ADS)
Chen, Ting; Tian, Liangliang; Chen, Yuan; Liu, Bitao; Zhang, Jin
2015-06-01
Au/Cu2O nanocomposites were successfully synthesized by a facile one-pot redox reaction without additional reducing agent under room temperature. The morphologies and structures of the as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic performance of Au/Cu2O nanocomposites towards hydrogen peroxide was evaluated by cyclic voltammetry (CV) and chronoamperometry (CA). The prepared Au/Cu2O nanocomposite electrode showed a wide linear range from 25 to 11.2 mM ( R = 0.9989) with a low detection limit of 1.05 μM ( S/ N = 3) and high sensitivity of 292.89 mA mM-1 cm-2. The enhanced performance for H2O2 detection can be attributed to the introduction of Au and the synergistic effect between Au and Cu2O. It is demonstrated that the Au/Cu2O nanocomposites material could be a promising candidate for H2O2 detection.
NASA Astrophysics Data System (ADS)
Zhang, Sufeng; Zhao, Dongyan; Hou, Chen; Liang, Chen; Li, Hao
2018-06-01
A facile and efficient one-pot method for the synthesis of well-dispersed hollow CuFe2O4 nanoparticles (H-CuFe2O4 NPs) in the presence of cellulose nanocrystals (CNC) as the support was described. Based on the one-pot solvothermal condition control, magnetic H-CuFe2O4 NPs were in-situ grown on the CNC surface uniformly. TEM images indicated good dispersity of H-CuFe2O4 NPs with uniform size of 300 nm. The catalytic activity of H-CuFe2O4/CNC was tested in the catalytic reduction of 4-nitrophenol (4-NP) in aqueous solution. Compared with most CNC-based ferrite catalysts, H-CuFe2O4/CNC catalyst exhibited an excellent catalytic activity toward the reduction of 4-NP. The catalytic performance of H-CuFe2O4/CNC catalyst was remarkably enhanced with the rate constant of 3.24 s-1 g-1, which was higher than H-CuFe2O4 NPs (0.50 s-1 g-1). The high catalytic activity was attributed to the introduction of CNC and the special hollow mesostructure of H-CuFe2O4 NPs. In addition, the H-CuFe2O4/CNC catalyst promised good conversion efficiency without significant decrease even after 10 cycles, confirming relatively high stability. Because of its environmental sustainability and magnetic separability, H-CuFe2O4/CNC catalyst was shown to indicate that the ferrite nanoparticles supported on CNC were acted as a promising catalyst and exhibited potential applications in numerous ferrite based catalytic reactions.
Ravi, Arthi; Hassan, Syed Zahid; Vanikrishna, Ajithkumar N; Sureshan, Kana M
2017-04-04
Triflates of myo-inositol undergo facile solvolysis in DMSO and DMF yielding S N 2 products substituted with O-nucleophiles; DMF showed slower kinetics. Axial O-triflate undergoes faster substitution than equatorial O-triflate. By exploiting this difference in kinetics, solvent-tuning and sequence-controlled nucleophilysis, rapid synthesis of three azido-inositols of myo-configuration from myo-inositol itself has been achieved.
Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sojeong; Qu, Wenchao; Alexoff, David L.
2014-12-12
An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.
An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...
Mazzio, Katherine A; Okamoto, Ken; Li, Zhi; Gutmann, Sebastian; Strein, Elisabeth; Ginger, David S; Schlaf, Rudy; Luscombe, Christine K
2013-02-14
A one pot method for organic/colloidal CdSe nanoparticle hybrid material synthesis is presented. Relative to traditional ligand exchange processes, these materials require smaller amounts of the desired capping ligand, shorter syntheses and fewer processing steps, while maintaining nanoparticle morphology.
Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...
Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D
2013-05-18
Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.
NASA Astrophysics Data System (ADS)
Zhen, Fangchen; Ran, Maofei; Chu, Wei; Jiang, Chengfa; Sun, Wenjing
2018-03-01
Pd-Fe3O4 hybrid nanostructures were prepared using a simple one-pot hydrothermal method. The prepared materials were characterized by Fourier transform-infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma, N2 adsorption-desorption, and vibrating sample magnetometry. This self-assembled nanosystem acted as an efficient magnetically recyclable noble metal-based multi-functional nanocatalyst. It showed excellent catalytic activity and stability for the Heck reaction of iodobenzene and styrene under mild conditions. The methods used to prepare the Pd-Fe3O4 catalysts were simple and low-cost, which will be useful for the large-scale development and application of a magnetically recoverable Pd catalyst.
NASA Astrophysics Data System (ADS)
Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen
2016-08-01
Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility.
Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen
2016-08-30
Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility.
Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen
2016-01-01
Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility. PMID:27573057
Luo, Ming; Zhou, Ming; Rosa da Silva, Robson; ...
2017-01-24
Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Ming; Zhou, Ming; Rosa da Silva, Robson
Here, we report a one-pot method for the facile synthesis of Cu nanowires in high purity, together with ultrathin diameters well below 20 nm. Selected area electron diffraction and high-resolution transmission electron microscopy studies confirm that the Cu nanowires are grown along the <110> direction to give pentatwinned, one-dimensional nanostructures, enclosed by five {100} facets on the side surface. A systematic study further indicates that it is critical to conduct the synthesis under an argon atmosphere in order to improve the purity and uniformity of the nanowires while keeping their diameters thinner than 20 nm. Finally, we demonstrate the usemore » of these nanowires as sacrificial templates for the synthesis of Au-based nanotubes through a galvanic replacement process.« less
NASA Astrophysics Data System (ADS)
Safari, Javad; Zarnegar, Zohre
2014-08-01
An efficient synthesis of 2-amino-4H-chromenes is achieved by one pot three component coupling reaction of aldehyde, malononitrile, and resorcinol using amino-silane modified Fe3O4 nanoparticles (MNPs-NH2) heterogeneous nanocatalyst under sonic condition. The attractive advantages of the present process are mild reaction conditions, short reaction times, easy isolation of products, good yields and simple operational procedures. Combination of the advantages of ultrasonic irradiation and magnetic nanoparticles provides important methodology to carry out catalytic transformations.
Yan, Xu; Liao, Jinxi; Lu, Yongzhi; Liu, Jinsong; Zeng, Youlin; Cai, Qian
2013-05-17
A novel and efficient Pd-catalyzed one-pot reaction of ethyl diazoacetate, isocyanides, and imines for the synthesis of acrylamidines was developed. The multicomponent reaction may have occurred through an unpredicted ring-opening process of the ketenimine-imine [2 + 2] intermediate to form the acrylamidine products.
Synthesis of triazole based unnatural amino acids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW conditions. The developed method is applicable to a broad substrate scope a...
NASA Astrophysics Data System (ADS)
Kooti, M.; Karimi, M.; Nasiri, E.
2018-02-01
A new Cu(II) complex supported on magnetic reduced graphene oxide was prepared and characterized by various techniques, such as FT-IR, XRD, SEM, EDX, TEM, TGA, BET, ICP, and VSM. The synthesized nanocomposite, which has size distribution of 25-30 nm, was employed as catalyst in one-pot synthesis of 1-amidoalkyl-2-naphthols via three-component condensation reaction of amides, aromatic aldehydes, and 2-naphthol, under solvent-free conditions. The introduced catalysis procedure for the synthesis of 1-amidoalkyl-2-naphthol derivatives offers several advantages namely, short reaction times, high yields, facile recyclability, and cost effectiveness. [Figure not available: see fulltext.
Angeli, A; Peat, T S; Bartolucci, G; Nocentini, A; Supuran, C T; Carta, F
2016-12-28
A mild, efficient and one pot procedure to access benzoxazoles using easily accessible acylselenoureas as starting materials has been discovered. Mechanistic studies revealed a pH dependent intramolecular oxidative deselenization, with ring closure due to an intramolecular nucleophilic attack of a phenoxide ion. All the benzoxazoles herein reported possessed a primary sulfonamide zinc binding group and showed effective inhibitory action on the enzymes, carbonic anhydrases.
SNAr-Based, facile synthesis of a library of Benzothiaoxazepine-1,1’-dioxides
Rolfe, Alan; Samarakoon, Thiwanka B.; Klimberg, Sarra V.; Brzozowski, Marek; Neuenswander, Benjamin; Lushington, Gerald H.
2011-01-01
The construction of a library of benzothiaoxazepine-1,1’-dioxides utilizing a one-pot, SNAr diversification – ODCT50 scavenging protocol is reported. This protocol combines microwave irradiation to facilitate the reaction, in conjunction with a soluble ROMP-derived scavenger (ODCT) to afford the desired products in good overall purity. Utilizing this protocol, a 78-member library was successfully synthesized and submitted for biological evaluation. PMID:20879738
NASA Astrophysics Data System (ADS)
Lin, Lu; Liu, Haiou; Zhang, Xiongfu
2018-03-01
Rational design of efficient approaches to fabricate MOFs-coated core-shell composites is promising but challenging. We report here the encapsulation of Pd nanoparticles (Pd NPs) supported flower-like ZnO (F-ZnO) microspheres with ZIF-8 shell through a facile strategy, in which the formation and immobilization of Pd NPs on F-ZnO supports and the subsequent growth of ZIF-8 shells over them are effectively integrated into one-pot synthetic route. Importantly, the utilization of ZnO both as support of Pd NPs and Zn2+ source of ZIF-8 is favorable for the implement of one-pot synthesis, due to its functions in anchoring Pd NPs and inducing ZIF-8 formation. Further insights into the morphological influence of zinc oxide particles on the resulting materials indicate that the flower-like microspheres with 2D nanosheets as subunits also benefit the coating of Pd NPs supported cores with ZIF-8, resulting in a well-defined core-shell catalyst. The achieved catalyst deliveries remarkable performance in terms of selectivity, anti-poisoning and recyclability in the liquid hydrogenations of alkenes.
Recent Advances in the Catalytic One-Pot Synthesis of Flavonoids and Chromones.
Mohadeszadeh, Manijeh; Iranshahi, Mehrdad
2017-01-01
Flavonoids and chromones are two important classes of natural products that have various biological properties. During the past 10 years, there has been a significant increase in studies on the one-pot synthesis of flavonoids and chromones as medicinal scaffolds in drug discovery. This review describes the scope, mechanistic properties and regio- and chemo-selectivity features of several recently developed one-pot procedures for the synthesis of substituted chromones and flavonoids that have recently been published. Special importance is placed on the most promising and exciting medicinal applications of flavonoids and chromones. In this review, we discuss the progress on the synthesis of flavonoid and chromone derivatives in the presence of metal catalysts, organocatalysts, solid surfaces, microwave irradiation, acid and base catalysis, etc. For example, flavones can be prepared via the catalytic coordination of palladium complexes in a short time and at a low temperature with a high yield. Additionally, the one-pot synthesis of 2-substituted chromones via metal triflate (Yb(OTf)3) has provided the best result for this type of reaction with a high yield and a high regio and chemoselectivity. Generally, this review proposes the first specific overview of this developing and rapidly expanding field of flavonoid synthesis. We also discuss the mechanisms and advantages and disadvantages of methods for the synthesis of flavonoids and chromones. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units
NASA Astrophysics Data System (ADS)
Wu, Yong; Xiong, De-Cai; Chen, Si-Cong; Wang, Yong-Shi; Ye, Xin-Shan
2017-03-01
Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains.
NASA Astrophysics Data System (ADS)
Li, Shan-Shan; Zheng, Jie-Ning; Ma, Xiaohong; Hu, Yuan-Yuan; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju
2014-05-01
A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media.A simple and facile method is developed for one-pot preparation of hierarchical dendritic PtPd nanogarlands supported on reduced graphene oxide (PtPd/RGO) at room temperature, without using any seed, organic solvent, or complex apparatus. It is found that octylphenoxypolyethoxyethanol (NP-40) as a soft template and its amount are critical to the formation of PtPd garlands. The as-prepared nanocomposites are further applied to methanol and ethanol oxidation with significantly enhanced electrocatalytic activity and better stability in alkaline media. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c3nr06808k
ERIC Educational Resources Information Center
Brunauer, Linda S.; Mogannam, Abid C.; Hwee, Won B.; Chen, James Y.
2007-01-01
A one-pot conversion of tricyclic cationic drugs to their quaternary ammonium forms is described for a widely used bioactive drug: chlorpromazine, a phenothiazine-based antipsychotic. After conversion to its free base, the parent drug was methylated using substoichiometric amounts of methyl iodide dissolved in ether; the charged quaternary…
NASA Astrophysics Data System (ADS)
Jana, Rajkumar; Peter, Sebastian C.
2016-10-01
Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Long; Zheng, Cheng; Zhang, Yun; Yang, Huang-Hao; Liu, Xiaolong; Liu, Jingfeng
2016-07-01
Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.
Hayashi, Yuki; Okano, Kentaro; Mori, Atsunori
2018-02-16
A two-pot synthesis of thieno[3,2-b]indole from 2,5-dibromothiophene is described. A halogen dance of 2,5-dibromothiophene was performed with LDA, and subsequent Negishi coupling was performed with 2-iodoaniline derivatives to provide the corresponding coupling products. The resulting two bromo groups have different reactivities, which were utilized for the one-pot Suzuki-Miyaura coupling/intramolecular Buchwald-Hartwig amination to produce thieno[3,2-b]indole via an assisted tandem catalysis that involved in situ ligand exchange.
Peng, Pai; Xiong, Jin-Feng; Mo, Guang-Zhen; Zheng, Jia-Li; Chen, Ren-Hong; Chen, Xiao-Yun; Wang, Zhao-Yang
2014-10-01
An efficient method for the synthesis of aminomethyl benzimidazoles is developed by using a one-pot batch reaction between amino acids and o-phenylenediamines. This reaction proceeds smoothly in an unmodified household microwave oven, even though scale-up is to 10 g. A desirable method for the quick synthesis of benzimidazoles, which are used as a kind of important intermediates in drug synthesis, is provided by the scale-up utilization of amino acid resource.
Large-Scale Surfactant-Free Synthesis of p-Type SnTe Nanoparticles for Thermoelectric Applications
Han, Guang; Zhang, Ruizhi; Popuri, Srinivas R.; Greer, Heather F.; Reece, Michael J.; Bos, Jan-Willem G.; Zhou, Wuzong; Knox, Andrew R.; Gregory, Duncan H.
2017-01-01
A facile one-pot aqueous solution method has been developed for the fast and straightforward synthesis of SnTe nanoparticles in more than ten gram quantities per batch. The synthesis involves boiling an alkaline Na2SnO2 solution and a NaHTe solution for short time scales, in which the NaOH concentration and reaction duration play vital roles in controlling the phase purity and particle size, respectively. Spark plasma sintering of the SnTe nanoparticles produces nanostructured compacts that have a comparable thermoelectric performance to bulk counterparts synthesised by more time- and energy-intensive methods. This approach, combining an energy-efficient, surfactant-free solution synthesis with spark plasma sintering, provides a simple, rapid, and inexpensive route to p-type SnTe nanostructured materials. PMID:28772593
Xie, Zong-Bo; Wang, Na; Wu, Wan-Xia; Le, Zhang-Gao; Yu, Xiao-Qi
2014-01-20
A simple, mild, one-pot tandem method catalyzed by trypsin was developed for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones by the Biginelli reaction of urea, β-dicarbonyl compounds, and in situ-formed acetaldehyde. Trypsin was found to display dual promiscuous functions to catalyze transesterification and the Biginelli reaction in sequence. Copyright © 2013 Elsevier B.V. All rights reserved.
Roy, Priyabrata; Bodhak, Chandan; Pramanik, Animesh
2017-02-01
A one-pot three-component protocol has been developed for the synthesis of amino ester-embedded benzimidazoles under metal-free neutral conditions. Sequentially, the methodology involves coupling of an amino ester with 1-fluoro-2-nitrobenzene, reduction of the coupled nitroarene by sodium dithionite, and cyclization of the corresponding diamine with an aldehyde.
A novel one-pot solvent free synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles by condensation of acid hydrazide and triethyl orthoalkanates under microwave irradiations is reported. This green protocol was catalyzed efficiently by solid supported Nafion®NR50 and phosphorus p...
One-Pot Synthesis of Fe3O4@PS@P(AEMH-FITC) Magnetic Fluorescent Nanocomposites for Bimodal Imaging.
Wang, Xuandong; Liu, Huiyu; Jun, Ren; Fu, Changhui; Li, Linlin; Li, Tianlong; Tang, Fangqiong; Meng, Xianwei
2016-03-01
Magnetic fluorescent nanocomposites have attracted much attention because of their merging magnetic and fluorescent properties for biomedical application. However, the procedure of synthesis of magnetic fluorescent nanocomposites is always complicated. In addition, the properties of fluorescent component could be easily influenced by magnetic component, retaining both of the magnetic and fluorescent properties into one single nanoparticle considered to be a significant challenge. Herein, we report one-pot method to synthesize multifunctional magnetic fluorescent Fe3O4@PS@P(AEMH-FITC) nanocomposites for bimodal imaging. The asprepared Fe3O4@PS@P(AEMH-FITC) nanocomposites with well-define spherical core/shell structure were stable properties. Moreover, the Fe3O4@PS@P(AEMH-FITC) nanocomposites displayed efficient fluorescent and magnetic properties, respectively. Meanwhile, the magnetic resonance imaging (MRI) and HePG2 cancer cell fluorescent images experiment results suggested that Fe3O4@PS@P(AEMH-FITC) nanocomposites could be used as MRI contrast agents and Fluorescence Imaging (FLI) agents for bioimaging application. Our investigation paves a facile avenue for synthesized magnetic fluorescent nanostructures with well biocompatibility for potential bioimaging application in MRI and FLI.
NASA Astrophysics Data System (ADS)
Thangasamy, Pitchai; Shanmugapriya, Vadivel; Sathish, Marappan
2018-05-01
A facile and one-pot supercritical fluid method was demonstrated for the synthesis of phase pure crystalline h-MoO3 microrods within a short reaction time of 5 min at 400 °C. The formation of h-MoO3 was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopic analysis. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images clearly revealed the formation of hexagonal h-MoO3 rods. Further, photoluminescence emission peaks corresponding to band to band transition was observed in the h-MoO3 microrods. It was observed that when increasing the reaction time from 5 min to 30 min at 400 °C, h-MoO3 microrods undergoes disintegration to α-MoO3 thin nanorods. Interestingly, h-MoO3 microrods were also formed in a reaction time of 30 min at 400 °C when reducing the volume of nitric acid from 1 mL to ∼0.5 mL. The short reaction time and simple synthetic strategy makes this method can be suitable for the synthesis of other semiconductor nanomaterials for diverse applications.
Li, Jingjing; Shi, Liang; Gao, Jingyu; Zhang, Genqiang
2018-01-26
Sodium-ion batteries (SIBs) have been considered as promising energy storage devices in grid-level applications, owing to their largely reduced cost compared with that of lithium-ion batteries. However, the practical application of SIBs has been seriously hindered because of the lack of appropriate anode materials, limited by the thermodynamics perspective, which is one of the central task at current stage. Herein, we have developed a general one-pot strategy for the synthesis of transition-metal phosphide (TMP) based hybrid nanosheets composed of carbon-coated TMP nanoparticles anchored to the surface of nitrogen-doped carbon nanosheets. This facile and cost-effective method is quite universal and holds potential to be further extended to other metal phosphide materials. Significantly, the hybrid nanosheet electrode possesses excellent sodium storage properties as anodes for SIBs, including high specific capacity, an ultra-long cycle life and a remarkable rate performance. This work makes a significant contribution to not only the synthetic methodology of TMP-carbon two-dimensional hybrid nanostructures, but also the application of TMP-based anodes for high-energy SIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiao, Sai Jin; Zhao, Xiao Jing; Zuo, Jun; Huang, Hai Qing; Zhang, Li
2016-02-04
Molybdenum oxide (MoOx) is a well-studied transition-metal semiconductor material, and has a wider band gap than MoS2 which makes it become a promising versatile probe in a variety of fields, such as gas sensor, catalysis, energy storage ect. However, few MoOx nanomaterials possessing photoluminescence have been reported until now, not to mention the application as photoluminescent probes. Herein, a one-pot method is developed for facile synthesis of highly photoluminescent MoOx quantum dots (MoOx QDs) in which commercial molybdenum disulfide powder and hydrogen peroxide (H2O2) are involved as the precursor and oxidant, respectively. Compared with current synthesis methods, the proposed one has the advantages of rapid, one-pot, easily prepared, environment friendly as well as strong photoluminescence. The obtained MoOx QDs is further utilized as an efficient photoluminescent probe, and a new off-on sensor has been constructed for phosphate (Pi) determination in complicated lake water samples, attributed to the fact that the binding affinity of Eu(3+) ions to the oxygen atoms from Pi is much higher than that from the surface of MoOx QDs. Under the optimal conditions, a good linear relationship was found between the enhanced photoluminescence intensity and Pi concentration in the range of 0.1-160.0 μM with the detection limit of 56 nM (3σ/k). The first application of the photoluminescent MoOx nanomaterials for ion photochemical sensing will open the gate of employing MoOx nanomaterials as versatile probes in a variety of fields, such as chemi-/bio-sensor, cell imaging, biomedical and so on. Copyright © 2015 Elsevier B.V. All rights reserved.
Largani, Tahere Hosseyni; Imanzadeh, Gholamhasan; Pesyan, Nader Noroozi; Şahin, Ertan; Shamkhali, Amir Nasser; Notash, Behrouz
2018-02-01
The regioselective syntheses of novel pyrazolo[1[Formula: see text],5[Formula: see text]:1,2]pyrrolo[3,4-b]quinoline-2,3-dicarboxylates (6a-l) from pyrrolo([3,4-b]quinolin-2(3H)-yl)benzamides through an intramolecular Wittig reaction are described. This protocol takes advantages of mild conditions, simple workup and high yield which make this method attractive for the synthesis of these hybrid of pyrazolo[1[Formula: see text],5[Formula: see text]:1,2]pyrrolo[3,4-b]quinolines.
Imides: forgotten players in the Ugi reaction. One-pot multicomponent synthesis of quinazolinones.
Mossetti, Riccardo; Pirali, Tracey; Saggiorato, Dèsirèe; Tron, Gian Cesare
2011-06-28
Up to now, the synthesis of quinazolinones has required lengthy synthetic procedures. Here, we describe an innovative one-pot multicomponent reaction leading to highly substituted quinazolinones. We believe that this novel transformation may open the door for the generation of new and pharmacologically active quinazolinones, but, most important of all, the resurrection of the imide-Ugi scaffold paves the way for the synthesis of novel molecular architectures. This journal is © The Royal Society of Chemistry 2011
Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y
2015-09-14
An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.
Ghandi, Mehdi; Zarezadeh, Nahid; Abbasi, Alireza
2015-08-14
This presentation discloses a one-pot synthesis of a series of spiropyrroloquinoline isoindolinone and spiropyrroloquinoline aza-isoindolinone scaffolds. The reaction proceeds by the combination of a Ugi four-component reaction (4CR) and two intramolecular cyclizations under metal-free conditions. The proof of the structures relies on analytical investigation and X-ray crystallography.
Zhang, Fang; Zhang, Song; Duan, Xin-Fang
2012-11-02
The unprecedented substitution of a nitro group with aryl or alkenyl groups of Grignard reagents affords 2-aryl or alkenylpyridine N-oxides in modest to high yields with high chemoselectivity. This protocol allows a simple and clean synthesis of various 2-substituted pyridine N-oxides and the corresponding pyridine derivatives. Furthermore, straightforward one-pot iterative functionality of pyridine N-oxides could also be achieved simply by successive applications of two Grignard reagents.
Shi, Yi; Gulevich, Anton V; Gevorgyan, Vladimir
2014-12-15
A general and efficient NH insertion reaction of rhodium pyridyl carbenes derived from pyridotriazoles was developed. Various NH-containing compounds, including amides, anilines, enamines, and aliphatic amines, smoothly underwent the NH insertion reaction to afford 2-picolylamine derivatives. The developed transformation was further utilized in a facile one-pot synthesis of imidazo[1,5-a]pyridines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of 2'-deoxy-2'-[.sup.18F]fluoro-5-methyl-1-B-D-arabinofuranosyluracil (.sup.18F-FMAU)
Li, Zibo; Cai, Hancheng; Conti, Peter S
2014-12-16
The present invention relates to methods of synthesizing .sup.18F-FMAU. In particular, .sup.18F-FMAU is synthesized using one-pot reaction conditions in the presence of Friedel-Crafts catalysts. The one-pot reaction conditions are incorporated into a fully automated cGMP-compliant radiosynthesis module, which results in a reduction in synthesis time and simplifies reaction conditions. The one-pot reaction conditions are also suitable for the production of 5-substituted thymidine or cytidine analogs. The products from the one-pot reaction (e.g. the labeled thymidine or cytidine analogs) can be used as probes for imaging tumor proliferative activity. More specifically, these [.sup.18F]-labeled thymidine or cytidine analogs can be used as a PET tracer for certain medical conditions, including, but not limited to, cancer disease, autoimmunity inflammation, and bone marrow transplant.
Heravi, Majid M; Ranjbar, Leila; Derikvand, Fatemeh; Alimadadi, Behnoush
2008-01-01
A rapid and efficient one-pot method for the synthesis of 4,6-diarylpyrimidin-2(1H)-ones and related heterocycles is described. The condensation of acetophenone derivatives, aldehydes and urea in the presence of sulfamic acid was employed to synthesize a variety of pyrimidinones in moderate to excellent yields. The scope and limitations of this method are described.
Synthesis of Polysubstituted Pyridines via a One-Pot Metal-Free Strategy.
Wei, Hongbo; Li, Yun; Xiao, Ke; Cheng, Bin; Wang, Huifei; Hu, Lin; Zhai, Hongbin
2015-12-18
An efficient strategy for the one-pot synthesis of polysubstituted pyridines via a cascade reaction from aldehydes, phosphorus ylides, and propargyl azide is reported. The reaction sequence involves a Wittig reaction, a Staudinger reaction, an aza-Wittig reaction, a 6π-3-azatriene electrocyclization, and a 1,3-H shift. This protocol provides quick access to the polysubstituted pyridines from readily available substrates in good to excellent yields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Feng; Walter, Eric D.; Washton, Nancy M.
2015-01-01
Cu-SAPO-34 catalysts are synthesized using two methods: solid-state ion exchange (SSIE) and one-pot synthesis. SSIE is conducted by calcining SAPO-34/CuO mixtures at elevated temperatures. For the one-pot synthesis method, Cu-containing chemicals (CuO and CuSO4) are added during gel preparation. A high-temperature calcination step is also needed for this method. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies, and scanning electron microscopy (SEM). Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. In Cu-SAPO-34 samples formed using SSIE, Cu presents bothmore » as isolated Cu2+ ions and unreacted CuO. The former is highly active and selective in NH3-SCR, while the latter catalyzes a side reaction; notably, the non-selective oxidation of NH3 above 350 ºC. Using the one-pot method followed by a high-temperature aging treatment, it is possible to form Cu SAPO-34 samples with predominately isolated Cu2+ ions at low Cu loadings. However at much higher Cu loadings, isolated Cu2+ ions that bind weakly with the CHA framework and CuO clusters also form. These Cu moieties are very active in catalyzing non-selective NH3 oxidation above 350 ºC. Low-temperature reaction kinetics indicate that Cu-SAPO-34 samples formed using SSIE have core-shell structures where Cu is enriched in the shell layers; while Cu is more evenly distributed within the one-pot samples. Reaction kinetics also suggest that at low temperatures, the local environment next to Cu2+ ion centers plays little role on the overall catalytic properties. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle under contract number DE-AC05-76RL01830. The authors also thank Shari Li (PNNL) for surface area/pore volume measurements, and Bruce W. Arey (PNNL) for SEM measurements. Discussions with Drs. A. Yezerets, K. Kamasamudram, J.H. Li, N. Currier and J.Y. Luo from Cummins, Inc. and H.Y. Chen and H. Hess from Johnson-Matthey are greatly appreciated.« less
One-pot pseudomorphic crystallization of mesoporous porous silica to hierarchical porous zeolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Jun-Ling; Jiang, Shu-Hua; Pang, Jun-Ling
2015-09-15
Hierarchically porous silica with mesopore and zeolitic micropore was synthesized via pseudomorphic crystallization under high-temperature hydrothermal treatment in the presence of cetyltrimethylammonium tosylate and tetrapropylammonium ions. A combined characterization using small-angle X-ray diffraction (XRD), nitrogen adsorption, high-resolution transmission electron microscopy (TEM), thermogravimetric analysis (TG), and elemental analysis showed that dual templates, CTA{sup +} and TPA{sup +} molecules, can work in a cooperative manner to synthesize mesoporous zeolite in a one-pot system by precisely tuning the reaction conditions, such as reaction time and temperature, and type and amount of heterometal atoms. It is found that the presence of Ti precursor ismore » critical to the successful synthesis of such nanostructure. It not only retards the nucleation and growth of crystalline MFI domains, but also acts as nano-binder or nano-glue to favor the assembly of zeolite nanoblocks. - Graphical abstract: Display Omitted - Highlights: • A facile method to synthesize mesoporous zeolites with hierarchical porosity was presented. • It gives a new insight into keeping the balance between mesoscopic and molecular ordering in hierarchical porous materials. • A new understanding on the solid–solid transformation mechanism for the synthesis of titanosilicate zeolites was proposed.« less
Lu, Zhiwei; Dai, Wanlin; Liu, Baichen; Mo, Guangquan; Zhang, Junjun; Ye, Jiaping; Ye, Jianshan
2018-04-18
In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb 2+ and Cu 2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb 2+ and Cu 2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Madhusudan, Puttaswamy; Zhang, Jinfeng; Yu, Jiaguo; Cheng, Bei; Xu, Difa; Zhang, Jun
2016-11-01
The optical and catalytic performances of materials strongly depend on their size, morphology, dimensionality and structure. Herein, we demonstrate a facile one-pot template free synthesis of hierarchical CdMoO4 porous microspheres via a simple low temperature oil bath method. The photoactivity of the as-prepared samples was evaluated by photocatalytic decolorization of Methyl Orange (MO) and Methylene Blue (MB) mixed dye aqueous solutions at ambient temperature under full solar spectrum. The results indicated that the concentration of ammonium molybdate and reaction time greatly influence the diameter, average crystallite size, specific surface area, pore structure and photocatalytic activity of the prepared samples. Especially, under the suitable conditions the prepared hierarchical CdMoO porous microspheres exhibited enhanced photocatalytic activity and high stability. Furthermore, it is found that the photocatalytic activity and formation rate of hydroxyl radicals greatly depend on the particle sizes and morphology of as-prepared samples. This work not only demonstrates a simple way to fabricate the hierarchical CdMoO4 porous microspheres but also shows a possibility for utilization of CdMoO4 porous microspheres for the photocatalytic treatment of waste water pollutants.
NASA Astrophysics Data System (ADS)
Briseño-Ortega, Horacio; Juárez-Guerra, Lizbeth; Rojas-Lima, Susana; Mendoza-Huizar, Luis Humberto; Vázquez-García, Rosa A.; Farfán, Norberto; Arcos-Ramos, Rafael; Santillan, Rosa; López-Ruiz, Heralio
2018-04-01
A series of five 2-(2-hydroxyphenyl)oxazolo [4,5-b]pyridines (HPOP) (3a-e), where four are novel, were synthesized by a mild, one pot, phenylboronic acid-NaCN catalyzed reaction. Spectroscopic characterization and photophysical properties of these compounds are reported. Absorption and excitation spectra of the compounds were dependent on the substituents in the phenyl ring. Fluorescence quantum yields (0.009-0.538) were associated with the donor strength and the position of the substituents. Also, DFT analysis allowed us to determine the contribution of diethylamino and methoxy moieties to the π-system, which is in agreement with the experimental data analyzed in solution and by cyclic voltammetry. The results obtained in the solid state by single-crystal X-ray diffraction experiments indicate that, the quasi-planarity envisioned for the explored compounds is present, supporting the hypothesis that both the H-bonding of a hydroxyl group to the Cdbnd N moiety and a donor groups such as diethylamino and methoxy moieties favor an electronic communication. Due to the facile synthesis and their photophysical properties, the novel HPOP 3a-e have potential application as organic semiconductors.
Liu, Yunyun; Wang, Hang; Wan, Jie-Ping
2014-11-07
One-pot reactions involving acyl chlorides, phosphorus ylides, and o-iodophenols with copper catalysis have been established for the rapid synthesis of functionalized benzofurans. With all of these easily available and stable reactants, the construction of the target products has been accomplished via tandem transformations involving a key C-C coupling, leading to the formation of one C(sp(2))-C bond, one C(sp(2))-O bond, and one C ═ C bond.
Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives.
Tabassum, Sumaiya; Govindaraju, Santhosh; Khan, Riyaz-ur-Rahaman; Pasha, Mohamed Afzal
2015-05-01
An efficient synthesis of a novel series of twelve substituted 2-amino-3-cyano-4H-pyran derivatives was achieved by a one-pot three-component cyclocondensation reaction of heteroaryl aldehydes, malononitrile and active methylene compounds catalyzed by iodine in aqueous medium under ultrasound irradiation. In comparison with conventional methods, our protocol is convenient and offers several advantages, such as shorter reaction time, higher yields, milder conditions and environmental friendliness. We have herein successfully demonstrated the synergistic outcome of multi-component reaction (MCR) and sonication to offer a facile route for the design of these derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.
Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon
2016-01-01
The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260
One-pot and two-step synthesis of novel carbonylthioureas and dicarbonyldithioureas derivatives
NASA Astrophysics Data System (ADS)
Banaei, Alireza; Shiran, Jafar Abbasi; Saadat, Afshin; Ardabili, Farnaz Fazlalizadeh; McArdle, Patrick
2015-11-01
One-pot, two-step synthesis of several 1-cyclopropanecarbonyl-3-(substituted phenyl)-thioureas and 1-(phenylene-1,4-dione)-3,3‧-(substituted phenyl)-dithioureas have been successfully prepared. The structures of the synthesized compounds were confirmed by elemental analysis, FT-IR spectroscopy and NMR. Also the crystal structure one of these compounds was determined by X-ray crystallography. All synthesized compounds were evaluated for antibacterial activity using Salmonella enterica (SE), Micrococcus luteus (ML), Bacillus subtilis (BS) and Pseudomonas aeruginosa (PS).
A One-Pot Synthesis of Dibenzofurans from 6-Diazo-2-cyclohexenones.
Zhao, Hua; Yang, Ke; Zheng, Hongyan; Ding, Ruichao; Yin, Fangjie; Wang, Ning; Li, Yun; Cheng, Bin; Wang, Huifei; Zhai, Hongbin
2015-12-04
A novel and efficient protocol for the rapid construction of dibenzofuran motifs from 6-diazo-2-cyclohexenone and ortho-haloiodobenzene has been developed. The process involves one-pot Pd-catalyzed cross-coupling/aromatization and Cu-catalyzed Ullmann coupling.
Hsiao, Ya-Shan; Narhe, Bharat D; Chang, Ying-Sheng; Sun, Chung-Ming
2013-10-14
A one-pot, two-step synthesis of imidazo[1,2-a]benzimidazoles has been achieved by a three-component reaction of 2-aminobenzimidazoles with an aromatic aldehyde and an isocyanide. The reaction involving condensation of 2-aminobenzimidazole with an aldehyde is run under microwave activation to generate an imine intermediate under basic conditions which then undergoes [4 + 1] cycloaddition with an isocyanide.
Banerjee, Bubun
2017-03-01
Heterocycles are the backbone of organic compounds. Specially, N- &O-containing heterocycles represent privileged structural subunits well distributed in naturally occurring compounds with immense biological activities. Multicomponent reactions (MCRs) are becoming valuable tool for synthesizing structurally diverse molecular entities. On the other hand, the last decade has seen a tremendous outburst in modifying chemical processes to make them sustainable for the betterment of our environment. The application of ultrasound in organic synthesis is fulfilling some of the goals of 'green and sustainable chemistry' as it has some advantages over the traditional thermal methods in terms of reaction rates, yields, purity of the products, product selectivity, etc. Therefore the synthesis of biologically relevant heterocycles using one-pot multi-component technique coupled with the application of ultrasound is one of the thrusting areas in the 21st Century among the organic chemists. The present review deals with the "up to date" developments on ultrasound assisted one-pot multi-component synthesis of biologically relevant heterocycles reported so far. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Xiaoli; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096; Lu, Haiqiang
2015-08-15
Highlights: • Sodalite/NaTaO{sub 3} composite is prepared by a one-pot hydrothermal synthesis. • Enhanced photodegradation is achieved due to the heterogeneous doping effect. • Structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing. - Abstract: Sodalite/NaTaO{sub 3} composite was prepared by a one-pot hydrothermal synthesis method. Sodalite and NaTaO{sub 3} grow interpenetrated, and the resulting composites have similar morphology as the pure sodalite. The sodalite/NaTaO{sub 3} composite has a lower band gap of 3.35 eV due to the heterogeneous doping effect, and exhibits an enhanced photodegradation of methyl orange under UV irradiation as compared to themore » pure NaTaO{sub 3}. A slight structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing the sodalite/NaTaO{sub 3} composite, and such result further confirms the co-growth of the two crystals. This one-pot hydrothermal method opens up new avenues for the preparation of photocatalytic composites.« less
Hack, Daniel; Chauhan, Pankaj; Deckers, Kristina; Hermann, Gary N; Mertens, Lucas; Raabe, Gerhard; Enders, Dieter
2014-10-03
A highly stereoselective one-pot procedure for the synthesis of five-membered annulated hydroxycoumarins has been developed. By merging primary amine catalysis with silver catalysis, a series of functionalized coumarin derivatives were obtained in good yields (up to 91%) and good to excellent enantioselectivities (up to 99% ee) via a Michael addition/hydroalkoxylation reaction. Depending on the substituents on the enynone, the synthesis of annulated six-membered rings is also feasible.
Dienamine and Friedel-Crafts one-pot synthesis, and antitumor evaluation of diheteroarylalkanals.
Frías, María; Padrón, José M; Alemán, José
2015-05-26
An asymmetric synthesis of diheteroarylalkanals through one-pot dienamine and Friedel-Crafts reaction is presented. The reaction tolerates a large variety of substituents at different positions of the starting aldehyde and also in the indole nucleophile, and a range of diheterocyclic alkanals can be achieved. Furthermore, we have studied the antiproliferative activity of these new compounds in representative cancer tumor cell lines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One-Pot Synthesis of N-Substituted β-Amino Alcohols from Aldehydes and Isocyanides.
Cioc, Răzvan C; van der Niet, Daan J H; Janssen, Elwin; Ruijter, Eelco; Orru, Romano V A
2015-05-18
A practical two-stage one-pot synthesis of N-substituted β-amino alcohols using aldehydes and isocyanides as starting materials has been developed. This method features mild reaction conditions, broad scope, and general tolerance of functional groups. Based on a less common central carbon-carbon bond disconnection, this protocol complements traditional approaches that involve amines and various carbon electrophiles (epoxides, α-halo ketones, β-halohydrins). Medicinally relevant products can be prepared in a concise and efficient way from simple building blocks, as demonstrated in the synthesis of the antiasthma drug salbutamol. Upgrading the synthesis to an enantioselective variant is also feasible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Atkins, Tonya M; Louie, Angelique Y; Kauzlarich, Susan M
2012-07-27
Silicon nanoparticles can be considered a green material, especially when prepared via a microwave-assisted method without the use of highly reactive reducing agents or hydrofluoric acid. A simple solution synthesis of hydrogen-terminated Si- and Mn-doped Si nanoparticles via microwave-assisted synthesis is demonstrated. The reaction of the Zintl salt, Na(4)Si(4), or Mn-doped Na(4)Si(4), Na(4)Si(4(Mn)), with ammonium bromide, NH(4)Br, produces small dispersible nanoparticles along with larger particles that precipitate. Allylamine and 1-amino-10-undecene were reacted with the hydrogen-terminated Si nanoparticles to provide water solubility and stability. A one-pot, single-reaction process and a one-pot, two-step reaction process were investigated. Details of the microwave-assisted process are provided, with the optimal synthesis being the one-pot, two-step reaction procedure and a total time of about 15 min. The nanoparticles were characterized by transmission electron microscopy (TEM), x-ray diffraction, and fluorescence spectroscopies. The microwave-assisted method reliably produces a narrow size distribution of Si nanoparticles in solution.
