Sample records for facile one-step hydrothermal

  1. One-step synthesis of hydrothermally stable mesoporous aluminosilicates with strong acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Dongjiang; School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD 4001; Xu Yao

    2008-09-15

    Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 deg. C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N{sub 2} adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The {sup 29}Si MAS NMR spectra confirmed that PMHS and TEOSmore » have jointly condensed and CH{sub 3} groups have been introduced into the materials. The {sup 27}Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH{sub 3} temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH{sub 3} groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts. - Graphical abstract: Based on the nonsurfactant method, a facile one-step synthesis route has been developed to prepare methyl-modified mesoporous aluminosilicates that possessed hydrothermal stability and strong acidity.« less

  2. Enhancement of valve metal osteoconductivity by one-step hydrothermal treatment.

    PubMed

    Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi

    2014-09-01

    In this study, we produced super-hydrophilic surfaces of valve metals (Ti, Nb, Ta and Zr) by one-step hydrothermal treatment. Their surface characteristics and osteoconductivity using an in vivo test were then assessed. These data were compared with that of as-polished, as-anodized and both anodized+hydrothermally treated samples. Changes in surface chemistry, surface morphology and structure were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffractometry. The results revealed that the water contact angles of valve metals were decreased by hydrothermal treatment and continued to reduce dramatically until lower than 10° after being immersed in phosphate buffered solution. By producing super-hydrophilic surfaces, the osteoconductivity of these hydrothermally treated valve metals was enhanced by up to 55%. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    PubMed

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    PubMed

    Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang

    2018-01-01

    To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one-step

  5. Effect of sulfur source on photocatalytic degradation performance of CdS/MoS2 prepared with one-step hydrothermal synthesis.

    PubMed

    Wang, Yanfeng; Chen, Wei; Chen, Xiao; Feng, Huajun; Shen, Dongsheng; Huang, Bin; Jia, Yufeng; Zhou, Yuyang; Liang, Yuxiang

    2018-03-01

    CdS/MoS 2 , an extremely efficient photocatalyst, has been extensively used in hydrogen photoproduction and pollutant degradation. CdS/MoS 2 can be synthesized by a facile one-step hydrothermal process. However, the effect of the sulfur source on the synthesis of CdS/MoS 2 via one-step hydrothermal methods has seldom been investigated. We report herein a series of one-step hydrothermal preparations of CdS/MoS 2 using three different sulfur sources: thioacetamide, l-cysteine, and thiourea. The results revealed that the sulfur source strongly affected the crystallization, morphology, elemental composition and ultraviolet (UV)-visible-light-absorption ability of the CdS/MoS 2 . Among the investigated sulfur sources, thioacetamide provided the highest visible-light absorption ability for CdS/MoS 2 , with the smallest average particle size and largest surface area, resulting in the highest efficiency in Methylene Blue (MB) degradation. The photocatalytic activity of CdS/MoS 2 synthesized from the three sulfur sources can be arranged in the following order: thioacetamide>l-cysteine>thiourea. The reaction rate constants (k) for thioacetamide, l-cysteine, and thiourea were estimated to be 0.0197, 0.0140, and 0.0084min -1 , respectively. However, thioacetamide may be limited in practical application in terms of its price and toxicity, while l-cysteine is relatively economical, less toxic and exhibited good photocatalytic degradation performance toward MB. Copyright © 2017. Published by Elsevier B.V.

  6. One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Gopi, Chandu V. V. Muralee; Somasekha, A.; Reddy, Araveeti Eswar; Kim, Soo-Kyoung; Kim, Hee-Je

    2018-03-01

    Herein, for the first time, we demonstrate the fabrication of Fe2O3@LiCoO2 hybrid nanostructures on Ni foam substrate by facile one-step hydrothermal technique. Morphological studies reveal that aggregated Fe2O3 nanoflakes anchored on the surface of sphere-like LiCoO2 nanoflakes. Electrochemical studies are used to examine the performance of the supercapacitor electrodes. The composite Fe2O3@LiCoO2 electrode exhibited excellent electrochemical performance than Fe2O3 and LiCoO2 electrodes, such as a low charge transfer resistance, a high specific capacitance of 489 F g-1 at 5 mA cm-2 and an enhanced capacity retention of 108% over 3000 cycles at 15 mA cm-2. The composite Fe2O3@LiCoO2 holds great promise for electrochemical applications due to well-defined hierarchical morphology, synergetic effect of Fe2O3 and LiCoO2, enhanced electrical conductivity, efficient electrolyte penetration and fast electron transfer.

  7. Morphology-controlled synthesis of Co{sub 3}O{sub 4} by one step template-free hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Keqing; Liu, Jiajia; Wen, Panyue

    2015-07-15

    Highlights: • Co{sub 3}O{sub 4} crystals had been synthesized by one step template-free hydrothermal method. • The H{sub 2}O{sub 2} plays a crucial role in morphological control of Co{sub 3}O{sub 4} nanostructures. • The morphology has significant effect on the optical property of Co{sub 3}O{sub 4}. - Abstract: We had developed a facile synthetic route of Co{sub 3}O{sub 4} crystals with different morphologies via one step template-free hydrothermal method. The phase and composition of the Co{sub 3}O{sub 4} were investigated by X-ray powder diffraction and Raman spectrum. The morphology and structure of the synthesized samples were characterized by scanning electronmore » microscopy and transmission electron microscopy. The H{sub 2}O{sub 2} played a crucial role in morphological control of Co{sub 3}O{sub 4} nanostructures. It only obtained Co-based precursor in the absence of H{sub 2}O{sub 2}. On the contrary, the Co{sub 3}O{sub 4} with different morphologies including nanoparticles, nano-discs and well-defined octahedral nanostructures were synthesized in the presence of H{sub 2}O{sub 2}. In addition, the optical property of the obtained Co{sub 3}O{sub 4} samples was investigated by UV–vis spectra.« less

  8. One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Yi, Danqing; Zhu, Baojun

    2013-04-01

    Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.

  9. Self-assembled graphene hydrogel via a one-step hydrothermal process.

    PubMed

    Xu, Yuxi; Sheng, Kaixuan; Li, Chun; Shi, Gaoquan

    2010-07-27

    Self-assembly of two-dimensional graphene sheets is an important strategy for producing macroscopic graphene architectures for practical applications, such as thin films and layered paperlike materials. However, construction of graphene self-assembled macrostructures with three-dimensional networks has never been realized. In this paper, we prepared a self-assembled graphene hydrogel (SGH) via a convenient one-step hydrothermal method. The SGH is electrically conductive, mechanically strong, and thermally stable and exhibits a high specific capacitance. The high-performance SGH with inherent biocompatibility of carbon materials is attractive in the fields of biotechnology and electrochemistry, such as drug-delivery, tissue scaffolds, bionic nanocomposites, and supercapacitors.

  10. One-Step Hydrothermal Approach to Synthesis Carbon Dots from D-Sorbitol for Detection of Iron(III) and Cell Imaging.

    PubMed

    Zhang, Junqiu; Yan, Juping; Wang, Yingte; Zhang, Yong

    2018-07-01

    A facile and economic approach to synthesis highly fluorescence carbon dots (CDs) via one-step hydrothermal treatment of D-sorbitol was presented. The as-synthesized CDs were characterized by good water solubility, well monodispersion, and excellent biocompatibility. Spherical CDs had a particle size about 5 nm and exhibited a quantum yield of 8.85% at excitation wavelength of 360 nm. In addition, the CDs can serve as fluorescent probe for sensitive and selective detection of Fe3+ ions with the detection limit of 1.16 μM. Moreover, the potential of the as-prepared carbon dots for biological application was confirmed by employing it for fluorescence imaging in MCF-7 cells.

  11. Controllable preparation of flower-like brookite TiO{sub 2} nanostructures via one-step hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yunling; College of Science, Civil Aviation University of China, Tianjin 300300; Tan, Xin

    Highlights: • Flower-like brookite TiO{sub 2} structures were prepared by hydrothermal method. • PVP not only acted as a dispersant but also stabilized the layered structure. • The resulted brookite TiO{sub 2} showed high photocatalytic activity under UV irradiation. - Abstract: Flower-like brookite TiO{sub 2} nanostructures were controllable prepared by a one-step hydrothermal method by changing experimental conditions, such as hydrothermal temperature, reaction time and the amount of polyvinylpyrrolidone. The photocatalytic activities of the samples were investigated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation. It was found that the formation of brookite TiO{sub 2}more » nanostructures with various morphologies could be well controlled by the adjustment of hydrothermal temperature, reaction time and the amount of surfactant, and the morphology of the products changed from spindle-like structures to flower-like structures with the increase of hydrothermal temperature, reaction time and the amount of surfactant. The photocatalytic tests indicate that the flower-like brookite TiO{sub 2} nanostructures shows high photocatalytic activity in degradation of methylene blue (MB) under UV light irradiation. The formation mechanism of flower-like brookite TiO{sub 2} nanostructures was also discussed in detail based on the above investigations.« less

  12. Facile hydrothermal synthesis of one-dimensional nanostructured α-MnO2 for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wei, Hongmei; Wang, Jinxing; Yang, Shengwei; Zhang, Yangyang; Li, Tengfei; Zhao, Shuoqing

    2016-09-01

    α-MnO2 recently becomes a promising candidate of electrode materials for high effective supercapacitors in which it possesses of unique structure of 2×2 tunnels that can provide more electrons and ions diffusion paths. In this work, different morphologies MnO2 with α-phase crystalline structure have been prepared via a one-step facile hydrothermal method by adding various reagents. Compositions, microstructures and morphologies of these as-synthesized materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and electrochemical properties of α-MnO2 electrodes were studied by the cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) in 1 M Na2SO4 aqueous solution. The specific capacitance of nanowires were 158 F g-1 while the specific capacitance of nanorods were 106 F g-1 at current density of 4 A g-1, and improved performance of the wire-like electrode material was probably ascribed to the larger specific surface area that can provide relatively more active sites for high capacity. Meanwhile, both the nanowires and nanorods of MnO2 presented fine cycle stability after continuous multiple charge/discharge times.

  13. One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe

    2012-12-01

    Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.

  14. Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Yu; Lei, Jixue; Yin, Bing

    2014-03-17

    A simple two-step hydrothermal process was proposed for enhancing the performance of the nanogenerator on flexible and wearable terylene-fabric substrate. With this method, a significant enhancement in output voltage of the nanogenerator from ∼10 mV to 7 V was achieved, comparing with the one by conventional one-step process. In addition, another advantage with the devices synthesized by two-step hydrothermal process was that their output voltages are only sensitive to strain rather than strain rate. The devices with a high output voltage have the ability to power common electric devices and will have important applications in flexible electronics and wearable devices.

  15. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance

    NASA Astrophysics Data System (ADS)

    Wu, Xinhe; Chen, Fengyun; Wang, Xuefei; Yu, Huogen

    2018-01-01

    Surface modification of g-C3N4 is one of the most effective strategies to boost its photocatalytic H2-evolution performance via promoting the interfacial catalytic reactions. In this study, an in situ one-step hydrothermal method was developed to prepare the oxygen-containing groups-modified g-C3N4 (OG/g-C3N4) by a facile and green hydrothermal treatment of bulk g-C3N4 in pure water without any additives. It was found that the hydrothermal treatment (180 °C) not only could greatly increase the specific surface area (from 2.3 to 69.8 m2 g-1), but also caused the formation of oxygen-containing groups (sbnd OH and Cdbnd O) on the OG/g-C3N4 surface, via the interlayer delamination and intralayer depolymerization of bulk g-C3N4. Photocatalytic experimental results indicated that after hydrothermal treatment, the resultant OG/g-C3N4 samples showed an obviously improved H2-evolution performance. Especially, when the hydrothermal time was 6 h, the resultant OG/g-C3N4(6 h) exhibited the highest photocatalytic activity, which was clearly higher than that of the bulk g-C3N4 by a factor of ca. 7. In addition to the higher specific surface area, the enhanced H2-evolution rate of OG/g-C3N4 photocatalysts can be mainly attributed to the formation of oxygen-containing groups, which possibly works as the effective H2-evolution active sites. Considering the facie and green synthesis method, the present work may provide a new insight for the development of highly efficient photocatalytic materials.

  16. Fabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive

    PubMed Central

    Li, Zuohua; Cui, Yanhui; Chen, Jun; Deng, Lianlin

    2016-01-01

    Binary transition metal oxides have been regarded as one of the most promising candidates for high-performance electrodes in energy storage devices, since they can offer high electrochemical activity and high capacity. Rational designing nanosized metal oxide/carbon composite architectures has been proven to be an effective way to improve the electrochemical performance. In this work, the (Co,Mn)3O4 spinel was synthesized and anchored on reduced graphene oxide (rGO) nanosheets using a facile and single hydrothermal step with H2O2 as additive, no further additional calcination required. Analysis showed that this method gives a mixed spinel, i.e. (Co,Mn)3O4, having 2+ and 3+ Co and Mn ions in both the octahedral and tetrahedral sites of the spinel structure, with a nanocubic morphology roughly 20 nm in size. The nanocubes are bound onto the rGO nanosheet uniformly in a single hydrothermal process, then the as-prepared (Co,Mn)3O4/rGO composite was characterized as the anode materials for Li-ion battery (LIB). It can deliver 1130.6 mAh g-1 at current density of 100 mA g-1 with 98% of coulombic efficiency after 140 cycles. At 1000 mA g-1, the capacity can still maintain 750 mAh g-1, demonstrating excellent rate capabilities. Therefore, the one-step process is a facile and promising method to fabricate metal oxide/rGO composite materials for energy storage applications. PMID:27788161

  17. Fabrication of (Co,Mn)3O4/rGO Composite for Lithium Ion Battery Anode by a One-Step Hydrothermal Process with H2O2 as Additive.

    PubMed

    Li, Zuohua; Cui, Yanhui; Chen, Jun; Deng, Lianlin; Wu, Junwei

    2016-01-01

    Binary transition metal oxides have been regarded as one of the most promising candidates for high-performance electrodes in energy storage devices, since they can offer high electrochemical activity and high capacity. Rational designing nanosized metal oxide/carbon composite architectures has been proven to be an effective way to improve the electrochemical performance. In this work, the (Co,Mn)3O4 spinel was synthesized and anchored on reduced graphene oxide (rGO) nanosheets using a facile and single hydrothermal step with H2O2 as additive, no further additional calcination required. Analysis showed that this method gives a mixed spinel, i.e. (Co,Mn)3O4, having 2+ and 3+ Co and Mn ions in both the octahedral and tetrahedral sites of the spinel structure, with a nanocubic morphology roughly 20 nm in size. The nanocubes are bound onto the rGO nanosheet uniformly in a single hydrothermal process, then the as-prepared (Co,Mn)3O4/rGO composite was characterized as the anode materials for Li-ion battery (LIB). It can deliver 1130.6 mAh g-1 at current density of 100 mA g-1 with 98% of coulombic efficiency after 140 cycles. At 1000 mA g-1, the capacity can still maintain 750 mAh g-1, demonstrating excellent rate capabilities. Therefore, the one-step process is a facile and promising method to fabricate metal oxide/rGO composite materials for energy storage applications.

  18. Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhe, E-mail: tangzhe1983@163.com; Liang, Jilei, E-mail: liangjilei_httplan@126.com; Li, Xuehui, E-mail: lxhhmx@163.com

    A simple and novel synthesis process, one-step ionic liquid-assisted hydrothermal synthesis route, has been developed in the work to synthesize Bohemithe (γ-AlOOH) with flower-like structure. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM). Ionic liquid [Omim]{sup +}Cl{sup −}, as a template, plays an important role in the morphology and pore structure of the products due to its strong interactions with reaction particles. With the increase in the dosage of ionic liquid [Omim]{sup +}Cl{sup −}, the morphology of the γ-AlOOH was changed from initial bundles of nanosheets (without ionic liquid) intomore » final well-developed monodispersed 3D flower-like architectures ([Omim]{sup +}Cl{sup −}=72 mmol). The pore structure was also altered gradually from initial disordered slit-like pore into final relatively ordered ink-bottle pore. Furthermore, the proposed formation mechanism and other influencing factors such as reaction temperature and urea on formation and morphology of the γ-AlOOH have also been investigated. - Graphical abstract: The flower-like γ-AlOOH architectures composed by nanosheets with narrow size distribution (1.6–2.2 μm) and uniform pore size (6.92 nm) have been synthesized via a one-step ionic liquid-assisted hydrothermal route. - Highlights: • The γ-AlOOH microflowers were synthesized via an ionic liquid-assisted hydrothermal route. • Ionic liquid plays an important role on the morphology and porous structure of the products. • Ionic liquid can be easily removed from the products and reused in recycling experiments. • A “aggregation–recrystallization–Ostwald Ripening“formation mechanism may occur.« less

  19. A facile one-pot hydrothermal synthesis of β-MnO{sub 2} nanopincers and their catalytic degradation of methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lin, Ting

    2014-09-15

    Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method via a redox reaction between NaClO{sub 3} and MnSO{sub 4} in sulfuric acid solution without using any surfactants or templates. The products were characterized in detail by various techniques including X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, surface area analyzer, field emission scanning electron microscopy and transmission electron microscopy. Results show that the obtained β-MnO{sub 2} nanopincers consist of two sharp nanorods with a diameter of 100–200 nm and a length of 1–2 μm. The concentration of H{sub 2}SO{sub 4} solution plays anmore » important role in controlling the crystal phase and morphology of the final product. A possible formation mechanism for the β-MnO{sub 2} nanopincers was proposed. Moreover, these β-MnO{sub 2} nanostructures exhibited better catalytic performance than the commercial MnO{sub 2} particles to decompose methyl blue (MB) in the presence of H{sub 2}O{sub 2}. - Graphical abstract: Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method through oxidizing MnSO{sub 4} with NaClO{sub 3} in H2SO{sub 4} condition without using any surfactants or templates. - Highlights: {sup •} Branched β-MnO{sub 2} nanopincers were prepared by a facile one-pot hydrothermal method. {sup •} Morphology and crystal phase of MnO{sub 2} were controlled by the H{sub 2}SO{sub 4} concentration. {sup •} A possible formation mechanism for the obtained β-MnO{sub 2} nanopincers was proposed. {sup •} The products showed great catalytic performance in degradation of methylene blue.« less

  20. Facile one-step construction of covalently networked, self-healable, and transparent superhydrophobic composite films

    NASA Astrophysics Data System (ADS)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-07-01

    Despite the considerable demand for bioinspired superhydrophobic surfaces with highly transparent, self-cleaning, and self-healable properties, a facile and scalable fabrication method for multifunctional superhydrophobic films with strong chemical networks has rarely been established. Here, we report a rationally designed facile one-step construction of covalently networked, transparent, self-cleaning, and self-healable superhydrophobic films via a one-step preparation and single-reaction process of multi-components. As coating materials for achieving the one-step fabrication of multifunctional superhydrophobic films, we included two different sizes of Al2O3 nanoparticles for hierarchical micro/nano dual-scale structures and transparent films, fluoroalkylsilane for both low surface energy and covalent binding functions, and aluminum nitrate for aluminum oxide networked films. On the basis of stability tests for the robust film composition, the optimized, covalently linked superhydrophobic composite films with a high water contact angle (>160°) and low sliding angle (<1°) showed excellent thermal stability (up to 400 °C), transparency (≈80%), self-healing, self-cleaning, and waterproof abilities. Therefore, the rationally designed, covalently networked superhydrophobic composite films, fabricated via a one-step solution-based process, can be further utilized for various optical and optoelectronic applications.

  1. Formation of a hydrophobic and corrosion resistant coating on magnesium alloy via a one-step hydrothermal method.

    PubMed

    Zheng, Tianxu; Hu, Yaobo; Zhang, Yuxin; Pan, Fusheng

    2017-11-01

    A hydrophobic coating was fabricated on the surface of magnesium alloy using a simple one-step hydrothermal method with the use of environmentally friendly agent. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle test were used to characterize the surfaces. Corrosion behavior in a 3.5wt.% NaCl solution was evaluated using OCP time curves test, potentiodynamic polarization test and EIS analysis. The findings show that the substrate is covered by the coating of magnesium hydroxide and magnesium stearate, reaching a contact angle of around 146°. Corrosion behavior show huge improvement, the progress with increase of treatment time could be related to the increased growth rate of coating. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Fangping; Li, Guifang; Zhou, Qianqian; Zheng, Jinfeng; Yang, Caixia; Wang, Qizhao

    2017-12-01

    A facile one step hydrothermal process is developed for the synthesis of NiCo2S4@reduced graphene oxide (NiCo2S4@RGO) composite as electrode for electrochemical supercapacitors. This NiCo2S4@RGO electrode exhibits an ultrahigh specific capacitance of 2003 F g-1 at 1 A g-1 and 1726 F g-1 at 20 A g-1 (86.0% capacitance retention from 1 A g-1 to 20 A g-1), excellent cycling stabilities (86.0% retention after 3500 cycles). Moreover, an asymmetric supercapacitor is successfully assembled by using NiCo2S4@RGO nanoparticle as the positive electrode and active carbon(AC) as the negative electrode in 2 M KOH electrolyte. The fabricated NiCo2S4@RGO//AC asymmetric supercapacitor exhibits a high energy density of 21.9 Wh kg-1 at a power density of 417.1 W kg-1 and still remains an impressive energy density of 13.5 Wh kg-1 at a large power density of 2700 W kg-1. The results demonstrate that the NiCo2S4@RGO composite is a promising electrode material as supercapacitors in energy storage.

  3. Two steps hydrothermal growth and characterisations of BaTiO3 films composed of nanowires

    NASA Astrophysics Data System (ADS)

    Zawawi, Che Zaheerah Najeehah Che Mohd; Salleh, Shahril; Oon Jew, Lee; Tufail Chaudhary, Kashif; Helmi, Mohamad; Safwan Aziz, Muhammad; Haider, Zuhaib; Ali, Jalil

    2018-05-01

    Barium titanate (BaTiO3) films composed of nanowires have gained considerable research interest due to their lead-free composition and strong energy conversion efficiency. BaTiO3 films can be developed with a simple two steps hydrothermal reactions, which are low cost effective. In this research, BaTiO3 films were fabricated on titanium foil through two steps hydrothermal method namely, the growth of TiO2 and followed by BaTiO3 films. The structural evolutions and the dielectric properties of the films were investigated as well. The structural evolutions of titanium dioxide (TiO2) and BaTiO3 nanowires were characterized using X-ray diffraction and scanning electron microscopy. First step of hydrothermal reaction, TiO2 nanowires were prepared in varied temperatures of 160 °C, 200 °C and 250 °C respectively. Second step of hydrothermal reaction was performed to produce a layer of BaTiO3 films.

  4. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Meng, Qi; Chen, Yizhi; Zhu, Wenkun; Zhang, Ling; Yang, Xiaoyong; Duan, Tao

    2018-07-01

    A three-dimensional (3D) MoS2 coated CoS2-nitrogen doped graphene (NG) (CoS2@MoS2-NG) hybrid has been synthesized by a one step hydrothermal method as supercapacitor (SC) electrode material for the first time. Such a composite consists of NG embedded with stacked CoS2@MoS2 sheets. With a 3D skeleton, it prevents the agglomeration of CoS2@MoS2 nanoparticles, resulting in sound conductivity, rich porous structures and a large surface area. The results indicate that CoS2@MoS2-NG has higher specific capacitance (198 F g‑1 at 1 A g‑1), better rate performance (with about 56.57% from 1 to 16 A g‑1) and an improved cycle stability (with about 96.97% after 1000 cycles). It is an ideal candidate for SC electrode materials.

  5. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors.

    PubMed

    Meng, Qi; Chen, Yizhi; Zhu, Wenkun; Zhang, Ling; Yang, Xiaoyong; Duan, Tao

    2018-07-20

    A three-dimensional (3D) MoS 2 coated CoS 2 -nitrogen doped graphene (NG) (CoS 2 @MoS 2 -NG) hybrid has been synthesized by a one step hydrothermal method as supercapacitor (SC) electrode material for the first time. Such a composite consists of NG embedded with stacked CoS 2 @MoS 2 sheets. With a 3D skeleton, it prevents the agglomeration of CoS 2 @MoS 2 nanoparticles, resulting in sound conductivity, rich porous structures and a large surface area. The results indicate that CoS 2 @MoS 2 -NG has higher specific capacitance (198 F g -1 at 1 A g -1 ), better rate performance (with about 56.57% from 1 to 16 A g -1 ) and an improved cycle stability (with about 96.97% after 1000 cycles). It is an ideal candidate for SC electrode materials.

  6. One-step fabrication of multifunctional micromotors

    NASA Astrophysics Data System (ADS)

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-08-01

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications. Electronic supplementary information (ESI) available: Videos S1-S4 and Fig. S1-S3. See DOI: 10.1039/c5nr03574k

  7. Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake.

    PubMed

    Zhou, Jie; Deng, Wenwen; Wang, Yan; Cao, Xia; Chen, Jingjing; Wang, Qiang; Xu, Wenqian; Du, Pan; Yu, Qingtong; Chen, Jiaxin; Spector, Myron; Yu, Jiangnan; Xu, Ximing

    2016-09-15

    Carbon quantum dots (CQDs), unlike semiconductor quantum dots, possess fine biocompatibility, excellent upconversion properties, high photostability and low toxicity. Here, we report multifunctional CQDs which were developed using alginate, 3% hydrogen peroxide and double distilled water through a facile, eco-friendly and inexpensive one-step hydrothermal carbonization route. In this reaction, the alginate served as both the carbon source and the cationization agent. The resulting CQDs exhibited strong and stable fluorescence with water-dispersible and positively-charged properties which could serve as an excellent DNA condensation. As non-viral gene vector being used for the first time, the CQDs showed considerably high transfection efficiency (comparable to Lipofectamine2000 and significantly higher than PEI, p<0.05) and negligible toxicity. The photoluminescence properties of CQDs also permitted easy tracking of the cellular-uptake. The findings showed that both caveolae- and clathrin-mediated endocytosis pathways were involved in the internalization process of CQDs/pDNA complexes. Taken together, the alginate-derived photoluminescent CQDs hold great potential in biomedical applications due to their dual role as efficient non-viral gene vectors and bioimaging probes. This manuscript describes a facile and simple one-step hydrothermal carbonization route for preparing optically tunable photoluminescent carbon quantum dots (CQDs) from a novel raw material, alginate. These CQDs enjoy low cytotoxicity, positive zeta potential, excellent ability to condense macromolecular DNA, and most importantly, notably high transfection efficiency. The interesting finding is that the negatively-charged alginate can convert into positively charged CQDs without adding any cationic reagents. The significance of this study is that the cationic carbon quantum dots play dual roles as both non-viral gene vectors and bioimaging probes at the same time, which are most desirable in many

  8. One-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Karegeya, Claude; Mahmoud, Abdelfattah; Vertruyen, Bénédicte; Hatert, Frédéric; Hermann, Raphaël P.; Cloots, Rudi; Boschini, Frédéric

    2017-09-01

    The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na+ and presence of vacancies in A(2)', Na+ and small amounts of Mn2+ in A(1), Mn2+ in M(1), 0.5 Mn2+ and Fe cations (Mn2+,Fe2+ and Fe3+) in M(2), leading to the structural formula Na2Mn(Mn0.5Fe1.5)(PO4)3. The particles morphology was investigated by SEM. Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 h at 220 °C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220 °C for 6 h. When the reaction time was increased from 6 to 12, 24 and 48 h, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mA h g-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99% during 50 cycles.

  9. One-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries

    DOE PAGES

    Karegeya, Claude; Mahmoud, Abdelfattah; Vertruyen, Bénédicte; ...

    2017-06-23

    The sodium-manganese-iron phosphate Na 2Mn 1.5Fe 1.5(PO 4) 3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na + and presence of vacancies in A(2)’, Na + and small amounts of Mn 2+ in A(1), Mn 2+ in M(1) , 0.5 Mn 2+ and Fe cations (Mn 2+,Fe 2+ and Fe 3+) in M(2), leading to the structural formula Na 2Mn(Mn 0.5Fe 1.5)(PO 4) 3. The particles morphology was investigated by SEM.more » Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 hours at 220°C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220°C for 6 hours. When the reaction time was increased from 6 to 12, 24 and 48 hours, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mAhg-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99 % during 50 cycles.« less

  10. One-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karegeya, Claude; Mahmoud, Abdelfattah; Vertruyen, Bénédicte

    The sodium-manganese-iron phosphate Na 2Mn 1.5Fe 1.5(PO 4) 3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na + and presence of vacancies in A(2)’, Na + and small amounts of Mn 2+ in A(1), Mn 2+ in M(1) , 0.5 Mn 2+ and Fe cations (Mn 2+,Fe 2+ and Fe 3+) in M(2), leading to the structural formula Na 2Mn(Mn 0.5Fe 1.5)(PO 4) 3. The particles morphology was investigated by SEM.more » Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 hours at 220°C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220°C for 6 hours. When the reaction time was increased from 6 to 12, 24 and 48 hours, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mAhg-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99 % during 50 cycles.« less

  11. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors.

    PubMed

    Chiu, Cheng-Ting; Chen, Dong-Hwang

    2018-04-27

    Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.

  12. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Chiu, Cheng-Ting; Chen, Dong-Hwang

    2018-04-01

    Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.

  13. Calcite phase determination of CaCO3 nanoparticles synthesized by one step drying method

    NASA Astrophysics Data System (ADS)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate (CaCO3) is a type of carbonic salt. It exist naturally as white odourless solid and may also be synthesized by chemical reactions. This work studies one-step precipitation of CaCO3 that was prepared by novel method of one-step precipitation method. The method was then proceeded by different types of drying. The first type is by normal drying in oven whereas the second type is with the presence of hydrothermal influence. From the results, precipitated CaCO3 dried by normal drying method produces CaCO3 with two polymorphs present; calcite and vaterite. Normal drying at 500°C has no vaterite phase left. Drying by hydrothermal precipitated CaCO3 has Nitrogen (N) left on the surfaces of the precipitated CaCO3. This work successfully identified calcite phase in the precipitated CaCO3.

  14. One-step fabrication of multifunctional micromotors.

    PubMed

    Gao, Wenlong; Liu, Mei; Liu, Limei; Zhang, Hui; Dong, Bin; Li, Christopher Y

    2015-09-07

    Although artificial micromotors have undergone tremendous progress in recent years, their fabrication normally requires complex steps or expensive equipment. In this paper, we report a facile one-step method based on an emulsion solvent evaporation process to fabricate multifunctional micromotors. By simultaneously incorporating various components into an oil-in-water droplet, upon emulsification and solidification, a sphere-shaped, asymmetric, and multifunctional micromotor is formed. Some of the attractive functions of this model micromotor include autonomous movement in high ionic strength solution, remote control, enzymatic disassembly and sustained release. This one-step, versatile fabrication method can be easily scaled up and therefore may have great potential in mass production of multifunctional micromotors for a wide range of practical applications.

  15. Versatile hydrothermal synthesis of one-dimensional composite structures

    NASA Astrophysics Data System (ADS)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  16. Nitrogen Dioxide-Sensing Properties at Room Temperature of Metal Oxide-Modified Graphene Composite via One-Step Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai

    2016-08-01

    A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.

  17. A facile one-step route to synthesize cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles in their shells.

    PubMed

    Li, Ling; Choo, Eugene Shi Guang; Tang, Xiaosheng; Ding, Jun; Xue, Junmin

    2009-02-28

    Cage-like silica hollow spheres loaded with superparamagnetic iron oxide nanoparticles incorporated in their macroporous shells are synthesized in a facile manner through a one-step oil-in-diethylene glycol (DEG) microemulsion route.

  18. Controllable synthesis of magnetic Fe3O4 particles with different morphology by one-step hydrothermal route

    NASA Astrophysics Data System (ADS)

    Chen, Zhongtao; Du, Yi; Li, Zhongfu; Yang, Kai; Lv, Xingjie

    2017-03-01

    Well-defined Fe3O4 particles were successfully fabricated by a facile triethanolamine (TEA)-assisted method under mild hydrothermal conditions. Hydrated ferric salt was employed as the single iron precursor. TEA was used as the complexing agent and/or alkaline source. The crystalline phases of the as-obtained samples were characterized by X-ray diffraction (XRD). Furthermore, the morphology as well as the compositions of the samples were investigated by scanning electron microscopy (SEM) equipped with an energy dispersion spectroscopy (EDS). The results indicated that the products were Fe3O4 crystal phase, and the morphology and powder size of the particles were varied with adding different amount of NaOAc and keeping the content of TEA unchanged. On the basis of these results, the possible formation mechanism of Fe3O4 was discussed. It was observed that TEA and NaOAc affected the growth rate of crystal planes and nucleation. Besides, the magnetic property tested by a vibrating sample magnetometer (VSM) showed that the products exhibited a ferromagnetic behavior and possessed the excellent saturation magnetization (Ms) at room temperature.

  19. One-Step and Two-Step Facility Acquisition for Military Construction: Project Selection and Implementation Procedures

    DTIC Science & Technology

    1990-08-01

    the guidance in this report. 1-4. Scope This guidance covers selection of projects suitable for a One-Step or Two-Step approach, development of design...conducted, focus on resolving proposal deficiencies; prices are not "negotiated" in the common use of the term. A Request for Proposal (RFP) states project ...carefully examines experience and past performance in the design of similar projects and building types. Quality of

  20. One-Step Synthesis of Water-Soluble MoS2 Quantum Dots via a Hydrothermal Method as a Fluorescent Probe for Hyaluronidase Detection.

    PubMed

    Gu, Wei; Yan, Yinghan; Zhang, Cuiling; Ding, Caiping; Xian, Yuezhong

    2016-05-11

    In this work, a bottom-up strategy is developed to synthesize water-soluble molybdenum disulfide quantum dots (MoS2 QDs) through a simple, one-step hydrothermal method using ammonium tetrathiomolybdate [(NH4)2MoS4] as the precursor and hydrazine hydrate as the reducing agent. The as-synthesized MoS2 QDs are few-layered with a narrow size distribution, and the average diameter is about 2.8 nm. The resultant QDs show excitation-dependent blue fluorescence due to the polydispersity of the QDs. Moreover, the fluorescence can be quenched by hyaluronic acid (HA)-functionalized gold nanoparticles through a photoinduced electron-transfer mechanism. Hyaluronidase (HAase), an endoglucosidase, can cleave HA into proangiogenic fragments and lead to the aggregation of gold nanoparticles. As a result, the electron transfer is blocked and fluorescence is recovered. On the basis of this principle, a novel fluorescence sensor for HAase is developed with a linear range from 1 to 50 U/mL and a detection limit of 0.7 U/mL.

  1. A Feasible One-Step Synthesis of Hierarchical Zeolite Beta with Uniform Nanocrystals via CTAB

    PubMed Central

    Zhang, Weimin; Hu, Sufang; Qin, Bo; Li, Ruifeng

    2018-01-01

    A hierarchical zeolite Beta has been prepared by a feasible one-pot and one-step method, which is suitable for application in industrial production. The synthesis is a simple hydrothermal process with low-cost raw materials, without adding alcohol or adding seeds, and without aging, recrystallization, and other complex steps. The hierarchical zeolite Beta is a uniform nanocrystal (20–50 nm) aggregation with high external surface area (300 m2/g) and mesoporous volume (0.50 cm3/g), with the mesoporous structure composed of intercrystal and intracrystal pores. As an acid catalyst in benzylation of naphthalene with benzyl chloride, the hierarchical zeolite Beta has shown high activity in the bulky molecule reaction due to its introduction of mesostructure. PMID:29695044

  2. Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups

    PubMed Central

    Long, Gaobo; Yang, Xiao-lan; Zhang, Yi; Pu, Jun; Liu, Lin; Liu, Hong-bo; Li, Yuan-li; Liao, Fei

    2013-01-01

    Purpose Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. Methods Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. Results The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 μm, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. Conclusion The facile approach effectively prepares MSPs for magnetic separations. PMID:23589687

  3. One-step Ge/Si epitaxial growth.

    PubMed

    Wu, Hung-Chi; Lin, Bi-Hsuan; Chen, Huang-Chin; Chen, Po-Chin; Sheu, Hwo-Shuenn; Lin, I-Nan; Chiu, Hsin-Tien; Lee, Chi-Young

    2011-07-01

    Fabricating a low-cost virtual germanium (Ge) template by epitaxial growth of Ge films on silicon wafer with a Ge(x)Si(1-x) (0 < x < 1) graded buffer layer was demonstrated through a facile chemical vapor deposition method in one step by decomposing a hazardousless GeO(2) powder under hydrogen atmosphere without ultra-high vacuum condition and then depositing in a low-temperature region. X-ray diffraction analysis shows that the Ge film with an epitaxial relationship is along the in-plane direction of Si. The successful growth of epitaxial Ge films on Si substrate demonstrates the feasibility of integrating various functional devices on the Ge/Si substrates.

  4. One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology.

    PubMed

    Liu, Bingping; Yan, Shihai; Song, Zhongqian; Liu, Mengli; Ji, Xuqiang; Yang, Wenrong; Liu, Jingquan

    2016-12-23

    Herein, a conceptually new and straightforward aqueous route is described for the synthesis of hydroxyl- and amino-functionalized boron nitride quantum dots (BNQDs) with quantum yields (QY) as high as 18.3 % by using a facile bottom-up approach, in which a mixture of boric acid and ammonia solution was hydrothermally treated in one pot at 200 °C for 12 h. The functionalized BNQDs, with excellent photoluminescence properties, could be easily dispersed in an aqueous medium and applied as fluorescent probes for the detection of ferrous (Fe 2+ ) and ferric (Fe 3+ ) ions with excellent selectivity and low detection limits. The mechanisms for the hydrothermal reaction and fluorescence quenching were also simulated by using density functional theory (DFT), which confirmed the feasibility and advantages of this strategy. It provides a scalable and eco-friendly method for preparation of BNQDs with good dispersability and could also be generalized to the synthesis of other 2D quantum dots and nanoplates. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun, E-mail: j-zhang@126.com; Wang, Xiucai; Li, Lili

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulkmore » Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.« less

  6. A simple, one-step hydrothermal approach to durable and robust superparamagnetic, superhydrophobic and electromagnetic wave-absorbing wood

    NASA Astrophysics Data System (ADS)

    Wang, Hanwei; Yao, Qiufang; Wang, Chao; Fan, Bitao; Sun, Qingfeng; Jin, Chunde; Xiong, Ye; Chen, Yipeng

    2016-10-01

    In this work, lamellar MnFe2O4 was successfully planted on a wood surface through the association of hydrogen bonds via the one-pot hydrothermal method. Simultaneously, the fluoroalkylsilane (FAS-17) on the surface of the MnFe2O4 layer formed long-chain or network macromolecules through a poly-condensation process and provided a lower surface energy on the wood surface. The MnFe2O4/wood composite (FMW) presented superior superparamagnetism, superhydrophobicity and electromagnetic wave absorption performance. The results indicated a saturation magnetization of the FMW with excellent superparamagnetism of 28.24 emu·g-1. The minimum value of reflection loss of the FMW reached -8.29 dB at 16.39 GHz with a thickness of 3 mm. Even after mechanical impact and exposure to corrosive liquids, the FMW still maintained a superior superhydrophobicity performance.

  7. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    NASA Astrophysics Data System (ADS)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  8. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing

    NASA Astrophysics Data System (ADS)

    Yuan, Ming; Zhong, Ruibo; Gao, Haiyang; Li, Wanrong; Yun, Xiaoling; Liu, Jingran; Zhao, Xinmin; Zhao, Guofen; Zhang, Feng

    2015-11-01

    The use of biomass as renewable and sustainable energy source has attracted the attention of politics and research and development (R&D) facilities around the world. Agricultural straw acts as a typical biowaste, which still needs highly effective recycling to save the biomass urgently at present. Photoluminescent carbon dots (C-dots) are novel biocompatible nanomaterials that have been proved to be produced from many carbon-abundant materials and hold great promise for the modern nanobiomedicine. In order to realize a "one-stone-two-birds" strategy, we report a green, economic, one-pot method in this article for synthesizing photoluminescent C-dots by hydrothermal treatment of wheat straw. Using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), we show that the as-prepared C-dots are amorphous in structure and are mainly composed of carbon. Their tiny size (<2 nm), combined with the characteristic excitation-dependent relatively bright emission, and robust photostability made the C-dots a potential biocompatible nanomaterial for bio-applications. We have experimentally demonstrated their potential applications in biomedical labeling, imaging, and sensing/detecting. The high yield (∼20%) of C-dots from wheat straw may suggest a new economic strategy for recycling biowaste.

  9. Powerlessness Reinterpreted: Reframing Step One.

    ERIC Educational Resources Information Center

    Young, Susan L.

    The 12 steps of the well-known mutual help group, Alcoholics Anonymous (AA), begin with Step One, admitting powerlessness. Although Step One has helped many problem drinkers and other addicts, its spiritual concepts have been criticized. The possibility of reconceptualizing powerlessness as empowering, not only within AA and its offshoot programs,…

  10. One-step hydrothermal synthesis of feather duster-like NiS@MoS2 with hierarchical array structure for the Pt-free dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Su, Lijun; Xiao, Yaoming; Han, Gaoyi; Lin, Jeng-Yu

    2018-04-01

    Novel feather duster-like nickel sulfide (NiS) @ molybdenum sulfide (MoS2) with hierarchical array structure is synthesized via a simple one-step hydrothermal method, in which a major structure of rod-like NiS in the center and a secondary structure of MoS2 nanosheets with a thickness of about 15-55 nm on the surface. The feather duster-like NiS@MoS2 is employed as the counter electrode (CE) material for the dye-sensitized solar cell (DSSC), which exhibits superior electrocatalytic activity due to its feather duster-like hierarchical array structure can not only support the fast electron transfer and electrolyte diffusion channels, but also can provide high specific surface area (238.19 m2 g-1) with abundant active catalytic sites and large electron injection efficiency from CE to electrolyte. The DSSC based on the NiS@MoS2 CE achieves a competitive photoelectric conversion efficiency of 8.58%, which is higher than that of the NiS (7.13%), MoS2 (7.33%), and Pt (8.16%) CEs under the same conditions. [Figure not available: see fulltext.

  11. One-Step Hydrothermal Synthesis of Zeolite X Powder from Natural Low-Grade Diatomite.

    PubMed

    Yao, Guangyuan; Lei, Jingjing; Zhang, Xiaoyu; Sun, Zhiming; Zheng, Shuilin

    2018-05-28

    Zeolite X powder was synthesized using natural low-grade diatomite as the main source of Si but only as a partial source of Al via a simple and green hydrothermal method. The microstructure and surface properties of the obtained samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), wavelength dispersive X-ray fluorescence (XRF), calcium ion exchange capacity (CEC), thermogravimetric-differential thermal (TG-DTA) analysis, and N₂ adsorption-desorption technique. The influence of various synthesis factors, including aging time and temperature, crystallization time and temperature, Na₂O/SiO₂ and H₂O/Na₂O ratio on the CEC of zeolite, were systematically investigated. The as-synthesized zeolite X with binary meso-microporous structure possessed remarkable thermal stability, high calcium ion exchange capacity of 248 mg/g and large surface area of 453 m²/g. In addition, the calcium ion exchange capacity of zeolite X was found to be mainly determined by the crystallization degree. In conclusion, the synthesized zeolite X using diatomite as a cost-effective raw material in this study has great potential for industrial application such as catalyst support and adsorbent.

  12. Redo Laparoscopic Gastric Bypass: One-Step or Two-Step Procedure?

    PubMed

    Theunissen, Caroline M J; Guelinckx, Nele; Maring, John K; Langenhoff, Barbara S

    2016-11-01

    The adjustable gastric band (AGB) is a bariatric procedure that used to be widely performed. However, AGB failure-signifying band-related complications or unsatisfactory weight loss, resulting in revision surgery (redo operations)-frequently occurs. Often this entails a conversion to a laparoscopic Roux-en-Y gastric bypass (LRYGB). This can be performed as a one-step or two-step (separate band removal) procedure. Data were collected from patients operated from 2012 to 2014 in a single bariatric centre. We compared 107 redo LRYGB after AGB failure with 1020 primary LRYGB. An analysis was performed of the one-step vs. two-step redo procedures. All redo procedures were performed by experienced bariatric surgeons. No difference in major complication rate was seen (2.8 vs. 2.3 %, p = 0.73) between redo and primary LRYGB, and overall complication severity for redos was low (mainly Clavien-Dindo 1 or 2). Weight loss results were comparable for primary and redo procedures. The one-step and two-step redos were comparable regarding complication rates and readmissions. The operating time for the one-step redo LRYGB was 136 vs. 107.5 min for the two-step (median, p < 0.001), excluding the operating time of separate AGB removal (mean 61 min, range 36-110). Removal of a failed AGB and LRYGB in a one-step procedure is safe when performed by experienced bariatric surgeons. However, when erosion or perforation of the AGB occurs, we advise caution and would perform the redo LRYGB as a two-step procedure. Equal weights can be achieved at 1 year post redo LRYGB as after primary LRYGB procedures.

  13. The Complexity of One-Step Equations

    ERIC Educational Resources Information Center

    Ngu, Bing

    2014-01-01

    An analysis of one-step equations from a cognitive load theory perspective uncovers variation within one-step equations. The complexity of one-step equations arises from the element interactivity across the operational and relational lines. The higher the number of operational and relational lines, the greater the complexity of the equations.…

  14. Hydrothermal fluoride and chloride complexation of indium: an EXAFS study

    NASA Astrophysics Data System (ADS)

    Loges, Anselm; Testemale, Denis; Huotari, Simo; Honkanen, Ari-Pekka; Potapkin, Vasily; Wagner, Thomas

    2017-04-01

    Indium (In) is one of the geochemically lesser studied ore metals, and the factors that control the hydrothermal transport and deposition are largely unknown. It has no ore deposits of its own and is commonly mined as a by-product of Zn ores, and there are very few minerals that contain In as an essential structural component. Recently, industrial application of In in touch screen devices has drastically increased demand, which is projected to exceed supply from the current sources in the near future. Since the most relevant In sources are hydrothermal sphalerite ores and to a lesser extent hydrothermal greisen-type deposits in evolved granitic plutons, the aqueous geochemistry of In is of particular interest for understanding its ore forming processes. As a first step towards a comprehensive model for hydrothermal In solubility and speciation, we have studied In speciation in fluoride and chloride bearing solutions at 30-400˚ C and 500 bar using X-Ray Absorption Spectroscopy (XAS) measurements. The experiments were conducted in a unique hydrothermal autoclave setup at beamline BM30B-FAME at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Our results show that the complexation of In changes dramatically between 30 and 400˚ C. Below ca. 200˚ C, fluoride complexes are the most stable ones, but they break down at higher temperatures. Chloride complexes on the other hand become increasingly stable with increasing temperature. This behavior has interesting consequences for natural ore forming systems. In Cl-rich systems (e.g. massive sulfide ores formed in sea floor environments), cooling can be an effective precipitating mechanism. In F-rich systems, fluoride complexation can extend In mobility to low temperatures and In will only precipitate when F is effectively removed from the fluid, e.g. by mixing with a Ca-rich fluid and precipitation of fluorite (CaF2) as is commonly observed in skarn or greisen-type deposits. Due to In complexing with

  15. Facile one-step synthesis of Ag@Fe3O4 core-shell nanospheres for reproducible SERS substrates

    NASA Astrophysics Data System (ADS)

    Sun, Lijuan; He, Jiang; An, Songsong; Zhang, Junwei; Ren, Dong

    2013-08-01

    A facile approach has been developed to synthesize Ag@Fe3O4 core-shell nanospheres, in which the Ag nanoparticle core was well wrapped by a permeable Fe3O4 shell. An in situ reduction of AgNO3 and Fe(NO3)3 was the basis of this one-step method with ethylene glycol as the reducing agent. The as-obtained Ag@Fe3O4 nanospheres were a highly efficient surface-enhanced Raman scattering (SERS) substrate; high reproducibility, stability, and reusability were obtained by employing 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) as the Raman probe molecules. It was revealed that the SERS signals of 4-ATP and R6G on the Ag@Fe3O4 nanospheres were much stronger than those on the pure Ag nanoparticles, demonstrating that the magnetic enrichment procedures can improve SERS detection sensitivity efficiently. A highly efficient and recyclable SERS substrate was produced by the new model system that has potential applications in chemical and biomolecular assays.

  16. One-Step Synthesis of Fluorescent Boron Nitride Quantum Dots via a Hydrothermal Strategy Using Melamine as Nitrogen Source for the Detection of Ferric Ions.

    PubMed

    Huo, Bingbing; Liu, Bingping; Chen, Tao; Cui, Liang; Xu, Gengfang; Liu, Mengli; Liu, Jingquan

    2017-10-10

    A facile and effective approach for the preparation of functionalized born nitride quantum dots (BNQDs) with blue fluorescence was explored by the hydrothermal treatment of the mixture of boric acid and melamine at 200 °C for 15 h. The as-prepared BNQDs were characterized by transmission electron microscopy (TEM), high-resolution TEM, atomic force microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The single layered BNQDs with the average size of 3 nm showed a blue light emission under the illumination of the UV light. The BNQDs could be easily dispersed in an aqueous medium and applied as fluorescent probes for selective detection of Fe 3+ with remarkable selectivity and sensitivity (the lowest detection limit was 0.3 μM). The fluorescence fiber imaging demonstrated that the as-prepared quantum dots could be used as a valuable fluorchrome. Therefore, the BNQDs could be envisioned for potential applications in many fields such as biocompatible staining, fluorescent probes, and biological labeling.

  17. ß-Ga2O3 nanorod synthesis with a one-step microwave irradiation hydrothermal method and its efficient photocatalytic degradation for perfluorooctanoic acid.