Synthesis of cyclopentadiene-fused chromanones via one-pot multicomponent reactions.
Ghandi, Mehdi; Ghomi, Ali-Tabatabaei; Kubicki, Maciej
2013-03-15
We have developed one-pot method for the synthesis of functionalized novel cyclopentadiene-fused chromanone scaffolds. A variety of 4-oxo-2,4-dihydrocyclopenta[c]chromene-1,2-dicarboxylates were obtained in moderate to good yields via condensation of 2-hydroxybenzaldehydes and ethyl acetoacetate with 1:1 acetylenecarboxylate-isocyanides in toluene. These reactions presumably proceed via reaction of the in situ generated 3-acetyl-2H-chromen-2-ones with acetylenecarboxylate-isocyanide zwitterionic intermediates through Michael addition/intramolecular cyclization and double [1,5] acyl shift rearrangement cascade.
One-Pot Isomerization–Cross Metathesis–Reduction (ICMR) Synthesis of Lipophilic Tetrapeptides
2015-01-01
An efficient, versatile and rapid method toward homologue series of lipophilic tetrapeptide derivatives (herein, the opioid peptides H-TIPP-OH and H-DIPP-OH) is reported. High atom economy and a minimal number of synthetic steps resulted from a one-pot tandem isomerization-cross metathesis-reduction sequence (ICMR), applicable both in solution and solid phase methodology. The broadly applicable synthesis proceeds with short reaction times and simple work-up, as illustrated in this work for alkylated opioid tetrapeptides. PMID:24906051
Xiong, Yiwen; Qian, Ping; Cao, Chenhui; Mei, Haibo; Han, Jianlin; Li, Guigen; Pan, Yi
2014-01-01
We report here an efficient one-pot method for the synthesis of α,β-differentiated diamino esters directly from cinnamate esters using N,N-dichloro-p-toluenesulfonamide and benzylamine as nitrogen sources. The key transformations include a Cu-catalyzed aminohalogenation and aziridination, followed by an intermolecular SN2 nucleophilic ring opening by benzylamine. The reactions feature a wide scope of substrates and proceed with excellent stereo- and regioselectivity (anti:syn >99:1) .
Copper-catalyzed one-pot synthesis of 1,2,4-triazoles from nitriles and hydroxylamine.
Xu, Hao; Ma, Shuang; Xu, Yuanqing; Bian, Longxiang; Ding, Tao; Fang, Xiaomin; Zhang, Wenkai; Ren, Yanrong
2015-02-06
A simple and efficient copper-catalyzed one-pot synthesis of substituted 1,2,4-triazoles through reactions of two nitriles with hydroxylamine has been developed. The protocol uses simple and readily available nitriles and hydroxylamine hydrochloride as the starting materials and inexpensive Cu(OAc)2 as the catalyst, and the corresponding 1,2,4-triazole derivatives are obtained in moderate to good yields. The reactions include sequential intermolecular addition of hydroxylamine to one nitrile to provide amidoxime, copper-catalyzed treatment of the amidoxime with another nitrile, and intramolecular dehydration/cyclization. This finding provides a new and useful strategy for synthesis of 1,2,4-triazole derivatives.
Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka
2015-11-02
Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Aghakhani Mahyari, Farzaneh; Tohidi, Maryam; Safavi, Afsaneh
2016-09-01
A facile, seed-less and one-pot method was developed for synthesis of gold nanoflowers with multiple tips through reduction of HAuCl4 with deep eutectic solvent at room temperature. This solvent is eco-friendly, low-cost, non-toxic and biodegradable and can act as both reducing and shape-controlling agent. In this protocol, highly branched and stable gold nanoflowers were obtained without using any capping agent. The obtained products were characterized by different techniques including, field emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction and UV-vis spectroscopy. The as-prepared gold nanoflowers exhibit efficient surface-enhanced Raman scattering (SERS) properties which can be used as excellent substrates for SERS.
Jomma, Ezzaldeen Younes; Ding, Shou-Nian
2016-02-18
In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe₃O₄-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe₃O₄-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe₃O₄-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM(-1)∙cm(-2) and good long-term stability.
Jomma, Ezzaldeen Younes; Ding, Shou-Nian
2016-01-01
In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability. PMID:26901204
NASA Astrophysics Data System (ADS)
Yao, Dahua; Yang, Yu; Deng, Yonghong; Wang, Chaoyang
2018-03-01
A series of polyimides, which contain polyethylene glycol (PEG) segments with different molecular weight in the polymer chains, are synthesized through a facile one-pot method and characterized by Fourier transform infrared spectroscopy and hydrogen nuclear magnetic resonance spectroscopy. The main part of polyimides is originated from trimellitic anhydride chloride (TMAC) and 4,4‧-methylenedianiline, onto which PEG segments are introduced through an esterification reaction with TMAC. These obtained polyimides, which acquire excellent water solubility after being neutralized by triethylamine, are applied as water-soluble binders to silicon negative electrodes for lithium ion batteries, and significantly improve the electrochemical performance of silicon anodes. Specially, the PI-200 (polyimide copolymerized with PEG-200) based silicon electrode exhibits a high initial discharge capacity of 2989.7 mAh g-1 and remains about 2235.5 mAh g-1 after 200 cycles at the current density of 0.1 C (420 mA g-1).
Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju
2017-10-15
In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Rodríguez-Robledo, M. Concepción; González-Lozano, M. Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; López-Martínez, Rubén; Ramírez-Galicia, Guillermo
2018-01-01
Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications. PMID:29642522
Rodríguez-Robledo, M Concepción; González-Lozano, M Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; Bazán-Mora, Elva; López-Martínez, Rubén; Ramírez-Galicia, Guillermo; Poisot, Martha
2018-04-09
Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications.
One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy.
Jiang, Shan; Hua, Li; Guo, Zilong; Sun, Lin
2018-09-01
The present work reveals a new and simple one-pot green method to load doxorubicin (DOX) drugs in silica nanoparticles for efficient in vivo cancer therapy. The synthesis of DOX loaded silica nanoparticles (SiNPs/DOX) is based on the efficient encapsulation of DOX in surfactant Tween 80 micelles which act as a template for the formation of silica nanoparticles. The release profile, cellular uptake behavior, cytotoxicity and antitumor effect of SiNPs/DOX nanoparticles were investigated and compared to free DOX. The silica nanoparticles improved the cellular drug delivery efficiency and exhibited high cytotoxicity, successfully achieving the inhibition of tumor growth. Notably, the tumor size and weight of SiNPs/DOX group was 2-fold and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than that of PBS group. The one-pot green synthesis system may have the potential to be developed as a promising drug delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bechara, William S.; Pelletier, Guillaume; Charette, André B.
2012-03-01
The development of efficient and selective transformations is crucial in synthetic chemistry as it opens new possibilities in the total synthesis of complex molecules. Applying such reactions to the synthesis of ketones is of great importance, as this motif serves as a synthetic handle for the elaboration of numerous organic functionalities. In this context, we report a general and chemoselective method based on an activation/addition sequence on secondary amides allowing the controlled isolation of structurally diverse ketones and ketimines. The generation of a highly electrophilic imidoyl triflate intermediate was found to be pivotal in the observed exceptional functional group tolerance, allowing the facile addition of readily available Grignard and diorganozinc reagents to amides, and avoiding commonly observed over-addition or reduction side reactions. The methodology has been applied to the formal synthesis of analogues of the antineoplastic agent Bexarotene and to the rapid and efficient synthesis of unsymmetrical diketones in a one-pot procedure.
Wang, Min; Song, Zhiguo; Jiang, Heng; Gong, Hong
2010-01-01
3,4-Dihydropyrimidin-2-(1H)-ones were synthesized in high yields by a one-pot cyclocondensation of an aldehyde, a 1,3-dicarbonyl compound, and urea using copper methanesulfonate (2 mol%) as a recyclable catalyst under solvent-free conditions in short reaction time (1-2 h).
Ullah, Farman; Zang, Qin; Javed, Salim; Zhou, Aihua; Knudtson, Christopher A.; Bi, Danse; Hanson, Paul R.; Organ, Michael G.
2013-01-01
A microwave-assisted, continuous-flow organic synthesis (MACOS) protocol for the synthesis of functionalized 1,2,5-thiadiazepane 1,1-dioxide library, utilizing a one-pot elimination and inter-/intramolecular double aza-Michael addition strategy is reported. The optimized protocol in MACOS was utilized for scale-out and further extended for library production using a multicapillary flow reactor. A 50-member library of 1,2,5-thiadiazepane 1,1-dioxides was prepared on a 100- to 300-mg scale with overall yields between 50 and 80% and over 90 % purity determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy. PMID:24244871
One-Pot, Three-Component Arylalkynyl Sulfone Synthesis
2015-01-01
A one-pot three-component protocol for the preparation of arylsulfonyl alkynes through the reaction of ethynyl-benziodoxolone (EBX) reagents, DABSO (DABCO·SO2), and either organomagnesium reagents or aryl iodides with a palladium catalyst is reported. A broad range of aryl and heteroarylalkynyl sulfones were obtained in 46–85% overall yield. PMID:25633719
Zhou, Feng; Simon, Marc-Oliver; Li, Chao-Jun
2013-05-27
A new strategy for the construction of biaryls by a transition-metal-free process is presented. A sequence of a Grignard reaction, dehydration, and oxidative aromatization affords the desired products in a one-pot fashion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One-Pot/Sequential Native Chemical Ligation Using Photocaged Crypto-thioester.
Aihara, Keisuke; Yamaoka, Kosuke; Naruse, Naoto; Inokuma, Tsubasa; Shigenaga, Akira; Otaka, Akira
2016-02-05
A practical and efficient methodology for the chemical synthesis of peptides/proteins using a one-pot/sequential ligation is described. It features the use of photocleavable S-protection on an N-sulfanylethylaniline moiety. Removal of the S-protecting ligated materials under UV irradiation provides a readily usable mixture for subsequent native chemical ligation.
Sone, Toshihiko; Lu, Gang; Matsunaga, Shigeki; Shibasaki, Masakatsu
2009-01-01
Better the second time around: The title compounds were synthesized by using a one-pot double methylene transfer catalyzed by a heterobimetallic La/Li complex. Chiral amplification in the second step was the key to obtaining oxetanes in high enantiomeric excess (see scheme).
NASA Astrophysics Data System (ADS)
Lin, Quankui; Huang, Xiaojie; Tang, Junmei; Han, Yuemei; Chen, Hao
2013-12-01
A targeted drug delivery system based on graphene oxide (GO) was produced via one-pot synthesis method, taking advantages of the self-polymerization of the dopamine (DA). The polymerization of dopamine resulted in polydopamine capped GO nanocomposite. Meanwhile, the anti-tumor drug doxorubicin (DOX) can be loaded in the nanocomposite and the tumor cell targeting molecule folic acid (FA) can also been immobilized on the nanocomposite surface simultaneously. The size of the obtained FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) is about 600 nm. It renders a sustained drug release manner. The cell culture results reveal that the FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) via one-pot method shows property of targeted killing of cancer cells in vitro. This one-pot method just needs the pH adjusting to induce the self-polymerization of DA, but excludes the fussy chemical grafting process and the organic solvents, which make it an environmentally friendly method to synthesize FA-decorated GO-based drug delivery system.
Abbas, Mohamed; Tawfik, Wael; Chen, Jiangang
2018-01-01
We have designed an efficient and direct sonochemical method for the facile synthesis of Cd(OH) 2 , CdO, and Cd(OH) 2 /Ag core/satellite nanorods. A Cd(OH) 2 nanorod was synthesized with a one-pot, environmentally-friendly aqueous sonochemical reaction, followed by calcination at 500°C to produce CdO nanorods. Thirty minutes of re-ultrasonicated CdO nanorods in the presence of the Ag precursor was sufficient for phase transformation from the cubic structure of CdO to the monoclinic crystalline structure of Cd(OH) 2 , accompanied by deposition of Ag nanodots on the surface to form Cd(OH) 2 /Ag core/satellite nanorods. X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, N 2 Brunauer-Emmett-Teller adsorption-desorption, and Fourier-transform infrared spectroscopy measurements confirmed the successful formation of the various phases and the unique morphology of the nanorods/satellites. We also measured the magnetic properties using a vibrating sample magnetometer at room temperature, and the produced nanorods showed weak unsaturated ferromagnetic properties with a magnetic moment values of 0.105 and 0.076emu/g for CdO and Cd(OH) 2 /Ag NRs, respectively. In conclusion, our one-pot, cost-effective, sonochemical approach holds promise for the synthesis of various oxides and core/satellite nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia
2016-12-01
An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.
Imbri, Dennis; Netz, Natalie; Kucukdisli, Murat; Kammer, Lisa Marie; Jung, Philipp; Kretzschmann, Annika; Opatz, Till
2014-12-05
An electrocyclic ring closure is the key step of an efficient one-pot method for the synthesis of pyrrole-2-carboxylates and -carboxamides from chalcones and glycine esters or amides. The 3,4-dihydro-2H-pyrrole intermediates generated in situ are oxidized to the corresponding pyrroles by stoichiometric oxidants or by catalytic copper(II) and air in moderate to high yields. A wide range of functional groups are tolerated, and further combination with an in situ bromination gives access to polyfunctional pyrrole scaffolds.
Sow, Boubacar; Bellavance, Gabriel; Barabé, Francis
2011-01-01
Summary The rapid synthesis of bicyclo[m.n.1]alkanone cores possessing quaternary carbon centers adjacent to a bridged ketone represents a significant synthetic challenge. This type of architectural feature is embedded in various complex biologically active compounds such as hyperforin and garsubellin A. Herein, we report a highly diastereoselective one-pot Diels–Alder reaction/Au(I)-catalyzed carbocyclization to generate bicyclo[3.3.1]alkanones in yields ranging from 48–93%. PMID:21915201
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, A. Daya; Subrahmanyam, Ch., E-mail: csubbu@iith.ac.in
2016-01-15
Highlights: • Novel one pot synthesis of CdS/TiO{sub 2} hetero nanostructures by combustion synthesis. • Excellent visible light photocatalytic activity for H{sub 2} production from water. • Enhanced activity for the removal of Cr(VI) from aqueous streams. - Abstract: To achieve more effective coupling of cadmium sulfide (CdS) to the TiO{sub 2}, single step synthesis of CdS/TiO{sub 2} composites is advantageous. In the present study a novel one pot synthesis of several CdS/TiO{sub 2} hetero-nanostructures was explored through combustion technique. As the process involves the simultaneous nucleation of CdS and TiO{sub 2} it leads to the proper connectivity between themore » constituent materials. All the catalysts were characterized by using several techniques and the excellent visible light activity of the composites has been asserted by the H{sub 2} production from water containing sacrificial reagents, removal of methylene blue and Cr(VI) from aqueous streams. Therefore the present synthetic strategy which is devoid of using molecular linker at interface is more suitable for solar applications, which require faster rates of electron transfer at the hetero junctions.« less
Praseodymium methanesulfonate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones.
Wang, Min; Song, Zhiguo; Gong, Hong; Jiang, Heng
2008-01-01
A series of 3,4-dihydropyrimidin-2-(1H)-ones compounds was synthesized efficiently by a one-pot cyclocondensation of an aldehyde, 1,3-dicarbonyl compound, and urea in absolute ethanol under refluxing temperature using praseodymium methanesulfonate as catalyst. After the reaction, the catalyst can be easily recovered and reused several times without distinct decrease in reaction yields.
Xu, Silong; Zhu, Shaoying; Shang, Jian; Zhang, Junjie; Tang, Yuhai; Dou, Jianwei
2014-04-18
A catalyst-free allylic alkylation of stabilized phosphorus ylides with allylic carbonates via a regioselective SN2' process is presented. Subsequent one-pot Wittig reaction with both aliphatic and aromatic aldehydes as well as ketenes provides structurally diverse skipped dienes (1,4-dienes) in generally high yields and moderate to excellent stereoselectivity with flexible substituent patterns. This one-pot SN2' allylation-Wittig strategy constitutes a convenient and efficient synthetic method for highly functionalized skipped dienes from readily available starting materials.
Size-separation of silver nanoparticles using sucrose gradient centrifugation
Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won; ...
2015-08-28
Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less
Size-separation of silver nanoparticles using sucrose gradient centrifugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won
Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less
NASA Astrophysics Data System (ADS)
Wang, Yajun; Li, Zexue; Yu, Haiyang; Feng, Changgen
2016-09-01
Several kinds of three-dimensional (3D) hierarchical constructed flower-like α-Bi2O3 microspheres were prepared successfully via a simple solution precipitation synthesis at 95∘C and ambient atmospheric pressure in 1h. The synthesis process was operated in ethanol-water system as solvent with the assistance of glycerin and oleic acid as capping agents. These flower-like α-Bi2O3 architectures with diameter of several micrometers were 3D self-assembled from nanorods or nanocubes step by step. By adjusting the concentration of the capping agents, various flower-like α-Bi2O3 microspheres were obtained. The formation of the flower-like superstructures was attributed to the modification of nucleation and growth kinetics, and the guidance of self-assembly approach by capping agents. The formation mechanism of these microstructures was discussed briefly.
Facile route to versatile nanoplatforms for drug delivery by one-pot self-assembly.
Zhou, Xing; Che, Ling; Wei, Yanling; Dou, Yin; Chen, Sha; He, Hongmei; Gong, Hao; Li, Xiaohui; Zhang, Jianxiang
2014-06-01
There is still unmet demand for developing powerful approaches to produce polymeric nanoplatforms with versatile functions and broad applications, which are essential for the successful bench-to-bedside translation of polymeric nanotherapeutics developed in the laboratory. We have discovered a facile, convenient, cost-effective and easily scalable one-pot strategy to assemble various lipophilic therapeutics bearing carboxyl groups into nanomedicines, through which highly effective cargo loading and nanoparticle formation can be achieved simultaneously. Besides dramatically improving water solubility, the assembled nanopharmaceuticals showed significantly higher bioavailability and much better therapeutic activity. These one-pot assemblies may also serve as nanocontainers to effectively accommodate other highly hydrophobic drugs such as paclitaxel (PTX). PTX nanomedicines thus formulated display strikingly enhanced in vitro antitumor activity and can reverse the multidrug resistance of tumor cells to PTX therapy. The special surface chemistry offers these assembled entities the additional capability of efficiently packaging and efficaciously transfecting plasmid DNA, with a transfection efficiency markedly higher than that of commonly used positive controls. Consequently, this one-pot assembly approach provides a facile route to multifunctional nanoplatforms for simultaneous delivery of multiple therapeutics with improved therapeutic significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nakamura, Takahiro; Sato, Kohei; Naruse, Naoto; Kitakaze, Keisuke; Inokuma, Tsubasa; Hirokawa, Takatsugu; Shigenaga, Akira; Itoh, Kohji; Otaka, Akira
2016-10-17
A synthetic protocol for the preparation of 162-residue S-monoglycosylated GM2-activator protein (GM2AP) analogues bearing various amino acid substitutions for Thr69 has been developed. The facile incorporation of the replacements into the protein was achieved by means of a one-pot/N-to-C-directed sequential ligation strategy using readily accessible middle N-sulfanylethylanilide (SEAlide) peptides each consisting of seven amino acid residues. A kinetically controlled ligation protocol was successfully applied to the assembly of three peptide segments covering the GM2AP. The native chemical ligation (NCL) reactivities of the SEAlide peptides can be tuned by the presence or absence of phosphate salts. Furthermore, NCL of the alkyl thioester fragment [GM2AP (1-31)] with the N-terminal cysteinyl prolyl thioester [GM2AP (32-67)] proceeded smoothly to yield the 67-residue prolyl thioester, with the prolyl thioester moiety remaining intact. This newly developed strategy enabled the facile synthesis of GM2AP analogues. Thus, we refer to this synthetic protocol as "tailored synthesis" for the construction of a GM2AP library. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
One-Pot Synthesis of Cyclopropane-Fused Cyclic Amidines: An Oxidative Carbanion Cyclization.
Veeranna, Kirana Devarahosahalli; Das, Kanak Kanti; Baskaran, Sundarababu
2017-12-18
A novel and efficient one-pot method has been developed for the synthesis of cyclopropane-fused bicyclic amidines on the basis of a CuBr 2 -mediated oxidative cyclization of carbanions. The usefulness of this unique multicomponent strategy has been demonstrated by the use of a wide variety of substrates to furnish novel cyclopropane-containing amidines with a quaternary center in very good yields. This ketenimine-based approach provides straightforward access to biologically active and pharmaceutically important 3-azabicyclo[n.1.0]alkane frameworks under mild conditions. The synthetic power of this methodology is exemplified in the concise synthesis of the pharmaceutically important antidepressant drug candidate GSK1360707 and key intermediates for the synthesis of amitifadine, bicifadine, and narlaprevir. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu
2002-12-11
The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.
Total synthesis of (-)-strychnine.
Kaburagi, Yosuke; Tokuyama, Hidetoshi; Fukuyama, Tohru
2004-08-25
Total synthesis of (-)-strychnine is described. Notable features of our synthesis include (1) palladium-catalyzed coupling of the indole and vinyl epoxide moieties, (2) synthesis of the nine-membered cyclic amine derivative from the diol precursor in a one-pot procedure, and (3) transannular cyclization of the nine-membered cyclic amine.
Liu, Chen-Jiang; Wang, Ji-De
2009-02-13
A simple, efficient procedure for the one-pot Biginelli condensation reaction of aldehydes, beta-ketoesters and urea or thiourea employing copper(II) sulfamate as a novel catalyst is described. Compared to the classical Biginelli reaction conditions, the present method has the advantages of good yields, short reaction times and experimental simplicity.
Simplified one-pot synthesis of [.sup.18F]SFB for radiolabeling
Olma, Sebastian; Shen, Clifton Kwang-Fu
2015-08-04
A non-aqueous single pot synthesis of [.sup.18F]SFB is set forth. The [.sup.18F]SFB produced with this method is then used, for example, to label a peptide or an engineered antibody fragment (diabody) targeting human epidermal growth factor receptor 2 (HER2) as representative examples of labeled compounds for use as an injectable composition to locate abnormal tissue, specifically tumors within an animal or human using a PET scan.
Simplified one-pot synthesis of [.sup.18F]SFB for radiolabeling
Olma, Sebastian; Shen, Clifton Kwang-Fu
2013-07-16
A non-aqueous single pot synthesis of [.sup.18F]SFB is set forth. The [.sup.18F]SFB produced with this method is then used, for example, to label a peptide or an engineered antibody fragment (diabody) targeting human epidermal growth factor receptor 2 (HER2) as representative examples of labeled compounds for use as an injectable composition to locate abnormal tissue, specifically tumors within an animal or human using a PET scan.
An, Xiao-De; Yu, Shouyun
2015-06-05
A one-pot synthesis of phenanthridines and quinolines from commercially available or easily prepared aldehydes has been reported. O-(4-Cyanobenzoyl)hydroxylamine was utilized as the nitrogen source to generate O-acyl oximes in situ with aldehydes catalyzed by Brønsted acid. O-Acyl oximes were then subjected to visible light photoredox catalyzed cyclization via iminyl radicals to furnish aza-arenes. A variety of phenanthridines and quinolines have been prepared assisted by Brønsted acid and photocatalyst under visible light at room temperature with satisfactory yields.
Zhang, Wenhua; Chen, Zhihao; Al-Naji, Majd; Guo, Penghu; Cwik, Stefan; Halbherr, Olesia; Wang, Yuemin; Muhler, Martin; Wilde, Nicole; Gläser, Roger; Fischer, Roland A
2016-10-14
Simultaneous incorporation of palladium within Pd-Pd and/or Pd-Cu paddlewheels as framework-nodes and Pd nanoparticle (NP) dispersion into MOF have been achieved for the first time via one-pot synthesis. In particular, the framework substitution of Cu(2+) by Pd(2+) as well as the pore loading with PdNPs have been confirmed and characterized by XPS. The obtained solids featuring such multiple Pd-sites show enhanced catalytic activity in the aqueous-phase hydrogenation of p-nitrophenol (PNP) with NaBH4 to p-aminophenol (PAP).
Lee, Seul Ki; Park, Jin Kyoon
2015-04-03
A mild and efficient one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines in up to 88% yield was developed. An adduct was formed after the simple mixing of 2-amino-4-methylpyridine, 2-phenylacetaldehyde, and N-iodosuccinimide in CH2Cl2, and the structure of the adduct was characterized by 2D NMR, IR, and high-resolution mass analysis. The adduct was readily cyclized by treatment with a saturated aqueous solution of NaHCO3. The reactions proceeded to completion after several hours at room temperature.
Brönsted Acid-Catalyzed One-Pot Synthesis of Indoles from o-Aminobenzyl Alcohols and Furans
Kuznetsov, Alexey; Makarov, Anton; Rubtsov, Alexandr E.; Butin, Alexander V.; Gevorgyan, Vladimir
2013-01-01
Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans has been developed. This method operates via the in situ formation of aminobenzylfuran, followed by its recyclization into the indole core. The method proved to be efficient for substrates possessing different functional groups, including -OMe, -CO2Cy, and -Br. The resulting indoles can easily be transformed into diverse scaffolds, including 2,3- and 1,2-fused indoles, and indole possessing an α,β-unsaturated ketone moiety at the C-2 position. PMID:24255969
One-Pot Anti-Markovnikov Hydroamination of Unactivated Alkenes by Hydrozirconation and Amination
Strom, Alexandra E.
2013-01-01
A one-pot hydroamination of alkenes is reported. The synthesis of primary and secondary amines from unactivated olefins was accomplished in the presence of a variety of functional groups. Hydrozirconation, followed by amination with nitrogen electrophiles, provides exclusive anti-Markovnikov selectivity, and most products are isolated in high yields without the use of column chromatography. PMID:23899320
Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros
2015-05-18
We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.
Maddila, Suresh; Gangu, Kranthi Kumar; Maddila, Surya Narayana; Jonnalagadda, Sreekantha B
2017-02-01
A simple and versatile one-pot three-component synthetic protocol is devised for heterocycles, viz. 2,6-diamino-4-substituted-4H-pyran-3,5-dicarbonitrile derivatives, in short reaction times ([Formula: see text]30 min) at room temperature using ethanol as a solvent. This method involves the three-component reaction of malononitrile, substituted aldehydes, and cyanoacetamide catalyzed by chitosan-doped calcium hydroxyapatites (CS/CaHAps) giving good to excellent yields (86-96%). Twelve new pyran derivatives (4a-l) were synthesized and their structures were established and confirmed by different spectroscopic methods ([Formula: see text]H NMR, [Formula: see text]C NMR, [Formula: see text]N NMR, and HRMS). The heterogeneous catalyst, CS/CaHAp, was characterized by various instrumental techniques including XRD, TEM, SEM, and FT-IR and TGA spectroscopies. The catalyst was easily separable and reusable for up to six runs without any apparent loss of activity. The reported protocol has many benefits, such as ease of preparation, use of a green solvent, reduced reaction times, excellent product yields, and operational simplicity.
Zamudio-Medina, Angel; García-González, Ailyn N; Herrera-Carrillo, Genesis K; Zárate-Zárate, Daniel; Benavides-Macías, Adriana; Tamariz, Joaquín; Ibarra, Ilich A; Islas-Jácome, Alejandro; González-Zamora, Eduardo
2018-03-27
We describe the one-pot synthesis of twenty polyheterocyclic pyrrolo[3,4- b ]pyridin-5-ones via a cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization) in 20 to 95% overall yields, as well as four pharmacologically promising analogues via an improved cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization/S N 2): two piperazine-linked pyrrolo[3,4- b ]pyridin-5-ones in 33 and 34%, and a couple of Falipamil aza-analogues in 30 and 35% overall yields. It is worth highlighting the good substrate scope found, because final products are furnished with alkyl, aryl, and heterocyclic substituents. The use of chain-ring tautomerizable isocyanides (as key reagents for the Ugi-type three component reaction) allowed for a rapid and efficient assembly of the polysubstituted oxindoles, which were used in situ toward the complex products, conferring features like robustness, sustainability, and the one-pot approach to this synthetic methodology.
One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology.
Liu, Bingping; Yan, Shihai; Song, Zhongqian; Liu, Mengli; Ji, Xuqiang; Yang, Wenrong; Liu, Jingquan
2016-12-23
Herein, a conceptually new and straightforward aqueous route is described for the synthesis of hydroxyl- and amino-functionalized boron nitride quantum dots (BNQDs) with quantum yields (QY) as high as 18.3 % by using a facile bottom-up approach, in which a mixture of boric acid and ammonia solution was hydrothermally treated in one pot at 200 °C for 12 h. The functionalized BNQDs, with excellent photoluminescence properties, could be easily dispersed in an aqueous medium and applied as fluorescent probes for the detection of ferrous (Fe 2+ ) and ferric (Fe 3+ ) ions with excellent selectivity and low detection limits. The mechanisms for the hydrothermal reaction and fluorescence quenching were also simulated by using density functional theory (DFT), which confirmed the feasibility and advantages of this strategy. It provides a scalable and eco-friendly method for preparation of BNQDs with good dispersability and could also be generalized to the synthesis of other 2D quantum dots and nanoplates. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Essid, Idris; Lahbib, Karima; Kaminsky, Werner; Ben Nasr, Cherif; Touil, Soufiane
2017-08-01
Herein we report a simple and efficient one-pot three-component synthesis of 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones, through the zinc triflate-catalyzed Biginelli-type reaction of β-ketophosphonates, aldehydes and urea. The compounds obtained were characterized by various spectroscopic tools including IR, NMR (1H, 31P, 13C) spectroscopy, mass spectrometry and single crystal X-ray diffraction. All the synthesized compounds were screened, for the first time, for anti-inflammatory activity by carrageenan-induced hind paw edema method, using female Wister rats and they showed significant anti-inflammatory activity in some cases higher than the standard indomethacin.
Yuan, Yanan; Jiao, Xiaoyan; Han, Yehong; Bai, Ligai; Liu, Haiyan; Qiao, Fengxia; Yan, Hongyuan
2017-09-01
A fluffy porous ethylenediamine-connected graphene/carbon nanotube composite (EGC), prepared by a simple and time-saving one-pot synthesis, was successfully applied as an adsorbent in pipette-tip solid-phase extraction (PT-SPE) for the rapid extraction and determination of clenbuterol (CLB) from pork. In the one-pot synthesis, carbon nanotubes were inserted into graphene sheets and then connected with ethylenediamine through chemical modification to form a three-dimensional framework structure to prevent agglomeration of the graphene sheets. Under the optimum conditions for extraction and determination, good linearity was achieved for CLB in the range of 15.0-1000.0ngg -1 (r=0.9998) and the recoveries at three spiked levels were in the range of 92.2-96.2% with relative standard deviation ≤9.2% (n=3). In comparison with other adsorbents, including silica, NH 2 , C 18 , and Al 2 O 3 , EGC showed higher extraction and purification efficiency for CLB from pork samples. This analytical method combines excellent adsorption performance of EGC and high extraction efficiency of PT-SPE. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Paul, Bappi; Vadivel, Sethumathavan; Dhar, Siddhartha Sankar; Debbarma, Shyama; Kumaravel, M.
2017-05-01
In this paper, we report novel and green approach for one-pot biosynthesis of zinc oxide (ZnO) nanoparticles (NPs). Highly stable and hexagonal phase ZnO nanoparticles were synthesized using seeds extract from the tender pods of Parkia roxburghii and characterized by XRD, FT-IR, EDX, TEM, and N2 adsorption-desorption (BET) studies. The present method of synthesis of ZnO NPs is very efficient and cost effective. The powder XRD pattern furnished evidence for the formation of hexagonal close packing structure of ZnO NPs having average crystallite size 25.6 nm. The TEM image reveals rice shapes ZnO NPs are with an average diameter of 40-60 nm. The as-synthesized ZnO NPs has proved to be an excellent sonocatalysts for degradation of organic dye and synthesis of 2-benzimidazole derivatives.
One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization.
Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki
2018-06-08
In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe 2 O 4 )-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.
One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization
NASA Astrophysics Data System (ADS)
Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki
2018-06-01
In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe2O4)-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.
Heterocyclic compounds hold a special place in drug discovery and variety of techniques such as combinatorial synthesis, parallel synthesis, and automated library production to increase the output of these entities has been developed. Although most of these techniques are rapid a...
Wu, Liangzhuan; Yu, Yuan; Zhang, Yuan; Li, Yuzhen; Zhang, Yang; Zhi, Jinfang
2012-03-01
Architected nanostructures with interior space have attracted enormous attention due to both their esthetic beauty and their potential applications. It is a current dream to develop a template-free, one-pot and low-temperature synthetic routes for hetero-architecture in liquid media. In this manuscript, we develop a kind of template-free, low-temperature, and one-pot total synthetic strategy for synthesis of inorganic multi-component hetero-architecture. This synthetic strategy analogous to standard organic reactions used in total synthesis is an important breakthrough in inorganic chemical synthesis. We can achieve 1 kilogram (kg) yield of the TiO(2)@void@SiO(2) core-shell sphere one time by using this synthetic strategy, which may lead to practical applications of the sample. By embodying the new reaction and concept into future investigation, a more mature research field in synthetic architecture of nanomaterials can be anticipated. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang; ...
2018-04-04
Delicately engineering well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported a one-pot and facile method for synthesizing core–shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and an ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and the specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 h. As a result, owing to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performance towardsmore » ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang
Delicately engineering well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported a one-pot and facile method for synthesizing core–shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and an ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and the specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 h. As a result, owing to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performance towardsmore » ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.« less
Li, Ying; Hu, Yuan-Yuan; Zhang, Song-Lin
2013-11-21
The utility of allylsamarium bromide, both as a nucleophilic reagent and a single-electron transfer reagent, in the reaction of carbonyl compounds with allylsamarium bromide in the presence of diethyl phosphate is reported in this communication. From a synthetic point of view, a simple one-pot method for the preparation of terminal olefins is developed.
Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier
2015-07-11
The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.
Microwave-Assisted Green Synthesis of Silver Nanostructures
This account summarizes a microwave (MW)-assisted synthetic approach for producing silver nanostructures. The rapid and in-core MW heating has received considerable attention as a promising new method for the one-pot synthesis of metallic nanostructures in solutions. Conceptually...
Quantitative synthesis of genetically encoded glycopeptide libraries displayed on M13 phage.
Ng, Simon; Jafari, Mohammad R; Matochko, Wadim L; Derda, Ratmir
2012-09-21
Phage display is a powerful technology that enables the discovery of peptide ligands for many targets. Chemical modification of phage libraries have allowed the identification of ligands with properties not encountered in natural polypeptides. In this report, we demonstrated the synthesis of 2 × 10(8) genetically encoded glycopeptides from a commercially available phage-displayed peptide library (Ph.D.-7) in a two-step, one-pot reaction in <1.5 h. Unlike previous reports, we bypassed genetic engineering of phage. The glycan moiety was introduced via an oxime ligation following oxidation of an N-terminal Ser/Thr; these residues are present in the peptide libraries at 20-30% abundance. The construction of libraries was facilitated by simple characterization, which directly assessed the yield and regioselectivity of chemical reactions performed on phage. This quantification method also allowed facile yield determination of reactions in 10(9) distinct molecules. We envision that the methodology described herein will find broad application in the synthesis of custom chemically modified phage libraries.
Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil
NASA Astrophysics Data System (ADS)
Meena Kumari, M.; Philip, Daizy
2013-07-01
The use of edible oil for the synthesis of metal nanoparticles by wet chemical method is reported for the first time. The paper presents an environmentally benign bottom up approach for the synthesis of gold and silver nanoparticles using edible coconut oil at 373 K. The formation of silver nanoparticles is signaled by the brownish yellow color and that of gold nanoparticles by the purple color. Fine control over the nanoparticle size and shape from triangular to nearly spherical is achieved by varying the quantity of coconut oil. The nanoparticles have been characterized by UV-Visible, Transmission Electron Microscopy and X-ray Diffraction. The chemical interaction of capping agents with metal nanoparticles is manifested using Fourier Transform Infrared Spectroscopy. The stable and crystalline nanoparticles obtained using this simple method show remarkable size-dependent catalytic activity in the reduction of the cationic dye methylene blue (MB) to leuco methylene blue (LMB). The first order rate constants calculated uphold the size dependent catalytic activity of the synthesized nanoparticles.
Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water.
Tian, Xin-Chuan; Huang, Xing; Wang, Dan; Gao, Feng
2014-01-01
An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.
Yao, Po-Hsin Eric; Kumar, Sunil; Liu, Yu-Li; Fang, Chiu-Ping; Liu, Chia-Chen; Sun, Chung-Ming
2017-04-10
Diversity-oriented synthesis of coumarin-linked benzimidazoles from N-(2-aminophenyl)-2-cyanoacetamide was achieved via a one-pot, three-step sequential reaction in excellent yields. In situ intramolecular cyclization of the cyanoacetamide afforded benzimidazoles which subsequently underwent a Knoevenagel condensation of the 2-cyanomethylbenzimidazoles with salicylaldehydes promoted by triethylamine to reach the target compounds. An important intermediate, 2-(2-imino-2H-chromen-3-yl)-1H-benzimidazole was characterized by X-ray analysis and further hydrolyzed to 2-(coumarin-3-yl)benzimidazole in acidic condition. Among the synthesized compounds, some were found to be promising inhibitors of porcine kidney d-amino acid oxidase (pkDAO).
NASA Astrophysics Data System (ADS)
Kanakaraju, Sankari; Prasanna, Bethanamudi; Basavoju, Srinivas; Chandramouli, G. V. P.
2012-06-01
An efficient, simple and convenient method for the one-pot multi-component synthesis of novel chromeno[2,3-d]pyrimidin-8-amine derivatives has been accomplished by starting from α-naphthol, aryl aldehydes, malononitrile and NH4Cl. The reaction has been catalyzed by 1-butyl-3-methylimidazolium tetrafluoroborate [bmim]BF4 ionic liquid. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The structure of compound 4a was confirmed by single-crystal X-ray diffraction. All the synthesized compounds were evaluated for their in vitro antibacterial activity.
Hassan, Sidra; Ullrich, Anja; Müller, Thomas J J
2015-02-07
A novel chemoenzymatic three-component synthesis of (hetero)arylated propargyl amides in good yields based upon Novozyme® 435 (Candida antarctica lipase B (CAL-B)) catalyzed aminolysis of methyl carboxylates followed by Sonogashira coupling with (hetero)aryliodides in a consecutive one-pot fashion has been presented. This efficient methodology can be readily concatenated with a CuAAC (Cu catalyzed alkyne azide cycloaddition) as a third consecutive step to furnish 1,4-disubstituted 1,2,3-triazole ligated arylated propargyl amides. This one-pot process can be regarded as a transition metal catalyzed sequence that takes advantage of the copper source still present from the cross-coupling step.
A Short, One-Pot Synthesis of Bupropion (Zyban®, Wellbutrin®)
NASA Astrophysics Data System (ADS)
Perrine, Daniel M.; Ross, Jason T.; Nervi, Stephen J.; Zimmerman, Richard H.
2000-11-01
A one-pot synthesis of (±)-2-(t-butylamino)-3'-chloropropiophenone (bupropion) as its hydrochloride salt (Zyban, Wellbutrin), an important antidepressant drug used in the treatment of nicotine addiction, is described. The procedure, suitable for students in their first year of organic chemistry, can be carried out in less than two hours and provides material of high purity in overall yield of 75-85%. A solution of m-chloropropiophenone in CH2Cl2 is treated with Br2. After removal of the solvent, t-butylamine and N-methylpyrrolidinone are added and the mixture is warmed briefly, quenched with water, and extracted with ether. Concentrated HCl is added to the ether solution to precipitate the product.
Huczyński, Adam; Rutkowski, Jacek; Borowicz, Izabela; Wietrzyk, Joanna; Maj, Ewa; Brzezinski, Bogumil
2013-09-15
Seven Mannich base derivatives of polyether antibiotic Lasalocid acid (2a-2g) were synthesized and screened for their antiproliferative activity against various human cancer cell lines. A novel chemoselective one-pot synthesis of these Mannich bases was developed. Compounds 2a-2c and 2g with sterically smaller dialkylamine substituent, displayed potent antiproliferative activity (IC50: 3.2-7.3 μM), and demonstrated higher than twofold selectivity for specific type of cancer. The nature of Mannich base substituent on C-2 atom at the aromatic ring may be critical in the search for selectivity towards a particular cancer cell. Copyright © 2013 Elsevier Ltd. All rights reserved.
One-pot synthesis of polyunsaturated fatty acid amides with anti-proliferative properties.
Tremblay, Hugo; St-Georges, Catherine; Legault, Marc-André; Morin, Caroline; Fortin, Samuel; Marsault, Eric
2014-12-15
A one-pot environmentally friendly transamidation of ω-3 fatty acid ethyl esters to amides and mono- or diacylglycerols was investigated via the use of a polymer-supported lipase. The method was used to synthesize a library of fatty acid monoglyceryl esters and amides. These new derivatives were found to have potent growth inhibition effects against A549 lung cancer cells. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hrsic, Emin; Keul, Helmut; Möller, Martin
2015-12-01
The preparation of multifunctional polymers and block copolymers by a straightforward one-pot reaction process that combines enzymatic transacylation with light-controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light-controlled polymerization, leading to multifunctional methacrylate-based polymers with well-defined microstructure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
In an effort to expand the number of biobased chemicals available from sugars, xylose has been converted to 1,6,9,13-tetraoxadispiro(4.2.4.2)tetradecane in a one-pot reaction using palladium supported on silica-alumina as the catalyst. The title compound is produced in 35-40% yield under 7 MPa H2 pr...
An Investigation of Facile One-Pot Synthesis of Li2FeSiO4/C Composite for Li Ion Batteries
NASA Astrophysics Data System (ADS)
Thirumoolam, Mani Chandran; Manikandan, Ananda Kumar; Sivaramakrishnan, Balaji; Kaluvan, Hariharan; Gowravaram, Mohan Rao
2018-03-01
Li2FeSiO4 and its carbon composite are prepared by an urea-assisted combustion method. The synthesis has been carried out in different urea concentrations, namely 1 Molar (M), 2 M and 3 M urea in the cost-effective ambient atmospheric condition. The x-ray diffraction analysis confirms the orthorhombic structure of Li2FeSiO4 compounds. The urea-assisted combustion reaction enhanced the phase purity of the compound and prevented the oxidation of ferrous ions in Li2FeSiO4. The x-ray photo electron spectroscopy analysis further confirmed the reduction of Fe3+ concentration in Li2FeSiO4 while adding urea. The Li2FeSiO4 compound formation in the presence of urea occurred at a temperature < 623 K. The one-pot synthesis of Li2FeSiO4/C with the help of starch and urea in ambient atmospheric condition resulted in Li2FeSiO4 with an orthorhombic crystal structure. The carbon coating in an amorphous nature is observed and the lattice dimension values of Li2FeSiO4/C are 6.248 Å, 5.330 Å, and 5.029 Å. The lattice parameter has remained unchanged with carbon addition. The addition of 5% carbon to Li2FeSiO4 improves the electrical conductivity and lithium diffusion coefficient to 7.24 × 10-4 S cm-1 and 5.54 × 10-6 cm2, respectively. The coulombic efficiency and capacity retention after 50 cycles of Li2FeSiO4/C composite are around 83% and 95%, respectively.
NASA Astrophysics Data System (ADS)
Shi, Ya-Cheng; Chen, Sai-Sai; Feng, Jiu-Ju; Lin, Xiao-Xiao; Wang, Weiping; Wang, Ai-Jun
2018-05-01
Ionic liquids as templates or directing agents have attracted great attention for shaping-modulated synthesis of advanced nanomaterials. In this work, reduced graphene oxide supported uniform core-shell Au@Pt nanoparticles (Au@Pt NPs/rGO) were fabricated by a simple one-pot aqueous approach, using N-methylimidazolium-based dicationic ionic liquid (1,1-bis(3-methylimadazoilum-1-yl)butylene bromide, [C4(Mim)2]2Br) as the shape-directing agent. The morphology evolution, structural information and formation mechanism of Au@Pt NPs anchored on rGO were investigated by a series of characterization techniques. The obtained nanocomposites displayed superior electrocatalytic features toward hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) compared with commercial Pt/C catalyst. This approach provides a novel route for facile synthesis of nanocatalysts in fuel cells.
Liao, Jen-Yu; Selvaraju, Manikandan; Chen, Chih-Hau; Sun, Chung-Ming
2013-04-21
An efficient, facile synthesis of structurally diverse benzimidazole integrated benzoxazole and benzothiazoles has been developed. In a multi-step synthetic sequence, 4-fluoro-3-nitrobenzoic acid was converted into benzimidazole bis-heterocycles, via the intermediacy of benzimidazole linked ortho-chloro amines. The amphiphilic reactivity of this intermediate was designed to achieve the title compounds by the reaction of various acid chlorides and isothiocyanates in a single step through the in situ formation of ortho-chloro anilides and thioureas under microwave irradiation. A versatile one pot domino annulation reaction was developed to involve the reaction of benzimidazole linked ortho-chloro amines with acid chlorides and isothiocyanates. The initial acylation and urea formation followed by copper catalyzed intramolecular C-O and C-S cross coupling reactions furnished the angularly oriented bis-heterocycles which bear a close resemblance to the streptomyces antibiotic UK-1.
Novel dextran derivatives with unconventional structure formed in an efficient one-pot reaction.
Hotzel, Konrad; Heinze, Thomas
2016-11-03
An efficient one-pot synthesis of new dextran derivatives is described. The functional groups of β-alanine, i.e., the carboxyl- and amine group, are converted independently in one-step by iminium chloride to form products with a single substituent. The dextran N-[(dimethylamino)methylene]-β-alanine ester is formed selectively. The structure of the resulting polymers is unambiguously determined by means of NMR- and FTIR-spectroscopy and elemental analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ajit, Akshata V.; Gawli, Yogesh P.; Ethiraj, Anita Sagadevan
2018-05-01
Graphene-based metal oxides such as Cu2O, SnO2, CuO, Fe3O4, MnO2 are promising candidates for many applications because of their advantageous properties. Amongst all, CuO has been widely studied because of its excellent electrocatalytic activity. Although many methodologies have been developed for the synthesis of CuO/graphene nanostructures with different morphologies including nanorods, nanoparticles, nanosheets, flower, urchin; not many investigations have been done on one pot synthesis method for CuO/reduced graphene oxide (rGO) nanocomposites to achieve different morphologies. Therefore in the present work effort has been made to synthesize various CuO-rGO nanocomposites via surfactant (CTAB) assisted hydrothermal method. Detailed study was performed to monitor the effect of various reaction parameters like temperature, reaction time, reactant concentration on the synthesized nanocomposites. Several analytical tools, including XRD, SEM, FTIR and UV-Vis spectroscopy have been utilized to characterize the samples. XRD results showed formation of monoclinic structure of CuO along with presence of rGO. Calculated optical bandgap studies indicate decrease in the bandgap of synthesized CuO (Eg=4.5eV-4.34eV) with increase in temperature from 120°C to 180°C. Our results clearly demonstrate that reaction parameters play a key role to bring out the optical and morphological changes in the CuO-rGO nanocomposites.
Kumar, Niggula Praveen; Thatikonda, Sowjanya; Tokala, Ramya; Kumari, S Sujana; Lakshmi, Uppu Jaya; Godugu, Chandraiah; Shankaraiah, Nagula; Kamal, Ahmed
2018-05-01
A facile one-pot method for the synthesis of new phenanthrene fused-dihydrodibenzo-quinolinone derivatives has been successfully accomplished by employing sulfamic acid as catalyst. These new compounds were evaluated for their in vitro cytotoxic potential against human lung (A549), prostate (PC-3 and DU145), breast (MCF-7) and colon (HT-29 and HCT-116) cancer cell lines. Among all the tested compounds, one of the derivatives 8p showed good anti-proliferative activity against A549 lung cancer cell line with an IC 50 of 3.17 ± 0.52 µM. Flow cytometric analyses revealed that compound 8p arrested both Sub G1 and G2/M phases of cell cycle in a dose dependent manner. The compound 8p also displayed significant inhibition of tubulin polymerization and disruption of microtubule network (IC 50 of 5.15 ± 0.15 µM). Molecular docking studies revealed that compound 8p efficiently interacted with critical amino acid Cys241 of the α/β-tubulin by a hydrogen bond (SH…O = 2.4 Å). Further, the effect of 8p on cell viability was also studied by AO/EB, DCFDA and DAPI staining. The apoptotic characteristic features revealed that 8p inhibited cell proliferation effectively through apoptosis by inducing the ROS generation. Analysis of mitochondrial membrane potential through JC-1 staining and annexin V binding assay indicated the extent of apoptosis in A549 cancer cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates.
Yu, Hai; Chen, Xi
2016-03-14
Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.
One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates
Yu, Hai; Chen, Xi
2016-01-01
Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with the glycosyltransferases in one pot for efficient production of target glycans from simple monosaccharides and accpetors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitate the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modificiation (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequential for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of glycosyltransferasese define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. The Perspective summariezes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed. PMID:26881499
Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu
2015-08-12
Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Luo, Zhu; Suib, Steven L; He, Peng; Ding, Guqiao; Zhang, Zhengguo; Sun, Luyi
2017-04-21
A hybrid photocatalyst based on anatase TiO 2 was designed by doping TiO 2 with sulfur and incorporating reduced graphene oxide (TiO 2 -S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO 2 -S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO 2 -S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO 2 -S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO 2 -S/rGO hybrid, and its excellent photocatalytic performance, such TiO 2 -S/rGO hybrids are expect to find practical applications in environmental and energy sectors.
NASA Astrophysics Data System (ADS)
Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Luo, Zhu; Suib, Steven L.; He, Peng; Ding, Guqiao; Zhang, Zhengguo; Sun, Luyi
2017-04-01
A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors.
Kim, Hun Young; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.
2009-01-01
Highly enantio- and diastereoselective methods for the synthesis of a variety of cyclopropyl alcohols are reported. These methods represent the first one-pot approaches to syn-vinyl cyclopropyl alcohols, syn-cis-disubstituted cyclopropyl alcohols, and anti-cyclopropyl alcohols from achiral precursors. The methods begin with enantioselective C–C bond formations promoted by a MIB-based zinc catalyst to generate allylic alkoxide intermediates. The intermediates are then subjected to in situ alkoxide-directed cyclopropanation to provide cyclopropyl alcohols. In the synthesis of vinyl cyclopropyl alcohols, hydroboration of enynes is followed by transmetalation of the resulting dienylborane to zinc to provide dienylzinc reagents. Enantioselective addition to aldehydes generates the requisite dienyl zinc alkoxides, which are then subjected to in situ cyclopropanation to furnish vinyl cyclopropyl alcohols. Cyclopropanation occurs at the double bond allylic to the alkoxide. Using this method, syn-vinylcyclopropyl alcohols are obtained in 65–85% yield, 76–93% ee, and >19:1 dr. To prepare anti-cyclopropanols, enantioselective addition of alkylzinc reagents to conjugated enals provides allylic zinc alkoxides. Because direct cyclopropanation provides syn-cyclopropyl alcohols, the intermediate allylic alkoxides were treated with TMSCl/Et3N to generate intermediate silyl ethers. In situ cyclopropanation of the allylic silyl ether resulted in cyclopropanation to form the anti-cyclopropyl silyl ether. Workup with TBAF affords the anti-cyclopropyl alcohols in one-pot in 60–82% yield, 89–99% ee, and ≥10:1 dr. For the synthesis of cis-disubstituted cyclopropyl alcohols, in situ generated (Z)-vinyl zinc reagents were employed in asymmetric addition to aldehydes to generate (Z)-allylic zinc alkoxides. In situ cyclopropanation provides syn-cis-disubstituted cyclopropyl alcohols in 42–70% yield, 88–97% ee, and >19:1 dr. These one-pot procedures enable the synthesis of a diverse array of cyclopropyl alcohol building blocks with high enantio- and diastereoselectivities. PMID:19954146
NASA Astrophysics Data System (ADS)
Qi, Fei; Chen, Yuanfu; Zheng, Binjie; He, Jiarui; Li, Qian; Wang, Xinqiang; Lin, Jie; Zhou, Jinhao; Yu, Bo; Li, Pingjian; Zhang, Wanli
2017-08-01
Rhenium disulfide (ReS2), a two-dimensional (2D) semiconductor, has attracted more and more attention due to its unique anisotropic electronic, optical, mechanical properties. However, the facile synthesis and electrochemical property of ReS2 and its composite are still necessary to be researched. In this study, for the first time, the ReS2/reduced graphene oxide (rGO) composites have been synthesized through a facile and one-pot hydrothermal method. The ReS2/rGO composites exhibit a hierarchical, interconnected, and porous architecture constructed by nanosheets. As anode for lithium-ion batteries, the as-synthesized ReS2/rGO composites deliver a large initial capacity of 918 mAh g-1 at 0.2 C. In addition, the ReS2/rGO composites exhibit much better electrochemical cycling stability and rate capability than that of bare ReS2. The significant enhancement in electrochemical property can be attributed to its unique architecture constructed by nanosheets and porous structure, which can allow for easy electrolyte infiltration, efficient electron transfer, and ionic diffusion. Furthermore, the graphene with high electronic conductivity can provide good conductive passageways. The facile synthesis approach can be extended to prepare other 2D transition metal dichalcogenides semiconductors for energy storage and catalytic application.
Synthesis of isoxazolo[5,4-b]pyridines by microwave-assisted multi-component reactions in water.
Tu, Shu-Jiang; Zhang, Xiao-Hong; Han, Zheng-Guo; Cao, Xu-Dong; Wu, Shan-Shan; Yan, Shu; Hao, Wen-Juan; Zhang, Ge; Ma, Ning
2009-01-01
A series of new polycyclic-fused isoxazolo[5,4-b]pyridines were obtained by a one-pot tandem reaction under microwave irradiation in water. Without any use of additional reagent or catalyst, the synthetic protocol represents a green one and makes this methodology suitable for library synthesis in drug discovery efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang
2018-04-04
Delicately engineering the well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported one-pot and facile method for synthesizing core-shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 hrs, far faster than the previous reports. Owe to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performancemore » towards ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.« less
Deng, Yong; Hu, Qin; Yuan, Qiulin; Wu, Yan; Ling, Ying; Tang, Haoyu
2014-01-01
Molecular bottle-brush functionalized single-walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one-pot synthetic methodology. Elongating the main-chain and side-chain length of molecular bottle-brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One-Pot Synthesis of a bis-Pocket Corrole through a 14-fold Bromination Reaction
Norheim, Hans-Kristian; Schneider, Christian; Gagnon, Kevin J.; ...
2017-02-14
For a one-pot protocol, effecting 14-fold bromination with elemental bromine, has afforded copper β-octabromo-meso-tris(2,6-dibromo-3,5-dimethoxyphenyl)corrole, a new bis-pocket metallocorrole. The Cu complex underwent smooth demetalation under reductive conditions, affording the free corrole ligand, which in turn could be readily complexed to Mn III and Au III. Finally, a single-crystal X-ray structure was obtained for the MnIII complex.
One-pot synthesis of hypervalent iodine reagents for electrophilic trifluoromethylation.
Matoušek, Václav; Pietrasiak, Ewa; Schwenk, Rino; Togni, Antonio
2013-07-05
Simplified syntheses suited for large scale preparations of the two hypervalent iodine reagents 1 and 2 for electrophilic trifluoromethylation are reported. In both cases, the stoichiometric oxidants sodium metaperiodate and tert-butyl hypochlorite have been replaced by trichloroisocyanuric acid. Reagent 1 is accessible in a one-pot procedure from 2-iodobenzoic acid in 72% yield. Reagent 2 was prepared via fluoroiodane 11 in a considerably shorter reaction time and with no need of an accurate temperature control.
Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew
2009-07-07
A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring.
On-Line Synthesis and Analysis by Mass Spectrometry
ERIC Educational Resources Information Center
Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham
2015-01-01
In this laboratory experiment, students learn how to use ESI to accelerate chemical synthesis and to couple it with on-line mass spectrometry for structural analysis. The Hantzsch synthesis of symmetric 1,4-dihydropyridines is a classic example of a one-pot reaction in which multiple intermediates can serve to indicate the progress of the reaction…
Zhang, Xing; Wu, Hui; Huang, Bing; Li, Zhimin; Ye, Qin
2017-01-10
In vitro cascade catalysis using enzyme-based system is becoming a promising biomanufacturing platform for biofuels and biochemicals production. Glutathione is a pivotal non-protein thiol compound and widely applied in food and pharmaceutical industries. In this study, glutathione was synthesized by a bifunctional glutathione synthetase together with a thermophilic ATP regeneration system through a two-enzyme cascade in vitro. Four bifunctional glutathione synthetases from Streptococcus sanguinis, S. gordonii, S. uberis and Bacillus cereus were applied for glutathione synthesis. The bifunctional glutathione synthetase from S. sanguinis was selected and coupled with the polyphosphate kinase from Thermosynechococcus elongatus BP-1 for regenerating ATP to produce glutathione in one pot. In the optimized system, 28.5mM glutathione was produced within 5h due to efficient ATP regeneration from low-cost polyphosphate. The yield based on added l-cysteine reached 81.4% and the productivity of glutathione achieved 5.7mM/h. The one-pot system indicated a potential biotransformation platform for industrial production of glutathione. Copyright © 2016 Elsevier B.V. All rights reserved.
Matsumura, Keisuke; Yoshizaki, Soichi; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Kaiho, Tatsuo; Fuse, Shinichiro; Tanaka, Hiroshi; Takahashi, Takashi
2015-06-26
This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open-circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n-hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2-5.6%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A potent IκB kinase-β inhibitor labeled with carbon-14 and deuterium.
Latli, Bachir; Eriksson, Magnus; Hrapchak, Matt; Busacca, Carl A; Senanayake, Chris H
2016-06-30
3-Amino-4-(1,1-difluoro-propyl)-6-(4-methanesulfonyl-piperidin-1-yl)-thieno[2,3-b]pyridine-2-carboxylic acid amide (1) is a potent IκB Kinase-β (IKK-β) inhibitor. The efficient preparations of this compound labeled with carbon-14 and deuterium are described. The carbon-14 synthesis was accomplished in six radiochemical steps in 25% overall yield. The key transformations were the modified Guareschi-Thorpe condensation of 2-cyano-(14) C-acetamide and a keto-ester followed by chlorination to 2,6-dichloropyridine derivative in one pot. The isolated dichloropyridine was then converted in three steps in one pot to [(14) C]-(1). The carbon-14 labeled (1) was isolated with a specific activity of 54.3 mCi/mmol and radiochemical purity of 99.8%. The deuterium labeled (1) was obtained in eight steps and in 57% overall chemical yield using 4-hydroxypiperidine-2,2,3,3,4,5,5,6,6-(2) H9 . The final three steps of this synthesis were run in one pot. Copyright © 2016 John Wiley & Sons, Ltd.
One-Pot Polyol Synthesis of Pt/CeO2 and Au/CeO2 Nanopowders as Catalysts for CO Oxidation.
Pilger, Frank; Testino, Andrea; Lucchini, Mattia Alberto; Kambolis, Anastasios; Tarik, Mohammed; El Kazzi, Mario; Arroyo, Yadira; Rossell, Marta D; Ludwig, Christian
2015-05-01
The facile one-pot synthesis of CeO2-based catalysts has been developed to prepare a relatively large amount of nanopowders with relevant catalytic activity towards CO oxidation. The method consists of a two-steps process carried out in ethylene glycol: in the first step, 5 nm well-crystallized pure CeO2 is prepared. In a subsequent second step, a salt of a noble metal is added to the CeO2 suspension and the deposition of the noble metal on the nanocrystalline CeO2 is induced by heating. Two catalysts were prepared: Pt/CeO2 and Au/CeO2. The as-prepared catalysts, the thermally treated catalysts, as well as the pure CeO2, are characterized by XRD, TGA, XPS, FTIR, HR-TEM, STEM, particle size distribution, and N2-physisorption. In spite of the identical preparation protocol, Au and Pt behave in a completely different way: Au forms rather large particles, most of them with triangular shape, easily identifiable and dispersed in the CeO2 matrix. In contrast, Pt was not identified as isolated particles. The high resolution X-ray diffraction carried out on the Pt/CeO2 thermally treated sample (500 degrees C for 1 h) shows a significant CeO2 lattice shrinkage, which can be interpreted as an at least partial incorporation of Pt into the CeO2 crystal lattice. Moreover, only Pt2+ and Pt4+ species were identified by XPS. In literature, the incorporation of Pt into the CeO2 lattice is supported by first-principle calculations and experimentally demonstrated only by combustion synthesis methods. To the best of our knowledge this is the first report where ionically dispersed Pt into the CeO2 lattice is obtained via a liquid synthesis method. The thermally treated Pt/CeO2 sample revealed good activity with 50% CO conversion at almost room temperature.
Sachdeva, Harshita; Saroj, Rekha
2013-01-01
An extremely efficient catalytic protocol for the synthesis of a series of pyranopyrazole derivatives developed in a one-pot four-component approach in the presence of ZnO nanoparticles as heterogeneous catalyst using water as a green solvent is reported. Greenness of the process is well instituted as water is exploited both as reaction media and medium for synthesis of catalyst. The ZnO nanoparticles exhibited excellent catalytic activity, and the proposed methodology is capable of providing the desired products in good yield (85-90%) and short reaction time. After reaction course, ZnO nanoparticles can be recycled and reused without any apparent loss of activity which makes this process cost effective and hence ecofriendly. All the synthesized compounds have been characterized on the basis of elemental analysis, IR, ¹H NMR, and ¹³C NMR spectral studies.
One-pot green synthesis of carbon quantum dot for biological application
NASA Astrophysics Data System (ADS)
Asghar, Khushnuma; Qasim, Mohd; Das, D.
2017-05-01
A one-pot microwave assisted method for synthesizing carbon quantum dots (CQDs) from honey is presented in this paper. The structural, morphological and optical properties of synthesized CQDs were characterized by XRD, TEM, UV-Vis spectrophotometer, and Raman techniques. The average particle size of CQDs is found to be 2 to 7 nm. The main advantage of this work is the use of inexpensive, less toxic and environmental friendly precursors and synthesis procedure for CQDs. In addition to this, the particle size of prepared CQDs was found to be ultrafine with narrow size distribution. The as-prepared CQDs, with smaller particle size, good stability, good optical properties, water dispersibility and low toxicity, show promising potential for applications in biomedical field.
Papadopoulos, Giorgos N; Kokotos, Christoforos G
2016-08-19
A mild, one-pot, and environmentally friendly synthesis of amides from aldehydes and amines is described. Initially, a photoorganocatalytic reaction of aldehydes with di-isopropyl azodicarboxylate leads to an intermediate carbonyl imide, which can react with a variety of amines to afford the desired amides. The initial visible light-mediated activation of a variety of monosubstituted or disubstituted aldehydes is usually fast, occurring in a few hours. Following the photocatalytic reaction, addition of the primary amine at room temperature or the secondary amine at elevated temperatures leads to the corresponding amide from moderate to excellent yields without epimerization. This methodology was applied in the synthesis of Moclobemide, a drug against depression and social anxiety.
Yang, Yuzhao; Lin, Xiaofeng; Li, Wenlang; Ou, Jiemei; Yuan, Zhongke; Xie, Fangyan; Hong, Wei; Yu, Dingshan; Ma, Yuguang; Chi, Zhenguo; Chen, Xudong
2017-05-03
Cathode interlayers (CILs) with low-cost, low-toxicity, and excellent cathode modification ability are necessary for the large-scale industrialization of polymer solar cells (PSCs). In this contribution, we demonstrated one-pot synthesized carbon quantum dots (C-dots) with high production to serve as efficient CIL for inverted PSCs. The C-dots were synthesized by a facile, economical microwave pyrolysis in a household microwave oven within 7 min. Ultraviolet photoelectron spectroscopy (UPS) studies showed that the C-dots possessed the ability to form a dipole at the interface, resulting in the decrease of the work function (WF) of cathode. External quantum efficiency (EQE) measurements and 2D excitation-emission topographical maps revealed that the C-dots down-shifted the high energy near-ultraviolet light to low energy visible light to generate more photocurrent. Remarkably improvement of power conversion efficiency (PCE) was attained by incorporation of C-dots as CIL. The PCE was boosted up from 4.14% to 8.13% with C-dots as CIL, which is one of the best efficiency for i-PSCs used carbon based materials as interlayers. These results demonstrated that C-dots can be a potential candidate for future low cost and large area PSCs producing.
NASA Astrophysics Data System (ADS)
Vasimalai, Nagamalai; Fernandez-Arguelles, Maria T.
2016-11-01
Highly fluorescent gold nanodots have been synthesized through a novel rapid, facile and one-pot room temperature route using trithiocyanuric acid as mild reducing agent and surface ligand. The proposed synthesis overcomes limitations of other synthetic routes in terms of cost, time, complexity and environmental risks, and gives rise to highly fluorescent gold nanodots within 10 min at room temperature, with a maximum emission wavelength at 623 nm and a large Stokes shift (213 nm). Moreover, the synthesized gold nanodots showed a large emission QY (9.62 × 10-2) and excellent photostability and colloidal properties during long periods. Increasing concentrations of CN- in aqueous solution progressively quenched the fluorescence emission and produced a slight blue shift of the synthesized gold nanodots. A good linear relationship was observed for CN- concentrations between 0.29 and 8.87 μM, obtaining a detection limit estimated according to the 3s IUPAC criteria of 150 nM. Besides, the influence on the fluorescence signal of potential interferents at high concentrations (1000 μM) was studied, including I-, F-, citrate, {{{{PO}}}4}3-, {{{{NO}}}3}-, {{{{SO}}}4}2-, CH3COO-, EDTA, Br-, {{{{CO}}}3}2-, Cl- and S2- K+, Na+, Li+, Mg2+, Ca2+, Ba2+, Cu2+, Zn2+, Ni2+, Al3+, Fe2+, Fe3+, Pb2+, Cd2+, Hg2+ and Co2+. Results showed a high selectivity towards all the investigated ions, except for Pb2+, Cd2+ and Hg2+, although the use of glutathione and BSA as masking agents drastically minimized the effect of such cations at high concentrations. The synthesized gold nanodots were successfully evaluated as highly sensitive and selective probes for cyanide determination in environmental water samples, including tap, river, lake and sea water, indicating the validity of TCA-AuNDs for analytical CN- contamination control.
Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides
NASA Astrophysics Data System (ADS)
Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong
2015-07-01
We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02240a
A Rapid, One-Pot Synthesis of β-Siloxy-α-Haloaldehydes
Saadi, Jakub; Akakura, Matsujiro
2011-01-01
The Mukaiyama cross aldol reaction of α-fluoro-, α-chloro-, and α-bromoacetaldehyde-derived (Z)-tris(trimethylsilyl)- silyl enol ethers furnishing anti-β-siloxy-α-haloaldehydes is described. A highly diastereoselective, one-pot, sequential double aldol process, affording novel β,δ-bissiloxy-α,γ-bishaloaldehydes is developed. Reactions are catalyzed by C6F5CHTf2 and C6F5CTf2AlMe2 (0.5–1.5 mol%) and provide access to halogenated polyketide fragments. PMID:21815682
One-Pot Exfoliation of Graphite and Synthesis of Nanographene/Dimesitylporphyrin Hybrids
Bernal, M. Mar; Pérez, Emilio M.
2015-01-01
A simple one-pot process to exfoliate graphite and synthesize nanographene-dimesitylporphyrin hybrids has been developed. Despite the bulky mesityl groups, which are expected to hinder the efficient π–π stacking between the porphyrin core and graphene, the liquid-phase exfoliation of graphite is significantly favored by the presence of the porphyrins. Metallation of the porphyrin further enhances this effect. The resulting graphene/porphyrin hybrids were characterized by spectroscopy (UV-visible, fluorescence, and Raman) and microscopy (STEM, scanning transmission electron microscopy). PMID:25984598
Tan, Yueming; Xu, Chaofa; Chen, Guangxu; Liu, Zhaohui; Ma, Ming; Xie, Qingji; Zheng, Nanfeng; Yao, Shouzhuo
2013-03-01
Synthesis of nitrogen-doped carbons with large surface area, high conductivity, and suitable pore size distribution is highly desirable for high-performance supercapacitor applications. Here, we report a novel protocol for template synthesis of ultrathin nitrogen-doped graphitic carbon nanocages (CNCs) derived from polyaniline (PANI) and their excellent capacitive properties. The synthesis of CNCs involves one-pot hydrothermal synthesis of Mn3O4@PANI core-shell nanoparticles, carbonization to produce carbon coated MnO nanoparticles, and then removal of the MnO cores by acidic treatment. The CNCs prepared at an optimum carbonization temperature of 800 °C (CNCs-800) have regular frameworks, moderate graphitization, high specific surface area, good mesoporosity, and appropriate N doping. The CNCs-800 show high specific capacitance (248 F g(-1) at 1.0 A g(-1)), excellent rate capability (88% and 76% capacitance retention at 10 and 100 A g(-1), respectively), and outstanding cycling stability (~95% capacitance retention after 5000 cycles) in 6 M KOH aqueous solution. The CNCs-800 can also exhibit great pseudocapacitance in 0.5 M H2SO4 aqueous solution besides the large electrochemical double-layer capacitance. The excellent capacitance performance coupled with the facile synthesis of ultrathin nitrogen-doped graphitic CNCs indicates their great application potential in supercapacitors.
Liu, Bing; Zhang, Zehui
2016-08-23
Recently, there has been growing interest in the transformation of renewable biomass into value-added fuels and chemicals. The catalytic conversion of naturally abundant carbohydrates can generate two-important furan chemicals: 5-hydroxymethylfurfural (HMF) from C6 carbohydrates and furfural from C5 carbohydrates. Both HMF and furfural have received great interest as precursors in the synthesis of commodity chemicals and liquid fuels. In recent years, a trend has emerged to integrate sequential catalytic processes involving multistep reactions for the direct one-pot transformation of carbohydrates into the aimed fuels and chemicals. One-pot reactions have remarkably unique and environmentally friendly benefits, including the fact that isolation and purification of intermediate compounds can be avoided. Herein, the present article aims to review recent advances in the one-pot conversion of carbohydrates into furan derivatives via furfural and HMF as intermediates. Special attention will be paid to the catalytic systems, mechanistic insight, reaction pathways, and catalyst stability. It is expected that this review will guide researchers to develop effective catalytic systems for the one-pot transformation of carbohydrates into furan derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Green synthesis of nanomaterials and sustainable applications of nano-catalysts
Green synthesis efforts involving the use of vitamins B1, B2, C, and tea and wine polyphenols which function both as reducing and capping agents will be presented which enables extremely simple, one-pot, green synthetic methods to nanomaterials in water.1a Shape-controlled synth...
Diao, Haipeng; Li, Tingting; Zhang, Rong; Kang, Yu; Liu, Wen; Cui, Yanhua; Wei, Shuangyan; Wang, Ning; Li, Lihong; Wang, Haojiang; Niu, Weifen; Sun, Tijian
2018-07-05
Most carbon dots (CDs) conventional fabrication approaches produce single colored fluorescent materials, different methods are required to synthesize distinct carbon dots for specific optical applications. Herein, using one-pot hydrothermal treatment of Syringa obtata Lindl, a facile, low-cost and green assay is achieved in the controllable synthesis of blue and green fluorescent carbon dots. The fluorescent emission of CDs can be well-tuned by adding sodium hydroxide in the precursor solution. Blue fluorescent CDs are applied to Fe 3+ sensing with a low detection limit of 0.11 μM of linear range from 0.5 to 80 μM, and then further extended to analysis river water samples. Green fluorescent CDs can be applied to pH detection, which show a remarkable linear enhancement in the green fluorescence emission region when the pH is increased from 1.98 to 8.95. Eventually, the detection of Fe 3+ and pH are applied for the living cells fluorescent images in MCF-7 cells are achieved successfully, indicating as-synthesized CDs potential toward diverse application as promising candidate. Copyright © 2018 Elsevier B.V. All rights reserved.
Hemostatic kaolin-polyurethane foam composites for multifunctional wound dressing applications.
Lundin, Jeffrey G; McGann, Christopher L; Daniels, Grant C; Streifel, Benjamin C; Wynne, James H
2017-10-01
There are numerous challenges associated with the acute care of traumatic limb injuries in forward military settings. A lack of immediate medical facilities necessitates that the wound dressing perform multiple tasks including exudate control, infection prevention, and physical protection of the wound for extended periods of time. Here, kaolin was incorporated into recently developed robust polyurethane (PU) hydrogel foams at 1-10wt% in an effort to impart hemostatic character. ATR-IR and gel fraction analysis demonstrated that the facile, one-pot synthesis of the PU hydrogel was unaffected by kaolin loading, as well as the use of a non-toxic catalyst, which significantly improved cytocompatibility of the materials. Kaolin was generally well dispersed throughout the PU matrix, though higher loadings exhibited minor evidence of aggregation. Kaolin-PU composites exhibited burst release of ciprofloxacin over 2h, the initial release rates of which increased with kaolin loading. Kaolin loading imparted excellent hemostatic character to the PU foams at relatively low loading levels (5wt%). This work demonstrates the simple and inexpensive synthesis of robust, hemostatic, and absorptive kaolin-PU foams that have promising potential as multifunctional wound dressing materials. Published by Elsevier B.V.
Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii
2016-01-01
The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.
Fabrication of modified GIC: GIC-nanoSiO2-HA-ZrO2 using two different mixing methods
NASA Astrophysics Data System (ADS)
Ghazali, Nor Ainon Maziah; Bakar, Wan Zaripah Wan; Rahman, Ismail Ab; Masudi, Sam'an Malik
2017-12-01
Conventional glass ionomer cement (GIC) is among the mostly used material in dentistry but some modifications were needed due to its deficiencies such as low mechanical strength and opacity. In this study, a new nanocomposite, GIC-nanoSiO2-HA-ZrO2 was fabricated whereby zirconia is added to improve the hardness. The nanocomposite of SiO2-HA-ZrO2 was synthesized using two different mixing methods which are one pot and spatulation methods. One pot method involved the addition of zirconia nanopowder during the one pot synthesis of nanoSiO2-HA and spatulation method involved the addition of zirconia nanopowder by controlled grinding process using mortar and pestle. Different weight percentage from 1-20 % of nanoSiO2-HA-ZrO2 was added to GIC and the hardness was analyzed using Vickers Tester. The one pot method recorded the highest and significant hardness value at 3 % addition which is ˜75.27 HV (± 2.48) compared to spatulation method ˜69.53 HV (± 7.78) at p < 0.05. Scanning Electron Microscope image from one pot method showed less agglomeration of the nanopowder and nanozirconia is uniformly distributed. Within the limitation of this study, one pot method produced better GIC-nanoSiO2-HA-ZrO2 composite.
Zhang, Lingen; Xu, Zhenming
2017-06-16
Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO 2 and As 2 O 3 , the gas-solid phase reaction of GeO 2 , As 2 O 3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.
Wang, Shige; Li, Kai; Chen, Yu; Chen, Hangrong; Ma, Ming; Feng, Jingwei; Zhao, Qinghua; Shi, Jianlin
2015-01-01
Two-dimensional transition metal dichalcogenides, particularly MoS2 nanosheets, have been deemed as a novel category of NIR photothermal transducing agent. Herein, an efficient and versatile one-pot solvothermal synthesis based on "bottom-up" strategy has been, for the first time, proposed for the controlled synthesis of PEGylated MoS2 nanosheets by using a novel "integrated" precursor containing both Mo and S elements. This facile but unique PEG-mediated solvothermal procedure endowed MoS2 nanosheets with controlled size, increased crystallinity and excellent colloidal stability. The photothermal performance of nanosheets was optimized via modulating the particulate size and surface PEGylation. PEGylated MoS2 nanosheets with desired photothermal conversion performance and excellent colloidal and photothermal stability were further utilized for highly efficient photothermal therapy of cancer in a tumor-bearing mouse xenograft. Without showing observable in vitro and in vivo hemolysis, coagulation and toxicity, the optimized MoS2-PEG nanosheets showed promising in vitro and in vivo anti-cancer efficacy. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Swami, Anuradha; Mittal, Sherry; Chopra, Adity; Sharma, Rohit K.; Wangoo, Nishima
2018-03-01
In recent years, the synthesis of gold nanostructures of controllable shapes and dimensions has become a subject of intensive and interesting studies. Especially, anisotropic gold nanostructures such as nanoplates, nanoribbons, nanoprisms and nanorods have attracted much attention due to their striking optical properties and promising applications in electronics, photonics, sensing and biomedicine. Keeping this in mind, in the present report, an unprecedented, facile and one pot synthesis of isotropic (spherical) and anisotropic (triangular, pentagonal, hexagonal, rod shaped) gold nanomaterials via pH controlled shape modulation using hydroxyl moeity containing α-amino acids (Serine, Threonine, Tyrosine) as both reducing and capping agents is reported. The synthesized nanostructures have been further characterized by UV-Vis spectroscopy and transmission electron microscopy. It was deduced from these studies that pH played a key role in the anisotropic growth of gold nanostructures. These gold nanoparticles can be further used for applications in biosensing, plasmonics, and electrocatalysis and others involving surface enhanced raman scattering. This study is therefore, important from the point of view of using amino acids for the synthesis of gold nanoparticles of different shapes and sizes leading towards the development of inventive biosensors and biocompatible nanoconstructs.
NASA Astrophysics Data System (ADS)
Jithendra Kumara, K. S.; Krishnamurthy, G.; Sunil Kumar, N.; Naik, Nagaraja; Praveen, T. M.
2018-04-01
The Co(II) and Fe(III) centres magnetically separable two new mesoporous nanocatalyst were synthesised via chemical synthesis method. The transmission electron microscopic studies (TEM) show that, the particles are spherical shape with mean size of 20 nm. The Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) reveals that SiO2 is coating on the surface of the cobalt ferrate nanoparticle (CoFe2O4). The SiO2 coating is efficiently preventing the aggregated collision of nanoparticles. Magnetic measurements show that diamagnetic character of the SiO2 is unaffected to the coercivity of SiO2 coated CoFe2O4 particles. In addition, these nanoparticles are used as nanocatalyst for high yielding, facile and expeditious synthesis of various functionalized 2-arylbenzimidazoles via one-pot condensation. The cascade including imine formation, cyclization, condensation, and aromatization occurs, without addition of any reducing or oxidizing agents. In all situations, the desired product was synthesised with excellent yield. The shorter reaction time, mild reaction condition, simplicity, non-toxicity, safe reaction and easy workup are the impotent merits of this protocol.
Facile synthesis of core-shell Cu2O@ ZnO structure with enhanced photocatalytic H2 production
NASA Astrophysics Data System (ADS)
Zhang, Yong-Hui; Jiu, Bei-Bei; Gong, Fei-Long; Lu, Kuan; Jiang, Nan; Zhang, Hao-Li; Chen, Jun-Li
2018-05-01
Core-shell Cu2O@ZnO composites were synthesized successfully based on a one-pot hydrothermal method in the presence of dioctyl sulfosuccinate sodium salt (AOT) surfactant. The Cu2O can be converted to rough core-shell Cu2O@ZnO structure by adjusting the amount of zinc powder added. The as-synthesized Cu2O@ZnO composites exhibited excellent photocatalytic activity and the amount of H2 generated using these composites was 4.5-fold more than that produced with Cu2O cubes. A possible photocatalytic mechanism for the Cu2O@ZnO composites with enhanced photocatalytic activity could be the separation by ZnO of the effective charge carriers.
Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mary, K. A. Ann; Unnikrishnan, N. V., E-mail: nvu100@yahoo.com; Philip, Reji
2014-07-01
We report facile preparation of water dispersible CuS quantum dots (2–4 nm) and nanoparticles (5–11 nm) through a nontoxic, green, one-pot synthesis method. Optical and microstructural studies indicate the presence of surface states and defects (dislocations, stacking faults, and twins) in the quantum dots. The smaller crystallite size and quantum dot formation have significant effects on the high energy excitonic and low energy plasmonic absorption bands. Effective two-photon absorption coefficients measured using 100 fs laser pulses employing open-aperture Z-scan in the plasmonic region of 800 nm reveal that CuS quantum dots are better ultrafast optical limiters compared to CuS nanoparticles.
Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand
2016-12-01
We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Rodnick, Melissa E; Brooks, Allen F; Hockley, Brian G; Henderson, Bradford D; Scott, Peter J H
2013-08-01
A novel one-pot method for preparing [(18)F]fluoromethylcholine ([(18)F]FCH) via in situ generation of [(18)F]fluoromethyl tosylate ([(18)F]FCH2OTs), and subsequent [(18)F]fluoromethylation of dimethylaminoethanol (DMAE), has been developed. [(18)F]FCH was prepared using a GE TRACERlab FXFN, although the method should be readily adaptable to any other fluorine-(18) synthesis module. Initially ditosylmethane was fluorinated to generate [(18)F]FCH2OTs. DMAE was then added and the reaction was heated at 120 °C for 10 min to generate [(18)F]FCH. After this time, reaction solvent was evaporated, and the crude reaction mixture was purified by solid-phase extraction using C(18)-Plus and CM-Light Sep-Pak cartridges to provide [(18)F]FCH formulated in USP saline. The formulated product was passed through a 0.22 µm filter into a sterile dose vial, and submitted for quality control testing. Total synthesis time was 1.25 h from end-of-bombardment. Typical non-decay-corrected yields of [(18)F]FCH prepared using this method were 91 mCi (7% non-decay corrected based upon ~1.3 Ci [(18)F]fluoride), and doses passed all other quality control (QC) tests. A one-pot liquid-phase synthesis of [(18)F]FCH has been developed. Doses contain extremely low levels of residual DMAE (31.6 µg/10 mL dose or ~3 ppm) and passed all other requisite QC testing, confirming their suitability for use in clinical imaging studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rodnick, Melissa E.; Brooks, Allen F.; Hockley, Brian G.; Henderson, Bradford D.; Scott, Peter J. H.
2013-01-01
Introduction A novel one-pot method for preparing [18F]fluoromethylcholine ([18F]FCH) via in situ generation of [18F]fluoromethyl tosylate ([18F]FCH2OTs), and subsequent [18F]fluoromethylation of dimethylaminoethanol (DMAE), has been developed. Methods [18F]FCH was prepared using a GE TRACERlab FXFN, although the method should be readily adaptable to any other fluorine-18 synthesis module. Initially ditosylmethane was fluorinated to generate [18F]FCH2OTs. DMAE was then added and the reaction was heated at 120°C for 10 min to generate [18F]FCH. After this time, reaction solvent was evaporated, and the crude reaction mixture was purified by solid-phase extraction using C18-Plus and CM-Light Sep-Pak cartridges to provide [18F]FCH formulated in USP saline. The formulated product was passed through a 0.22 μm filter into a sterile dose vial, and submitted for quality control testing. Total synthesis time was 1.25 hours from end-of-bombardment. Results Typical non-decay-corrected yields of [18F]FCH prepared using this method were 91 mCi (7% non-decay corrected based upon ~1.3 Ci [18F]fluoride), and doses passed all other quality control (QC) tests. Conclusion A one-pot liquid-phase synthesis of [18F]FCH has been developed. Doses contain extremely low levels of residual DMAE (31.6 μg / 10 mL dose or ~3 ppm) and passed all other requisite QC testing, confirming their suitability for use in clinical imaging studies. PMID:23665261
NASA Astrophysics Data System (ADS)
Dezhurov, Sergey V.; Krylsky, Dmitry V.; Rybakova, Anastasia V.; Ibragimova, Sagila A.; Gladyshev, Pavel P.; Vasiliev, Alexey A.; Morenkov, Oleg S.
2018-03-01
A fast and efficient one-pot synthesis of thiol-terminated poly(vinylpirrolidone-co-maleic anhydride-co-ethylene glycol dimethacrylate) based heterobifunctional polymer (PTVP) has been developed. The polymer was used for the modification of quantum dots (QDs) to prepare water soluble and stable QDs with emission quantum yield as high as 80%. Using carbodiimide method, PTVP-capped red light-emitting QDs were conjugated to model monoclonal antibodies specific to glycoprotein B (gB) of Aujeszky’s disease virus (ADV) and successfully used in the lateral flow assay (LFA) for the detection of ADV gB in biological fluids. A comparative analysis of the sensitivity of the method was carried out using three types of QDs emitting in the red and far-red region.
One-pot synthesis of 4,8-dibromobenzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole.
Tam, Teck Lip; Li, Hairong; Wei, Fengxia; Tan, Ke Jie; Kloc, Christian; Lam, Yeng Ming; Mhaisalkar, Subodh G; Grimsdale, Andrew C
2010-08-06
A one-step synthesis of 4,8-dibromobenzo[1,2-c;4,5-c']bis[1,2,5]thiadiazole with use of 1,2,4,5-tetraaminobenzene tetrahydrobromide and thionyl bromide in good yield is reported. This unit can then be used in the synthesis of low bandgap materials via palladium-catalyzed coupling reactions. The approach offers a quick and easy way to prepare low bandgap materials as compared to the current literature methods.
Andeme Edzang, Judicaelle; Chen, Zhongrui; Audi, Hassib; Canard, Gabriel; Siri, Olivier
2016-10-10
A green and very efficient synthesis of N-substituted benzoquinonediimines or C-substituted benzo-bis(imidazole) derivatives is described under similar conditions. The different reaction pathway is only controlled by the nature of the primary amines, which tunes the reactivity of the intermediates.
Solventless and One-Pot Synthesis of Cu(II) Phthalocyanine Complex: A Green Chemistry Experiment
ERIC Educational Resources Information Center
Sharma, R. K.; Sharma, Chetna; Sidhwani, Indu Tucker
2011-01-01
With the growing awareness of green chemistry, it is increasingly important for students to understand this concept in the context of laboratory experiments. Although microwave-assisted organic synthesis has become a common and invaluable technique in recent years, there have been few procedures published for microwave-assisted inorganic synthesis…
One pot electrochemical synthesis of polymer/CNT/metal nanoparticles for fuel cell applications
NASA Astrophysics Data System (ADS)
Ventrapragada, Lakshman; Zhu, Jingyi; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Nanomaterials center Team
Carbon nanotubes (CNTs) have become a key player in the design of materials for energy applications. They gained their popularity in industrial and scientific research due to their unique properties like excellent conductivity, high surface area, etc. Here we used chemical vapor deposition (CVD) to synthesize two types of CNTs namely, helically coiled CNTs and vertically aligned CNTs. These CNTs were subsequently used to make composites with conducting polymers and metal nanoparticles. One pot electrochemical synthesis was designed to electropolymerize aniline, pyrrole etc. on the surface of the electrode with simultaneous deposition of platinum and gold metal nanoparticles, and CNTs in the polymer matrix. The as synthesized composite materials were characterized with scanning electron microscope for surface morphology and spectroscopic techniques like Raman, UV-Vis for functionality. These were used to study electrocatalytic oxidation of methanol and ethanol for alkaline fuel cell applications. Electrodes fabricated from these composites not only showed good kinetics but also exhibited excellent stability. Uniqueness of this composite lies in its simple two step synthesis and it doesn't involve any surfactants unlike conventional chemical synthesis routes.
Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano
2014-11-04
Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tseng, Chih-Chung; Tasi, Cheng-Hsun; Sun, Chung-Ming
2012-06-01
A novel protocol for rapid assemble of benzimidazole framework has been demonstrated. This method incorporated with light fluorous-tag provides a convenient method for diversification of benzimidazoles and for easy purification via fluorous solid-phase extraction (F-SPE) in a parallel manner. The key transformation of this study involves in situ reduction of aromatic nitro compound, amide formation, cyclization and aromatization promoted by microwave irradiation in a one-pot fashion. The strategy is envisaged to be applied for the establishment of drug-like small molecule libraries for high throughput screening.
Mukaiyama, Takasuke; Ogata, Kento; Sato, Itaru; Hayashi, Yujiro
2014-10-13
(-)-Horsfiline and (-)-coerulescine were synthesized through three one-pot operations in 33 and 46% overall yield, respectively. Key to the success was the efficient use of a diarylprolinol silyl ether to catalyze the asymmetric Michael addition of nitromethane to a 2-oxoindoline-3-ylidene acetaldehyde. This allowed the all-carbon quaternary, spirocyclic carbon stereocenter to be constructed in good yield with excellent enantioselectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pantone, Vincenzo; Annese, Cosimo; Fusco, Caterina; Fini, Paola; Nacci, Angelo; Russo, Antonella; D'Accolti, Lucia
2017-02-21
An innovative and eco-friendly one-pot synthesis of bio-based polyurethanes is proposed via the epoxy-ring opening of epoxidized soybean oil (ESO) with methanol, followed by the reaction of methoxy bio-polyols intermediates with 2,6-tolyl-diisocyanate (TDI). Both synthetic steps, methanolysis and polyurethane linkage formation, are promoted by a unique catalyst, molybdenum(VI) dichloride dioxide (MoCl₂O₂), which makes this procedure an efficient, cost-effective, and environmentally safer method amenable to industrial scale-up.
One-pot synthesis of β-acetamido ketones using boric acid at room temperature.
Karimi-Jaberi, Zahed; Mohammadi, Korosh
2012-01-01
β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products.
Desmarchelier, Alaric; Coeffard, Vincent; Moreau, Xavier; Greck, Christine
2012-10-08
Primary amine-catalyzed direct conversion of α,α-disubstituted aldehydes into 3-pyrrolines with a quaternary stereocenter is reported. The one-pot enantioselective sequence is based on a α-amination, an aza-Michael addition of hydrazine, an aldol condensation dehydratation and proceeds with good yields and excellent levels of enantioselectivity. Synthetically attractive applications including the formation of aziridinopyrrolidine or epoxypyrrolidine derivatives with good yields and selectivities are also described. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One-Pot Synthesis of β-Acetamido Ketones Using Boric Acid at Room Temperature
Karimi-Jaberi, Zahed; Mohammadi, Korosh
2012-01-01
β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products. PMID:22666168
Qian, Haisheng; Zhu, Enbo; Zheng, Shunji; Li, Zhengquan; Hu, Yong; Guo, Changfa; Yang, Xingyun; Li, Liangchao; Tong, Guoxiu; Guo, Huichen
2010-12-10
One-pot hydrothermal process has been developed to synthesize uniform Te@phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te@phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.
Cimarelli, Cristina; Di Nicola, Matteo; Diomedi, Simone; Giovannini, Riccardo; Hamprecht, Dieter; Properzi, Roberta; Sorana, Federico; Marcantoni, Enrico
2015-12-28
The benzimidazole core is a common moiety in a large number of natural products and pharmacologically active small molecules. The synthesis of novel benzimidazole derivatives remains a main focus in medicinal research. In continuation of the efforts towards Ce(III) catalysts for organic transformations, we observed for the first time the activity of the iodide ion and copper cation in activating CeCl3·7H2O in the selective formation of prototypical 2-substituted benzimidazoles. The one-pot CeCl3·7H2O-CuI catalytic system procedure includes the cyclo-dehydrogenation of aniline Schiff's bases, generated in situ from the condensation of 1,2-phenylenediamine and aldehydes, followed by the oxidation with iodine, which works as a hydrogen sponge. Mild reaction conditions, good to excellent yields, and clean reactions make the procedure a useful contribution to the synthesis of biologically active fused heterocycles containing benzimidazoquinazolines.
Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures.
Parker, Alison; Marszewski, Michal; Jaroniec, Mietek
2013-03-01
Porous carbon-titania and highly crystalline titania nanostructured materials were obtained through a microwave-assisted one-pot synthesis. Resorcinol and formaldehyde were used as carbon precursors, triblock copolymer Pluronic F127 as a stabilizing agent, and titanium isopropoxide as a titania precursor. This microwave-assisted one-pot synthesis involved formation of carbon spheres according to the recently modified Stöber method followed by hydrolysis and condensation of titania precursor. This method afforded carbon-titania composite materials containing anatase phase with specific surface areas as high as 390 m(2) g(-1). The pure nanostructured titania, obtained after removal of carbon through calcination of the composite material in air, was shown to be the anatase phase with considerably higher degree of crystallinity and the specific surface area as high as 130 m(2) g(-1). The resulting titania, because of its high surface area, well-developed porosity, and high crystallinity, is of great interest for catalysis, water treatment, lithium batteries, and other energy-related applications.
NASA Astrophysics Data System (ADS)
Togashi, Takanari; Umetsu, Mitsuo; Naka, Takashi; Ohara, Satoshi; Hatakeyama, Yoshiharu; Adschiri, Tadafumi
2011-09-01
The assembly of metal oxide nanoparticles (NPs) on a biomolecular template by a one-pot hydrothermal synthesis method is achieved for the first time. Magnetite (Fe3O4) nanoneedles (length: 100 nm; width: 10 nm) were assembled on cyclic-diphenylalanine (cFF) nanorods (length: 2-10 μm; width: 200 nm). The Fe3O4 nanoneedles and cFF nanorods were simultaneously synthesized from FeSO4 and l-phenylalanine by hydrothermal synthesis (220 °C and 22 MPa), respectively. The samples were analyzed by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Experimental results indicate that Fe3O4 nanoneedles were assembled on cFF nanorods during the hydrothermal reaction. The composite contained 3.3 wt% Fe3O4 nanoneedles without any loss of the original magnetic properties of Fe3O4.
Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng
2014-02-24
An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nugraha, Aditya D.; Wulandari, Ika O.; Hutami Rahayu, L. B.; Riva'i, Imam; Santojo, D. J. Djoko H.; Sabarudin, Akhmad
2018-01-01
Among the various substances developed through nanoparticles, iron oxide (Fe3O4) nanoparticle is one of the substances that have been widely used in various fields such as industry, agriculture, biotechnology and biomedicine. The synthesis of Fe3O4 nanoparticle can be carried out by two methods, consist of chemical and mechanical synthesis methods. Coprecipitation is one of the most commonly used methods for chemical synthesis. Fe3O4 compounds are easily oxidized because they are amphoteric. To avoid the continuous oxidation process, chemical modification process should be carried out with the addition of a solution of polyvinyl alcohol (PVA). In this study, PVA-coated Fe3O4 nanoparticles were synthesized by in-situ coprecipitation and ultrasonication methods through direct mixing (one-pot synthesis) of the iron (II) chloride tetrahydrate (FeCl2.4H2O), iron (III) chloride hexahydrate (FeCl3.6H2O), and PVA under alkaline condition. The effects of addition amount of NH3solution (by adjusting its flow rate using automated syringe pump) and PVA concentration were gently studied. Interaction of PVA with Fe3O4 nanoparticle was identified by infrared spectroscopy whereas lattice parameters and crystallite sizes of the synthesized Fe3O4 nanoparticles and PVA-coated Fe3O4 nanoparticles were assessed by X-ray diffraction (XRD).
Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; ...
2017-04-21
A hybrid photocatalyst based on anatase TiO 2 was designed by doping TiO 2 with sulfur and incorporating reduced graphene oxide (TiO 2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO 2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO 2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation ofmore » methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO 2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Finally, considering both the facile and scalable reaction to synthesize TiO 2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO 2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors.« less
Thangaraj, Muthu; Gengan, Robert Moonsamy; Ranjan, Bibhuti; Muthusamy, Ramesh
2018-01-01
A series of quinoline based peptides were synthesized by a one-pot reaction through Ugi-four component condensation of lipoic acid, cyclohexyl isocyanide, aniline derivatives and 2-methoxy quinoline-3-carbaldehyde derivatives under microwave irradiation. The products were obtained in excellent yields and high purity. Solvent optimization and the effect of microwave irradiation with various powers were also observed. All the synthesized compounds were characterized by FTIR, NMR spectral data and elemental analysis. A total of eight peptides were subjected to antimicrobial, antioxidant and toxicity evaluation. Among them, four peptides showed potential towards antibacterial screening with Bacillus cereus, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Candida albicans, Candida utilis and three peptides showed antioxidant test positive (DPPH). Besides, toxicity of all the peptides were evaluated by using brine shrimp and it was observed that four peptides showed mortality rate less than 50% up to 48h. Molecular docking studies revealed that the higher binding affinity of the two peptides toward DNA gyrase than ciprofloxacin based on Libdock score. The described chemistry represents a facile tool to synthesize complex heterocycles of pharmaceutical relevance in a highly efficient and one-pot fashion. The advantages of this method are its green approach, inexpensive solvent, shorter reaction times and excellent yields. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng
2015-09-01
A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.
Hu, Min; Zhang, Zhenwei; Luo, Chenkun; Qiao, Xiuqing
2017-12-01
In this paper, hierarchical Ag-decorated SnO 2 microspheres were synthesized by a facile one-pot hydrothermal method. The resulting composites were characterized by XRD, SEM, TEM, XPS, BET, and FTIR analysis. The catalytic performances of the samples were evaluated with the reduction of 4-nitrophenol to 4-aminophenol by potassium borohydride (KBH 4 ) as a model reaction. Time-dependent experiments indicated that the hierarchical microspheres assembled from SnO 2 and Ag nanoparticles can be formed when the react time is less than 10 h. With the increase of hydrothermal time, SnO 2 nanoparticles will self-assemble into SnO 2 nanosheets and Ag nanoparticles decorated SnO 2 nanosheets were obtained. When evaluated as catalyst, the obtained Ag-decorated SnO 2 microsphere prepared for 36 h exhibited excellent catalytic performance with normalized rate constant (κ nor ) of 6.20 min -1 g -1 L, which is much better than that of some previous reported catalysts. Moreover, this Ag-decorated SnO 2 microsphere demonstrates good reusability after the first five cycles. In addition, we speculate the formation mechanism of the hierarchical Ag-decorated SnO 2 microsphere and discussed the possible origin of the excellent catalytic activity.
Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Luo, Zhu; Suib, Steven L.; He, Peng; Ding, Guqiao; Zhang, Zhengguo; Sun, Luyi
2017-01-01
A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors. PMID:28429736
Chen, Junze; Wu, Xue-Jun; Yin, Lisha; Li, Bing; Hong, Xun; Fan, Zhanxi; Chen, Bo; Xue, Can; Zhang, Hua
2015-01-19
Exploration of low-cost and earth-abundant photocatalysts for highly efficient solar photocatalytic water splitting is of great importance. Although transition-metal dichalcogenides (TMDs) showed outstanding performance as co-catalysts for the hydrogen evolution reaction (HER), designing TMD-hybridized photocatalysts with abundant active sites for the HER still remains challenge. Here, a facile one-pot wet-chemical method is developed to prepare MS2-CdS (M=W or Mo) nanohybrids. Surprisedly, in the obtained nanohybrids, single-layer MS2 nanosheets with lateral size of 4-10 nm selectively grow on the Cd-rich (0001) surface of wurtzite CdS nanocrystals. These MS2-CdS nanohybrids possess a large number of edge sites in the MS2 layers, which are active sites for the HER. The photocatalytic performances of WS2-CdS and MoS2-CdS nanohybrids towards the HER under visible light irradiation (>420 nm) are about 16 and 12 times that of pure CdS, respectively. Importantly, the MS2-CdS nanohybrids showed enhanced stability after a long-time test (16 h), and 70% of catalytic activity still remained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping
2014-04-04
Unique SnO(x) (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnO(x)/OMC) are firstly synthesized through a 'one-pot' synthesis together with the soft template self-assembly approach. The obtained SnO(x)/OMC nanocomposites with various SnO(x) contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m(2) g(-1), and high pore volumes between 0.39 and 0.48 cm(3) g(-1). With loading of Pt, Pt-SnO(x)/OMC with relatively low SnO(x) content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnO(x)/C, which may be attributed not only to the synergetic effect of embedded SnO(x), but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.
NASA Astrophysics Data System (ADS)
Wang, Ai-Jun; Ju, Ke-Jian; Zhang, Qian-Li; Song, Pei; Wei, Jie; Feng, Jiu-Ju
2016-09-01
Folic acid (FA), as an important biomolecule in cell division and growth, is firstly employed as the structure director and stabilizing agent for controlled synthesis of uniform Au65Pt35 nanodendrites (NDs) by a one-pot wet-chemical bio-inspired route at room temperature. No pre-seed, template, organic solvent, polymer, surfactant or complex instrument is involved. The products are mainly characterized by transmission electron microscopy (TEM), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), X-ray diffraction (XRD), and X-Ray photoelectron spectroscopy (XPS). The architectures have enlarged electrochemically active surface area (60.6 m2 gPt-1), enhanced catalytic activity and durability for methanol and ethanol oxidation in contrast with commercial Pt black and the other AuPt alloys by tuning the molar ratios of Au to Pt (e.g., Au31Pt69 and Au82Pt18 nanoparticles). This strategy would be applied to fabricate other bimetallic nanocatalysts in fuel cells.
Development of chitosan-coated gold nanoflowers as SERS-active probes
NASA Astrophysics Data System (ADS)
Xu, Dan; Gu, Jiangjiang; Wang, Weina; Yu, Xuehai; Xi, Kai; Jia, Xudong
2010-09-01
Surface-enhanced Raman scattering (SERS) has been intensely researched for many years as a potential technique for highly sensitive detection. This work, through the reduction of HAuCl4 with pyrrole in aqueous solutions, investigated a facile one-pot synthesis of flower-like Au nanoparticles with rough surfaces. The formation process of the Au nanoflowers (AuNFs) was carefully studied, and a spontaneous assembly mechanism was proposed based on the time-course experimental results. The key synthesis strategy was to use pyrrole as a weak particle stabilizing and reducing agent to confine crystal growth in the limited ligand protection region. The nanometer-scale surface roughness of AuNFs provided several hot spots on a single particle, which significantly increased SERS enhancement. Good biocompatible stable Raman-active probes were synthesized by coating AuNFs with chitosan. The conservation of the SERS effects in living cells suggested that the chitosan-capped AuNFs could be suitable for highly sensitive detection and have potential for targeting of tumors in vivo.
Formal Synthesis of (±)-Aplykurodinone-1 through a Hetero-Pauson-Khand Cycloaddition Approach.
Tao, Cheng; Zhang, Jing; Chen, Xiaoming; Wang, Huifei; Li, Yun; Cheng, Bin; Zhai, Hongbin
2017-03-03
The tricyclic intermediate 2 has been synthesized in eight steps from known compound 6 in 20% overall yield. As such, this constitutes a highly efficient formal synthesis of (±)-aplykurodinone-1. This synthesis features a unique, one-pot, intramolecular hetero-Pauson-Khand reaction (h-PKR)/desilylation sequence to expeditiously construct the tricyclic framework, providing valuable insights for expanding the scope and boundaries of h-PKR.
Caryophyllene driven diversity in an one-pot rearrangement of oxidation and transanular reactions
NASA Astrophysics Data System (ADS)
Tang, Hao-Yu; Quan, Lu-Lu; Yu, Jie; Zhang, Qiang; Gao, Jin-Ming
2018-03-01
Diversity oriented synthesis starting from natural products is a newly coming strategy to build diverse skeletons to meet the demands of high throughput screening in drug development. Caryophyllene was being considered as an ideal starting point to build divers natural-like sesquiterpenes due to its rich sources and build-in reactivity. In this paper, six new natural-like products (2-7) were synthesized form the natural cryophyllene oxide via cascade oxidation and transannular reactions in a one-pot procedure. Their structures were elucidated by exhaustive spectra method including 2D NMR and X-ray diffraction. Of the products, compounds 6 and 7 possess very similar skeleton to natural products. Our findings demonstrated that one-pot cascade reactions on macrocyclic natural products is a concise strategy to create diverse natural-like skeletons.
Zhang, Xiao-Yun; Liu, Dong-Ming; Lv, Xin-Hu; Sun, Miao; Sun, Xiao-Li; Wan, Wen-Ming
2016-11-01
A one-pot method is introduced for the successful synthesis of narrow-distributed (Đ = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 10 6 g mol -1 ) and micro-/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization-induced self-assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro-/nanoparticles under mild conditions in one pot. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel multicomponent reaction for the combinatorial synthesis of 2-imidazolines.
Bon, Robin S; Hong, Chongen; Bouma, Marinus J; Schmitz, Rob F; de Kanter, Frans J J; Lutz, Martin; Spek, Anthony L; Orru, Romano V A
2003-10-02
[reaction: see text] The three-component condensation between an amine, an aldehyde, and an alpha-acidic isocyanide efficiently provides substituted 2-imidazolines in a one-pot reaction under mild conditions.
NASA Astrophysics Data System (ADS)
Anam, Kishorekumar T.; Curtis, Michael P.; Irfan, Muhammad J.; Johnson, Michael P.; Royer, Andrew P.; Shahmohammadi, Kianor; Vinod, Thottumkara K.
2002-05-01
This four-week project-based laboratory exercise, developed for advanced organic chemistry students, involves a one-pot synthesis of m-terphenyls. Chemistry of aryl diazonium salts and Grignard reagents and reactivity of aryne intermediates toward nucleophilic reagents form the reaction chemistry basis for the project. The project exposes students to a number of important laboratory techniques (thin-layer chromatography, gas chromatography-mass spectrometry, and column chromatography) for monitoring reaction progress and product isolation. A variety of spectroscopic techniques, including IR, 1H NMR, 13C NMR, and attached proton test are used for product characterization. Students are also introduced to a useful empirical relationship to help predict (with considerable accuracy) the 13C chemical shift values of carbon atoms of substituted benzenes.
Klejborowska, Greta; Maj, Ewa; Wietrzyk, Joanna; Stefańska, Joanna; Huczyński, Adam
2018-05-02
Monensin A (MON) is a polyether ionophore antibiotic, which shows a wide spectrum of biological activity. New MON derivatives such as double-modified ester-carbonates and double-modified amide-carbonates were obtained by a new and efficient one-pot synthesis with triphosgene as the activating reagent and the respective alcohol or amine. All new derivatives were tested for their antiproliferative activity against two drug-sensitive (MES-SA, LoVo) and two drug-resistant (MES-SA/DX5, LoVo/DX) cancer cell lines, and were also studied for their antimicrobial activity against different Staphylococcus aureus and Staphylococcus epidermidis bacterial strains. For the first time, the activity of MON and its derivatives against MES-SA and MES-SA/DX5 were evaluated. © 2018 John Wiley & Sons A/S.
Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions
NASA Astrophysics Data System (ADS)
Forsythe, Jay G.; English, Sloane L.; Simoneaux, Rachel E.; Weber, Arthur L.
2018-05-01
A one-pot method was developed for the preparation of a series of β-alanine standards of moderate size (2 to ≥12 residues) for studies concerning the prebiotic origins of peptides. The one-pot synthesis involved two sequential reactions: (1) dry-down self-condensation of β-alanine methyl ester, yielding β-alanine peptide methyl ester oligomers, and (2) subsequent hydrolysis of β-alanine peptide methyl ester oligomers, producing a series of β-alanine peptide standards. These standards were then spiked into a model prebiotic product mixture to confirm by HPLC the formation of β-alanine peptides under plausible reaction conditions. The simplicity of this approach suggests it can be used to prepare a variety of β-peptide standards for investigating differences between α- and β-peptides in the context of prebiotic chemistry.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Enomoto, Taro; Yasui, Yoshizumi; Takemoto, Yoshiji
2010-07-16
Synthesis of the pentacyclic core of ecteinascidin 743 is described. This synthesis features concise construction of the diazabicyclo[3.3.1]nonane skeleton using gold(I)-catalyzed one-pot keto amide formation, acid-promoted enamide formation, and oxidative Friedel-Crafts cyclization as the key steps.
Zhang, Zhicheng; Liu, Guigao; Cui, Xiaoya; Chen, Bo; Zhu, Yihan; Gong, Yue; Saleem, Faisal; Xi, Shibo; Du, Yonghua; Borgna, Armando; Lai, Zhuangchai; Zhang, Qinghua; Li, Bing; Zong, Yun; Han, Yu; Gu, Lin; Zhang, Hua
2018-06-07
The rational design and synthesis of anisotropic 3D nanostructures with specific composition, morphology, surface structure, and crystal phase is of significant importance for their diverse applications. Here, the synthesis of well-crystalline lotus-thalamus-shaped Pt-Ni anisotropic superstructures (ASs) via a facile one-pot solvothermal method is reported. The Pt-Ni ASs with Pt-rich surface are composed of one Ni-rich "core" with face-centered cubic (fcc) phase, Ni-rich "arms" with hexagonal close-packed phase protruding from the core, and facet-selectively grown Pt-rich "lotus seeds" with fcc phase on the end surfaces of the "arms." Impressively, these unique Pt-Ni ASs exhibit superior electrocatalytic activity and stability toward the hydrogen evolution reaction under alkaline conditions compared to commercial Pt/C and previously reported electrocatalysts. The obtained overpotential is as low as 27.7 mV at current density of 10 mA cm -2 , and the turnover frequency reaches 18.63 H 2 s -1 at the overpotential of 50 mV. This work provides a new strategy for the synthesis of highly anisotropic superstructures with a spatial heterogeneity to boost their promising application in catalytic reactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe2+ sensing
NASA Astrophysics Data System (ADS)
Xiao, Sai Jin; Chu, Zhao Jun; Zuo, Jun; Zhao, Xiao Jing; Huang, Cheng Zhi; Zhang, Li
2017-02-01
A new route for one-pot preparation of carbon dots (CDs) was developed at room temperature using PEG400 as both the carbon source and passitive agent. The new method possesses the advantages of facile, rapid, energy-saving, without any external stimulus and environment friendly. By changing the content of NaOH, the PEG400-CDs with blue-emitting, yellow-emitting, orange red-emitting and red-emitting were obtained, and the formation mechanism were carefully investigated. In addition, a sensitive fluorescence sensor were developed for Fe2+ detection based on PEG400-CDs since the fluorescence of PEG400-CDs could be enhanced by Fe2+. It was found that there is a good linear relationship between the enhanced fluorescence and Fe2+ concentration in the range of 0.5 to 2.0 μmol·L-1 with the detection limit of 6.0 × 10-8 mol·L-1, and Fe2+ in water samples was also determined with high accuracy and repeatability.
Liu, Song; An, Cuihua; Zang, Lei; Chang, Xiaoya; Guo, Huinan; Jiao, Lifang; Wang, Yijing
2018-04-16
A 3D flower-like mesoporous Ni@C composite material has been synthesized by using a facile and economical one-pot hydrothermal method. This unique 3D flower-like Ni@C composite, which exhibited a high surface area (522.4 m 2 g -1 ), consisted of highly dispersed Ni nanoparticles on mesoporous carbon flakes. The effect of calcination temperature on the electrochemical performance of the Ni@C composite was systematically investigated. The optimized material (Ni@C 700) displayed high specific capacity (1306 F g -1 at 2 A g -1 ) and excellent cycling performance (96.7 % retention after 5000 cycles). Furthermore, an asymmetric supercapacitor (ASC) that contained Ni@C 700 as cathode and mesoporous carbon (MC) as anode demonstrated high energy density (60.4 W h kg -1 at a power density of 750 W kg -1 ). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang
Delicately engineering the well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported one-pot and facile method for synthesizing core-shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 hrs, far faster than the previous reports. Owe to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performancemore » towards ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.Core–shell PdPb@Pd aerogels with multiply-twinned grains and an ordered intermetallic phase was synthesized, which exhibited good electrocatalytic activity towards ethanol oxidation.« less
Facile deposition of gold nanoparticles on core-shell Fe3O4@polydopamine as recyclable nanocatalyst
NASA Astrophysics Data System (ADS)
Zhao, Yan; Yeh, Yaowen; Liu, Rui; You, Jinmao; Qu, Fengli
2015-07-01
A simple and green method for the controllable synthesis of core-shell Fe3O4 polydopamine nanoparticles (Fe3O4@PDA NPs) with tunable shell thickness and their application as a recyclable nanocatalyst support is presented. Magnetite Fe3O4 NPs formed in a one-pot process by the hydrothermal approach with a diameter of ˜240 nm were coated with a polydopamine shell layer with a tunable thickness of 15-45 nm. The facile deposition of Au NPs atop Fe3O4@PDA NPs was achieved by utilizing PDA as both the reducing agent and the coupling agent. The satellite nanocatalysts exhibited high catalytic performance for the reduction of p-nitrophenol. Furthermore, the recovery and reuse of the catalyst was demonstrated 8 times without detectible loss in activity. The synergistic combination of unique features of PDA and magnetic nanoparticles establishes these core-shell NPs as a versatile platform for potential applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Qiurong; Zhu, Chengzhou; Li, Yijing
2016-11-08
Currently, three dimensional self-supported metallic structures are attractive for their unique properties of high porosity, low density, excellent conductivity etc. that promote their wide application in fuel cells. Here, for the first time, we report a facile synthesis of dendritic core-shell structured Au/Pt3Pd ternary metallic aerogels via a one-pot self-assembly gelation strategy. The as-prepared Au/Pt3Pd ternary metallic aerogels demonstrated superior electrochemical performances toward oxygen reduction reaction compared to commercial Pt/C. The unique dendritic core-shell structures, Pt3Pd alloyed shells and the cross-linked network structures are beneficial for the electrochemical oxygen reduction reaction performances of the Pt-based materials via the electronic effect,more » geometric effect and synergistic effect. This strategy of fabrication of metallic hydrogels and aerogels as well as their exceptional properties hold great promise in a variety of applications.« less
Puanglek, Sakarin; Kimura, Satoshi; Enomoto-Rogers, Yukiko; Kabe, Taizo; Yoshida, Makoto; Wada, Masahisa; Iwata, Tadahisa
2016-01-01
Bio-based polymer is considered as one of potentially renewable materials to reduce the consumption of petroleum resources. We report herein on the one-pot synthesis and development of unnatural-type bio-based polysaccharide, α-1,3-glucan. The synthesis can be achieved by in vitro enzymatic polymerization with GtfJ enzyme, one type of glucosyltransferase, cloned from Streptococcus salivarius ATCC 25975 utilizing sucrose, a renewable feedstock, as a glucose monomer source, via environmentally friendly one-pot water-based reaction. The structure of α-1,3-glucan is completely linear without branches with weight-average molecular weight (Mw) of 700 kDa. Furthermore, acetate and propionate esters of α-1,3-glucan were synthesized and characterized. Interestingly, α-1,3-glucan acetate showed a comparatively high melting temperature at 339 °C, higher than that of commercially available thermoplastics such as PET (265 °C) and Nylon 6 (220 °C). Thus, the discovery of crystalline α-1,3-glucan esters without branches with high thermal stability and melting temperature opens the gate for further researches in the application of thermoplastic materials. PMID:27469976
NASA Astrophysics Data System (ADS)
Puanglek, Sakarin; Kimura, Satoshi; Enomoto-Rogers, Yukiko; Kabe, Taizo; Yoshida, Makoto; Wada, Masahisa; Iwata, Tadahisa
2016-07-01
Bio-based polymer is considered as one of potentially renewable materials to reduce the consumption of petroleum resources. We report herein on the one-pot synthesis and development of unnatural-type bio-based polysaccharide, α-1,3-glucan. The synthesis can be achieved by in vitro enzymatic polymerization with GtfJ enzyme, one type of glucosyltransferase, cloned from Streptococcus salivarius ATCC 25975 utilizing sucrose, a renewable feedstock, as a glucose monomer source, via environmentally friendly one-pot water-based reaction. The structure of α-1,3-glucan is completely linear without branches with weight-average molecular weight (Mw) of 700 kDa. Furthermore, acetate and propionate esters of α-1,3-glucan were synthesized and characterized. Interestingly, α-1,3-glucan acetate showed a comparatively high melting temperature at 339 °C, higher than that of commercially available thermoplastics such as PET (265 °C) and Nylon 6 (220 °C). Thus, the discovery of crystalline α-1,3-glucan esters without branches with high thermal stability and melting temperature opens the gate for further researches in the application of thermoplastic materials.
Fischer, Michael G; Hua, Xiao; Wilts, Bodo D; Castillo-Martínez, Elizabeth; Steiner, Ullrich
2018-01-17
Lithium iron phosphate (LFP) is currently one of the main cathode materials used in lithium-ion batteries due to its safety, relatively low cost, and exceptional cycle life. To overcome its poor ionic and electrical conductivities, LFP is often nanostructured, and its surface is coated with conductive carbon (LFP/C). Here, we demonstrate a sol-gel based synthesis procedure that utilizes a block copolymer (BCP) as a templating agent and a homopolymer as an additional carbon source. The high-molecular-weight BCP produces self-assembled aggregates with the precursor-sol on the 10 nm scale, stabilizing the LFP structure during crystallization at high temperatures. This results in a LFP nanonetwork consisting of interconnected ∼10 nm-sized particles covered by a uniform carbon coating that displays a high rate performance and an excellent cycle life. Our "one-pot" method is facile and scalable for use in established battery production methodologies.
Sirisha, Kalam; Achaiah, Garlapati; Reddy, Vanga Malla
2010-06-01
A series of twenty new 4-substituted-2,6-dimethyl-3,5-bis-N-(heteroaryl)-carbamoyl-1,4-dihydropyridines have been prepared from a three-component one-pot condensation reaction of N-heteroaryl acetoacetamide, an aromatic/heteroaromatic aldehyde, and ammonium acetate under four different experimental conditions. Except for the conventional method, all the experimental conditions were simple, eco-friendly, economical, and the reactions were rapid and high-yielding. The methods employed have been compared in terms of yields, cost, and simplicity. The synthesized compounds were characterized by different spectroscopic techniques and evaluated for their in-vitro anticancer, antibacterial, and antitubercular activities. Amongst the compounds tested, compound 25 exhibited the highest anticancer activity while compounds 14 and 18 exhibited significant antibacterial and antitubercular activities.
One-pot biosynthesis of polymer-inorganic nanocomposites
NASA Astrophysics Data System (ADS)
Geng, Jiaqing; Yang, Dong; Zhu, Yong; Cao, Lichao; Jiang, Zhongyi; Sun, Yan
2011-06-01
A biological method is demonstrated to fabricate the polymer-inorganic nanocomposites (PINCs) utilizing bacterium as an efficient and versatile biofactory. Gluconacetobacter xylinum that can produce bacterial cellulose is incubated in the culture medium containing titanium or silica precursor. The PINCs can be acquired under the elaborate control of the culturing condition of G. xylinum, in which the formation of inorganic nanoparticles about several tens of nanometers in size synchronizes the fabrication of reticulated bacterial cellulose membrane composed of dense and finely branched nanofibers about 60-120 nm in diameter. The composition and chemical states, morphology, thermal stability of the inorganic nanoparticles, and nanocomposites were extensively characterized. A tentative mechanism for the formation of PINCs is proposed. It is hoped that this study may establish a generic platform toward facile and green synthesis of nanocomposite materials.
Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang
2015-02-01
It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.
A General One-Pot Synthesis of 2H-Indazoles Using an Organophosphorus-Silane System.
Schoene, Jens; Bel Abed, Hassane; Schmieder, Peter; Christmann, Mathias; Nazaré, Marc
2018-04-12
A simple and direct approach for the regioselective construction of the privileged 2H-indazole scaffold is described. The developed one-pot strategy employs a phospholene mediated N-N bond formation to access 2H-indazoles. The amount of organophosphorus reagent was minimized by recycling the phospholene oxide with organosilanes as reductant. Starting from functionalized 2-nitrobenzaldehydes and primary amines a mild reductive cyclisation, using commercially available phospholene oxide and silanes, delivered a wide variety of substituted 2H-indazoles in good to excellent yields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baig, Mirza Feroz; Shaik, Siddiq Pasha; Nayak, V Lakshma; Alarifi, Abdullah; Kamal, Ahmed
2017-09-01
An efficient one-pot synthetic procedure has been developed for the preparation of heteroarenyl-benzimidazoles via oxidative C sp3 -H functionalization with o-phenylenediamine using I 2 -DMSO in open air from easily available starting materials. Based on a logical plan a spectrum of multi fundamental reactions like iodination, Kornblum oxidation and amination were brought into one-pot. By using this simple method a library of heteroarenyl-benzimidazoles derivatives (3a-t and 5a-g) and heteroarenyl-benzothiazole (3u) have been synthesized in good to excellent yield and screened for their cytotoxicity against a group of four human cancer cell lines. Among them 3h, 3q and 5b showed significant cytotoxic activities with an IC 50 of 1.69, 1.62 and 2.81µM respectively against lung cancer (A549) cell line. Copyright © 2017 Elsevier Ltd. All rights reserved.
Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis
Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter
2016-01-01
A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. PMID:26676875
Kotkar, Shriram P; Chavan, Vilas B; Sudalai, Arumugam
2007-03-15
A novel and highly enantioselective method for the synthesis of gamma-amino-alpha,beta-unsaturated esters via tandem alpha-amination-Horner-Wadsworth-Emmons (HWE) olefination of aldehydes is described. The one-pot assembly has been demonstrated for the construction of functionalized chiral 2-pyrrolidones, subunits present in several alkaloids. [structure: see text
Fu, Renzhong; Yang, Yang; Ma, Xudong; Sun, Yu; Li, Jin; Gao, Hang; Hu, Huaxing; Zeng, Xiaojun; Yi, Jun
2017-09-11
Efficient, eco-friendly and sustainable access to 3,4-dihydropyrimidin-2(1 H )-ones directly from alcohols under microwave and solvent-free conditions has been reported. The practical protocol involves heteropolyanion-based catalyzed oxidation of alcohols to aldehydes with NaNO₃ as the oxidant followed by cyclocondensation with dicarbonyl compounds and urea or thiourea in a two-step, one-pot manner. Compatibility with different functional groups, good to excellent yields and reusable catalysts are the main highlights. The utilization of alcohols instead of aldehydes is a valid and green alternative to the classical Biginelli reaction.
Schneidermann, Christina; Jäckel, Nicolas; Oswald, Steffen; Giebeler, Lars; Presser, Volker; Borchardt, Lars
2017-06-09
Nitrogen-doped nanoporous carbons were synthesized by a solvent-free mechanochemically induced one-pot synthesis. This facile approach involves the mechanochemical treatment and carbonization of three solid materials: potassium carbonate, urea, and lignin, which is a waste product from pulp industry. The resulting nitrogen-doped porous carbons offer a very high specific surface area up to 3000 m 2 g -1 and large pore volume up to 2 cm 3 g -1 . The mechanochemical reaction and the impact of activation and functionalization are investigated by nitrogen and water physisorption and high-resolution X-ray photoelectron spectroscopy (XPS). Our N-doped carbons are highly suitable for electrochemical energy storage as supercapacitor electrodes, showing high specific capacitances in aqueous 1 m Li 2 SO 4 electrolyte (177 F g -1 ), organic 1 m tetraethylammonium tetrafluoroborate in acetonitrile (147 F g -1 ), and an ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate; 192 F g -1 ). This new mechanochemical pathway synergistically combines attractive energy-storage ratings with a scalable, time-efficient, cost-effective, and environmentally favorable synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bharitkar, Yogesh P; Kanhar, Satish; Suneel, Neradibilli; Mondal, Susanta Kumar; Hazra, Abhijit; Mondal, Nirup B
2015-05-01
Withaferin-A (WA) has attracted the attention of chemists as well as biologists due to its interesting structure and various bio-activities. In light of the promising biological importance of WA as well as pyrrolidine-2-spiro-3'-oxindole ring system, we became interested in the synthesis of a combined motif involving both the ring systems via the 1,3-dipolar cycloaddition of WA at Δ(2)-bond of the α,β-unsaturated carbonyl system. We now report a facile, atom-economic synthesis of novel spiro-pyrrolizidino-oxindole adducts of withaferin-A (10 compounds) via the intermolecular cycloaddition of azomethine ylides generated in situ from proline and isatins/acenaphthoquinone. The reaction is highly chemo, regio, and stereoselective affording the cis-fused products with β-orienting hydrogen. The structures were determined by 1D/2D NMR spectroscopic data analysis and unequivocally confirmed by X-ray crystallographic analysis in some cases. Bioevaluation of the compounds against six cancer lines (e.g., CHO, HepG2, HeLa, HEK 293, MDCK-II, and Caco-2) identified 4 promising potential anticancer compounds.
Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho
2017-11-01
Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Xiaoshuai; Shi, Zhuanzhuan; Zou, Long; Li, Chang Ming; Qiao, Yan
2018-02-01
A three dimensional (3D) porous nickel oxide (NiO)/graphene composite is developed through one-pot hydrothermal synthesis with a biopolymer-pectin for tailoring the porous structure. The introduction of pectin makes the NiO grow into nanoflakes-assembled micro spheres that insert in the graphene layers rather than just deposit on the surface of graphene nanosheets as nanoparticles. As the increase of pectin ratio, the size and the amount of NiO micro spheres are both increased, which resulting a 3D hierarchical porous structure. With the optimized pectin concentration, the obtained NiO/graphene nanocomposite anode possesses good electrocatalytic capability and delivers maximum power density of 3.632 Wm-2 in Shewanella putrefaciens CN32 microbial fuel cells (MFCs). This work provides a new way to develop low cost, high performance anode materials for MFCs.
Bharkavi, Chelliah; Vivek Kumar, Sundaravel; Ashraf Ali, Mohamed; Osman, Hasnah; Muthusubramanian, Shanmugam; Perumal, Subbu
2017-07-15
An efficient one-pot microwave assisted stereoselective synthesis of novel dihydro-2'H-spiro[indene-2,1'-pyrrolo[3,4-c]pyrrole]-tetraone derivatives through three-component 1,3-dipolar cycloaddition of azomethine ylides generated in situ from ninhydrin and sarcosine with a series of 1-aryl-1H-pyrrole-2,5-diones is described. The synthesised compounds were screened for their antimycobacterial and AChE inhibition activities. Compound 4b (IC 50 1.30µM) has been found to display twelve fold antimycobacterial activity compared to cycloserine and it is thirty seven times more active than pyrimethamine. Compound 4h displays maximum AchE inhibitory activity with IC 50 value of 0.78±0.01µmol/L. Copyright © 2017 Elsevier Ltd. All rights reserved.
Takahashi, Daisuke; Inomata, Tatsuji; Fukui, Tatsuya
2017-06-26
We previously reported an efficient peptide synthesis method, AJIPHASE®, that comprises repeated reactions and isolations by precipitation. This method utilizes an anchor molecule with long-chain alkyl groups as a protecting group for the C-terminus. To further improve this method, we developed a one-pot synthesis of a peptide sequence wherein the synthetic intermediates were isolated by solvent extraction instead of precipitation. A branched-chain anchor molecule was used in the new process, significantly enhancing the solubility of long peptides and the operational efficiency compared with the previous method, which employed precipitation for isolation and a straight-chain aliphatic group. Another prerequisite for this solvent-extraction-based strategy was the use of thiomalic acid and DBU for Fmoc deprotection, which facilitates the removal of byproducts, such as the fulvene adduct. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Davies, Alyn T.; Curto, John M.
2017-01-01
A mild, efficient synthesis of sulfonyl fluorides from aryl and heteroaryl bromides utilizing palladium catalysis is described. The process involves the initial palladium-catalyzed sulfonylation of aryl bromides using DABSO as an SO2 source, followed by in situ treatment of the resultant sulfinate with the electrophilic fluorine source NFSI. This sequence represents the first general method for the sulfonylation of aryl bromides, and offers a practical, one-pot alternative to previously described syntheses of sulfonyl fluorides, allowing rapid access to these biologically important molecules. Excellent functional group tolerance is demonstrated, with the transformation successfully achieved on a number of active pharmaceutical ingredients, and their precursors. The preparation of peptide-derived sulfonyl fluorides is also demonstrated. PMID:28451264
Cantú-Reyes, Margarita; Alvarado-Beltrán, Isabel; Ballinas-Indilí, Ricardo; Álvarez-Toledano, Cecilio; Hernández-Rodríguez, Marcos
2017-09-20
We report a one-pot synthesis of chiral β 2,2,3 -amino acids by the Mannich addition of bistrimethylsilyl ketene acetals to N-tert-butanesulfinyl imines followed by the removal of the chiral auxiliary. The synthesis and isolation of pure β-amino acid hydrochlorides were conducted under mild conditions, without strong bases and this method is operationally simple. The stereoselective reaction was promoted by two different activation methods that lead to different stereoisomers: (1) Lewis Acid (LA) catalysis with boron trifluoride diethyl etherate and (2) Lewis Base (LB) catalysis with tetrabutylammonium difluorotriphenylsilicate. The reaction presented good diastereoselectivity with LB activation and moderate to good dr with LA catalysis. The exceptions in both protocols were imines with electron donating groups in the aromatic ring.
NASA Astrophysics Data System (ADS)
Haridas, Vijayasree; Sugunan, Sankaran; Narayanan, Binitha N.
2018-06-01
In the present study, a green one-pot low-temperature method is adopted for the synthesis of a novel magnetic graphene nanocomposite catalyst. Graphene preparation is performed without employing any oxidizing agents or corrosive chemicals, under mild sonication in isopropyl alcohol - water mixture. Monolayered nanoplatelets of graphene are obtained in the green solvent mixture and the composite material is found to be ferromagnetic in nature, obvious from the vibrating sample magnetometric measurements. Fe in the nanocomposite exists in two different forms i.e., α-Fe2O3 and α-FeOOH, as evident from the material characterization results. The graphene nanocomposite is found to be highly efficient in the selective reduction of nitrobenzene to aniline under solvent free reaction conditions and magnetic separation of this fine nanomaterial from the reaction mixture is successfully carried out. The catalyst is efficiently reusable till five repeated cycles.
Bouzas-Ramos, Diego; García-Cortes, Marta; Sanz-Medel, Alfredo; Encinar, Jorge Ruiz; Costa-Fernández, José M
2017-10-13
Coupling of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) has been recently proposed as a powerful diagnostic tool for characterization of the bioconjugation of CdSe/ZnS core-shell Quantum Dots (QDs) to antibodies. Such approach has been used herein to demonstrate that cap exchange of the native hydrophobic shell of core/shell QDs with the bidentate dihydrolipoic acid ligands directly removes completely the eventual side nanoparticulated populations generated during simple one-pot synthesis, which can ruin the subsequent final bioapplication. The critical assessment of the chemical and physical purity of the surface-modified QDs achieved allows to explain the transmission electron microscopy findings obtained for the different nanoparticle surface modification assayed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Qingfeng; Gong, Yun; Lin, Jianhua
2018-05-01
In the present work, Ni2+-doped (NH4)2V3O8 nanoflakes are in situ grown on Ni foam through a facile one-pot hydrothermal technique in a NH4VO3 aqueous solution. The Ni2+-doped (NH4)2V3O8@Ni foam composite material can be used as binder- and conductivity agent-free electrode in supercapacitor, it manifests a large specific capacitance of 465.5 F g-1 at a current density of 0.2 A g-1 and a superior rate capability of 317.5 F g-1 at 10 A g-1, which is beneficial from its three-dimensional porous architecture cross-linked by the ultrathin Ni2+-doped (NH4)2V3O8 nanoflakes on Ni foam. Meanwhile, the Ni2+-doped (NH4)2V3O8@Ni foam//Activated carbon asymmetric supercapacitor can deliver a maximum energy density of 20.1 W h kg-1 at a power density of 752.0 W kg-1. Significantly, the Ni2+-doped (NH4)2V3O8@Ni foam electrode possesses reversible electrochromic behavior, and it shows obvious visible light-driven photoresponse with much higher specific capacitance (645.3 F g-1 at 0.5 A g-1) under illumination (650 nm > λ > 350 nm, 100 mW cm-2), which is probably associated with the semiconducting characteristics of the spin-polarized (NH4)2V3O8 and the quantum confinement effect of the nanoflakes.
NASA Astrophysics Data System (ADS)
Dombrovskis, Johanna K.; Palmqvist, Anders E. C.
2017-07-01
Development of non-precious metal catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells with high activity and durability and with optimal water management properties is of outmost technological importance and highly challenging. Here we study the possibilities offered through judicious selection of small molecular precursors used for the formation of ordered mesoporous carbon-based non-precious metal ORR catalysts. By combining two complementary precursors, we present a one-pot synthesis that leads to a composite material consisting of transition metal ion-chelating ordered mesoporous carbon and multi-walled carbon nanotubes (TM-OMC/CNT). The resulting composite materials show high specific surface areas and a carbon structure that exhibits graphitic signatures. The synthesis procedure allows for tuning of the carbon structure, the surface area, the pore volume and the ratio of the two components of the composite. The TM-OMC/CNT composites were processed into membrane electrode assemblies and evaluated in single cell fuel cell measurements where they showed a combination of good ORR activity and very high durability.
Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Mirzaei, Yousef
2016-04-15
In this study, copper nanoparticles (Cu NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of CuCl2 · 2H2O solution with aqueous extract of leaves of Otostegia persica containing flavonoid and other phenolics as a main factor which acts as reducing agent and efficient stabilizer. UV-vis spectra gave surface plasmon resonance (SPR) at 560 nm. The Cu NPs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). A possible synthesis mechanism of Cu NPs was presented. In addition, we investigated the catalytic activity of Cu NPs for the one-pot synthesis of 1,4-disubstituted 1,2,3-triazoles under mild reaction conditions with good to excellent yields. The catalyst could be easily recovered by centrifugation and reused at least five recycles with no significant decreases in the yields. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu, Yaqin
2009-07-01
In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3O 4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C dbnd O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3O 4 hybrids was discussed.
NASA Astrophysics Data System (ADS)
Navaee, Aso; Salimi, Abdollah; Soltanian, Saeid; Servati, Peyman
2015-03-01
Due to exceptional electronic properties of graphene (Gr) and nitrogen doped graphene (N-Gr), they are considered as superior supporting platforms for novel metal nanoparticle decorations. Here, we report, a novel one-step electrochemical method for synthesis of Nitrogen-doped graphene sheets uniformly decorated with platinum nanoparticles (Pt/N-Gr). A graphite rod and platinum wire are respectively used for graphene and platinum nanoparticles production. The potential is cycled from -3V to +3V in acetonitrile solution as a nitrogen dopant source. By increasing the number of cycles the nitrogen-doped graphene/platinum nanoparticles composite is generated. After heat-treating the composite is characterized with various techniques such as FTIR, Raman, XPS, SEM and TEM. The electrocatalytic activity of the prepared composite toward the reduction of O2 and the oxidation of usual anodic fuels such as methanol, ethanol, hydrazine and formic acid is investigated using cyclic voltammetry technique. In comparison to commercial platinum/carbon, the onset potentials and the current densities for both O2 reduction and fuels oxidation are remarkably improved. Furthermore, the modified electrode by this composite shows good long-term stability and poisoning tolerance.
NASA Astrophysics Data System (ADS)
Shen, Xiaofang; Wang, Qin; Chen, WenLing; Pang, Yuehong
2014-10-01
Cysteine functionalized Fe3O4 magnetic nanoparticles (Cys-Fe3O4 MNPs) were prepared facilely for Hg(II) removal from aqueous solutions. Using Fe2+ as precursors, air as oxidant and Cys as protectant, this novel material was one-pot synthesis at room temperature by oxidation-precipitation method with the assistance of sonication. The MNPs were characterized by TEM, VSM, FTIR, X-ray powder diffraction analysis (XRD) and TGA methods. Under the optimum experimental conditions, the removal efficiency was as high as 95% and the maximum sorption capacity is found to be 380 mg/mol for Hg(II). Study on adsorption kinetics shows that adsorption of Hg(II) onto Cys-Fe3O4 MNPs follows pseudo-first-order kinetic model and the adsorption rate constant was 0.22 min-1. Additionally, the Hg(II)-loaded Cys-Fe3O4 MNPs could be easily regenerated up to 95% using 1.0 M acetic acid. These results indicated that Cys-Fe3O4 MNPs is a potentially attractive material for the removal of Hg(II) from water.
NASA Astrophysics Data System (ADS)
Mata, Alvaro
2018-05-01
Proteins are attractive material building blocks, yet their intrinsic functionality has remained largely untapped. Now, a protein-based material that exhibits controllable self-assembling behaviour has been prepared in a one-pot synthesis by simultaneous use of recombinant expression and post-translational modification.
Presidential Green Chemistry Challenge: 2013 Greener Synthetic Pathways Award
Presidential Green Chemistry Challenge 2013 award winner, Life Technologies, developed a one-pot synthesis for polymerase chain reaction (PCR), which is a much more efficient process that prevents about 1.5 million pounds of hazardous waste a year.
One-step instant synthesis of protein-conjugated quantum dots at room temperature.
He, Xuewen; Gao, Li; Ma, Nan
2013-10-02
We present a new general facile strategy for the preparation of protein-functionalized QDs in a single step at ambient conditions. We demonstrated that highly luminescent red to near-infrared (NIR) protein-functionalized QDs could be synthesized at room temperature in one second through a one-pot reaction that proceeds in aqueous solution. Herein protein-functionalized QDs were successfully constructed for a variety of proteins with a wide range of molecular weights and isoelectric points. The as-prepared protein-conjugated QDs exhibited high quantum yield, high photostabiliy and colloidal stability, and high functionalization efficiency. Importantly, the proteins attached to the QDs maintain their biological activities and are capable of catalyzing reactions and biotargeting. In particular, the as-prepared transferrin-QDs could be used to label cancer cells with high specificity. Moreover, we demonstrated that this synthetic strategy could be extended to prepare QDs functionalized with folic acids and peptides, which were also successfully applied to cancer cell imaging.
Total chemical synthesis and X-ray structure of kaliotoxin by racemic protein crystallography.
Pentelute, Brad L; Mandal, Kalyaneswar; Gates, Zachary P; Sawaya, Michael R; Yeates, Todd O; Kent, Stephen B H
2010-11-21
Here we report the total synthesis of kaliotoxin by 'one pot' native chemical ligation of three synthetic peptides. A racemic mixture of D- and L-kaliotoxin synthetic protein molecules gave crystals in the centrosymmetric space group P1 that diffracted to atomic-resolution (0.95 Å), enabling the X-ray structure of kaliotoxin to be determined by direct methods.
One-pot synthesis of keto thioethers by palladium/gold-catalyzed click and pinacol reactions.
Cadu, Alban; Watile, Rahul A; Biswas, Srijit; Orthaber, Andreas; Sjöberg, Per J R; Samec, Joseph S M
2014-11-07
An atom-efficient synthesis of keto thioethers was devised via tandem gold/palladium catalysis. The reaction proceeds through a regioselective thiol attack at the β-position of the alcohol, followed by an alkyl, aryl, or benzyl 1,2-shift. Both acyclic and cyclic systems were studied, in the latter case leading to the ring expansion of cyclic substrates.
Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude
2009-10-15
A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.
Nallagangula, Madhu; Namitharan, Kayambu
2017-07-07
First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.
A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.
Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A
2018-01-23
A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.
NASA Astrophysics Data System (ADS)
Xue, Yejian; Huang, Heran; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping
2017-08-01
A novel La0.7Sr0.3MnO3-CeO2 (LSM-CeO2) hybrid catalyst for oxygen reduction reaction (ORR) has been synthesized by a facile one-pot method. The flower-like CeO2 with the diameter of about 3 μm is formed by the agglomeration of nanosheets with the thickness of about 40 nm. The LSM particles with the diameter of about 150 nm are well distributed on the flower-like CeO2, thus the interaction between LSM and CeO2 is built. Therefore, the LSM-CeO2 composite catalyst exhibits the much higher catalytic activity toward ORR with the direct four-electron transfer mechanism in alkaline solution than LSM or CeO2. Furthermore, the stability of LSM-CeO2 is superior to that of Pt/C, and the current retention is 93% after 100000 s. The maximum power density of the aluminum-air battery using LSM-CeO2 as the ORRC can reach 238 mW cm-2, which is about 29% higher than that with LSM (184 mW cm-2). It indicates that LSM-CeO2 composite material is a promising cathodic electrocatalyst for metal-air batteries.
Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique
NASA Astrophysics Data System (ADS)
Pakluea, S.; Rimjaem, S.
2017-09-01
Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.
Barth, Roland; Roush, William R.
2010-01-01
An enantioselective synthesis of α-methylene-β-hydroxy carboxylic acid derivatives via a highly diastereoselective, one-pot syn-aldol and β-elimination sequence utilizing the chiral β-(phenylselenyl)propionyl imide 15 is described. This new method, which constitutes an alternative to the Baylis-Hillman reaction, has been applied to the synthesis of the C(15)-C(21) fragment of tedanolide C. PMID:20405855
Liu, Tao; Zhang, Lichun; Song, Hongjie; Wang, Zhonghui; Lv, Yi
2013-01-01
We report a facile one-pot sonochemical approach to preparing highly water-soluble Ag nanoclusters (NCs) using bovine serum albumin as a stabilizing agent and reducing agent in aqueous solution. Intensive electrogenerated chemiluminescence (ECL) was observed from the as-prepared Ag (NCs) and successfully applied for the ECL detection of dopamine with high sensitivity and a wide detection range. A possible ECL mechanism is proposed for the preparation of Ag NCs. With this method, the dopamine concentration was determined in the range of 8.3 × 10(-9) to 8.3 × 10(-7) mol/L without the obvious interference of uric acid, ascorbic acid and some other neurotransmitters, such as serotonin, epinephrine and norepinephrine, and the detection limit was 9.2 × 10(-10) mol/L at a signal/noise ratio of 3. Copyright © 2013 John Wiley & Sons, Ltd.
The Domino Way to Heterocycles
Padwa, Albert; Bur, Scott K.
2007-01-01
Sequential transformations enable the facile synthesis of complex target molecules from simple building blocks in a single preparative step. Their value is amplified if they also create multiple stereogenic centers. In the ongoing search for new domino processes, emphasis is usually placed on sequential reactions which occur cleanly and without forming by-products. As a prerequisite for an ideally proceeding one-pot sequential transformation, the reactivity pattern of all participating components has to be such that each building block gets involved in a reaction only when it is supposed to do so. The development of sequences that combine transformations of fundamentally different mechanisms broadens the scope of such procedures in synthetic chemistry. This mini review contains a representative sampling from the last 15 years on the kinds of reactions that have been sequenced into cascades to produce heterocyclic molecules. PMID:17940591
Shao, Li-Xiong; Shi, Min
2005-05-21
One-pot Suzuki-Miyaura-type and Kumada-type cross-coupling reactions of 2,4-diiodo-buta-1-enes with arylboronic acids and alkyl/aryl magnesium bromides were carried out in the presence of accessibly simple catalysts under mild conditions. As a result, some 1,1,2-trisubstituted buta-1,3-dienes were obtained including the Tamoxifen-type, which have potential adjuvant therapy in women who have suffered from breast cancer and cyclooxygenase-2-type (COX-2-type) inhibitors, some of which have been proved to elicit efficient anti-inflammatory analgesic activities and less adverse gastrointestinal side effects and to be very useful in the prophylactic treatment of a wide variety of cancers and neurodegenerative disorders.
NASA Astrophysics Data System (ADS)
Yan, Bo; Xu, Hui; Zhang, Ke; Li, Shujin; Wang, Jin; Shi, Yuting; Du, Yukou
2018-03-01
Self-supported PdCu alloy nanowires fabricated by a facile one-pot method have been reported, which copper assists in the morphological transformation from graininess to nanowires. The copper incorporated with palladium to form alloy structures cannot only cut down the usage of noble metal but also enhance their catalytic performances. The catalysts with self-supported structure and proper ratio of palladium to copper show great activity and long-term stability for the electrooxidation of ethylene glycol in alkaline solution. Especially for Pd43Cu57, its mass activity reaches to 5570.83 mA mg-1, which is 3.12 times as high as commercial Pd/C. This study highlights an accessible strategy to prepare self-supported PdCu alloy nanowires and their potential applications in renewable energy fields.
NASA Astrophysics Data System (ADS)
Li, Songnan; Zhang, Jiawei; Jamil, Saba; Cai, Qinghai; Zang, Shuying
In this paper, flower-like layered double hydroxides were synthesized with eggshell membrane assistant. The as-prepared samples were characterized by a series of techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Thermal gravity-differential thermal analysis and Nitrogen sorption/desorption. The resulting layered double hydroxides were composed of nanoplates with edge-to-face particle interactions. The specific surface area and total pore volume of the as-prepared flower-like layered double hydroxides were 160m2/g and 0.65m3/g, respectively. The adsorption capacity of flower-like layered double hydroxides to Congo Red was 258mg/g, which was higher than that of layered double hydroxides synthesized by the traditional method.
Greener Synthesis of Organics and Nanomaterials
A brief account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermedia...
Harbron, Rachel L; McDonald, Tom O; Rannard, Steve P; Findlay, Paul H; Weaver, Jonathan V M
2012-02-01
Multi-purpose amphiphilic branched copolymer surfactants can be used to simultaneously stabilise and cross-link emulsion droplets to produce encapsulated spheres and hollow capsules. This journal is © The Royal Society of Chemistry 2012
Enhanced Photocatalytic Activity of Two-Pot-Synthesized BiFeO3-ZnFe2O4 Heterojunction Nanocomposite
NASA Astrophysics Data System (ADS)
Ghasemi, A.; Hasheminiasari, M.; Masoudpanah, S. M.; Safizade, B.
2018-04-01
BiFeO3-ZnFe2O4 heterojunction nanocomposites have been produced by a chemical synthesis method using one- and two-pot approaches. X-ray diffraction patterns of as-calcined samples indicated formation of pure zinc ferrite (ZnFe2O4) and bismuth ferrite (BiFeO3) phases, each retaining its crystal structure. Diffuse reflectance spectrometry was applied to calculate the optical bandgap of the photocatalysts, revealing values in the range from 2.03 eV to 2.17 eV, respectively. The maximum photodegradation of methylene blue of about 97% was achieved using two-pot-synthesized photocatalyst after 120 min of visible-light irradiation due to the higher probability of charge separation of photogenerated electron-hole pairs in the heterojunction structure. Photoluminescence spectra showed lower emission intensity of two-pot-synthesized photocatalyst, due to its lower recombination rate originating from greater charge separation.
Wang, Jun; Zhang, Baolin; Wang, Lei; Wang, Ming; Gao, Fabao
2015-03-01
Water-soluble superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by the thermal decomposition of iron (III) acetylacetonate (Fe(acac)3) in the mixture of poly(ethylene glycol) (PEG) and poly(ethylene imine) (PEI). The average sizes of the SPIONs are in the range of 6-12nm, which could be tuned by adjusting the synthesis temperature and molecular weight of PEI. Benefiting from the coating of hydrophilic PEG and PEI, the resulted SPIONs showed excellent colloidal stability in deionized water and other physiological buffers. The XRD patterns indicate that the obtained SPIONs are magnetite. The PEG/PEI-SPIONs exhibited high r2/r1 ratio. In vivo magnetic resonance imaging (MRI) of the mouse brains after intravenous injection of the SPIONs showed their good contrast effect. Considering the facile fabrication process and excellent imaging performance of the water soluble PEG-SPIONs and PEG/PEI-SPIONs, it is believed that the SPIONs will find great potential in advanced MRI. Copyright © 2014 Elsevier B.V. All rights reserved.
Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities
NASA Astrophysics Data System (ADS)
Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V.; Upadhyay, R. V.
2010-06-01
In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive ( Bacillus megaterium and Staphylococcus aureus), and three Gram negative ( Escherichia coli, Proteus vulgaris and Shigella sonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.
Chlorotrimethylsilane activation of acylcyanamides for the synthesis of mono-N-acylguanidines
Haussener, Travis J.; Mack, James B. C.
2011-01-01
A simple and efficient one-pot method for the synthesis of mono-protected guanidines is presented. Treatment of an acylcyanamide with chlorotrimethylsilane generates a reactive N-silylcarbodiimide capable of guanylating a variety of amines. Typically the reaction is complete in 15 min for primary and secondary aliphatic amines at rt. Hindered amines and anilines are also competent nucleophiles but require extended reaction times. PMID:21732649
Giustiniano, Mariateresa; Meneghetti, Fiorella; Mercalli, Valentina; Varese, Monica; Giustiniano, Francesco; Novellino, Ettore; Tron, Gian Cesare
2014-10-17
A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.
Liu, Yankai; Nappi, Manuel; Escudero-Adán, Eduardo C; Melchiorre, Paolo
2012-03-02
Expanding upon the recently developed aminocatalytic asymmetric indole-2,3-quinodimethane strategy, a straightforward synthesis of structurally and stereochemically complex tetrahydrocarbazoles has been devised. The chemistry's complexity-generating power was further harnessed by designing a multicatalytic, one-pot Diels-Alder/benzoin reaction sequence to stereoselectively access trans-fused tetracyclic indole-based compounds having four stereogenic centers with very high fidelity. © 2012 American Chemical Society
Continuous, One-pot Synthesis and Post-Synthetic Modification of NanoMOFs Using Droplet Nanoreactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jambovane, Sachin R.; Nune, Satish K.; Kelly, Ryan T.
Metal-organic frameworks (MOFs); also known as porous coordination polymers (PCP) are a class of porous crystalline materials constructed by connecting metal clusters via organic linkers. The possibility of functionalization leads to virtually infinite MOF designs using generic modular methods. Functionalized MOFs can exhibit interesting physical and chemical properties including accelerated adsorption kinetics and catalysis. Although there are discrete methods to synthesize well-defined nanoscale MOFs, rapid and flexible methods are not available for continuous, one-pot synthesis and post synthesis modification (functionalization) of MOFs. Here, we show a continuous, scalable nanodroplet-based microfluidic route that not only facilitates the synthesis of MOFs atmore » nanoscale, but also offers flexibility for direct functionalization with desired functional groups (e.g., -NH 2, -COCH 3, fluorescein isothiocyanate; FITC). In addition, the presented route of continuous manufacturing of functionalized MOFs takes significantly less time compared to state-of-the-art batch methods currently available (1 hr vs. several days). We envisage our approach to be a breakthrough method for synthesizing complex functionalized nanomaterials (metal, metal oxides, quantum dots and MOFs) that are not accessible by direct batch processing, and expand the range of a new class of functionalized MOF-based functional nanomaterials.« less
Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.
Bhushan, Brij; Nayak, Arunima; Kamaluddin
2016-06-01
Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.
Efficient one-pot synthesis of indol-3-yl-glycines via uncatalyzed Friedel-Crafts reaction in water.
Ghandi, Mehdi; Taheri, Abuzar
2009-03-05
The three component reaction of primary aliphatic amines, glyoxalic acid and indole or N-methylindole in water at ambient temperature affords indol-3-yl or N-methylindol-3-yl-glycine in almost quantitative yields.
Khaskheli, Abid Ali; Talpur, Farah Naz; Cebeci Aydin, Aysun; Jawaid, Sana; Surhio, Muhammad Ali; Afridi, Hassan Imran
2017-10-01
Conjugated linoleic acid (CLA) has attracted as novel type of fatty acids having unusual health-promoting properties such as anticarcinogenic and antiobesitic effects. The present work employed castor oil as substrate for one-pot production of CLA using washed cells of Lactobacillus plantarum (L. plantarum) and lipases as catalysts. Among the screened lipases, the lipase Rhizopus oryzae (ROL) greatly assisted resting cells to produce CLA. Mass spectral analysis of the product showed that two major isomers of CLA were produced in the reaction mixture i.e. cis-9, trans-11 56.55% and trans-10, cis-12 43.45%. Optimum factors for CLA synthesis were found as substrate concentration (8 mg/mL), pH (6.5), washed cell concentration (12% w/v), and incubation time of 20 h. Hence, the combination of ROL with L. plantarum offers one pot production of CLA selectively using castor oil as a cost-effective substrate.
Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis
NASA Astrophysics Data System (ADS)
Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz
2016-02-01
Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08400h
Facile one-pot synthesis of hexagons of NaSrB5O9:Tb3+ phosphor for solid-state lighting
NASA Astrophysics Data System (ADS)
Ramesh, B.; Dillip, G. R.; Deva Prasad Raju, B.; Somasundaram, K.; Prasad Peddi, Siva; de Carvalho dos Anjos, Virgilio; Joo, S. W.
2017-04-01
NaSrB5O9:Tb3+ hexagons were synthesized by a facile solid-state reaction method. The synthesized powders were structurally examined by x-ray diffraction analysis (XRD), and Rietveld refinement was performed using the XRD data and Fullprof software. Hexagon-like morphology was observed using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The elemental composition of the phosphors was investigated qualitatively by energy dispersive x-ray analysis (EDS) and quantitatively by x-ray photoelectron spectroscopy (XPS). The phosphor has a strong green emission at 545 nm under excitation of 379 nm, which is due to the 5{{\\text{D}}4}{{\\to}7}{{\\text{F}}5} transition of the Tb3+ ion. A lifetime of 3.48 ms was obtained for the phosphor. The important parameters of the light source were determined, such as the thermal quenching, critical distance, the nature of the dopant ion interaction, color coordinates, and quantum yield values. Other reported properties include the site occupancy of the dopant, surface properties, morphological properties, and optical properties.
NASA Astrophysics Data System (ADS)
Chen, Biao; Lu, Huihui; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Ma, Liying
2018-05-01
Hollow or continuous porous hierarchical MoS2/C structures with large Li-ion and electron transport kinetics, and high structural stability are urgent needs for their application in lithium ion batteries. In this regard, a novel continuous porous micro-sphere constructed from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets is successfully synthesized through a facile one-pot hydrothermal method. The polyvinyl pyrrolidone surfactant serves as carbon source and supporter, while the CS2 works as soft template and sulfur source during hydrothermal process. The morphologies, structures, and electrochemical properties are systematically characterized. Importantly, it should be noted that the unique porous micro-spheres with merits of rich-defect, expanded-interlayer, few-layer (<5 layers), abundant pores and integrating carbon are favorable for lithium ion batteries application. When the uniform composites are used as lithium ion batteries anode materials, they deliver a high reversible capacity, excellent cycling performance (average capacity fading of 0.037% per cycle at 0.2 A g-1), and good rate capability.
Novel approach to synthesis and characterization of POT/ZnO nanocomposites
NASA Astrophysics Data System (ADS)
Islam, Shama; Khan, Hana; Khan, Zubair MSH; Kumar, Shabir Ahmad; Rahman, Raja Saifu; Zulfequar, M.
2018-05-01
The novel insitu polymerization method has been used to synthesis poly o-toluidine/Zinc Oxide (POT/ZnO) nanocomposites with varying weight percentages (5, 10, 15, 20) of ZnO in polymer matrix. The structural properties of synthesized polymer has been discussed with XRD and SEM techniques and found that the crystallinity of the material increases with ZnO doping. Electrical conductivity of the compressed pellets of nanocomposites is depends on the concentration of ZnO in POT and found to increase upto five orders. The indirect bandgap of nanocomposites decreases with increasing ZnO.
Ota, Koichiro; Yamazaki, Ikuma; Saigoku, Takahiro; Fukui, Mei; Miyata, Tomoki; Kamaike, Kazuo; Shirahata, Tatsuya; Mizuno, Fumi; Asada, Yoshihisa; Hirotani, Masao; Ino, Chieko; Yoshikawa, Takafumi; Kobayashi, Yoshinori; Miyaoka, Hiroaki
2017-12-01
A new cyclopropane-containing sesquiterpenoid, phellilane L (1), was isolated from the medicinal mushroom Phellinus linteus ("Meshimakobu" in Japanese), a member of the Hymenochaetaceae family and a well-known fungus that is widely used in East Asia. The planar structure of 1 was determined on the basis of spectroscopic analysis. The authors achieved the first total synthesis of 1. Our protecting group-free synthesis features a highly stereoselective one-pot synthesis involving an intermolecular alkylation/cyclization/lactonization strategy for construction of the key cyclopropane-γ-lactone intermediate. Additionally, our synthesis determined the absolute configuration of phellilane L (1).
Borkin, Dmitry; Morzhina, Elena; Datta, Silpi; Rudnitskaya, Aleksandra; Sood, Abha; Török, Marianna; Török, Béla
2011-03-07
A highly diastereoselective microwave-assisted three component synthesis of azabicyclo[2.2.2]octan-5-ones by a silicotungstic acid-catalyzed aza-Diels-Alder cyclization is described. The one-pot process involves the formation of the in situ generated Schiff base and its immediate cyclization with cyclohex-2-enone. The short reaction times, good yields and excellent diastereoselectivity make this annulation a practical and environmentally attractive method for the synthesis of the target compounds. Preliminary assays were carried out to determine the activity of the products in AChE as well as in amyloid β fibrillogenesis inhibition.
Abdel-Latif, F F; Ahmed, E K; Mekheimer, R; Mashaly, M M
1997-10-01
Several new spiro compounds were synthesized via one-pot ternary condensation of isatin, malononitrile and each of thiobarbituric acid, barbituric acid, 3-methyl-pyrazolin-5-one, 1-phenyl-3-methyl-pyrazolin-5-one, acetylacetone, benzoylacetone, ethyl acetoacetate, phenacyl cyanide or ethyl-cyanoacetate dimer. Structures and reaction mechanism were reported and supported via a second synthetic route.
Greener Alternatives to Expedient Synthesis of Heterocycles and Nanomaterial
A brief account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds [1] from in situ generated reactive interm...
A modular synthesis of dithiocarbamate pendant unnatural α-amino acids
Unnatural α-amino acids containing dithiocarbamate side chains were synthesized by a one-pot reaction of in-situ generated dithiocarbamate anions with sulfamidates. A wide range of these anions participated in the highly regio- and stereo-selective ring opening of sulfamidates to...
Microwave-Assisted Organic Synthesis Using Benign Reaction Medium and Reagents
Account of chemical reactions expedited by microwave (MW) exposure of neat reactants for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermediates via enamines or using hypervalent iodine reagents will be described that can be adapted for ...
Significant rate accelerated synthesis of glycosyl azides and glycosyl 1,2,3-triazole conjugates.
Kumar, Rishi; Maulik, Prakas R; Misra, Anup Kumar
2008-10-01
An efficient and significantly rapid access of a series of glycosyl azides and glycosyl 1,2,3-triazole conjugates is reported using modified one-pot reaction conditions. In both cases yields were excellent and single diastereomers were obtained.
Sustainable Strategies For The Production Of Nanomaterials And Their Greener Applications
Vitamins B2, B1, C, tea polyphenols, and natural surfactants, which function both as reducing and capping agents, provide simple, one-pot, green synthetic methods to bulk quantities of nanomaterials. Synthesis of noble nanostructures via microwave (MW)-assisted spontaneous reduct...
NASA Astrophysics Data System (ADS)
Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan
2017-09-01
The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu(F)/RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu(F)/RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.
Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan
2017-09-02
The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu (F) /RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu (F) /RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.
One-pot synthesis of triangular Ag nanoplates with tunable edge length.
Zhang, Yulan; Yang, Ping; Zhang, Lipeng
2012-11-01
Triangular Ag nanoplates were prepared via a one-pot synthesis method by using citrate and poly (vinyl pyrolidone) (PVP). The edge length of the nanoplates was changed from 30 nm to 100 nm with increasing the concentration of PVP and the amount of sodium borohydride in aqueous solutions during preparation. The molar ratio of PVP to Ag nitrate affected the morphologies of the nanoplates. PVP plays an important role for determining the final morphologies and edge length of resulting nanoplates because the amount of PVP affected the viscosity of solutions. The viscosity of solutions kinetically controlled the nucleation and growth of Ag nanoplates. Furthermore, Ag nanoplates were not created in the case of without PVP. After adding sodium chloride, irregular Ag nanoparticles (NPs) instead of nanoplates were fabricated because of a Cl-/O2 etching process. Stacking fault was a key for the growth of triangular nanostructures. Reaction temperature and aging time also affected the formation of Ag nanoplates.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn
2017-10-01
We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.