    PubMed

    Zhao, Baoxiu; Li, Xiang; Yang, Long; Wang, Fen; Li, Jincheng; Xia, Wenxiang; Li, Weijiang; Zhou, Li; Zhao, Colin

    2015-01-01

    ß-Ga2O3 nanorod was first directly prepared by the microwave irradiation hydrothermal way without any subsequent heat treatments, and its characterizations were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-Vis diffuse reflection spectroscopy techniques, and also its photocatalytic degradation for perfluorooctanoic acid (PFOA) was investigated. XRD patterns revealed that ß-Ga2O3 crystallization increased with the enhancement of microwave power and the adding of active carbon (AC). PFOA, as an environmental and persistent pollutant, is hard decomposed by hydroxyl radicals (HO·); however, it is facilely destroyed by ß-Ga2O3 photocatalytic reaction in an anaerobic atmosphere. The important factors such as pH, ß-Ga2O3 dosage and bubbling atmosphere were researched, and the degradation and defluorination was 98.8% and 56.2%, respectively. Reductive atmosphere reveals that photoinduced electron may be the major reactant for PFOA. Furthermore, the degradation kinetics for PFOA was simulated and constant and half-life was calculated, respectively. © 2014 The American Society of Photobiology.

  18. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  19. Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare

    2017-12-01

    Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.

  20. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    PubMed Central

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246

  1. 48 CFR 14.503-1 - Step one.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Step one. 14.503-1 Section... AND CONTRACT TYPES SEALED BIDDING Two-Step Sealed Bidding 14.503-1 Step one. (a) Requests for... use the two step method. (3) The requirements of the technical proposal. (4) The evaluation criteria...

  2. Evaluation of one-step luminescent cyanoacrylate fuming.

    PubMed

    Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude

    2016-06-01

    One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

    PubMed

    Feng, Xiaoyan; Deng, Chunhui; Gao, Mingxia; Zhang, Xiangmin

    2018-01-01

    Protein glycosylation is one of the most important post-translational modifications. Also, efficient enrichment and separation of glycopeptides from complex samples are crucial for the thorough analysis of glycosylation. Developing novel hydrophilic materials with facile and easily popularized synthesis is an urgent need in large-scale glycoproteomics research. Herein, for the first time, a one-step functionalization strategy based on metal-organic coordination was proposed and Fe 3 O 4 nanoparticles were directly functionalized with zwitterionic hydrophilic L-cysteine (L-Cys), greatly simplifying the synthetic procedure. The easily synthesized Fe 3 O 4 /L-Cys possessed excellent hydrophilicity and brief composition, contributing to affinity for glycopeptides and reduction in nonspecific interaction. Thus, Fe 3 O 4 /L-Cys nanoparticles showed outstanding sensitivity (25 amol/μL), high selectivity (mixture of bovine serum albumin and horseradish peroxidase tryptic digests at a mass ratio of 100:1), good reusability (five repeated times), and stability (room temperature storage of 1 month). Encouragingly, in the glycosylation analysis of human serum, a total of 376 glycopeptides with 393 N-glycosylation sites corresponding to 118 glycoproteins were identified after enrichment with Fe 3 O 4 /L-Cys, which was superior to ever reported L-Cys modified magnetic materials. Furthermore, applying the one-step functionalization strategy, cysteamine and glutathione respectively direct-functionalized Fe 3 O 4 nanoparticles were successfully synthesized and also achieved efficient glycopeptide enrichment in human serum. The results indicated that we have presented an efficient and easily popularized strategy in glycoproteomics as well as in the synthesis of novel materials. Graphical abstract Fe 3 O 4 /L-Cys nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

  4. One-pot hydrothermal synthesis of zeolite/sodium tantalate composite and its photodegradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaoli; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096; Lu, Haiqiang

    2015-08-15

    Highlights: • Sodalite/NaTaO{sub 3} composite is prepared by a one-pot hydrothermal synthesis. • Enhanced photodegradation is achieved due to the heterogeneous doping effect. • Structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing. - Abstract: Sodalite/NaTaO{sub 3} composite was prepared by a one-pot hydrothermal synthesis method. Sodalite and NaTaO{sub 3} grow interpenetrated, and the resulting composites have similar morphology as the pure sodalite. The sodalite/NaTaO{sub 3} composite has a lower band gap of 3.35 eV due to the heterogeneous doping effect, and exhibits an enhanced photodegradation of methyl orange under UV irradiation as compared to themore » pure NaTaO{sub 3}. A slight structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing the sodalite/NaTaO{sub 3} composite, and such result further confirms the co-growth of the two crystals. This one-pot hydrothermal method opens up new avenues for the preparation of photocatalytic composites.« less

  5. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  6. Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity

    PubMed Central

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Luo, Zhu; Suib, Steven L.; He, Peng; Ding, Guqiao; Zhang, Zhengguo; Sun, Luyi

    2017-01-01

    A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors. PMID:28429736

  7. Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity.

    PubMed

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Luo, Zhu; Suib, Steven L; He, Peng; Ding, Guqiao; Zhang, Zhengguo; Sun, Luyi

    2017-04-21

    A hybrid photocatalyst based on anatase TiO 2 was designed by doping TiO 2 with sulfur and incorporating reduced graphene oxide (TiO 2 -S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO 2 -S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO 2 -S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO 2 -S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO 2 -S/rGO hybrid, and its excellent photocatalytic performance, such TiO 2 -S/rGO hybrids are expect to find practical applications in environmental and energy sectors.

  8. Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; Luo, Zhu; Suib, Steven L.; He, Peng; Ding, Guqiao; Zhang, Zhengguo; Sun, Luyi

    2017-04-01

    A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation of methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Considering both the facile and scalable reaction to synthesize TiO2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors.

  9. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.

    PubMed

    Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng

    2016-08-19

    Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Study of Structural and Electrical Conductivity of Sugarcane Bagasse-Carbon with Hydrothermal Carbonization

    NASA Astrophysics Data System (ADS)

    Kurniati, M.; Nurhayati, D.; Maddu, A.

    2017-03-01

    The important part of fuel cell is the gas diffusion layer who made from carbon based material porous and conductive. The main goal of this research is to obtain carbon material from sugarcane bagasse with hydrothermal carbonization and chemical-physics activation. There were two step methods in this research. The first step was sample preparation which consisted of prepare the materials, hydrothermal carbonization and chemical-physics activation. The second one was analyze character of carbon using EDS, SEM, XRD, and LCR meter. The amount of carbon in sugarcane bagasse-carbon was about 85%-91.47% with pore morphology that already form. The degree of crystallinity of sugarcane bagasse carbon was about 13.06%-20.89%, leaving the remain as the amorphous phase. Electrical conductivity was about 5.36 x 10-2 Sm-1 - 1.11 Sm-1. Sugarcane bagasse-carbon has porous characteristic with electrical conductivity property as semiconductor. Sugarcane bagasse-carbon with hydrothermal carbonization potentially can be used as based material for fuel cell if only time of hydrothermal carbonization hold is increased.

  11. Synthesis of bilayer MoS{sub 2} nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lijuan; Xu, Haiyan; Zhang, Dingke

    2014-07-01

    Highlights: • Hexagonal phase of MoS{sub 2} nanosheets was synthesized by a facile hydrothermal method. • FE-SEM and TEM images show the sheets-like morphology of MoS{sub 2}. • Bilayer MoS{sub 2} can be grown under the optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. • The MoS{sub 2} nanosheets possess high methyl orange adsorption capacity due to the large surface area. - Abstract: Molybdenum disulfide (MoS{sub 2}) nanosheets have received significant attention recently due to the potential applications for exciting physics and technology. Here we show that MoS{sub 2} nanosheets can be prepared by amore » facile hydrothermal method. The study of the properties of the MoS{sub 2} nanosheets prepared at different conditions suggests that the mole ratio of precursors and hydrothermal time significantly influences the purity, crystalline quality and thermal stability of MoS{sub 2}. X-ray diffraction, Raman spectra and transmission electron microscopy results indicate that bilayer MoS{sub 2} can be grown under an optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. Moreover, such ultrathin nanosheets exhibit a prominent photoluminescence and possess high methyl orange adsorption capacity due to the large surface area, which can be potentially used in photodevice and photochemical catalyst.« less

  12. Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Wang, Xiurong; Bao, Shaopan; Liu, Xiawei; Zhang, Weicheng; Fang, Tao

    2016-12-01

    In this account, a one-step green hydrothermal method for zirconium-loaded reduced graphene oxide (RGO-Zr) adsorbent was developed in pure water. It is based on the formation of initially strong-coupling RGO-Zr nanocomposites followed by in situ reduction of GO to RGO during the hydrothermal treatment. The phosphate adsorption performance of the as-prepared nanocomposites was investigated in aqueous environment under various conditions. The characterization results of RGO-Zr nanocomposites showed that ZrO2 was successfully integrated onto the RGO sheets in amorphous. The data from equilibrium phosphate adsorption on RGO-Zr revealed that the adsorption kinetics followed a pseudo-second-order kinetic model, where the adsorption isotherm fitted the Langmuir isotherm model with a maximum adsorption capacity of 27.71 mg P/g at pH 5 and 298 K. The improved phosphate adsorption on RGO-Zr was caused by the dispersion of ZrO2 on the RGO surface. Furthermore, the phosphate adsorption was found insensitive to the increase in pH while it was sensitive to the increase in temperature. The coexisting anions of SO42-, F-, Cl-, NO3- and CO32- affected the phosphate adsorption in a different way. Results suggest that the present RGO-Zr adsorbent has the potential for controlling phosphorus pollution in water.

  13. Hydrothermal synthesis of iron phosphate microspheres constructed by mesoporous polyhedral nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Haojie; Sun, Yali; Jia, Xiaohua, E-mail: Jiaxh@ujs.edu.cn

    2015-09-15

    Novel monodispersed Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O microspheres with the diameters of several micrometers were prepared by a facile one-step hydrothermal method without using any templates, only employing FeCl{sub 3}·6H{sub 2}O and NaNH{sub 4}HPO{sub 4} as the initial materials. The obtained samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM), respectively. The characterizations revealed that the as-prepared microspheres are constructed by the polyhedral nanoparticles with an average diameter of 100 nm. The corresponding FePO{sub 4} microspheres assembled by mesoporous polyhedral nanocrystals can be easily obtained by calcining a sphere-like Fe{sub 5}(PO{submore » 4}){sub 4}(OH){sub 3}·2H{sub 2}O precursor. - Graphical abstract: Novel monodispersed Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·H{sub 2}O microspheres with a diameter of several micrometers were successfully obtained by a simple, template-free hydrothermal route. FePO{sub 4} microspheres constructed by mesoporous polyhedral FePO{sub 4} nanocrystals could be easily prepared by calcining an Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O precursor. Display Omitted - Highlights: • Monodispersed Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O microspheres were prepared by a facile hydrothermal method without using any templates • Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O microspheres present a novel morphology, which was constructed by closely polyhedral nanoparticles. • The FePO{sub 4} microspheres assembled by mesoporous polyhedral nanocrystals obtained by calcining Fe{sub 5}(PO{sub 4}){sub 4}(OH){sub 3}·2H{sub 2}O precursor.« less

  14. Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization.

    PubMed

    Zhou, Nan; Chen, Honggang; Xi, Junting; Yao, Denghui; Zhou, Zhi; Tian, Yun; Lu, Xiangyang

    2017-05-01

    Fresh and dehydrated banana peels were used as biomass feedstock to produce highly effective sorbent biochars through a facile one-step hydrothermal carbonization approach with 20%vol phosphoric acid as the reaction medium. The elemental ratio of oxygen content of the two as-prepared biochars were about 20%, and the FT-IR analysis confirmed the existence of abundant surface functional groups such as hydroxyl and carboxyl which greatly enhanced the adsorption performance. The sorbents showed excellent lead clarification capability of 359mg·g -1 and 193mg·g -1 for dehydrated and fresh banana peels based biochars, respectively. The change of the CO/OCO and the appearance of PbO/PbOC on the surface after adsorption confirmed that the ion exchange might be the dominant mechanism. The dehydration and pulverization pre-treatment and the addition of phosphoric acid can benefit the formation of those functional groups and hydrothermal carbonization can be a promising method to transfer biomass like fruit peels into biochars with excellent adsorption performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fundamental Study on One-Dimensional-Array Medical Ultrasound Probe with Piezoelectric Polycrystalline Film by Hydrothermal Method: Experimental Fabrication of One-Dimensional-Array Ultrasound Probe

    NASA Astrophysics Data System (ADS)

    Endo, Akito; Kawashima, Norimichi; Takeuchi, Shinichi; Ishikawa, Mutsuo; Kurosawa, Minoru Kuribayashi

    2007-07-01

    We deposited a lead zirconate titanete (PZT) polycrystalline film on a titanium substrate by the hydrothermal method and fabricated a transducer using the PZT film for use as an ultrasound probe. A 10 MHz miniature one-dimensional-array medical ultrasound probe containing the PZT film was developed. After sputtering titanium on the surface of a hydroxyapatite substrate, the titanium film on the substrate was etched by the photolithography to form a one-dimensional titanium film electrode array. We could thus fabricate a miniature one-dimensional-array ultrasound probe by the hydrothermal method. Transmitted ultrasound pulses from a 10 MHz commercial ultrasound probe were received by the newly fabricated one-dimensional-array ultrasound probe. The fabrication process of the probe and the results of experiments on receiving waveforms were reported in this paper.

  16. 40 CFR 35.917 - Facilities planning (step 1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... plans. (b) Facilities planning consists of those necessary plans and studies which directly relate to... environmental and social considerations. (See appendix A to this subpart.) (c) EPA requires full compliance with... be initiated before award of a step 1 grant or written approval of a plan of study (see § 35.920-3(a...

  17. Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis

    PubMed Central

    2013-01-01

    Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176

  18. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step.

    PubMed

    Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2018-02-08

    Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.

  19. One-step synthesis and structural features of CdS/montmorillonite nanocomposites.

    PubMed

    Han, Zhaohui; Zhu, Huaiyong; Bulcock, Shaun R; Ringer, Simon P

    2005-02-24

    A novel synthesis method was introduced for the nanocomposites of cadmium sulfide and montmorillonite. This method features the combination of an ion exchange process and an in situ hydrothermal decomposition process of a complex precursor, which is simple in contrast to the conventional synthesis methods that comprise two separate steps for similar nanocomposite materials. Cadmium sulfide species in the composites exist in the forms of pillars and nanoparticles, the crystallized sulfide particles are in the hexagonal phase, and the sizes change when the amount of the complex for the synthesis is varied. Structural features of the nanocomposites are similar to those of the clay host but changed because of the introduction of the sulfide into the clay.

  20. Facile One-Step Sonochemical Synthesis and Photocatalytic Properties of Graphene/Ag3PO4 Quantum Dots Composites

    NASA Astrophysics Data System (ADS)

    Reheman, Abulajiang; Tursun, Yalkunjan; Dilinuer, Talifu; Halidan, Maimaiti; Kadeer, Kuerbangnisha; Abulizi, Abulikemu

    2018-03-01

    In this study, a novel graphene/Ag3PO4 quantum dot (rGO/Ag3PO4 QD) composite was successfully synthesized via a facile one-step photo-ultrasonic-assisted reduction method for the first time. The composites were analyzed by various techniques. According to the obtained results, Ag3PO4 QDs with a size of 1-4 nm were uniformly dispersed on rGO nanosheets to form rGO/Ag3PO4 QD composites. The photocatalytic activity of rGO/Ag3PO4 QD composites was evaluated by the decomposition of methylene blue (MB). Meanwhile, effects of the surfactant dosage and the amount of rGO on the photocatalytic activity were also investigated. It was found that rGO/Ag3PO4 QDs (WrGO:Wcomposite = 2.3%) composite exhibited better photocatalytic activity and stability with degrading 97.5% of MB within 5 min. The improved photocatalytic activities and stabilities were majorly related to the synergistic effect between Ag3PO4 QDs and rGO with high specific surface area, which gave rise to efficient interfacial transfer of photogenerated electrons and holes on both materials. Moreover, possible formation and photocatalytic mechanisms of rGO/Ag3PO4 QDs were proposed. The obtained rGO/Ag3PO4 QDs photocatalysts would have great potentials in sewage treatment and water splitting.

  1. Single-crystalline twinned ZnO nanoleaf structure via a facile hydrothermal process.

    PubMed

    Qiu, Jijun; Lil, Xiaomin; Gao, Xiangdong; Gan, Xiaoyan; He, Weizhen; Kim, Hyung-Kook; Hwang, Yoon-Hwae

    2011-03-01

    A single-crystalline twinned ZnO nanostructure with a 2-dimensional leaf-like morphology (nanoleaves) was synthesized using a facile hydrothermal strategy. The ZnO nanoleaves had 2-fold symmetric branches, which were identified by the existence of an inversion domain boundary (IDB) along the [2110] growth direction of the ribbon-like stems with both side surfaces of the stems terminated with a chemically active Zn-(0001) plane. A proposed growth mechanism suggested that the formation of IDB and the leaf-like shape are related to the dissolution of seed particles on the substrate surfaces and an OH- shielding effect in solution, respectively. Optical measurements revealed visible emission, suggesting the possession of defects in the as-grown and annealed ZnO nanoleaves. In addition, various ZnO nanostructures were synthesized by simply controlling the fabrication conditions.

  2. Single-step One-pot Synthesis of TiO 2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity

    DOE PAGES

    Wang, Weilin; Wang, Zhaofeng; Liu, Jingjing; ...

    2017-04-21

    A hybrid photocatalyst based on anatase TiO 2 was designed by doping TiO 2 with sulfur and incorporating reduced graphene oxide (TiO 2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO 2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. The structure and morphology of the TiO 2-S/rGO hybrid catalyst was carefully characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Its photocatalytic reactivity was evaluated by the degradation ofmore » methyl blue. The results showed that both the doping of sulfur and the introduction of rGO worked as designed, and the TiO 2-S/rGO hybrid exhibited high photocatalytic activity under simulated sunlight. Finally, considering both the facile and scalable reaction to synthesize TiO 2-S/rGO hybrid, and its excellent photocatalytic performance, such TiO 2-S/rGO hybrids are expect to find practical applications in environmental and energy sectors.« less

  3. One-step synthesis of Nickle Iron-layered double hydroxide/reduced graphene oxide/carbon nanofibres composite as electrode materials for asymmetric supercapacitor.

    PubMed

    Wang, Feifei; Wang, Ting; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan

    2018-06-11

    A novel NiFe-LDH/RGO/CNFs composite was produced by using a facile one-step hydrothermal method as electrode for supercapacitor. Compared with NiFe-LDH/CNFs, NiFe-LDH/CNTs and NiFe-LDH/RGO, NiFe-LDH/RGO/CNFs demonstrated a high specific capacitance of 1330.2 F g -1 at 1 A g -1 and a super rate capability of 64.2% from 1 to 20 A g -1 , indicating great potential for supercapacitor application. Additionally, an asymmetric supercapacitor using NiFe-LDH/RGO/CNFs composite as positive electrode material and activated carbon as negative electrode material was assembled. The asymmetric supercapacitor can work in the voltage range of 0-1.57 V. It displayed high energy density of 33.7 W h kg -1 at power density of 785.8 W kg -1 and excellent cycling stability with 97.1% of the initial capacitance after 2500 cycles at 8 A g -1 . Two flexible AC//LDH-RGO-CNFs ASC devices connected in series were able to light up a red LED indicator after being fully charged. The results demonstrate that the AC//LDH-RGO-CNFs ASC has a promising potential in commercial application.

  4. On the global distribution of hydrothermal vent fields: One decade later

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm

  5. Facile synthesis of carbon dots with superior sensing ability

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Li, Jingguo; Liu, Liyun; Wang, Zhenling; Zhang, Xingcai

    2018-04-01

    Carbon dots (CDs) have various applications in biomedical and environmental field, such as bio-imaging, bio-sensing and heavy metal detection. In this study, a novel class of CDs were synthesized using a one-step hydrothermal method. The fabricated CDs displayed stable photoluminescence, good water solubility, and photo stability. Moreover, the functional groups (carboxylic acid moieties and hydroxyls) on the surface of the obtained CDs enable it with superior sensing ability (e.g., very low detectable concentration for Pb2+: 5 nmol/L). With superior detection sensitivity, excellent fluorescent properties and facile fabrication method, the as-obtained CDs can find practical applications as cost-effective and sensitive chemo-sensors in water and food safety field.

  6. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor.

    PubMed

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-02-18

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe₃O₄-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe₃O₄-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe₃O₄-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM(-1)∙cm(-2) and good long-term stability.

  7. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    PubMed Central

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-01-01

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability. PMID:26901204

  8. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  9. One-step synthesis of NaLu80-xGdxF4:Yb183+/Er23+(Tm3+) upconversion nanoparticles for in vitro cell imaging.

    PubMed

    Gerelkhuu, Zayakhuu; Huy, Bui The; Sharipov, Mirkomil; Jung, Dasom; Phan, The-Long; Conte, Eric D; Lee, Yong-Ill

    2018-05-01

    Upconversion nanoparticles (UCNPs) possess a unique type of photoluminescence (PL) in which lower-energy excitation is converted into higher-energy emission via multi-photon absorption processes. In this work, we have used a facile one-step hydrothermal method promoted water solubility to synthesis NaLuGdF 4 :Yb 3+ /Er 3+ (Tm 3+ ) UCNPs coated with malonic acid (MA). Scanning electron microscopy images and X-ray diffraction patterns reveal sphere-shaped UCNPs with an average size of ~80nm crystallized in the cubic NaLuF 4 structure. The characteristic vibrations of cubic UCNPs have been taken into account by using Fourier-transform infrared spectroscopy. Based on PL studies, we have determined an optimal concentration of Gd 3+ doping. The dependence of upconversion PL intensity on Gd 3+ concentration is discussed via the results of magnetization measurements, which is related to the coupling/uncoupling of Gd 3+ ions. Particularly, our study reveals that carboxyl-functionalized NaLuGdF 4 :Yb 3+ /Er 3+ (Tm 3+ ) UCNPs have a relatively high cell viability with HeLa cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Facile one-step synthesis of nanocomposite based on carbon nanotubes and Nickel-Aluminum layered double hydroxides with high cycling stability for supercapacitors.

    PubMed

    Bai, Caihui; Sun, Shiguo; Xu, Yongqian; Yu, Ruijin; Li, Hongjuan

    2016-10-15

    Nickel-Aluminum Layered Double Hydroxide (NiAl-LDH) and nanocomposite of Carbon Nanotubes (CNTs) and NiAl-LDH (CNTs/NiAl-LDH) were prepared by using a facile one-step homogeneous precipitation approach. The morphology, structure and electrochemical properties of the as-prepared CNTs/NiAl-LDH nanocomposite were then systematically studied. According to the galvanostatic charge-discharge curves, the CNTs/NiAl-LDH nanocomposite exhibited a high specific capacitance of 694Fg(-1) at the 1Ag(-1). Furthermore, the specific capacitance of the CNTs/NiAl-LDH nanocomposite still retained 87% when the current density was increased from 1 to 10Ag(-1). These results indicated that the CNTs/NiAl-LDH nanocomposite displayed a higher specific capacitance and rate capability than pure NiAl-LDH. And the participation of CNTs in the NiAl-LDH composite improved the electrochemical properties. Additionally, the capacitance of the CNTs/NiAl-LDH nanocomposite kept at least 92% after 3000cycles at 20Ag(-1), suggesting that the nanocomposite exhibited excellent cycling durability. This strategy provided a facile and effective approach for the synthesis of nanocomposite based on CNTs and NiAl-LDH with enhanced supercapacitor behaviors, which can be potentially applied in energy storage conversion devices. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Dual-step synthesis of 3-dimensional niobium oxide - Zinc oxide

    NASA Astrophysics Data System (ADS)

    Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Rusop, M.

    2018-05-01

    A facile fabrication process for constructing 3-dimensional (3D) structure of Niobium oxide - Zinc oxide (Nb2O5-ZnO) consisting of branched ZnO microrods on top of nanoporous Nb2O5 films was developed based on dual-step synthesis approach. The preliminary procedure was anodization of sputtered niobium metal on Fluorine doped Tin Oxide (FTO) to produce nanoporous Nb2O5, and continued with the growth of branched microrods of ZnO by hydrothermal process. This approach offers insight knowledge on the development of novel 3D metal oxide films via dual-step synthesis process, which might potentially use for multi-functional applications ranging from sensing to photoconversion.

  12. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth.

    PubMed

    Zhang, Mengling; Hu, Lulu; Wang, Huibo; Song, Yuxiang; Liu, Yang; Li, Hao; Shao, Mingwang; Huang, Hui; Kang, Zhenhui

    2018-06-27

    Chiral compounds/materials have important effects on the growth of plants. Chiral carbon dots (CDs), as an emerging chiral carbon nanomaterial, have great potential in bio-application and bio-nanotechnology. Herein, we report a hydrothermal method to synthesize chiral CDs from cysteine (cys) and citric acid. These chiral CDs were further demonstrated to have systemic effects on the growth of mung bean plants, in which case both l- and d-CDs can promote the growth of the root in mung bean plants, stem length of mung bean sprouts and water absorption of bean seeds. The elongation of mung bean sprouts presented an increasing trend with the treatment of chiral CDs of increasing concentration (below 500 μg mL-1). Furthermore, in the optimal concentration (100 μg mL-1), the l-CDs can improve root vigor and the activity of the Rubisco enzyme of bean sprouts by 8.4% and 20.5%, while the d-CDs increased by 28.9% and 67.5%. Due to more superior properties in improving root vigor and the activity of the Rubisco enzyme of mung bean sprouts, d-CDs are able to enhance photosynthesis better and accumulate more carbohydrate in mung bean plants.

  13. Influence of ageing on self-etch adhesives: one-step vs. two-step systems.

    PubMed

    Marchesi, Giulio; Frassetto, Andrea; Visintini, Erika; Diolosà, Marina; Turco, Gianluca; Salgarello, Stefano; Di Lenarda, Roberto; Cadenaro, Milena; Breschi, Lorenzo

    2013-02-01

    The aim of this study was to evaluate microtensile bond strength (μTBS) to dentine, interfacial nanoleakage expression, and stability after ageing, of two-step vs. one-step self-etch adhesives. Human molars were cut to expose middle/deep dentine, assigned to groups (n = 15), and treated with the following bonding systems: (i) Optibond XTR (a two-step self-etch adhesive; Kerr), (ii) Clearfil SE Bond (a two-step self-etch adhesive; Kuraray), (iii) Adper Easy Bond (a one-step self-etch adhesive; 3M ESPE), and (iv) Bond Force (a one-step self-etch adhesive; Tokuyama). Specimens were processed for μTBS testing after 24 h, 6 months, or 1 yr of storage in artificial saliva at 37°C. Nanoleakage expression was examined in similarly processed additional specimens. At baseline the μTBS results ranked in the following order: Adper Easy Bond = Optibond XTR ≥Clearfil SE = Bond Force, and interfacial nanoleakage analysis showed Clearfil SE Bond = Adper Easy Bond = Optibond XTR> Bond Force. After 1 yr of storage, Optibond XTR, Clearfil SE Bond, and Adper Easy Bond showed higher μTBS and lower interfacial nanoleakage expression compared with Bond Force. In conclusion, immediate bond strength, nanoleakage expression, and stability over time were not related to the number of steps of the bonding systems, but to their chemical formulations. © 2012 Eur J Oral Sci.

  14. One-pot hydrothermal synthesis of an assembly of magnetite nanoneedles on a scaffold of cyclic-diphenylalanine nanorods

    NASA Astrophysics Data System (ADS)

    Togashi, Takanari; Umetsu, Mitsuo; Naka, Takashi; Ohara, Satoshi; Hatakeyama, Yoshiharu; Adschiri, Tadafumi

    2011-09-01

    The assembly of metal oxide nanoparticles (NPs) on a biomolecular template by a one-pot hydrothermal synthesis method is achieved for the first time. Magnetite (Fe3O4) nanoneedles (length: 100 nm; width: 10 nm) were assembled on cyclic-diphenylalanine (cFF) nanorods (length: 2-10 μm; width: 200 nm). The Fe3O4 nanoneedles and cFF nanorods were simultaneously synthesized from FeSO4 and l-phenylalanine by hydrothermal synthesis (220 °C and 22 MPa), respectively. The samples were analyzed by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Experimental results indicate that Fe3O4 nanoneedles were assembled on cFF nanorods during the hydrothermal reaction. The composite contained 3.3 wt% Fe3O4 nanoneedles without any loss of the original magnetic properties of Fe3O4.

  15. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  16. [Hydrothermal synthesis and luminescence of one-dimensional Mn(2+)-doped CdS nanocrystals].

    PubMed

    Yuan, Qiu-Li; Zhao, Jin-Tao; Nie, Qiu-Lin

    2007-06-01

    One-dimensional Mn(2+)-doped CdS nanocrystals were synthesized by the hydrothermal route. The products were characterized by SEM, EDS, XRD, TEM, HRTEM and PL, respectively. The results revealed that dopant Mn2+ completely substitutes Cd2+ in CdS nanocrystals, and the product was of good crystallite. Further more, a complete suppression of the emission from surface states at room temperature when doping with ions Mn2+ has been observed.

  17. Step One within Stepped Care Trauma-Focused Cognitive Behavioral Therapy for Young Children: A Pilot Study

    PubMed Central

    Robst, John; Scheeringa, Michael S.; Cohen, Judith A.; Wang, Wei; Murphy, Tanya K.; Tolin, David F.; Storch, Eric A.

    2013-01-01

    This pilot study explored the preliminary efficacy, parent acceptability and economic cost of delivering Step One within Stepped Care Trauma-Focused Cognitive Behavioral Therapy (SC-TF-CBT). Nine young children ages 3–6 years and their parents participated in SC-TF-CBT. Eighty-three percent (5/6) of the children who completed Step One treatment and 55.6 % (5/9) of the intent-to-treat sample responded to Step One. One case relapsed at post-assessment. Treatment gains were maintained at 3-month follow-up. Generally, parents found Step One to be acceptable and were satisfied with treatment. At 3-month follow-up, the cost per unit improvement for posttraumatic stress symptoms and severity ranged from $27.65 to $131.33 for the responders and from $36.12 to $208.11 for the intent-to-treat sample. Further research on stepped care for young children is warranted to examine if this approach is more efficient, accessible and cost-effective than traditional therapy. PMID:23584728

  18. Step one within stepped care trauma-focused cognitive behavioral therapy for young children: a pilot study.

    PubMed

    Salloum, Alison; Robst, John; Scheeringa, Michael S; Cohen, Judith A; Wang, Wei; Murphy, Tanya K; Tolin, David F; Storch, Eric A

    2014-02-01

    This pilot study explored the preliminary efficacy, parent acceptability and economic cost of delivering Step One within Stepped Care Trauma-Focused Cognitive Behavioral Therapy (SC-TF-CBT). Nine young children ages 3-6 years and their parents participated in SC-TF-CBT. Eighty-three percent (5/6) of the children who completed Step One treatment and 55.6 % (5/9) of the intent-to-treat sample responded to Step One. One case relapsed at post-assessment. Treatment gains were maintained at 3-month follow-up. Generally, parents found Step One to be acceptable and were satisfied with treatment. At 3-month follow-up, the cost per unit improvement for posttraumatic stress symptoms and severity ranged from $27.65 to $131.33 for the responders and from $36.12 to $208.11 for the intent-to-treat sample. Further research on stepped care for young children is warranted to examine if this approach is more efficient, accessible and cost-effective than traditional therapy.

  19. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending.

    PubMed

    Song, Ping'an; Yu, Youming; Wu, Qiang; Fu, Shenyuan

    2012-06-29

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young's modulus, and reactive blending leads to further improvement in Young's modulus while hardly reducing the elongation at break of HDPE.

  20. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending

    PubMed Central

    2012-01-01

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young’s modulus, and reactive blending leads to further improvement in Young’s modulus while hardly reducing the elongation at break of HDPE. PMID:22747773

  1. Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.

    PubMed

    Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen

    2015-12-01

    In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).

  2. Hydrothermal atomic force microscopy observations of barite step growth rates as a function of the aqueous barium-to-sulfate ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.

    The rate of growth of ionic minerals from solutions with varying aqueous cation:anion ratios may result in significant errors in mineralization rates predicted by commonly-used affinity-based rate equations. To assess the potential influence of solute stoichiometry on barite growth, step velocities on the barite (001) surface have been measured at 108 °C using hydrothermal atomic force microscopy (HAFM) at moderate supersaturation and as a function of the aqueous barium:sulfate ratio (r). Barite growth hillocks at r ~ 1 were bounded bymore » $$\\langle$$120$$\\rangle$$ steps, however at r < 1, kink site densities increased, steps followed a direction vicinal to $$\\langle$$120$$\\rangle$$, and the [010] steps developed. At r > 1, steps roughened and rounded as the kink site density increased. Step velocities peaked at r = 1 and decreased roughly symmetrically as a function of r, indicating the attachment rates of barium and sulfate ions are similar under these conditions. We hypothesize that the differences in our observations at high and low r arise from differences in the attachment rate constants for the obtuse and acute $$\\langle$$120$$\\rangle$$ steps. Based on results at low r, the data suggests the attachment rate constant for barium ions is similar for obtuse and acute steps. Based on results at high r, the data suggests the attachment rate constant for sulfate is greater for obtuse steps than acute steps. In conclusion, utilizing a step growth model developed by Stack and Grantham (2010) the experimental step velocities as a function of r were readily fit while attempts to fit the data using a model developed by Zhang and Nancollas (1998) were less successful.« less

  3. Hydrothermal atomic force microscopy observations of barite step growth rates as a function of the aqueous barium-to-sulfate ratio

    DOE PAGES

    Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.

    2016-03-19

    The rate of growth of ionic minerals from solutions with varying aqueous cation:anion ratios may result in significant errors in mineralization rates predicted by commonly-used affinity-based rate equations. To assess the potential influence of solute stoichiometry on barite growth, step velocities on the barite (001) surface have been measured at 108 °C using hydrothermal atomic force microscopy (HAFM) at moderate supersaturation and as a function of the aqueous barium:sulfate ratio (r). Barite growth hillocks at r ~ 1 were bounded bymore » $$\\langle$$120$$\\rangle$$ steps, however at r < 1, kink site densities increased, steps followed a direction vicinal to $$\\langle$$120$$\\rangle$$, and the [010] steps developed. At r > 1, steps roughened and rounded as the kink site density increased. Step velocities peaked at r = 1 and decreased roughly symmetrically as a function of r, indicating the attachment rates of barium and sulfate ions are similar under these conditions. We hypothesize that the differences in our observations at high and low r arise from differences in the attachment rate constants for the obtuse and acute $$\\langle$$120$$\\rangle$$ steps. Based on results at low r, the data suggests the attachment rate constant for barium ions is similar for obtuse and acute steps. Based on results at high r, the data suggests the attachment rate constant for sulfate is greater for obtuse steps than acute steps. In conclusion, utilizing a step growth model developed by Stack and Grantham (2010) the experimental step velocities as a function of r were readily fit while attempts to fit the data using a model developed by Zhang and Nancollas (1998) were less successful.« less

  4. A facile one-pot hydrothermal approach for the preparation of CuO/rGO nanocomposites with different morphologies

    NASA Astrophysics Data System (ADS)

    Ajit, Akshata V.; Gawli, Yogesh P.; Ethiraj, Anita Sagadevan

    2018-05-01

    Graphene-based metal oxides such as Cu2O, SnO2, CuO, Fe3O4, MnO2 are promising candidates for many applications because of their advantageous properties. Amongst all, CuO has been widely studied because of its excellent electrocatalytic activity. Although many methodologies have been developed for the synthesis of CuO/graphene nanostructures with different morphologies including nanorods, nanoparticles, nanosheets, flower, urchin; not many investigations have been done on one pot synthesis method for CuO/reduced graphene oxide (rGO) nanocomposites to achieve different morphologies. Therefore in the present work effort has been made to synthesize various CuO-rGO nanocomposites via surfactant (CTAB) assisted hydrothermal method. Detailed study was performed to monitor the effect of various reaction parameters like temperature, reaction time, reactant concentration on the synthesized nanocomposites. Several analytical tools, including XRD, SEM, FTIR and UV-Vis spectroscopy have been utilized to characterize the samples. XRD results showed formation of monoclinic structure of CuO along with presence of rGO. Calculated optical bandgap studies indicate decrease in the bandgap of synthesized CuO (Eg=4.5eV-4.34eV) with increase in temperature from 120°C to 180°C. Our results clearly demonstrate that reaction parameters play a key role to bring out the optical and morphological changes in the CuO-rGO nanocomposites.

  5. A Single-Step Hydrothermal Route to 3D Hierarchical Cu2 O/CuO/rGO Nanosheets as High-Performance Anode of Lithium-Ion Batteries.

    PubMed

    Wu, Songhao; Fu, Gaoliang; Lv, Weiqiang; Wei, Jiake; Chen, Wenjin; Yi, Huqiang; Gu, Meng; Bai, Xuedong; Zhu, Liang; Tan, Chao; Liang, Yachun; Zhu, Gaolong; He, Jiarui; Wang, Xinqiang; Zhang, Kelvin H L; Xiong, Jie; He, Weidong

    2018-02-01

    As anodes of Li-ion batteries, copper oxides (CuO) have a high theoretical specific capacity (674 mA h g -1 ) but own poor cyclic stability owing to the large volume expansion and low conductivity in charges/discharges. Incorporating reduced graphene oxide (rGO) into CuO anodes with conventional methods fails to build robust interaction between rGO and CuO to efficiently improve the overall anode performance. Here, Cu 2 O/CuO/reduced graphene oxides (Cu 2 O/CuO/rGO) with a 3D hierarchical nanostructure are synthesized with a facile, single-step hydrothermal method. The Cu 2 O/CuO/rGO anode exhibits remarkable cyclic and high-rate performances, and particularly the anode with 25 wt% rGO owns the best performance among all samples, delivering a record capacity of 550 mA h g -1 at 0.5 C after 100 cycles. The pronounced performances are attributed to the highly efficient charge transfer in CuO nanosheets encapsulated in rGO network and the mitigated volume expansion of the anode owing to its robust 3D hierarchical nanostructure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mechano-hydrothermal preparation of Li-Al-OH layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Fengrong; Hou, Wanguo

    2018-05-01

    A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5-5.0) in the starting materials. An increase in the Tht (20-80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.

  7. [Comparison between one-step and two-step space closing methods of sliding mechanics using three-dimensional finite element].

    PubMed

    Han, Yaohui; Mou, Lan; Xu, Gengchi; Yang, Yiqiang; Ge, Zhenlin

    2015-03-01

    To construct a three-dimensional finite element model comparing between one-step and two-step methods in torque control of anterior teeth during space closure. Dicom image data including maxilla and upper teeth were obtained though cone-beam CT. A three-dimensional model was set up and the maxilla, upper teeth and periodontium were separated using Mimics software. The models were instantiated using Pro/Engineer software, and Abaqus finite element analysis software was used to simulate the sliding mechanics by loading 1.47 Nforce on traction hooks with different heights (2, 4, 6, 8, 10, 12 and 14 mm, respectively) in order to compare the initial displacement between six maxillary anterior teeth (one-step method) and four maxillary anterior teeth (two-step method). When moving anterior teeth bodily, initial displacements of central incisors in two-step method and in one-step method were 29.26 × 10⁻⁶ mm and 15.75 × 10⁻⁶ mm, respectively. The initial displacements of lateral incisors in two-step method and in one-step method were 46.76 × 10(-6) mm and 23.18 × 10(-6) mm, respectively. Under the same amount of light force, the initial displacement of anterior teeth in two-step method was doubled compared with that in one-step method. The root and crown of the canine couldn't obtain the same amount of displacement in one-step method. Two-step method could produce more initial displacement than one-step method. Therefore, two-step method was easier to achieve torque control of the anterior teeth during space closure.

  8. One-step synthesis of solid state luminescent carbon-based silica nanohybrids for imaging of latent fingerprints

    NASA Astrophysics Data System (ADS)

    Li, Feng; Li, Hongren; Cui, Tianfang

    2017-11-01

    Fluorescent carbon-based nanomaterials(CNs) with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. Despite the successes in preparing strongly fluorescent CNs, preserving the luminescence in solid materials is still challenging because of the serious emission quenching of CNs in solid state materials. In this work, fluorescent carbon and silica nanohybrids (SiCNHs) were synthesized via a simple one-step hydrothermal approach by carbonizing sodium citrate and (3-aminopropyl)triethoxysilane(APTES), and hydrolysis of tetraethyl orthosilicate(TEOS). The resultant SiCNs were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The SiCNs exhibited strong fluorescence in both aqueous and solid states. The luminescent solid state SiCNs power were successfully used as a fluorescent labeling material for enhanced imaging of latent fingerprints(LFPs) on single background colour and multi-coloured surfaces substrates in forensic science for individual identification.

  9. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-01

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  10. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors.

    PubMed

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-27

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  11. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    NASA Astrophysics Data System (ADS)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  12. A Multiobjective Interval Programming Model for Wind-Hydrothermal Power System Dispatching Using 2-Step Optimization Algorithm

    PubMed Central

    Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision. PMID:24895663

  13. A multiobjective interval programming model for wind-hydrothermal power system dispatching using 2-step optimization algorithm.

    PubMed

    Ren, Kun; Jihong, Qu

    2014-01-01

    Wind-hydrothermal power system dispatching has received intensive attention in recent years because it can help develop various reasonable plans to schedule the power generation efficiency. But future data such as wind power output and power load would not be accurately predicted and the nonlinear nature involved in the complex multiobjective scheduling model; therefore, to achieve accurate solution to such complex problem is a very difficult task. This paper presents an interval programming model with 2-step optimization algorithm to solve multiobjective dispatching. Initially, we represented the future data into interval numbers and simplified the object function to a linear programming problem to search the feasible and preliminary solutions to construct the Pareto set. Then the simulated annealing method was used to search the optimal solution of initial model. Thorough experimental results suggest that the proposed method performed reasonably well in terms of both operating efficiency and precision.

  14. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  15. One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hongye; Liu, Meiying; Tuo, Xun; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen

    2018-05-01

    Over the past years, fluorescent carbon nanoparticles have got growing interest for biological imaging. Fluorescent nanodiamonds (FNDs) are novel fluorescent carbon nanoparticles with multitudinous useful properties, including remarkable fluorescence properties, extremely low toxicity and high refractive index. However, facile preparation of FNDs with designable properties and functions from non-fluorescent detonation nanodiamonds (DNDs) has demonstrated to be challengeable. In this work, we reported for the first time that preparation of Polyethylene glycol (PEG) functionalized FNDs through a one-step thiol-ene click reaction using thiol containing PEG (PEG-SH) as the coating agent. Based on the characterization results, we demonstrated that PEG-SH could be efficiently introduced on DNDs to obtain FNDs through the thiol-ene click chemistry. The resultant FND-PEG composites showed high water dispersibility, strong fluorescence and low cytotoxicity. Moreover, FND-PEG composites could be internalized by cells and displayed good cell dyeing performance. All of these features implied that FND-PEG composites are of great potential for biological imaging. Taken together, a facile one-step strategy based on the one-step thiol-ene click reaction has been developed for efficient preparation of FND-PEG composites from non-fluorescent DNDs. The strategy should be also useful for fabrication of many other functional FNDs via using different thiol containing compounds for the universality of thiol-ene click reaction.

  16. Two Steps Forward, One Step Backward: Must This Be the Future of Diversity?

    ERIC Educational Resources Information Center

    Butler, Johnnella E.

    2013-01-01

    Johnnella Butler writes here that the title of this article "Two Steps Forward, One Step Backward," expresses the "wicked problem" of diversity as a concrete goal in higher education. The concept of the "wicked problem," is a term coined in the late 1960s by social planners. Consulting Wikipedia, as so many of our…

  17. One-step engineered self-assembly Co3O4 nanoparticles to nanocubes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Nagajyothi, P. C.; Pandurangan, M.; Sreekanth, T. V. M.; Shim, Jaesool

    2018-02-01

    Tricobalt tetraoxide or cobalt oxide (Co3O4) nanocubes (NCs) were synthesized from the self-assemblies of Co3O4 nanoparticles (NPs) via a simple one-step hydrothermal method. X-ray diffraction analysis confirmed the cubic crystal structure of Co3O4 NCs. The surface properties were investigated by x-ray photoelectron spectroscopy, which suggests the co-existence of Co in +2 and +3 states. The self-assemblies of aggregation of NPs to NCs were inspected using scanning electron microscopy, which is supported by transmission electron microscopy. The electrochemical properties of Co3O4 NCs were carried out by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) curves and impedance analysis. The areal capacitance of 3.04 mF cm-2 was obtained at current density of 10 μA cm-2. The Co3O4 NCs electrode exhibits good long-cyclic stability with 92.1% capacitance retention over 3000 cycles. The CV, GCD and impedance curves of Co3O4 NCs were recorded after cyclic test, which are similar to the curves recorded before the test. Therefore, the Co3O4 NCs serves good candidate as positive electrode materials for asymmetric supercapacitors.

  18. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity.

    PubMed

    Hua, Zulin; Dai, Zhangyan; Bai, Xue; Ye, Zhengfang; Gu, Haixin; Huang, Xin

    2015-08-15

    Highly ordered iron, nitrogen, and fluorine tri-doped TiO2 (Fe, (N, F)-TiO2) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH4F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO2 showed higher photoactivities than undoped TiO2 under visible light. The optimum Fe(3+) doping amount at 0.005M exhibited the highest photoactivity and exceeded that of undoped TiO2 by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe(3+) ions reduced the photogenerated electrons-holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO2, which enhanced visible light photoactivity. The Fe, (N, F)-TiO2 photocatalyst exhibited high stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. One-step synthesis of 3D sulfur/nitrogen dual-doped graphene supported nano silicon as anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Ruihong; Li, Junli; Qi, Kaiyu; Ge, Xin; Zhang, Qiwei; Zhang, Bangwen

    2018-03-01

    Silicon is one of the most promising candidates for next-generation anode of Lithium-ion batteries. However, poor electrical conductivity and large volume change during alloying/dealloying hinder its practical use. Here we reported a three-dimensional (3D) nitrogen and sulfur codoped graphene supported silicon nanoparticles composite (SN-G/Si) through one-step hydrothermal self-assembly. The obtained SN-G/Si was investigated in term of instrumental characterizations and electrochemical properties. The results show that SN-G/Si as a freestanding anode in LIBs delivers a reversible capacity of 2020 mAh g-1 after 100 cycles with coulombic efficiency of nearly 97%. The excellent electrochemical performance is associated with the unique structure and the synergistic effect of SN-G/Si, in which SN-G provides volume buffer for nano Si as the flexible loader, short paths/fast channels for electron/Li ion transport as porous skeleton, and low charge-transfer resistance.

  20. One-step instant synthesis of protein-conjugated quantum dots at room temperature.

    PubMed

    He, Xuewen; Gao, Li; Ma, Nan

    2013-10-02

    We present a new general facile strategy for the preparation of protein-functionalized QDs in a single step at ambient conditions. We demonstrated that highly luminescent red to near-infrared (NIR) protein-functionalized QDs could be synthesized at room temperature in one second through a one-pot reaction that proceeds in aqueous solution. Herein protein-functionalized QDs were successfully constructed for a variety of proteins with a wide range of molecular weights and isoelectric points. The as-prepared protein-conjugated QDs exhibited high quantum yield, high photostabiliy and colloidal stability, and high functionalization efficiency. Importantly, the proteins attached to the QDs maintain their biological activities and are capable of catalyzing reactions and biotargeting. In particular, the as-prepared transferrin-QDs could be used to label cancer cells with high specificity. Moreover, we demonstrated that this synthetic strategy could be extended to prepare QDs functionalized with folic acids and peptides, which were also successfully applied to cancer cell imaging.

  1. Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic-Hydrothermal Fluid Chemistry

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji

    2017-10-01

    The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.

  2. SU-F-J-66: Anatomy Deformation Based Comparison Between One-Step and Two-Step Optimization for Online ART

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Z; Yu, G; Qin, S

    Purpose: This study investigated that how the quality of adapted plan was affected by inter-fractional anatomy deformation by using one-step and two-step optimization for on line adaptive radiotherapy (ART) procedure. Methods: 10 lung carcinoma patients were chosen randomly to produce IMRT plan by one-step and two-step algorithms respectively, and the prescribed dose was set as 60 Gy on the planning target volume (PTV) for all patients. To simulate inter-fractional target deformation, four specific cases were created by systematic anatomy variation; including target superior shift 0.5 cm, 0.3cm contraction, 0.3 cm expansion and 45-degree rotation. Based on these four anatomy deformation,more » adapted plan, regenerated plan and non-adapted plan were created to evaluate quality of adaptation. Adapted plans were generated automatically by using one-step and two-step algorithms respectively to optimize original plans, and regenerated plans were manually created by experience physicists. Non-adapted plans were produced by recalculating the dose distribution based on corresponding original plans. The deviations among these three plans were statistically analyzed by paired T-test. Results: In PTV superior shift case, adapted plans had significantly better PTV coverage by using two-step algorithm compared with one-step one, and meanwhile there was a significant difference of V95 by comparison with adapted and non-adapted plans (p=0.0025). In target contraction deformation, with almost same PTV coverage, the total lung received lower dose using one-step algorithm than two-step algorithm (p=0.0143,0.0126 for V20, Dmean respectively). In other two deformation cases, there were no significant differences observed by both two optimized algorithms. Conclusion: In geometry deformation such as target contraction, with comparable PTV coverage, one-step algorithm gave better OAR sparing than two-step algorithm. Reversely, the adaptation by using two-step algorithm had higher

  3. One step versus two step approach for gestational diabetes screening: systematic review and meta-analysis of the randomized trials.

    PubMed

    Saccone, Gabriele; Caissutti, Claudia; Khalifeh, Adeeb; Meltzer, Sara; Scifres, Christina; Simhan, Hyagriv N; Kelekci, Sefa; Sevket, Osman; Berghella, Vincenzo

    2017-12-03

    To compare both the prevalence of gestational diabetes mellitus (GDM) as well as maternal and neonatal outcomes by either the one-step or the two-step approaches. Electronic databases were searched from their inception until June 2017. We included all randomized controlled trials (RCTs) comparing the one-step with the two-step approaches for the screening and diagnosis of GDM. The primary outcome was the incidence of GDM. Three RCTs (n = 2333 participants) were included in the meta-analysis. 910 were randomized to the one step approach (75 g, 2 hrs), and 1423 to the two step approach. No significant difference in the incidence of GDM was found comparing the one step versus the two step approaches (8.4 versus 4.3%; relative risk (RR) 1.64, 95%CI 0.77-3.48). Women screened with the one step approach had a significantly lower risk of preterm birth (PTB) (3.7 versus 7.6%; RR 0.49, 95%CI 0.27-0.88), cesarean delivery (16.3 versus 22.0%; RR 0.74, 95%CI 0.56-0.99), macrosomia (2.9 versus 6.9%; RR 0.43, 95%CI 0.22-0.82), neonatal hypoglycemia (1.7 versus 4.5%; RR 0.38, 95%CI 0.16-0.90), and admission to neonatal intensive care unit (NICU) (4.4 versus 9.0%; RR 0.49, 95%CI 0.29-0.84), compared to those randomized to screening with the two step approach. The one and the two step approaches were not associated with a significant difference in the incidence of GDM. However, the one step approach was associated with better maternal and perinatal outcomes.

  4. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes

    USGS Publications Warehouse

    Shanks, Wayne C.

    2001-01-01

    The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.

  5. One-step assembly of coordination complexes for versatile film and particle engineering.

    PubMed

    Ejima, Hirotaka; Richardson, Joseph J; Liang, Kang; Best, James P; van Koeverden, Martin P; Such, Georgina K; Cui, Jiwei; Caruso, Frank

    2013-07-12

    The development of facile and versatile strategies for thin-film and particle engineering is of immense scientific interest. However, few methods can conformally coat substrates of different composition, size, shape, and structure. We report the one-step coating of various interfaces using coordination complexes of natural polyphenols and Fe(III) ions. Film formation is initiated by the adsorption of the polyphenol and directed by pH-dependent, multivalent coordination bonding. Aqueous deposition is performed on a range of planar as well as inorganic, organic, and biological particle templates, demonstrating an extremely rapid technique for producing structurally diverse, thin films and capsules that can disassemble. The ease, low cost, and scalability of the assembly process, combined with pH responsiveness and negligible cytotoxicity, makes these films potential candidates for biomedical and environmental applications.

  6. Hexagonal spherical Ln3+-doped NaGdF4: A facile double solvent hydrothermal synthesis and luminescent properties

    NASA Astrophysics Data System (ADS)

    Wu, Kelu; Huang, Zhuanzhuan; Yu, Qiao-He; Wang, Yi-Yan; Xia, Tian-Long

    2017-04-01

    Different sizes of hexagonal spherical NaGdF4:Eu3+ particles are synthesized via a facile hydrothermal method with the use of ethylene glycol (EG), propylene glycol (PG) or butylene glycol (BG) as another solvent. The particle size decreases with the addition of EG, PG or BG and the decreasing trend in BG/H2O system is significantly more than that in the other two systems. Meanwhile, results show that luminescent properties of NaGdF4:Eu3+ are enhanced along with the decrease of particle size. Besides, the energy transfer from Dy3+ to Eu3+ is directly observed in the PL spectra of NaGdF4:Eu3+/Dy3+.

  7. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method

    PubMed Central

    Tavakoli, Mohammad Mahdi; Gu, Leilei; Gao, Yuan; Reckmeier, Claas; He, Jin; Rogach, Andrey L.; Yao, Yan; Fan, Zhiyong

    2015-01-01

    Organometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%. We performed a systematic optimization of CVD parameters such as temperature and growth time to obtain high quality films of CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite. Scanning electron microscopy and time resolved photoluminescence data showed that the perovskite films have a large grain size of more than 1 micrometer, and carrier life-times of 10 ns and 120 ns for CH3NH3PbI3 and CH3NH3PbI3-xClx, respectively. This is the first demonstration of a highly efficient perovskite solar cell using one step CVD and there is likely room for significant improvement of device efficiency. PMID:26392200

  8. One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells.

    PubMed

    Jung, Yen-Sook; Hwang, Kyeongil; Heo, Youn-Jung; Kim, Jueng-Eun; Lee, Donmin; Lee, Cheol-Ho; Joh, Han-Ik; Yeo, Jun-Seok; Kim, Dong-Yu

    2017-08-23

    Despite the potential of roll-to-roll processing for the fabrication of perovskite films, the realization of highly efficient and reproducible perovskite solar cells (PeSCs) through continuous coating techniques and low-temperature processing is still challenging. Here, we demonstrate that efficient and reliable CH 3 NH 3 PbI 3 (MAPbI 3 ) films fabricated by a printing process can be achieved through synergetic effects of binary processing additives, N-cyclohexyl-2-pyrrolidone (CHP) and dimethyl sulfoxide (DMSO). Notably, these perovskite films are deposited from premixed perovskite solutions for facile one-step processing under a room-temperature and ambient atmosphere. The CHP molecules result in the uniform and homogeneous perovskite films even in the one-step slot-die system, which originate from the high boiling point and low vapor pressure of CHP. Meanwhile, the DMSO molecules facilitate the growth of perovskite grains by forming intermediate states with the perovskite precursor molecules. Consequently, fully printed PeSC based on the binary additive system exhibits a high PCE of 12.56% with a high reproducibility.

  9. Hexagonal pencil-like CdS nanorods: Facile synthesis and enhanced visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    An, Liang; Wang, Guanghui; Zhao, Lei; Zhou, Yong; Gao, Fang; Cheng, Yang

    2015-07-01

    In the present study, hexagonal pencil-like CdS nanorods have been successfully synthesized through a typical facile and economical one-step hydrothermal method without using any surfactant or template. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive analysis of X-ray (EDX). The results revealed that the prepared CdS photocatalyst consisted of a large quantity of straight and smooth solid hexagonal nanorods and a few nanoparticles. The photocatalytic activities of CdS nanorods and commercial CdS powders were investigated by the photodegradation of Orange II (OII) in aqueous solution under visible light, and the CdS nanorods presented the highest photocatalytic activity. Its photocatalytic efficiency enhancement was attributed to the improved transmission of photogenerated electron-hole pairs in the CdS nanostructures. The present findings may provide a facile approach to synthesize high efficient CdS photocatalysts.

  10. A facile one-step synthesis of Mn{sub 3}O{sub 4} nanoparticles-decorated TiO{sub 2} nanotube arrays as high performance electrode for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianfang; Wang, Yan; Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009

    Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn{sub 3}O{sub 4} nanoparticles have been successfully deposited onto the inner surface of TiO{sub 2} nanotube arrays (TNAs). The content and size of Mn{sub 3}O{sub 4} can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn{sub 3}O{sub 4}/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn{sub 3}O{sub 4}/TNAs electrodes are systematically investigated bymore » the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn{sub 3}O{sub 4}/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g{sup −1} at a current density of 1 A g{sup −1}. And it also shows an excellent long-term cycling stability at a current density of 5 A g{sup −1}, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn{sub 3}O{sub 4} nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes. - Graphical abstract: Mn{sub 3}O{sub 4} nanoparticles have been uniformly deposited onto the inner surfaces of TiO{sub 2} nanotube arrays through a facile one-step chemical bath deposition method. As electrodes for supercapacitors, they exhibit a relatively high specific capacity and excellent cycling stability. - Highlights: • Mn{sub 3}O{sub 4} nanoparticles have been deposited onto TiO{sub 2} nanotube arrays by chemical bath deposition. • The Mn{sub 3}O{sub 4}/TNAs exhibits a highest specific capacitance of 570 F g{sup –1} at a current density of 1 A g{sup –1}. • The Mn{sub 3}O{sub 4

  11. 41 CFR 102-74.210 - What steps must Executive agencies take to promote ridesharing at Federal facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Ridesharing § 102-74.210 What... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What steps must Executive agencies take to promote ridesharing at Federal facilities? 102-74.210 Section 102-74.210 Public...

  12. Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Song, Peng; Yang, Zhongxi; Wang, Qi

    2018-03-01

    Mesoporous In2O3 nanoparticles were successfully synthesized via a facile, template free, and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG), and N2 adsorption-desorption analyses. The results reveal that mesoporous In2O3 nanoparticles with a size range of 40-60 nm, possess plenty of pores, and average pore size is about 5 nm. Importantly, the mesoporous structure, large specific surface area, and small size endow the mesoporous In2O3 nanoparticles with highly sensing performance for formaldehyde detection. The response value to 10 ppm HCHO is 20 at an operating temperature of 280 °C, and the response and recovery time are 4 and 8 s, respectively. It is expected that the mesoporous In2O3 nanoparticles with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting formaldehyde.

  13. Synthesis of Bi2S3/BiVO4 Heterojunction with a One-Step Hydrothermal Method Based on pH Control and the Evaluation of Visible-Light Photocatalytic Performance

    PubMed Central

    Zhao, Deqiang; Wang, Wenwen; Zong, Wenjuan; Xiong, Shimin; Zhang, Qian; Ji, Fangying; Xu, Xuan

    2017-01-01

    The band gaps of bismuth vanadate (BiVO4) and bismuth sulfide (Bi2S3) are about 2.40 eV and 1.30 eV, respectively. Although both BiVO4 and Bi2S3 are capable of strong visible light absorption, electron–hole recombination occurs easily. To solve this problem, we designed a one-step hydrothermal method for synthesizing a Bismuth sulfide (Bi2S3)/Bismuth vanadate (BiVO4) heterojunction using polyvinylpyrrolidone K-30 (PVP) as a structure-directing agent, and 2-Amino-3-mercaptopropanoic acid (l-cysteine) as a sulfur source. The pH of the reaction solution was regulated to yield different products: when the pH was 7.5, only monoclinic BiVO4 was produced (sample 7.5); when the pH was 8.0 or 8.5, both Bi2S3 and BiVO4 were produced (samples 8.0 and 8.5); and when the pH was 9.0, only Bi2S3 was produced (sample 9.0). In sample 8.0, Bi2S3 and BiVO4 were closely integrated with each other, with Bi2S3 particles formed on the surface of concentric BiVO4 layers, but the two compounds grew separately in a pH solution of 8.5. Visible-light photocatalytic degradation experiments demonstrated that the degradation efficiency of the Bi2S3/BiVO4 heterojunction was highest when prepared under a pH of 8.0. The initial rhodamine B in the solution (5 mg/L) was completely degraded within three hours. Recycling experiments verified the high stability of Bi2S3/BiVO4. The synthesis method proposed in this paper is expected to enable large-scale and practical use of Bi2S3/BiVO4. PMID:28767085

  14. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.

    PubMed

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-04-14

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.

  15. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability

    PubMed Central

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-01-01

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48. PMID:28788030

  16. First hydrothermal active vent discovered on the Galapagos Microplate

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party

    2011-12-01

    The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.

  17. One-step synthesis and characterization of polyaniline nanofiber/silver nanoparticle composite networks as antibacterial agents.

    PubMed

    Poyraz, Selcuk; Cerkez, Idris; Huang, Tung Shi; Liu, Zhen; Kang, Litao; Luo, Jujie; Zhang, Xinyu

    2014-11-26

    Through a facile and effective seeding polymerization reaction via a one-step redox/complexation process, which took place in aqueous medium at ambient temperature, silver nanoparticles (Ag NPs) embedded polyaniline nanofiber (PANI NF) networks were synthesized as antibacterial agents. During the reaction, not only NF morphology formation of the resulting conducting polymers (CPs) but also amplification of the aqueous silver nitrate (AgNO3) solutions' oxidative potentials were managed by vanadium pentoxide (V2O5) sol-gel nanofibers, which acted as well-known nanofibrous seeding agents and the auxiliary oxidative agent at the same time. The PANI/Ag nanocomposites were proven to exhibit excellent antibacterial property against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Antibacterial property performance and average life span of the nanocomposite network were optimized through the homogeneous distribution/embedment of Ag NPs within one-dimensional (1-D) PANI NF matrix. The antibacterial efficacy tests and nanocomposite material characterization results further indicated that the sole components of PANI/Ag have a synergistic effect to each other in terms of antibacterial property. Thus, this well-known catalytic seeding approach via a one-step oxidative polymerization reaction can be considered as a general methodology and a substantial fabrication tool to synthesize Ag NP decorated nanofibrillar PANI networks as advanced antibacterial agents.

  18. Reconstruction of networks from one-step data by matching positions

    NASA Astrophysics Data System (ADS)

    Wu, Jianshe; Dang, Ni; Jiao, Yang

    2018-05-01

    It is a challenge in estimating the topology of a network from short time series data. In this paper, matching positions is developed to reconstruct the topology of a network from only one-step data. We consider a general network model of coupled agents, in which the phase transformation of each node is determined by its neighbors. From the phase transformation information from one step to the next, the connections of the tail vertices are reconstructed firstly by the matching positions. Removing the already reconstructed vertices, and repeatedly reconstructing the connections of tail vertices, the topology of the entire network is reconstructed. For sparse scale-free networks with more than ten thousands nodes, we almost obtain the actual topology using only the one-step data in simulations.

  19. Fluid Flow and Sound Generation at Hydrothermal Vent Fields

    DTIC Science & Technology

    1988-04-01

    Pacific Rise The first evidence of vent sound generation came from data collected near hydrothermal vents at 21 N on the EPR where an array of ocean...associated with hydrothermal centers, one at 21 N on the East Pacific Rise (EPR) (Reidesel et al., 1982) and one on the Juan de Fuca Ridge (Bibee and Jacobson... East Pacific Rise at 210 N : the volcanic, tectonic and hydrothermal processes at

  20. A novel one-step Helicobacter pylori saliva antigen test.

    PubMed

    Yang, Bi-Ling; Yeh, Chun; Kwong, Wei-Gang; Lee, Shou-Dong

    2015-02-01

    A rapid, reliable, and sufficiently accurate test for diagnosing Helicobacter pylori infection is required for screening dyspeptic patients before a referral for endoscopy. The purpose of this article is two-fold: first, to evaluate the accuracy of a one-step H. pylori saliva antigen (HPS) test; and second, to compare noninvasive and invasive H. pylori tests in Taiwanese population. A total of 104 consecutive dyspeptic patients admitted for gastroenterology into the outpatient department underwent a one-step HPS test, rapid urease test, histology, and (13)C-urea breath test (13)C-UBT (proto C-13 urea kit). The accuracy of the HPS test was compared with a gold standard defined by at least two positive H. pylori test results from three H. pylori tests (histology, rapid urease test, and (13)C-UBT). The 104 patients eligible for analysis (mean age: 58 years, range 22-87 years), 21 (20%) were gold standard positive. Among them, the positive of the one-step H. pylori saliva Ag test, rapid urease test, (13)C-UBT, histology were (52; 50%), (17; 16%), (27; 25%) and (22; 21%) respectively. The sensitivity and specificity of the HPS tests, rapid urease test, (13)C-UBTs, and histology were 71.43% and 55.42%, 76.19% and 98.80%, 100% and 92.77%, and 85.71% and 95.18%, respectively, relative to the gold standard. The one-step HPS test exhibited a sensitivity of 71.43%, nearly equivalent to that of the rapid urea test. The one-step HPS test exhibited a high sensitivity and low specificity compared with the other tests, indicating that it is not sufficiently accurate for use in a clinical setting for diagnosing H. pylori infection. However, the test is simple to use (requiring only a saliva sample), inexpensive, and noninvasive in its application, and thus appealing for use in population-based prevalence surveys of the epidemiology of H. pylori infection. Copyright © 2014. Published by Elsevier Taiwan.

  1. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  2. Production of Ethylene through Ethanol Dehydration on SBA-15 Catalysts Synthesized by Sol-gel and One-step Hydrothermal Methods.

    PubMed

    Autthanit, Chaowat; Jongsomjit, Bunjerd

    2018-02-01

    The present work deals with the catalytic performance of SBA-15 supported catalysts in the gas phase catalytic dehydration of ethanol in the temperature range of 200 to 400°C. The SBA-15 support was incorporated on a zirconium (Zr) and bimetal of zirconium and lanthanum (Zr-La) prepared by sol-gel (SG) and hydrothermal (HT) methods. The catalysts were characterized by means of N 2 physisorption, SEM/EDX, and NH 3 -TPD. The experimental results demonstrated that the Zr-La/SBA-15-HT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. The best catalytic results were achieved for Zr-La/SBA-15-HT indicating values of ethanol conversion and ethylene yield of ca. 84% and 80%, respectively at 400°C. The most important parameter influencing their catalytic properties appears to be the interaction between metal and support depending on different methods. The metal dispersion inside the siliceous matrix of SBA-15 has a direct influence on their surface acidity. Meanwhile, the performance of these SBA-15 supported catalysts in ethanol dehydration is also related with the alteration of surface acidity caused by the introduction of Zr and Zr-La.

  3. One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents

    NASA Astrophysics Data System (ADS)

    Wu, Ruihan; Yu, Baowei; Liu, Xiaoyang; Li, Hongliang; Wang, Weixuan; Chen, Lingyun; Bai, Yitong; Ming, Zhu; Yang, Sheng-Tao

    2016-01-01

    Graphene sponge (GS) has found applications in oil removal due to the hydrophobic nature of graphene sheets. Current hydrothermal preparations of GS use toxic reducing reagents, which might cause environmental pollution. In this study, we reported that graphene oxide (GO) could be hydrothermally reduced by glucose to form GS for the adsorption of oils and various organic solvents. Graphene sheets were reduced by glucose during the hydrothermal treatment and formed 3D porous structure. GS efficiently adsorbed organic solvents and oils with competitive adsorption capacities. GS was able to treat pollutants in pure liquid form and also in the simulated seawater. GS could be easily regenerated by evaporating or burning. After 10 cycles, the adsorption capacity still retained 77% by evaporating and 87% by burning. The implication to the applications of GS in water remediation is discussed.

  4. Comparison of the Screening Tests for Gestational Diabetes Mellitus between "One-Step" and "Two-Step" Methods among Thai Pregnant Women.

    PubMed

    Luewan, Suchaya; Bootchaingam, Phenphan; Tongsong, Theera

    2018-01-01

    To compare the prevalence and pregnancy outcomes of GDM between those screened by the "one-step" (75 gm GTT) and "two-step" (100 gm GTT) methods. A prospective study was conducted on singleton pregnancies at low or average risk of GDM. All were screened between 24 and 28 weeks, using the one-step or two-step method based on patients' preference. The primary outcome was prevalence of GDM, and secondary outcomes included birthweight, gestational age, rates of preterm birth, small/large-for-gestational age, low Apgar scores, cesarean section, and pregnancy-induced hypertension. A total of 648 women were screened: 278 in the one-step group and 370 in the two-step group. The prevalence of GDM was significantly higher in the one-step group; 32.0% versus 10.3%. Baseline characteristics and pregnancy outcomes in both groups were comparable. However, mean birthweight was significantly higher among pregnancies with GDM diagnosed by the two-step approach (3204 ± 555 versus 3009 ± 666 g; p =0.022). Likewise, the rate of large-for-date tended to be higher in the two-step group, but was not significant. The one-step approach is associated with very high prevalence of GDM among Thai population, without clear evidence of better outcomes. Thus, this approach may not be appropriate for screening in a busy antenatal care clinic like our setting or other centers in developing countries.

  5. Sealing properties of one-step root-filling fibre post-obturators vs. two-step delayed fibre post-placement.

    PubMed

    Monticelli, Francesca; Osorio, Raquel; Toledano, Manuel; Ferrari, Marco; Pashley, David H; Tay, Franklin R

    2010-07-01

    The sealing properties of a one-step obturation post-placement technique consisting of Resilon-capped fibre post-obturators were compared with a two-step technique based on initial Resilon root filling following by 24h-delayed fibre post-placement. Thirty root segments were shaped to size 40, 0.04 taper and filled with: (1) InnoEndo obturators; (2) Resilon/24h-delayed FibreKor post-cementation. Obturator, root filling and post-cementation procedures were performed using InnoEndo bonding agent/dual-cured root canal sealer. Fluid flow rate through the filled roots was evaluated at 10psi using a computerised fluid filtration model before root resection and after 3 and 9mm apical resections. Fluid flow data were analysed using two-way repeated measures ANOVA and Tukey test to examine the effects of root-filling post-placement techniques and root resection lengths on fluid leakage from the filled canals (alpha=0.05). A significantly greater amount of fluid leakage was observed with the one-step technique when compared with two-step technique. No difference in fluid leakage was observed among intact canals and canals resected at different lengths for both materials. The seal of root canals achieved with the one-step obturator is less effective than separate Resilon root fillings followed by a 24-h delay prior to the fibre post-placement. Incomplete setting of the sealer and restricted relief of polymerisation shrinkage stresses may be responsible for the inferior seal of the one-step root-filling/post-restoration technique. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. One-Step Synthesis of Aliphatic Potassium Acyltrifluoroborates (KATs) from Organocuprates.

    PubMed

    Liu, Sizhou M; Wu, Dino; Bode, Jeffrey W

    2018-04-20

    A one-step synthesis of aliphatic KATs from organocuprates is reported. Organolithium and organomagnesium reagents were readily transmetalated onto Cu(I) and coupled with a KAT-forming reagent to yield the respective aliphatic KAT. The protocol is suitable for primary, secondary and-for the first time-tertiary alkyl substrates. These protocols considerably expand the range of KATs that can be readily accessed in one step from commercially available starting materials.

  7. Facile synthesis of porous graphene-like carbon nitride nanosheets with high surface area and enhanced photocatalytic activity via one-step catalyst-free solution self-polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Shikai; Wen, Shengwu; Xu, Xinmei; Huang, Guozhi; Cui, Yifan; Li, Jinyu; Qu, Ailan

    2018-04-01

    Porous graphite carbon nitride nanosheets (g-C3N4) are achieved via one-step catalyst-free solution self-polymerization from a single melamine precursor. The resultant porous g-C3N4 nanosheets with the best photodegradation capacity provided the surface area of 669.15 m2/g, which is superior to the surface area of any other porous g-C3N4 reported. Results showed enhanced adsorption and degradation capacity of methyl orange (MO) under UV-visible light irradiation (λ > 350 nm) compared to bulk g-C3N4. The MO oxidation of the porous g-C3N4 nanosheets is driven mostly by the participation of holes, and secondly by rad O2- and rad OH radicals. This approach shed lights on porous g-C3N4 production simply by self-polycondensation of single functional monomer. It also provided a low-cost and eco-friendly method to facilely mass-produce g-C3N4 nanosheets with high surface area for many potential applications.

  8. Vapor-phase hydrothermal transformation of HTiOF3 intermediates into {001} faceted anatase single-crystalline nanosheets.

    PubMed

    Liu, Porun; Wang, Yun; Zhang, Haimin; An, Taicheng; Yang, Huagui; Tang, Zhiyong; Cai, Weiping; Zhao, Huijun

    2012-12-07

    For the first time, a facile, one-pot hydrofluoric acid vapor-phase hydrothermal (HF-VPH) method is demonstrated to directly grow single-crystalline anatase TiO(2) nanosheets with 98.2% of exposed {001} faceted surfaces on the Ti substrate via a distinctive two-stage formation mechanism. The first stage produces a new intermediate crystal (orthorhombic HTiOF(3) ) that is transformed into anatase TiO(2) nanosheets during the second stage. The findings reveal that the HF-VPH reaction environment is unique and differs remarkably from that of liquid-phase hydrothermal processes. The uniqueness of the HF-VPH conditions can be readily used to effectively control the nanostructure growth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. One-step hydrothermal preparation of (NH4)2V3O8/carbon composites and conversion to porous V2O5 nanoparticles as supercapacitor electrode with excellent pseudocapacitive capability

    NASA Astrophysics Data System (ADS)

    Zhang, Yifu; Zheng, Jiqi; Wang, Qiushi; Zhang, Shaoqing; Hu, Tao; Meng, Changgong

    2017-11-01

    (NH4)2V3O8/carbon composites were successfully achieved using NH4VO3 and glucose as the starting materials via a one-step hydrothermal route for the first time. The composites consisted a layer structured (NH4)2V3O8 and amorphous carbon with aromatic structures containing lots of active function groups. Then porous V2O5 nanoparticles were fabricated by the thermal treatment of (NH4)2V3O8/carbon composites in air atmospheres. The BET specific surface area of (NH4)2V3O8/carbon composites measured 1.68 m2 g-1, whereas BET surface area of porous V2O5 nanoparticles reached 10.6 m2 g-1 and the average pore size totaled 28.9 nm. The synthetic process of (NH4)2V3O8/carbon composites and porous V2O5 nanoparticles was briefly discussed. Electrochemical properties of porous V2O5 nanoparticles as supercapacitor electrodes were investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolytes. The influence of calcined temperature and time and the mole ratio of NH4VO3/glucose on specific capacitance, phase and morphology of samples were discussed in detail. Porous V2O5 nanoparticles respectively exhibited the specific capacitance of 433 and 545 F g-1 in the aqueous and organic electrolytes at the current density of 1 A g-1. After 100 cycles, the capacitance retention was 89.6% in organic electrolyte, whereas it was only 22.9% in aqueous electrolyte. It turned out that electrochemical properties of porous V2O5 nanoparticles were greatly improved by using organic electrolyte.

  10. Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II).

    PubMed

    Zhao, Tuo; Yao, Ying; Li, Danrong; Wu, Feng; Zhang, Cunzhong; Gao, Bin

    2018-05-29

    This study prepared a novel low-cost surface functionalized carbon adsorbent (PPC) from biomass waste (pomelo peel) through a facile low-temperature (250 °C) one-step method under regular air atmosphere. The adsorption performance and mechanism of the carbon material for Ag(I) and Pb(II) were investigated by a range of sorption experiments and characterizations including SEM, EDX, XRD and FTIR. Sorption experimental results suggested that PPC had high adsorption capacities of 137.4 and 88.7 mg/g for Ag(I) and Pb(II), respectively, with adsorbent dosage of 2 g/L at unadjusted solution pH and room temperature (23 ± 1 °C). The characterization results indicated high-efficiency removal of the heavy metals by PPC was attributed to the strong chemical adsorption involving that Ag(I) ions were reduced as metallic Ag particles by oxygenic functional groups and Pb(II) ions were precipitated as Pb 5 (PO 4 ) 3 OH crystals by phosphorous functional groups on the carbon surfaces. This study provides the possibility of synthesis high-efficient adsorbent using economic and environmental-friendly approach with low energy consumption. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Hydrothermal Reactivity of Amines

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral

  12. One-step rapid synthesis of ultrafine γ-Ga2O3 nanocrystals by microwave hydrothermal method in ammonium hydroxide medium

    NASA Astrophysics Data System (ADS)

    Cui, Lu; Wang, Hong; Xin, Baifu; Mao, Guijie

    2017-10-01

    Ultrafine nanocrystals of γ-gallium oxide (γ-Ga2O3) were rapidly synthesized via microwave hydrothermal method at 140 °C, in which Ga(NO3)3 was used as the gallium source and urea was the precipitant. The samples were characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), nitrogen physisorption and photoluminescence spectroscopy (PL). The crystallite size of ultrafine spinel γ-Ga2O3 was in the range from 4 to 5 nm and the optical bandgap was 4.61 eV. To improve the crystallinity, the ultrafine γ-Ga2O3 nanocrystals were calcined at 300-700 °C further. The ultrafine γ-Ga2O3 calcined at 500 °C (calcined-γ-Ga2O3) still remained the metastable γ-phase with relatively high crystallinity and the crystallite size around 5-7 nm. Photocatalytic performances of the synthesized samples were also evaluated by the degradation of rhodamine B (RhB). Results revealed that the ultrafine γ-Ga2O3 and the calcined-γ-Ga2O3 samples exhibited high photocatalytic efficiencies of 68.2 and 90.7%, respectively.

  13. Dynamic cholesteric liquid crystal superstructures photoaligned by one-step polarization holography

    NASA Astrophysics Data System (ADS)

    Li, Sen-Sen; Shen, Yuan; Chang, Zhen-Ni; Li, Wen-Song; Xu, Yan-Chao; Fan, Xing-Yu; Chen, Lu-Jian

    2017-12-01

    A convenient approach to modulate the fingerprint textures of methyl red (MR) doped cholesteric liquid crystals by asymmetric photoalignment in the green-light waveband is presented, resulting in the generation of voltage-controllable helical superstructures. The interaction between the MR molecules and the incident light polarization determines the initial twisted planar geometry, providing a multivariant control over the stripe directions of fingerprint textures by applying a proper electric field. The key factors for precise manipulation of fingerprint stripes in a predictable and rewritable manner are analyzed theoretically and investigated experimentally, which involves the alignment asymmetry, the ratio of cell gap to natural pitch length, and the chirality of chiral dopant. Dynamic periodic fingerprint textures in shapes of dashed curve and dashed line are further demonstrated by utilizing a facile one-step polarization holography process using two beams with orthogonal circular and orthogonal linear polarizations, respectively. It is believed that the practical approach described in this study would enrich the research contents of self-assembled hierarchical superstructures using soft liquid crystal building blocks.

  14. One-step microlithography

    NASA Astrophysics Data System (ADS)

    Kahlen, Franz-Josef; Sankaranarayanan, Srikanth; Kar, Aravinda

    1997-09-01

    Subject of this investigation is a one-step rapid machining process to create miniaturized 3D parts, using the original sample material. An experimental setup where metal powder is fed to the laser beam-material interaction region has been built. The powder is melted and forms planar, 2D geometries as the substrate is moved under the laser beam in XY- direction. After completing the geometry in the plane, the substrate is displaced in Z-direction, and a new layer of material is placed on top of the just completed deposit. By continuous repetition of this process, 3D parts wee created. In particular, the impact of the focal spot size of the high power laser beam on the smallest achievable structures was investigated. At a translation speed of 51 mm/s a minimum material thickness of 590 micrometers was achieved. Also, it was shown that a small Z-displacement has a negligible influence on the continuity of the material deposition over this power range. A high power CO2 laser was used as energy source, the material powder under investigation was stainless steel SS304L. Helium was used as shield gas at a flow rate of 15 1/min. The incident CO2 laser beam power was varied between 300 W and 400 W, with the laser beam intensity distribute in a donut mode. The laser beam was focused to a focal diameter of 600 (Mu) m.

  15. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity.

    PubMed

    Liu, Kang; Zheng, Yuanhui; Lu, Xun; Thai, Thibaut; Lee, Nanju Alice; Bach, Udo; Gooding, J Justin

    2015-05-05

    The conjugation of gold nanorods (AuNRs) with polyethylene glycol (PEG) is one of the most effective ways to reduce their cytotoxicity arising from the cetyltrimethylammonium bromide (CTAB) and silver ions used in their synthesis. However, typical PEGylation occurs only at the tips of the AuNRs, producing partially modified AuNRs. To address this issue, we have developed a novel, facile, one-step surface functionalization method that involves the use of Tween 20 to stabilize AuNRs, bis(p-sulfonatophenyl)phenylphosphine (BSPP) to activate the AuNR surface for the subsequent PEGylation, and NaCl to etch silver from the AuNRs. This method allows for the complete removal of the surface-bound CTAB and the most active surface silver from the AuNRs. The produced AuNRs showed far lower toxicity than other methods to PEGylate AuNRs, with no apparent toxicity when their concentration is lower than 5 μg/mL. Even at a high concentration of 80 μg/mL, their cell viability is still four times higher than that of the tip-modified AuNRs.

  16. Enhanced Water Oxidation Photoactivity of Nano-Architectured α-Fe2O3-WO3 Composite Synthesized by Single-Step Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Rahman, Gul; Joo, Oh-Shim; Chae, Sang Youn; Shah, Anwar-ul-Haq Ali; Mian, Shabeer Ahmad

    2018-04-01

    This study reports the one-step in situ synthesis of a hematite-tungsten oxide (α-Fe2O3-WO3) composite on fluorine-doped tin oxide substrate via a simple hydrothermal method. Scanning electron microscopy images indicated that the addition of tungsten (W) precursor into the reaction mixture altered the surface morphology from nanorods to nanospindles. Energy-dispersive x-ray spectroscopy analysis confirmed the presence of W content in the composite. From the ultraviolet-visible spectrum of α-Fe2O3-WO3, it was observed that absorption began at ˜ 600 nm which corresponded to the bandgap energy of ˜ 2.01 eV. The α-Fe2O3-WO3 electrode demonstrated superior performance, with water oxidation photocurrent density of 0.80 mA/cm2 (at 1.6 V vs. reversible hydrogen electrode under standard illumination conditions; AM 1.5G, 100 mW/cm2) which is 2.4 times higher than α-Fe2O3 (0.34 mA/cm2). This enhanced water oxidation performance can be attributed to the better charge separation properties in addition to the large interfacial area of small-sized particles present in the α-Fe2O3-WO3 nanocomposite film.

  17. Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances.

    PubMed

    Zhong, Yiren; Su, Liwei; Yang, Mei; Wei, Jinping; Zhou, Zhen

    2013-11-13

    Rambutan-like FeCO3 hollow microspheres were prepared via a facile and economic one-step hydrothermal method. The structure and morphology evolution mechanism was disclosed through time-dependent experiments. After undergoing the symmetric inside-out Ostwald ripening, the resultants formed microporous/nanoporous constructions composed of numerous one-dimensional (1D) nanofiber building blocks. Tested as anode materials of Li-ion batteries, FeCO3 hollow microspheres presented attractive electrochemical performances. The capacities were over 1000 mAh g(-1) for initial charge, ~880 mAh g(-1) after 100 cycles at 50 mA g(-1), and ~710 mAh g(-1) after 200 cycles at 200 mA g(-1). The 1D nanofiber assembly and hollow interior endow this material efficient contact with electrolyte, short Li(+) diffusion paths, and sufficient void spaces to accommodate large volume variation. The cost-efficient FeCO3 with rationally designed nanostructures is a promising anode candidate for Li-ion batteries.

  18. Color stability of nanocomposites polished with one-step systems.

    PubMed

    Ergücü, Zeynep; Türkün, L Sebnem; Aladag, Akin

    2008-01-01

    This study compared the color changes of five novel resin composites polished with two one-step polishing systems when exposed to coffee solution. The resin composites tested were Filtek Supreme XT, Grandio, CeramX, Premise and Tetric EvoCeram. A total of 150 discs (30/resin composites, 10 x 2 mm) were fabricated. Ten specimens/resin composites cured under Mylar strips served as the control. The other samples were polished with PoGo and OptraPol discs for 30 seconds using a slow speed handpiece and immersed in coffee (Nescafé) for seven days. Color measurements were made with Vita Easyshade at baseline and after one and seven days. Repeated Measures ANOVA and Bonferroni tests were used for statistical analyses (p< or =0.05). The differences between the mean DeltaE* values for the resin composites polished with two different one-step systems were statistically significant (p<0.05). After one week, all materials exhibited significant color changes compared to baseline. All Mylar finished specimens showed the most intense staining (p<0.05). There were no significant differences between the OptraPol and PoGo polished groups. Mylar-finished specimens of CeramX, Tetric EvoCeram, Premise and Filtek Supreme XT presented the greatest staining (p<0.05). For Grandio, there were no significant differences between the Mylar and PoGo groups, while the most stain resistant surfaces were attained with OptraPol. Removing the outermost resin layer by polishing procedures is essential to achieving a stain resistant, more esthetically stable surface. One-step polishing systems can be used successfully for polishing nanocomposites.

  19. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    PubMed

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.

  20. Hydrothermal Atomic Force Microscopy Investigation of Barite Growth: Role of Spectator Ions in Elementary Step Edge Growth Kinetics and Hillock Morphology [Supporting Information Only

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jindra, Sarah A.; Bertagni, Angela L.; Bracco, Jacquelyn N.

    Here, to better understand the role of spectator ions in barite growth, the kinetics of step edge growth on barite (001) surfaces were studied under various salt solutions. Hydrothermal atomic force microscopy (HAFM) was used to investigate the effect of background electrolytes (NaCl, NaBr, and NaNO 3) as a function of saturation index and ionic strength ( I) on barite growth sourced at dislocations at 108 °C. Results demonstrate that hillock morphology is affected by I, as well as type of anion, where the prevalence of steps aligned on the [010] direction is highest under Cl –. There is amore » modest increase in kinetic coefficient of 55–130% with a 10-fold increase in I for each salt. In comparing the kinetic coefficients of the salts at low ionic strength (0.01 M), there is a moderate difference, suggesting that the anion may play a role in barium attachment.« less

  1. A Facile Hydrothermal Route for Synthesis of ZnS Hollow Spheres with Photocatalytic Degradation of Dyes Under Visible Light

    NASA Astrophysics Data System (ADS)

    Han, Zh.; Wang, N.; Zhang, H.; Yang, X.

    2017-01-01

    A facile hydrothermal method was employed for the synthesis of ZnS hollow spheres by using thioglycolic acid (TGA) as a capping agent under hydrothermal condition. The obtained products were characterized by X-ray powder diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). No diffraction peaks from other crystalline forms were detected, the synthesized ZnS hierarchical hollow spheres were relatively pure. The photocatalytic activities of as-synthesized samples were evaluated by the degradation of methyl orange (MO) and rhodamine B (RhB) under the condition of visible-light irradiation. The higher the initial MO and RhB concentrations, the longer it takes to reach the same residual concentration, implying that the apparent rates of MO and RhB degradation decrease with increase in the initial MO and RhB concentration. The increase of photocatalyst dosage from 0.2 to 0.6 g/L results in a sharp increase of the photodegradation efficiency from 68.50 to 92.66% after 180 min of visible-light irradiation for MO degradation, and the increase of photocatalyst dosage from 0.2 to 0.4 g/L results in a distinct increase of the photodegradation efficiency from 65.72 to 90.85% after 180 min of visible-light irradiation for RhB. The elution of intermediates generated in the photocatalytic mineralization of MO and RhB resulted in an increase in total organic carbon (TOC) level, leading to the difference between TOC removal rate and MO and RhB decolorization rates.

  2. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    PubMed

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. TiO{sub 2}/N-graphene nanocomposite via a facile in-situ hydrothermal sol–gel strategy for visible light photodegradation of eosin Y

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yingliang; Pei, Fuyun, E-mail: xusg@zzu.edu.cn; Lu, Ruijuan

    2014-12-15

    Highlights: • TiO{sub 2}/N-graphene is synthesized via in-situ hydrothermal sol–gel strategy. • TiO{sub 2} nanoparticles are chemically anchored on N-graphene nanosheets. • The band gap of TiO{sub 2}/N-graphene is red-shifted from neat TiO{sub 2} nanoparticles. • 5-NGT nanocomposite has the best visible light photodegradation performance. - Abstract: TiO{sub 2}/N-graphene nanocomposites are synthesized via a facile in-situ hydrothermal sol–gel strategy in order to improve the photocatalytic efficiency for pollutant photodegradation under visible light irradiation. The as-prepared nanocomposites are respectively characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV–vis diffuse reflectance spectroscopy. Results indicated that neatmore » TiO{sub 2} nanoparticles have an average diameter about 6.70 nm while TiO{sub 2} nanoparticles in TiO{sub 2}/N-graphene nanocomposites synthesized through in-situ hydrothermal sol–gel strategy bear an average diameter of ∼1 nm and are anchored on N-graphene nanosheets via chemical bonding. Both neat TiO{sub 2} nanoparticles and chemically anchored TiO{sub 2} nanoparticles in TiO{sub 2}/N-graphene nanocomposites take on the crystal type of anatase. The band gap of TiO{sub 2}/N-graphene nanocomposites is red-shifted compared with neat TiO{sub 2} nanoparticles. The evaluation of photodegradation performance under visible light irradiation suggested that the nanocomposite with 5 wt% N-graphene content has the best visible light photodegradation performance.« less

  4. Urea controlled hydrothermal synthesis of ammonium aluminum carbonate hydroxide rods

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhu, Jianfeng; Liu, Hui

    2018-03-01

    In this study, ammonium aluminum carbonate hydroxide (AACH) rods were controllably prepared using the hydrothermal method by manipulating the amount of urea in the reaction system. The experimental results showed that AACH in rod shape was able to be gradually transformed from γ-AlOOH in cluster shape during the molar ratios of urea to Al in the reactants were ranged from 8 to 10, and the yield of AACH has increased accordingly. When the molar ratio of urea to Al reaches 11, pure AACH rods with a diameter of 500 nm and a length of 10 μm approximately was able to be produced. Due to the slow decomposition of urea during the hydrothermal reaction, the nucleation and growth of AACH crystal proceed step by step. Therefore, the crystal can fully grow on each crystal plane and eventually produce a highly crystalline rod-shaped product. The role of urea in controlling the morphology and yield of AACH was also discussed in this paper systematically.

  5. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE PAGES

    Steyer, Andrew J.; Van Vleck, Erik S.

    2018-04-13

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  6. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyer, Andrew J.; Van Vleck, Erik S.

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  7. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    NASA Astrophysics Data System (ADS)

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-08-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.

  8. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    PubMed Central

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-01-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340

  9. Hydrothermal Aging Effects on Fe/SSZ-13 and Fe/Beta NH3–SCR Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Szanyi, János; Wang, Yilin

    Cu/SSZ-13 has been successfully commercialized as a diesel engine exhaust aftertreatment SCR catalyst in the past few years. This catalyst, however, displays undesirable NH3-SCR selectivity at elevated reaction temperature (≥ 350 C) after hydrothermal aging. Fe/zeolites, despite the fact that most of them degrade beyond tolerance after hydrothermal aging at temperatures ≥ 650 C, typically maintain good SCR selectivities. In recent years, Fe/beta has been identified as one of the more robust Fe/zeolites for use in NH3-SCR, where activity maintains even after hydrothermal aging at 750 C. Very recently, we, for the first time, synthesized and tested NH3-SCR performance formore » fresh and hydrothermally aged Fe/SSZ-13 catalysts. This study demonstrated that Fe/SSZ-13 is also a promising robust SCR catalyst, especially for high-temperature applications. In the present study, we compare catalytic performance between Fe/SSZ-13 and Fe/beta with similar Fe loadings and Si/Al ratios. Special attention is paid to effects from hydrothermal aging, aiming to understanding similarities and differences between these two catalysts. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.« less

  10. Facile One-Step Synthesis of Hybrid Graphitic Carbon Nitride and Carbon Composites as High-Performance Catalysts for CO2 Photocatalytic Conversion.

    PubMed

    Wang, Yangang; Bai, Xia; Qin, Hengfei; Wang, Fei; Li, Yaguang; Li, Xi; Kang, Shifei; Zuo, Yuanhui; Cui, Lifeng

    2016-07-13

    Utilizing and reducing carbon dioxide is a key target in the fight against global warming. The photocatalytic performance of bulk graphitic carbon nitride (g-C3N4) is usually limited by its low surface area and rapid charge carrier recombination. To develop g-C3N4 more suitable for photocatalysis, researchers have to enlarge its surface area and accelerate the charge carrier separation. In this work, novel hybrid graphitic carbon nitride and carbon (H-g-C3N4/C) composites with various carbon contents have been developed for the first time by a facile one-step pyrolysis method using melamine and natural soybean oil as precursors. The effect of carbon content on the structure of H-g-C3N4/C composites and the catalytic activity for the photoreduction of CO2 with H2O were investigated. The results indicated that the introduction of carbon component can effectively improve the textural properties and electronic conductivity of the composites, which exhibited imporved photocatalytic activity for the reduction of CO2 with H2O in comparison with bulk g-C3N4. The highest CO and CH4 yield of 22.60 μmol/g-cat. and 12.5 μmol/g-cat., respectively, were acquired on the H-g-C3N4/C-6 catalyst with the carbon content of 3.77 wt % under 9 h simulated solar irradiation, which were more than twice as high as that of bulk g-C3N4. The remarkably increased photocatalytic performance arises from the synergistic effect of hybrid carbon and g-C3N4.

  11. Investigations on photoelectrochemical performance of boron doped ZnO nanorods synthesized by facile hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Sharma, Akash; Chakraborty, Mohua; Thangavel, R.

    2018-05-01

    Undoped and 10% Boron (B)-doped Zinc Oxide nanorods (ZnO NRs) on Tin doped Indium Oxide (ITO) coated glass substrates were synthesized using facile sol-gel, spin coating and hydrothermal method. The impact of adding Boron on the structural, optical properties, surface morphology and photoelectrochemical (PEC) performances of the ZnO NRs have been investigated. The XRD pattern confirmed the formation of pure hexagonal phase with space group P63mc (186). The same can also be clearly observed form the FESEM images. The UV-Vis study shows the narrowing in band gap from 3.22 eV to 3.19 eV with incorporation of Boron in ZnO matrix. The B-doped ZnO NRs sample shows an enhanced photocurrent density of 1.31 mA/cm2 at 0.5 V (vs. Ag/AgCl), which is more than 171% enhancement compared to bare ZnO NRs (0.483 mA/cm2) in 0.1 M Na2SO4 aqueous solution. The results clearly indicates that the boron doped ZnO NRs can be used as an efficient photoelectrode material for photoelectrochemical cell.

  12. Physical and chemical differences between one-stage and two-stage hydrothermal pretreated hardwood substrates for use in cellulosic ethanol production

    DOE PAGES

    Guilliams, Andrew; Pattathil, Sivakumar; Willies, Deidre; ...

    2016-02-03

    Here, there are many different types of pretreatment carried out to prepare cellulosic substrates for fermentation. In this study, one- and two-stage hydrothermal pretreatment were carried out to determine their effects on subsequent fermentations. The two substrates were found to behave differently during fermentation. The two substrates were then characterized using physical and chemical parameters.

  13. One Step Quantum Key Distribution Based on EPR Entanglement.

    PubMed

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-06-30

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper's attack would introduce at least an error rate of 46.875%. Compared with the "Ping-pong" protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step.

  14. Design of underwater superoleophobic TiO{sub 2} coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Guo, Zhiguang, E-mail: zguo@licp.cas.cn; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000

    Self-cleaning properties inspired by the structures and functions of some creatures are of great interest since the late 20th century. In this paper, TiO{sub 2} coatings with hierarchical rutile TiO{sub 2} flowers on fluorine-doped tin oxide substrate are fabricated through a simple one-step hydrothermal method. The flower-like coatings exhibit superhydrophilicity in air and superoleophobicity underwater with a contact angle as high as 157°, presenting good underwater self-cleaning performance. In addition, when contaminated by oleic acid, the as-prepared TiO{sub 2} coatings also exhibit excellent photocatalytic capability under ultraviolet irradiation, which demonstrated self-cleaning properties in a different way. This self-cleaning film providesmore » a good strategy for some industrial and ocean applications.« less

  15. One-step in situ synthesis of graphene–TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Mingxuan, E-mail: mingxuansun@sues.edu.cn; Li, Weibin; Sun, Shanfu

    2015-01-15

    Chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with superior dispersity were synthesized by a one-step in situ hydrothermal method using graphene oxide (GO) and TiO{sub 2} (P25) as the starting materials. The as-prepared samples were characterized by XRD, XPS, TEM, FE-SEM, EDX, Raman, N{sub 2} adsorption, and UV–vis DRS techniques. Enhanced light absorption and a red shift of absorption edge were observed for the composites in the ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). Their effective photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation. An enhancement of photocatalytic performance was observed over graphene/TiO{sub 2} nanorodmore » hybrid composite photocatalysts, as 3.7 times larger than that of pristine TiO{sub 2} nanorods. This work demonstrated that the synthesis of TiO{sub 2} nanorods and simultaneous conversion of GO to graphene “without using reducing agents” had shown to be a rapid, direct and clean approach to fabricate chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic performance.« less

  16. Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor.

    PubMed

    Low, Sze Shin; Tan, Michelle T T; Loh, Hwei-San; Khiew, Poi Sim; Chiu, Wee Siong

    2016-01-15

    Graphene/zinc oxide nanocomposite was synthesised via a facile, green and efficient approach consisted of novel liquid phase exfoliation and solvothermal growth for sensing application. Highly pristine graphene was synthesised through mild sonication treatment of graphite in a mixture of ethanol and water at an optimum ratio. The X-ray diffractometry (XRD) affirmed the hydrothermal growth of pure zinc oxide nanoparticles from zinc nitrate hexahydrate precursor. The as-prepared graphene/zinc oxide (G/ZnO) nanocomposite was characterised comprehensively to evaluate its morphology, crystallinity, composition and purity. All results clearly indicate that zinc oxide particles were homogenously distributed on graphene sheets, without any severe aggregation. The electrochemical performance of graphene/zinc oxide nanocomposite-modified screen-printed carbon electrode (SPCE) was evaluated using cyclic voltammetry (CV) and amperometry analysis. The resulting electrode exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H2O2) in a linear range of 1-15 mM with a correlation coefficient of 0.9977. The sensitivity of the graphene/zinc oxide nanocomposite-modified hydrogen peroxide sensor was 3.2580 μAmM(-1) with a limit of detection of 7.4357 μM. An electrochemical DNA sensor platform was then fabricated for the detection of Avian Influenza H5 gene based on graphene/zinc oxide nanocomposite. The results obtained from amperometry study indicate that the graphene/zinc oxide nanocomposite-enhanced electrochemical DNA biosensor is significantly more sensitive (P < 0.05) and efficient than the conventional agarose gel electrophoresis. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. One-Step Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1984-01-01

    Steam injection improves yield and quality of product. Single step process for liquefying coal increases liquid yield and reduces hydrogen consumption. Principal difference between this and earlier processes includes injection of steam into reactor. Steam lowers viscosity of liquid product, so further upgrading unnecessary.