Salve, Preeti S; Alegaon, Shankar G; Sriram, Dharmarajan
2017-04-15
An efficient three-component, one-pot protocol is described for the synthesis of biologically interesting 2-(benzylideneamino)-N-(7-chloroquinolin-4-yl)benzohydrazide derivatives from isatoic anhydride, 7-chloro-4-hydrazinylquinoline and aromatic and/or hetero aromatic aldehydes under catalyst free condensation by using water as reaction media. All synthesized compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis (MTB) and cytotoxicity activity against normal VERO cell lines. The synthesized compounds exhibited minimum inhibitory concentration (MIC) ranging from 0.78 to 25μM. Among the tested compounds 4c, 4o, 4r, and 4u exhibited promising inhibitory activity (MIC=3.12μM). Compounds 4h and 4i stand out, showing MIC values of 0.78 and 1.56μM respectively. Both compounds were further screened for their Mycobacterium tuberculosis DNA gyrase inhibitory assay which suggested that these compounds have a great potential for further optimization and development as antitubercular agents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luo, Helen Y.; Michaelis, Vladimir K.; Hodges, Sydney; ...
2015-07-22
A new material MIT-1 comprised of delaminated MWW zeolite nanosheets is synthesized in one-pot using a rationally designed organic structure-directing agent (OSDA). The OSDA is comprised of a hydrophilic head segment that resembles the OSDA used to synthesize the zeolite precursor MCM22(P), a hydrophobic tail segment that resembles the swelling agent used to swell MCM22(P), and a di-quaternary ammonium linker that connects both segments. MIT-1 features high crystallinity and surface areas exceeding 500 m 2g -1, and can be synthesized over a wide synthesis window that includes Si/Al ratios ranging from 13 to 67. Characterization data reveal high mesoporosity andmore » acid strength with no detectable amorphous silica phases. In conclusion, compared to MCM-22 and MCM-56, MIT-1 shows a three-fold increase in catalytic activity for the Friedel-Crafts alkylation of benzene with benzyl alcohol.« less
NASA Astrophysics Data System (ADS)
Ozer, Demet; Oztas, Nursen Altuntas; Köse, Dursun A.; Şahin, Onur
2018-03-01
Using two different synthesis methods, two diversified magnesium and calcium complexes were successfully prepared. When the ion exchange method was used, C9H14MgO11.H2O and C18H30Ca3O24 complexes were obtained. When the one-pot self-assembly reaction was used, C18H34Mg3O26.4H2O and C9H12CaO10 complexes were produced. The structural characterizations were performed by using X-ray diffraction, FT-IR and elemental analyses. Thermal behavior of complexes were also determined via TGA method. The both complexes of magnesium and calcium trimesate have micro and mesoporosity with low porosity because of hydrogen bonds. Then hydrogen storage capacities of complexes were also determined. The differences in synthesis method result in the differences on complexes structure, morphology (shape, particle size and specific surface area) and hydrogen storage capacities.
A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Yi; Chen, Li Qiang; Li, Yuan Fang; Zhao, Xi Juan; Peng, Li; Zhi Huang, Cheng
2010-07-01
A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.
Sun, Yunyun; Tian, Jing; Wang, Lu; Yan, Hongyuan; Qiao, Fengxia; Qiao, Xiaoqiang
2015-11-27
A simple and time-saving one pot synthesis of magnetic graphene/carbon nanotube composites (M-G/CNTs) was developed that could avoid the tedious drying process of graphite oxide, and G/CNTs were modified by Fe3O4 nanoparticles in the reduction procedure. It contributed to a shorten duration of the synthesis process of M-G/CNTs. The obtained M-G/CNTs were characterized and the results indicated that CNTs and Fe3O4 nanoparticles were served as spacer distributing to the layers of graphene, which was beneficial for enlarging surface area and improving extraction efficiency. Moreover, M-G/CNTs showed good magnetic property and outstanding thermal stability. Then M-G/CNTs were applied as adsorbent of magnetic dispersive solid-phase extraction for rapid extraction and determination of oxytetracycline in sewage water. Under the optimum conditions, good linearity was obtained in the range of 20-800ngmL(-1) and the recoveries were ranged from 95.5% to 112.5% with relative standard deviations less than 5.8%. Copyright © 2015 Elsevier B.V. All rights reserved.
Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis.
Hack, Daniel; Dürr, Alexander B; Deckers, Kristina; Chauhan, Pankaj; Seling, Nico; Rübenach, Lukas; Mertens, Lucas; Raabe, Gerhard; Schoenebeck, Franziska; Enders, Dieter
2016-01-26
A stereoselective one-pot synthesis of spiropyrazolones through an organocatalytic asymmetric Michael addition and a formal Conia-ene reaction has been developed. Depending on the nitroalkene, the 5-exo-dig-cyclization could be achieved by silver-catalyzed alkyne activation or by oxidation of the intermediate enolate. The mechanistic pathways have been investigated using computational chemistry and mechanistic experiments. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Hamidian, Hooshang; Fozooni, Samieh; Hassankhani, Asadollah; Mohammadi, Sayed Zia
2011-10-26
A novel synthesis of triazolo[1,2-a]indazole-1,3,8-trione derivatives by reaction of urazole, dimedone and aromatic aldehydes under conventional heating and microwave irradiation and solvent-free conditions using silica nanoparticles prepared from rice husk ash as catalyst is described. The new method features high yields, multicomponent reactions and environmental friendliness.
Synthesis of rare sugars with L-fuculose-1-phosphate aldolase (FucA) from Thermus thermophilus HB8.
Li, Zijie; Cai, Li; Qi, Qingsheng; Styslinger, Thomas J; Zhao, Guohui; Wang, Peng George
2011-09-01
We report herein a one-pot four-enzyme approach for the synthesis of the rare sugars d-psicose, d-sorbose, l-tagatose, and l-fructose with aldolase FucA from a thermophilic source (Thermus thermophilus HB8). Importantly, the cheap starting material DL-GP (DL-glycerol 3-phosphate), was used to significantly reduce the synthetic cost. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhang, Juan; Wei, Ying; Lin, Shaoxia; Liang, Fushun; Liu, Pengjun
2012-12-14
A simple, efficient and practical copper-catalyzed aerobic oxidative synthesis of α-ketoamides from aryl methyl ketones, aliphatic amines and N-iodosuccinimide (NIS) has been developed. The one-pot reaction may proceed smoothly at room temperature in the open air. The possible mechanism for the formation of α-ketoamides was proposed. Molecular oxygen in air functions as both an oxidant and an oxygen source.
Siva Reddy, Alla; Kumara Swamy, K C
2015-06-19
A novel and efficient [Cu]-catalyzed one-pot regio- and stereospecific synthesis of benzo[1,4,2]dithiazine 1,1-dioxides and benzo[1,4,2]thiaselenazine 1,1-dioxides by cyclization of functionalized ynamides with elemental sulfur/selenium has been developed. Its generality is elegantly illustrated by extension to benzodithiazepines and benzothiaselenazepines. Involvement of water in the reaction is demonstrated by the incorporation of (2)D at the olefinic site by using D2O in place of water. Selective oxidation at sulfur in benzo[1,4,2]dithiazine 1,1-dioxide by using mCPBA as the oxidizing agent is also described.
Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro
2014-12-01
Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Automated three-component synthesis of a library of γ-lactams
Fenster, Erik; Hill, David; Reiser, Oliver
2012-01-01
Summary A three-component method for the synthesis of γ-lactams from commercially available maleimides, aldehydes, and amines was adapted to parallel library synthesis. Improvements to the chemistry over previous efforts include the optimization of the method to a one-pot process, the management of by-products and excess reagents, the development of an automated parallel sequence, and the adaption of the method to permit the preparation of enantiomerically enriched products. These efforts culminated in the preparation of a library of 169 γ-lactams. PMID:23209515
Weber, Julia; Schwarz, Markus; Schiefer, Andrea; Hametner, Christian; Häubl, Georg; Fröhlich, Johannes; Mikula, Hannes
2018-06-07
The synthesis of (2-nitrophenyl)acetyl (NPAc)-protected glucosyl donors is described that were designed for the neighboring-group assisted glucosylation of base-labile natural products also being sensitive to hydrogenolysis. Glycosylation conditions were optimized using a trichloroacetimidate glucosyl donor, and cyclohexylmethanol and (+)-menthol as model acceptors. The approach was then extended to a one-pot procedure for the synthesis of 1,2- trans -glycosides. This method was finally applied for improved synthesis of the masked mycotoxin T2- O -β,d-glucoside.
NASA Astrophysics Data System (ADS)
Zeng, X. H.; Xiang, L. C.; Li, H. L.; Wang, H. M.; Wang, X. B.
2016-08-01
The derivatives of N-containing heterocycles containing the pyrrolidone or pyridinone moiety are of high importance because they have extensive biological properties including antifungal, anti-muscarinic, anti-cancer, anti-viral and anti-HIV activities. In our previous work, we described an one-pot transition-metal-free, base-mediated synthesis of pyrrolidinones ((E)-4-benzylidene-5-oxopyrrolidine-2-carboxamides 6) and an one-pot regioselective synthesis of previously seldom reported pyridinones (6-oxo-1,2,3,6- tetrahydropyridin-2-carboxamides 9) via Ugi reaction from Baylis-Hillman Bromides. Herein, the growth inhibitory effect of one concentration (50mg/L) of compounds 6 and 9 against fungi (Gibberella zeae) in vitro was tested by the method of toxic medium. Ihe results showed that the inhibitory effects of compounds 6 against Gibberella zeae are not obvious, but compounds 9 showed moderate to good inhibitory effects against Gibberella zeae. Compound 9h showed the best inhibition rate against Gibberella zeae with 95%.
An In Situ One-Pot Synthetic Approach towards Multivariate Zirconium MOFs.
Sun, Yujia; Sun, Lixian; Feng, Dawei; Zhou, Hong-Cai
2016-05-23
Chemically highly stable MOFs incorporating multiple functionalities are of great interest for applications under harsh environments. Herein, we presented a facile one-pot synthetic strategy to incorporate multiple functionalities into stable Zr-MOFs from mixed ligands of different geometry and connectivity. Via our strategy, tetratopic tetrakis(4-carboxyphenyl)porphyrin (TCPP) ligands were successfully integrated into UiO-66 while maintaining the crystal structure, morphology, and ultrahigh chemical stability of UiO-66. The amount of incorporated TCPP is controllable. Through various combinations of BDC derivatives and TCPP, 49 MOFs with multiple functionalities were obtained. Among them, MOFs modified with FeTCPPCl were demonstrated to be catalytically active for the oxidation of ABTS. We anticipate our strategy to provide a facile route to introduce multiple functionalities into stable Zr-MOFs for a wide variety of potential applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GREENER SYNTHESIS OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES
A brief account of a greener preparation of nanoparticles which reduces or eliminates the use and generation of hazardous substances is presented. The utility of vitamins B1 and B2, which can function both as reducing and capping agents, provides an extremely simple, one-pot, gre...
MICROWAVE IRRADIATION IN BENIGN SYNTHESIS OF HETEROCYCLES, NOBLE NANOMETALS AND NANOCOMPOSITES
A brief historic account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds [1] from in situ generated reacti...
Vitamins B2, B1, C, tea polyphenols, and natural surfactants, which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water. Shape-controlled synthesis of noble nanostructures via microw...
BIOMIMETIC APPROACH TO SUSTAINABLE NANOMATERIALS AND SAFER APPLICATION IN CATALYSIS AND REMEDIATION
Vitamins B1, B2, C, and tea polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water. Shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spon...
Biomimetic Approach to Nanomaterials and Their Safer Application in Catalysis and Remediation
Vitamins B1, B2, C, and tea polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water. Shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spon...
Greener Synthesis of N-Heterocycles via Sustainable Applications of Nano-Catalysts
A brief historic account of reactions involving microwave (MW) exposure of neat reactants or catalysis by mineral surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermedi...
NASA Astrophysics Data System (ADS)
Feng, Jinkui; Zhang, Zhen; Ci, Lijie; Zhai, Wei; Ai, Qing; Xiong, Shenglin
2015-08-01
A novel one-pot chemical dealloying method has been developed to prepare nanocomposite of reduced graphene oxide (RGO) and silicon dendrite from cheap commercial Al-Si eutectic precursor. The RGO anchoring could act as both conductive agent and buffer layer for Si volume change in the application of lithium ion batteries (LIBs). The Si/RGO composites show an initial reversible capacity of 2280 mAh g-1, excellent capacity retention of 1942 mAh g-1 even after 100 cycles, and a high capacity of 1521 mAh g-1 even at the rate of 4000 mA g-1. Electrochemical impedance spectroscopy (EIS) measurement proved that Si/RGO composite has the lower charge transfer resistance. This work proposes an economic and facile method to prepare silicon based anode material for next generation LIBs with high energy density.
Direct α-C-H bond functionalization of unprotected cyclic amines
NASA Astrophysics Data System (ADS)
Chen, Weijie; Ma, Longle; Paul, Anirudra; Seidel, Daniel
2018-02-01
Cyclic amines are ubiquitous core structures of bioactive natural products and pharmaceutical drugs. Although the site-selective abstraction of C-H bonds is an attractive strategy for preparing valuable functionalized amines from their readily available parent heterocycles, this approach has largely been limited to substrates that require protection of the amine nitrogen atom. In addition, most methods rely on transition metals and are incompatible with the presence of amine N-H bonds. Here we introduce a protecting-group-free approach for the α-functionalization of cyclic secondary amines. An operationally simple one-pot procedure generates products via a process that involves intermolecular hydride transfer to generate an imine intermediate that is subsequently captured by a nucleophile, such as an alkyl or aryl lithium compound. Reactions are regioselective and stereospecific and enable the rapid preparation of bioactive amines, as exemplified by the facile synthesis of anabasine and (-)-solenopsin A.
Facile synthesis and photocatalytic activity of bi-phase dispersible Cu-ZnO hybrid nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Xiao; Liu, HongLing; Zhang, WenXing; Li, XueMei; Fang, Ning; Wang, XianHong; Wu, JunHua
2015-04-01
Bi-phase dispersible Cu-ZnO hybrid nanoparticles were synthesized by one-pot non-aqueous nanoemulsion with the use of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) show high crystallinity of the Cu-ZnO hybrid nanoparticles and an average particle size of ~19.4 nm. The ultraviolet-visible light absorbance spectrometry (UV-vis) and photoluminescence spectrophotometry (PL) demonstrate well dispersibility and excellent optical performance of Cu-ZnO hybrid nanoparticles both in organic and aqueous solvent. The X-ray photoelectron spectroscopy (XPS) confirms Cu1+ and Cu2+ in ZnO. The observation using Sudan red (III) as probe molecule reveals that the Cu-ZnO hybrid nanoparticles possess enhanced photocatalytic activity and stability which are promising for potential applications in photocatalysis.
Recent progress in chemical and chemoenzymatic synthesis of carbohydrates.
Muthana, Saddam; Cao, Hongzhi; Chen, Xi
2009-12-01
The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products.
Recent Progress in Chemical and Chemoenzymatic Synthesis of Carbohydrates
Muthana, Saddam; Cao, Hongzhi; Chen, Xi
2011-01-01
Summary The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products. PMID:19833544
Copolymers of polyaniline and poly-o-toluidine: Electrochemical synthesis and characterization
NASA Astrophysics Data System (ADS)
Yadav, Pooja C.; Deshmukh, Megha A.; Patil, Harshada K.; Bodkhe, Gajanan A.; Sayyad, Pasha W.; Ingle, Nikesh N.; Shirsat, Mahendra D.
2018-05-01
In the present study we have reported Electrochemical polymerization of poly(Aniline) (PANI), Poly(O-Toluidine) (POT) and poly(Aniline-co-O-Toluidine) (PAOT) copolymers. Electrochemical Synthesis of PANI, POT and Poly(Aniline-co-O-Toluidine) was done by using Cyclic Voltammetry technique. The morphological study done by Atomic Force Microscopy (AFM) which shows that formation of uniform granular structure and topographic changes in each respective thin film. Spectroscopic characterization was done by FTIR spectroscopy. The FT-IR study revealed the formation of PANI/POT/Poly(Aniline co O-Toluidine) with a absorption band are reported. For structural information done by X-ray diffraction(XRD) Characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann Mary, K.A.; Unnikrishnan, N.V., E-mail: nvu100@yahoo.com; Philip, Reji
2015-10-15
Highlights: • Silica modified QDs of CuS and Ag{sub 2}S is developed at room temperature. • Formation of Ag{sub 2}S/CuS nanocomposites is confirmed from XRD and FFT of HRTEM images. • The concentration dependent growth of silica modified QDs is discussed. • Nonlinear absorption observed in ns excitations is dominated by SA and ESA. • Tuning of optical limiting efficiency is achieved with relative Ag{sub 2}S content. - Abstract: In the present work we report a simple, facile route developed for preparing silica hybridized copper sulfide and silver sulfide quantum dots at room temperature. By adjusting the concentration of themore » precursors, Ag{sub 2}S can form Ag{sub 2}S–CuS nanocomposites which are self regulated in one pot. Their crystalline, structural and optical properties have been investigated in detail, and the optical limiting nature is studied from fluence-dependent transmittance measurements employing short (5 ns) laser pulses at 532 nm. Ag{sub 2}S nanoparticles are found to have large third order nonlinear optical coefficients with a relatively lower optical limiting threshold of 1.7 J cm{sup −2}, while the nonlinearity of the nanocomposites is found to lie in between that of Ag{sub 2}S and CuS nanoparticles. These results suggest pathways for designing good quality optical limiters with tunable optical limiting efficiencies by varying the constituent nanocrystal compositions.« less
NASA Astrophysics Data System (ADS)
Sun, Baoliang; Shan, Fei; Jiang, Xinxin; Ji, Jing; Wang, Feng
2018-03-01
A bifunctional MoS2/In2S3 hybrid composite that has both photo- and electrocatalytic activity toward hydrogen evolution reaction (HER) is prepared by a facile one pot hydrothermal method. The characterizations by scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM) and Photoluminescence (PL) shows that the MoS2/In2S3 hybrid exhibits ultrathin nanoflakes with mesh-shaped structure on transparent conductive substrates, and the as prepared catalyst composite obviously improves the separation of electro-hole pairs. The as prepared hybrid nanosheets with Mo:In of 1/2 integrate In-doped MoS2 to reduce the stacking and increase the active surface area. The novel mesh-shaped nanostructure with a moderate degree of disorder provides not only simultaneously intrinsic conductivity and defects but also higher electrochemically active surface area (ECSA). By electrochemical measurements, such as linear sweep voltammetry (LSV), electrochemical impedance spectroscope (EIS) and cyclic voltammetry (CV), we find that the MoS2/In2S3 hybrid possesses much better photo/electrochemical activity than pristine MoS2 or In2S3. MoS2/In2S3 ultrathin nanoflaks are anticipated to be a superior photoelectrocatalyst for PEC cells, and the rational use of the MoS2/In2S3 cathode offers a new avenue toward achieving effective photo-assistant electrocatalytic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yu Hua; Gong, Dangguo; Tang, Yuxin
2014-06-01
Dual phase titanate/titania nanoparticles undergo phase transformation gradually with the increase of solvothermal synthesis temperature from 100 °C to 200 °C, and eventually are fully transformed into anatase TiO{sub 2}. The crystal structure change results in the changes of optical absorption, sensitizer/dopant formation and surface area of the materials which finally affect the overall dye removal ability. Reactions under dark and light have been conducted to distinguish the contributions of surface adsorption from photocatalytic degradation. The sample synthesized at 160 °C (S160) shows the best performances for both adsorption under dark and photocatalytic degradation of methylene blue (MB) under visiblemore » light irradiation. The adsorption mechanism for S160 is determined as monolayer adsorption based on the adsorption isotherm test under dark condition, and an impressive adsorption capacity of 162.19 mg/g is achieved. For the photocatalytic application, this sample at 0.1 g/L loading is also able to degrade 20 ppm MB within 6 hours under the visible light (>420 nm) condition. - Graphical abstract: The effect of solvothermal synthesis temperature on the formation and dye removal performance of dual phase titanate/titania nanoparticles was unveiled and optimized. - Highlights: • Low temperature one-pot solvothermal synthesis of dual-phase photocatalysts. • Correlation of the synthesis temperature is made with the phase composition. • Adsorption isotherm, kinetics, photocatalytic degradation were studied. • Synthesis at 160 °C yields the best material for adsorption of MB in dark. • The same sample also shows the best visible light degradation of MB.« less
Yao, Xiaxi; Liu, Xiaoheng
2014-09-15
Geothermal water is a clean, cheap and renewable resource and it is widely distributed all over the world. In this work, ternary Ag2CO3/Ag/AgCl photocatalyst has been successfully synthesized via a one-pot precipitation method in natural geothermal water at room temperature, wherein the geothermal water serves as the source of chlorine and carbonate. The results suggest that the Ag/AgCl nanoparticles are anchored on the surface of Ag2CO3 and Ag2CO3/Ag/AgCl composite shows strong absorption ability in the visible light region. The evaluation of the photocatalytic activity indicates that the as-synthesized Ag2CO3/Ag/AgCl photocatalyst exhibits higher photocatalytic performance for the degradation of methylene blue (MB) aqueous solution under visible light irradiation than one-component (Ag2CO3), two-component (Ag/AgCl, Ag2CO3/AgCl) and the mechanical mixture of Ag2CO3 and Ag/AgCl. The trapping experiments confirmed that holes (h(+)) and (•)O2(-) were the two main active species in the photocatalytic process. Finally, a possible Z-scheme photocatalytic mechanism of the charge transfer was proposed for the enhanced photocatalytic performance. This work may open up new insights into the application of cheap geothermal water resources in the word and provide new opportunities for facile fabrication of Ag/AgCl-based photocatalysts. Copyright © 2014 Elsevier B.V. All rights reserved.
MICROWAVE IRRADIATION IN BENIGN SYNTHESIS OF ORGANIC MOLECULES, NOBLE NANOMETALS AND NANOCOMPOSITES
A brief historic account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds [1] from in situ generated reacti...
Greener Biomimetic Approach to the Synthesis of Nanomaterials and Nanocomposite
A brief account of greener production of nanoparticles which reduces or eliminates the use and generation of hazardous substances is presented. The utility of vitamins B1 and B2, which can function both as reducing and capping agents, provides an extremely simple, one-pot, greene...
Risk Reduction via Greener Synthesis of Noble Metal Nanostructures and Nanocomposites (Presentation)
A brief account of greener production of nanoparticles which reduces or eliminates the use and generation of hazardous substances is presented. The utility of vitamins B1 and B2, which can function both as reducing and capping agents, provides an extremely simple, one-pot, greene...
BULK AND TEMPLATE-FREE SYNTHESIS OF SILVER NANOWIRES USING CAFFEINE AT ROOM TEMPERATURE
A simple eco-friendly one-pot method is described to synthesize bulk quantities of nanowires of silver (Ag) using caffeine without the need of reducing agent, surfactants, and/or large amounts of insoluble templates. Chemical reduction of silver salts with caffeine dramatically c...
One pot synthesis of some new substituted hexahydro 2H-1,3-benzoxazine derivatives.
Safak, C; Simsek, R; Altas, Y; Erol, K; Boydag, S
1996-09-01
In this paper, we synthesized nineteen new compounds having 2,4-diaryl-5-oxohexahydro-2H-1,3-benzoxazine structure by the reaction of 1,3-cyclohexanedione, aromatic aldehyde and ammonium acetate. In addition, we evaluated calcium antagonistic activity of these compounds versus nicardipine.
Vitamins B2, B1, C, tea polyphenols, and natural surfactants, which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water. Shape-controlled synthesis of noble nanostructures via microw...
One-pot synthesis of magnetic silica supported copper catalyst has been described via in situ generated magnetic silica (Fe3O4@SiO2); the catalyst can be used for the efficacious amination of aryl halides in aqueous medium under microwave irradiation.
One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...
Hong, Bor-Cherng; Dange, Nitin S; Yen, Po-Jen; Lee, Gene-Hsiang; Liao, Ju-Hsiou
2012-10-19
A new method has been developed for the enantioselective synthesis of highly functionalized hydropentalenes bearing up to four stereogenic centers with high stereoselectivity (up to 99% ee). This process combines an enantioselective organocatalytic anti-selective Michael addition with a highly efficient one-pot reduction/lactonization/Pauson-Khand reaction sequence. The structures and absolute configurations of the products were confirmed by X-ray analysis.
2011-01-01
Summary A simple, efficient, and mild procedure for a solvent-free one-step synthesis of various 4,4′-diaminotriarylmethane derivatives in the presence of antimony trichloride as catalyst is described. Triarylmethane derivatives were prepared in good to excellent yields and characterized by elemental analysis, FTIR, 1H and 13C NMR spectroscopic techniques. The structural and vibrational analysis were investigated by performing theoretical calculations at the HF and DFT levels of theory by standard 6-31G*, 6-31G*/B3LYP, and B3LYP/cc-pVDZ methods and good agreement was obtained between experimental and theoretical results. PMID:21445373
Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.
Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh
2015-07-01
This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity andmore » stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.« less
Mesoporous g-C₃N₄ Nanosheets: Synthesis, Superior Adsorption Capacity and Photocatalytic Activity.
Li, Dong-Feng; Huang, Wei-Qing; Zou, Lan-Rong; Pan, Anlian; Huang, Gui-Fang
2018-08-01
Elimination of pollutants from water is one of the greatest challenges in resolving global environmental issues. Herein, we report a high-surface-area mesoporous g-C3N4 nanosheet with remarkable high adsorption capacity and photocatalytic performance, which is prepared through directly polycondensation of urea followed by a consecutive one-step thermal exfoliation strategy. This one-pot method to prepare mesoporous g-C3N4 nanosheet is facile and rapid in comparison with others. The superior adsorption capacity of the fabricated mesoporous g-C3N4 nanostructures is demonstrated by a model organic pollutant-methylene blue (MB), which is up to 72.2 mg/g, about 6 times as that of the largest value of various g-C3N4 adsorbents reported so far. Moreover, this kind of porous g-C3N4 nanosheet exhibits high photocatalytic activity to MB and phenol degradation. Particularly, the regenerated samples show excellent performance of pollutant removal after consecutive adsorption/degradation cycles. Therefore, this mesoporous g-C3N4 nanosheet may be an attractive robust metal-free material with great promise for organic pollutant elimination.
Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation
NASA Astrophysics Data System (ADS)
Kukwikila, Mikiembo; Gale, Nittaya; El-Sagheer, Afaf H.; Brown, Tom; Tavassoli, Ali
2017-11-01
The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation. We synthesize the 335 base-pair gene that encodes the green fluorescent protein iLOV from ten functionalized oligonucleotides that contain 5ʹ-azide and 3ʹ-alkyne units. The resulting click-linked iLOV gene contains eight triazoles at the sites of chemical ligation, and yet is fully biocompatible; it is replicated by DNA polymerases in vitro and encodes a functional iLOV protein in Escherichia coli. We demonstrate the power and potential of our one-pot gene-assembly method by preparing an epigenetically modified variant of the iLOV gene.
Voorhaar, Lenny; De Meyer, Bernhard; Du Prez, Filip; Hoogenboom, Richard
2016-10-01
The preparation of physically crosslinked hydrogels from quasi ABA-triblock copolymers with a water-soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N-acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one-pot sequential monomer addition through reversible addition fragmentation chain-transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic-hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase-separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self-healing ability after large strain damage is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chu, Haoke; Dai, Qiang; Jiang, Yan; Cheng, Jiang
2017-08-04
A cyanide-free one-pot procedure was developed to access 2-amino-3-hydroxy-3H-indoles, which involved: (1) in situ formation of ketenimines by the reaction of N'-(1-(2-aminophenyl)ethylidene)-p-tosylhydrazones with isonitriles; (2) the intramolecular nucleophilic attack of ketenimines by the amino in phenyl furnishing the ring closure leading to 2-aminoindoles; (3) the oxidation of 2-aminoindoles by O 2 leading to 2-amino-3-hydroxy-3H-indoles. This strategy represents not only a key compliment to the sporadic synthetic methods toward 2-amino-3-hydroxy-3H-indoles but also progress in N-tosylhydrazone, isonitrile, and ketenimine chemistry.
One-Pot Solvothermal Synthesis of Bi4V2O11 as A New Solar Water Oxidation Photocatalyst
Jiang, Zaiyong; Liu, Yuanyuan; Li, Mengmeng; Jing, Tao; Huang, Baibiao; Zhang, Xiaoyang; Qin, Xiaoyan; Dai, Ying
2016-01-01
Bi4V2O11 was prepared via a one-pot solvothermal method and characterized via XRD, Raman, XPS, Electrochemical impedance spectroscopy. The as-prepared Bi4V2O11 sample displays excellent photocatalytic activity towards oxygen evolution under light irradiation. The hierarchical structure is in favour of the spatial separation of photogenerated electrons and holes. Furthermore, the internal polar field also plays a role in improving the charge separation. Both of the two results are responsible for excellent activity of O2 evolution. The resulting hierarchical Bi4V2O11 sample should be very promising photocatalyst for the application of photocatalytic O2 evolution in the future. PMID:26947126
Yue, Ying-Na; Zeng, Sheng; Wang, Hui; Wang, Shuo; Wang, Huan; Lu, Jia-Xing
2018-06-19
A simple protocol to synthesize D-phenylalanine (D-PHE)-functionalized multi-walled carbon nanotubes (MWCNTs) via one-pot method was established by grafting D-PHE onto MWCNTs to obtain D-PHE-MWCNTs under mild reaction conditions. The resulting D-PHE-MWCNTs were detailedly characterized via spectroscopy and surface analysis. The electroreduction of 2,2,2-trifluoroacetophenone at D-PHE-MWCNTs cathode afforded (S)-α-(trifluoromethyl) benzyl alcohol whose yield was 65% and the enantiomeric excess was 40%. No extra catalysts were required in this electrochemical reaction solution compared with other reactions requiring homogeneous catalysis. The metal-free chiral material also showed acceptable asymmetric electroreduction performance, considerable stability and favorable reusability.
Xiao, Yuan; Guo, Jialiang; Ran, Danni; Duan, Qianqian; Crommen, Jacques; Jiang, Zhengjin
2015-06-26
A facile and efficient "one-pot" copolymerization strategy was used for the preparation of sulfonamide drug (SA) functionalized monolithic columns. Two novel SA-immobilized methacrylate monolithic columns, i.e. poly(GMA-SMX-co-EDMA) and poly(GMA-SAA-co-EDMA) were prepared by one-pot in situ copolymerization of the drug ligand (sulfamethoxazole (SMX) or sulfanilamide (SAA)), the monomer (glycidyl methacrylate, GMA) and the cross-linker (ethylene dimethacrylate, EDMA) within 100 μm i.d. capillaries under optimized polymerization conditions. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, scanning electron microscopy and micro-HPLC. Satisfactory column permeability, efficiency and separation performance were obtained on the optimized poly(GMA-SMX-co-EDMA) monolithic column for small molecules, such as a standard test mixture and eight aromatic ketones. Notably, it was found that the poly(GMA-SMX-co-EDMA) monolith showed a selective affinity to trypsin, while the poly(GMA-SAA-co-EDMA) monolith containing sulfanilamide did not exhibit such affinity at all. This research not only provides a novel monolith for the selective isolation and purification of trypsin, but it also offers the possibility to easily prepare novel drug functionalized methacrylate monoliths through a one-pot copolymerization strategy. Copyright © 2015 Elsevier B.V. All rights reserved.
Kikukawa, Yuu; Fukuda, Takamitsu; Fuyuhiro, Akira; Ishikawa, Naoto; Kobayashi, Nagao
2011-08-14
Soluble copper phthalocyanine (CuPc) and naphthalocyanine (CuNc) precursors which can be converted thermally and photochemically into insoluble CuPc and CuNc, respectively, have been synthesized by a one-step reaction using commercially available chemicals. This journal is © The Royal Society of Chemistry 2011
Zang, Qin; Javed, Salim; Hill, David; Ullah, Farman; Bi, Danse; Porubsky, Patrick; Neuenswander, Benjamin; Lushington, Gerald H; Santini, Conrad; Organ, Michael G; Hanson, Paul R
2012-08-13
The construction of a 96-member library of triazolated 1,2,5-thiadiazepane 1,1-dioxides was performed on a Chemspeed Accelerator (SLT-100) automated parallel synthesis platform, culminating in the successful preparation of 94 out of 96 possible products. The key step, a one-pot, sequential elimination, double-aza-Michael reaction, and [3 + 2] Huisgen cycloaddition pathway has been automated and utilized in the production of two sets of triazolated sultam products.
Zang, Qin; Javed, Salim; Hill, David; Ullah, Farman; Bi, Danse; Porubsky, Patrick; Neuenswander, Benjamin; Lushington, Gerald H.; Santini, Conrad; Organ, Michael G.; Hanson, Paul R.
2013-01-01
The construction of a 96-member library of triazolated 1,2,5-thiadiazepane 1,1-dioxides was performed on a Chemspeed Accelerator (SLT-100) automated parallel synthesis platform, culminating in the successful preparation of 94 out of 96 possible products. The key step, a one-pot, sequential elimination, double-aza-Michael reaction, and [3+2] Huisgen cycloaddition pathway has been automated and utilized in the production of two sets of triazolated sultam products. PMID:22853708
Estévez, Verónica; Villacampa, Mercedes; Menéndez, J Carlos
2013-01-21
A sequential multicomponent process involving the high-speed vibration milling of ketones with N-iodosuccinimide and p-toluenesulfonic acid, followed by addition of a mixture of primary amines, β-dicarbonyl compounds, cerium(IV) ammonium nitrate and silver nitrate afforded polysubstituted, functionalized pyrroles. This one-pot, solid-state process can be considered as the coupling of an α-iodoketone preparation with a general version of the classical Hantzsch pyrrole synthesis.
Frlan, Rok; Kovac, Andreja; Blanot, Didier; Gobec, Stanislav; Pecar, Slavko; Obreza, Ales
2008-01-11
A series of novel N-benzylidenesulfonohydrazide compounds were designed and synthesized as inhibitors of UDP-N-acetylmuramic acid: L-alanine ligase (MurC) and UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase (MurD) from E. coli, involved in the biosynthesis of bacterial cell-walls. Some compounds possessed inhibitory activity against both enzymes with IC(50) values as low as 30 microM. In addition, a new, one-pot synthesis of amidobenzaldehydes is reported.
Han, Xun; Floreancig, Paul E
2014-10-06
Spiroacetals can be formed through a one-pot sequence of a hetero-Diels-Alder reaction, an oxidative carbon-hydrogen bond cleavage, and an acid treatment. This convergent approach expedites access to a complex molecular subunit which is present in numerous biologically active structures. The utility of the protocol is demonstrated through its application to a brief synthesis of the actin-binding cytotoxin bistramide A. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simpson, Michael; Trembleau, Laurent; Cheyne, Richard W; Smith, Tim A D
2011-02-01
The biotin-avidin affinity system is exploited in pre-targeted imaging using avidin-conjugated antibodies. (18)F-FDG is available at all PET centres. (18)F-FDG forms oximes by reaction with oxyamine. Herein we describe the synthesis of oxyamine-funtionalised biotin, its (18)F-labelling by conjugation with (18)F-FDG and confirm its ability to interact with avidin. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T
2012-01-01
Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contentsmore » were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.« less
Yamada, Hiroko; Kushibe, Kayo; Okujuma, Tetsuo; Uno, Hidemitsu; Ono, Noboru
2006-01-28
5-Alkenyl-15-alkynylporphyrins have been obtained unexpectedly by [2 + 2] acid-catalyzed condensation of dipyrrylmethane and TMS propynal in addition to 5,15-dialkynylporphyrin, and the unsymmetrical porphyrin can be converted to a butadiyne-linked dimer by selective desilylation of the alkynyl TMS.
Wei, Zhi-Liang; Kozikowski, Alan P
2003-11-14
The most potent and selective peroxisome proliferator-activated receptor delta (PPARdelta) agonist GW501516 (1) was synthesized in 4 steps and 78% overall yield starting from o-cresol by using a one-pot regiocontrolled dialkylation of mercaptophenol 5 as the key step.
Concise total syntheses of (+/-)-strychnine and (+/-)-akuammicine.
Sirasani, Gopal; Paul, Tapas; Dougherty, William; Kassel, Scott; Andrade, Rodrigo B
2010-05-21
Concise total syntheses of Strychnos alkaloids strychnine (1) and akuammicine (2) have been realized in 13 and 6 operations, respectively. Key steps include (1) the vinylogous Mannich reaction; (2) a novel, sequential one-pot spirocyclization/intramolecular aza-Baylis-Hillman reaction; and (3) a Heck cyclization. The synthesis of 1 proceeds via the Wieland-Gumlich aldehyde (26).
GREENER SYNTHESIS OF NANOMETALS AND NANOCOMPOSITES AND THEIR APPLICATION IN ORGANIC SYNTHESES
A brief account of a greener preparation of nanoparticles which reduces or eliminates the use and generation of hazardous substances is described. The use of vitamins B1 and B2, which can function both as reducing and capping agents, provides a simple, one-pot, greener method to ...
Silylene- and disilyleneacetylene polymers from trichloroethylene
Barton, Thomas J.; Ijadi-Maghsoodi, Sina
1990-07-10
Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R'), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.
Silylene- and disilyleneacetylene polymers from trichloroethylene
Barton, T.J.; Ijadi-Maghsoodi, S.
1990-07-10
Organosilane polymers having recurring silyleneacetylene and/or disilyleneacetylene units are prepared in a one-pot synthesis from trichloroethylene. Depending on the organic substituents (R and R[prime]), these polymers have useful film-forming properties, and are converted to the ceramic, silicon carbide upon heating in very uniform high yields. They can also be pulled into fibers.
Vitamins B1,1a B2, C,1b and tea polyphenols1c which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water. Shape-controlled synthesis of noble nanostructures via microwave (MW)-assiste...
NASA Astrophysics Data System (ADS)
Liu, Zhantao; Qin, Xusong; Xu, Hui; Chen, Guohua
2015-10-01
In this study, a one-pot sintering process incorporating sol-gel preparation route and in-situ carbon coating was proposed for the synthesis of carbon-coated nanosized LiTi2(PO4)3. Experimental results show that the prepared LiTi2(PO4)3 particles are of high crystallinity and well-coated by turbostratic carbon. Attributed to nanosized particles and enhanced conductivity provided by turbostratic carbon coating, the carbon-coated LiTi2(PO4)3 showed high rate performance and good cycling life in aqueous electrolyte. Particularly, the carbon-coated LiTi2(PO4)3 exhibited initial specific capacities of 103 and 89 mAh g-1, and retained 80.6% and 97% of the initial capacities after 120 cycles at 1C and 10C in aqueous electrolyte, respectively. The high rate performance and good cycling life of carbon-coated LiTi2(PO4)3 in aqueous electrolyte reveal its potential as negative electrode in aqueous lithium-ion batteries for electric vehicles and industrial-scale energy storage systems.
Cosson, Steffen; Danial, Maarten; Saint-Amans, Julien Rosselgong; Cooper-White, Justin J
2017-04-01
Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kumar, Aniket; Rout, Lipeeka; Achary, Lakkoji Satish Kumar; Dhaka, Rajendra. S.; Dash, Priyabrat
2017-02-01
A facile, efficient and environmentally-friendly protocol for the synthesis of xanthenes by graphene oxide based nanocomposite (GO-CuFe2O4) has been developed by one-pot condensation route. The nanocomposite was designed by decorating copper ferrite nanoparticles on graphene oxide (GO) surface via a solution combustion route without the use of template. The as-synthesized GO-CuFe2O4 composite was comprehensively characterized by XRD, FTIR, Raman, SEM, EDX, HRTEM with EDS mapping, XPS, N2 adsorption-desorption and ICP-OES techniques. This nanocomposite was then used in an operationally simple, cost effective, efficient and environmentally benign synthesis of 14H-dibenzo xanthene under solvent free condition. The present approach offers several advantages such as short reaction times, high yields, easy purification, a cleaner reaction, ease of recovery and reusability of the catalyst by a magnetic field. Based upon various controlled reaction results, a possible mechanism for xanthene synthesis over GO-CuFe2O4 catalyst was proposed. The superior catalytic activity of the GO-CuFe2O4 nanocomposite can be attributed to the synergistic interaction between GO and CuFe2O4 nanoparticles, high surface area and presence of small sized CuFe2O4 NPs. This versatile GO-CuFe2O4 nanocomposite synthesized via combustion method holds great promise for applications in wide range of industrially important catalytic reactions.