  18. Synthesis of carbon-doped nanosheets m-BiVO4 with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property

    NASA Astrophysics Data System (ADS)

    Zhao, Deqiang; Zong, Wenjuan; Fan, Zihong; Fang, Yue-Wen; Xiong, Shimin; Du, Mao; Wu, Tianhui; Ji, Fangying; Xu, Xuan

    2017-04-01

    To achieve an efficient visible-light absorption and degradation of bismuth vanadate (BiVO4), in this paper, a carbon-doped (C-doped) nanosheets monoclinic BiVO4 (m-BiVO4), with thicknesses within 19.86 ± 8.48 nm, was synthesized using polyvinylpyrrolidone K-30 (PVP) as a template and l-carbonic as the carbon source by one-step hydrothermal synthesis method. This C-doped BiVO4 in three-dimensional (3D) hierarchical structure enjoys high visible-light photocatalytic property. The samples were characterized using x-ray diffraction, scanning electron microscope, Raman spectra, energy dispersive spectrometer, transmission electron microscope, x-ray photoelectron spectroscopy, UV-Vis diffused reflectance spectroscopy, specific surface area, electron spin resonance, and transient photocurrent response, photoluminescence spectra, and incident-photon-to-current conversion efficiency, respectively. What is more, we studied the C-doping effect on the band-gap energy of BiVO4 based on First-principles. X-ray diffraction analysis showed that all photocatalysts were in the same single monoclinic scheelite structure. According to the other characterization results, the element C was successfully doped in BiVO4, resulting in the 3D hierarchical structure of C-doped BiVO4 (P-L-BiVO4). We speculated that it could be the directional coalescence mechanism by which the l-cysteine promoted the two-dimensional growth and C-doping process of BiVO4, thus leading to the formation of nanosheets which were then promoted into 3D self-assembly by PVP and the shortening of the band gap. Among all samples, P-L-BiVO4 can make the highest removal ratio of rhodamine B under visible-light irradiation. The stability of P-L-BiVO4 was verified by recycle experiments. It showed that P-L-BiVO4 had strong visible-light absorption behavior and high electron-hole separation efficiency and stability, making a significant advantage in actual situation.

  19. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  20. One Step Quantum Key Distribution Based on EPR Entanglement

    PubMed Central

    Li, Jian; Li, Na; Li, Lei-Lei; Wang, Tao

    2016-01-01

    A novel quantum key distribution protocol is presented, based on entanglement and dense coding and allowing asymptotically secure key distribution. Considering the storage time limit of quantum bits, a grouping quantum key distribution protocol is proposed, which overcomes the vulnerability of first protocol and improves the maneuverability. Moreover, a security analysis is given and a simple type of eavesdropper’s attack would introduce at least an error rate of 46.875%. Compared with the “Ping-pong” protocol involving two steps, the proposed protocol does not need to store the qubit and only involves one step. PMID:27357865

  1. A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles.

    PubMed

    Benelmekki, Maria; Bohra, Murtaza; Kim, Jeong-Hwan; Diaz, Rosa E; Vernieres, Jerome; Grammatikopoulos, Panagiotis; Sowwan, Mukhles

    2014-04-07

    We report a facile single-step synthesis of ternary hybrid nanoparticles (NPs) composed of multiple dumbbell-like iron-silver (FeAg) cores encapsulated by a silicon (Si) shell using a versatile co-sputter gas-condensation technique. In comparison to previously reported binary magneto-plasmonic NPs, the advantage conferred by a Si shell is to bind the multiple magneto-plasmonic (FeAg) cores together and prevent them from aggregation at the same time. Further, we demonstrate that the size of the NPs and number of cores in each NP can be modulated over a wide range by tuning the experimental parameters.

  2. Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment.

    PubMed

    Dong, Bin; Li, Guang; Yang, Xiaogang; Chen, Luming; Chen, George Z

    2018-04-01

    (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O samples with different morphology are successfully synthesized via two-step synthesis route - ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (UIHT) method. The effects of the adoption of ultrasonic-intensified impinging stream pre-treatment, reagent concentration (C), pH value of solution and hydrothermal reaction time (T) on the physical and chemical properties of the synthesised (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O composites and FePO 4 particles were systematically investigated. Nano-seeds were firstly synthesized using the ultrasonic-intensified T-mixer and these nano-seeds were then transferred into a hydrothermal reactor, heated at 170 °C for 4 h. The obtained samples were characterized by utilising XRD, BET, TG-DTA, SEM, TEM, Mastersizer 3000 and FTIR, respectively. The experimental results have indicated that the particle size and morphology of the obtained samples are remarkably affected by the use of ultrasonic-intensified impinging stream pre-treatment, hydrothermal reaction time, reagent concentration, and pH value of solution. When such (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O precursor samples were transformed to FePO 4 products after sintering at 650 °C for 10 h, the SEM images have clearly shown that both the precursor and the final product still retain their monodispersed spherical microstructures with similar particle size of about 3 μm when the samples are synthesised at the optimised condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Weixia; Wang, Xianwei; Hu, Yanchun; Sun, Lingyun; Gao, Chang; Zhang, Cuicui; Liu, Han; Duan, Meng

    2018-04-01

    The single-phase CoMoO4 was prepared via a facile hydrothermal method coupled with calcination treatment at 400 °C. The structures, morphologies, and electrochemical properties of samples with different hydrothermal reaction times were investigated. The microsphere structure, which consisted of nanoflakes, was observed in samples. The specific capacitances at 1 A g-1 are 151, 182, 243, 384, and 186 F g-1 for samples with the hydrothermal times of 1, 4, 8, 12, and 24 h, respectively. In addition, the sample with the hydrothermal time of 12 h shows a good rate capability, and there is 45% retention of initial capacitance when the current density increases from 1 to 8 A g-1. The high retain capacitances of samples show the fine long-cycle stability after 1000 charge-discharge cycles at current density of 8 A g-1. The results indicate that CoMoO4 samples could be a choice of excellent electrode materials for supercapacitor.

  4. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  5. Classified one-step high-radix signed-digit arithmetic units

    NASA Astrophysics Data System (ADS)

    Cherri, Abdallah K.

    1998-08-01

    High-radix number systems enable higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. A simple one-step fully parallel high-radix signed-digit arithmetic is proposed for parallel optical computing based on new joint spatial encodings. This reduces hardware requirements and improves throughput by reducing the space-bandwidth produce needed. The high-radix signed-digit arithmetic operations are based on classifying the neighboring input digit pairs into various groups to reduce the computation rules. A new joint spatial encoding technique is developed to present both the operands and the computation rules. This technique increases the spatial bandwidth product of the spatial light modulators of the system. An optical implementation of the proposed high-radix signed-digit arithmetic operations is also presented. It is shown that our one-step trinary signed-digit and quaternary signed-digit arithmetic units are much simpler and better than all previously reported high-radix signed-digit techniques.

  6. Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione.

    PubMed

    Zhu, Wanying; Jiang, Guoyi; Xu, Lei; Li, Bingzhi; Cai, Qizhi; Jiang, Huijun; Zhou, Xuemin

    2015-07-30

    Based on magnetic field directed self-assembly (MDSA) of the ternary Fe3O4@PANI/rGO nanocomposites, a facile and controllable molecularly imprinted electrochemical sensor (MIES) was fabricated through a one-step approach for detection of glutathione (GSH). The ternary Fe3O4@PANI/rGO nanocomposites were obtained by chemical oxidative polymerization and intercalation of Fe3O4@PANI into the graphene oxide layers via π-π stacking interaction, followed by reduction of graphene oxide in the presence of hydrazine hydrate. In molecular imprinting process, the pre-polymers, including GSH as template molecule, Fe3O4@PANI/rGO nanocomposites as functional monomers and pyrrole as both cross-linker and co-monomer, was assembled through N-H hydrogen bonds and the electrostatic interaction, and then was rapidly oriented onto the surface of MGCE under the magnetic field induction. Subsequently, the electrochemical GSH sensor was formed by electropolymerization. In this work, the ternary Fe3O4@PANI/rGO nanocomposites could not only provide available functionalized sites in the matrix to form hydrogen bond and electrostatic interaction with GSH, but also afford a promoting network for electron transfer. Moreover, the biomimetic sensing membrane could be controlled more conveniently and effectively by adjusting the magnetic field strength. The as-prepared controllable sensor showed good stability and reproducibility for the determination of GSH with the detection limit reaching 3 nmol L(-1) (S/N = 3). In addition, the highly sensitive and selective biomimetic sensor has been successfully used for the clinical determination of GSH in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. One Small Step for a Man: Estimation of Gender, Age and Height from Recordings of One Step by a Single Inertial Sensor

    PubMed Central

    Riaz, Qaiser; Vögele, Anna; Krüger, Björn; Weber, Andreas

    2015-01-01

    A number of previous works have shown that information about a subject is encoded in sparse kinematic information, such as the one revealed by so-called point light walkers. With the work at hand, we extend these results to classifications of soft biometrics from inertial sensor recordings at a single body location from a single step. We recorded accelerations and angular velocities of 26 subjects using integrated measurement units (IMUs) attached at four locations (chest, lower back, right wrist and left ankle) when performing standardized gait tasks. The collected data were segmented into individual walking steps. We trained random forest classifiers in order to estimate soft biometrics (gender, age and height). We applied two different validation methods to the process, 10-fold cross-validation and subject-wise cross-validation. For all three classification tasks, we achieve high accuracy values for all four sensor locations. From these results, we can conclude that the data of a single walking step (6D: accelerations and angular velocities) allow for a robust estimation of the gender, height and age of a person. PMID:26703601

  8. One-step synthesis of vertically aligned anatase thornbush-like TiO2 nanowire arrays on transparent conducting oxides for solid-state dye-sensitized solar cells.

    PubMed

    Roh, Dong Kyu; Chi, Won Seok; Ahn, Sung Hoon; Jeon, Harim; Kim, Jong Hak

    2013-08-01

    Herein, we report a facile synthesis of high-density anatase-phase vertically aligned thornbush-like TiO2 nanowires (TBWs) on transparent conducting oxide glasses. Morphologically controllable TBW arrays of 9 μm in length are generated through a one-step hydrothermal reaction at 200 °C over 11 h using potassium titanium oxide oxalate dehydrate, diethylene glycol (DEG), and water. The TBWs consist of a large number of nanoplates or nanorods, as confirmed by SEM and TEM imaging. The morphologies of TBWs are controllable by adjusting DEG/water ratios. TBW diameters gradually decrease from 600 (TBW600) to 400 (TBW400) to 200 nm (TBW200) and morphologies change from nanoplates to nanorods with an increase in DEG content. TBWs are utilized as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs) and solid-state DSSCs (ssDSSCs). The energy-conversion efficiency of qssDSSCs is in the order: TBW200 (5.2%)>TBW400 (4.5%)>TBW600 (3.4%). These results can be attributed to the different surface areas, light-scattering effects, and charge transport rates, as confirmed by dye-loading measurements, reflectance spectroscopy, and incident photon-to-electron conversion efficiency and intensity-modulated photovoltage spectroscopy/intensity-modulated photocurrent spectroscopy analyses. TBW200 is further treated with a graft-copolymer-directed organized mesoporous TiO2 to increase the surface area and interconnectivity of TBWs. As a result, the energy-conversion efficiency of the ssDSSC increases to 6.7% at 100 mW cm(-2) , which is among the highest values for N719-dye-based ssDSSCs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The one step fermionic ladder

    NASA Astrophysics Data System (ADS)

    Das, Joy Prakash; Setlur, Girish S.

    2017-10-01

    The one step fermionic ladder refers to two parallel Luttinger Liquids (poles of the ladder) placed such that there is a finite probability of electrons hopping between the two poles at a pair of opposing points along each of the poles. The many-body Green function for such a system is calculated in presence of forward scattering interactions using the powerful non-chiral bosonization technique (NCBT). This technique is based on a non-standard harmonic analysis of the rapidly varying parts of the density fields appropriate for the study of strongly inhomogeneous ladder systems. The closed analytical expression for the correlation function obtained from NCBT is nothing but the series involving the RPA (Random Phase Approximation) diagrams in powers of the forward scattering coupling strength resummed to include only the most singular terms with the source of inhomogeneities treated exactly. Finally the correlation functions are used to study physical phenomena such as Friedel oscillations and the conductance of such systems with the potential difference applied across various ends.

  10. Hydrothermal Fabrication of WO3 Hierarchical Architectures: Structure, Growth and Response

    PubMed Central

    Wu, Chuan-Sheng

    2015-01-01

    Recently hierarchical architectures, consisting of two-dimensional (2D) nanostructures, are of great interest for potential applications in energy and environmental. Here, novel rose-like WO3 hierarchical architectures were successfully synthesized via a facile hydrothermal method. The as-prepared WO3 hierarchical architectures were in fact assembled by numerous nanosheets with an average thickness of ~30 nm. We found that the oxalic acid played a significant role in governing morphologies of WO3 during hydrothermal process. Based on comparative studies, a possible formation mechanism was also proposed in detail. Furthermore, gas-sensing measurement showed that the well-defined 3D WO3 hierarchical architectures exhibited the excellent gas sensing properties towards CO. PMID:28347062

  11. One-step synthesis of nitrogen, boron co-doped fluorescent carbon nanoparticles for glucose detection.

    PubMed

    Liang, Meijuan; Ren, Yi; Zhang, Haijuan; Ma, Yunxia; Niu, Xiaoying; Chen, Xingguo

    2017-09-01

    Heteroatom-doped carbon nanoparticles (CNPs) have attracted considerable attention due to an effective improvement in their intrinsic properties. Here, a facile and simple synthesis of nitrogen, boron co-doped carbon nanoparticles (NB-CNPs) from a sole precursor, 3-aminophenylboronic acid, was performed via a one-step solid-phase approach. Because of the presence of boronic acid, NB-CNPs can be used directly as a fluorescent probe for glucose. Based on a boronic acid-triggered specific reaction, we developed a simple NB-CNP probe without surface modification for the detection of glucose. When glucose was introduced, the fluorescence of NB-CNPs was suppressed through a surface-quenching states mechanism. Obvious fluorescence quenching allowed the highly sensitive determination of glucose with a limit of detection of 1.8 μM. Moreover, the proposed method has been successfully used to detect glucose in urine from people with diabetes, suggesting potential application in sensing glucose. Copyright © 2017 John Wiley & Sons, Ltd.

  12. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors.

    PubMed

    Chen, Wei; Xia, Chuan; Alshareef, Husam N

    2014-09-23

    A facile one-step electrodeposition method is developed to prepare ternary nickel cobalt sulfide interconnected nanosheet arrays on conductive carbon substrates as electrodes for supercapacitors, resulting in exceptional energy storage performance. Taking advantages of the highly conductive, mesoporous nature of the nanosheets and open framework of the three-dimensional nanoarchitectures, the ternary sulfide electrodes exhibit high specific capacitance (1418 F g(-1) at 5 A g(-1) and 1285 F g(-1) at 100 A g(-1)) with excellent rate capability. An asymmetric supercapacitor fabricated by the ternary sulfide nanosheet arrays as positive electrode and porous graphene film as negative electrode demonstrates outstanding electrochemical performance for practical energy storage applications. Our asymmetric supercapacitors show a high energy density of 60 Wh kg(-1) at a power density of 1.8 kW kg(-1). Even when charging the cell within 4.5 s, the energy density is still as high as 33 Wh kg(-1) at an outstanding power density of 28.8 kW kg(-1) with robust long-term cycling stability up to 50,000 cycles.

  13. NaCl-assisted one-step growth of MoS2-WS2 in-plane heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Zhan; Xie, Yong; Wang, Haolin; Wu, Ruixue; Nan, Tang; Zhan, Yongjie; Sun, Jing; Jiang, Teng; Zhao, Ying; Lei, Yimin; Yang, Mei; Wang, Weidong; Zhu, Qing; Ma, Xiaohua; Hao, Yue

    2017-08-01

    Transition metal dichalcogenides (TMDs) have attracted considerable interest for exploration of next-generation electronics and optoelectronics in recent years. Fabrication of in-plane lateral heterostructures between TMDs has opened up excellent opportunities for engineering two-dimensional materials. The creation of high quality heterostructures with a facile method is highly desirable but it still remains challenging. In this work, we demonstrate a one-step growth method for the construction of high-quality MoS2-WS2 in-plane heterostructures. The synthesis was carried out using ambient pressure chemical vapor deposition (APCVD) with the assistance of sodium chloride (NaCl). It was found that the addition of NaCl played a key role in lowering the growth temperatures, in which the Na-containing precursors could be formed and condensed on the substrates to reduce the energy of the reaction. As a result, the growth regimes of MoS2 and WS2 are better matched, leading to the formation of in-plane heterostructures in a single step. The heterostructures were proved to be of high quality with a sharp and clear interface. This newly developed strategy with the assistance of NaCl is promising for synthesizing other TMDs and their heterostructures.

  14. Post-impact hydrothermal system geochemistry and mineralogy: Rochechouart impact structure, France.

    NASA Astrophysics Data System (ADS)

    Simpson, Sarah

    2014-05-01

    Hypervelocity impacts generate extreme temperatures and pressures in target rocks and may permanently alter them. The process of cratering is at the forefront of research involving the study of the evolution and origin of life, both on Mars and Earth, as conditions may be favourable for hydrothermal systems to form. Of the 170 known impact structures on Earth, over one-third are known to contain fossil hydrothermal systems [1]. The introduction of water to a system, when coupled with even small amounts of heat, has the potential to completely alter the target or host rock geochemistry. Often, the mineral assemblages produced in these environments are unique, and are useful indicators of post-impact conditions. The Rochechouart impact structure in South-Central France is dated to 201 ± 2 Ma into a primarily granitic target [2]. Much of the original morphological features have been eroded and very little of the allochthonous impactites remain. This has, however, allowed researchers to study the shock effects on the lower and central areas of the structure, as well as any subsequent hydrothermal activity. Previous work has focused on detailed classification of the target and autochthonous and allochthonous impactites [3, 4], identification of the projectile [5], and dating the structure using Ar-isotope techniques [2]. Authors have also noted geochemical evidence of K-metasomatism, which is pronounced throughout all lithologies as enrichment in K2O and depletion in CaO and Na2O [3, 4, 5]. This indicates a pervasive hydrothermal system, whose effects throughout the structure have yet to be studied in detail, particularly in those parts at and below the transient floor. The purpose of this study is to classify the mineralogical and geochemical effects of the hydrothermal system. Samples were collected via permission from the Réserve Naturelle de l'Astroblème de Rochechouart-Chassenon [6]. Sample selection was based on the presence of secondary mineralization in hand

  15. A facile one-step fluorescence method for the quantitation of low-content single base deamination impurity in synthetic oligonucleotides.

    PubMed

    Su, Xiaoye; Liang, Ruiting; Stolee, Jessica A

    2018-06-05

    Oligonucleotides are being researched and developed as potential drug candidates for the treatment of a broad spectrum of diseases. The characterization of antisense oligonucleotide (ASO) impurities caused by base mutations (e.g. deamination) which are closely related to the target ASO is a significant analytical challenge. Herein, we describe a novel one-step method, utilizing a strategy that combines fluorescence-ON detection with competitive hybridization, to achieve single base mutation quantitation in extensively modified synthetic ASOs. Given that this method is highly specific and sensitive (LoQ = 4 nM), we envision that it will find utility for screening other impurities as well as sequencing modified oligonucleotides. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. One-pot hydrothermal synthesis, characterization, and electrochemical properties of rGO/MnFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Kotutha, Isara; Swatsitang, Ekaphan; Meewassana, Worawat; Maensiri, Santi

    2015-06-01

    In this work, a simple facile route for preparing an rGO/MnFe2O4 nanocomposite through a one-pot hydrothermal approach was demonstrated. Graphite oxide (GO) was prepared from graphite powder by a modified Hummers method. Fe(NO3)2 • 9H2O and Mn(NO3)2 • H2O were used as the precursors for the preparation of the rGO/MnFe2O4 nanocomposite. The formation of the rGO/MnFe2O4 nanocomposite was confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Rama spectroscopy (Raman). The specific surface area of the prepared composite obtained by Brunauer-Emmett-Teller (BET) analysis was lower than that of pure rGO but higher than that of pure MnFe2O4. Consequently, the electrochemical performance was investigated by using a three-electrode cell system in 6.0 M KOH. The results show that the specific capacitance was determined to be 190.3, 276.9, and 144.5 F/g at a scan rate of 10 mV/s, and 194.9, 274.6, and 134.4 F/g at a current density of 5.0 A/g for rGO, rGO/(5 mmol) MnFe2O4, and rGO/(10 mmol) MnFe2O4, respectively. These results suggest that the composite of MnFe2O4 nanoparticles on an rGO nanosheet can improve the capacitive behavior of the fabricated electrode, but the electrochemical properties are reduced when the MnFe2O4 concentration ratio is high.

  17. One-step large-scale synthesis of micrometer-sized silver nanosheets by a template-free electrochemical method

    NASA Astrophysics Data System (ADS)

    Park, Sun Hwa; Son, Jin Gyeong; Lee, Tae Geol; Park, Hyun Min; Song, Jae Yong

    2013-05-01

    We have synthesized micrometer-sized Ag nanosheets via a facile, one-step, template-free electrochemical deposition in an ultra-dilute silver nitrate aqueous electrolyte. The nanosheet growth was revealed to occur in three stages: (1) formation of polygonal Ag nuclei on a substrate, (2) growth of {112}-faceted nanowire from the nuclei, and (3) anisotropic growth of (111)-planar nanosheets, approximately 20 to 50 nm in thickness and 10 μm in width, in the <112>-direction. The vertical growth of the facet nanowire was induced by the strong interface anisotropy between the deposit and electrolyte due to the ultra-dilute concentration of electrolyte and high reduction potential. The thickness of Ag nanosheets was controllable by the adjustment of the reduction/oxidation potential and frequency of the reverse-pulse potentiodynamic mode.

  18. Distribution, structure and temporal variability of hydrothermal outflow at a slow-spreading hydrothermal field from seafloor image mosaics.

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09

    2010-05-01

    The Lucky Strike hydrothermal site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active hydrothermal fields along the ridge system. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike hydrothermal site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how hydrothermal outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). Hydrothermal outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of hydrothermal activity throughout the system; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of hydrothermal outflow at depth, the structural and volcanic control, and ultimately

  19. Effect of Hydrothermal Treatment on Structural and Catalytic Properties of [CTA]-MCM-41 Silica.

    PubMed

    Zapelini, Iago W; Silva, Laura L; Cardoso, Dilson

    2018-05-21

    The [CTA]-MCM-41 hybrid silica is a useful and simply prepared heterogeneous basic catalyst for the transesterification reaction. Here, the effect of hydrothermal treatment during catalyst preparation was investigated, with the aim of improving the structural stability of this catalyst during the reaction. It was observed that the hydrothermal step led to the formation of a material with a higher degree of organization and a greater wall thickness, which improved its structural stability. However, the catalyst prepared using this treatment presented lower catalytic activity, due to the presence of fewer active sites.

  20. CT fluoroscopy-guided percutaneous drainage: comparison of the one step and the Seldinger techniques.

    PubMed

    Kajiwara, Kenji; Yamagami, Takuji; Ishikawa, Masaki; Yoshimatsu, Rika; Baba, Yasutaka; Nakamura, Yuko; Fukumoto, Wataru; Awai, Kazuo

    2017-06-01

    To evaluate the one step technique compared with the Seldinger technique in computed tomography (CT) fluoroscopy-guided percutaneous drainage of abdominal and pelvic abscess. Seventy-six consecutive patients (49 men, 27 women; mean age 63.5 years, range 19-87 years) with abdominal and pelvic abscess were included in this study. Drainages were performed with the one step (n = 46) and with the Seldinger (n = 48) technique between September 2012 and June 2014. The technical success and clinical success rates were 95.8% and 93.5%, respectively, for the one step group, and 97.8% and 95.7%, respectively, for the Seldinger group. The mean procedure time was significantly shorter with the one step than with the Seldinger method (15.0 ± 4.3 min, range 10-29 min vs. 21.0 ± 9.5 min, range 13-54 min, p < .01). The mean abscess size and depth were 73.4 ± 44.0 mm and 42.5 ± 19.3 mm, respectively, in the one step group, and 61.0 ± 22.8 mm and 35.0 ± 20.7 mm in the Seldinger group. The one step technique was easier and faster than the Seldinger technique. The effectiveness of both techniques was similar for the CT fluoroscopy-guided percutaneous drainage of abdominal and pelvic abscess.

  1. Detection of canine distemper virus (CDV) through one step RT-PCR combined with nested PCR.

    PubMed

    Kim, Y H; Cho, K W; Youn, H Y; Yoo, H S; Han, H R

    2001-04-01

    A one step reverse transcription PCR (RT-PCR) combined nested PCR was set up to increase efficiency in the diagnosis of canine distemper virus (CDV) infection after developement of nested PCR. Two PCR primer sets were designed based on the sequence of nucleocapsid gene of CDV Onderstepoort strain. One-step RT-PCR with the outer primer pair was revealed to detect 10(2) PFU/ml. The sensitivity was increased hundredfold using the one-step RT-PCR combined with the nested PCR. Specificity of the PCR was also confirmed using other related canine virus and peripheral blood mononuclear cells (PBMC) and body secretes of healthy dogs. Of the 51 blood samples from dogs clinically suspected of CD, 45 samples were revealed as positive by one-step RT-PCR combined with nested PCR. However, only 15 samples were identified as positive with a single one step RT-PCR. Therefore approximately 60% increase in the efficiency of the diagnosis was observed by the combined method. These results suggested that one step RT-PCR combined with nested PCR could be a sensitive, specific, and practical method for diagnosis of CDV infection.

  2. Part II. Hydrothermal steel slag valorization: hydrogen and nano-magnetite production

    NASA Astrophysics Data System (ADS)

    Crouzet, Camille; Brunet, Fabrice; Recham, Nadir; Auzende, Anne-Line; Findling, Nathaniel; Magnin, Valérie; Ferrasse, Jean-Henry; Goffé, Bruno

    2017-10-01

    The effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150 – 350°C range for acid acetic concentrations from 0 to 4M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 × 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 hours, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10 – 30 nm, 100 – 300 nm and 1 – 10 µm. The smallest fraction (10 – 30 nm) is comparable to the 10 – 20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.

  3. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge.

    PubMed

    Wang, Liping; Li, Aimin; Chang, Yuzhi

    2017-04-01

    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Are women positive for the One Step but negative for the Two Step screening tests for gestational diabetes at higher risk for adverse outcomes?

    PubMed

    Caissutti, Claudia; Khalifeh, Adeeb; Saccone, Gabriele; Berghella, Vincenzo

    2018-02-01

    The aim of this study was to evaluate if women meeting criteria for gestational diabetes mellitus (GDM) by the One Step test as per International Association of the Diabetes and Pregnancy Study Groups (IADPSG) criteria but not by other less strict criteria have adverse pregnancy outcomes compared with GDM-negative controls. The primary outcome was the incidence of macrosomia, defined as birthweight > 4000 g. Electronic databases were searched from their inception until May 2017. All studies identifying pregnant women negative at the Two Step test, but positive at the One Step test for IADPSG criteria were included. We excluded studies that randomized women to the One Step vs. the Two Step tests; studies that compared different criteria within the same screening method; randomized studies comparing treatments for GDM; and studies comparing incidence of GDM in women doing the One Step test vs. the Two Step test. Eight retrospective cohort studies, including 29 983 women, were included. Five study groups and four control groups were identified. The heterogeneity between the studies was high. Gestational hypertension, preeclampsia and large for gestational age, as well as in some analyses cesarean delivery, macrosomia and preterm birth, were significantly more frequent, and small for gestational age in some analyses significantly less frequent, in women GDM-positive by the One Step, but not the Two Step. Women meeting criteria for GDM by IADPSG criteria but not by other less strict criteria have an increased risk of adverse pregnancy outcomes such as gestational hypertension, preeclampsia and large for gestational age, compared with GDM-negative controls. Based on these findings, and evidence from other studies that treatment decreases these adverse outcomes, we suggest screening for GDM using the One Step IADPSG criteria. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  5. Photocatalytic growth of Ag nanocrystals on hydrothermally synthesized multiphasic TiO2/reduced graphene oxide (rGO) nanocomposites and their SERS performance

    NASA Astrophysics Data System (ADS)

    Guo, Tian-Long; Li, Ji-Guang; Sun, Xudong; Sakka, Yoshio

    2017-11-01

    TiO2/reduced graphene oxide (rGO) nanocomposites were prepared via a facile one-step hydrothermal method using TiCl3 as the TiO2 precursor. Cetyltrimethyl ammonium bromide (CTAB) was introduced as a stabilizer for GO in solution. The effects of GO content, Ti3+ concentration and urea additive on phase constituent and morphology of the TiO2 crystallites in the nanocomposites were systematically investigated. UV-vis absorption ability of the as-made composites was further tested and discussed. Ag nanocrystals (NCs) were photocatalytically grown on the surfaces of biphasic (anatase + brookite) and triphasic (anatase + brookite + rutile) TiO2/rGO nanocomposites to evaluate their surface-enhanced Raman scattering (SERS) performances. Morphology evolution of the Ag NCs in response to different photocatalytic ability of the TiO2/rGO nanocomposite was also investigated in detail. The nanocomposite with triphasic TiO2 of proper phase constituents was confirmed to favor the growth of Ag particles of two distinctly different sizes and to produce SERS substrates of substantially better performance.

  6. Hydrothermal Synthesized of CoMoO4 Microspheres as Excellent Electrode Material for Supercapacitor.

    PubMed

    Li, Weixia; Wang, Xianwei; Hu, Yanchun; Sun, Lingyun; Gao, Chang; Zhang, Cuicui; Liu, Han; Duan, Meng

    2018-04-24

    The single-phase CoMoO 4 was prepared via a facile hydrothermal method coupled with calcination treatment at 400 °C. The structures, morphologies, and electrochemical properties of samples with different hydrothermal reaction times were investigated. The microsphere structure, which consisted of nanoflakes, was observed in samples. The specific capacitances at 1 A g -1 are 151, 182, 243, 384, and 186 F g -1 for samples with the hydrothermal times of 1, 4, 8, 12, and 24 h, respectively. In addition, the sample with the hydrothermal time of 12 h shows a good rate capability, and there is 45% retention of initial capacitance when the current density increases from 1 to 8 A g -1 . The high retain capacitances of samples show the fine long-cycle stability after 1000 charge-discharge cycles at current density of 8 A g -1 . The results indicate that CoMoO 4 samples could be a choice of excellent electrode materials for supercapacitor.

  7. Effect of evaporation of solvents from one-step, self-etching adhesives.

    PubMed

    Furuse, Adilson Yoshio; Peutzfeldt, Anne; Asmussen, Erik

    2008-02-01

    To investigate whether and to what extent the bonding capacity of one-step, self-etching adhesives is influenced by the degree to which solvent is evaporated. Seven one-step, self-etching adhesives were tested (Adper Prompt L-Pop, Clearfil S3 Bond, Futurabond NR, G-Bond, Hybrid Bond, iBond, Xeno III). The variation in degree of evaporation was obtained by varying the duration of the air-blowing step. The duration required to immobilize the adhesive layer, as established in a pilot study, was used as control. Two experimental air-blowing durations, shorter (half the control duration) and longer (double the control duration) than the control duration, were chosen. The resin composite Herculite XRV was bonded to flat human dentin surfaces treated with one of the adhesives following manufacturer's instructions, except for the air-blowing duration after application. After being stored in water at 37 degrees C for 1 week, the bonded specimens were broken in shear. Failure modes were evaluated under stereomicroscope. Air-blowing duration and brand of adhesive both had an effect on shear bond strength. An interaction was found between adhesive and air-blowing duration. Some adhesives were insensitive to variations in air-drying duration, but in general, air-blowing durations shorter than the control duration produced lower shear bond strengths. Significant effects of adhesive and air-blowing duration were also detected in relation to failure mode. More adhesive failures were observed with shorter air-blowing durations. A significant negative correlation between number of adhesive failures and bond strength was found. On the basis of this in vitro study, it may be concluded that the one-step, self-etching adhesives evaluated were sensitive to degree of evaporation of the solvents.

  8. A Facile Photoluminescent Probe for Picric Acid Detection Using Carbon Nanodots Prepared by Sichuan Bergamot.

    PubMed

    Deng, Xiang; Huang, Xiaomei

    2018-03-01

    A facile photoluminescent probe for picric acid (PA) detection was developed using photoluminescent carbon nanodots (C-dots), which was obtained from a traditional Chinese medicinal material Sichuan Bergamot via a one-step hydrothermal method for the first time. The as-prepared photoluminescent C-dots show favorable blue color photoluminescence with the maximum emission at 440 nm. It has been successfully applied as a photoluminescent probe for the detection of PA. This photoluminescent probe exhibits excellent sensitivity and selectivity toward PA from 0.4 μM to 80 μM with correlation coefficient (r) of 0.9987. The limit of detection (LOD) for PA is 82 nM. Furthermore, the proposed C-dots for photoluminescent probe detection of PA in real water samples (river water, refinery wastewater and pharmaceutical factory wastewater) by adding 5 μM and 20 μM PA with satisfactory recoveries from 99.5% to 101.5%. These novel photoluminescent C-dots is promising in environmental analysis of PA.

  9. Bar-Coated Ultrathin Semiconductors from Polymer Blend for One-Step Organic Field-Effect Transistors.

    PubMed

    Ge, Feng; Liu, Zhen; Lee, Seon Baek; Wang, Xiaohong; Zhang, Guobing; Lu, Hongbo; Cho, Kilwon; Qiu, Longzhen

    2018-06-27

    One-step deposition of bi-functional semiconductor-dielectric layers for organic field-effect transistors (OFETs) is an effective way to simplify the device fabrication. However, the proposed method has rarely been reported in large-area flexible organic electronics. Herein, we demonstrate wafer-scale OFETs by bar coating the semiconducting and insulating polymer blend solution in one-step. The semiconducting polymer poly(3-hexylthiophene) (P3HT) segregates on top of the blend film, whereas dielectric polymethyl methacrylate (PMMA) acts as the bottom layer, which is achieved by a vertical phase separation structure. The morphology of blend film can be controlled by varying the concentration of P3HT and PMMA solutions. The wafer-scale one-step OFETs, with a continuous ultrathin P3HT film of 2.7 nm, exhibit high electrical reproducibility and uniformity. The one-step OFETs extend to substrate-free arrays that can be attached everywhere on varying substrates. In addition, because of the well-ordered molecular arrangement, the moderate charge transport pathway is formed, which resulted in stable OFETs under various organic solvent vapors and lights of different wavelengths. The results demonstrate that the one-step OFETs have promising potential in the field of large-area organic wearable electronics.

  10. Formation Mechanism and Gas-Sensing Performance of La/ZnO Nanoplates Synthesized by a Facile Hydrothermal Method

    NASA Astrophysics Data System (ADS)

    Li, Yan; Chen, Li-Li; Lian, Xiao-Xue; Li, Jiao

    2018-03-01

    La/ZnO nanoplates were successfully synthesized by a facile hydrothermal method. The structure and morphology of the products were characterized using x-ray diffraction and scanning electron microscopy. The gas-sensing properties of the as-prepared La/ZnO were also tested with a series of target gases, and a possible gas sensing mechanism was discussed. The results show that the as-prepared La/ZnO nanoparticles are mainly composde of a wurtzite ZnO and a little La2O3 phase with face-centered structure, showing a uniform plate-like morphology with a thickness of about 50 nm. The La/ZnO nanoplate-based sensors display a significantly better sensing performance than pure ZnO for the detection of acetone and ethanol. The 3 mol.% La/ZnO sensor shows high sensitivity (127) to 200 ppm acetone at a low working temperature (330°C), and 120-200 ppm ethanol at 300°C. Moreover, its response and recovery time for acetone and ethanol were 3 s and 4 s, 18 s and 11 s, respectively. This work demonstrates that La/ZnO nanoplate-based sensors have potential applications as practical sensors for acetone and ethanol.

  11. Large time-step stability of explicit one-dimensional advection schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    There is a wide-spread belief that most explicit one-dimensional advection schemes need to satisfy the so-called 'CFL condition' - that the Courant number, c = udelta(t)/delta(x), must be less than or equal to one, for stability in the von Neumann sense. This puts severe limitations on the time-step in high-speed, fine-grid calculations and is an impetus for the development of implicit schemes, which often require less restrictive time-step conditions for stability, but are more expensive per time-step. However, it turns out that, at least in one dimension, if explicit schemes are formulated in a consistent flux-based conservative finite-volume form, von Neumann stability analysis does not place any restriction on the allowable Courant number. Any explicit scheme that is stable for c is less than 1, with a complex amplitude ratio, G(c), can be easily extended to arbitrarily large c. The complex amplitude ratio is then given by exp(- (Iota)(Nu)(Theta)) G(delta(c)), where N is the integer part of c, and delta(c) = c - N (less than 1); this is clearly stable. The CFL condition is, in fact, not a stability condition at all, but, rather, a 'range restriction' on the 'pieces' in a piece-wise polynomial interpolation. When a global view is taken of the interpolation, the need for a CFL condition evaporates. A number of well-known explicit advection schemes are considered and thus extended to large delta(t). The analysis also includes a simple interpretation of (large delta(t)) total-variation-diminishing (TVD) constraints.

  12. Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor

    NASA Astrophysics Data System (ADS)

    Moozarm Nia, Pooria; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    For several decades, hydrogen peroxide has exhibited to be an extremely significant analyte as an intermediate in several biological devices as well as in many industrial systems. A straightforward and novel one-step technique was employed to develop a sensitive non-enzymatic hydrogen peroxide (H2O2) sensor by simultaneous electrodeposition of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO). The electroreduction performance of the CuNPs-rGO for hydrogen peroxide detection was studied by cyclic voltammetry (CV) and chronoamperometry (AMP) methods The CuNPs-rGO showed a synergistic effect of reduced graphene oxide and copper nanoparticles towards the electroreduction of hydrogen peroxide, indicating high reduction current. At detection potential of -0.2 V, the CuNPs-rGO sensor demonstrated a wide linear range up to 18 mM with a detection limit of 0.601 mM (S/N = 3). Furthermore, with addition of hydrogen peroxide, the sensor responded very quickly (<3 s). The CuNPs-rGO presents high selectivity, sensitivity, stability and fast amperometric sensing towards hydrogen peroxide which makes it favorable for the development of non-enzymatic hydrogen peroxide sensor.

  13. Comparison of IMRT planning with two-step and one-step optimization: a strategy for improving therapeutic gain and reducing the integral dose

    NASA Astrophysics Data System (ADS)

    Abate, A.; Pressello, M. C.; Benassi, M.; Strigari, L.

    2009-12-01

    The aim of this study was to evaluate the effectiveness and efficiency in inverse IMRT planning of one-step optimization with the step-and-shoot (SS) technique as compared to traditional two-step optimization using the sliding windows (SW) technique. The Pinnacle IMRT TPS allows both one-step and two-step approaches. The same beam setup for five head-and-neck tumor patients and dose-volume constraints were applied for all optimization methods. Two-step plans were produced converting the ideal fluence with or without a smoothing filter into the SW sequence. One-step plans, based on direct machine parameter optimization (DMPO), had the maximum number of segments per beam set at 8, 10, 12, producing a directly deliverable sequence. Moreover, the plans were generated whether a split-beam was used or not. Total monitor units (MUs), overall treatment time, cost function and dose-volume histograms (DVHs) were estimated for each plan. PTV conformality and homogeneity indexes and normal tissue complication probability (NTCP) that are the basis for improving therapeutic gain, as well as non-tumor integral dose (NTID), were evaluated. A two-sided t-test was used to compare quantitative variables. All plans showed similar target coverage. Compared to two-step SW optimization, the DMPO-SS plans resulted in lower MUs (20%), NTID (4%) as well as NTCP values. Differences of about 15-20% in the treatment delivery time were registered. DMPO generates less complex plans with identical PTV coverage, providing lower NTCP and NTID, which is expected to reduce the risk of secondary cancer. It is an effective and efficient method and, if available, it should be favored over the two-step IMRT planning.

  14. One-step prepared cobalt-based nanosheet as an efficient heterogeneous catalyst for activating peroxymonosulfate to degrade caffeine in water.

    PubMed

    Lin, Kun-Yi Andrew; Lai, Hong-Kai; Tong, Shaoping

    2018-03-15

    Two-dimensional (2D) planar cobalt-containing materials are promising catalysts for activating peroxymonosulfate (PMS) to degrade contaminants because 2D sheet-like morphology provides large reactive surfaces. However, preparation of these sheet-supported cobaltic materials typically involves multiple steps and complex reagents, making them less practical for PMS activation. In this study, a cobalt-based nanosheet (CoNS) is particularly developed using a one-step hydrothermal process with a single reagent in water. The resulting CoNS can exhibit a thickness as thin as a few nanometers and 2-D morphology. CoNS is also primarily comprised of cobalt species in a coordinated form of Prussian Blue analogue, which consists of both Co 3+ and Co 2+ . These features make CoNS promising for activating PMS in aqueous systems. As degradation of an emerging contaminant, caffeine, is selected as a representative reaction, CoNS not only successfully activates PMS to fully degrade caffeine in 20 min but also exhibits a much higher catalytic activity than the most common PMS activator, Co 3 O 4 . Via studying inhibitive effects of radical scavengers, caffeine degradation by CoNS-activated PMS is primarily attributed to sulfate radicals and hydroxyl radicals to a lesser extent. The degradation products of caffeine by CoNS-activated PMS are also identified and a potential degradation pathway is proposed. Moreover, CoNS could be also re-used to activate PMS for caffeine degradation without activity loss. These results indicate that CoNS is a conveniently prepared and highly effective and stable 2-D catalyst for aqueous chemical oxidation reactions. Copyright © 2017. Published by Elsevier Inc.

  15. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds.

    PubMed

    Barge, Laura M; White, Lauren M

    2017-09-01

    We review various laboratory strategies and methods that can be utilized to simulate prebiotic processes and origin of life in hydrothermal vent systems on icy/ocean worlds. Crucial steps that could be simulated in the laboratory include simulations of water-rock chemistry (e.g., serpentinization) to produce hydrothermal fluids, the types of mineral catalysts and energy gradients produced in vent interfaces where hydrothermal fluids interface with the surrounding seawater, and simulations of biologically relevant chemistry in flow-through gradient systems (i.e., far-from-equilibrium experiments). We describe some examples of experimental designs in detail, which are adaptable and could be used to test particular hypotheses about ocean world energetics or mineral/organic chemistry. Enceladus among the ocean worlds provides an ideal test case, since the pressure at the ocean floor is more easily simulated in the lab. Results for Enceladus could be extrapolated with further experiments and modeling to understand other ocean worlds. Key Words: Enceladus-Ocean worlds-Icy worlds-Hydrothermal vent-Iron sulfide-Gradient. Astrobiology 17, 820-833.

  16. Superhydrophobic aluminum alloy surfaces by a novel one-step process.

    PubMed

    Saleema, N; Sarkar, D K; Paynter, R W; Chen, X-G

    2010-09-01

    A simple one-step process has been developed to render aluminum alloy surfaces superhydrophobic by immersing the aluminum alloy substrates in a solution containing NaOH and fluoroalkyl-silane (FAS-17) molecules. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements have been performed to characterize the morphological features, chemical composition and superhydrophobicity of the surfaces. The resulting surfaces provided a water contact angle as high as ∼162° and a contact angle hysteresis as low as ∼4°. The study indicates that it is possible to fabricate superhydrophobic aluminum surfaces easily and effectively without involving the traditional two-step processes.

  17. Preparation and Optical Properties of CuS Nanofilms by a Facile Two-Step Process

    NASA Astrophysics Data System (ADS)

    Cui, Zhankui; Zhou, Junqiang; Ge, Suxiang; Zhao, Hongxiao

    CuS nanofilms were prepared by a facile two-step process including chemical bath deposition of Cu nanofilms first and the subsequent thermal sulfuration step. The composition and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. The optical properties of CuS nanofilms were determined by Ultraviolet-visible (UV-Vis) technique. The results show that the nanofilms composed by Cu spherical nanoparticles were completely transformed to the nanofilms composed by CuS nanosheets when the sulfuration temperature was 350∘C. The light absorption edges of CuS nanofilms exhibit red shift when sulfuration occurred at lower temperature. A plausible growth mechanism related with gas phase reaction for formation of CuS nanofilms was also proposed.

  18. One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification.

    PubMed

    Pant, Hem Raj; Kim, Han Joo; Joshi, Mahesh Kumar; Pant, Bishweshwar; Park, Chan Hee; Kim, Jeong In; Hui, K S; Kim, Cheol Sang

    2014-01-15

    A stable silver-doped fly ash/polyurathene (Ag-FA/PU) nanocomposite multifunctional membrane is prepared by a facile one-step electrospinning process using fly ash particles (FAPs). Colloidal solution of PU with FAPs and Ag metal precursor was subjected to fabricate nanocomposite spider-web-like membrane using electrospinning process. Presence of N,N-dimethylformamide (solvent of PU) led to reduce silver nitrate into Ag NPs. Incorporation of Ag NPs and FAPs through electrospun PU fibers is proven through electron microscopy and spectroscopic techniques. Presence of these NPs on PU nanofibers introduces several potential physicochemical properties such as spider-web-like nano-neeting for NPs separation, enhanced absorption capacity to remove carcinogenic arsenic (As) and toxic organic dyes, and antibacterial properties with reduce bio-fouling for membrane filter application. Preliminary observations used for above-mentioned applications for water treatment showed that it will be an economically and environmentally friendly nonwoven matrix for water purification. This simple approach highlights new avenues about the utilization of one pollutant material to control other pollutants in scalable and inexpensive ways. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A Rapid One-Step Process for Fabrication of Biomimetic Superhydrophobic Surfaces by Pulse Electrodeposition.

    PubMed

    Jiang, Shuzhen; Guo, Zhongning; Liu, Guixian; Gyimah, Glenn Kwabena; Li, Xiaoying; Dong, Hanshan

    2017-10-25

    Inspired by some typical plants such as lotus leaves, superhydrophobic surfaces are commonly prepared by a combination of low surface energy materials and hierarchical micro/nano structures. In this work, superhydrophobic surfaces on copper substrates were prepared by a rapid, facile one-step pulse electrodepositing process, with different duty ratios in an electrolyte containing lanthanum chloride (LaCl₃·6H₂O), myristic acid (CH₃(CH₂) 12 COOH), and ethanol. The equivalent electrolytic time was only 10 min. The surface morphology, chemical composition and superhydrophobic property of the pulse electrodeposited surfaces were fully investigated with SEM, EDX, XRD, contact angle meter and time-lapse photographs of water droplets bouncing method. The results show that the as-prepared surfaces have micro/nano dual scale structures mainly consisting of La[CH₃(CH₂) 12 COO]₃ crystals. The maximum water contact angle (WCA) is about 160.9°, and the corresponding sliding angle is about 5°. This method is time-saving and can be easily extended to other conductive materials, having a great potential for future applications.

  20. A Rapid One-Step Process for Fabrication of Biomimetic Superhydrophobic Surfaces by Pulse Electrodeposition

    PubMed Central

    Jiang, Shuzhen; Guo, Zhongning; Liu, Guixian; Gyimah, Glenn Kwabena; Li, Xiaoying; Dong, Hanshan

    2017-01-01

    Inspired by some typical plants such as lotus leaves, superhydrophobic surfaces are commonly prepared by a combination of low surface energy materials and hierarchical micro/nano structures. In this work, superhydrophobic surfaces on copper substrates were prepared by a rapid, facile one-step pulse electrodepositing process, with different duty ratios in an electrolyte containing lanthanum chloride (LaCl3·6H2O), myristic acid (CH3(CH2)12COOH), and ethanol. The equivalent electrolytic time was only 10 min. The surface morphology, chemical composition and superhydrophobic property of the pulse electrodeposited surfaces were fully investigated with SEM, EDX, XRD, contact angle meter and time-lapse photographs of water droplets bouncing method. The results show that the as-prepared surfaces have micro/nano dual scale structures mainly consisting of La[CH3(CH2)12COO]3 crystals. The maximum water contact angle (WCA) is about 160.9°, and the corresponding sliding angle is about 5°. This method is time-saving and can be easily extended to other conductive materials, having a great potential for future applications. PMID:29068427

  1. Is the closest facility the one actually used? An assessment of travel time estimation based on mammography facilities.

    PubMed

    Alford-Teaster, Jennifer; Lange, Jane M; Hubbard, Rebecca A; Lee, Christoph I; Haas, Jennifer S; Shi, Xun; Carlos, Heather A; Henderson, Louise; Hill, Deirdre; Tosteson, Anna N A; Onega, Tracy

    2016-02-18

    Characterizing geographic access depends on a broad range of methods available to researchers and the healthcare context to which the method is applied. Globally, travel time is one frequently used measure of geographic access with known limitations associated with data availability. Specifically, due to lack of available utilization data, many travel time studies assume that patients use the closest facility. To examine this assumption, an example using mammography screening data, which is considered a geographically abundant health care service in the United States, is explored. This work makes an important methodological contribution to measuring access--which is a critical component of health care planning and equity almost everywhere. We analyzed one mammogram from each of 646,553 women participating in the US based Breast Cancer Surveillance Consortium for years 2005-2012. We geocoded each record to street level address data in order to calculate travel time to the closest and to the actually used mammography facility. Travel time between the closest and the actual facility used was explored by woman-level and facility characteristics. Only 35% of women in the study population used their closest facility, but nearly three-quarters of women not using their closest facility used a facility within 5 min of the closest facility. Individuals that by-passed the closest facility tended to live in an urban core, within higher income neighborhoods, or in areas where the average travel times to work was longer. Those living in small towns or isolated rural areas had longer closer and actual median drive times. Since the majority of US women accessed a facility within a few minutes of their closest facility this suggests that distance to the closest facility may serve as an adequate proxy for utilization studies of geographically abundant services like mammography in areas where the transportation networks are well established.

  2. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    NASA Astrophysics Data System (ADS)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  3. The symmetric MSD encoder for one-step adder of ternary optical computer

    NASA Astrophysics Data System (ADS)

    Kai, Song; LiPing, Yan

    2016-08-01

    The symmetric Modified Signed-Digit (MSD) encoding is important for achieving the one-step MSD adder of Ternary Optical Computer (TOC). The paper described the symmetric MSD encoding algorithm in detail, and developed its truth table which has nine rows and nine columns. According to the truth table, the state table was developed, and the optical-path structure and circuit-implementation scheme of the symmetric MSD encoder (SME) for one-step adder of TOC were proposed. Finally, a series of experiments were designed and performed. The observed results of the experiments showed that the scheme to implement SME was correct, feasible and efficient.

  4. One-step aluminium-assisted crystallization of Ge epitaxy on Si by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ziheng, E-mail: ziheng.liu@unsw.edu.au; Hao, Xiaojing; Ho-Baillie, Anita

    In this work, one-step aluminium-assisted crystallization of Ge on Si is achieved via magnetron sputtering by applying an in-situ low temperature (50 °C to 150 °C) heat treatment in between Al and Ge depositions. The effect of heat treatment on film properties and the growth mechanism of Ge epitaxy on Si are studied via X-ray diffraction, Raman and transmission electron microscopy analyses. Compared with the conventional two-step process, the one-step aluminium-assisted crystallization requires much lower thermal budget and results in pure Ge epitaxial layer, which may be suitable for use as a virtual substrate for the fabrication of III-V solar cells.

  5. When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian Oceans.

    PubMed

    Yang, Jin-Shu; Lu, Bo; Chen, Dian-Fu; Yu, Yan-Qin; Yang, Fan; Nagasawa, Hiromichi; Tsuchida, Shinji; Fujiwara, Yoshihiro; Yang, Wei-Jun

    2013-02-01

    Hydrothermal vents are typically located in midocean ridges and back-arc basins and are usually generated by the movement of tectonic plates. Life thrives in these environments despite the extreme conditions. In addition to chemoautotrophic bacteria, decapod crustaceans are dominant in many of the hydrothermal vents discovered to date. Contrary to the hypothesis that these species are remnants of relic fauna, increasing evidence supports the notion that hydrothermal vent decapods have diversified in more recent times with previous research attributing the origin of alvinocarid shrimps to the Miocene. This study investigated seven representative decapod species from four hydrothermal vents throughout the Western Pacific and Indian Oceans. A partitioned mix-model phylogenomic analysis of mitochondrial DNA produced a consistent phylogenetic topology of these vent-endemic species. Additionally, molecular dating analysis calibrated using multiple fossils suggested that both bythograeid crabs and alvinocarid shrimps originated in the late Mesozoic and early Cenozoic. Although of limited sampling, our estimates support the extinction/repopulation hypothesis, which postulates recent diversification times for most hydrothermal vent species due to their mass extinction by global deep-water anoxic/dysoxic events during the Late Cretaceous and Early Tertiary. The continental-derived property of the West Pacific province is compatible with the possibility that vent decapods diversified from ancestors from shallow-water regions such as cold seeps. Our results move us a step closer toward understanding the evolutionary origin of hydrothermal vent species and their distribution in the Western Pacific-Indian Ocean Region.

  6. Capacity planning for electronic waste management facilities under uncertainty: multi-objective multi-time-step model development.

    PubMed

    Poonam Khanijo Ahluwalia; Nema, Arvind K

    2011-07-01

    Selection of optimum locations for locating new facilities and decision regarding capacities at the proposed facilities is a major concern for municipal authorities/managers. The decision as to whether a single facility is preferred over multiple facilities of smaller capacities would vary with varying priorities to cost and associated risks such as environmental or health risk or risk perceived by the society. Currently management of waste streams such as that of computer waste is being done using rudimentary practices and is flourishing as an unorganized sector, mainly as backyard workshops in many cities of developing nations such as India. Uncertainty in the quantification of computer waste generation is another major concern due to the informal setup of present computer waste management scenario. Hence, there is a need to simultaneously address uncertainty in waste generation quantities while analyzing the tradeoffs between cost and associated risks. The present study aimed to address the above-mentioned issues in a multi-time-step, multi-objective decision-support model, which can address multiple objectives of cost, environmental risk, socially perceived risk and health risk, while selecting the optimum configuration of existing and proposed facilities (location and capacities).

  7. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  8. Effect of two-step and one-step surface conditioning of glass ceramic on adhesion strength of orthodontic bracket and effect of thermo-cycling on adhesion strength.

    PubMed

    Asiry, Moshabab A; AlShahrani, Ibrahim; Alaqeel, Samer M; Durgesh, Bangalore H; Ramakrishnaiah, Ravikumar

    2018-08-01

    The adhesion strength of orthodontic brackets bonded to dental glass ceramics was evaluated after ceramic surface was treated with two-step and one-step surface conditioning systems, and subjecting to thermo-cycling. A total of forty specimens were fabricated from silica based glass ceramic (lithium disilicate) by duplicating the buccal surface of maxillary first premolar. The specimens were randomly assigned to two experimental groups (n = 20), group one specimens were treated with two-step surface conditioning system (IPS ceramic etching gel™ and Monobond plus™) and group two specimens were treated with one-step surface conditioning system (Monobond etch and prime™). The surface roughness of the specimens after treatment with two-step and one-step surface conditioning system was measured using non-contact surface profilometer. Ten randomly selected specimens from each group were subjected to thermo-cycling and the remaining ten served as baseline. The shear bond strength of the specimens was measured using universal material testing machine. The adhesive remnant index score was calculated, and the results of surface roughness and bond strength were tabulated and subjected to analysis of variance and post hoc tukey's test at a significance level of p < 0.05. The results of the study showed that the specimens treated with two-step conditioning system had higher surface roughness and bond strength than one-step conditioning system. The majority of the specimens treated with both two-step and one-step conditioned specimens showed adhesive failure after subjecting thermo-cycling. Traditional two-step conditioning provides better bond strength. The clinical importance of the study is that, the silane promoted adhesion significantly reduces on exposure to thermo-cycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  10. Validation of a One-Step Method for Extracting Fatty Acids from Salmon, Chicken and Beef Samples.

    PubMed

    Zhang, Zhichao; Richardson, Christine E; Hennebelle, Marie; Taha, Ameer Y

    2017-10-01

    Fatty acid extraction methods are time-consuming and expensive because they involve multiple steps and copious amounts of extraction solvents. In an effort to streamline the fatty acid extraction process, this study compared the standard Folch lipid extraction method to a one-step method involving a column that selectively elutes the lipid phase. The methods were tested on raw beef, salmon, and chicken. Compared to the standard Folch method, the one-step extraction process generally yielded statistically insignificant differences in chicken and salmon fatty acid concentrations, percent composition and weight percent. Initial testing showed that beef stearic, oleic and total fatty acid concentrations were significantly lower by 9-11% with the one-step method as compared to the Folch method, but retesting on a different batch of samples showed a significant 4-8% increase in several omega-3 and omega-6 fatty acid concentrations with the one-step method relative to the Folch. Overall, the findings reflect the utility of a one-step extraction method for routine and rapid monitoring of fatty acids in chicken and salmon. Inconsistencies in beef concentrations, although minor (within 11%), may be due to matrix effects. A one-step fatty acid extraction method has broad applications for rapidly and routinely monitoring fatty acids in the food supply and formulating controlled dietary interventions. © 2017 Institute of Food Technologists®.

  11. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  12. Template-Assisted Hydrothermal Growth of One-Dimensional Zinc Oxide Nanowires for Photocatalytic Application.

    PubMed

    Ma, Shuai-Shuai; Xu, Peng; Cai, Zhi-Lan; Li, Qing; Ye, Zhao-Lian; Zhou, Yu-Ming

    2018-07-01

    One-dimensional (1D) semiconductor ZnO nanowires have been successfully synthesized by a novel soft-chemical hydrothermal method with allylpolyethoxy amino carboxylate (AA-APEA) at low temperature. Their structure and properties have been characterized by a series of techniques, including X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM). It was found that ZnO nanowires with diameters around 50 nm and lengths up to about several micrometers are well-distributed. The photocatalytic activity toward degradation of methylene blue (MB) aqueous solution under ultraviolet (UV) was investigated and the results showed that the ZnO nanowires exhibit a markedly higher photoactivity compared to the ZnO nanoparticles which were obtained without AA-APEA polymer assistant, and it can be ascribed to the special 1D morphology of the ZnO nanowires. In particular, the rate of degradation of the ZnO nanowires was 11 times faster than that of ZnO nanoparticles. In addition, the ZnO nanowires could be easily recycled in UV photocatalytic activity. These observations could promote new applications of photocatalyst for wastewater treatment utilizing oxide semiconductor nanostructures.

  13. An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives

    EPA Science Inventory

    A simple and rapid one-step continuous-flow synthesis route has been developed for the preparation of chromene derivatives from the reaction of aromatic aldehydes, α-cyanomethylene compounds and naphthols. In this contribution, a one-step continuous-flow protocol in a continuous ...

  14. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    NASA Astrophysics Data System (ADS)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  15. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  16. An Anion-Induced Hydrothermal Oriented-Explosive Strategy for the Synthesis of Porous Upconversion Nanocrystals

    PubMed Central

    Qiu, Peiyu; Sun, Rongjin; Gao, Guo; Zhang, Chunlei; Chen, Bin; Yan, Naishun; Yin, Ting; Liu, Yanlei; Zhang, Jingjing; Yang, Yao; Cui, Daxiang

    2015-01-01

    Rare-earth (RE)-doped upconversion nanocrystals (UCNCs) are deemed as the promising candidates of luminescent nanoprobe for biological imaging and labeling. A number of methods have been used for the fabrication of UCNCs, but their assembly into porous architectures with desired size, shape and crystallographic phase remains a long-term challenging task. Here we report a facile, anion-induced hydrothermal oriented-explosive method to simultaneously control size, shape and phase of porous UCNCs. Our results confirmed the anion-induced hydrothermal oriented-explosion porous structure, size and phase transition for the cubic/hexagonal phase of NaLuF4 and NaGdF4 nanocrystals with various sizes and shapes. This general method is very important not only for successfully preparing lanthanide doped porous UCNCs, but also for clarifying the formation process of porous UCNCs in the hydrothermal system. The synthesized UCNCs were used for in vitro and in vivo CT imaging, and could be acted as the potential CT contrast agents. PMID:25767613

  17. Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation.

    PubMed

    Sun, Shaoni; Cao, Xuefei; Sun, Shaolong; Xu, Feng; Song, Xianliang; Sun, Run-Cang; Jones, Gwynn Lloyd

    2014-01-01

    The recalcitrance of lignocellulosic biomass is a major limitation for its conversion into biofuels by enzymatic hydrolysis. The use of a pretreatment technology is an essential step to diminish biomass recalcitrance for bioethanol production. In this study, a two-step pretreatment using hydrothermal pretreatment at various temperatures and alkali fractionation was performed on eucalyptus fiber. The detailed chemical composition, physicochemical characteristics, and morphology of the pretreated fibers in each of the fractions were evaluated to advance the performance of eucalyptus fiber in enzymatic digestibility. The hydrothermal pretreatment (100 to 220°C) significantly degraded hemicelluloses, resulting in an increased crystallinity of the pretreated fibers. However, as the pretreatment temperature reached 240°C, partial cellulose was degraded, resulting in a reduced crystallinity of cellulose. As compared to the hydrothermal pretreatment alone, a combination of hydrothermal and alkali treatments significantly removed hemicelluloses and lignin, resulting in an improved enzymatic hydrolysis of the cellulose-rich fractions. As compared with the raw fiber, the enzymatic hydrolysis rate increased 1.1 to 8.5 times as the hydrothermal pretreatment temperature increased from 100 to 240°C. Interestingly, after a combination of hydrothermal pretreatment and alkali fractionation, the enzymatic hydrolysis rate increased 3.7 to 9.2 times. Taking into consideration the consumption of energy and the production of xylo-oligosaccharides and lignin, an optimum pretreatment condition was found to be hydrothermal pretreatment at 180°C for 30 min and alkali fractionation with 2% NaOH at 90°C for 2.5 h, in which 66.3% cellulose was converted into glucose by enzymatic hydrolysis. The combination of hydrothermal pretreatment and alkali fractionation was a promising method to remove hemicelluloses and lignin as well as overcome the biomass recalcitrance for enzymatic hydrolysis

  18. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    NASA Astrophysics Data System (ADS)

    Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.

    2015-03-01

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV-Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  19. Chitosan-Sodium Phytate Films with a Strong Water Barrier and Antimicrobial Properties Produced via One-Step-Consecutive-Stripping and Layer-by-Layer-Casting Technologies.

    PubMed

    Yang, Jie; Xiong, Liu; Li, Man; Sun, Qingjie

    2018-06-20

    The pursuit of sustainable functional materials requires the development of materials based on renewable resources and efficient fabrication methods. Here, we first fabricated chitosan-sodium phytate films via one-step-stripping and layer-by-layer-casting technologies. The proposed film-fabrication methods are general, facile, environmentally benign, cost-effective, and easy to scale up. The resultant one-step-stripped film was thin (9 ± 1 μm), soft, transparent, and strong, whereas the thickness of the layer-by-layer-cast film was 70 ± 3 μm. FTIR analysis of the films indicated the formation of interactions between the phosphoric groups in sodium phytate and the amino groups in chitosan. More importantly, the water-vapor-permeability values of the one-step-stripped and cast films were 4-5 orders of magnitude lower than chitosan films reported before. Layer-by-layer-cast films in particular exhibited high tensile strength (49.21 ± 1.12 MPa) and were more than three times stronger than other polyelectrolyte multilayer films. Both types of films remained stable in an acidic environment. Furthermore, the layer-by-layer-assembled films presented greater antimicrobial activity than the stripped films. The developed chitosan-sodium phytate films can enhance several biomedical and environmental applications, such as packaging, drug delivery, diagnostics, microfluidics, and biosensing.

  20. PH Tester Gauge Repeatability and Reproducibility Study for WO3 Nanostructure Hydrothermal Growth Process

    NASA Astrophysics Data System (ADS)

    Abd Rashid, Amirul; Hayati Saad, Nor; Bien Chia Sheng, Daniel; Yee, Lee Wai

    2014-06-01

    PH value is one of the important variables for tungsten trioxide (WO3) nanostructure hydrothermal synthesis process. The morphology of the synthesized nanostructure can be properly controlled by measuring and controlling the pH value of the solution used in this facile synthesis route. Therefore, it is very crucial to ensure the gauge used for pH measurement is reliable in order to achieve the expected result. In this study, gauge repeatability and reproducibility (GR&R) method was used to assess the repeatability and reproducibility of the pH tester. Based on ANOVA method, the design of experimental metrics as well as the result of the experiment was analyzed using Minitab software. It was found that the initial GR&R value for the tester was at 17.55 % which considered as acceptable. To further improve the GR&R level, a new pH measuring procedure was introduced. With the new procedure, the GR&R value was able to be reduced to 2.05%, which means the tester is statistically very ideal to measure the pH of the solution prepared for WO3 hydrothermal synthesis process.

  1. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes

    NASA Astrophysics Data System (ADS)

    Kashinath, L.; Namratha, K.; Byrappa, K.

    2015-12-01

    Microwave assisted hydrothermal process of synthesis of ZnO-GO nanocomposite by using ZnCl2 and NaOH as precursors is being reported first time. In this investigation, a novel route to study on synthesis, interaction, kinetics and mechanism of hybrid zinc oxide-graphene oxide (ZnO-GO) nanocomposite using microwave assisted facile hydrothermal method has been reported. The results shows that the ZnO-GO nanocomposite exhibits an enhancement and acts as stable photo-response degradation performance of Brilliant Yellow under the UV light radiation better than pure GO and ZnO nanoparticles. The microwave exposure played a vital role in the synthesis process, it facilitates with well define crystalline structure, porosity and fine morphology of ZnO/GO nanocomposite. Different molar concentrations of ZnO precursors doped to GO sheets were been synthesized, characterized and their photodegradation performances were investigated. The optical studies by UV-vis and Photo Luminescence shows an increase in band gap of nanocomposite, which added an advantage in photodegradation performance. The in situ flower like ZnO nano particles are were densely decorated and anchored on the surfaces of graphene oxide sheets which aids in the enhancement of the surface area, adsorption, mass transfer of dyes and evolution of oxygen species. The nanocomposite having high surface area and micro/mesoporous in nature. This structure and morphology supports significantly in increasing photo catalytic performance legitimate to the efficient photosensitized electron injection and repressed electron recombination due to electron transfer process with GO as electron collector and transporter dependent on the proportion of GO in ZnO/GO composite.

  2. Sulfate Reduction and Sulfide Biomineralization By Deep-Sea Hydrothermal Vent Microorganisms

    NASA Astrophysics Data System (ADS)

    Picard, A.; Gartman, A.; Clarke, D. R.; Girguis, P. R.

    2014-12-01

    Deep-sea hydrothermal vents are characterized by steep temperature and chemical gradients and moderate pressures. At these sites, mesophilic sulfate-reducing bacteria thrive, however their significance for the formation of sulfide minerals is unknown. In this study we investigated sulfate reduction and sulfide biomineralization by the deep-sea bacterium Desulfovibrio hydrothermalis isolated from a deep-sea vent chimney at the Grandbonum vent site (13°N, East Pacific Rise, 2600 m water depth) [1]. Sulfate reduction rates were determined as a function of pressure and temperature. Biomineralization of sulfide minerals in the presence of various metal concentrations was characterized using light and electron microscopy and optical spectroscopy. We seek to better understand the significance of biological sulfate reduction in deep-sea hydrothermal environments, to characterize the steps in sulfide mineral nucleation and growth, and identify the interactions between cells and minerals. [1] D. Alazard, S. Dukan, A. Urios, F. Verhe, N. Bouabida, F. Morel, P. Thomas, J.L. Garcia and B. Ollivier, Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents, Int. J. Syst. Evol. Microbiol., 53 (2003) 173-178.

  3. Incidence, risk factors, and pregnancy outcomes of gestational diabetes mellitus using one-step versus two-step diagnostic approaches: A population-based cohort study in Isfahan, Iran.

    PubMed

    Hosseini, Elham; Janghorbani, Mohsen; Aminorroaya, Ashraf

    2018-06-01

    To study the incidence, risk factors, and pregnancy outcomes associated with gestational diabetes mellitus (GDM) diagnosed with one-step and two-step screening approaches. 1000 pregnant women who were eligible and consented to participate underwent fasting plasma glucose testing at the first prenatal visit (6-14 weeks). The women free from GDM or overt diabetes were screened at 24-28 weeks using the 50-g glucose challenge test (GCT) followed by 100-g, 3-h oral glucose tolerance test (OGTT) (two-step method). Regardless of the GCT result, all women underwent a 75-g, 2-h OGTT within one-week interval (one-step method). GDM incidence using the one-step and two-step methods was 9.3% (95% CI: 7.4-11.2) and 4.2% (95% CI: 2.9-5.5). GDM significantly increased the risk of macrosomia, gestational hypertension, preeclampsia, and cesarean section and older age and family history of diabetes significantly increased the risk of developing GDM in both approaches. In two-step method, higher pre-pregnancy body mass index and lower physical activity during pregnancy along with higher earlier cesarean section also increased significantly the risk of developing GDM. Despite a higher incidence of GDM using the one-step approach, more risk factors for and a stronger effect of GDM on adverse pregnancy outcomes were found when using the two-step approach. Longer follow-up of women with and without GDM may change the results using both approaches. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalysts in Acidic and Alkaline Medium.

    PubMed

    Sumboja, Afriyanti; An, Tao; Goh, Hai Yang; Lübke, Mechthild; Howard, Dougal Peter; Xu, Yijie; Handoko, Albertus Denny; Zong, Yun; Liu, Zhaolin

    2018-05-09

    Catalysts for hydrogen evolution reaction are in demand to realize the efficient conversion of hydrogen via water electrolysis. In this work, cobalt phosphides were prepared using a one-step, scalable, and direct gas-solid phosphidation of commercially available cobalt salts. It was found that the effectiveness of the phosphidation reaction was closely related to the state of cobalt precursors at the reaction temperature. For instance, a high yield of cobalt phosphides obtained from the phosphidation of cobalt(II) acetate was related to the good stability of cobalt salt at the phosphidation temperature. On the other hand, easily oxidizable salts (e.g., cobalt(II) acetylacetonate) tended to produce a low amount of cobalt phosphides and a large content of metallic cobalt. The as-synthesized cobalt phosphides were in nanostructures with large catalytic surface areas. The catalyst prepared from phosphidation of cobalt(II) acetate exhibited an improved catalytic activity as compared to its counterpart derived from phosphidation of cobalt(II) acetylacetonate, showing an overpotential of 160 and 175 mV in acidic and alkaline electrolytes, respectively. Both catalysts also displayed an enhanced long-term stability, especially in the alkaline electrolyte. This study illustrates the direct phosphidation behavior of cobalt salts, which serve as a good vantage point in realizing the large-scale synthesis of transition-metal phosphides for high-performance electrocatalysts.

  5. Microbiology of ancient and modern hydrothermal systems.

    PubMed

    Reysenbach, A L; Cady, S L

    2001-02-01

    Hydrothermal systems have prevailed throughout geological history on earth, and ancient ARCHAEAN hydrothermal deposits could provide clues to understanding earth's earliest biosphere. Modern hydrothermal systems support a plethora of microorganisms and macroorganisms, and provide good comparisons for paleontological interpretation of ancient hydrothermal systems. However, all of the microfossils associated with ancient hydrothermal deposits reported to date are filamentous, and limited STABLE ISOTOPE analysis suggests that these microfossils were probably autotrophs. Therefore, the morphology and mode of carbon metabolism are attributes of microorganisms from modern hydrothermal systems that provide valuable information for interpreting the geological record using morphological and isotopic signatures.

  6. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  7. Seismological evidence for an along-axis hydrothermal flow at the Lucky Strike hydrothermal vents site

    NASA Astrophysics Data System (ADS)

    Rai, A.; Wang, H.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.

    2010-12-01

    Hydrothermal circulation at ocean spreading centres plays fundamental role in crustal accretion process, heat extraction from the earth and helps to maintain very rich ecosystem in deep Ocean. Recently, it has been suggested that hydrothermal circulation is mainly along the ridge axis at fast spreading centres above along axis melt lens (AMC). Using a combination of micro-earthquake and seismic reflection data, we show that the hydrothermal circulation at the Lucky Strike segment of slow spreading Mid-Atlantic Ridge is also along axis in a narrow (~1 km) zone above a wide (2-3 km) AMC. We find that the seismicity mainly lies above the seismically imaged 3 km wide 7 km long melt lens at 3.2 km depth. We observe a vertical plume of seismicity above a weak AMC reflection just north of the hydrothermal vent fields that initiates just above the AMC and continues to the seafloor. This zone is collocated with active rifting of the seafloor in the neo-volcanic zone. Beneath the hydrothermal vents sites, where a strong melt lens is imaged, the seismicity initiates at 500 m above the AMC and continues to the seafloor. Just south of the hydrothermal field, where the AMC is widest and strongest, the seismicity band lies 500 m above the melt lens in a 800 m thick zone, which does not continue to the seafloor. The presence the weak melt lens reflection could be due to a cooled and crystallised AMC (mush) that permits the penetration of hydrothermal fluids down to the top of the AMC indicated by seismicity plume and might be the in-flow zone for hydrothermal circulation. The strong AMC reflection could be due to fresh supply of melt in the AMC (pure melt), which has pushed the cracking front 500 m above the AMC. Beneath the hydrothermal fields, the strong AMC reflection and seismicity 500 above the AMC to the seafloor could represent cracking along the up-flow zone. The 800 m thick zone of seismicity above the pure melt zone could be the zone of hydrothermal cracking zone. We do

  8. Nanoplate-like tungsten trioxide (hydrate) films prepared by crystal-seed-assisted hydrothermal reaction

    NASA Astrophysics Data System (ADS)

    Wang, P.; Yang, L.; Dai, B.; Yang, Z.; Guo, S.; Zhu, J.

    2017-07-01

    Vertically-aligned WO3 nanoplates on transparent conducting fluorine-doped tin oxide (FTO) glass were prepared by a facile template-free crystal-seed-assisted hydrothermal method. The effects of the hydrothermal temperature and reaction time on the crystal structure and morphology of the products were investigated by XRD and SEM. The XRD results showed that the as-prepared thin films obtained below 150∘C comprised orthorhombic WO3 ṡ H2O and completely converted to monoclinic WO3 at 180∘C. It was also noted that there was a phase transformation from orthorhombic to monoclinic by increasing the reaction time from 1 to 12 h. SEM analysis revealed that WO3 thin films are composed of plate-like nanostructures.

  9. Effect of one-step polishing system on the color stability of nanocomposites.

    PubMed

    Alawjali, S S; Lui, J L

    2013-08-01

    This study was to compare the effect of three different one-step polishing systems on the color stability of three different types of nanocomposites after immersion in coffee for one day and seven days and determine which nanocomposite material has the best color stability following polishing with each of the one-step polishing system. The nanocomposites tested were Tetric EvoCeram, Grandio and Herculite Précis. A total of 120 discs (40/nanocomposite, 8mm×2mm) were fabricated. Ten specimens for each nanocomposite cured under Mylar strips served as the control. The other specimens were polished with OptraPol, OneGloss and Occlubrush immersed in coffee (Nescafé) up to seven days. Color measurements were made with a spectrophotometer at baseline and after one and seven days. Two way repeated measure ANOVA, two way ANOVA and Bonferroni tests were used for statistical analyses (P<0.05). The immersion time was a significant factor in the discoloration of the nanocomposites. The effect of three one-step polishing systems on the color stability was also significant. The color change values of the materials cured against Mylar strips were the greatest. The lowest mean color change values were from the Occlubrush polished groups. The effect of the three different types of nanocomposite on the color change was significant. The highest color change values were with Tetric EvoCeram groups. The lowest color change values were with Herculite Précis groups. The color change of nanocomposite resins is affected by the type of composite, polishing procedure and the period of immersion in the staining agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Nearly Perfect Durable Superhydrophobic Surfaces Fabricated by a Simple One-Step Plasma Treatment.

    PubMed

    Ryu, Jeongeun; Kim, Kiwoong; Park, JooYoung; Hwang, Bae Geun; Ko, YoungChul; Kim, HyunJoo; Han, JeongSu; Seo, EungRyeol; Park, YongJong; Lee, Sang Joon

    2017-05-16

    Fabrication of superhydrophobic surfaces is an area of great interest because it can be applicable to various engineering fields. A simple, safe and inexpensive fabrication process is required to fabricate applicable superhydrophobic surfaces. In this study, we developed a facile fabrication method of nearly perfect superhydrophobic surfaces through plasma treatment with argon and oxygen gases. A polytetrafluoroethylene (PTFE) sheet was selected as a substrate material. We optimized the fabrication parameters to produce superhydrophobic surfaces of superior performance using the Taguchi method. The contact angle of the pristine PTFE surface is approximately 111.0° ± 2.4°, with a sliding angle of 12.3° ± 6.4°. After the plasma treatment, nano-sized spherical tips, which looked like crown-structures, were created. This PTFE sheet exhibits the maximum contact angle of 178.9°, with a sliding angle less than 1°. As a result, this superhydrophobic surface requires a small external force to detach water droplets dripped on the surface. The contact angle of the fabricated superhydrophobic surface is almost retained, even after performing an air-aging test for 80 days and a droplet impacting test for 6 h. This fabrication method can provide superb superhydrophobic surface using simple one-step plasma etching.

  11. Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition.

    PubMed

    Tsai, Hung-Wei; Chen, Chia-Wei; Thomas, Stuart R; Hsu, Cheng-Hung; Tsai, Wen-Chi; Chen, Yu-Ze; Wang, Yi-Chung; Wang, Zhiming M; Hong, Hwen-Fen; Chueh, Yu-Lun

    2016-02-23

    The use of costly and rare metals such as indium and gallium in Cu(In,Ga)Se2 (CIGS) based solar cells has motivated research into the use of Cu2ZnSnS4 (CZTS) as a suitable replacement due to its non-toxicity, abundance of compositional elements and excellent optical properties (1.5 eV direct band gap and absorption coefficient of ~10(4) cm(-1)). In this study, we demonstrate a one-step pulsed hybrid electrodeposition method (PHED), which combines electrophoretic and electroplating deposition to deposit uniform CZTS thin-films. Through careful analysis and optimization, we are able to demonstrate CZTS solar cells with the VOC, JSC, FF and η of 350 mV, 3.90 mA/cm(2), 0.43 and 0.59%, respectively.

  12. Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition

    PubMed Central

    Tsai, Hung-Wei; Chen, Chia-Wei; Thomas, Stuart R.; Hsu, Cheng-Hung; Tsai, Wen-Chi; Chen, Yu-Ze; Wang, Yi-Chung; Wang, Zhiming M.; Hong, Hwen-Fen; Chueh, Yu-Lun

    2016-01-01

    The use of costly and rare metals such as indium and gallium in Cu(In,Ga)Se2 (CIGS) based solar cells has motivated research into the use of Cu2ZnSnS4 (CZTS) as a suitable replacement due to its non-toxicity, abundance of compositional elements and excellent optical properties (1.5 eV direct band gap and absorption coefficient of ~104 cm−1). In this study, we demonstrate a one-step pulsed hybrid electrodeposition method (PHED), which combines electrophoretic and electroplating deposition to deposit uniform CZTS thin-films. Through careful analysis and optimization, we are able to demonstrate CZTS solar cells with the VOC, JSC, FF and η of 350 mV, 3.90 mA/cm2, 0.43 and 0.59%, respectively. PMID:26902556

  13. Trimming Line Design using New Development Method and One Step FEM

    NASA Astrophysics Data System (ADS)

    Chung, Wan-Jin; Park, Choon-Dal; Yang, Dong-yol

    2005-08-01

    In most of automobile panel manufacturing, trimming is generally performed prior to flanging. To find feasible trimming line is crucial in obtaining accurate edge profile after flanging. Section-based method develops blank along section planes and find trimming line by generating loop of end points. This method suffers from inaccurate results for regions with out-of-section motion. On the other hand, simulation-based method can produce more accurate trimming line by iterative strategy. However, due to limitation of time and lack of information in initial die design, it is still not widely accepted in the industry. In this study, new fast method to find feasible trimming line is proposed. One step FEM is used to analyze the flanging process because we can define the desired final shape after flanging and most of strain paths are simple in flanging. When we use one step FEM, the main obstacle is the generation of initial guess. Robust initial guess generation method is developed to handle bad-shaped mesh, very different mesh size and undercut part. The new method develops 3D triangular mesh in propagational way from final mesh onto the drawing tool surface. Also in order to remedy mesh distortion during development, energy minimization technique is utilized. Trimming line is extracted from the outer boundary after one step FEM simulation. This method shows many benefits since trimming line can be obtained in the early design stage. The developed method is successfully applied to the complex industrial applications such as flanging of fender and door outer.

  14. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    NASA Astrophysics Data System (ADS)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids

  15. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    NASA Astrophysics Data System (ADS)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  16. Comparison on electrically pumped random laser actions of hydrothermal and sputtered ZnO films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Canxing; Jiang, Haotian; Li, Yunpeng

    2013-10-07

    Random lasing (RL) in polycrystalline ZnO films is an intriguing research subject. Here, we have comparatively investigated electrically pumped RL behaviors of two metal-insulator-semiconductor structured devices using the hydrothermal and sputtered ZnO films as the semiconductor components, i.e., the light-emitting layers, respectively. It is demonstrated that the device using the hydrothermal ZnO film exhibits smaller threshold current and larger output optical power of the electrically pumped RL. The morphological characterization shows that the hydrothermal ZnO film is somewhat porous and is much rougher than the sputtered one, suggesting that in the former stronger multiple light scattering can occur. Moreover, themore » photoluminescence characterization indicates that there are fewer defects in the hydrothermal ZnO film than in the sputtered one, which means that the photons can pick up larger optical gain through stimulated emission in the hydrothermal ZnO film. Therefore, it is believed that the stronger multiple light scattering and larger optical gain contribute to the improved performance of the electrically pumped RL from the device using the hydrothermal ZnO film.« less

  17. One step synthesis of 6-oxo-cholestan-3β,5α-diol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, Maud; Silvente-Poirot, Sandrine; Poirot, Marc, E-mail: marc.poirot@inserm.fr

    Highlights: • Cholesterol-5,6-epoxides are metabolized into cholestane-3β,5α,6β-triol (CT) in cancer cells. • 6-Oxo-cholestan-3β,5α-diol (OCDO) is a putative metabolite of CT. • The one step syntheses of CT and OCDO from cholesterol are reported. • The one step syntheses of labelled CT and OCDO are reported. - Abstract: Cholesterol metabolism has been recently linked to cancer, highlighting the importance of the characterization of new metabolic pathways in the sterol series. One of these pathways is centered on cholesterol-5,6-epoxides (5,6-ECs). 5,6-ECs can either generate dendrogenin A, a tumor suppressor present in healthy mammalian tissues, or the carcinogenic cholestane-3β,5α,6β-triol (CT) and its putativemore » metabolite 6-oxo-cholestan-3β,5α-diol (OCDO) in tumor cells. We are currently investigating the identification of the enzyme involved in OCDO biosynthesis, which would be highly facilitated by the use of commercially unavailable [{sup 14}C]-cholestane-3β,5α,6β-triol and [{sup 14}C]-6-oxo-cholestan-3β,5α-diol. In the present study we report the one-step synthesis of [{sup 14}C]-cholestane-3β,5α,6β-triol and [{sup 14}C]-6-oxo-cholestan-3β,5α-diol by oxidation of [{sup 14}C]-cholesterol with iodide metaperiodate (HIO{sub 4})« less

  18. Preparation of ultrasmall porous carbon nanospheres by reverse microemulsion-hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Zhao, Yahong; Wang, Wan-Hui; Bao, Ming

    Porous carbon nanospheres (CNSs) have wide applications. A big challenge in materials science is synthesis of discrete ultrasmall porous carbon nanospheres. Herein, we report a facile reverse microemulsion-hydrothermal method to prepare discrete porous CNSs. The obtained CNSs possess an average diameter of 20nm and pores of 0.7nm and 3.4nm. Our work has provided a convenient method for the controllable synthesis of ultrasmall porous CNSs with potential applications.

  19. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu

    2015-05-15

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N)more » analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized.

  20. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  1. Semantic Structures of One-Step Word Problems Involving Multiplication or Division.

    ERIC Educational Resources Information Center

    Schmidt, Siegbert; Weiser, Werner

    1995-01-01

    Proposes a four-category classification of semantic structures of one-step word problems involving multiplication and division: forming the n-th multiple of measures, combinatorial multiplication, composition of operators, and multiplication by formula. This classification is compatible with semantic structures of addition and subtraction word…

  2. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng

    2017-06-01

    Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.

  3. Improvement in the productivity of xylooligosaccharides from waste medium after mushroom cultivation by hydrothermal treatment with suitable pretreatment.

    PubMed

    Sato, Nobuaki; Shinji, Kazunori; Mizuno, Masahiro; Nozaki, Kouichi; Suzuki, Masayuki; Makishima, Satoshi; Shiroishi, Masahiro; Onoda, Takeru; Takahashi, Fumihiro; Kanda, Takahisa; Amano, Yoshihiko

    2010-08-01

    The effective xylooligosaccharides (XOs) production from the waste medium after mushroom cultivation (WM) was investigated. The WM contains rich nutrients (protein, etc.) which induce Maillard reaction with reducing sugars under hydrothermal conditions. To improve the productivity of XOs, the suitable pretreatment combined with washing and grinding was investigated, and subsequently hydrothermal treatment was demonstrated with batch type and continuous flow type reactor. The washing pretreatment with hot water of 60 degrees C was effective to remove nutrients from the WM, and it led to prevent brownish discoloration on the hydrothermal treatment. On the basis of experimental data, industrial XOs production processes consisting of the pretreatment, hydrothermal treatment and purification step was designed. During the designed process, 2.3 kg-dry of the purified XOs was produced from 30 kg-wet of the WM (15% yield as dry basis weight). Theoretical yield of XOs attained to 48% as xylan weight in the WM. (c) 2010 Elsevier Ltd. All rights reserved.

  4. One-step hydrothermal synthesis of 3D petal-like Co9S8/RGO/Ni3S2 composite on nickel foam for high-performance supercapacitors.

    PubMed

    Zhang, Zhuomin; Wang, Qian; Zhao, Chongjun; Min, Shudi; Qian, Xiuzhen

    2015-03-04

    Co9S8, Ni3S2, and reduced graphene oxide (RGO) were combined to construct a graphene composite with two mixed metal sulfide components. Co9S8/RGO/Ni3S2 composite films were hydrothermal-assisted synthesized on nickel foam (NF) by using a modified "active metal substrate" route in which nickel foam acted as both a substrate and Ni source for composite films. It is found that the Co9S8/RGO/Ni3S2/NF electrode exhibits superior capacitive performance with high capability (13.53 F cm(-2) at 20 mA cm(-2), i.e., 2611.9 F g(-1) at 3.9 A g(-1)), excellent rate capability, and enhanced electrochemical stability, with 91.7% retention after 1000 continuous charge-discharge cycles even at a high current density of 80 mA cm(-2).

  5. A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Wang, Minhuan; Feng, Yulin; Bian, Jiming; Liu, Hongzhu; Shi, Yantao

    2018-01-01

    The mesoscopic perovskite solar cells (M-PSCs) were synthesized with MAPbI3 perovskite layers as light harvesters, which were grown with one-step and two-step solution process, respectively. A comparative study was performed through the quantitative correlation of resulting device performance and the crystalline quality of perovskite layers. Comparing with the one-step counterpart, a pronounced improvement in the steady-state power conversion efficiencies (PCEs) by 56.86% was achieved with two-step process, which was mainly resulted from the significant enhancement in fill factor (FF) from 48% to 77% without sacrificing the open circuit voltage (Voc) and short circuit current (Jsc). The enhanced FF was attributed to the reduced non-radiative recombination channels due to the better crystalline quality and larger grain size with the two-step processed perovskite layer. Moreover, the superiority of two-step over one-step process was demonstrated with rather good reproducibility.

  6. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  7. One-step method for the production of nanofluids

    DOEpatents

    Kostic, Milivoje [Chicago, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John R [Downers Grove, IL; Choi, Stephen U. S. [Napersville, IL

    2010-05-18

    A one step method and system for producing nanofluids by a particle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such (i.e. ethylene glycol) is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. A heater-boat-evaporator having an evaporant material (particle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material, the evaporated material absorbed by the liquid film to form nanofluid.

  8. The Lassen hydrothermal system

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of hydrothermal discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  9. Laser Consolidation - A Novel One-Step Manufacturing Process for Making Net-Shape Functional Components

    DTIC Science & Technology

    2006-05-01

    dies. This process uses a laser beam to melt a controlled amount of injected powder on a base plate to deposit the first layer and on previous passes...Consolidation” to build functional net-shape components directly from metallic powder in one step [1-3]. The laser consolidation is a one-step computer-aided...A focused laser beam is irradiated on the substrate to create a molten pool, while metallic powder is injected simultaneously into the pool. A

  10. Insight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon composite

    NASA Astrophysics Data System (ADS)

    Xiong, Ting; Yuan, Xingzhong; Chen, Xiaohong; Wu, Zhibin; Wang, Hou; Leng, Lijian; Wang, Hui; Jiang, Longbo; Zeng, Guangming

    2018-01-01

    Water pollution is one of the forefront environmental problems. Due to the simplification, flexibility and low cost, the adsorption becomes one of the most fashionable technology and the exploitation of adsorbents has drawn greatly attention. In this study, a novel magnesium silicate-hydrothermal carbon composite (MS-C) was synthesized by facile hydrothermal carbonization and used to remove the cadmium (Cd(II)) and methylene blue (MB) from wastewater. It was shown that the porous and lump-like magnesium silicate (MS) was decorated with multiple hydrothermal carbon (HC) via the Csbnd Osbnd Si covalent bonding. Further, the adsorption behavior of Cd(II) and MB based on the MS, HC, and MS-C were systematically investigated. The equilibrium data of both Cd(II) and MB were fitted well with Langmuir model. Compared to pure MS and HC, the adsorption capacity of composite was significantly improved, accompanied by the maximum adsorption capacity of 108 mg/g for Cd(II) and 418 mg/g for MB, respectively. In the Cd(II)-MB binary system, the adsorption of Cd(II) was favored in comparison with that of MB. The removal of Cd(II) was mainly ascribed to electrostatic attraction and the ion exchange interaction. Meanwhile, the adsorption of MB onto adsorbent was driven by the electrostatic attraction, π-π interaction and hydrogen bond. In view of these empirical results and real water treatment, the environmental friendly and low-cost MS-C holds a potential for separate or simultaneous removal of Cd(II) and MB in practical applications.

  11. Long-term durability of one-step adhesive-composite systems to enamel and dentin.

    PubMed

    Foxton, Richard M; Melo, Luciana; Stone, David G; Pilecki, Peter; Sherriff, Martin; Watson, Timothy F

    2008-01-01

    This study evaluated the long-term durability of three one-step adhesive-composite systems to ground enamel and dentin. Twenty-seven teeth were randomly divided into three groups of nine. The first group had its crowns sectioned to expose superficial dentin, which was then ground with 600 grit SiC paper. One of three one-step adhesives: a trial bonding agent, OBF-2; i Bond or Adper Prompt L-Pop was applied to the dentin of three teeth and built-up with the corresponding resin composite (Estelite sigma, Venus or Filtek Supreme). The second group of nine teeth had their enamel approximal surfaces ground with wet 600-grit SiC paper, then one of the three one-step adhesives was applied and built-up with resin composite. The bonded specimens were sliced into 0.7 mm-thick slabs. After 24 hours and one year of water storage at 37 degrees C, the slabs were sectioned into beams for the microtensile bond strength test. Failure modes were observed using optical and electron scanning microscopy. The third group of nine teeth had approximal wedge-shaped cavities prepared above the CEJ into dentin. Two-to-three grains of rhodamine B were added to each of the three adhesives prior to restoring the cavities with resin composite. After 24 hours storage, the teeth were sectioned and their interfaces examined with a laser scanning confocal microscope. The bond strengths of the three adhesive-composite systems to both enamel and dentin significantly lessened after one year of water storage, however, there was no significant difference between the materials.

  12. #WomenInSTEM: Stepping Stones From One Career to Another

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Cheryl

    Meet Cheryl Martin, Acting Director of the Advanced Research Projects Agency for Energy (ARPA-E) and the latest profile in the Energy Department's #WomenInSTEM video series. Cheryl looks at transformational projects to explore the uncharted territories of energy technology to generate options for entirely new paths to create, store and use energy. There are many challenges to overcome in the energy field, and it's important to have a diverse set of voices in STEM careers to meet these demands. Cheryl recommends that young women include all the skills they have - those gained at formal jobs as well as through volunteeringmore » or nonprofit organizations - when they take their next career step. These skills form the stepping stones that lead from one career to the next. And with a solid grounding in STEM, the opportunities are endless.« less

  13. #WomenInSTEM: Stepping Stones From One Career to Another

    ScienceCinema

    Martin, Cheryl

    2018-01-16

    Meet Cheryl Martin, Acting Director of the Advanced Research Projects Agency for Energy (ARPA-E) and the latest profile in the Energy Department's #WomenInSTEM video series. Cheryl looks at transformational projects to explore the uncharted territories of energy technology to generate options for entirely new paths to create, store and use energy. There are many challenges to overcome in the energy field, and it's important to have a diverse set of voices in STEM careers to meet these demands. Cheryl recommends that young women include all the skills they have - those gained at formal jobs as well as through volunteering or nonprofit organizations - when they take their next career step. These skills form the stepping stones that lead from one career to the next. And with a solid grounding in STEM, the opportunities are endless.

  14. One-dimensional ordering of Ge nanoclusters along atomically straight steps of Si(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekiguchi, Takeharu; Yoshida, Shunji; Itoh, Kohei M.

    2007-01-01

    Ge nanostructures grown by molecular beam epitaxy on a vicinal Si(111) surface with atomically well-defined steps are studied by means of scanning tunneling microscopy and spectroscopy. When the substrate temperature during deposition is around 250 degree sign C, Ge nanoclusters of diameters less than 2.0 nm form a one-dimensional array of the periodicity 2.7 nm along each step. This self-organization is due to preferential nucleation of Ge on the unfaulted 7x7 half-unit cells at the upper step edges. Scanning tunneling spectroscopy reveals localized electronic states of the nanoclusters.

  15. Facile construction of 3D graphene/MoS2 composites as advanced electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Tianhua; Li, Zhangpeng; Liu, Xiaohong; Ma, Limin; Wang, Jinqing; Yang, Shengrong

    2016-11-01

    Flower-like molybdenum disulfide (MoS2) microstructures are synthesized based on three-dimensional graphene (3DG) skeleton via a simple and facile one-step hydrothermal method, aiming at constructing series of novel composite electrode materials of 3DG/MoS2 with high electrochemical performances for supercapacitors. The electrochemical properties of the samples are evaluated by cyclic voltammetry and galvanostatic charge/discharge tests. Specifically, the optimal 3DG/MoS2 composite exhibits remarkable performances with a high specific capacitance of 410 F g-1 at a current density of 1 A g-1 and an excellent cycling stability with ca. 80.3% capacitance retention after 10,000 continuous charge-discharge cycles at a high current density of 2 A g-1, making it adaptive for high-performance supercapacitors. The enhanced electrochemical performances can be ascribed to the combination of 3DG and flower-like MoS2, which provides excellent charge transfer network and electrolyte diffusion channels while effectively prevents the collapse, aggregation and morphology change of active materials during charge-discharge process. The results demonstrate that 3DG/MoS2 composite is one of the attractive electrode materials for supercapacitors.

  16. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    spreading centers, deduced from various considerations, range from one such occurrence between 15 and 265 km along slow-spreading centers, and 1 and 100 km along intermediate- to fast-spreading centers. However, the distribution of sizable deposits will remain sporadic owing to the special structural and thermal conditions necessary to sustain and to retain high-intensity ore-forming hydrothermal systems.

  17. Smear layer-deproteinizing improves bonding of one-step self-etch adhesives to dentin.

    PubMed

    Thanatvarakorn, Ornnicha; Prasansuttiporn, Taweesak; Thittaweerat, Suppason; Foxton, Richard M; Ichinose, Shizuko; Tagami, Junji; Hosaka, Keiichi; Nakajima, Masatoshi

    2018-03-01

    Smear layer deproteinizing was proved to reduce the organic phase of smear layer covered on dentin surface. It was shown to eliminate hybridized smear layer and nanoleakage expression in resin-dentin bonding interface of two-step self-etch adhesive. This study aimed to investigate those effects on various one-step self-etch adhesives. Four different one-step self-etch adhesives were used in this study; SE One (SE), Scotchbond™ Universal (SU), BeautiBond Multi (BB), and Bond Force (BF). Flat human dentin surfaces with standardized smear layer were prepared. Smear layer deproteinizing was carried out by the application of 50ppm hypochlorous acid (HOCl) on dentin surface for 15s followed by Accel ® (p-toluenesulfinic acid salt) for 5s prior to adhesive application. No surface pretreatment was used as control. Microtensile bond strength (μTBS) and nanoleakage under TEM observation were investigated. The data were analyzed by two-way ANOVA and Tukey's post-hoc test and t-test at the significant level of 0.05. Smear layer deproteinizing significantly improved μTBS of SE, SU, and BB (p<0.001). Hybridized smear layer observed in control groups of SE, BB, and BF, and reticular nanoleakage presented throughout the hybridized complex in control groups of BB and BF were eliminated upon the smear layer deproteinizing. Smear layer deproteinizing by HOCl and Accel ® application could enhance the quality of dentin for bonding to one-step self-etch adhesives, resulting in the improving μTBS, eliminating hybridized smear layer and preventing reticular nanoleakage formation in resin-dentin bonding interface. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials.

    PubMed

    Dunne, Peter W; Starkey, Chris L; Gimeno-Fabra, Miquel; Lester, Edward H

    2014-02-21

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.

  19. Fractures, Faults, and Hydrothermal Systems of Puna, Hawaii, and Montserrat, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Kenedi, Catherine Lewis

    The focus of this work is to use geologic and geophysical methods to better understand the faults and fracture systems at Puna, in southeastern Hawaii, and southern Montserrat, in the Lesser Antilles. The particular interest is understanding and locating the deep fracture networks that are necessary for fluid circulation in hydrothermal systems. The dissertation first presents a study in which identification of large scale faulting places Montserrat into a tectonic context. Then follow studies of Puna and Montserrat that focus on faults and fractures of the deep hydrothermal systems. The first chapter consists of the results of the SEA-CALIPSO experiment seismic reflection data, recorded on a 48 channel streamer with the active source as a 2600 in3 airgun. This chapter discusses volcaniclastic debris fans off the east coast of Montserrat and faults off the west coast. The work places Montserrat in a transtensional environment (influenced by oblique subduction) as well as in a complex local stress regime. One conclusion is that the stress regime is inconsistent with the larger arc due to the influence of local magmatism and stress. The second chapter is a seismic study of the Puna hydrothermal system (PHS) along the Kilauea Lower East Rift Zone. The PHS occurs at a left step in the rift, where a fracture network has been formed between fault segments. It is a productive geothermal field, extracting steam and reinjecting cooled, condensed fluids. A network of eight borehole seismometers recorded >6000 earthquakes. Most of the earthquakes are very small (< M.2), and shallow (1-3 km depth), likely the result of hydrothermal fluid reinjection. Deeper earthquakes occur along the rift as well as along the south-dipping fault plane that originates from the rift zone. Seismic methods applied to the PHS data set, after the initial recording, picking, and locating earthquakes, include a tomographic inversion of the P-wave first arrival data. This model indicates a high

  20. 3D hierarchically porous Cu-BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Guerrero, Miguel; Pané, Salvador; Nelson, Bradley J.; Baró, Maria Dolors; Roldán, Mònica; Sort, Jordi; Pellicer, Eva

    2013-11-01

    Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the composite material. The resulting porous Cu-BiOCl films exhibit homogeneous and stable-in-time photoluminescent response arising from the BiOCl component that spreads over the entire 3D porous structure, as demonstrated by confocal scanning laser microscopy. A broad-band emission covering the entire visible range, in the wavelength interval 450-750 nm, is obtained. The present work paves the way for the facile and controlled preparation of a new generation of photoluminescent membranes.Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H+ ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the

  1. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  2. The hydrothermal exploration system on the 'Qianlong2' AUV

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Jinhui, Z.; Cai, L.; Guoyin, Z.