Singh, Kamaljit; Arora, Divya; Poremsky, Elizabeth; Lowery, Jazmyne; Moreland, Robert S
2009-05-01
It has been found that selective N1-alkylation of 3,4-dihydropyrimidine-2(1H)-ones can be achieved under solvent-less, mild phase transfer catalytic (PTC) conditions with tetrabutylammonium hydrogen sulfate and 50% aqueous NaOH as the catalyst and base, respectively. The procedure is tolerant to substitutional variation at key diversity points on the pyrimidinone moiety.
Zhang, Yue; He, Junhui
2015-08-21
A facile one-pot approach to prepare photoluminescent carbon dots (CDs) was developed through hydrothermal treatment of cysteine and citric acid. The obtained CDs show stable and bright blue emission with a quantum yield of 54% and an average lifetime of 11.61 ns. Moreover, the two-photon induced upconversion fluorescence of the CDs was observed and demonstrated. Interestingly, both down and up conversion fluorescence of the CDs show excitation-independent emission, which is quite different from most of the previously reported CDs. Ultrafast spectroscopy was also employed here to study the photoluminescence (PL) properties of the CDs. After characterization using various spectroscopic techniques, a unique PL mechanism for the as-prepared CDs' fluorescence was proposed accordingly. In addition, the influence of various metal ions on the CD fluorescence was examined and no quenching phenomena were observed. Meanwhile, gold nanoparticles (Au NPs) were found to be good quenchers of CD fluorescence and their quenching behavior was fitted to the Stern-Volmer equation. This provides new opportunities for fluorescence sensor designs and light energy conversion applications. Finally, the as-prepared CDs were inkjet-printed to form a desirable pattern, which is useful for fluorescent patterns, and anti-counterfeiting labeling.
Yang, Liping; Kong, Junhua; Zhou, Dan; Ang, Jia Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Hai; Huang, Yizhong; Lu, Xuehong
2014-06-16
Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni(2+) ions are chelated with polydopamine (PDA) units, forming homogeneous Ni(2+)-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One-pot facile green synthesis of biocidal silver nanoparticles
NASA Astrophysics Data System (ADS)
Nudrat Hazarika, Shabiha; Gupta, Kuldeep; Shamin, Khan Naseem Ahmed Mohammed; Bhardwaj, Pushpender; Boruah, Ratan; Yadav, Kamlesh K.; Naglot, Ashok; Deb, P.; Mandal, M.; Doley, Robin; Veer, Vijay; Baruah, Indra; Namsa, Nima D.
2016-07-01
The plant root extract mediated green synthesis method produces monodispersed spherical shape silver nanoparticles (AgNPs) with a size range of 15-30 nm as analyzed by atomic force and transmission electron microscopy. The material showed potent antibacterial and antifungal properties. Synthesized AgNPs display a characteristic surface plasmon resonance peak at 420 nm in UV-Vis spectroscopy. X-ray diffractometer analysis revealed the crystalline and face-centered cubic geometry of in situ prepared AgNPs. Agar well diffusion and a colony forming unit assay demonstrated the potent biocidal activity of AgNPs against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas diminuta and Mycobacterium smegmatis. Intriguingly, the phytosynthesized AgNPs exhibited activity against pathogenic fungi, namely Trichophyton rubrum, Aspergillus versicolor and Candida albicans. Scanning electron microscopy observations indicated morphological changes in the bacterial cells incubated with silver nanoparticles. The genomic DNA isolated from the bacteria was incubated with an increasing concentration of AgNPs and the replication fidelity of 16S rDNA was observed by performing 18 and 35 cycles PCR. The replication efficiency of small (600 bp) and large (1500 bp) DNA fragments in the presence of AgNPs were compromised in a dose-dependent manner. The results suggest that the Thalictrum foliolosum root extract mediated synthesis of AgNPs could be used as a promising antimicrobial agent against clinical pathogens.
Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors.
Kim, Chae Bin; Jeong, Ki Beom; Yang, Beom Joo; Song, Jong-Won; Ku, Bon-Cheol; Lee, Seunghyun; Lee, Seoung-Ki; Park, Chiyoung
2017-12-18
We herein report a facile, cost-competitive, and scalable method for producing viscoelastic conductors via one-pot melt-blending using polymers and supramolecular gels composed of carbon nanotubes (CNTs), diphenylamine (DP), and benzophenone (BP). When mixed, a non-volatile eutectic liquid (EL) produced by simply blending DP with BP (1:1 molar ratio) enabled not only the gelation of CNTs (EL-CNTs) but also the dissolution of a number of commodity polymers. To make use of these advantages, viscoelastic conductors were produced via one-pot melt-blending the EL and CNTs with a model thermoplastic elastomer, poly(styrene-b-butadiene-b-styrene) (SBS, styrene 30 wt %). The resulting composites displayed an excellent electromechanical sensory along with re-mendable properties. This simple method using cost-competitive EL components is expected to provide an alternative to the use of expensive ionic liquids as well as to facilitate the fabrication of novel composites for various purposes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Keshari, Amit K; Singh, Ashok K; Raj, Vinit; Rai, Amit; Trivedi, Prakruti; Ghosh, Balaram; Kumar, Umesh; Rawat, Atul; Kumar, Dinesh; Saha, Sudipta
2017-01-01
In our efforts to address the rising incidence of hepatocellular carcinoma (HCC), we have made a commitment to the synthesis of novel molecules to combat Hep-G2 cells. A facile and highly efficient one-pot, multicomponent reaction has been successfully devised utilizing a p -toluenesulfonic acid ( p -TSA)-catalyzed domino Knoevenagel/Michael/intramolecular cyclization approach for the synthesis of novel 5H-benzo[h]thiazolo[2,3-b]quinazoline and indeno[1,2-d] thiazolo[3,2-a]pyrimidine analogs bearing a bridgehead nitrogen atom. This domino protocol constructed one new ring by the concomitant formation of multiple bonds (C-C, C-N, and C=N) involving multiple steps without the use of any metal catalysts in one-pot, with all reactants effi-ciently exploited. All the newly synthesized compounds were authenticated by means of Fourier transform infrared spectroscopy, liquid chromatography-mass spectrometry, proton nuclear magnetic resonance spectroscopy, and carbon-13 nuclear magnetic resonance spectroscopy, together with elemental analysis, and their antitumor activity was evaluated in vitro on a Hep-G2 human cancer cell line by sulforhodamine B assay. Computational molecular modeling studies were carried out on cancer-related targets, including interleukin-2, interleukin-6, Caspase-3, and Caspase-8. Two compounds (4A and 6A) showed growth inhibitory activity comparable to the positive control Adriamycin, with growth inhibition of 50% <10 μg/mL. The results of the comprehensive structure-activity relationship study confirmed the assumption that two or more electronegative groups on the phenyl ring attached to the thiazolo[2,3-b]quinazoline system showed the optimum effect. The in silico simulations suggested crucial hydrogen bond and π-π stacking interactions, with a good ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile and molecular dynamics, in order to explore the molecular targets of HCC which were in complete agreement with the in vitro findings. Considering their significant anticancer activity, 4A and 6A are potential drug candidates for the management of HCC.
Singh, Harjinder; Sindhu, Jayant; Khurana, Jitender M; Sharma, Chetan; Aneja, K R
2014-04-22
Spirocyclic oxindoles and triazolyl derivatives posses remarkable biological activities. In present work, we have described an efficient one pot four-component domino reaction of 1-(prop-2-ynyl)indoline-2,3-dione, cyclic 1,3-diketones, malononitrile and various aryl azides in DBU based ionic liquids [DBU-H]OAc and [DBU-Bu]OH under ultrasonic irradiation for the construction of heterocycles, comprising spiro-oxindole, 2-amino-4H-pyran, and 1,2,3-triazoles substructures. The antimicrobial activity of all compounds has been investigated against six microbial strains. All compounds showed good antimicrobial activity. All newly synthesized compounds exhibit fluorescence in methanol with large stoke shift. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Kim, Eunae; Park, Sehoon; Chang, Sukbok
2018-04-17
Described here is a reductive amination/hydrosilylation cascade of α,β-unsaturated aldehydes mediated by a Lewis acidic borane catalyst. The present reaction system provides an one-pot synthetic route towards β-silylated secondary amines that have not been accessible by other previous catalysis. Comparative 1 H NMR studies on the silylative reduction of enimines revealed that steric bulkiness of primary amine reactants strongly affects both catalytic efficiency and regioselectivity. This strategy was applicable to a broad range of substrates and amenable to one-pot gram-scale synthesis. Moreover, a diastereoselective introduction of the β-silyl group was also found to be feasible (d.r. up to 71:29). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Xinwei; Tian, Hongwei; Cui, Xiaoqiang; Zheng, Weitao; Liu, Yichun
2014-09-14
We successfully synthesized mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide (Z(x)CSG) hybrid materials as photocatalysts using a facile one-pot hydrothermal reaction, in which graphene oxide (GO) was easily reduced (RGO), and simultaneously Zn(x)Cd(1-x)S (Z(x)CS) nanoparticles (NPs) with a mesoporous structure were uniformly dispersed on the RGO sheets. By well tuning the band gap from 3.42 to 2.21 eV by changing the molar ratio of Zn/Cd (or Zn content), Z(x)CSG with an optimal zinc content has been found to have a significant absorption in the visible light (VL) region. In addition, under VL irradiation (λ > 420 nm), Z(x)CSG also showed zinc content-dependent photocatalytic efficiencies for the degradation of methylene blue (MB). Our findings are that, among Z(x)CSG, Z(0.4)CSG displayed not only a superior photodegradation efficiency of MB (98%), but also good removal efficiency of total organic carbon (TOC) (67%). Furthermore, Z(0.4)CSG had a high photocatalytic stability, and could be used repeatedly. The enhanced photocatalytic activity for Z(0.4)CSG could be attributed to a synergistic effect between mesoporous Z(x)CS NPs and RGO, including the optimal band gap and the moderate conduction band position for ZxCS (compared to CdS), efficient separation and transfer ability of photogenerated electron/hole pairs in the presence of RGO sheets, and relatively high surface area for both mesoporous Z(x)CS NPs and RGO.
NASA Astrophysics Data System (ADS)
Pham, Thanh-Truc; Nguyen-Huy, Chinh; Shin, Eun Woo
2016-07-01
Nickel (Ni)-incorporated titanium dioxide (TiO2)/graphene oxide composite photocatalysts were prepared by anchoring the TiO2 and Ni onto the surface of graphene oxide (GO) sheets by a straightforward microwave-assisted, one-pot method for the first time. The as-prepared composite photocatalysts with high Ni content (40-50 wt%) showed good adsorption capacity in the dark and high reaction rate constants under visible illumination while the composite photocatalysts with low Ni content (5-10 wt%) exhibited weak activity. An anatase phase, a small amount of rutile phase and Ni metal were detected using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Raman measurements identified a small fraction of NiTiO3 only at high Ni content. The formation of NiTiO3 and the increase in the specific surface area (SSA) for 40 and 50 wt% Ni-loaded catalysts improved the adsorption capacity and photocatalytic activity upon exposure to visible light, resulting in very effective removal of dye contaminants under visible light irradiation. Increasing the Ni content up to 40 and 50 wt% induced not only a structural change affording high porosity but also a narrowing of the band gap to 2.51 eV. Meanwhile, the presence of GO in the composite photocatalysts inhibited the agglomeration of Ni particles even at high Ni content, resulting in similar Ni particle sizes regardless of the Ni content. At the same time, Ni metal accelerated the reduction of the GO sheets, as evidenced by the Raman data.
NASA Astrophysics Data System (ADS)
Hurh, Joon; Markus, Josua; Kim, Yeon-Ju; Ahn, Sungeun; Castro-Aceituno, Veronica; Mathiyalagan, Ramya; Kim, Yu Jin; Yang, Deok Chun
2017-09-01
Gold nanoparticles (GNPs) are forecasted to provide an attractive platform in biomedicine and catalysis with their potentials of combining a variety of biophysicochemical properties into an integrated nanodevice with great therapeutic and optical functions. There are several reports of crude plant extracts mediating the conversion of metal ions into nanoparticles. However, we aimed to investigate the capability of single bioactive compounds, namely ginsenosides compound K (C-K) and Rh2, to accommodate a synergistic chemical reduction of gold salts by one-pot green chemistry. Ginsenosides C-K and Rh2 are unique triterpenoid saponins present in Panax ginseng Meyer, a perennial plant traditionally used as an oriental medicinal herbal with long history. C-K and Rh2 have demonstrated diverse pharmacological properties such as anticancer, anti-inflammation, anti-aging, and neuroprotective properties. The reduction of gold ions by these ginsenosides led to the production of nontoxic GNPs as tested in mouse macrophage (J774A.1) and human kidney epithelial (HEK-293) in vitro. The kinetics of the bioreduction and the influence of pH were examined by an ultraviolet-visible (UV-Vis) spectrophotometer. GNPs were characterized by field emission transmission electron microscopy (FE-TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and Fourier transform infrared (FTIR) spectroscopy. Ginsenoside loading efficiency of C-K-GNPs and Rh2-GNPs was determined to be approximately 62.83% and 54.91%, respectively, by thermogravimetric analysis (TGA). These results suggest that one-pot synthesis by ginsenosides C-K and Rh2 may be useful for producing ginsenoside-loaded gold nanocarriers. [Figure not available: see fulltext.
ERIC Educational Resources Information Center
Withey, Jonathan M.; Bajic, Andrea
2015-01-01
A novel procedure is described where students use COMU [(1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate], as a nonhazardous partner, in the one-pot coupling of a carboxylic acid and amine producing N,N-diethyl-3-methylbenzamide (DEET). Fundamental principles of carbonyl reactivity are understood,…
NASA Astrophysics Data System (ADS)
Tournilhac, Francois
2012-02-01
Supramolecular chemistry teaches us to control non-covalent interactions between organic molecules, particularly through the use of optimized building blocks able to establish several hydrogen bonds in parallel. This discipline has emerged as a powerful tool in the design of new materials through the concept of supramolecular polymers. One of the fascinating aspects of such materials is the possibility of controlling the structure, adding functionalities, adjusting the macroscopic properties of and taking profit of the non-trivial dynamics associated to the reversibility of H-bond links. Applications of these compounds may include adhesives, coatings, rheology additives, high performance materials, etc. However, the synthesis of such polymers at the industrial scale still remains a challenge. Our first ambition is to design supramolecular polymers with original properties, the second ambition is to devise simple and environmentally friendly methods for their industrial production. In our endeavours to create novel supramolecular networks with rubbery elasticity, self-healing ability and as little as possible creep, the strategy to prolongate the relaxation time and in the same time, keep the system flexible was to synthesize rather than a single molecule, an assembly of randomly branched H-bonding oligomers. We propose a strategy to obtain through a facile one-pot synthesis a large variety of supramolecular materials that can behave as differently as associating low-viscosity liquids, semi-crystalline or amorphous thermoplastics, viscoelastic melts or self-healing rubbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn; Wang, Xin
2017-03-15
A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.
Ye, Ranfeng; Zhu, Chengzhou; Song, Yang; Lu, Qian; Ge, Xiaoxiao; Yang, Xu; Zhu, Mei-Jun; Du, Dan; Li, He; Lin, Yuehe
2016-06-01
With a mild elaborately bioinspired one-pot process, Con A-GOx-CaHPO4 nanoflowers are prepared. Employing the as-prepared all-in-one hybrid nanoflowers as signal tags, a simple but potentially powerful amplification biosensing technology for the detection of food pathogen with excellent simplicity, portability, sensitivity, and adaptability is achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2011-01-01
Several novel C-pseudonucleosides bearing thiazolidin-4-one were synthesized by one-pot three-component condensation using unprotected sugar aldehyde at room temperature, and their effects on T cells, B cells, the cytokine secretion of IL-2, IL-4, and IFN-γ, T cell-associated molecules (CD3, CD4, CD8), and B cell-associated molecules (CD19) were first evaluated. The experimental data demonstrated that such thiazolidin-4-one C-pseudonucleosides hold potential as immunostimulating agents. PMID:24900274
Jha, Amitabh; Naidu, Ajaya B; Abdelkhalik, Ashraf M
2013-11-21
An efficient, environmentally benign, transition-metal free, tandem C-N, C-O bond formation reaction is developed for the synthesis of tricyclic 7-oxa-2-azatricyclo[7.4.0.0(2,6)]trideca-1(9),10,12-trien-3-ones and their homologs from easily available starting materials, including renewable levulinic acid, a keto acid. The reaction of keto acids with methyl chloroformate and variously substituted o-aminobenzyl alcohols using triethylamine as a base in toluene at room temperature gave good to excellent yields. This newly developed protocol was successfully utilized for the synthesis of a variety of polycyclic 7-oxa-2-azatricyclo[7.4.0.0(2,6)]trideca-1(9),10,12-trien-3-ones and related compounds.
Fan, Xue-Sen; Zhang, Ju; Li, Bin; Zhang, Xin-Ying
2015-06-01
Tetracyclic skeletons combining an imidazo[1,2-a]pyridine moiety with a quinoline framework such as pyrido[2',1':2,3]imidazo[4,5-b]quinoline are stimulating increasing interests since they are close isosteres of a series of powerful antiproliferative compounds. In this paper, we report a novel methodology for the synthesis of pyrido[2',1':2,3]imidazo[4,5-c]quinolines through one-pot sequential reactions of commercially available or readily obtainable 2-aminopyridines, 2-bromophenacyl bromides, aqueous ammonia, and aldehydes. Moreover, dihydropyrido[2',1':2,3]imidazo[4,5-c]quinolines could also be obtained in a similar manner by using various ketones as the substrates in place of aldehydes. Notably, the whole procedure combines condensation/amination/cyclization reactions in one pot to give complex compounds in a simple and practical manner. Compared with literature methods, the synthetic strategy reported herein has the advantages of readily available starting materials, structural diversity of products, good functional group tolerance, and obviation of step-by-step operations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tong, Xin; Li, Tiezheng; Orwenyo, Jared; Toonstra, Christian; Wang, Lai-Xi
2018-04-01
A facile, one-pot enzymatic glycan remodeling of antibody rituximab to produce homogeneous high-mannose and hybrid type antibody glycoforms is described. This method was based on the unique substrate specificity of the endoglycosidase S (Endo-S) from Streptococcus pyogenes. While Endo-S efficiently hydrolyzes the bi-antennary complex type IgG Fc N-glycans, we found that Endo-S did not hydrolyze the "ground state" high-mannose or hybrid glycoforms, and only slowly hydrolyzed the highly activated high-mannose or hybrid N-glycan oxazolines. Moreover, we found that wild-type Endo-S could efficiently use high-mannose or hybrid glycan oxazolines for transglycosylation without product hydrolysis. The combination of the remarkable difference in substrate specificity of Endo-S allows the deglycosylation of heterogeneous rituximab and the transglycosylation with glycan oxazoline to take place in one-pot without the need of isolating the deglycosylated intermediate or changing the enzyme to afford the high-mannose type, hybrid type, and some selectively modified truncated form of antibody glycoforms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dalvi, Prashant B; Lin, Kuang-Ling; Kulkarni, Manohar V; Sun, Chung-Ming
2016-08-05
An unprecedented two-step, one-pot synthesis of benzimidazothiadiazine 5,5-dioxides is presented. Reaction condition based regioselectivity has been achieved where fused benzimidazo[1,2-b][1,2,4]thiadiazines are exclusively formed under thermal conditions, whereas benzimidazo[2,1-c][1,2,4]thiadiazines were created only under microwave irradiation. The salient features of this protocol include a regioselective sulfonylation of 2-aminobenzimidazole with o-halo sulfonyl chlorides followed by N-C bond formation. The acid forms of these fused regioisomers have been used to introduce novel guanidine-containing isocoumarin frameworks.
Caires, A J; Vaz, R P; Fantini, C; Ladeira, L O
2015-10-01
We report a simple and easy formation of hybrids between multi-wall carbon nanotubes and gold nanorods by one-pot in situ photochemical synthesis. Measurements of surface-enhanced Raman scattering (SERS) through the effect "coffee ring" in visible and near infrared (NIR) show high sensitivity with detection of nanomolar concentrations of aromatic dyes. The formation of nanocomposites between carbon nanotubes and gold nanorods without chemical binders simplifies the preparation. Photochemical synthesis is an advance over the techniques previously published. Copyright © 2015 Elsevier Inc. All rights reserved.
Synthesis and Reactivity of a New (Methylene)Phosphine.
1981-01-27
the synthesis of a variety of alkyl(silylamino)- 8phosphines Similarly, if two equivalents of the silylmethyl Grignard reagent were used (eq 3), the...n-BuLi (hexane solution), and t-BuLi (pentane solution). The Grignard reagent Me 3SiCH2 MgCl was prepared in Et 0 2 2 solution from Me3SiCH 2C and Mg...trimethylsilyl)amino] (chloro)- (trimethylsilylmethyl)phosphine (1) was prepared by the "one-pot" Grignard method (eqs 1 and 2) which we have used previously for
Yavari, Issa; Zahedi, Nooshin; Baoosi, Leila; Skoulika, Stavroula
2018-02-01
A synthesis of functionalized 4,5-bis(phenylimino)-1,3-thiazolidine-2-ylidenes via a simple reaction between ketene [Formula: see text]-acetals (derived from isothiocyanates and acetonitrile derivatives) with N,[Formula: see text]-diphenyloxalimidoyl dichloride in the presence of KOH in DMF is described. When CS[Formula: see text] was used as the heterocumulene component, the reaction led to the formation of 4,5-bis(phenylimino)-1,3-dithiolan-2-ylidene derivatives, in moderate to good yields.
One-pot synthesis of active copper-containing carbon dots with laccase-like activities.
Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei
2015-12-14
Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.
NASA Astrophysics Data System (ADS)
Chandrashekharappa, Sandeep; Venugopala, Katharigatta N.; Nayak, Susanta K.; Gleiser, Raquel M.; García, Daniel A.; Kumalo, Hezekiel M.; Kulkarni, Rashmi S.; Mahomoodally, Fawzi M.; Venugopala, Rashmi; Mohan, Mahendra K.; Odhav, Bharti
2018-03-01
In the present investigation a series of novel ethyl 3-substituted-7-methylindolizine-1-carboxylates was achieved by microwave assisted one-pot method. The purity of the compounds was ascertained by HPLC and structural elucidation of the title compounds was achieved by FT-IR, NMR (1H and 13C), LC-MS and elemental analysis. One randomly selected compound from the series was further studied by single crystal X-ray method for intra and intermolecular interactions. Larvicidal properties of the characterized compounds were evaluated against Anopheles arabiensis and it was found that indolizine pharmacophore influences larvicidal activity as we can see larvicidal activity for all the analogues. The synthesized analogues (2j, 2m and 2f) were the most potent compounds based on the functional groups on the indolizine pharmacophore for larvicidal assay.
Aknin, Karen; Desbène-Finck, Stéphanie; Helissey, Philippe; Giorgi-Renault, Sylviane
2010-02-01
Functionalized pyrimido[4,5-b]quinoline-2,4 (1H,3H)-diones were synthesized by a three-component one-pot reaction involving barbituric acid, aldehydes, and anilines. The use of commercially available anilines allowed the facile syntheses of pyrimido[4,5-b]quinolinediones substituted in all the positions on the benzene ring with electron donor or electron withdrawing groups. This straightforward method circumvents the preparation of unstable substituted 2-aminobenzaldehydes that limits the scope of previously described syntheses. Furthermore, access to the 5-substituted derivatives is now also possible starting from aliphatic or aromatic aldehydes. Our strategy and methodology offer significant and practical improvements over other methodologies.
Kumar, Niggula Praveen; Sharma, Pankaj; Reddy, T Srinivasa; Shankaraiah, Nagula; Bhargava, Suresh K; Kamal, Ahmed
2018-05-10
An expeditious microwave-assisted one-pot synthesis of new cytotoxic phenanthrene fused-tetrahydrodibenzo-acridinones has been successfully accomplished. This protocol offers wide substrate scope, catalyst-free synthesis, atom-economy, simple recrystallization, high yields, and ethanol was used as green solvent. These new compounds were tested for their in vitro cytotoxicity against cervical (HeLa), prostate (PC-3), fibrosarcoma (HT-1080), ovarian (SKOV-3) cancer cells, and were safer to normal (Hek-293T) kidney cell line. All the compounds have displayed significant cytotoxicity profile, among them 8m being the most potent compound with an IC 50 0.24 ± 0.05 μM against SKOV-3 ovarian cancer cells. Flow cytometry analysis revealed that cells were blocked at the G2/M phase of the cell cycle. The effect of 8m on F-actin polymerisation was also studied. Hoechst staining clearly showed the decreased number of viable cells and indicated apoptosis progression. Compound 8m caused the collapse of mitochondrial membrane potential as observed via JC-1 staining and also enhanced the generation of reactive oxygen species. The increase of caspase-3 activation by 3.7 folds supported the strong apoptosis induction. In addition, an in vitro 3D-spheroid progression assay was performed with 8m that significantly suppressed the tumor cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, Qianghua; Yan, Fanyong; Luo, Yunmei; Wang, Yinyin; Zhou, Xuguang; Chen, Li
2017-02-01
Biomass is regarded as an excellent candidate for the preparation of heteroatom-doped carbon nanomaterials. We have developed a simple and facile one-pot synthesis of nitrogen and sulfur codoped fluorescent carbon dots from pigeon feathers, egg and manure via the pyrolysis carbonization method. The as-prepared four PCDs have high fluorescence quantum yield about 24.87% (PCDs-f), 17.48% (PCDs-w), 16.34% (PCDs-y), 33.50% (PCDs-m), respectively, which is higher than the other carbon dots preparing from biomass. We found that the preparation of PCDs-m with pigeon manure has no favourable selectively with heavy metal ions. However, other PCDs exhibit highly sensitive and selective detection behavior of Hg2 +/Fe3 + ions with a low detection limit of 10.3 and 60.9 nM. They were applied to imaging of human umbilical vein endothelial cells, showing low cytotoxicity and good biocompatibility.
Natural product-inspired cascade synthesis yields modulators of centrosome integrity.
Dückert, Heiko; Pries, Verena; Khedkar, Vivek; Menninger, Sascha; Bruss, Hanna; Bird, Alexander W; Maliga, Zoltan; Brockmeyer, Andreas; Janning, Petra; Hyman, Anthony; Grimme, Stefan; Schürmann, Markus; Preut, Hans; Hübel, Katja; Ziegler, Slava; Kumar, Kamal; Waldmann, Herbert
2011-12-25
In biology-oriented synthesis, the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is, in particular, met by the scaffolds of natural products selected in evolution. The synthesis of natural product-inspired compound collections calls for efficient reaction sequences that preferably combine multiple individual transformations in one operation. Here we report the development of a one-pot, twelve-step cascade reaction sequence that includes nine different reactions and two opposing kinds of organocatalysis. The cascade sequence proceeds within 10-30 min and transforms readily available substrates into complex indoloquinolizines that resemble the core tetracyclic scaffold of numerous polycyclic indole alkaloids. Biological investigation of a corresponding focused compound collection revealed modulators of centrosome integrity, termed centrocountins, which caused fragmented and supernumerary centrosomes, chromosome congression defects, multipolar mitotic spindles, acentrosomal spindle poles and multipolar cell division by targeting the centrosome-associated proteins nucleophosmin and Crm1.
Hoogenboom, Jorin; Lutz, Martin; Zuilhof, Han; Wennekes, Tom
2016-10-07
Starting from a chiral furanone, the nitrone-olefin [3 + 2] cycloaddition can be used to obtain bicyclic isoxazolidines for which we report a set of reactions to selectively modify each functional position. These synthetically versatile bicyclic isoxazolidines allowed us to obtain complex glycomimetic building blocks, like iminosugars, via multicomponent chemistry. For example, a library of 20 pipecolic acid derivatives, a recurring motif in various prescription drugs, could be obtained via a one-pot Staudinger/aza-Wittig/Ugi three-component reaction of a bicyclic isoxazolidine-derived azido-hemiacetal. Notably, specific pipecolic acids in this library were obtained via hydrolysis of an unique tricyclic imidate side product of the Ugi reaction. The azido-hemiacetal was also converted into an aza-C-glycoside iminosugar via an unprecendented one-pot Staudinger/aza-Wittig/Mannich reaction.
Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques
ERIC Educational Resources Information Center
Caes, Benjamin; Jensen, Dell, Jr.
2008-01-01
9-Hydroxyphenalenone is a planar multicyclic [beta]-keto-enol, which is synthesized via a Friedel-Crafts acylation followed by acid-catalyzed intramolecular Michael addition with the loss of a phenyl group in a one-pot reaction during a four-hour lab period. Tautomerization of the [beta]-keto-enol results in C[subscript 2v] symmetry on the NMR…
Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping
2012-03-01
undesired PMA attached to microbubble surface. Figure 1: One-pot polymer -lipid microbubbles. (a) Synthesis of thiolated poly(acrylic acid) with...Award Number: W81XWH-11-1-0215 TITLE: Multifunctional Polymer Microbubbles for Advanced Sentinel...February 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping 5b
Yang, Zhi-Jun; Liu, Chuan-Zhuo; Hu, Bo-Lun; Deng, Chen-Liang; Zhang, Xing-Guo
2014-12-04
A novel one-pot strategy for the synthesis of 3-trifluoromethylquinoxalines from N-aryl enamines and nitromethane was developed. The tandem reaction is achieved through nitrosation of alkenes, tautomerization and cyclization, which can be applicable to a wide range of enamines with excellent functional group tolerance and afford quinoxalines in moderate to good yields.
ERIC Educational Resources Information Center
Dintzner, Matthew R.; Maresh, Justin J.; Kinzie, Charles R.; Arena, Anthony F.; Speltz, Thomas
2012-01-01
Students in the undergraduate organic laboratory synthesize tetrahydro-2-(4-nitrophenyl)-4-phenyl-2"H"-pyran via the Montmorillonite K10 clay-catalyzed reaction of p-nitrobenzaldehye with methanol, 3-buten-1-ol, and benzene. The synthesis comprises an environmentally friendly tandem Prins-Friedel-Crafts-type multicomponent reaction (MCR) and sets…
One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection.
Li, Liang; Reiss, Peter
2008-09-03
InP/ZnS core/shell nanocrystals are prepared using a single-step heating-up method relying on the difference in reactivity of the applied InP and ZnS precursors. The obtained particles exhibit size-dependent emission in the range of 480-590 nm, a fluorescence quantum yield of 50-70%, and high photostability.
Jarusiewicz, Jamie; Choe, Yvonne; Yoo, Kyung Soo; Park, Chan Pil
2009-01-01
A simple and efficient one-pot three-component method has been developed for the synthesis of α-aminonitriles. This Strecker reaction is applicable for aldehydes and ketones with aliphatic or aromatic amines and trimethyl siliyl cyanide in the presence of a palladium Lewis aid catalyst in dichloromethane solvent at room temperature. PMID:19265413
Anilkumar, Nirvanappa C.; Sundaram, Mahalingam S.; Mohan, Chakrabhavi Dhananjaya; Rangappa, Shobith; Bulusu, Krishna C.; Fuchs, Julian E.; Girish, Kesturu S.; Bender, Andreas; Basappa; Rangappa, Kanchugarakoppal S.
2015-01-01
Drugs such as necopidem, saripidem, alpidem, zolpidem, and olprinone contain nitrogen-containing bicyclic, condensed-imidazo[1,2-α]pyridines as bioactive scaffolds. In this work, we report a high-yield one pot synthesis of 1-(2-methyl-8-aryl-substitued-imidazo[1,2-α]pyridin-3-yl)ethan-1-onefor the first-time. Subsequently, we performed in silico mode-of-action analysis and predicted that the synthesized imidazopyridines targets Phospholipase A2 (PLA2). In vitro analysis confirmed the predicted target PLA2 for the novel imidazopyridine derivative1-(2-Methyl-8-naphthalen-1-yl-imidazo [1,2-α]pyridine-3-yl)-ethanone (compound 3f) showing significant inhibitory activity towards snake venom PLA2 with an IC50 value of 14.3 μM. Evidently, the molecular docking analysis suggested that imidazopyridine compound was able to bind to the active site of the PLA2 with strong affinity, whose affinity values are comparable to nimesulide. Furthermore, we estimated the potential for oral bioavailability by Lipinski's Rule of Five. Hence, it is concluded that the compound 3f could be a lead molecule against snake venom PLA2. PMID:26196520
Arias, K S; Al-Resayes, Saud I; Climent, Maria J; Corma, Avelino; Iborra, Sara
2013-01-01
The selective acetalization of 5-hydroxymethylfurfural (HMF) with long-chain alkyl alcohols has been performed to obtain precursors of molecules with surfactant properties. If direct acetalization of HMF with n-octanol is performed in the presence of strong acids (homogeneous and heterogeneous catalysts), an increase in etherification versus acetalization occurs. Beta zeolite catalyzes both reactions. However, if the acidity of a zeolite (Beta) was controlled by partial exchange of H(+) with Na(+), the dioctyl acetal of HMF can be achieved in 95% yield by transacetalization. It is possible to achieve a high yield in a very short reaction time through a two-step one-pot process, which includes the synthesis of the dimethyl acetal of HMF followed by transacetalization with n-octanol. The one-pot process could be extended to other alcohols that contain 6-12 carbon atoms to afford 87-98% yield of the corresponding dialkyl acetal with a selectivity higher than 96%. The optimized catalyst with an adequate Na content (1.5NaBeta) could be recycled without loss of activity or selectivity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli
2013-10-15
Graphical abstract: - Highlights: • A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. • Synthesis performed in a choline chloride-based ionic liquid. • The composite shows an enhanced cycling stability as anode for Li-ion batteries. • 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidation–reduction reaction between Sn{sup 2+} and graphene oxide in a choline chloride–ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique doesmore » not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup −1} after 50 cycles @100 mA g{sup −1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.« less
Nakamura, Michihiro; Ozaki, Shuji; Abe, Masahiro; Doi, Hiroyuki; Matsumoto, Toshio; Ishimura, Kazunori
2010-08-01
Thiol-organosilica particles of a narrow size distribution, made from 3-mercaptopropyltrimethoxysilane (MPMS), were prepared by means of a one-pot synthesis. We examined three synthetic conditions at high temperature (100 degrees C), including the Stöber synthesis and two entirely aqueous syntheses. Under all conditions, the sizes of MPMS particles were well controlled, and the average of the coefficient of variation for the size distribution was less than 20%. The incubation times required for formation of MPMS particles were shorter at high temperature than at low temperature. MPMS particles internally functionalized with fluorescent dye were also prepared by means of the same one-pot synthesis. On flow cytometry analysis these MPMS particles showed distinct peaks of scattering due to well-controlled sizes of particles as well as due to fluorescence signals. Real-time observation of interaction between fluorescent MPMPS particles and cultured cells could be observed under fluorescent microscopy with bright light. The surface of the as-prepared MPMS particles contained exposed mercaptopropyl residues, and the ability to adsorb proteins was at least 6 times higher than that of gold nanopaticles. In addition, fluorescein-labeled proteins adsorbed to the surface of the particles were quantitatively detected at the pg/ml level by flow cytometry. MPMS particles surface functionalized with anti-CD20 antibody using adsorption could bind with lymphoma cells expressing CD20 specifically. In this paper, we demonstrated the possibility of size-controlled thiol-organosilica particles for wild range of biological applications. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jain, Shefali; Singh, Dinesh; Vijayan, N.; Sharma, Shailesh Narain
2018-05-01
In this work, stable Cu2ZnSnS4 (CZTS) nanocrystals (NCs) in pure kesterite phase were synthesized by a facile one-pot rapid injection technique (colloidal route). Time-dependent reaction mechanism for the synthesis of CZTS nanoparticles is explained. When TOP-S (Tri-octyl phosphine-sulphur) was injected in the CuZnSn-complex with TOPO (Tri-octyl phosphine oxide) as capping ligand, orthorhombic phase Cu2-X S nanoparticles of spherical shape were found at nucleation sites. With an advancement in the reaction time, Sn got infused in Cu2-X S to form Cu2SnS3 and its shape got deformed. Further increase in reaction time infuses Zn to form Cu2ZnSnS4 with the gradual vanishing of Cu2-X S and Cu2SnS3 phases and finally, the rod-shaped CZTS Np's were obtained. This factor of reaction time, which influence the morphology and size were studied in detail. The structural and optical properties of the pure kesterite phase CZTS nanorods were also analysed. The band gap of the rod-like CZTS is determined to be around 1.43 eV, which is an optimum value for solar photoelectric conversion.
NASA Astrophysics Data System (ADS)
Li, Jian; Cui, Hongzhi; Song, Xiaojie; Wei, Na; Tian, Jian
2017-02-01
We present a rational design for the controllable synthesis of NiO/TiO2 hollow microspheres (NTHMs) with Ti plate via a one-pot template-free synthesis strategy. Specifically, to enhance the formation of hollow microspheres, part of the titanium source is provided by the Ti plate. The hollow spherical NiO/TiO2 particles possess unique microstructural characteristics, namely, a higher specific surface area (∼65.82 m2 g-1), a larger mesoporous structure (∼7.79 nm), and hierarchical nanoarchitectures connected with mesopores within the shell (monodispersed size of ∼1 μm and shell thickness of ∼80 nm). In addition, as a cocatalyst for improved catalytic activity, the incorporated NiO nanoparticles with exposed high surface energy {110} facets displayed an outstanding performance. It has been proven that this facile nanostructure possesses remarkably high photoelectrochemical and photocatalytic activities. The main mechanism for enhancement of photocatalytic activity is attributed to the construction of p-n junctions with an inner electric field between TiO2 and NiO, which can dramatically enhance the separation efficiency of the photogenerated electron-hole pairs. This strategy could be applied to fabricate mixed metal oxide hollow microspheres toward the photoelectrochemical catalysis.
Guo, Qing-Hui; Zhao, Liang; Wang, Mei-Xiang
2016-05-10
We report herein the synthesis, structure, and molecular recognition of S6 - and (SO2 )6 -corona[6](het)arenes, and demonstrate a unique and efficient strategy of regulating macrocyclic conformation and properties by adjusting the oxidation state of the heteroatom linkages. The one-pot nucleophilic aromatic substitution reaction of 1,4-benzenedithiol derivatives, biphenyl-4,4'-dithiol and 9,9-dipropyl-9H-fluorene-2,7-dithiol with 3,6-dichlorotetrazine afforded S6 -corona[3]arene[3]tetrazines. These compounds underwent inverse-electron-demand Diels-Alder reaction with enamines and norbornadiene to produce S6 -corona[3]arene[3]pyridazines. Facile oxidation of sulfide linkages yielded (SO2 )6 -corona[3]arene[3]pyridazines. All corona[6](het)arenes adopted generally hexagonal macrocyclic ring structures; however, their electronic properties and conformation could be fine-tuned by altering the oxidation state of the sulfur linkages. Whereas (SO2 )6 -corona[3]arene[3]pyridazines were electron-deficient, S6 -corona[3]arene[3]pyridazines acted as electron-rich macrocyclic hosts that recognized various organic cations in both aqueous and organic solutions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Abbas, Mohamed; Abdel-Hamed, M. O.; Chen, Jiangang
2017-12-01
A facile and eco-friendly efficient sonochemical approach was designed for the synthesis of highly crystalline Fe3O4 and Fe3O4/SiO2 core/shell nanospheres in single reaction. The generated physical properties (shock waves, microjets, and turbulent flows) from ultrasonication as a consequence of the collapse of microbubbles and polyvinylpyrrolidone (PVP) as a chemical linker were found to play a crucial role in the successful formation of the core/shell NPs within short time than the previously reported methods. Transmission electron microscopy revealed that a uniform SiO2 shell is successfully coated over Fe3O4 nanospheres, and the thickness of the silica shell could be easily controlled in the range from 5 to 15 nm by adjusting the reaction parameters. X-ray diffraction data were employed to confirm the formation of highly crystalline and pure phase of a cubic inverse spinel structure for magnetite (Fe3O4) nanospheres. The magnetic properties of the as-synthesized Fe3O4 and Fe3O4/SiO2 core/shell nanospheres were measured at room temperature using vibrating sample magnetometer, and the results demonstrated a high magnetic moment values with superparamagnetic properties.
Zhu, Mingshan; Chen, Penglei; Ma, Wanhong; Lei, Bin; Liu, Minghua
2012-11-01
In this paper, we report that cube-like Ag/AgCl nanostructures could be facilely fabricated in a one-pot manner through a direct-precipitation protocol under ambient conditions, wherein no additional issues such as external energy (e.g., high temperature or high pressure), surfactants, or reducing agents are required. In terms of using sodium chloride (NaCl) as chlorine source and silver acetate (CH₃COOAg) as silver source, it is disclosed that simply by adding an aqueous solution of NaCl into an aqueous solution of CH₃COOAg, Ag/AgCl nanostructures with a cube-like geometry, could be successfully formulated. We show that thus-formulated cube-like Ag/AgCl nanospecies could be used as high-performance yet durable visible-light-driven or sunlight-driven plasmonic photocatalysts for the photodegradation of methyl orange (MO) and 4-chlorophenol (4-CP) pollutants. Compared with the commercially available P25-TiO₂, and the Ag/AgCl nanospheres previously fabricated via a surfactant-assisted method, our current cube-like Ag/AgCl nanostructures could exhibit much higher photocatalytic performance. Our template free protocol might open up new and varied opportunities for an easy synthesis of cube-like Ag/AgCl-based high-performance sunlight-driven plasmonic photocatalysts for organic pollutant elimination.
Sun, Boqiao; Hartl, Florian; Castiglione, Kathrin; Weuster-Botz, Dirk
2015-01-01
Ursodeoxycholic acid (UDCA) is a bile acid which is used as pharmaceutical for the treatment of several diseases, such as cholesterol gallstones, primary sclerosing cholangitis or primary biliary cirrhosis. A potential chemoenzymatic synthesis route of UDCA comprises the two-step reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid (12-keto-UDCA), which can be conducted in a multienzymatic one-pot process using 3α-hydroxysteroid dehydrogenase (3α-HSDH), 7β-hydroxysteroid dehydrogenase (7β-HSDH), and glucose dehydrogenase (GDH) with glucose as cosubstrate for the regeneration of cofactor. Here, we present a dynamic mechanistic model of this one-pot reduction which involves three enzymes, four different bile acids, and two different cofactors, each with different oxidation states. In addition, every enzyme faces two competing substrates, whereas each bile acid and cofactor is formed or converted by two different enzymes. First, the kinetic mechanisms of both HSDH were identified to follow an ordered bi-bi mechanism with EBQ-type uncompetitive substrate inhibition. Rate equations were then derived for this mechanism and for mechanisms describing competing substrates. After the estimation of the model parameters of each enzyme independently by progress curve analyses, the full process model of a simple batch-process was established by coupling rate equations and mass balances. Validation experiments of the one-pot multienzymatic batch process revealed high prediction accuracy of the process model and a model analysis offered important insight to the identification of optimum reaction conditions. © 2015 American Institute of Chemical Engineers.
Cheng, Jun-Hao; Ramesh, Chintakunta; Kao, Hsin-Lun; Wang, Yu-Jen; Chan, Chien-Ching; Lee, Chin-Fa
2012-11-16
A convenient one-pot approach for the synthesis of aryl sulfides through the coupling of thiols with Grignard reagents in the presence of N-chlorosuccinimide is described. The sulfenylchlorides were formed when thiols were treated with N-chlorosuccinimide, and the resulting sulfenylchlorides were then directly reacted with Grignard reagents to provide aryl sulfides in good to excellent yields under mild reaction conditions. Functional groups including ester, fluoro, and chloro are tolerated by the reaction conditions employed. It is important to note that this method has a short reaction time (30 min in total) and represents an alternative approach for the synthesis of aryl sulfides over the existing protocols.
Li, Zijie; Wu, Xiaoru; Cai, Li; Duan, Shenglin; Liu, Jia; Yuan, Peng; Nakanishi, Hideki; Gao, Xiao-Dong
2015-09-15
L-Rhamnulose-1-phosphate aldolase from a thermophilic source (Thermotoga maritima MSB8) (RhaDT.mari) was heterologously overexpressed in Escherichia coli and the stereoselectivity of this enzyme with or without Nus tag was investigated. We also applied this enzyme to the synthesis of rare sugars D-psicose, D-sorbose, L-tagatose and L-fructose using our one-pot four-enzyme system. To the best of our knowledge, this is the first use of RhaD from a thermophilic source for rare sugar synthesis and the temperature tolerance of this enzyme paves the path for large scale fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clay and Anxiety Reduction: A One-Group, Pretest/Posttest Design with Patients on a Psychiatric Unit
ERIC Educational Resources Information Center
Kimport, Elizabeth R.; Hartzell, Elizabeth
2015-01-01
Little research exists on using clay as an anxiety-reducing intervention with patients in psychiatric hospitals. This article reports on a study that used a one-group, pretest/posttest design with 49 adults in a psychiatric facility who created a clay pinch pot. The State-Trait Anxiety Inventory (STAI) was used as a pre- and posttest measure.…
Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe
2017-10-27
Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1999-05-01
In 1995, Alumax (subsequently acquired by Alcoa), an aluminum refiner, decided to improve the energy efficiency of its four-pot line dust collection systems at its smelter in Mount Holly, S.C. One consultant recommended installing variable frequency drive (VFD) controls on the fourfan system.
NASA Astrophysics Data System (ADS)
Agarwal, Shikha; Agarwal, Dinesh Kr.; Kalal, Priyanka; Gandhi, Divyani
2018-05-01
Multicomponent reactions (MCRs) have been discovered as a powerful method for the synthesis of organic molecules, since the products are formed in a single step and the building blocks with diverse range of complexity can be obtained from easily available precursors. This strategy has become important in drug designing and discovery in the context of synthesis of biologically active compounds. In the today's scenario, MCRs are influenced by greener conditions as a powerful alternative over the conventional synthesis. In the last few years, a number of scientific publications have been appeared in the literature depicting the synthesis of pyrimidobenzothiazoles via greener routes which clearly states its importance in pharmaceutical chemistry for the drug development. Our article describes the synthesis of substituted pyrimidobenzothiazoles via one pot multicomponent reaction with structural diversity through conventional and greener pathways using different catalysts, ionic liquids, agar, resins etc.
The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot.
Kitson, Philip J; Glatzel, Stefan; Cronin, Leroy
2016-01-01
An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic 'programs' which can run on similar low cost, user-constructed robotic platforms towards an 'open-source' regime in the area of chemical synthesis.
The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot
Kitson, Philip J; Glatzel, Stefan
2016-01-01
An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis. PMID:28144350
TiO2 Hollow Spheres: One-Pot Synthesis and Enhanced Photocatalysis
NASA Astrophysics Data System (ADS)
Jia, Changchao; Cao, Yongqiang; Yang, Ping
2013-04-01
Hollow TiO2 microspheres were successfully fabricated by metal salts with low solubility in ethanol acting as intelligent templates using a simple one-pot solvothermal method. Hollow spheres with large diameter were obtained using CuSO4ṡ5H2O as templates while small ones were obtained using Sr(NO3)2 as templates. It is found that titanium precursor plays an important role for the morphology of samples. Solid TiO2 microspheres were prepared by using titanium tetrabutoxide (TBT). In contrast, bowl-like hollow microspheres were obtained by using titanium tetrachloride (TiCl4). Furthermore, the amount of H2O can stimulate the hydrolysis rate of TiCl4 to form solid spheres. Compared with solid microspheres, hollow TiO2 microspheres depending on their interior cavity structure exhibited enhanced photocatalysis efficiency for the UV-light photodegradation of methyl orange. Quantificationally, the apparent photocatalytic degradation pseudo-first-rate constant of the hollow microspheres is 1.25 times of that of the solid ones.
Telomeric 3' overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST.
Wu, Peng; Takai, Hiroyuki; de Lange, Titia
2012-07-06
A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout the cell cycle and at leading- and lagging-end telomeres. Apollo, a nuclease bound to the shelterin subunit TRF2, initiates formation of the 3' overhang at leading-, but not lagging-end telomeres. Hyperresection by Apollo is blocked at both ends by the shelterin protein POT1b. Exo1 extensively resects both telomere ends, generating transient long 3' overhangs in S/G2. CST/AAF, a DNA polα.primase accessory factor, binds POT1b and shortens the extended overhangs produced by Exo1, likely through fill-in synthesis. 3' overhang formation is thus a multistep, shelterin-controlled process, ensuring functional telomeric overhangs at chromosome ends. Copyright © 2012 Elsevier Inc. All rights reserved.
Radzinski, Scott C; Foster, Jeffrey C; Matson, John B
2016-04-01
Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salman, Muhammad; Iqbal, Mahwish; El Ashry, El Sayed H; Kanwal, Shamsa
2012-01-01
Conventional synthesis of silver nanoparticles employs a reducing agent and a capping agent. In this report water-soluble silver nanoparticles (AgNPs) were prepared facilely by chemical reduction of Ag(I) ions. 4-Amino-3-(d-gluco-pentitol-1-yl)-4,5-dihydro-1,2,4-triazole-5-thione (AGTT) was used both as reducing and stabilizing agent. Direct heating methodology was found to be more suitable for achieving particles with a hydrodynamic diameter of ~20 nm. AGTT exists as tautomer in solution form and our studies indicate that -NH(2) group is involved in the reduction and stabilization of Ag(+) and thione (Δ=S) group of AGTT is possibly involved in stabilizing the nanoparticles via coordinate covalent linkage. Characterization of synthesized silver nanoparticles was performed by UV-vis, FT-IR and by FESEM. Based on the absorption properties of synthesized AgNPs, we used AgNPs to detect bovine serum albumin (BSA) and AgNPs-BSA composite nanoprobe was further applied to detect Cu(2+) based on absorbance recovery. The proposed method has advantages over existing methods in terms of rapid synthesis and stability of AgNPs and their applications. Analysis is reproducible, cost effective and highly sensitive. The lowest detectable concentration of BSA in this approach is 3 nM, and for Cu(2+) it can detect upto 200 pM. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jana, Rajkumar; Dhiman, Shikha; Peter, Sebastian C.
2016-08-01
Ordered intermetallic Pd1.87Cu0.11Sn ternary electrocatalyst has been synthesized by sodium borohydride reduction of precursor salts Pd(acac)2, CuCl2.2H2O and SnCl2 using one-pot solvothermal synthesis method at 220 °C with a reaction time of 24 h. To the best of our knowledge, here for the first time we report surfactant free synthesis of a novel ordered intermetallic ternary Pd1.87Cu0.11Sn nanoparticles. The ordered structure of the catalyst has been confirmed by powder x-ray diffraction, transmission electron microscopy (TEM). Composition and morphology of the nanoparticles have been confirmed through field emission scanning electron microscopy, energy-dispersive spectrometry and TEM. The electrocatalytic activity and stability of the ternary electrocatalyst towards ethanol oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry techniques. The catalyst is proved to be highly efficient and stable upto 500th cycle and even better than commercially available Pd/C (20 wt%) electrocatalysts. The specific and mass activity of the as synthesized ternary catalyst are found to be ∼4.76 and ∼2.9 times better than that of commercial Pd/C. The enhanced activity and stability of the ordered ternary Pd1.87Cu0.11Sn catalyst can make it as a promising candidate for the alkaline direct ethanol fuel cell application.
Giustiniano, Mariateresa; Mercalli, Valentina; Amato, Jussara; Novellino, Ettore; Tron, Gian Cesare
2015-08-21
An expeditious multicomponent reaction to synthesize tetrasubstituted furo[2,3-d]pyridazin-4(5H)-ones is reported. In brief, hydrazonoyl chlorides react with isocyanoacetamides, in the presence of TEA, to give 1,3-oxazol-2-hydrazones which, without being isolated, can react with dimethylacetylene dicarboxylate to afford furo[2,3-d]pyridazin-4(5H)-ones with an unprecedented level of complexity in a triple domino Diels-Alder/retro-Diels-Alder/lactamization reaction sequence.
NASA Astrophysics Data System (ADS)
Kotutha, Isara; Swatsitang, Ekaphan; Meewassana, Worawat; Maensiri, Santi
2015-06-01
In this work, a simple facile route for preparing an rGO/MnFe2O4 nanocomposite through a one-pot hydrothermal approach was demonstrated. Graphite oxide (GO) was prepared from graphite powder by a modified Hummers method. Fe(NO3)2 • 9H2O and Mn(NO3)2 • H2O were used as the precursors for the preparation of the rGO/MnFe2O4 nanocomposite. The formation of the rGO/MnFe2O4 nanocomposite was confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Rama spectroscopy (Raman). The specific surface area of the prepared composite obtained by Brunauer-Emmett-Teller (BET) analysis was lower than that of pure rGO but higher than that of pure MnFe2O4. Consequently, the electrochemical performance was investigated by using a three-electrode cell system in 6.0 M KOH. The results show that the specific capacitance was determined to be 190.3, 276.9, and 144.5 F/g at a scan rate of 10 mV/s, and 194.9, 274.6, and 134.4 F/g at a current density of 5.0 A/g for rGO, rGO/(5 mmol) MnFe2O4, and rGO/(10 mmol) MnFe2O4, respectively. These results suggest that the composite of MnFe2O4 nanoparticles on an rGO nanosheet can improve the capacitive behavior of the fabricated electrode, but the electrochemical properties are reduced when the MnFe2O4 concentration ratio is high.
NASA Astrophysics Data System (ADS)
Sahraei, Reza; Soheyli, Ehsan; Faraji, Zahra; Soleiman-Beigi, Mohammad
2017-11-01
We report here on a one-pot, mild and low cost aqueous-based synthetic route for the preparation of colloidally stable and highly luminescent dual-doped Ag,Ni:ZnCdS/ZnS core/shell quantum dots (QDs). The pure dopant emission of the Ni-doped core/shell QDs was found to be highly affected by the presence of a second dopant ion (Ag+). Results showed that the PL emission intensity increases while its peak position experiences an obvious blue shift with an increase in the content of Ag+ ions. Regarding the optical observations, we provide a simple scheme for absorption-recombination processes of the carriers through impurity centers. To obtain optimum conditions with a better emission characteristic, we also study the effect of different reaction parameters, such as refluxing temperature, the pH of the core and shell solution, molar ratio of the dopant ions (Ni:(Zn+Cd) and Ag:(Zn+Cd)), and concentration of the core and shell precursors. Nonetheless, the most effective parameter is the presence of the ZnS shell in a suitable amount to eliminate surface trap states and enhance their emission intensity. It can also improve the bio-compatibility of the prepared QDs by restricting the Cd2+ toxic ions inside the core of the QDs. The present suggested route also revealed the remarkable optical and chemical stability of the colloidal QDs which establishes them as a decent kind of nano-scale structure for light emitting applications, especially in biological technologies. The suggested process also has the potential to be scaled-up while maintaining the emission characteristics and structural quality necessary for industrial applications in optoelectronic devices.
Formal synthesis of berkelic acid: a lesson in α-alkylation chemistry.
McLeod, Michael C; Wilson, Zoe E; Brimble, Margaret A
2012-01-06
The full details of our enantioselective formal synthesis of the biologically active natural product berkelic acid are described. The insertion of the C-18 methyl group proved challenging, with three different approaches investigated to install the correct stereochemistry. Our initial Horner-Wadsworth-Emmons/oxa-Michael approach to the berkelic acid core proved unsuccessful upon translation to the natural product itself. However, addition of a silyl enol ether to an oxonium ion, followed by a one-pot debenzylation/spiroketalisation/thermodynamic equilibration procedure, afforded the tetracyclic structure of the berkelic acid core as a single diastereoisomer.
NASA Astrophysics Data System (ADS)
Lakshmanan, Sivalingam; Govindaraj, Dharman; Ramalakshmi, Narayanan; Antony, S. Arul
2017-12-01
Green and highly efficient one-pot three component approach for the synthesis of benzo[g]quinazoline derivatives (6a-g) using Choline chloride-urea (DES). Synthesized compounds 6b and 6g showed the most potent biological activity against A549 lung cancer cell line. Docking simulation was performed to position compounds 6b and 6g showed the greater affinity for anaplastic lymphoma kinase (ALK) receptor. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity using DFT/6-31G level of theory.
Andersson, Hans; Banchelin, Thomas Sainte-Luce; Das, Sajal; Gustafsson, Magnus; Olsson, Roger; Almqvist, Fredrik
2010-01-15
A conceptually new one-pot strategy for the synthesis of protected substituted piperazines via the addition of Grignard reagents to pyrazine N-oxides is presented. This strategy is high yielding (33-91% over three steps), step-efficient, and fast. The synthesized N,N-diprotected piperazines are convenient to handle and allow for orthogonal deprotection at either nitrogen for selective transformations. In addition, this is a synthetic route to enantiomerically enriched piperazines by using a combination of phenyl magnesium chloride and (-)-sparteine, which resulted in enantiomeric excesses up to 83%.
Ramachary, Dhevalapally B; Venkaiah, Chintalapudi; Reddy, Y Vijayendar; Kishor, Mamillapalli
2009-05-21
In this paper we describe new multi-catalysis cascade (MCC) reactions for the one-pot synthesis of highly functionalized non-symmetrical malonates. These metal-free reactions are either five-step (olefination/hydrogenation/alkylation/ketenization/esterification) or six-step (olefination/hydrogenation/alkylation/ketenization/esterification/alkylation), and employ aldehydes/ketones, Meldrum's acid, 1,4-dihydropyridine/o-phenylenediamine, diazomethane, alcohols and active ethylene/acetylenes, and involve iminium-, self-, self-, self- and base-catalysis, respectively. Many of the products have direct application in agricultural and pharmaceutical chemistry.
Vinogradova, Ekaterina V.; Fors, Brett P.; Buchwald, Stephen L.
2012-01-01
An efficient method for palladium-catalyzed cross-coupling of aryl chlorides and triflates with sodium cyanate is reported. The protocol allows for the synthesis of unsymmetrical N,N'-di- and N,N,N'-trisubstituted ureas in one pot, and is tolerant of a wide range of functional groups. Insight into the mechanism of aryl isocyanate formation is gleaned through studies of the transmetallation and reductive elimination steps of the reaction, including the first demonstration of reductive elimination from an arylpalladium isocyanate complex to produce an aryl isocyanate. PMID:22716197
Wang, Hao; Chen, Cui; Liu, Weibing; Zhu, Zhibo
2017-01-01
We developed a direct vicinal difunctionalization of alkenes with iodine and TBHP at room temperature. This iodination and peroxidation in a one-pot synthesis produces 1-( tert -butylperoxy)-2-iodoethanes, which are inaccessible through conventional synthetic methods. This method generates multiple radical intermediates in situ and has excellent regioselectivity, a broad substrate scope and mild conditions. The iodine and peroxide groups of 1-( tert -butylperoxy)-2-iodoethanes have several potential applications and allow further chemical modifications, enabling the preparation of synthetically valuable molecules.
(CF3CO)2O/CF3SO3H-mediated synthesis of 1,3-diketones from carboxylic acids and aromatic ketones
Kim, JungKeun; Shokova, Elvira; Tafeenko, Victor
2014-01-01
Summary A very simple and convenient reaction for 1,3-diketone preparation from carboxylic acids and aromatic ketones in TFAA/TfOH system is described. When the β-phenylpropionic acids were used as starting materials, they initially gave 1-indanones and then underwent further acylation with the formation of 2-(β-phenylpropionyl)-1-indanones as the main reaction products. In addition, the application of the proposed protocol allowed for the synthesis of selected polysubstituted pyrazoles in a one-pot procedure directly from acids and ketones. PMID:25298794
Zhang, Zhichao; Ye, Zhibin
2012-08-18
Upon the addition of an equimolar amount of 2,2'-bipyridine, a cationic Pd-diimine complex capable of facilitating "living" ethylene polymerization is switched to catalyze "living" alternating copolymerization of 4-tertbutylstyrene and CO. This unique chemistry is thus employed to synthesize a range of well-defined treelike (hyperbranched polyethylene)-b-(linear polyketone) block polymers.
ERIC Educational Resources Information Center
Ritleng, Vincent; Brenner, Eric; Chetcuti, Michael J.
2008-01-01
A four-part experiment that leads to the synthesis of a cyclopentadienyl chloro-nickel(II) complex bearing a N-heterocyclic carbene (NHC) ligand is presented. In the first part, the preparation of 1,3-bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes[middle dot]HCl) in a one-pot procedure by reaction of 2,4,6-trimethylaniline with…
Ilies, Laurean; Matsubara, Tatsuaki; Nakamura, Eiichi
2012-11-02
A nickel-catalyzed oxidative coupling of zinc amides with organomagnesium compounds selectively produces diarylamines under mild reaction conditions, with tolerance for chloride, bromide, hydroxyl, ester, and ketone groups. A diamine is bis-monoarylated. A bromoaniline undergoes N-arylation followed by Kumada-Tamao-Corriu coupling in one pot. The reaction may proceed via oxidatively induced reductive elimination of a nickel species.
Beccalli, Egle M; Broggini, Gianluigi; Gazzola, Silvia; Mazza, Alberto
2014-09-21
The double functionalization of carbon-carbon multiple bonds in one-pot processes has emerged in recent years as a fruitful tool for the rapid synthesis of complex molecular scaffolds. This review covers the advances in domino reactions promoted by the couple palladium(ii)/copper(ii), which was proven to be an excellent catalytic system for the functionalization of substrates.
NASA Astrophysics Data System (ADS)
Marchyk, Nataliya; Maximilien, Jacqueline; Beyazit, Selim; Haupt, Karsten; Sum Bui, Bernadette Tse
2014-02-01
A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis.A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05295h
Hua, Guoxiong; Du, Junyi; Slawin, Alexandra M Z; Woollins, J Derek
2016-06-01
The development of new methodology for the preparation of functional macrocycles with practical applications is an important research area in macromolecular science. In this study, we report a new one-pot route for the synthesis of a series of macro-heterocycles by incorporating two phosphorus atoms and two chalcogen atoms and two oxygen atoms (double OP(S)SCn or OP(Se)SeCn scaffolds). The three-component condensation reactions of 2,4-diferrocenyl-1,3,2,4-diathiadiphosphetane 2,4-disulfide (FcLR, a ferrocene analogue of Lawesson's reagent) or 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide (LR, Lawesson's reagent), or 2,4-diphenyl-1,3,2,4-diselenadiphosphetane 2,4-diselenide (WR, Woollins' reagent), disodium alkenyl-diols, and dihalogenated alkanes are performed, giving rise to soluble and air or moisture-stable macrocycles in good-to-excellent yields (up to 92 %). This is the first systemically preparative and readily scalable example of one-pot ring opening/ring extending reaction of three-components to prepare phosphorus-chalcogen containing macrocycles. We also provide a systematic crystallographic study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ORION Project-(SPLASH) Structural Passive Landing Attenuation fo
2011-07-21
ORION Project-(SPLASH) Structural Passive Landing Attenuation for Survivability of Human Crew (BTA) Boiler Plate Test Article Water Impact Test-Pot Phase"0" Test POT#2 Tested at the Hydro Impact Basin at the Landing and Impact Research Facility (Gantry)
Fuse, Shinichiro; Matsumura, Keisuke; Wakamiya, Atsushi; Masui, Hisashi; Tanaka, Hiroshi; Yoshikawa, Susumu; Takahashi, Takashi
2014-09-08
The elucidation of the structure-property relationship is an important issue in the development of organic electronics. Combinatorial synthesis and the evaluation of systematically modified compounds is a powerful tool in the work of elucidating structure-property relationships. In this manuscript, D-π-A structure, 32 p-type organic semiconductors were rapidly synthesized via a one-pot, Suzuki-Miyaura coupling with subsequent Knoevenagel condensation. Evaluation of the solubility and photovoltaic properties of the prepared compounds revealed that the measured solubility was strongly correlated with the solubility parameter (SP), as reported by Fedors. In addition, the SPs were correlated with the Jsc of thin-film organic solar cells prepared using synthesized compounds. Among the evaluated photovoltaic properties of the solar cells, Jsc and Voc had strong correlations with the photoconversion efficiency (PCE).
Lee, Hyo In; Park, Soo-Jin
2018-09-01
In this work, highly ordered TiO2-reduced graphene oxide sheets (TGS) were successfully fabricated via a one-pot solvothermal method with different amounts of graphene oxide (0.01, 0.03, 0.05, and 0.07 g). This was achieved by reacting graphene oxide (GO) layers with titanium isopropoxide as the TiO2 precursor. The TGS exhibited superior efficiency compared to pristine TiO2 and the best results were recorded for the TGS-0.05 sample. The presence of the reduced graphene oxide (rGO) component was determined to be an important factor governing the separation of the photogenerated electron-hole pair via interfacial charge transfer. The significantly increased activity of the TGS under simulated solar light in the degradation of methylene blue (MB) indicates that these materials are promising photocatalysts for efficient water purification.
Kukreja, Aastha; Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Lee, Taeksu; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo
2014-01-01
In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease.
Gold-magnetite nanoparticle-biomolecule conjugates: Synthesis, properties and toxicity studies
NASA Astrophysics Data System (ADS)
Pariti, Akshay
This thesis study focuses on synthesizing and characterizing gold-magnetite optically active magnetic nanoparticle and its conjugation with biomolecules for biomedical applications, especially magnetic fluid hyperthermia treatment for cancerous tissue. Gold nanoparticles have already displayed their potential in the biomedical field. They exhibit excellent optical properties and possess strong surface chemistry which renders them suitable for various biomolecule attachments. Studies have showed gold nanoparticles to be a perfect biocompatible vector. However, clinical trials for gold mediated drug delivery and treatment studied in rat models identified some problems. Of these problems, the low retention time in bloodstream and inability to maneuver externally has been the consequential. To further enhance their potential applications and overcome the problems faced in using gold nanoparticles alone, many researchers have synthesized multifunctional magnetic materials with gold at one terminal. Magnetite, among the investigated magnetic materials is a promising and reliable candidate because of its high magnetic saturation moment and low toxicity. This thesis showcases a simple and facile one pot synthesis of gold-magnetite nanoparticles with an average particle size of 80 nm through hot injection method. The as-synthesized nanoparticles were characterized by XRD, TEM, Mossbauer spectroscopy, SQUID and MTS toxicity studies. The superparamagnetism of the as-synthesized nanoparticles has an interestingly high saturation magnetization moment and low toxicity than the literature values reported earlier. L-cysteine and (-)-EGCG (epigallacatechin-3-gallate) were attached to this multifunctional nanoparticles through the gold terminal and characterized to show the particles applicability through Raman, FTIR and UV-Vis spectroscopy.
Ge, Lan; Li, Henan; Du, Xiaojiao; Zhu, Mingyue; Chen, Wei; Shi, Tingyan; Hao, Nan; Liu, Qian; Wang, Kun
2018-07-15
It is fundamental to develop highly efficient visible light-responsive photoelectrochemical (PEC) performance material for fabricating PEC biosensor. Herein, BiPO 4 /three-dimensional nitrogen doped graphene hydrogel (3DNGH) nanocomposites were prepared for the first time via a facile one-pot hydrothermal route. In this nanoarchitecture, the BiPO 4 nanorods were anchored onto the porous structure of 3DNGH. Compared with pristine BiPO 4 , the absorption of BiPO 4 /3DNGH has been extend to visible-light region, and the energy band gap of BiPO 4 /3DNGH was calculated to be 2.10 eV, which was greatly narrower than that of pristine BiPO 4 with a band gap of 3.85 eV. Under visible light irradiation, the photocurrent signal of the as-prepared BiPO 4 /3DNGH was 847.2-fold, 4.1-fold and 2.3-fold enhanced comparing to pristine BiPO 4 , BiPO 4 functionalized reduced graphene oxide and BiPO 4 /nitrogen doped graphene. The enhancement of such photocurrent signal was attributed to the introduction of 3DNGH, which was capable to improve the charge transfer rate and also the efficiency of visible-light utilization of BiPO 4 . Based on the excellent PEC properties of BiPO 4 /3DNGH, a label-free PEC aptasensor for selectivity and sensitivity detection of tetracycline (Tc) was successfully established by using Tc aptamer as a biorecognition element. Under optimized conditions, the proposed PEC aptasensor exhibited a wide linear in the range from 0.1 nmol L -1 to 1 μmol L -1 as well as a low detection limit of 0.033 nmol L -1 (S/N = 3). The prepared BiPO 4 /3DNGH nanocomposites would serve as a promising visible light-responsive photoactive material for fabrication of PEC biosensors with high performance. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Fugen; Wei, Yanju; Chen, Jianzhuang; Long, Donghui; Ling, Licheng; Li, Yongsheng; Shi, Jianlin
2015-07-01
A facile and scalable one-pot approach has been developed to synthesize carbon@MoS2 core-shell microspheres by a hydrothermal method, which involves the fast formation of melamine-resorcinol-formaldehyde polymeric microspheres in situ, followed by direct growth of the MoS2 nanowalls on them. The results give unequivocal proof that melamine could be the key to forming the core-shell microspherical morphology, and the contents of MoS2 shells can be easily tuned by initial ratios of the precursors. After a simple heat treatment, the obtained carbon@MoS2 microspheres simultaneously integrate the nitrogen-doped carbon cores and the hierarchical shells which consist of few-layered MoS2 nanowalls with an expanded interlayer spacing. Their unique architectures are favourable for high electronic/ionic conductivity and accommodate volume strain during the electrochemical reaction of the MoS2 anodes in lithium-ion batteries. Thus, a very high reversibility capacity of 771 mA h g-1 at 100 mA g-1 after 100 cycles, and a rate capacity of 598 mA h g-1 at 2000 mA g-1 could be achieved for the carbon@MoS2 core-shell microspheres with the optimal composition. Furthermore, a thin carbon coating on the carbon@MoS2 microspheres could further increase the reversible capacity to 856 mA h g-1 after 100 cycles at 100 mA g-1. These encouraging results suggest that such a facile and efficient protocol can provide a new pathway to produce hierarchical core-shell microspheres which integrate the structural, morphological and compositional design rationales for advanced lithium-ion batteries.A facile and scalable one-pot approach has been developed to synthesize carbon@MoS2 core-shell microspheres by a hydrothermal method, which involves the fast formation of melamine-resorcinol-formaldehyde polymeric microspheres in situ, followed by direct growth of the MoS2 nanowalls on them. The results give unequivocal proof that melamine could be the key to forming the core-shell microspherical morphology, and the contents of MoS2 shells can be easily tuned by initial ratios of the precursors. After a simple heat treatment, the obtained carbon@MoS2 microspheres simultaneously integrate the nitrogen-doped carbon cores and the hierarchical shells which consist of few-layered MoS2 nanowalls with an expanded interlayer spacing. Their unique architectures are favourable for high electronic/ionic conductivity and accommodate volume strain during the electrochemical reaction of the MoS2 anodes in lithium-ion batteries. Thus, a very high reversibility capacity of 771 mA h g-1 at 100 mA g-1 after 100 cycles, and a rate capacity of 598 mA h g-1 at 2000 mA g-1 could be achieved for the carbon@MoS2 core-shell microspheres with the optimal composition. Furthermore, a thin carbon coating on the carbon@MoS2 microspheres could further increase the reversible capacity to 856 mA h g-1 after 100 cycles at 100 mA g-1. These encouraging results suggest that such a facile and efficient protocol can provide a new pathway to produce hierarchical core-shell microspheres which integrate the structural, morphological and compositional design rationales for advanced lithium-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03708e
NASA Astrophysics Data System (ADS)
Nycz, Jacek E.; Malecki, Grzegorz J.
2014-05-01
New triazine derivatives 2,4-diamino-3,6-dihydro-6-(2-chlorophenyl)-1,3,5-triazine (1) and 1-(2-chlorobenzyl)-5-(2-chlorophenyl)-N-[(1E)-(2-chlorophenyl)methylene]-1,2,4-triazolidin-3-amine (2) were synthesized by a one-pot synthesis using 2-chlorobenzaldehyde, guanidine and aminoguanidine, respectively. The FTIR, multinuclear NMR, and single crystal X-ray characteristics of these compounds have been determined experimentally and rationalized on the basis of DFT calculation method.
A Feasible One-Step Synthesis of Hierarchical Zeolite Beta with Uniform Nanocrystals via CTAB
Zhang, Weimin; Hu, Sufang; Qin, Bo; Li, Ruifeng
2018-01-01
A hierarchical zeolite Beta has been prepared by a feasible one-pot and one-step method, which is suitable for application in industrial production. The synthesis is a simple hydrothermal process with low-cost raw materials, without adding alcohol or adding seeds, and without aging, recrystallization, and other complex steps. The hierarchical zeolite Beta is a uniform nanocrystal (20–50 nm) aggregation with high external surface area (300 m2/g) and mesoporous volume (0.50 cm3/g), with the mesoporous structure composed of intercrystal and intracrystal pores. As an acid catalyst in benzylation of naphthalene with benzyl chloride, the hierarchical zeolite Beta has shown high activity in the bulky molecule reaction due to its introduction of mesostructure. PMID:29695044
Eniyan, Kandasamy; Kumar, Anuradha; Rayasam, Geetha Vani; Perdih, Andrej; Bajpai, Urmi
2016-01-01
The cell wall of Mycobacterium tuberculosis (Mtb) consists of peptidoglycan, arabinogalactan and mycolic acids. The cytoplasmic steps in the peptidoglycan biosynthetic pathway, catalyzed by the Mur (A-F) enzymes, involve the synthesis of UDP-n-acetylmuramyl pentapeptide, a key precursor molecule required for the formation of the peptidoglycan monomeric building blocks. Mur enzymes are indispensable for cell integrity and their lack of counterparts in eukaryotes suggests them to be promising Mtb drug targets. However, the caveat is that most of the current assays utilize a single Mur enzyme, thereby identifying inhibitors against only one of the enzymes. Here, we report development of a one-pot assay that reconstructs the entire Mtb Mur pathway in vitro and has the advantage of eliminating the requirement for nucleotide intermediates in the pathway as substrates. The MurA-MurF enzymes were purified and a one-pot assay was developed through optimization of successive coupled enzyme assays using UDP-n-acetylglucosamine as the initial sugar substrate. The assay is biochemically characterized and optimized for high-throughput screening of molecules that could disrupt multiple targets within the pathway. Furthermore, we have validated the assay by performing it to identify D-Cycloserine and furan-based benzene-derived compounds with known Mur ligase inhibition as inhibitors of Mtb MurE and MurF. PMID:27734910
Ovais, Muhammad; Khalil, Ali Talha; Raza, Abida; Khan, Muhammad Adeeb; Ahmad, Irshad; Islam, Nazar Ul; Saravanan, Muthupandian; Ubaid, Muhammad Furqan; Ali, Muhammad; Shinwari, Zabta Khan
2016-12-01
With the development of the latest technologies, scientists are looking to design novel strategies for the treatment and diagnosis of cancer. Advances in medicinal plant research and nanotechnology have attracted many researchers to the green synthesis of metallic nanoparticles due to its several advantages over conventional synthesis (simple, fast, energy efficient, one pot processes, safer, economical and biocompatibility). Medicinally active plants have proven to be the best reservoirs of diverse phytochemicals for the synthesis of biogenic silver nanoparticles (AgNPs). In this review, we discuss mechanistic advances in the synthesis and optimization of AgNPs from plant extracts. Moreover, we have thoroughly discussed the recent developments and milestones achieved in the use of biogenic AgNPs as cancer theranostic agents and their proposed mechanism of action. Anticipating all of the challenges, we hope that biogenic AgNPs may become a potential cancer theranostic agent in the near future.
Banitaba, Sayed Hossein; Safari, Javad; Khalili, Shiva Dehghan
2013-01-01
A green and simple approach to assembling of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds via three-component reaction of kojic acid, malononitrile, and aromatic aldehydes in aqueous media under ultrasound irradiation is described. The combinatorial synthesis was achieved for this methodology with applying ultrasound irradiation while making use of water as green solvent. In comparison to conventional methods, experimental simplicity, good functional group tolerance, excellent yields, short routine, and selectivity without the need for a transition metal or base catalyst are prominent features of this green procedure. Copyright © 2012 Elsevier B.V. All rights reserved.
Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael
2018-06-01
The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.
Solid state synthesis of starch-capped silver nanoparticles.
Hebeish, A; Shaheen, Th I; El-Naggar, Mehrez E
2016-06-01
The present research addresses the establishment of a technique which is solely devoted to environmentally friendly one-pot green synthesis of dry highly stable powdered silver nanoparticles (AgNPs) using starch as both reductant and stabilizing agent in the presence of sodium hydroxide. It is believed that the sodium hydroxide can improve the reduction potential of starch. Thus when the alkali treated starch is submitted to addition of silver nitrate (AgNO3), the alkali treated starch induces the well-established dual role of starch; reduction of silver ions (Ag(+)) to AgNPs and capping the as-formed AgNPs to prevent them from further growth and agglomeration. Beside assessment of AgNPs formation, structural and morphological characteristics of AgNPs are investigated by making use of UV-vis spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, FT-IR and X-ray diffraction (XRD) analysis. Research outputs signify (a) the absorbance around 410-420nm in the UV-vis spectra of AgNPs appears most, probably owing to the presence of nanosized silver particles and the intensity of this peak increases by increasing AgNO3 concentration; (b) that highly stable AgNPs with well-dispersed particle are successfully prepared using the present research-based innovation; (c) that the size of AgNPs does not exceed 30nm with sphere-like morphology even at the highest Ag(+) concentration employed during synthesis operation; (d) that the XRD and FT-IR confirm the successful preparation of pure AgNPs without noticeable impurities; (d) and that the one-pot synthesis of powdered AgNPs in large scale is clean and easily operated and easily transportation which may be applied as per demands of industries such as textile and painting industry. Copyright © 2016. Published by Elsevier B.V.
Shanmugam, Sivaprakash; Boyer, Cyrille
2015-08-12
Nature has developed efficient polymerization processes, which allow the synthesis of complex macromolecules with a perfect control of tacticity as well as molecular weight, in response to a specific stimulus. In this contribution, we report the synthesis of various stereopolymers by combining a photoactivated living polymerization, named photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) with Lewis acid mediators. We initially investigated the tolerance of two different photoredox catalysts, i.e., Ir(ppy)3 and Ru(bpy)3, in the presence of a Lewis acid, i.e., Y(OTf)3 and Yb(OTf)3, to mediate the polymerization of N,N-dimethyl acrylamide (DMAA). An excellent control of tacticity as well as molecular weight and dispersity was observed when Ir(ppy)3 and Y(OTf)3 were employed in a methanol/toluene mixture, while no polymerization or poor control was observed with Ru(bpy)3. In comparison to a thermal system, a lower amount of Y(OTf)3 was required to achieve good control over the tacticity. Taking advantage of the temporal control inherent in our system, we were able to design complex macromolecular architectures, such as atactic block-isotactic and isotactic-block-atactic polymers in a one-pot polymerization approach. Furthermore, we discovered that we could modulate the degree of tacticity through a chemical stimulus, by varying [DMSO]0/[Y(OTf)3]0 ratio from 0 to 30 during the polymerization. The stereochemical control afforded by the addition of a low amount of DMSO in conjunction with the inherent temporal control enabled the synthesis of stereogradient polymer consisting of five different stereoblocks in one-pot polymerization.
One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery
NASA Astrophysics Data System (ADS)
Li, JiLan; Chen, ChangGuo
2018-01-01
Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.
NASA Astrophysics Data System (ADS)
Sharotri, Nidhi; Sud, Dhiraj
2015-08-01
Commercialization of AOP's for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO2 has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO2 (3.0-3.23 eV) with absorption cut off ˜ 380 nm, enables it to harness only a small fraction (˜ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO2 photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO2 nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.