    2016-12-01

    ABSTRACT: Qianlong2, is a fully Autonomous Underwater Vehicle (AUV) designed for submarine resources research, especially for polymetallic sulphides, and the survey depths of is up to 4500 m. Qianlong2 had successfully explored hydrothermal vent field on the Southwest Indian Ridge (SWIR), and collected conductance, temperature and depth (CTD), turbidity, and Oxidation-Reduction Potential (ORP) data. It also had mapped precise topography by high resolution side scan sonar (HRBSSS) during every dive; and obtained photographs of sulfide deposits during some dives. Here, we detailedly described the implementation of investigation, data administration, and fast mapping of hydrothermal exploration system by Qianlong2. Giving a description of how to remove the platform magnetic interference by using magnetic data during Qianlong2 spin. Based on comprehensive hydrochemical anomalies, we get a rapid method for finding the localization of hydrothermal vents. Taking one dive as an example, we systemically showed the process about how to analyse hydrothermal survey data and acquire the location results of hydrothermal vents. Considering that this method is effective and can be used in other deep-submergence assets such as human occupied vehicles (HOVs) and remotely operated vehicles (ROVs) during further studies. Finally, we discussed how to promote and optimize the installation and application of those sensors and how to improve Qianlong2's autonomy of investigation.

  3. One-step method for the production of nanofluids

    DOEpatents

    Kostic, Milivoje [Sycamore, IL; Golubovic, Mihajlo [Chicago, IL; Hull, John [Downers Grove, IL; Choi, Stephen U. S. [Naperville, IL

    2011-08-16

    A one step method and system for producing nanofluids by a nanoparticle-source evaporation and deposition of the evaporant into a base fluid. The base fluid such oil or ethylene glycol is placed in a rotating cylindrical drum having an adjustable heater-boat-evaporator and heat exchanger-cooler apparatus. As the drum rotates, a thin liquid layer is formed on the inside surface of the drum. An insulated heater-boat-evaporator having an evaporant material (nanoparticle-source) placed within its boat evaporator is adjustably positioned near a portion of the rotating thin liquid layer, the evaporant material being heated thereby evaporating a portion of the evaporant material and forming nanoparticles, the nanoparticles absorbed by the liquid film to form nanofluid.

  4. 30 CFR 254.3 - May I cover more than one facility in my response plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false May I cover more than one facility in my... INTERIOR OFFSHORE OIL-SPILL RESPONSE REQUIREMENTS FOR FACILITIES LOCATED SEAWARD OF THE COAST LINE General § 254.3 May I cover more than one facility in my response plan? (a) Your response plan may be for a...

  5. A permeation theory for single-file ion channels: one- and two-step models.

    PubMed

    Nelson, Peter Hugo

    2011-04-28

    How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no

  6. One-Step Device Converts Water, Sunlight Into Fuel of the Future

    Science.gov Websites

    great promise that through further research the technology can bring down the cost of using water and One-Step Device Converts Water, Sunlight Into Fuel of the Future For more information contact the world's most abundant resources, water and sunlight, to directly generate hydrogen, a non

  7. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1989-01-01

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  8. One-step formation of w/o/w multiple emulsions stabilized by single amphiphilic block copolymers.

    PubMed

    Hong, Liangzhi; Sun, Guanqing; Cai, Jinge; Ngai, To

    2012-02-07

    Multiple emulsions are complex polydispersed systems in which both oil-in-water (O/W) and water-in-oil (W/O) emulsion exists simultaneously. They are often prepared accroding to a two-step process and commonly stabilized using a combination of hydrophilic and hydrophobic surfactants. Recently, some reports have shown that multiple emulsions can also be produced through one-step method with simultaneous occurrence of catastrophic and transitional phase inversions. However, these reported multiple emulsions need surfactant blends and are usually described as transitory or temporary systems. Herein, we report a one-step phase inversion process to produce water-in-oil-in-water (W/O/W) multiple emulsions stabilized solely by a synthetic diblock copolymer. Unlike the use of small molecule surfactant combinations, block copolymer stabilized multiple emulsions are remarkably stable and show the ability to separately encapsulate both polar and nonpolar cargos. The importance of the conformation of the copolymer surfactant at the interfaces with regards to the stability of the multiple emulsions using the one-step method is discussed.

  9. One step linear reconstruction method for continuous wave diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ukhrowiyah, N.; Yasin, M.

    2017-09-01

    The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.

  10. The characteristics of hydrothermal plumes observed in the Precious Stone Mountain hydrothermal field, the Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.

    2014-12-01

    The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly

  11. ALPPS and simultaneous right hemicolectomy - step one and resection of the primary colon cancer.

    PubMed

    Fard-Aghaie, Mohammad H; Stavrou, Gregor A; Schuetze, Kim C; Papalampros, Alexandros; Donati, Marcello; Oldhafer, Karl J

    2015-03-27

    Resection of the liver is often limited due to the volume of the parenchyma. To address this problem, several approaches to induce hypertrophy were developed. Recently, the 'associating liver partition and portal vein ligation for staged hepatectomy' (ALPPS) procedure was introduced and led to rapid hypertrophy in a short interval. Additionally to the portal vein occlusion, the parenchyma is transected, which disrupts the inter-parenchymal vascular connections. Since the first description of the ALPPS procedure, various reports around the world were published. In some cases, due to the high morbidity and mortality, a decent oncologic algorithm is not deliverable in a timely manner. If a patient is to be treated with a liver-first approach, the resection of the primary could sometimes be severely protracted. To overcome the problem, a simultaneous resection of the primary tumor and step one of ALPPS were performed. A 73-year-old male patient underwent portal vein embolization (PVE) after suffering from a synchronous hepatic metastasized carcinoma of the right colic flexure in order to perform a right trisectionectomy. Sufficient hypertrophy could not be obtained by PVE. Thus a 'Rescue-ALPPS' was undertaken. During step one of ALPPS, we simultaneously performed a right hemicolectomy. The postoperative course after the first step was uneventful, and sufficient hypertrophy was achieved. In order to achieve a macroscopic disease-free state and lead the patient as soon as possible to the oncologic path (with, for example, chemotherapy), sometimes a simultaneous resection of the primary with step one of the ALPPS procedure seems justified. A resection of the primary with step two is not advisable, due to the high morbidity and mortality after this step. This case shows that a simultaneous resection is feasible and safe. Whether other locations of the primary should be treated this way must be part of further investigations.

  12. Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties.

    PubMed

    Bu, Hang-Beom; Kikunaga, Hayato; Shimura, Kunio; Takahasi, Kohji; Taniguchi, Taichi; Kim, DaeGwi

    2013-02-28

    Water soluble nanoparticles (NPs) with a high emission property were synthesized via hydrothermal routes. In this report, we chose thiol ligand N-acetyl-L-cysteine as the ideal stabilizer and have successfully employed it to synthesize readily size-controllable CdTe NPs in a reaction of only one step. Hydrothermal synthesis of CdTe NPs has been carried out in neutral or basic conditions so far. We found out that the pH value of precursor solutions plays an important role in the uniformity of the particle size. Actually, high quality CdTe NPs were synthesized under mild acidic conditions of pH 5. The resultant NPs indicated good visible light-emitting properties and stability. Further, the experimental results showed that the reaction temperature influenced significantly the growth rate and the maximum size of the NPs. The CdTe NPs with a high photoluminescence quantum yield (the highest value: 57%) and narrower half width at half maximum (the narrowest value: 33 nm) were attained in very short time, within 40 minutes, reaching diameters of 2.3 to 4.3 nm. The PL intensity was increased with an increase in the reaction time, reflecting the suppression of nonradiative recombination processes. Furthermore, the formation of CdTe/CdS core-shell structures was discussed from the viewpoint of PL dynamics and X-ray diffraction studies.

  13. Hydrothermal pre-treatment of oil palm empty fruit bunch into fermentable sugars

    NASA Astrophysics Data System (ADS)

    Muhd Ali, M. D.; Tamunaidu, P.; Nor Aslan, A. K. H.; Morad, N. A.; Sugiura, N.; Goto, M.; Zhang, Z.

    2016-06-01

    Presently oil palm empty fruit bunch (OPEFB) is one of the solid waste which is produced daily whereby it is usually left at plantation site to act as organic fertilizer for the plants to ensure the sustainability of fresh fruit bunch. The major drawback in biomass conversion technology is the difficulty of degrading the material in a short period of time. A pre-treatment step is required to break the lignocellulosic biomass to easily accessible carbon sources for further use in the production of fuels and fine chemicals. Therefore, this study investigated the effect of hydrothermal pre-treatment under different reaction temperatures (100 - 250°C), reaction time (10 - 40 min), solid to solvent ratio of (1:10 - 1:20 w/v) and particle size (0.15 - 1.00 mm) on the solubilization of OPEFB to produce soluble fermentable sugars. The maximum soluble sugars of 68.18 mg glucose per gram of OPEFB were achieved at 175°C of reaction temperature, 20 min of reaction time, 1:15 w/v of solid to solvent ratio for 30 mm of particle size. Results suggest that reaction temperature, reaction time, the amount of solid to solvent ratio and size of the particle are crucial parameters for hydrothermal pretreatment, in achieving a high yield of soluble fermentable sugars.

  14. One-Step Real-Image Reflection Holograms

    ERIC Educational Resources Information Center

    Buah-Bassuah, Paul K.; Vannoni, Maurizio; Molesini, Giuseppe

    2007-01-01

    A holographic process is presented where the object is made of the real image produced by a two-mirror system. Single-step reflection hologram recording is achieved. Details of the process are given, optics concepts are outlined and demonstrative results are presented. (Contains 6 figures and 2 footnotes.)

  15. Phenols in hydrothermal petroleums and sediment bitumen from Guaymas Basin, Gulf of California

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Leif, R. N.; Ishiwatari, R.

    1996-01-01

    The aliphatic, aromatic and polar (NSO) fractions of seabed petroleums and sediment bitumen extracts from the Guaymas Basin hydrothermal system have been analyzed by gas chromatography and gas chromatography-mass spectrometry (free and silylated). The oils were collected from the interiors and exteriors of high temperature hydrothermal vents and represent hydrothermal pyrolyzates that have migrated to the seafloor by hydrothermal fluid circulation. The downcore sediments are representative of both thermally unaltered and thermally altered sediments. The survey has revealed the presence of oxygenated compounds in samples with a high degree of thermal maturity. Phenols are one class of oxygenated compounds found in these samples. A group of methyl-, dimethyl- and trimethyl-isoprenoidyl phenols (C27-C29) is present in all of the seabed NSO fractions, with the methyl- and dimethyl-isoprenoidyl phenols occurring as major components, and a trimethyl-isoprenoidyl phenol as a minor component. A homologous series of n-alkylphenols (C13-C33) has also been found in the seabed petroleums. These phenols are most likely derived from the hydrothermal alteration of sedimentary organic matter. The n-alkylphenols are probably synthesized under hydrothermal conditions, but the isoprenoidyl phenols are probably hydrothermal alteration products of natural product precursors. The suites of phenols do not appear to be useful tracers of high temperature hydrothermal processes.

  16. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1989-10-31

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  17. One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition.

    PubMed

    Liu, Yan; Xue, Jingze; Luo, Dan; Wang, Huiyuan; Gong, Xu; Han, Zhiwu; Ren, Luquan

    2017-04-01

    A facile, rapid and one-step electrodeposition process has been employed to construct a superhydrophobic surface with micro/nano scale structure on a Mg-Sn-Zn (TZ51) alloy, which is expected to be applied as a biodegradable biomedical implant materials. By changing the electrodeposition time, the maximum contact angle of the droplet was observed as high as 160.4°±0.7°. The characteristics of the as-prepared surface were conducted by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). Besides, the anti-corrosion performance of the coatings in stimulated body fluid (SBF) solution were investigated by electrochemical measurement. The results demonstrated that the anti-corrosion property of superhydrophobic surface was greatly improved. This method show beneficial effects on the wettability and corrosion behavior, and therefore provides a efficient route to mitigate the undesirable rapid corrosion of magnesium alloy in favor of application for clinical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Highly efficient one-pot/one-step synthesis of multiblock copolymers from three-component polymerization of carbon dioxide, epoxide and lactone.

    PubMed

    Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang

    2015-02-01

    It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.

  19. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    DTIC Science & Technology

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  20. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  1. One Step Combustion Synthesis Of YAG:Ce Phosphor For Solid State Lighting

    NASA Astrophysics Data System (ADS)

    Yadav, Pooja; Gupta, K. Vijay Kumar; Muley, Aarti; Joshi, C. P.; Moharil, S. V.

    2011-10-01

    YAG:Ce is an important phosphor having applications in various fields ranging from solid state lighting to scintillation detectors. YAG phosphors doped with activators are mainly synthesized by solid state reaction techniques that require high sintering temperatures (above 1500°C) to eliminate YAM and YAP phases. Though several soft chemical routes have been explored for synthesis of YAG, most of these methods are complex and phase pure materials are not obtained in one step, but prolonged annealing at temperatures around 1000 C or above becomes necessary. One step combustion synthesis of YAG:Ce3+ and related phosphors carried out at 500 C furnace temperature is reported here. Activation with Ce3+ could be achieved during the synthesis without taking recourse to any post-combustion thermal treatment. LEDs prepared from the combustion synthesized YAG:Ce3+, exhibited properties comparable to those produced from the commercial phosphor.

  2. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    PubMed

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  3. One-step trinary signed-digit arithmetic using an efficient encoding scheme

    NASA Astrophysics Data System (ADS)

    Salim, W. Y.; Fyath, R. S.; Ali, S. A.; Alam, Mohammad S.

    2000-11-01

    The trinary signed-digit (TSD) number system is of interest for ultra fast optoelectronic computing systems since it permits parallel carry-free addition and borrow-free subtraction of two arbitrary length numbers in constant time. In this paper, a simple coding scheme is proposed to encode the decimal number directly into the TSD form. The coding scheme enables one to perform parallel one-step TSD arithmetic operation. The proposed coding scheme uses only a 5-combination coding table instead of the 625-combination table reported recently for recoded TSD arithmetic technique.

  4. 3D hierarchically porous Cu-BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties.

    PubMed

    Guerrero, Miguel; Pané, Salvador; Nelson, Bradley J; Baró, Maria Dolors; Roldán, Mònica; Sort, Jordi; Pellicer, Eva

    2013-12-21

    Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H(+) ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the composite material. The resulting porous Cu-BiOCl films exhibit homogeneous and stable-in-time photoluminescent response arising from the BiOCl component that spreads over the entire 3D porous structure, as demonstrated by confocal scanning laser microscopy. A broad-band emission covering the entire visible range, in the wavelength interval 450-750 nm, is obtained. The present work paves the way for the facile and controlled preparation of a new generation of photoluminescent membranes.

  5. Hydrothermally formed three-dimensional hexagon-like P doped Ni(OH)2 rod arrays for high performance all-solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Kunzhen; Li, Shikuo; Huang, Fangzhi; Lu, Yan; Wang, Lei; Chen, Hong; Zhang, Hui

    2018-01-01

    Three dimensional hexagon-like phosphrous (P) doped Ni(OH)2 rod arrays grown on Ni foam (NF) are fabricated by a facile and green one-step hydrothermal process. Ni foam is only reacted in a certain concentration of P containing H2O2 aqueous solution. The possible growth mechanism of the P doped Ni(OH)2 rod arrays is discussed. As a battery-type electrode material in situ formed on Ni foam, the binder-free P doped Ni(OH)2 rod arrays electrode displays a ultrahigh specific areal capacitance of 2.11C cm-2 (3.51 F cm-2) at 2 mA cm-2, and excellent cycling stability (95.5% capacitance retention after 7500 cycles). The assembled all-solid-state asymmetric supercapacitor (AAS) based on such P doped Ni(OH)2 rod arrays as the positive electrode and activated carbon as the negative electrode achieves an energy density of 81.3 Wh kg-1 at the power density of 635 W kg-1. The AAS device also exhibits excellent practical performance, which can easily drive an electric fan (3 W rated power) when two AAS devices are assembled in series. Thus, our synthesized P doped Ni(OH)2 rod arrays has a lot of potential applications in future energy storage prospects.

  6. Hydrothermal liquefaction pathways for low-nitrogen biocrude from wet algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanzella, Francis; Lim, Jin-Ping

    Our SRI International (SRI) team has developed a new two-step hydrothermal liquefaction (HTL) process to convert wet algal biomass into biocrude oil. The first step in the process (low-temperature HTL or HTL1) yields crude oil but, most importantly, it selectively dissolves nitrogen-containing compounds in the aqueous phase. Once the oil and the aqueous phase are separated, the low-nitrogen soft solids left behind can be taken to the second step (high-temperature HTL or HTL2) for full conversion to biocrude. HTL2 will hence yield low-nitrogen biocrude, which can be hydro-processed to yield transportation fuels. The expected high carbon yield and low nitrogenmore » content can lead to a transportation fuel from algae that avoids two problems common to existing algae-to-fuel processes: (1) poisoning of the hydro-processing catalyst; and (2) inefficient conversion of algae-to-liquid fuels. The process we studied would yield a new route to strategic energy production from domestic sources.« less

  7. A Surface Pattern on MALDI Steel Plate for One-Step In-Situ Self-Desalting and Enrichment of Peptides/Proteins

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Xiao, Chunsheng; Li, Ying; Ling, Ling; Chen, Xuesi; Guo, Xinhua

    2017-03-01

    We report a novel strategy to achieve simultaneous one-step in-situ self-desalting and enrichment (OISE) of peptides/proteins on a facilely fabricated patterned MALDI steel plate with a circular paraffin-steel-polystyrene structure. The OISE plate could efficiently segregate salts from both analytes and matrices while retaining both analyte and matrix concentrate, and facilitating them to form homogeneous co-crystals on the centrally located polystyrene pattern. With the OISE plate, high quality and reproducible spectra could be obtained for low abundance peptides even in the presence of high salt concentrations (200 mM NH4HCO3, 1 M NaCl, or 400 mM urea). Using this strategy, a significant sensitivity enhancement was gained over traditional MALDI plate. The practical utility of this method was further demonstrated by the successful profiling of BSA digests and human serum.

  8. Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin

    NASA Astrophysics Data System (ADS)

    Laurila, T. E.; Petersen, S.; Devey, C. W.; Baker, E. T.; Augustin, N.; Hannington, M. D.

    2012-09-01

    The Woodlark Basin is one of the rare places on earth where the transition from continental breakup to seafloor spreading can be observed. The potential juxtaposition of continental rocks, a large magmatic heat source, crustal-scale faulting, and hydrothermal circulation has made the Woodlark Basin a prime target for seafloor mineral exploration. However, over the past 20 years, only two locations of active hydrothermalism had been found. In 2009 we surveyed 435 km of the spreading axis for the presence of hydrothermal plumes. Only one additional plume was found, bringing the total number of plumes known over 520 km of ridge axis to only 3, much less than at ridges with similar spreading rates globally. Particularly the western half of the basin (280 km of axis) is apparently devoid of high temperature plumes despite having thick crust and a presumably high magmatic budget. This paucity of hydrothermal activity may be related to the peculiar tectonic setting at Woodlark, where repeated ridge jumps and a re-location of the rotation pole both lead to axial magmatism being more widely distributed than at many other, more mature and stable mid-ocean ridges. These factors could inhibit the development of both a stable magmatic heat source and the deeply penetrating faults needed to create long-lived hydrothermal systems. We conclude that large seafloor massive sulfide deposits, potential targets for seafloor mineral exploration, will probably not be present along the spreading axis of the Woodlark Basin, especially in its younger, western portion.

  9. Two-step hydrothermal synthesis of NiCo2S4/Co9S8 nanorods on nickel foam for high energy density asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; Chen, Hongwei; He, Xin; Wang, Yiting; Xu, Zedong

    2018-03-01

    It is still a huge challenge to obtain a high-energy-density asymmetric supercapacitors and develop an active electrode material with excellent electrochemical characteristics. Although NiCo2S4 has been considered as one of the promising positive electrode materials for asymmetric supercapacitors, the electrochemical performance of the NiCo2S4-based positive electrodes is still relatively low and cannot meet the demand in the devices. Herein, NiCo2S4/Co9S8 nanorods with a large capacitance are synthesized via a simple two-step hydrothermal treatment. A high-performance asymmetric supercapacitor operating at 1.6 V is successfully assembled using the NiCo2S4/Co9S8 nanorods as positive electrode and activated carbon as negative electrode in 3 M KOH aqueous electrolyte, which demonstrates a fairly high energy density of 49.6 Wh kg-1 at a power density of 123 W kg-1, an excellent capacitance of 0.91 F cm-2 (139.42 F g-1) at current density of 1 mA cm-2 as well as a remarkable cycling stability due to the high physical strength, the large specific surface area, and the good conductivity for NiCo2S4/Co9S8 nanorods and the brilliant synergistic effect for NiCo2S4 and Co9S8 electrode materials. The as-prepared NiCo2S4/Co9S8 nanorods open up a new platform as positive electrode material for high-energy-density asymmetric supercapacitors in energy-storage.

  10. Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples.

    PubMed

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Che, Ruping; Luo, Pinchen; Meng, Changgong

    2017-01-15

    A facile label-free sensing method is developed for the one-step and highly sensitive fluorescent detection of DNA, which couples the specific C-C mismatch bonding and fluorescent quenching property of a trimethyl-substituted naphthyridine dye (ATMND) with the exonuclease III (Exo III) assisted cascade target recycling amplification strategy. In the absence of target DNA, the DNA hairpin probe with a C-C mismatch in the stem and more than 4 bases overhung at the 3' terminus could entrap and quench the fluorescence of ATMND and resist the digestion of Exo III, thus showing a low fluorescence background. In the presence of the target, however, the hybridization event between the two protruding segments and the target triggers the digestion reaction of Exo III, recycles the initial target, and simultaneously releases both the secondary target analogue and the ATMND caged in the stem. The released initial and secondary targets take part in another cycle of digestion, thus leading to the release of a huge amount of free ATMND for signal transducing. Based on the fluorescence recovery, the as-proposed label-free fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 10pM to 1μM, a low limit of detection of 6pM, good selectivity, and a facile one-step operation at room temperature. Practical sample analysis in serum samples indicates the method has good precision and accuracy, which may thus have application potentials for point-of-care screening of DNA in complex clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. One-pot hydrothermal synthesis of mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide hybrid material and its enhanced photocatalytic activity.

    PubMed

    Wang, Xinwei; Tian, Hongwei; Cui, Xiaoqiang; Zheng, Weitao; Liu, Yichun

    2014-09-14

    We successfully synthesized mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide (Z(x)CSG) hybrid materials as photocatalysts using a facile one-pot hydrothermal reaction, in which graphene oxide (GO) was easily reduced (RGO), and simultaneously Zn(x)Cd(1-x)S (Z(x)CS) nanoparticles (NPs) with a mesoporous structure were uniformly dispersed on the RGO sheets. By well tuning the band gap from 3.42 to 2.21 eV by changing the molar ratio of Zn/Cd (or Zn content), Z(x)CSG with an optimal zinc content has been found to have a significant absorption in the visible light (VL) region. In addition, under VL irradiation (λ > 420 nm), Z(x)CSG also showed zinc content-dependent photocatalytic efficiencies for the degradation of methylene blue (MB). Our findings are that, among Z(x)CSG, Z(0.4)CSG displayed not only a superior photodegradation efficiency of MB (98%), but also good removal efficiency of total organic carbon (TOC) (67%). Furthermore, Z(0.4)CSG had a high photocatalytic stability, and could be used repeatedly. The enhanced photocatalytic activity for Z(0.4)CSG could be attributed to a synergistic effect between mesoporous Z(x)CS NPs and RGO, including the optimal band gap and the moderate conduction band position for ZxCS (compared to CdS), efficient separation and transfer ability of photogenerated electron/hole pairs in the presence of RGO sheets, and relatively high surface area for both mesoporous Z(x)CS NPs and RGO.

  12. Shear bond strength of one-step self-etch adhesives to enamel: effect of acid pretreatment.

    PubMed

    Poggio, Claudio; Scribante, Andrea; Della Zoppa, Federica; Colombo, Marco; Beltrami, Riccardo; Chiesa, Marco

    2014-02-01

    The purposes of this study were to evaluate the effect of surface pretreatment with phosphoric acid on the enamel bond strength of four-one-step self-etch adhesives with different pH values. One hundred bovine permanent mandibular incisors were used. The materials used in this study included four-one-step self-etch adhesives with different pH values: Adper(™) Easy Bond Self-Etch Adhesive (ph = 0,8-1), Futurabond NR (ph = 1,4), G-aenial Bond (ph = 1,5), Clearfil(3) S Bond (ph = 2,7). One two-step self-etch adhesive (Clearfil SE Bond/ph = 0,8-1) was used as control. The teeth were assigned into two subgroups according to bonding procedure. In the first subgroup (n = 50), no pretreatment agent was applied. In the second subgroup (n = 50), etching was performed using 37% phosphoric acid for 30 s. After adhesive systems application, a nanohybrid composite resin was inserted into the enamel surface. The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA). After the testing procedure, the fractured surfaces were examined with an optical microscope at a magnification of 10× to determine failure modes. The adhesive remnant index (ARI) was used to assess the amount of adhesive left on the enamel surface. Descriptive statistics of the shear bond strength and frequency distribution of ARI scores were calculated. Enamel pretreatment with phosphoric acid significantly increased bond strength values of all the adhesives tested. No significant differences in bond strength were detected among the four different one-step self-etch adhesives with different pH. Two-step self-etch adhesive showed the highest bond strength. © 2013 John Wiley & Sons A/S.

  13. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)

    USGS Publications Warehouse

    Dekov, V.M.; Kamenov, George D.; Stummeyer, Jens; Thiry, M.; Savelli, C.; Shanks, Wayne C.; Fortin, D.; Kuzmann, E.; Vertes, A.

    2007-01-01

    A sediment core containing a yellowish-green clay bed was recovered from an area of extensive hydrothermal deposition at the SE slope of the Eolo Seamount, Tyrrhenian Sea. The clay bed is composed of pure nontronite (described for the first time in the Tyrrhenian Sea), which appears to be the most aluminous nontronite ever found among the seafloor hydrothermal deposits. The high Al content suggests precipitation from Al-containing hydrothermal solutions. The REE distribution of the Eolo nontronite has a V-shape pattern. The heavy REE enrichment is in part due to their preferential partitioning in the nontronite structure. This enrichment was possibly further enhanced by the HREE preferential sorption on bacterial cell walls. The light REE enrichment is the result of scavenging uptake by one of the nontronite precursors, i.e., poorly-ordered Fe-oxyhydroxides, from the hydrothermal fluids. Oxygen isotopic composition of the nontronite yields a formation temperature of 30????C, consistent with a low-temperature hydrothermal origin. The relatively radiogenic Nd isotopic signature of the nontronite compared to the present-day Mediterranean seawater indicates that approximately half of Nd, and presumably the rest of the LREE, are derived from local volcanic sources. On the other hand, 87Sr/86Sr is dominated by present-day seawater Sr. Scanning electron microscopy investigation revealed that the nontronite is composed of aggregates of lepispheres and tube-like filaments, which are indicative of bacteria assisted precipitation. Bacteria inhabiting this hydrothermal site likely acted as reactive geochemical surfaces on which poorly-ordered hydrothermal Fe-oxyhydroxides and silica precipitated. Upon aging, the interactions of these primary hydrothermal precipitates coating bacterial filaments and cell walls likely led to the formation of nontronite. Finally, the well-balanced interlayer and layer charges of the crystal lattice of seafloor hydrothermal nontronite decrease its

  14. Experimental constraints on hydrothermal activities in Enceladus

    NASA Astrophysics Data System (ADS)

    Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.

    2012-12-01

    One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) hydrothermal activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of hydrothermal activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of hydrothermal activities, whether NH3 dissociation proceeds strongly depends on the kinetics of hydrothermal reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in hydrothermal fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating hydrothermal systems on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400

  15. Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer

    NASA Astrophysics Data System (ADS)

    Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau

    2015-12-01

    We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.

  16. Operator Approach to the Master Equation for the One-Step Process

    NASA Astrophysics Data System (ADS)

    Hnatič, M.; Eferina, E. G.; Korolkova, A. V.; Kulyabov, D. S.; Sevastyanov, L. A.

    2016-02-01

    Background. Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. The expansion of the equation in a formal Taylor series (the so called Kramers-Moyal's expansion) is used in the procedure of stochastization of one-step processes. Purpose. However, this does not eliminate the need for the study of the master equation. Method. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). Results: This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. Conclusions: We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.

  17. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    PubMed Central

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  18. Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.

    PubMed

    Lee, Wonsik; Do, Truc; Zhang, Ge; Kahne, Daniel; Meredith, Timothy C; Walker, Suzanne

    2018-06-08

    Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.

  19. Hydrothermal Habitats: Measurements of Bulk Microbial Elemental Composition, and Models of Hydrothermal Influences on the Evolution of Dwarf Planets

    NASA Astrophysics Data System (ADS)

    Neveu, Marc Francois Laurent

    Finding habitable worlds is a key driver of solar system exploration. Many solar system missions seek environments providing liquid water, energy, and nutrients, the three ingredients necessary to sustain life. Such environments include hydrothermal systems, spatially-confined systems where hot aqueous fluid circulates through rock by convection. I sought to characterize hydrothermal microbial communities, collected in hot spring sediments and mats at Yellowstone National Park, USA, by measuring their bulk elemental composition. To do so, one must minimize the contribution of non-biological material to the samples analyzed. I demonstrate that this can be achieved using a separation method that takes advantage of the density contrast between cells and sediment and preserves cellular elemental contents. Using this method, I show that in spite of the tremendous physical, chemical, and taxonomic diversity of Yellowstone hot springs, the composition of microorganisms there is surprisingly ordinary. This suggests the existence of a stoichiometric envelope common to all life as we know it. Thus, future planetary investigations could use elemental fingerprints to assess the astrobiological potential of hydrothermal settings beyond Earth. Indeed, hydrothermal activity may be widespread in the solar system. Most solar system worlds larger than 200 km in radius are dwarf planets, likely composed of an icy, cometary mantle surrounding a rocky, chondritic core. I enhance a dwarf planet evolution code, including the effects of core fracturing and hydrothermal circulation, to demonstrate that dwarf planets likely have undergone extensive water-rock interaction. This supports observations of aqueous products on their surfaces. I simulate the alteration of chondritic rock by pure water or cometary fluid to show that aqueous alteration feeds back on geophysical evolution: it modifies the fluid antifreeze content, affecting its persistence over geological timescales; and the

  20. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review.

    PubMed

    Yousefifar, Azadeh; Baroutian, Saeid; Farid, Mohammed M; Gapes, Daniel J; Young, Brent R

    2017-10-15

    The management and disposal of solid waste is of increasing concern across the globe. Hydrothermal processing of sludge has been suggested as a promising solution to deal with the considerable amounts of sludge produced worldwide. Such a process not only degrades organic compounds and reduces waste volume, but also provides an opportunity to recover valuable substances. Hydrothermal processing comprises two main sub-processes: wet oxidation (WO) and thermal hydrolysis (TH), in which the formation of various free radicals results in the production of different intermediates. Volatile fatty acids (VFAs), especially acetic acid, are usually the main intermediates which remain as a by-product of the process. This paper aims to review the fundamental mechanism for hydrothermal processing of sludge, and the formation of different free radicals and intermediates therein. In addition, the proposed kinetic models for the two processes (WO and TH) from the literature are reviewed and the advantages and disadvantages of each model are outlined. The effect of mass transfer as a critical component of the design and development of the processes, which has been neglected in most of these proposed models, is also reviewed, and the effect of influencing parameters on the processes' controlling step (reaction or mass transfer) is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel

    PubMed Central

    Yazici, A. Ruya; Yildirim, Zeren; Ertan, Atila; Ozgunaltay, Gül; Dayangac, Berrin; Antonson, Sibel A; Antonson, Donald E

    2012-01-01

    Objective The aim of this study was to compare the shear bond strength of several self-etch adhesives to their two-step predecessors to ground and unground enamel. Methods: Seventy-five extracted, non-carious human third molar teeth were selected for this study. The buccal surfaces of each tooth were mechanically ground to obtain flat enamel surfaces (ground enamel), while the lingual surfaces were left intact (unground enamel). The teeth were randomly divided into five groups according to the adhesive systems (n=15): one-step self-etch adhesive - Clearfil S3 Bond, its two-step predecessor - Clearfil SE Bond, one-step self-etch adhesive - AdheSE One, and its two-step predecessor - AdheSE, and a two-step etch-and-rinse adhesive - Adper Single Bond 2(control). After application of the adhesives to the buccal and lingual enamel surfaces of each tooth, a cylindrical capsule filled with a hybrid composite resin (TPH) was seated against the surfaces. The specimens were stored in distilled water at 37°C for 24 hours, followed by thermocy-cling (5°C–55°C/500 cycles). They were subjected to shear bond strength test in a universal testing machine at a crosshead speed of 1.0 mm/minute. The data were compared using a two-way ANOVA, followed by Bonferroni test at P<.05. Results: All adhesives exhibited statistically similar bond strengths to ground and unground enamel except for the etch-and-rinse adhesive that showed significantly higher bond strengths than the self-etch adhesives (P<.05). No significant differences in bond strength values were observed between ground and unground enamel for any of the adhesives tested (P=.17). Conclusion: Similar bond strengths to ground and unground enamel were achieved with one-step self-etch adhesives and their predecessors. Enamel preparation did not influence the bonding performance of the adhesives tested. PMID:22904656

  2. Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel.

    PubMed

    Yazici, A Ruya; Yildirim, Zeren; Ertan, Atila; Ozgunaltay, Gül; Dayangac, Berrin; Antonson, Sibel A; Antonson, Donald E

    2012-07-01

    The aim of this study was to compare the shear bond strength of several self-etch adhesives to their two-step predecessors to ground and unground enamel. Seventy-five extracted, non-carious human third molar teeth were selected for this study. The buccal surfaces of each tooth were mechanically ground to obtain flat enamel surfaces (ground enamel), while the lingual surfaces were left intact (unground enamel). The teeth were randomly divided into five groups according to the adhesive systems (n=15): one-step self-etch adhesive - Clearfil S3 Bond, its two-step predecessor - Clearfil SE Bond, one-step self-etch adhesive - AdheSE One, and its two-step predecessor - AdheSE, and a two-step etch-and-rinse adhesive - Adper Single Bond 2(control). After application of the adhesives to the buccal and lingual enamel surfaces of each tooth, a cylindrical capsule filled with a hybrid composite resin (TPH) was seated against the surfaces. The specimens were stored in distilled water at 37°C for 24 hours, followed by thermocy-cling (5°C-55°C/500 cycles). They were subjected to shear bond strength test in a universal testing machine at a crosshead speed of 1.0 mm/minute. The data were compared using a two-way ANOVA, followed by Bonferroni test at P<.05. All adhesives exhibited statistically similar bond strengths to ground and unground enamel except for the etch-and-rinse adhesive that showed significantly higher bond strengths than the self-etch adhesives (P<.05). No significant differences in bond strength values were observed between ground and unground enamel for any of the adhesives tested (P=.17). Similar bond strengths to ground and unground enamel were achieved with one-step self-etch adhesives and their predecessors. Enamel preparation did not influence the bonding performance of the adhesives tested.

  3. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  4. Two steps forward, one step back? A commentary on the disease-specific core sets of the International Classification of Functioning, Disability and Health (ICF).

    PubMed

    McIntyre, Anne; Tempest, Stephanie

    2007-09-30

    The International Classification of Functioning, Disability and Health (ICF) has been received favourably by health care professionals, disability rights organizations and proponents of the social model of disability. The success of the ICF largely depends on its uptake in practice and is considered unwieldy in its full format. To enhance the application of the ICF in practice, disease and site-specific core sets have been developed. The objective of this paper is to stimulate thought and discussion about the place of the ICF core sets in rehabilitation practice. The authors' review of the literature uses the ICF core sets (especially stroke), to debate if the ICF is at risk of taking two steps forward, one step back in its holistic portrayal of health. ICF disease specific core sets could be seen as taking two steps forward to enhance the user friendliness of the ICF and evidence-based practice in rehabilitation. However, there is a danger of taking one step back in reverting to a disease-specific classification. It is too early to conclude the efficacy of the disease-specific core sets, but there is an opportunity to debate where the next steps may lead.

  5. A new one-step procedure for pulmonary valve implantation of the melody valve: Simultaneous prestenting and valve implantation.

    PubMed

    Boudjemline, Younes

    2018-01-01

    To describe a new modification, the one-step procedure, that allows interventionists to pre-stent and implant a Melody valve simultaneously. Percutaneous pulmonary valve implantation (PPVI) is the standard of care for managing patients with dysfunctional right ventricular outflow tract, and the approach is standardized. Patients undergoing PPVI using the one-step procedure were identified in our database. Procedural data and radiation exposure were compared to those in a matched group of patients who underwent PPVI using the conventional two-step procedure. Between January 2016 and January 2017, PPVI was performed in 27 patients (median age/range, 19.1/10-55 years) using the one-step procedure involving manual crimping of one to three bare metal stents over the Melody valve. The stent and Melody valve were delivered successfully using the Ensemble delivery system. No complications occurred. All patients had excellent hemodynamic results (median/range post-PPVI right ventricular to pulmonary artery gradient, 9/0-20 mmHg). Valve function was excellent. Median procedural and fluoroscopic times were 56 and 10.2 min, respectively, which significantly differed from those of the two-step procedure group. Similarly, the dose area product (DAP), and radiation time were statistically lower in the one-step group than in the two-step group (P < 0.001 for all variables). After a median follow-up of 8 months (range, 3-14.7), no patient underwent reintervention, and no device dysfunction was observed. The one-step procedure is a safe modification that allows interventionists to prestent and implants the Melody valve simultaneously. It significantly reduces procedural and fluoroscopic times, and radiation exposure. © 2017 Wiley Periodicals, Inc.

  6. Webinar Presentation: Environmental Exposures and Health Risks in California Child Care Facilities: First Steps to Improve Environmental Health where Children Spend Time

    EPA Pesticide Factsheets

    This presentation, Environmental Exposures and Health Risks in California Child Care Facilities: First Steps to Improve Environmental Health where Children Spend Time, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Exposome.

  7. One-step synthesis of bioactive glass by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shih, Shao-Ju; Chou, Yu-Jen; Chien, I.-Chen

    2012-12-01

    Bioactive glasses (BGs) have recently received more attention from biologists and engineers because of their potential applications in bone implants. The sol-gel process is one of the most popular methods for fabricating BGs, and has been used to produce BGs for years. However, the sol-gel process has the disadvantages of discontinuous processing and a long processing time. This study presented a one-step spray pyrolysis (SP) synthesis method to overcome these disadvantages. This SP method has synthesized spherical bioactive glass (SBG) and mesoporous bioactive glass (MBG) particles using Si-, Ca- and P-based precursors. This study used transmission electron microscopy, selected area electron diffraction and X-ray dispersive spectroscopy to characterize the microstructure, crystallographic structure, and chemical composition for the BG particles. In addition, in vitro bioactive tests showed the formation of hydroxyl apatite layers on SBG and MBG particles after immersion in simulated body fluid for 5 h. Experimental results show the SP formation mechanisms of SBG and MBG particles.

  8. Will learning to solve one-step equations pose a challenge to 8th grade students?

    NASA Astrophysics Data System (ADS)

    Ngu, Bing Hiong; Phan, Huy P.

    2017-08-01

    Assimilating multiple interactive elements simultaneously in working memory to allow understanding to occur, while solving an equation, would impose a high cognitive load. Element interactivity arises from the interaction between elements within and across operational and relational lines. Moreover, operating with special features (e.g. negative pronumeral) poses additional challenge to master equation solving skills. In an experiment, 41 8th grade students (girls = 16, boys = 25) sat for a pre-test, attended a session about equation solving, completed an acquisition phase which constituted the main intervention and were tested again in a post-test. The results showed that at post-test, students performed better on one-step equations tapping low rather than high element interactivity knowledge. In addition, students performed better on those one-step equations that contained no special features. Thus, both the degree of element interactivity and the operation with special features affect the challenge posed to 8th grade students on learning how to solve one-step equations.

  9. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.

    PubMed

    Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David

    2013-09-09

    The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.

  10. Free-living nematode species (Nematoda) dwelling in hydrothermal sites of the North Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Tchesunov, Alexei V.

    2015-12-01

    Morphological descriptions of seven free-living nematode species from hydrothermal sites of the Mid-Atlantic Ridge are presented. Four of them are new for science: Paracanthonchus olgae sp. n. (Chromadorida, Cyatholaimidae), Prochromadora helenae sp. n. (Chromadorida, Chromadoridae), Prochaetosoma ventriverruca sp. n. (Desmodorida, Draconematidae) and Leptolaimus hydrothermalis sp. n. (Plectida, Leptolaimidae). Two species have been previously recorded in hydrothermal habitats, and one species is recorded for the first time in such an environment. Oncholaimus scanicus (Enoplida, Oncholaimidae) was formerly known from only the type locality in non-hydrothermal shallow milieu of the Norway Sea. O. scanicus is a very abundant species in Menez Gwen, Lucky Strike and Lost City hydrothermal sites, and population of the last locality differs from other two in some morphometric characteristics. Desmodora marci (Desmodorida, Desmodoridae) was previously known from other remote deep-sea hydrothermal localities in south-western and north-eastern Pacific. Halomonhystera vandoverae (Monhysterida, Monhysteridae) was described and repeatedly found in mass in Snake Pit hydrothermal site. The whole hydrothermal nematode assemblages are featured by low diversity in comparison with either shelf or deep-sea non-hydrothermal communities. The nematode species list of the Atlantic hydrothermal vents consists of representatives of common shallow-water genera; the new species are also related to some shelf species. On the average, the hydrothermal species differ from those of slope and abyssal plains of comparable depths by larger sizes, diversity of buccal structures, presence of food content in the gut and ripe eggs in uteri.

  11. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.

    PubMed

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.

  12. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography

    PubMed Central

    Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin

    2015-01-01

    Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240

  13. One-step reconstruction of the right inferior hepatic veins using auto-venous grafts in living-donor liver transplantation.

    PubMed

    Ikegami, Toru; Shirabe, Ken; Yoshiya, Shohei; Soejima, Yuji; Yoshizumi, Tomoharu; Uchiyama, Hideaki; Toshima, Takeo; Motomura, Takashi; Maehara, Yoshihiko

    2013-07-01

    Reconstruction of the right inferior hepatic vein (RIHV) presents a major technical challenge in living donor liver transplantation (LDLT) using right lobe grafts. We studied 47 right lobe LDLT grafts with RIHV revascularization, comparing one-step reconstruction, performed post-May 2007 (n = 16), with direct anastomosis, performed pre-May 2007 (n = 31). In the one-step reconstruction technique, the internal jugular vein (n = 6), explanted portal vein (n = 5), inferior vena cava (n = 3), and shunt vessels (n = 2) were used as venous patch grafts for unifying the right hepatic vein, RIHVs, and middle hepatic vein tributaries. By 6 months after LDLT, there was no case of occlusion of the reconstructed RIHVs in the one-step reconstruction group, but a cumulative occlusion rate of 18.2 % in the direct anastomosis group. One-step reconstruction required a longer cold ischemic time (182 ± 40 vs. 115 ± 63, p < 0.001) and these patients had higher alanine transaminase values (142 ± 79 vs. 96 ± 46 IU/L, p = 0.024) on postoperative day POD 7. However, the 6-month short-term graft survival rates were 100 % with one-step reconstruction and 83.9 % with direct anastomosis, respectively. One-step reconstruction of the RIHVs using auto-venous grafts is an easy and feasible technique promoting successful right lobe LDLT.

  14. One-step fabrication of large-area ultrathin MoS2 nanofilms with high catalytic activity for photovoltaic devices.

    PubMed

    Liang, Jia; Li, Jia; Zhu, Hongfei; Han, Yuxiang; Wang, Yanrong; Wang, Caixing; Jin, Zhong; Zhang, Gengmin; Liu, Jie

    2016-09-21

    Here we report a facile one-step solution-phase process to directly grow ultrathin MoS2 nanofilms on a transparent conductive glass as a novel high-performance counter electrode for dye-sensitized solar cells. After an appropriate reaction time, the entire surface of the conductive glass substrate was uniformly covered by ultrathin MoS2 nanofilms with a thickness of only several stacked layers. Electrochemical impedance spectroscopy and cyclic voltammetry reveal that the MoS2 nanofilms possess excellent catalytic activity towards tri-iodide reduction. When used in dye-sensitized solar cells, the MoS2 nanofilms show an impressive energy conversion efficiency of 8.3%, which is higher than that of a Pt-based electrode and very promising to be a desirable alternative counter electrode. Considering their ultrathin thickness, superior catalytic activity, simple preparation process and low cost, the as-prepared MoS2 nanofilms with high photovoltaic performance are expected to be widely employed in dye-sensitized solar cells.

  15. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    PubMed Central

    Nitsche, Andreas; Kurth, Andreas; Dunkhorst, Anna; Pänke, Oliver; Sielaff, Hendrik; Junge, Wolfgang; Muth, Doreen; Scheller, Frieder; Stöcklein, Walter; Dahmen, Claudia; Pauli, Georg; Kage, Andreas

    2007-01-01

    Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX) to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method. PMID:17697378

  16. One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches.

    PubMed

    Clegg, Paul S; Tavacoli, Joe W; Wilde, Pete J

    2016-01-28

    Multiple emulsions have great potential for application in food science as a means to reduce fat content or for controlled encapsulation and release of actives. However, neither production nor stability is straightforward. Typically, multiple emulsions are prepared via two emulsification steps and a variety of approaches have been deployed to give long-term stability. It is well known that multiple emulsions can be prepared in a single step by harnessing emulsion inversion, although the resulting emulsions are usually short lived. Recently, several contrasting methods have been demonstrated which give rise to stable multiple emulsions via one-step production processes. Here we review the current state of microfluidic, polymer-stabilized and particle-stabilized approaches; these rely on phase separation, the role of electrolyte and the trapping of solvent with particles respectively.

  17. 40 CFR 35.925-1 - Facilities planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Facilities planning. 35.925-1 Section... Facilities planning. That, if the award is for step 2, step 3, or step 2=3 grant assistance, the facilities planning requirements in § 35.917 et seq. have been met. ...

  18. One-step model of photoemission from single-crystal surfaces

    DOE PAGES

    Karkare, Siddharth; Wan, Weishi; Feng, Jun; ...

    2017-02-28

    In our paper, we present a three-dimensional one-step photoemission model that can be used to calculate the quantum efficiency and momentum distributions of electrons photoemitted from ordered single-crystal surfaces close to the photoemission threshold. Using Ag(111) as an example, we also show that the model can not only calculate the quantum efficiency from the surface state accurately without using any ad hoc parameters, but also provides a theoretical quantitative explanation of the vectorial photoelectric effect. This model in conjunction with other band structure and wave function calculation techniques can be effectively used to screen single-crystal photoemitters for use as electronmore » sources for particle accelerator and ultrafast electron diffraction applications.« less

  19. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating wasmore » effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.« less

  20. One False Step: "Detroit," "Step" and Movies of Rising and Falling

    ERIC Educational Resources Information Center

    Beck, Bernard

    2018-01-01

    "Detroit" and "Step" are two recent movies in the context of urban riots in protest of police brutality. They refer to time periods separated by half a century, but there are common themes in the two that seem appropriate to both times. The movies are not primarily concerned with the riot events, but the riot is a major…

  1. Healing the healer: one step at a time.

    PubMed

    Gershon, J Casey

    2014-03-01

    Health care workers have the most challenging of professions. They are expected to work long hours while demonstrating compassion and care for the patients that they serve. Although health care practitioners are among the most disciplined of working professionals, they are often some of the unhealthiest of individuals, facing enormous amounts of stress in their lives. Healing the Healer: One Step at a Time is a 6-week health fitness program. It explores the unique challenges faced in the field of health care and teaches techniques to address those challenges head on. Healing the Healer uses Nordic walking as the exercise portion of the class. The case study examines the structure, purpose, and design of this 6-week course. Special attention is given to four basic sections: balance, pacing, joy, and discipline. The arguments presented in this article are theory based and supported by case study evidence.

  2. Formation of organoclays by a one step synthesis

    NASA Astrophysics Data System (ADS)

    Jaber, Maguy; Miéhé-Brendlé, Jocelyne; Delmotte, Luc; Le Dred, Ronan

    2005-05-01

    Different lamellar hybrid inorganic-organic materials having as inorganic parent 2:1 (T.O.T.) phyllosilicates such as talc, saponite, pyrophyllite, beidellite and montmorillonite were prepared by a one step synthesis. The solids were characterized by X-ray diffraction, solid state 29Si, 27Al, and 19F nuclear magnetic resonance and transmission electron microscopy. XRD patterns show that solids with inorganic parents having octahedral sheet based on aluminium exhibit a lamellar structure similar to MCM-50, whereas those with magnesium have an organophyllosilicate structure. In the first case, the absence of hexacoordinated aluminium was confirmed by 27Al NMR and an ordered stacking of the layers is observed on TEM micrographs. In opposite, a disorder is observed on the TEM images of organophyllosilicates. The formation of the 2:1 structure was found to be controlled mainly by the insertion of silicic species in the interlamellar space of brucite like layers.

  3. Hydrothermal synthesis of MnO2 thin film for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Tarwate, Soni B.; Wahule, Swati S.; Gattu, Ketan P.; Ghule, Anil V.; Sharma, Ramphal

    2018-05-01

    MnO2 thin films were directly grown on stainless steel mesh via a facile hydrothermal method. The structural properties revealed the formation of delta MnO2. The capacitive performance of the as-obtained MnO2 electrode was evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The synthesized electrode showed a high specific capacitance of 321 F g-1 at 5 A g-1. The excellent electrochemical performance identifies the MnO2 as a promising electrode material for next-generation energy storage devices.

  4. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu, Yaqin

    2009-07-01

    In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3O 4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C dbnd O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3O 4 hybrids was discussed.

  5. Towards "Inverse" Character Tables? A One-Step Method for Decomposing Reducible Representations

    ERIC Educational Resources Information Center

    Piquemal, J.-Y.; Losno, R.; Ancian, B.

    2009-01-01

    In the framework of group theory, a new procedure is described for a one-step automated reduction of reducible representations. The matrix inversion tool, provided by standard spreadsheet software, is applied to the central part of the character table that contains the characters of the irreducible representation. This method is not restricted to…

  6. One-pot and two-step synthesis of novel carbonylthioureas and dicarbonyldithioureas derivatives

    NASA Astrophysics Data System (ADS)

    Banaei, Alireza; Shiran, Jafar Abbasi; Saadat, Afshin; Ardabili, Farnaz Fazlalizadeh; McArdle, Patrick

    2015-11-01

    One-pot, two-step synthesis of several 1-cyclopropanecarbonyl-3-(substituted phenyl)-thioureas and 1-(phenylene-1,4-dione)-3,3‧-(substituted phenyl)-dithioureas have been successfully prepared. The structures of the synthesized compounds were confirmed by elemental analysis, FT-IR spectroscopy and NMR. Also the crystal structure one of these compounds was determined by X-ray crystallography. All synthesized compounds were evaluated for antibacterial activity using Salmonella enterica (SE), Micrococcus luteus (ML), Bacillus subtilis (BS) and Pseudomonas aeruginosa (PS).

  7. A demonstration of an affinity between pyrite and organic matter in a hydrothermal setting

    PubMed Central

    2011-01-01

    One of the key-principles of the iron-sulphur world theory is to bring organic molecules close enough to interact with each other, using the surface of pyrite as a substrate in a hydrothermal setting. The present paper explores the relationship of pyrite and organic matter in a hydrothermal setting from the geological record; in hydrothermal calcite veins from Carboniferous limestones in central Ireland. Here, the organic matter is accumulated as coatings around, and through, pyrite grains. Most of the pyrite grains are euhedral-subhedral crystals, ranging in size from ca 0.1-0.5 mm in diameter, and they are scattered throughout the matrix of the vein calcite. The organic matter was deposited from a hydrothermal fluid at a temperature of at least 200°C, and gives a Raman signature of disordered carbon. This study points to an example from a hydrothermal setting in the geological record, demonstrating that pyrite can have a high potential for the concentration and accumulation of organic materials. PMID:21299877

  8. Hydrothermal circulation at Mount St. Helens determined by self-potential measurements

    USGS Publications Warehouse

    Bedrosian, P.A.; Unsworth, M.J.; Johnston, M.J.S.

    2007-01-01

    The distribution of hydrothermal circulation within active volcanoes is of importance in identifying regions of hydrothermal alteration which may in turn control explosivity, slope stability and sector collapse. Self-potential measurements, indicative of fluid circulation, were made within the crater of Mount St. Helens in 2000 and 2001. A strong dipolar anomaly in the self-potential field was detected on the north face of the 1980-86 lava dome. This anomaly reaches a value of negative one volt on the lower flanks of the dome and reverses sign toward the dome summit. The anomaly pattern is believed to result from a combination of thermoelectric, electrokinetic, and fluid disruption effects within and surrounding the dome. Heat supplied from a cooling dacite magma very likely drives a shallow hydrothermal convection cell within the dome. The temporal stability of the SP field, low surface recharge rate, and magmatic component to fumarole condensates and thermal waters suggest the hydrothermal system is maintained by water vapor exsolved from the magma and modulated on short time scales by surface recharge. ?? 2006 Elsevier B.V. All rights reserved.

  9. Biogeochemistry of hydrothermally and adjacent non-altered soils

    USDA-ARS?s Scientific Manuscript database

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  10. Organic synthesis during fluid mixing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1998-12-01

    Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth

  11. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    NASA Astrophysics Data System (ADS)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  12. Ca and Sr Isotope Sytematics in Mid-Ocean Ridge Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Pester, N. J.; Syverson, D. D.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    We report a comprehensive suite of Ca isotopic data (δ44/40Ca) from mid-ocean ridge hydrothermal fluids, standardized relative to seawater. Samples were acquired from 7 different vent fields on the EPR, JdFR and MAR during expeditions between 1999 and 2014. All endmember hydrothermal fluids (within analytical uncertainty) reflect an entirely MORB-dominated signal (-1.0 to -1.2 ‰). This rather uniform signal, despite variable fluid chemistries and a mixture of mafic to ultramafic host lithologies, is somewhat surprising given the noteworthy Ca concentrations in both the hydrothermal fluids and precursor seawater. One explanation for this observation involves the change in anhydrite (CaSO4) saturation with increasing temperature, and the molal concentration ratio of [Mg]:[Ca]:[SO4] in modern seawater of 53:10:28. The near quantitative removal of seawater Mg to silicate alteration phases, favorable at all temperatures, is largely charge balanced by exchange for basaltic Ca, and this process alone can account for the majority of the rock dominated δ44/40Casw signal. That these values are equivalent to MORB, however, suggests a high proportion of this Mg-Ca exchange occurs after seawater Ca precipitates as anhydrite in lower temperature (recharge) regimes of the hydrothermal system, aided by the low [Ca]/[SO4]. 87/86Sr ratios of hydrothermal fluids exhibit a seawater signal of 20 to 30% and Sr is therefore not quantitatively removed during incipient anhydrite formation. Strontium mobility in hydrothermal systems is still poorly understood, but the offset between the Ca and Sr isotopic signatures is consistent with near-equilibrium partitioning of Sr into anhydrite observed in recent experiments. Such observations from modern MOR systems place important constraints on the role of hydrothermal fluxes in paleo-seawater evolution, such as feedbacks involving significant variability in [Mg]:[Ca]:[SO4] ratios of seawater suggested over much of the Phanerozoic.

  13. Numerical and Permeability Constraints on Simulation of Sill-Driven Hydrothermal Convection

    NASA Astrophysics Data System (ADS)

    Carr, P. M.; Cathles, L. M.; Barrie, C. T.; Manhardt, P.

    2004-05-01

    Volcanic-associated massive sulfide deposits are formed where seawater, heated to ~350oC by subsurface magma intrusions, is quenched by cold water at or near the seafloor. Many VMS districts, like the one at Matagami, Quebec, contain their zinc, lead, and copper in about a dozen discrete ore bodies, with one or two deposits containing more than half of the district's resources. We construct numerical models to investigate the causes of variations in deposit size. These models show that a process which stabilizes the location of hydrothermal venting plumes is required to numerically generate discrete VMS ore bodies by sill-driven hydrothermal convection. This is achieved in our models by increasing rock permeability in a fashion that makes vent plumes more permeable than their surroundings. Maintaining the Courant number ≤1 (so that a thermal anomaly traverses only one grid cell in one timestep of the simulation) is shown to be crucial to numerical convergence. If this rule is violated, visually compelling but incorrect hydrothermal vents result. Small hydrothermal convection cells over the interior of an areally-extensive sill with a tabular edge are smaller than those formed at the sill edge. However, for a sill with the geometry of that at Matagami, numerical simulations indicate that large ore deposits should form near the thickest part of the sill where metals extracted from the underside of the still-hot portions of the sill can optimally contribute. Thus it is essential to construct a model of the entire domain rather than slicing a portion local to the deposition. The numerical models replicate the ten-fold range in deposit size variation, and predict the largest deposits at Matagami will be discovered at 5 to 8 km depth between currently known deposits in the South Flank and Phelps Dodge areas.

  14. Access to Vocational Education. A Planning System for Local Secondary and Post-Secondary Program and Facility Accessibility. Step 3: Generating Strategies.

    ERIC Educational Resources Information Center

    Rice, Eric; And Others

    This guidebook focuses on the third of five steps included in a planning system for improving local secondary and postsecondary program and facilities accessibility: generating strategies. The guidebook is comprised of four sections, each describing a specific technique for generating strategies. Techniques presented are (1) nominal group…

  15. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    NASA Astrophysics Data System (ADS)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  16. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    NASA Astrophysics Data System (ADS)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  17. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  18. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  19. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-16

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  20. Hydrothermal pretreatment of palm oil empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin

    2017-01-01

    Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.

  1. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  2. One-pot facile synthesis of 4-amino-1,8-naphthalimide derived Tröger's bases via a nucleophilic displacement approach.

    PubMed

    Shanmugaraju, Sankarasekaran; McAdams, Deirdre; Pancotti, Francesca; Hawes, Chris S; Veale, Emma B; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-09-13

    We report here a novel one-pot synthetic strategy for the synthesis of a family of N-alkyl-1,8-naphthalimide based Tröger's bases via a nucleophilic substitution reaction of a common 'precursor' (or a 'synthon') N-aryl-1,8-naphthalimide Tröger's base heated at 80 °C in neat aliphatic primary amine, in overall yield of 65-96%. This methodology provides an efficient and one-step facile route to design 1,8-naphthalimide derived Tröger's base structures in analytically pure form without the use of column chromatography purification, that can be used in medicinal chemistry and as supramolecular scaffolds. We also report the formation of the corresponding anhydride, and the crystallographic analysis of two of the resulting products, that of the N-phenyl-4-amino-1,8-naphthalimide and the anhydride derived Tröger's bases.

  3. One-Step Borylation of 1,3-Diaryloxybenzenes Towards Efficient Materials for Organic Light-Emitting Diodes.

    PubMed

    Hirai, Hiroki; Nakajima, Kiichi; Nakatsuka, Soichiro; Shiren, Kazushi; Ni, Jingping; Nomura, Shintaro; Ikuta, Toshiaki; Hatakeyama, Takuji

    2015-11-09

    The development of a one-step borylation of 1,3-diaryloxybenzenes, yielding novel boron-containing polycyclic aromatic compounds, is reported. The resulting boron-containing compounds possess high singlet-triplet excitation energies as a result of localized frontier molecular orbitals induced by boron and oxygen. Using these compounds as a host material, we successfully prepared phosphorescent organic light-emitting diodes exhibiting high efficiency and adequate lifetimes. Moreover, using the present one-step borylation, we succeeded in the synthesis of an efficient, thermally activated delayed fluorescence emitter and boron-fused benzo[6]helicene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Geochemistry of fluid phases and sediments: Relevance to hydrothermal circulation in Middle Valley, ODP Legs 139 and 169

    USGS Publications Warehouse

    Gieskes, J.M.; Simoneit, B.R.T.; Shanks, Wayne C.; Goodfellow, W.D.; James, R.H.; Baker, P.A.; Ishibashi, J.-I.

    2002-01-01

    Geochemical and isotopic studies of pore fluids and solid phases recovered from the Dead Dog and Bent Hill hydrothermal sites in Middle Valley (Ocean Drilling Program Leg 169) have been compared with similar data obtained previously from these sites during Ocean Drilling Program Leg 139. Although generally the hydrothermal systems reflect non-steady state conditions, the data allow an assessment of the history of the hydrothermal processes. Sediment K/A1 ratios as well as the distribution of anhydrite in the sediments suggest that the Dead Dog hydrothermal field has been, and still is, active. In contrast, similar data in the Bent Hill hydrothermal field indicate a waning of hydrothermal activity. Pore fluid and hydrothermal vent data in the Dead Dog hydrothermal field are similar in nature to the data collected during ODP Leg 139. In the area of the Bent Hill sulfide deposit, however, the pore water data indicate that recent wholesale flushing of the sediment column with relatively unaltered seawater has obliterated a previous record of hydrothermal activity in the pore fluids. Data from the deepest part of Hole 1035A in the Bent Hill locality show the presence of hydrothermal fluids at greater depths in this area. This suggests the origin of the hydrothermal fluids found to be emanating from Hole 1035F, which constitutes one of the first man made hydrothermal vents in the Middle Valley hydrothermal system. Similarly, CORKed Hole 858G, because of seal failures, has acted as a hydrothermal vent, with sulfide deposits forming inside the CORK. ?? 2002 Elsevier Science Ltd. All rights reserved.

  5. One-step in situ synthesis of CeO₂ nanoparticles grown on reduced graphene oxide as an excellent fluorescent and photocatalyst material under sunlight irradiation.

    PubMed

    Kumar, Sachin; Ojha, Animesh K; Patrice, Donfack; Yadav, Brajesh S; Materny, Arnulf

    2016-04-28

    CeO2 nanoparticles (NPs) with average particle size of ∼17 nm were grown on graphene sheets by simply mixing cerium chloride as the Ce precursor with graphene oxide (GO) in distilled water and the simultaneous reduction of GO to reduced graphene oxide (rGO), followed by a one-step hydrothermal treatment at 150 °C. A unique blue to green tuneable luminescence was observed as a function of the excitation wavelength. With this method, significant applications of rGO-CeO2 nanocomposites in many optical devices could be realized. The photocatalytic activity of the as-synthesized CeO2 and rGO-CeO2 nanocomposite was investigated by monitoring the degradation of methylene blue (MB) dye under direct sunlight irradiation. The rGO-CeO2 nanocomposite exhibited excellent photocatalytic activity compared to CeO2 NPs by degrading 90% of the MB dye in 10 min irradiation under sunlight. This property of rGO-CeO2 nanocomposites was ascribed to the significant suppression of the recombination rate of photo-generated electron-hole pairs due to charge transfer between rGO sheets and CeO2 NPs and the smaller optical band-gap in the rGO-CeO2 nanocomposite.

  6. Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino

    2015-11-01

    At deep-sea hydrothermal vents, reduced, super-heated hydrothermal fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow vents indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the hydrothermal fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of active diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of hydrothermal fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, active hydrothermal flow, and the composition of chemosynthetic microbial biofilms.

  7. One small step for manuals: Computer-assisted training in twelve-step facilitation.

    PubMed

    Sholomskas, Diane E; Carroll, Kathleen M

    2006-11-01

    The burgeoning number of empirically validated therapies has not been met with systematic evaluation of practical, inexpensive means of teaching large numbers of clinicians to use these treatments effectively. An interactive, computer-assisted training program that sought to impart skills associated with the Project MATCH (Matching Alcoholism Treatments to Client Heterogeneity) Twelve-Step Facilitation (TSF) manual was developed to address this need. Twenty-five community-based substance use-treatment clinicians were randomized to one of two training conditions: (1) access to the computer- assisted training program plus the TSF manual or (2) access to the manual only. The primary outcome measure was change from preto posttraining in the clinicians' ability to demonstrate key TSF skills. The data suggested that the clinicians' ability to implement TSF, as assessed by independent ratings of adherence and skill for the key TSF interventions, was significantly higher after training for those who had access to the computerized training condition than those who were assigned to the manual-only condition. Those assigned to the computer-assisted training condition also demonstrated greater gains in a knowledge test assessing familiarity with concepts presented in the TSF manual. Computer-based training may be a feasible and effective means of training larger numbers of clinicians in empirically supported, manual-guided therapies.

  8. A facile single-step synthesis of polyvinylpyrrolidone-silver nanocomposites using a conventional spray dryer

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Ho; Hyuck Kim, Yoon; Lee, Young Jin; Lee, Mi Jai; Kim, Jin-Ho; Hwang, Jonghee; Jeon, Dae-Woo

    2018-01-01

    We have developed a facile single-step synthesis of silver nanocomposite using a conventional spray dryer. We investigated the synthetic conditions by controlling the concentrations of the chemical reactants. Further, we confirmed the effect of the molecular weight of polyvinylpyrrolidones, and revealed that the molecular weight significantly affected the properties of the resultant silver nanocomposites. The long-term stability of the silver nanocomposites was tested, and little change was observed, even after storage for three months. Most of all, the simple commercial implementation, in combination with large-scale synthesis, possesses a variety of advantages, compared to conventional complicated and costly dry-process synthesis methods. Thus, our method presents opportunities for further investigation, for both lab-scale studies and large-scale industrial applications.

  9. Vertical Cable Seismic Survey for Hydrothermal Deposit

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  10. State of Mississippi Campuses Step Up to the Challenge

    ERIC Educational Resources Information Center

    Hug, Jack

    2010-01-01

    Making the right decisions at the right time is critical. Following through on those decisions is challenging and can take courage. One example of a group of institutions and facility management professionals stepping up to the task and having the courage to challenge the status quo is the State of Mississippi Institutions of Higher Learning…

  11. One-step generation of continuous-variable quadripartite cluster states in a circuit QED system

    NASA Astrophysics Data System (ADS)

    Yang, Zhi-peng; Li, Zhen; Ma, Sheng-li; Li, Fu-li

    2017-07-01

    We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful application for implementing quantum computation in solid-state circuit QED systems.

  12. Genifuel Hydrothermal Processing Bench Scale Technology ...

    EPA Pesticide Factsheets

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350◦C and 2900 psig on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350◦C and 2900 psig on the HTL aqueous phase product using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbon balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. It should be noted that HTL test results for secondary sludge may have been affected by equipment problems. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the product of HTL tests with primary sludge, secondary sludge, and

  13. A facile in-situ hydrothermal synthesis of SrTiO3/TiO2 microsphere composite

    NASA Astrophysics Data System (ADS)

    Wang, Hongxing; Zhao, Wei; Zhang, Yubo; Zhang, Shimeng; Wang, Zihao; Zhao, Dan

    2016-06-01

    TiO2 was successfully used as sacrificed template to synthesise SrTiO3/TiO2 microsphere composite via an in-situ hydrothermal process. The diameter of SrTiO3/TiO2 microsphere was about 700 nm with the same size of the template, and all of the microspheres were in good dispersity. The optimized reaction parameters for the phase and morphology of the as-synthesized samples were investigated. The results showed the SrTiO3/TiO2 microsphere can be synthesized at 170 °C when the concentration of sodium hydroxide was 0.1 M. Lower hydrothermal temperature hampered the formation of the SrTiO3/TiO2 composite, the higher alkali concentration, however, will destroy the morphology of products. The formation mechanism of SrTiO3/TiO2 microsphere composite was proposed and the photocatalytic properties of the samples were characterized using methylene blue solution as the pollutant under the UV light irradiation. The results indicated the proper OH- concentration will provide a channel for Sr2+ to react with Ti4+ located in the template and form the SrTiO3/TiO2 composite, and those with micro-scaled spherical morphology exhibited good photocatalytic activities.

  14. Hydrothermal mineralization along submarine rift zones, Hawaii

    USGS Publications Warehouse

    Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.

    1996-01-01

    Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.

  15. Preparation of hollow silica nanospheres in O/W microemulsion system by hydrothermal temperature changes

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Li, Xiuyan; Liu, Zuohua; Shi, Xue; Zhou, Guowei

    2017-01-01

    Hollow silica nanospheres with wrinkled or smooth surfaces were successfully fabricated through a hydrothermal method. In this method, oil-in-water microemulsion (composed of cyclohexane, water, ethanol, and cetyltrimethylammonium bromide), and polyvinylpyrrolidone were utilized as template and capping agent, respectively. In such a facile synthesis, we can well realize the morphological transformation of spheres with radially oriented mesochannels to hollow structures of silica nanoparticle only by regulating the hydrothermal temperature from 100 °C to 200 °C. Synthesized samples with different mesostructures were then used as supports to immobilize Candida rugosa lipase (CRL). The immobilized CRL was employed as a new biocatalyst for biodiesel production through the esterification of heptanoic acid with ethanol. The conversion ratio of heptanoic acid with ethanol catalyzed by the immobilized CRL was also evaluated. Results of this study suggest that the prepared samples have potential applications in biocatalysis.

  16. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Zhang, Ping-Ping; Yu, Ming-Zhen; Chen, Chen-Tung Arthur; Chen, Yun-Jie; Li, Xiaohu; Jin, Aimin; Zhang, Hai-Yan; Duan, Wei; Ye, Ying

    2018-03-01

    The chemical compositions of gas discharges from the Kueishantao (KST) hydrothermal field changed dramatically from 2000 to 2014. In this study, we established a gas mixing model for the KST gases. The N2, Ar, and CO2 contents were mixed from a magmatic endmember with CO2 of about 990 mmol/mol, a hydrothermal and an atmospheric endmember enriched in N2 and Ar. More than 71% KST gas components were mantle-derived/magmatic. The calculated endmember N2/Ar ratio and Ar contents of the hydrothermal endmember (percolated fluid) are about 140 and 5.28-5.52 mmol/mol, respectively. This relatively elevated N2/Ar ratio was probably caused by the thermogenic addition of N2. The log(CH4/CO2) values of the KST gas samples correlate well with the mixing temperature that estimated from the mixing ratio between the percolated fluid and the magmatic endmember. It is indicated that the KST CH4 and CO2 may have attained chemical equilibrium. The temporal variations of the KST gas compositions are determined by the mixing ratio, which is dependent on the magmatic activity underneath the KST field. With the decreasing of magmatic activity since 2005, the proportion of the hydrothermal endmember increased, along with the increasing of N2, Ar, and CH4 contents. This study proposed an effective model to quantitatively assess the sources of gas components discharged from submarine hydrothermal vents. In addition, it is suggested that the mixing between a magmatic and a hydrothermal endmember may play an important role in the concentrations of CO2 and CH4 in hydrothermal gas discharges.

  17. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    PubMed

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Three-Dimensional Slowness Images of the Upper Crust Beneath the Lucky Strike Hydrothermal Vent Sites

    NASA Astrophysics Data System (ADS)

    Seher, T.; Crawford, W.; Singh, S.; Canales, J. P.; Combier, V.; Cannat, M.; Carton, H.; Dusunur, D.; Escartin, J.; Miranda, M. J.; Pouillet-Erguy, A.

    2005-12-01

    In June-July 2005 we carried out the SISMOMAR cruise, as part of the MOMAR project (Monitoring the Mid-Atlantic Ridge). Within this cruise, we conducted a 3D seismic reflection survey over an 18 km km x 3.8 km area covering both the Lucky Strike volcano and hydrothermal vents field. In order to have a full coverage inside the 3D box, shots continued for 2.25 km on either side of the box and extended out to the median valley bounding faults. To complement the streamer measurements 25 Ocean Bottom Seismometers (OBS) were placed in an 18 km x 18 km area. 11 OBS positions lie inside the 3D box and can be used to determine a very detailed image of the 3D velocity structure beneath the Lucky Strike volcano and hydrothermal vents field. For the 3D box a tuned array of 14 air guns (2600 cubic inches) was fired at an interval of 37.5 m for a total of 39 lines. We will present the first results of the OBS measurements near the Lucky Strike volcano. As a first step towards a joint 3D travel time and slowness (the inverse of velocity at turning depth) tomography, we present the 3D slowness function (latitude, longitude, offset), which can be considered as a 3D brute stack velocity image of the sub-surface (c.f. Barton and Edwards, 1999). The presence of fluid in the upper crust due to hydrothermal circulation should appear as a low velocity anomaly beneath the hydrothermal vents. In the next step the OBS measurements will be used to corroborate the reflection images of layer 2A observed in the streamer data for the 3D box. The OBS inside the 3D box recorded turning ray arrivals from the upper crust at a very fine sampling interval (37.5 m x 100 m) over a large azimuth. This provides the unique opportunity for jointly inverting travel time and slowness. Hence the measurements contain information on local gradients and should provide a very detailed velocity model of the subsurface, including information on hydrothermal systems and a possilbe anisotropy (e.g. Cherret and Singh

  19. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  20. Portable, one-step, and rapid GMR biosensor platform with smartphone interface.

    PubMed

    Choi, Joohong; Gani, Adi Wijaya; Bechstein, Daniel J B; Lee, Jung-Rok; Utz, Paul J; Wang, Shan X

    2016-11-15

    Quantitative immunoassay tests in clinical laboratories require trained technicians, take hours to complete with multiple steps, and the instruments used are generally immobile-patient samples have to be sent in to the labs for analysis. This prevents quantitative immunoassay tests to be performed outside laboratory settings. A portable, quantitative immunoassay device will be valuable in rural and resource-limited areas, where access to healthcare is scarce or far away. We have invented Eigen Diagnosis Platform (EDP), a portable quantitative immunoassay platform based on Giant Magnetoresistance (GMR) biosensor technology. The platform does not require a trained technician to operate, and only requires one-step user involvement. It displays quantitative results in less than 15min after sample insertion, and each test costs less than US$4. The GMR biosensor employed in EDP is capable of detecting multiple biomarkers in one test, enabling a wide array of immune diagnostics to be performed simultaneously. In this paper, we describe the design of EDP, and demonstrate its capability. Multiplexed assay of human immunoglobulin G and M (IgG and IgM) antibodies with EDP achieves sensitivities down to 0.07 and 0.33 nanomolar, respectively. The platform will allow lab testing to be performed in remote areas, and open up applications of immunoassay testing in other non-clinical settings, such as home, school, and office. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Rupeng; Wang, Yu; Jia, Mengqiu; Xu, Junjie; Pan, Erzhuang

    2018-04-01

    Committed to research high-performance sodium-ion batteries(SIBs) and lithium-ion batteries(LIBs) anode materials is attractive but challenging. Among the many promising anode materials, sulfides are considered as promising available anode material. In this paper, we successfully synthesized uniformly dispersed ZnS quantum dots (QDs) with sub-10-nm-scale on graphene nanosheets via a facile hydrothermal method. The prepared ZnS/graphene composites was studied as a dual anode for sodium-ion and lithium-ion batteries. Tested against SIBs, the nanocomposites exhibits an impressive specific capacity of 491 mAh/g at 100 mA/g after 100 cycles. Tested against LIBs, the nanocomposites delivers a superior specific capacity of 759 mAh/g at 100 mA/g after 100 cycles. This excellent performance is mainly due to the fact that graphene can improve the conductivity of the composites and effectively prevent the agglomeration and pulverization of ZnS quantum dots during cycling. Meanwhile, ZnS quantum dots with sub-10-nm-scale may also shorten diffuse path and reduce migration barrier, which is in favor of the full utilization of the active material and the improvement of the stability of the structure

  2. Hydrothermal mineralising systems as critical systems

    NASA Astrophysics Data System (ADS)

    Hobbs, Bruce

    2015-04-01

    Hydrothermal mineralising systems as critical systems. Bruce E Hobbs1,2, Alison Ord1 and Mark A. Munro1. 1. Centre for Exploration Targeting, The University of Western Australia, M006, 35 Stirling Highway, Crawley, WA 6009, Australia. 2. CSIRO Earth and Resource Engineering, Bentley, WA, Australia Hydrothermal mineralising systems are presented as large, open chemical reactors held far from equilibrium during their life-time by the influx of heat, fluid and dissolved chemical species. As such they are nonlinear dynamical systems and need to be analysed using the tools that have been developed for such systems. Hydrothermal systems undergo a number of transitions during their evolution and this paper focuses on methods for characterising these transitions in a quantitative manner and establishing whether they resemble first or second (critical) phase transitions or whether they have some other kind of nature. Critical phase transitions are characterised by long range correlations for some parameter characteristic of the system, power-law probability distributions so that there is no characteristic length scale and a high sensitivity to perturbations; as one approaches criticality, characteristic parameters for the system scale in a power law manner with distance from the critical point. The transitions undergone in mineralised hydrothermal systems are: (i) widespread, non-localised mineral alteration involving exothermic mineral reactions that produce hydrous silicate phases, carbonates and iron-oxides, (ii) strongly localised veining, brecciation and/or stock-work formation, (iii) a series of endothermic mineral reactions involving the formation of non-hydrous silicates, sulphides and metals such as gold, (iv) multiple repetitions of transitions (ii) and (iii). We have quantified aspects of these transitions in gold deposits from the Yilgarn craton of Western Australia using wavelet transforms. This technique is convenient and fast. It enables one to establish if

  3. A new methodology to determine kinetic parameters for one- and two-step chemical models

    NASA Technical Reports Server (NTRS)

    Mantel, T.; Egolfopoulos, F. N.; Bowman, C. T.

    1996-01-01

    In this paper, a new methodology to determine kinetic parameters for simple chemical models and simple transport properties classically used in DNS of premixed combustion is presented. First, a one-dimensional code is utilized to performed steady unstrained laminar methane-air flame in order to verify intrinsic features of laminar flames such as burning velocity and temperature and concentration profiles. Second, the flame response to steady and unsteady strain in the opposed jet configuration is numerically investigated. It appears that for a well determined set of parameters, one- and two-step mechanisms reproduce the extinction limit of a laminar flame submitted to a steady strain. Computations with the GRI-mech mechanism (177 reactions, 39 species) and multicomponent transport properties are used to validate these simplified models. A sensitivity analysis of the preferential diffusion of heat and reactants when the Lewis number is close to unity indicates that the response of the flame to an oscillating strain is very sensitive to this number. As an application of this methodology, the interaction between a two-dimensional vortex pair and a premixed laminar flame is performed by Direct Numerical Simulation (DNS) using the one- and two-step mechanisms. Comparison with the experimental results of Samaniego et al. (1994) shows a significant improvement in the description of the interaction when the two-step model is used.

  4. Access to Vocational Education. A Planning System for Local Secondary and Post-Secondary Program and Facility Accessibility. Step 1: Identifying Barriers.

    ERIC Educational Resources Information Center

    Rice, Eric; And Others

    This guidebook focuses on the first of five steps included in a planning system for improving local secondary and postsecondary program and facilities accessibility: identifying barriers. The first five sections of the booklet are comprised of self-instructional descriptions of five needs-assessment procedures that can be used to identify…

  5. One-step Melt Synthesis of Water Soluble, Photoluminescent, Surface-Oxidized Silicon Nanoparticles for Cellular Imaging Applications

    PubMed Central

    Manhat, Beth A.; Brown, Anna L.; Black, Labe A.; Ross, J.B. Alexander; Fichter, Katye; Vu, Tania; Richman, Erik

    2012-01-01

    We have developed a versatile, one-step melt synthesis of water-soluble, highly emissive silicon nanoparticles using bi-functional, low-melting solids (such as glutaric acid) as reaction media. Characterization through transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy shows that the one-step melt synthesis produces nanoscale Si cores surrounded by a silicon oxide shell. Analysis of the nanoparticle surface using FT-IR, zeta potential, and gel electrophoresis indicates that the bi-functional ligand used in the one-step synthesis is grafted onto the nanoparticle, which allows for tuning of the particle surface charge, solubility, and functionality. Photoluminescence spectra of the as-prepared glutaric acid-synthesized silicon nanoparticles show an intense blue-green emission with a short (ns) lifetime suitable for biological imaging. These nanoparticles are found to be stable in biological media and have been used to examine cellular uptake and distribution in live N2a cells. PMID:23139440

  6. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    PubMed

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  7. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support.

    PubMed

    Nan, Jiangpu; Dong, Xueliang; Wang, Wenjin; Jin, Wanqin; Xu, Nanping

    2011-04-19

    Metal-organic framework (MOF) membranes have attracted considerable attention because of their striking advantages in small-molecule separation. The preparation of an integrated MOF membrane is still a major challenge. Depositing a uniform seed layer on a support for secondary growth is a main route to obtaining an integrated MOF membrane. A novel seeding method to prepare HKUST-1 (known as Cu(3)(btc)(2)) membranes on porous α-alumina supports is reported. The in situ production of the seed layer was realized in step-by-step fashion via the coordination of H(3)btc and Cu(2+) on an α-alumina support. The formation process of the seed layer was observed by ultraviolet-visible absorption spectroscopy and atomic force microscopy. An integrated HKUST-1 membrane could be synthesized by the secondary hydrothermal growth on the seeded support. The gas permeation performance of the membrane was evaluated. © 2011 American Chemical Society

  8. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors

    NASA Astrophysics Data System (ADS)

    Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin

    2016-04-01

    A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM-1 cm-2) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.

  9. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors.

    PubMed

    Mani, Sivakumar; Vediyappan, Veeramani; Chen, Shen-Ming; Madhu, Rajesh; Pitchaimani, Veerakumar; Chang, Jia-Yaw; Liu, Shang-Bin

    2016-04-18

    A facile hydrothermal route for the synthesis of ordered NiWO4 nanocrystals, which show promising applications as high performance non-enzymatic glucose sensor is reported. The NiWO4-modified electrodes showed excellent sensitivity (269.6 μA mM(-1 )cm(-2)) and low detection limit (0.18 μM) for detection of glucose with desirable selectivity, stability, and tolerance to interference, rendering their prospective applications as cost-effective, enzyme-free glucose sensors.

  10. One-step production of multilayered microparticles by tri-axial electro-flow focusing

    NASA Astrophysics Data System (ADS)

    Si, Ting; Feng, Hanxin; Li, Yang; Luo, Xisheng; Xu, Ronald

    2014-03-01

    Microencapsulation of drugs and imaging agents in the same carrier is of great significance for simultaneous detection and treatment of diseases. In this work, we have developed a tri-axial electro-flow focusing (TEFF) device using three needles with a novel concentric arrangement to one-step form multilayered microparticles. The TEFF process can be characterized as a multi-fluidic compound cone-jet configuration in the core of a high-speed coflowing gas stream under an axial electric field. The tri-axial liquid jet eventually breaks up into multilayered droplets. To validate the method, the effect of main process parameters on characteristics of the cone and the jet has been studied experimentally. The applied electric field can dramatically promote the stability of the compound cone and enhance the atomization of compound liquid jets. Microparticles with both three-layer, double-layer and single-layer structures have been obtained. The results show that the TEFF technique has great benefits in fabricating multilayered microparticles at smaller scales. This method will be able to one-step encapsulate multiple therapeutic and imaging agents for biomedical applications such as multi-modal imaging, drug delivery and biomedicine.

  11. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  12. One-step Synthesis of Highly Luminescent Nitrogen-doped Carbon Dots for Selective and Sensitive Detection of Mercury(II) Ions and Cellular Imaging.

    PubMed

    Liu, Ying; Liao, Mei; He, Xueling; Liu, Xia; Kou, Xingming; Xiao, Dan

    2015-01-01

    In this paper, nitrogen-doped carbon dots (N-CDs) with high quantum yield (QY) of 40.5% were prepared through a facile and straightforward hydrothermal route. The as-prepared N-CDs exhibited excellent photoluminescence properties, good water-solublity and photostability, negligible cytotoxicity and favourable biocompatibility. Such N-CDs were found to serve as an effective fluorescent sensor for selective and sensitive detection of Hg(2+) in a wide linear response concentration range of 0 - 8 μM with a limit of detection (LOD) of 0.087 μM and could be applied to the determination of Hg(2+) in environmental water samples. The corresponding mechanisms were discussed in detail. Moreover, another attractive finding was that the N-CDs showed satisfactory performance in bioimaging before and after the addition of Hg(2+) in human lung cancer PC14 cells. With excellent sensitivity, selectivity and biocompatibility, such cheap carbonmaterials are potentially suitable for monitoring of Hg(2+) in environmental applications and promising for biological applications.

  13. One-step random mutagenesis by error-prone rolling circle amplification

    PubMed Central

    Fujii, Ryota; Kitaoka, Motomitsu; Hayashi, Kiyoshi

    2004-01-01

    In vitro random mutagenesis is a powerful tool for altering properties of enzymes. We describe here a novel random mutagenesis method using rolling circle amplification, named error-prone RCA. This method consists of only one DNA amplification step followed by transformation of the host strain, without treatment with any restriction enzymes or DNA ligases, and results in a randomly mutated plasmid library with 3–4 mutations per kilobase. Specific primers or special equipment, such as a thermal-cycler, are not required. This method permits rapid preparation of randomly mutated plasmid libraries, enabling random mutagenesis to become a more commonly used technique. PMID:15507684

  14. Self-Assembled Fe-N-Doped Carbon Nanotube Aerogels with Single-Atom Catalyst Feature as High-Efficiency Oxygen Reduction Electrocatalysts

    DOE PAGES

    Zhu, Chengzhou; Fu, Shaofang; Song, Junhua; ...

    2017-02-06

    In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chengzhou; Fu, Shaofang; Song, Junhua

    In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.

  16. The characteristics of hydrothermal plumes observed at the Zouyu-1 and Zouyu-2 hydrothermal fields in the Southern Mid-Atlantic Ridges

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Baker, E. T.; Li, H.

    2016-12-01

    The Zouyu-1 (14.41°W, 13.25°S) and Zouyu-2 (14.41°W, 13.28°S) hydrothermal fields are located on the neovolcanic Zouyu ridge on axis of a symmetrical spreading ridge, which is on the eastern side of the S14 segment on the southern Mid-Atlantic ridge (the ridge segments were numbered by Chunhui Tao (2016) ). The two hydrothermal fields were found during Chinese 22nd cruise in 2011 and 21st cruise in 2009 on board R/V Dayang YiHao, respectively. We collected data recorded by light-scattering and temperature sensors (Miniature Autonomous Plume Recorder, short for MAPR), and H2S and ORP sensors (Electro-chemical sensor, short for ECS) in multiple years (2009, 2011), yielding the following results: (1) The turbidity anomalies were widely distributed in the Zouyu-1 and Zouyu-2 hydrothermal fields. And the highest turbidity anomalies were concentrated around Zouyu-2 hydrothermal field, with a maximum value of 0.094 △NTU south of Zouyu-2 vent. The horizontal scale of hydrothermal plume maximum was 2.5 km. The plume maximum is offset 500 m east of the Zouyu-2 vent location. (2) ORP anomalies were detected near Zouyu-2 in 2011. Sharp and substantial ORP ( 80 mV) and H2S (2.5 nmol/L) anomalies occurred near 14.412°W,13.28°S for 300 m along the track line 22II-L07. (3)Temperature along the track line 21IV-L04 in the Zouyu-2 field increased by as much as 0.03 ° even as the depth of MAPR was largely unchanged. With the evidence of concomitant fluctuations in turbidity, it showed the temperature increases were hydrothermally induced. Keywords: hydrothermal plume, Zouyu-1 hydrothermal field, Zouyu-2 hydrothermal field

  17. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget - A combined Pb-Hf-Nd isotope approach

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2004-01-01

    Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget. ?? 2004 Elsevier B.V. All rights reserved.

  18. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growthmore » in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.« less

  19. Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices

    PubMed Central

    Yong, Keong; Ashraf, Ali; Kang, Pilgyu; Nam, SungWoo

    2016-01-01

    We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene condensation channels for potential applications in sensing and heat transfer, respectively. We further demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates allows the realization of cleaner graphene features as confirmed by water contact angle measurements. We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can be extended to other two dimensional materials in the future. PMID:27118249

  20. Hydrothermal impacts on trace element and isotope ocean biogeochemistry.

    PubMed

    German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H

    2016-11-28

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.

  1. Hydrothermal impacts on trace element and isotope ocean biogeochemistry

    PubMed Central

    Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.

    2016-01-01

    Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035265

  2. Extensive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E. J.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N. J.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Kenner-Chavis, P.; Martinez-Lyons, A.; Sheehan, C.; Brian, R.

    2014-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  3. Hyperactive hydrothermal activity in the NE Lau basin revealed by ROV dives

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Resing, J. A.; Tebo, B.; Baker, E. T.; Butterfield, D. A.; Chadwick, B.; Davis, R.; de Ronde, C. E.; Lilley, M. D.; Lupton, J. E.; Merle, S. G.; Rubin, K. H.; Shank, T. M.; Walker, S. L.; Arculus, R. J.; Bobbitt, A. M.; Buck, N.; Caratori Tontini, F.; Crowhurst, P. V.; Mitchell, E.; Olson, E. J.; Ratmeyer, V.; Richards, S.; Roe, K. K.; Keener, P.; Martinez Lyons, A.; Sheehan, C.; Brian, R.

    2013-12-01

    Dives with the QUEST 4000 ROV (Remotely Operated Vehicle) in September 2012 discovered nine hydrothermal sites in the arc and rear-arc region of the NE Lau Basin in 1150 m to 2630 m depth. These sites, originally detected by water column and seafloor surveys conducted in 2008-2011, include: (1) a paired sulfur-rich/black smoker field on the summit of a tectonically deformed magmatic arc volcano (Niua), (2) fracture-controlled black smoker venting on several small en echelon seamounts (north Matas) that lie between the magmatic arc and the backarc spreading center and (3) a magmatic degassing site on the summit of a dacite cone within a large (~12 km diameter) caldera volcano (Niuatahi). Dives at West Mata Seamount, which was undergoing strombolian volcanic activity and effusive rift-zone eruptions from 2008 to 2010, revealed a dormant volcanic phase in September 2012, with continued low-temperature diffuse venting. The high-temperature venting is likely driven by magmatic heat indicative of underlying partial melt zones and/or melt pockets distributed through the region. The occurrence of the youngest known boninite eruptions on the Mata volcanoes is consistent with subduction fluid flux melting extending into the rear-arc zone. Extension related to the transition from subduction to strike-slip motion of the northern Tonga Arc over the active Subduction-Transform Edge Propagator (STEP) fault probably contributes to the enhanced volcanism/hydrothermal activity in the NE Lau Basin. Chemosynthetic ecosystems at these sites range from mostly motile, lower diversity ecosystems at the eruptive/magmatically-degassing sites to higher diversity ecosystems with less mobile faunal components at the black-smoker systems. The wide range of fluid chemistry, water depth and geologic settings of the hydrothermal systems in this area provides an intriguing template to study the interaction of hydrothermal fluid chemistry, chemosynthetic habitats and their geologic underpinning

  4. One Small Step for Manuals: Computer-Assisted Training in Twelve-Step Facilitation*

    PubMed Central

    Sholomskas, Diane E.; Carroll, Kathleen M.

    2008-01-01

    Objective The burgeoning number of empirically validated therapies has not been met with systematic evaluation of practical, inexpensive means of teaching large numbers of clinicians to use these treatments effectively. An interactive, computer-assisted training program that sought to impart skills associated with the Project MATCH (Matching Alcoholism Treatments to Client Heterogeneity) Twelve-Step Facilitation (TSF) manual was developed to address this need. Method Twenty-five community-based substance use-treatment clinicians were randomized to one of two training conditions: (1) access to the computer-assisted training program plus the TSF manual or (2) access to the manual only. The primary outcome measure was change from pre- to posttraining in the clinicians' ability to demonstrate key TSF skills. Results The data suggested that the clinicians' ability to implement TSF, as assessed by independent ratings of adherence and skill for the key TSF interventions, was significantly higher after training for those who had access to the computerized training condition than those who were assigned to the manual-only condition. Those assigned to the computer-assisted training condition also demonstrated greater gains in a knowledge test assessing familiarity with concepts presented in the TSF manual. Conclusions Computer-based training may be a feasible and effective means of training larger numbers of clinicians in empirically supported, manual-guided therapies. PMID:17061013

  5. One-Step Synthesis of Cagelike Hollow Silica Spheres with Large Through-Holes for Macromolecule Delivery.

    PubMed

    Wang, Shengnan; Chen, Min; Wu, Limin

    2016-12-07

    A facile, one-step method to prepare cagelike hollow silica nanospheres with large through-holes (HSNLs) using a lysozyme-assisted O/W miniemulsion technique is presented. The tetraethoxysilane (TEOS)-xylene mixture forms oil droplets which are stabilized by the cationic surfactant cetyltrimethylammonium bromide (CTAB), cosurfactant hexadecane (HD), and protein lysozyme. HSNLs (with diameter of 300-460 nm) with large through-holes (10-30 nm) were obtained directly after ultrasonic treatment and aging. Lysozyme can not only stabilize the oil/water interface, assist the hydrolysis of TEOS, and interact with silica particles to assemble into silica-lysozyme clusters but also contribute to the formation of through-holes due to its hydrophilicity variation at different pH conditions. A possible new mechanism called the interface desorption method is proposed to explain the formation of the through-holes. To confirm the effectiveness of large through-holes in delivering large molecules, bovine serum albumin (BSA, 21 × 4 × 14 nm 3 ) was chosen as a model guest molecule; HSNLs showed much higher loading capacity compared with common hollow mesoporous silica nanospheres (HMSNs). The release of BSA can be well controlled by wrapping HSNLs with a heat-sensitive phase change material (1-tetradecanol). Cell toxicity was also conducted with a Cell Counting Kit-8 (CCK-8) assay to roughly evaluate the feasibility of HSNLs in biomedical applications.

  6. Effect of growth time on the structure, morphology and optical properties of hydrothermally synthesized TiO2 nanorod thin films

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Nayak, J.

    2018-05-01

    Titanium dioxide (TiO2) nanorod thin films were deposited on fluorine doped tin oxide coated glass substrates by a single step rapid hydrothermal process. The concentration of the precursor, the temperature of the reaction mixture were optimized in order to enhance the rate of deposition. Unlike the previously reported hydrothermal treatment for 24 - 48 h, the deposition of well aligned titanium dioxide nanorods was achieved in a short time such as 3 - 8 h. The crystal structure of the films were investigated by X-rays diffraction. The morphology of the nanorod films were studied with scanning electron microscopy. The optical properties were studied by photoluminescence spectroscopy.

  7. Seed layer effect on different properties and UV detection capability of hydrothermally grown ZnO nanorods over SiO2/p-Si substrate

    NASA Astrophysics Data System (ADS)

    Sannakashappanavar, Basavaraj S.; Byrareddy, C. R.; Kumar, Pesala Sudheer; Yadav, Aniruddh Bahadur

    2018-05-01

    Hydrothermally grown one dimensional ZnO nanostructures are among the most widely used semiconductor materials to build high-efficiency electronic devices for various applications. Few researchers have addressed the growth mechanism and effect of ZnO seed layer on different properties of ZnO nanorods grown by hydrothermal method, instead, no one has synthesized ZnO nanorod over SiO2/p-Si substrate. The aim of this study is to study the effect of ZnO seed layer and the growth mechanism of ZnO nanorods over SiO2/p-Si substrate. To achieve the goal, we have synthesized ZnO nanorods over different thickness ZnO seed layers by using the hydrothermal method on SiO2/p-Si substrate. The effects of c-plane area ratio were identified for the growth rate of c-plane, reaction rate constant and stagnant layer thickness also calculated by using a modified rate growth equation. We have identified maximum seed layer thickness for the growth of vertical ZnO nanorod. A step dislocation in the ZnO nanorods grown on 150and 200 nm thick seed layers was observed, the magnitude of Burges vector was calculated for this disorder. The seed layer and ZnO nanorods were characterized by AFM, XPS, UV-visible, XRD (X-ray diffraction, and SEM(scanning electron microscope). To justify the application of the grown ZnO nanorods Ti/Au was deposited over ZnO nanorods grown over all seed layers for the fabrication of photoconductor type UV detector.

  8. Basin scale permeability and thermal evolution of a magmatic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.

    2013-12-01

    Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids

  9. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Šucha, Vladimír; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  10. 48 CFR 3036.104-90 - Authority for one-step turn-key design-build contracting for the United States Coast Guard (USCG).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Authority for one-step... General 3036.104-90 Authority for one-step turn-key design-build contracting for the United States Coast Guard (USCG). The Head of the Contracting Activity (HCA) of the U.S. Coast Guard may use one-step turn...

  11. Single step hydrothermal synthesis of carbon nanodot decorated V2O5 nanobelts as hybrid conducting material for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Narayanan, Remya

    2017-09-01

    Carbon nanodot (C-dot) decorated V2O5 (C-dot@V2O5) nanobelts are synthesized by single step, low cost hydrothermal route at low temperature by using V2O5 and glucose as precursors. We have not added any extra organic solvents or surfactants which are commonly used for the preparation of different nanostructures of V2O5. Electron microscopy analyses demonstrate that C-dot is entrapped inside V2O5 nanobelts which in turn enhance the conductivity and ion propagation property of this composite material. The C-dot@V2O5 nanobelts exhibit an excellent three electrode electrochemical performance in 1 M Na2SO4 and which showed a specific capacitance of 270 F g-1 at 1 A g-1, which is 4.5 times higher than the pristine V2O5 electrode. The electrochemical energy storage capacity of this hybrid is investigated towards solid state supercapacitor application also for the first time by employing electrophoretically deposited C-dot as the counter electrode and Li based gel as the electrolyte. The hybrid material delivers an energy density of 60 W h kg-1 and a reasonably high power density of 4.1 kW kg-1 at 5 A g-1 and good cycling stability and capacitance retention of about 87% was observed even after 5000 cycles. Above mentioned results clearly show that C-dot embedded hybrid, nanostructured transition metal oxides has great potential towards fabrication of electrodes for energy storage devices.

  12. Design and implementation of the one-step MSD adder of optical computer.

    PubMed

    Song, Kai; Yan, Liping

    2012-03-01

    On the basis of the symmetric encoding algorithm for the modified signed-digit (MSD), a 7*7 truth table that can be realized with optical methods was developed. And based on the truth table, the optical path structures and circuit implementations of the one-step MSD adder of ternary optical computer (TOC) were designed. Experiments show that the scheme is correct, feasible, and efficient. © 2012 Optical Society of America

  13. Hydrothermal systems as environments for the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1996-01-01

    Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.

  14. One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: The fuel effect

    NASA Astrophysics Data System (ADS)

    Khort, Alexander; Podbolotov, Kirill; Serrano-García, Raquel; Gun'ko, Yurii K.

    2017-09-01

    In this paper, we report a new modified one-step combustion synthesis technique for production of Ni metal nanoparticles. The main unique feature of our approach is the use of microwave assisted foam preparation. Also, the effect of different types of fuels (urea, citric acid, glycine and hexamethylenetetramine) on the combustion process and characteristics of resultant solid products were investigated. It is observed that the combination of microwave assisted foam preparation and using of hexamethylenetetramine as a fuel allows producing pure ferromagnetic Ni metal nanoparticles with enhanced coercivity (78 Oe) and high value of saturation magnetization (52 emu/g) by one-step solution combustion synthesis under normal air atmosphere without any post-reduction processing.

  15. Primary Formation Path of Formaldehyde in Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Inaba, Satoshi

    2018-03-01

    Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H2 and (2) the reduction of HCOOH by H2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H2, followed by the dehydration of methanediol.

  16. Primary Formation Path of Formaldehyde in Hydrothermal Vents.

    PubMed

    Inaba, Satoshi

    2018-03-01

    Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H 2 and (2) the reduction of HCOOH by H 2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H 2 , followed by the dehydration of methanediol.

  17. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrothermal Synthesis and Acetylene Sensing Properties of Variety Low Dimensional Zinc Oxide Nanostructures

    PubMed Central

    Chen, Weigen; Peng, Shudi; Zeng, Wen

    2014-01-01

    Various morphologies of low dimensional ZnO nanostructures, including spheres, rods, sheets, and wires, were successfully synthesized using a simple and facile hydrothermal method assisted with different surfactants. Zinc acetate dihydrate was chosen as the precursors of ZnO nanostructures. We found that polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), glycine, and ethylene glycol (EG) play critical roles in the morphologies and microstructures of the synthesized nanostructures, and a series of possible growth processes were discussed in detail. Gas sensors were fabricated using screen-printing technology, and their sensing properties towards acetylene gas (C2H2), one of the most important arc discharge characteristic gases dissolved in oil-filled power equipments, were systematically measured. The ZnO nanowires based sensor exhibits excellent C2H2 sensing behaviors than those of ZnO nanosheets, nanorods, and nanospheres, indicating a feasible way to develop high-performance C2H2 gas sensor for practical application. PMID:24672324

  19. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  20. Hydrothermal exploration of the Mariana Back Arc Basin: Chemical Characterization

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Chadwick, B.; Baker, E. T.; Butterfield, D. A.; Baumberger, T.; Buck, N. J.; Walker, S. L.; Merle, S. G.; Michael, S.

    2016-12-01

    In November and December 2015, we visited the Southern Mariana back-arc on R/V Falkor (cruise FK151121) to explore for hydrothermal and volcanic activity. We conducted our study using the SENTRY AUV, a CTD rosette designed to do tows and vertical casts into the deep back-arc, and a trace metal CTD-package for the upper 1000m of the water column to examine transport form the nearby arc. We conducted 7 SENTRY dives, 12 tow-yos, 7 vertical casts, and 14 trace metal casts. We also mapped 24,050 km2 of the seafloor using the Falkor EM 302 multibeam. We discovered four new hydrothermal vent sites, and at one of them we found that some of the venting was coming from recently erupted lava flows. That lava flow is the deepest contemporary eruption yet discovered (at 4100-4450 m), and the first to be documented on a slow-spreading ridge. In addition, we were able to map the previously known Alice Springs hydrothermal site in unprecedented detail with AUV Sentry. The distribution of hydrothermal activity as well as chemistry of the plumes above them will be discussed. Plume chemistry data will include , Fe, Mn, CH4, H2, and 3He. The ship time for this project was provided by the Schmidt Ocean Institute with science funding provided by NOAA-Ocean Exploration.

  1. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  2. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    DOEpatents

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  3. Anhydrite precipitation in seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  4. Enhanced capillary electrophoretic screening of Alzheimer based on direct apolipoprotein E genotyping and one-step multiplex PCR.

    PubMed

    Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho

    2018-01-01

    Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were

  6. Concerns of Hydrothermal Degradation in CAD/CAM Zirconia

    PubMed Central

    Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.

    2010-01-01

    Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to hydrothermal degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the hydrothermal degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior hydrothermal degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated hydrothermal degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of hydrothermal and structural stabilities is addressed. PMID:19966039

  7. Hydrothermal systems and volcano geochemistry

    USGS Publications Warehouse

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  8. [Evaluation of the effect of one-step self etching adhesives applied in pit and fissure sealing].

    PubMed

    Su, Hong-Ru; Xu, Pei-Cheng; Qian, Wen-Hao

    2016-06-01

    To observe the effect of three one-step self etching adhesive systems used in fit and fissure sealant and explore the feasibility of application in caries prevention in school. Seven hundred and twenty completely erupted mandibular first molars in 360 children aged 7 to 9 years old were chosen. The split-mouth design was used to select one side as the experimental group, divided into A1(Easy One Adper), B1(Adper Easy One), and C1(iBond SE).The contra lateral teeth served as A2,B2 and C2 groups (phosphoric acid). The retention and caries status were regularly reviewed .The clinical effect of the two groups was compared using SPSS19.0 software package for Chi - square test. At 3 and 6 months, pit and fissure sealant retention rate in A1 and A2, B1 and B2,C1 and C2 group had no significant difference. At 12 months, sealant retention in A1 and B1 group was significantly lower than A2 and B2 group (P<0.05). No significant difference was found between C1 and C2 groups (P>0.05). At 24 months, sealant retention rate in A1, B1 and C1 group was significantly lower than A2, B2 and C2 group (P<0.05). The caries rate in A1and A2, B1 and B2, C1 and C2 group had no significant difference during different follow-up time (P>0.05). The clinical anticariogenic effect of three kinds of one-step etching adhesives and phosphoric acid etching sealant was similar .One-step self etching adhesive system was recommended for pit and fissure sealant to improve the students' oral health. The long-term retention rate of one-step self etching adhesive system was lower than the phosphoric acid method to long term observation is needed.

  9. Hydrothermal fabrication of N-doped (BiO)2CO3: Structural and morphological influence on the visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dong, Fan; Wang, Rui; Li, Xinwei; Ho, Wing-Kei

    2014-11-01

    Various 3D N-doped (BiO)2CO3 (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N2 adsorption-desorption isotherms and UV-vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO)2CO3 samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO)2CO3 hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO)2CO3 and TiO2-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  10. One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance.

    PubMed

    Xu, You; Xu, Rui; Cui, Jianhua; Liu, Yang; Zhang, Bin

    2012-04-21

    Three-dimensional Pd polyhedron networks (Pd PNs) have been fabricated for the first time through a one-step, Cu(2+)-assisted, solution-chemical approach. These as-prepared 3D Pd PNs exhibit high stability and remarkably improved electrocatalytic activity toward formic acid oxidation over commercially available Pd black. This journal is © The Royal Society of Chemistry 2012

  11. Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.

    2000-01-01

    A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.

  12. Microbial processing of carbon in hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J. P.

    2013-12-01

    Microorganisms are known to be active in hydrothermal systems. They catalyze reactions that consume and produce carbon compounds as a result of their efforts to gain energy, grow and replace biomass. However, the rates of these processes, as well as the size of the active component of microbial populations, are poorly constrained in hydrothermal environments. In order to better characterize biogeochemical processes in these settings, a quantitative relationship between rates of microbial catalysis, energy supply and demand and population size is presented. Within this formulation, rates of biomass change are determined as a function of the proportion of catabolic power that is converted into biomass - either new microorganisms or the replacement of existing cell components - and the amount of energy that is required to synthesize biomass. The constraints that hydrothermal conditions place on power supply and demand are explicitly taken into account. The chemical composition, including the concentrations of organic compounds, of diffuse and focused flow hydrothermal fluids, hydrothermally influenced sediment pore water and fluids from the oceanic lithosphere are used in conjunction with cell count data and the model described above to constrain the rates of microbial processes that influence the carbon cycle in the Juan de Fuca hydrothermal system.

  13. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.

    2008-06-01

    We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.

  14. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Shaochun; Vongehr, Sascha; Wang Yang

    Highly uniform, porous {beta}-Co(OH){sub 2} nanostructures with an appearance reminding of certain spherical corals were synthesized via a facile, one-step hydrothermal route using ethanol-water mixtures as solvents. The rough surfaces of the nanostructures consist of numerous randomly distributed, interconnecting nanoflakes, resulting in a network-like structure with many cavities. The coral-like product has a high Brunauer-Emmet-Teller specific surface area of 163 m{sup 2}/g. The diameter of the coral-like {beta}-Co(OH){sub 2} nanostructures is adjustable from 800 nm to 2 {mu}m. The effects of the ethanol/water ratio, the Co{sup 2+} concentration, the hydrothermal temperature, and the reaction time on the formation of themore » coral-like structures were investigated. Cyclic voltammetry and galvanostatic charge-discharge tests show that the {beta}-Co(OH){sub 2} possesses excellent capacitive properties. This is mainly attributed to the high porosity, which allows a deep penetration by electrolytes. - Abstract: Coral-like {beta}-Co(OH){sub 2} nanostructures were synthesized via a facile ethanol-assisted hydrothermal route. Their high porosity facilitates a deep penetration by electrolytes and thus contributes to the excellent capacitive properties.« less

  16. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  17. The chemistry of hydrothermal magnetite: a review

    USGS Publications Warehouse

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  18. Discovery of a new hydrothermal vent based on an underwater, high-resolution geophysical survey

    NASA Astrophysics Data System (ADS)

    Nakamura, Kentaro; Toki, Tomohiro; Mochizuki, Nobutatsu; Asada, Miho; Ishibashi, Jun-ichiro; Nogi, Yoshifumi; Yoshikawa, Shuro; Miyazaki, Jun-ichi; Okino, Kyoko

    2013-04-01

    A new hydrothermal vent site in the Southern Mariana Trough has been discovered using acoustic and magnetic surveys conducted by the Japan Agency for Marine-Earth Science and Technology's (JAMSTEC) autonomous underwater vehicle (AUV), Urashima. The high-resolution magnetic survey, part of a near-bottom geophysical mapping around a previously known hydrothermal vent site, the Pika site, during the YK09-08 cruise in June-July 2009, found that a clear magnetization low extends ˜500 m north from the Pika site. Acoustic signals, suggesting hydrothermal plumes, and 10 m-scale chimney-like topographic highs were detected within this low magnetization zone by a 120 kHz side-scan sonar and a 400 kHz multibeam echo sounder. In order to confirm the seafloor sources of the geophysical signals, seafloor observations were carried out using the deep-sea manned submersible Shinkai 6500 during the YK 10-10 cruise in August 2010. This discovered a new hydrothermal vent site (12°55.30'N, 143°38.89'E; at a depth of 2922 m), which we have named the Urashima site. This hydrothermal vent site covers an area of approximately 300 m×300 m and consists of black and clear smoker chimneys, brownish-colored shimmering chimneys, and inactive chimneys. All of the fluids sampled from the Urashima and Pika sites have chlorinity greater than local ambient seawater, suggesting subseafloor phase separation or leaching from rocks in the hydrothermal reaction zone. End-member compositions of the Urashima and Pika fluids suggest that fluids from two different sources feed the two sites, even though they are located on the same knoll and separated by only ˜500 m. We demonstrate that investigations on hydrothermal vent sites located in close proximity to one another can provide important insights into subseafloor hydrothermal fluid flow, and also that, while such hydrothermal sites are difficult to detect by conventional plume survey methods, high-resolution underwater geophysical surveys provide an

  19. One-step detection of microRNA with high sensitivity and specificity via target-triggered loop-mediated isothermal amplification (TT-LAMP).

    PubMed

    Sun, Yuanyuan; Tian, Hui; Liu, Chenghui; Sun, Yueying; Li, Zhengping

    2017-10-05

    A novel one-step microRNA assay is developed based on a target-triggered loop-mediated isothermal amplification (TT-LAMP) mechanism, which enables the accurate detection of as low as 100 aM (1 zmol) microRNA with simple one-step operation by using only one-type of DNA polymerase.

  20. Catastrophic volcanic collapse: relation to hydrothermal processes.

    PubMed

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  1. One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Qing Ling; Yang, Ye Feng; He, Hai Ping; Chen, Dong Dong; Ye, Zhi Zhen; Jin, Yi Zheng

    2010-05-01

    A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The resulting nearly monodisperse nanocrystals are well-crystallized with typically crystal structure identical to that of wurtzite type of ZnO. Structural, optical, and elemental analyses on the products indicate the incorporation of indium into the host ZnO lattices. The individual nanocrystals with cubic structures were observed in the 5% In-ZnO reaction, due to the relatively high reactivity of indium precursors. Our study would provide further insights for the growth of doped oxide nanocrystals, and deepen the understanding of doping process in colloidal nanocrystal syntheses.

  2. One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and Raman detection applications.

    PubMed

    Zhang, Panpan; Huang, Ying; Lu, Xin; Zhang, Siyu; Li, Jingfeng; Wei, Gang; Su, Zhiqiang

    2014-07-29

    We demonstrated a facile one-step synthesis strategy for the preparation of a large-scale reduced graphene oxide multilayered film doped with gold nanoparticles (RGO/AuNP film) and applied this film as functional nanomaterials for electrochemistry and Raman detection applications. The related applications of the fabricated RGO/AuNP film in electrochemical nonenzymatic H2O2 biosensor, electrochemical oxygen reduction reaction (ORR), and surface-enhanced Raman scattering (SERS) detection were investigated. Electrochemical data indicate that the H2O2 biosensor fabricated by RGO/AuNP film shows a wide linear range, low limitation of detection, high selectivity, and long-term stability. In addition, it was proved that the created RGO/AuNP film also exhibits excellent ORR electrochemical catalysis performance. The created RGO/AuNP film, when serving as SERS biodetection platform, presents outstanding performances in detecting 4-aminothiophenol with an enhancement factor of approximately 5.6 × 10(5) as well as 2-thiouracil sensing with a low concentration to 1 μM. It is expected that this facile strategy for fabricating large-scale graphene film doped with metallic nanoparticles will spark inspirations in preparing functional nanomaterials and further extend their applications in drug delivery, wastewater purification, and bioenergy.

  3. One-dimensional α-MoO3 nanorods for high energy density pseudocapacitor

    NASA Astrophysics Data System (ADS)

    Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta

    2018-04-01

    Ultralong α-MoO3 nanorods having length of 500 nm to 1 µm and uniform width of around ˜50 nm have been synthesized by a simple one step hydrothermal route using a molybdenum organic salt precursor. An evaluation of the electrochemical properties of the nanorods was done by cyclic voltammetry (CV), and galvanometric charging- discharging (GCD) test. Because of the high active sites and rapid ion diffusion and electron transport of the electrodes using as prepared nanorods reveals energy density of 65 Wh/kg at a power density of 940 W/ kg and a maximum specific capacitance of 474 F/g. It also shows excellent cycling stability.

  4. Orienting Periodic Organic-Inorganic Nanoscale Domains Through One-Step Electrodeposition

    PubMed Central

    Herman, David J.; Goldberger, Joshua E.; Chao, Stephen; Martin, Daniel T.; Stupp, Samuel I

    2011-01-01

    One of the challenges in the synthesis of hybrid materials with nanoscale structure is to precisely control morphology across length scales. Using a one-step electrodeposition process on indium tin oxide (ITO) substrates followed by annealing, we report here the preparation of materials with preferentially oriented lamellar domains of electron donor surfactants and the semiconductor ZnO. We found that either increasing the concentration of surfactant or the water to dimethyl sulfoxide ratio of solutions used resulted in the suppression of bloom-like morphologies and enhanced the density of periodic domains on ITO substrates. Furthermore, by modifying the surface of the ITO substrate with the conductive polymer blend poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), we were able to alter the orientation of these electrodeposited lamellar domains to be perpendicular to the substrate. The long-range orientation achieved was characterized by 2D grazing incidence small angle X-ray scattering. This high degree of orientation in electronically active hybrids with alternating nanoscale p-type and n-type domains is of potential interest in photovoltaics or thermoelectric materials. PMID:21142087

  5. The origin of life in alkaline hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.

    2016-12-01

    The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in

  6. Bench-Scale Evaluation of the Genifuel Hydrothermal Processing Technology for Wastewater Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrone, Philip A.; Elliott, Douglas C.; Billing, Justin M.

    Hydrothermal Liquefaction (HTL) and Catalytic Hydrothermal Gasification (CHG) proof-of-concept bench-scale tests were performed to assess the potential of the Genifuel hydrothermal process technology for handling municipal wastewater sludge. HTL tests were conducted at 300-350°C and 20 MPa on three different feeds: primary sludge (11.9 wt% solids), secondary sludge (9.7 wt% solids), and post-digester sludge (also referred to as digested solids) (16.0 wt% solids). Corresponding CHG tests were conducted at 350°C and 20 MPa on the HTL aqueous phase output using a ruthenium based catalyst. A comprehensive analysis of all feed and effluent phases was also performed. Total mass and carbonmore » balances closed to within ± 15% in all but one case. Biocrude yields from HTL tests were 37%, 25%, and 34% for primary sludge, secondary sludge, and digested solids feeds, respectively. The biocrude yields accounted for 59%, 39%, and 49% of the carbon in the feed for primary sludge, secondary sludge, and digested solids feeds, respectively. Biocrude composition and quality were comparable to that seen with biocrudes generated from algae feeds. Subsequent hydrotreating (i.e., upgrading) of the biocrude produced from primary sludge and digested solids resulted in a product with comparable physical and chemical properties to petroleum crude oil. CHG product gas consisted primarily of methane, with methane yields (relative to CHG input) on a carbon basis of 47%, 61%, and 64% for aqueous feeds that were the output of HTL tests with primary sludge, secondary sludge, and digested solids, respectively. Siloxane concentrations in the CHG product gas were below the detection limit and well below fuel input composition limits set by several engine manufacturers. Relative to that of the sludge feeds, the HTL-CHG process resulted in a reduction in chemical oxygen demand (COD) of greater than 99.9% and a reduction in residual solids for disposal of 94-99%. The test results, as a whole

  7. One-step synthesis of magnetic chitosan polymer composite films

    NASA Astrophysics Data System (ADS)

    Cesano, Federico; Fenoglio, Gaia; Carlos, Luciano; Nisticò, Roberto

    2015-08-01

    In this study, a magnetic iron oxide-chitosan composite film is synthesized by one-step method and thoroughly investigated in order to better understand its inorganic/organic properties. A deep physico-chemical characterization of the magnetic films has been performed. In particular, the material composition was evaluated by means of XRD and ATR-FTIR spectroscopy, whereas the thermal stability and the subsequent inorganic phase transitions involving iron oxide species were followed by TGA analyses carried out at different experimental conditions (i.e. inert and oxidative atmosphere). The magnetic properties of the films were tested at the bulk and at the surface level, performing respectively magnetization hysteresis curve and magnetic force microscopy (MFM) surface mapping. Results indicate that the synthesized material can be prepared through a very simple synthetic procedure and suggests that it can be successfully applied for instance to environmental applications, such as the adsorption of contaminants from solid and liquid media thanks to its pronounced magnetic properties, which favour its recover.

  8. Molecular ecology of hydrothermal vent microbial communities.

    PubMed

    Jeanthon, C

    2000-02-01

    The study of the structure and diversity of hydrothermal vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the hydrothermal ecosystem such as the invertebrate endosymbionts and the dense microbial mat filaments have eluded laboratory cultivation. Substantial progress has been achieved in recent years in techniques for the identification of microorganisms in natural environments. Application of molecular approaches has revealed the existence of unique and previously unrecognized microorganisms. These have provided fresh insight into the ecology, diversity and evolution of mesophilic and thermophilic microbial communities from the deep-sea hydrothermal ecosystem. This review reports the main discoveries made through the introduction of these powerful techniques in the study of deep-sea hydrothermal vent microbiology.

  9. Removal of phenols from water accompanied with synthesis of organobentonite in one-step process.

    PubMed

    Ma, Jianfeng; Zhu, Lizhong

    2007-08-01

    A novel technology of wastewater treatment was proposed based on simultaneously synthesis of organobentonite and removal of organic pollutants such as phenols from water in one-step, which resulted that both surfactants and organic pollutants were removed from water by bentonite. The effects of contact time, pH and inorganic salt on the removal of phenols were investigated. Kinetic results showed that phenols and cetyltrimethylammonium bromide (CTMAB) could be removed by bentonite in 25 min. The removal efficiencies were achieved at 69%, 92% and 99%, respectively, for phenol, p-nitrophenol and beta-naphthol at the initial amount of CTMAB at about 120% cation exchange capacity of bentonite. Better dispersion property and more rapid bentonite sedimentation were observed in the process. The results indicated that the one-step process is an efficient, simple and low cost technology for removal of organic pollutants and cationic surfactants from water. The proposed technology made it possible that bentonite was applied as sorbent for wastewater treatment in industrial scale.

  10. Direct Growth of Crystalline Tungsten Oxide Nanorod Arrays by a Hydrothermal Process and Their Electrochromic Properties

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi

    2017-04-01

    Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.

  11. One-Step Reverse-Transcription FRET-PCR for Differential Detection of Five Ebolavirus Species

    PubMed Central

    Lu, Guangwu; Zhang, Jilei; Zhang, Chuntao; Li, Xiaolu; Shi, Dawei; Yang, Zhaopeng; Wang, Chengming

    2015-01-01

    Ebola is an emerging infectious disease caused by a deadly virus belonging to the family Filoviridae, genus Ebolavirus. Based on their geographical distribution, Ebolavirus has been classified into total five species so far, mainly Zaire, Sudan, Taï Forest, Bundibugyo and Reston. It is important to be able to differentiate the Ebolavirus species as they significantly differ in pathogenicity and more than one species can be present in an area. We have developed a one-step step-down RT-PCR detecting all five Ebolavirus species with high sensitivity (1 copy of Ebolavirus DNA, 10 copies of RNA and 320 copies of RNA spiked in 1 ml whole blood). The primers and FRET-probes we designed enabled us to differentiate five Ebolavirus species by distinct T m (Zaire: flat peaks between 53.0°C and 56.9°C; Sudan: 51.6°C; Reston: flat peaks between 47.5°C and 54.9°C; Tai Forest: 52.8°C; Bundibugyo: dual peaks at 48.9°C and 53.5°C), and by different amplicon sizes (Zaire 255bp, Sudan 211bp, Reston 192bp, Taï Forest 166bp, Bundibugyo 146bp). This one-size-fit-all assay enables the rapid detection and discrimination of the five Ebolavirus species in a single reaction. PMID:26017916

  12. Additive assisted hydrothermal synthesis, characterization and optical properties of one dimensional DyPO4:Ce3+ nanostructures

    NASA Astrophysics Data System (ADS)

    Khajuria, H.; Kumar, M.; Singh, R.; Ladol, J.; Nawaz Sheikh, H.

    2018-05-01

    One dimensional nanostructures of cerium doped dysprosium phosphate (DyPO4:Ce3+) were synthesized via hydrothermal route in the presence of different surfactants [sodium dodecyl sulfate (SDS), dodecyl sulfosuccinate (DSS), polyvinyl pyrollidone (PVP)] and solvent [ethylene glycol and water]. The prepared nanostructures were characterized by Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV-VIS-NIR absorption spectrophotometer and photoluminescence (PL) studies. The PXRD and FTIR results indicate purity, good crystallinity and effective doping of Ce3+ in nanostructures. SEM and TEM micrographs display nanorods, nanowires and nanobundles like morphology of DyPO4:Ce3+. Energy-dispersive X-ray spectra (EDS) of DyPO4:Ce3+nanostructures confirm the presence of dopant. UV-VIS-NIR absorption spectra of prepared compounds are used to calculate band gap and explore their optical properties. Luminescent properties of DyPO4:Ce3+ was studied by using PL emission spectra. The effect of additives and solvents on the uniformity, morphology and optical properties of the nanostructures were studied in detail.

  13. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection.

    PubMed

    Liu, Gui-Ting; Chen, Hui-Fen; Lin, Guo-Ming; Ye, Ping-ping; Wang, Xiao-Ping; Jiao, Ying-Zhi; Guo, Xiao-Yu; Wen, Ying; Yang, Hai-Feng

    2014-06-15

    An electrochemical sensor of acetaminophen (AP) based on electrochemically reduced graphene (ERG) loaded nickel oxides (Ni2O3-NiO) nanoparticles coated onto glassy carbon electrode (ERG/Ni2O3-NiO/GCE) was prepared by a one-step electrodeposition process. The as-prepared electrode was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The electrocatalytic properties of ERG/Ni2O3-NiO modified glassy carbon electrode toward the oxidation of acetaminophen were analyzed via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrodes of Ni2O3-NiO/GCE, ERG/GCE, and Ni2O3-NiO deposited ERG/GCE were fabricated for the comparison and the catalytic mechanism understanding. The studies showed that the one-step prepared ERG/Ni2O3-NiO/GCE displayed the highest electro-catalytic activity, attributing to the synergetic effect derived from the unique composite structure and physical properties of nickel oxides nanoparticles and graphene. The low detection limit of 0.02 μM (S/N=3) with the wide linear detection range from 0.04 μM to 100 μM (R=0.998) was obtained. The resulting sensor was successfully used to detect acetaminophen in commercial pharmaceutical tablets and urine samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals

    NASA Astrophysics Data System (ADS)

    Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine

    2018-06-01

    This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.

  15. Impact of hydrothermalism on the ocean iron cycle

    PubMed Central

    Resing, Joseph

    2016-01-01

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035256

  16. Impact of hydrothermalism on the ocean iron cycle.

    PubMed

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-28

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  17. Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming

    USGS Publications Warehouse

    Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.

    2003-01-01

    Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have

  18. Detection of influenza A virus from live-bird market poultry swab samples in China by a pan-IAV, one-step reverse-transcription FRET-PCR.

    PubMed

    Luan, Lu; Sun, Zhihao; Kaltenboeck, Bernhard; Huang, Ke; Li, Min; Peng, Daxin; Xu, Xiulong; Ye, Jianqiang; Li, Jing; Guo, Weina; Wang, Chengming

    2016-07-22

    The persistent public health threat of animal to human transmission of influenza A virus (IAV) has stimulated interest in rapid and accurate detection of all IAV subtypes in clinical specimens of animal origin. In this study, a new set of primers and probes was designed for one-step pan-IAV reverse-transcription fluorescence resonance energy transfer (FRET)-PCR. The detection limit of one-step pan-IAV RT FRET-PCR was 10 copies of the matrix gene per reaction, and proved to be equivalent or superior to virus isolation in detecting nine IAV subtypes. Application of the pan-IAV RT FRET-PCR to oral-pharyngeal and cloacal swab specimens collected from healthy poultry in 34 live bird markets in 24 provinces of China revealed that 9.2% of the animals (169/1,839) or 6.3% of their oral-pharyngeal or cloacal swabs (233/3,678) were positive for IAV, and 56.8% of IAV-positive samples were of the H9N2 subtype. Paralleling detection of IAV in H9N2-infected SPF chickens and chickens from LBM showed that pan-IAV FRET-PCR had a higher detection limit than virus isolation in eggs while the results by FRET-PCR and virus isolation overall matched. It is expected that this strategy can be useful for facile surveillance for IAV in clinical samples from a variety of sources.

  19. Detection of influenza A virus from live-bird market poultry swab samples in China by a pan-IAV, one-step reverse-transcription FRET-PCR

    PubMed Central

    Luan, Lu; Sun, Zhihao; Kaltenboeck, Bernhard; Huang, Ke; Li, Min; Peng, Daxin; Xu, Xiulong; Ye, Jianqiang; Li, Jing; Guo, Weina; Wang, Chengming

    2016-01-01

    The persistent public health threat of animal to human transmission of influenza A virus (IAV) has stimulated interest in rapid and accurate detection of all IAV subtypes in clinical specimens of animal origin. In this study, a new set of primers and probes was designed for one-step pan-IAV reverse-transcription fluorescence resonance energy transfer (FRET)-PCR. The detection limit of one-step pan-IAV RT FRET-PCR was 10 copies of the matrix gene per reaction, and proved to be equivalent or superior to virus isolation in detecting nine IAV subtypes. Application of the pan-IAV RT FRET-PCR to oral-pharyngeal and cloacal swab specimens collected from healthy poultry in 34 live bird markets in 24 provinces of China revealed that 9.2% of the animals (169/1,839) or 6.3% of their oral-pharyngeal or cloacal swabs (233/3,678) were positive for IAV, and 56.8% of IAV-positive samples were of the H9N2 subtype. Paralleling detection of IAV in H9N2-infected SPF chickens and chickens from LBM showed that pan-IAV FRET-PCR had a higher detection limit than virus isolation in eggs while the results by FRET-PCR and virus isolation overall matched. It is expected that this strategy can be useful for facile surveillance for IAV in clinical samples from a variety of sources. PMID:27445010

  20. Efficiency and Safety of One-Step Procedure Combined Laparoscopic Cholecystectomy and Eretrograde Cholangiopancreatography for Treatment of Cholecysto-Choledocholithiasis: A Randomized Controlled Trial.

    PubMed

    Liu, Zhiyi; Zhang, Luyao; Liu, Yanling; Gu, Yang; Sun, Tieliang

    2017-11-01

    We aimed to evaluate the efficiency and safety of one-step procedure combined endoscopic retrograde cholangiopancreatography (ERCP) and laparoscopic cholecystectomy (LC) for treatment of patients with cholecysto-choledocholithiasis. A prospective randomized study was performed on 63 consecutive cholecysto-choledocholithiasis patients during 2008 and 2011. The efficiency and safety of one-step procedure was assessed by comparing the two-step LC with ERCP + endoscopic sphincterotomy (EST). Outcomes including intraoperative features, postoperative features (length of stay and postoperative complications) were evaluated. One- or two-step procedure of LC with ERCP + EST was successfully performed in all patients, and common bile duct stones were completely removed. Statistical analyses showed that length of stay and pulmonary infection rate were significantly lower in the test group compared with that in the control group (P < 0.05), whereas no statistical difference in other outcomes was found between the two groups (all P > 0.05). The one-step procedure of LC with ERCP + EST is superior to the two-step procedure for treatment of patients with cholecysto-choledocholithiasis regarding to the reduced hospital stay and inhibited occurrence of pulmonary infections. Compared with two-step procedure, one-step procedure of LC with ERCP + EST may be a superior option for cholecysto-choledocholithiasis patients treatment regarding to hospital stay and pulmonary infections.

  1. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    USGS Publications Warehouse

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  2. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough

    USGS Publications Warehouse

    Ishibashi, J.-I.; Sato, M.; Sano, Y.; Wakita, H.; Gamo, T.; Shanks, Wayne C.

    2002-01-01

    Ocean Drilling Program (ODP) Leg 169, which was conducted in 1996 provided an opportunity to study the gas geochemistry in the deeper part of the sediment-rich hydrothermal system in Escanaba Trough. Gas void samples obtained from the core liner were analyzed and their results were compared with analytical data of vent fluid samples collected by a submersible dive program in 1988. The gas geochemistry of the pore fluids consisted mostly of a hydrothermal component and was basically the same as that of the vent fluids. The He isotope ratios (R/RA = 5.6-6.6) indicated a significant mantle He contribution and the C isotopic compositions of the hydrocarbons [??13C(CH4) = -43???, ??13C(C2H6) = -20???] were characterized as a thermogenic origin caused by hydrothermal activity. On the other hand, the pore fluids in sedimentary layers away from the hydrothermal fields showed profiles which reflected lateral migration of the hydrothermal hydrocarbons and abundant biogenic CH4. Helium and C isotope systematics were shown to represent a hydrothermal component and useful as indicators for their distribution beneath the seafloor. Similarities in He and hydrocarbon signatures to that of the Escanaba Trough hydrothermal system were found in some terrestrial natural gases, which suggested that seafloor hydrothermal activity in sediment-rich environments would be one of the possible petroleum hydrocarbon generation scenarios in unconventional geological settings. ?? 2002 Elsevier Science Ltd. All rights reserved.

  3. X-ray absorption spectroscopy and imaging of heterogeneous hydrothermal mixtures using a diamond microreactor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John L.; Darab, John G.; Hoffmann, Markus M.

    2001-04-01

    Hydrothermal synthesis is an important route to novel materials. Hydrothermal chemistry is also an important aspect of geochemistry and a variety of waste remediation technologies. There is a significant lack of information about the speciation of inorganic compounds under hydrothermal conditions. For these reasons we describe a high-temperature, high-pressure cell that allows one to acquire both x-ray absorption fine structure (XAFS) spectra and x-ray transmission and absorption images of heterogeneous hydrothermal mixtures. We demonstrate the utility of the method by measuring the Cu(I) speciation in a solution containing both solid and dissolved Cu phases at temperatures up to 325{sup o}C.more » X-ray imaging of the various hydrothermal phases allows micro-XAFS to be collected from different phases within the heterogeneous mixture. The complete structural characterization of a soluble bichloro-cuprous species was determined. In situ XAFS measurements were used to define the oxidation state and the first-shell coordination structure. The Cu--Cl distance was determined to be 2.12 Aa for the CuCl{sub 2}{sup -} species and the complete loss of tightly bound waters of hydration in the first shell was observed. The microreactor cell described here can be used to test thermodynamic models of solubility and redox chemistry of a variety of different hydrothermal mixtures.« less

  4. Efficient Photocatalytic Degradation of Norfloxacin in Aqueous Media by Hydrothermally Synthesized Immobilized TiO2/Ti Films with Exposed {001} Facets.

    PubMed

    Sayed, Murtaza; Shah, Luqman Ali; Khan, Javed Ali; Shah, Noor S; Nisar, Jan; Khan, Hasan M; Zhang, Pengyi; Khan, Abdur Rahman

    2016-12-22

    In this study, a novel immobilized TiO 2 /Ti film with exposed {001} facets was prepared via a facile one-pot hydrothermal route for the degradation of norfloxacin from aqueous media. The effects of various hydrothermal conditions (i.e., solution pH, hydrothermal time (H T ) and HF concentration) on the growth of {001} faceted TiO 2 /Ti film were investigated. The maximum photocatalytic performance of {001} faceted TiO 2 /Ti film was observed when prepared at pH 2.62, H T of 3 h and at HF concentration of 0.02 M. The as-prepared {001} faceted TiO 2 /Ti films were fully characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), and X-ray photoelectron spectroscopy (XPS). More importantly, the as-prepared {001} faceted TiO 2 /Ti film exhibited excellent photocatalytic performance toward degradation of norfloxacin in various water matrices (Milli-Q water, tap water, river water and synthetic wastewater). The individual influence of various anions (SO 4 2- , HCO 3 - , NO 3 - , Cl - ) and cations (K + , Ca 2+ , Mg 2+ , Cu 2+ , Na + , Fe 3+ ) usually present in the real water samples on the photocatalytic performance of as-prepared TiO 2 /Ti film with exposed {001} facet was investigated. The mechanistic studies revealed that • OH is mainly involved in the photocatalytic degradation of norfloxacin by {001} faceted TiO 2 /Ti film. In addition, norfloxacin degradation byproducts were investigated, on the basis of which degradation schemes were proposed.

  5. One-step colloidal synthesis of biocompatible water-soluble ZnS quantum dot/chitosan nanoconjugates

    NASA Astrophysics Data System (ADS)

    Ramanery, Fábio P.; Mansur, Alexandra AP; Mansur, Herman S.

    2013-12-01

    Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel 'cadmium-free' biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy.

  6. One Step at a Time: Using Task Analyses to Teach Skills

    ERIC Educational Resources Information Center

    Snodgrass, Melinda R.; Meadan, Hedda; Ostrosky, Michaelene M.; Cheung, W. Catherine

    2017-01-01

    Task analyses are useful when teaching children how to complete tasks by breaking the tasks into small steps, particularly when children struggle to learn a skill during typical classroom instruction. We describe how to create a task analysis by identifying the steps a child needs to independently perform the task, how to assess what steps a child…

  7. Detection of viable Cronobacter spp. (Enterobacter sakazakii) by one-step RT-PCR in dry aquatic product.

    PubMed

    Ye, Yingwang; Wu, Qingping; Zhang, Jumei; Jiang, He; Hu, Wang

    2012-11-01

    Cronobacter are opportunistic food-borne pathogens associated with meningitis, sepsis, and necrotizing enterocolitis. Little attempt has focused on detection of viable cell of Cronobacter spp. in dry aquatic products, which were frequently used for raw materials of infant foods due to high nutrition. In this paper, one-step reverse transcription polymerase chain reaction (RT-PCR) was developed for detection of viable Cronobacter spp. in dry aquatic products. Specificity test indicated that clearly expected amplicon in size 469 bp was amplified from RNA of Cronobacter, but not from RNA of negative controls and DNA of Cronobacter strains. The sensitivity was 10(4) CFU/mL of Cronobacter strain in artificially fish meal samples and 10(1) CFU/mL of Cronobacter after 10-h enrichment. In a total of 81 dry aquatic products, 9.8%, 8.6%, and 9.8% of samples were found to be positive for Cronobacter by one-step RT-PCR, U.S. Food and Drug Administration method, and Druggan-Forsythe-Iversen medium, respectively. The results clearly indicated that one-step RT-PCR could avoid the interference of residual DNA of Cronobacter in food samples and be used to specifically detect viable Cronobacter spp. for large-scale monitoring of food samples. The use of rapid and specific detection of food borne pathogens in food samples was most of importance for control and precaution of food borne diseases. In this study, one-step RT-PCR was developed for detection of Cronobacter spp. in aquatic products. A comparison of different methods for detection of Cronobacter indicated that the newly developed method could be widely used to specifically detect Cronobacter spp. in food samples. © 2012 Institute of Food Technologists®

  8. Nitrous oxide emissions from one-step partial nitritation/anammox processes.

    PubMed

    Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2016-12-01

    Measurements of nitrous oxide were made at pilot- and full-scale plants to evaluate greenhouse gas emissions from one-step partial nitritation/anammox processes applied in moving bed biofilm reactors treating reject water. It was found that 0.51-1.29% and 0.35-1.33% of the total nitrogen loads in the pilot- and full-scale reactor, respectively, were emitted as nitrous oxide. Between 80 and 90% of nitrous oxide emissions were in gaseous form and the rest amount was found in the reactor effluent; over 90% of nitrous oxide emissions occurred in the aerated period and less than 8% in the non-aerated period in the full-scale study. Nitrous oxide productions/consumptions were closely related to aeration and the nitrogen loads applied in the system.

  9. The role of the reactor wall in hydrothermal biomass conversions.

    PubMed

    Fábos, Viktória; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2012-11-01

    The processing of renewable feedstocks to platform chemicals and, to a lesser degree, fuels is a key part of sustainable development. In particular, the combination of lignocellulosic biomass with hydrothermal upgrading (HTU), using high temperature and pressure water (HTPW), is experiencing a renaissance. One of the many steps in this complicated process is the in-situ hydrogenation of intermediate compounds. As formic acid and related low-molecular-weight oxygenates are among the species generated, it is conceivable that they act as a hydrogen source. Such hydrogenations have been suggested to be catalyzed by water, by bases like NaOH, and/or to involve "reactive/nascent hydrogen". To achieve the temperatures and pressures required for HTU, it is necessary to conduct the reactions in high-pressure vessels. Metals are typical components of their walls and/or internal fittings. Here, using cyclohexanone as a model compound for more complex biomass-derived molecules, iron in the wall of high-pressure stainless steel reactors is shown to be responsible for the hydrogenation of ketones with low-molecular-weight oxygenates acting as a hydrogen source in combination with water. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Titanium(IV) isopropoxide mediated synthesis of pyrimidin-4-ones.

    PubMed

    Ramanjulu, Joshi M; Demartino, Michael P; Lan, Yunfeng; Marquis, Robert

    2010-05-21

    A novel, one-step method for the synthesis of tri- and tetrasubstituted pyrimidin-4-ones is reported. This method involves a titanium(IV)-mediated cyclization involving two sequential condensations of primary and beta-ketoamides. The reaction is operationally facile, readily scalable, and offers rapid entry into differentially substituted pyrimidin-4-one scaffolds. The high functional group compatibility allows for substantial diversification in the products generated from this transformation.

  11. Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy.

    PubMed

    Zhang, Yaohong; Wu, Guohua; Ding, Chao; Liu, Feng; Yao, Yingfang; Zhou, Yong; Wu, Congping; Nakazawa, Naoki; Huang, Qingxun; Toyoda, Taro; Wang, Ruixiang; Hayase, Shuzi; Zou, Zhigang; Shen, Qing

    2018-06-18

    Lead selenide (PbSe) colloidal quantum dots (CQDs) are considered to be a strong candidate for high-efficiency colloidal quantum dot solar cells (CQDSCs) due to its efficient multiple exciton generation. However, currently, even the best PbSe CQDSCs can only display open-circuit voltage ( V oc ) about 0.530 V. Here, we introduce a solution-phase ligand exchange method to prepare PbI 2 -capped PbSe (PbSe-PbI 2 ) CQD inks, and for the first time, the absorber layer of PbSe CQDSCs was deposited in one step by using this PbSe-PbI 2 CQD inks. One-step-deposited PbSe CQDs absorber layer exhibits fast charge transfer rate, reduced energy funneling, and low trap assisted recombination. The champion large-area (active area is 0.35 cm 2 ) PbSe CQDSCs fabricated with one-step PbSe CQDs achieve a power conversion efficiency (PCE) of 6.0% and a V oc of 0.616 V, which is the highest V oc among PbSe CQDSCs reported to date.

  12. High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Wang, Hsin-Yi; Chen, Jiazang; Hy, Sunny; Yu, Linghui; Xu, Zhichuan; Liu, Bin

    2014-11-01

    Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity.Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m2 g-1 were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping

  13. One-step Synthesis of Ordered Pd@TiO2 Nanofibers Array Film as Outstanding NH3 Gas Sensor at Room Temperature.

    PubMed

    Wu, Hongyuan; Huang, Haitao; Zhou, Jiao; Hong, Dahai; Ikram, Muhammad; Rehman, Afrasiab Ur; Li, Li; Shi, Keying

    2017-11-07

    The one dimensional (1D) ordered porous Pd@TiO 2 nanofibers (NFs) array film have been fabricated via a facile one-step synthesis of the electrospinning approach. The Pd@TiO 2 NFs (PTND3) contained Pd (2.0 wt %) and C, N element (16.2 wt %) display high dispersion of Pd nanoparticles (NPs) on TiO 2 NFs. Adding Pd meshed with C, N element to TiO 2 based NFs might contribute to generation of Lewis acid sites and Brønsted acid sites, which have been recently shown to enhance NH 3 adsorption-desorption ability; Pd NPs could increase the quantity of adsorbed O 2 on the surface of TiO 2 based NFs, and accelerated the O 2 molecule-ion conversion rate, enhanced the ability of electron transmission. The response time of PTND3 sensor towards 100 ppm NH 3 is only 3 s at room temperature (RT). Meantime, the response and response time of the PTND3 to the NH 3 is 1 and 14s even at the concentration of 100 ppb. Therefore, the ordered Pd@TiO 2 NFs array NH 3 sensor display great potential for practical applications.

  14. One-step breast reconstruction with polyurethane-covered implants after skin-sparing mastectomy.

    PubMed

    Rancati, Alberto; Soderini, Alejandro; Dorr, Julio; Gercovich, Gustavo; Tessari, Luciano; Gonzalez, Eduardo

    2013-12-01

    Skin-sparing mastectomy (SSM) and immediate one-step breast reconstruction with implants has become an increasingly popular, effective treatment for selected patients with breast carcinoma. However, it is associated with high complication rates. Breast augmentation with polyurethane-covered implants (PCIs) has consistently had optimal short-term and long-term results with low rates of capsular contracture. The aim of this study was to evaluate the clinical and aesthetic outcomes of immediate one-step breast reconstruction with PCI after SSM in early breast cancer patients at a single institution. We reviewed the records of 221 consecutive breast cancer patients who underwent one-stage immediate reconstruction with PCI after SSM from 1995 through 2005. Patient and tumour characteristics, type of reconstruction, postoperative complications, aesthetic results and recurrence rate were analysed. The mean age of the patients was 52±11 years (range, 30-76; standard deviation (SD), 11). The American Joint Committee on Cancer (AJCC) pathologic stages were 0 (10%), I (63.3%) and II (26.7%). Thirty-nine (17.65%; confidence interval (CI)=13.04-23.1) of the 221 patients had complications; seven had prosthesis extrusion requiring an implant (five due to skin necrosis, one due to infection and one due to late haematoma). In six of these seven cases, the procedure was indicated for local recurrence after conservative breast surgery with adjunctive radiation therapy (rescue procedure). Thirty-two (14.4%) patients had minor complications: 12 had cutaneous rash, four had malpositioned implants and 16 had inadequate implant projection. At long-term follow-up, four (1.8%) patients had developed grade IV capsular contracture associated with postoperative radiation therapy. At a median follow-up of 98 months (range, 36-156), 14 (6.3%) patients had tumour recurrence and 12.2% had distant metastasis. Nineteen patients had died of cancer, and 192 (86.8%) remained disease free. One

  15. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B.

    PubMed

    Jiao, Yue; Wan, Caichao; Bao, Wenhui; Gao, He; Liang, Daxin; Li, Jian

    2018-06-01

    A magnetic cellulose aerogel-supported Fe 3 O 4 nanoparticles composite was designed as a highly efficient and eco-friendly catalyst for Fenton-like degradation of Rhodamine B (RhB). The composite (coded as Fe 3 O 4 @CA) was formed by embedding well-dispersed Fe 3 O 4 nanoparticles into the 3D structure of cellulose aerogels by virtue of a facile and cheap hydrothermal method. Comparative studies indicate that the RhB decolorization ratio is much higher in co-presence of Fe 3 O 4 and H 2 O 2 than that in presence of Fe 3 O 4 or H 2 O 2 only, revealing that the Fe 3 O 4 @CA-catalyzed Fenton-like reaction governed the RhB decolorization process. It was also found that almost 100% RhB removal was achieved in the Fenton-like system. Moreover, the composite exhibited higher catalytic activity than that of the individual Fe 3 O 4 particles. In addition, the Fe 3 O 4 @CA catalyst retained ∼97% of its ability to degrade RhB after the six successive degradation experiments, suggesting its excellent reusability. All these merits indicate that the green and low-cost catalyst with strong magnetic responsiveness possesses good potential for H 2 O 2 -driven Fenton-like treatment of organic dyestuff wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. One step HIP canning of powder metallurgy composites

    NASA Technical Reports Server (NTRS)

    Juhas, John J. (Inventor)

    1990-01-01

    A single step is relied on in the canning process for hot isostatic pressing (HIP) powder metallurgy composites. The binders are totally removed while the HIP can of compatible refractory metal is sealed at high vacuum and temperature. This eliminates outgassing during hot isostatic pressing.

  17. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    PubMed

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase.

    PubMed

    Wang, Xiumei; Qin, Xiaoli; Li, Daoming; Yang, Bo; Wang, Yonghua

    2017-07-01

    This study reported a novel immobilized MAS1 lipase from marine Streptomyces sp. strain W007 for synthesizing high-yield biodiesel from waste cooking oils (WCO) with one-step addition of methanol in a solvent-free system. Immobilized MAS1 lipase was selected for the transesterification reactions with one-step addition of methanol due to its much more higher biodiesel yield (89.50%) when compared with the other three commercial immobilized lipases (<10%). The highest biodiesel yield (95.45%) was acquired with one-step addition of methanol under the optimized conditions. Moreover, it was observed that immobilized MAS1 lipase retained approximately 70% of its initial activity after being used for four batch cycles. Finally, the obtained biodiesel was further characterized using FT-IR, 1 H and 13 C NMR spectroscopy. These findings indicated that immobilized MAS1 lipase is a promising catalyst for biodiesel production from WCO with one-step addition of methanol under high methanol concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Spontaneous Ignition of Hydrothermal Flames in Supercritical Ethanol Water Solutions

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Kojima, Jun J.

    2017-01-01

    Results are reported from recent tests where hydrothermal flames spontaneously ignited in a Supercritical Water Oxidation (SCWO) Test Cell. Hydrothermal flames are generally categorized as flames that occur when appropriate concentrations of fuel and oxidizer are present in supercritical water (SCW); i.e., water at conditions above its critical point (218 atm and 374 C). A co-flow injector was used to inject fuel, comprising an aqueous solution of 30-vol to 50-vol ethanol, and air into a reactor held at constant pressure and filled with supercritical water at approximately 240 atm and 425 C. Hydrothermal flames auto-ignited and quickly stabilized as either laminar or turbulent diffusion flames, depending on the injection velocities and test cell conditions. Two orthogonal views, one of which provided a backlit shadowgraphic image, provided visual observations. Optical emission measurements of the steady state flame were made over a spectral range spanning the ultraviolet (UV) to the near infrared (NIR) using a high-resolution, high-dynamic-range spectrometer. Depending on the fuel air flow ratios varying degrees of sooting were observed and are qualitatively compared using light absorption comparisons from backlit images.

  20. Contention between supply of hydrothermal fluid and conduit obstruction: inferences from numerical simulations

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryo; Hashimoto, Takeshi; Matsushima, Nobuo; Ishido, Tsuneo

    2018-05-01

    We investigate a volcanic hydrothermal system using numerical simulations, focusing on change in crater temperature. Both increases and decreases in crater temperature have been observed before phreatic eruptions. We follow the system's response for up to a decade after hydrothermal fluid flux from the deep part of the system is increased and permeability is reduced at a certain depth in a conduit. Our numerical simulations demonstrate that: (1) changes in crater temperature are controlled by the magnitude of the increase in hydrothermal fluid flux and the degree of permeability reduction; (2) significant increases in hydrothermal flux with decreases in permeability induce substantial pressure changes in shallow depths in the edifice and decreases in crater temperature; (3) the location of maximum pressure change differs between the mechanisms. The results of this study imply that it is difficult to predict eruptions by crater temperature change alone. One should be as wary of large eruptions when crater temperature decreases as when crater temperature increases. It is possible to clarify the implications of changes in crater temperature with simultaneous observation of ground deformation.[Figure not available: see fulltext.

  1. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.

    PubMed

    Nitsos, Christos K; Matis, Konstantinos A; Triantafyllidis, Kostas S

    2013-01-01

    The natural resistance to enzymatic deconstruction exhibited by lignocellulosic materials has designated pretreatment as a key step in the biological conversion of biomass to ethanol. Hydrothermal pretreatment in pure water represents a challenging approach because it is a method with low operational costs and does not involve the use of organic solvents, difficult to handle chemicals, and "external" liquid or solid catalysts. In the present work, a systematic study has been performed to optimize the hydrothermal treatment of lignocellulosic biomass (beech wood) with the aim of maximizing the enzymatic digestibility of cellulose in the treated solids and obtaining a liquid side product that could also be utilized for the production of ethanol or valuable chemicals. Hydrothermal treatment experiments were conducted in a batch-mode, high-pressure reactor under autogeneous pressure at varying temperature (130-220 °C) and time (15-180 min) regimes, and at a liquid-to-solid ratio (LSR) of 15. The intensification of the process was expressed by the severity factor, log R(o). The major changes induced in the solid biomass were the dissolution/removal of hemicellulose to the process liquid and the partial removal and relocation of lignin on the external surface of biomass particles in the form of recondensed droplets. The above structural changes led to a 2.5-fold increase in surface area and total pore volume of the pretreated biomass solids. The enzymatic hydrolysis of cellulose to glucose increased from less than 7 wt% for the parent biomass to as high as 70 wt% for the treated solids. Maximum xylan recovery (60 wt%) in the hydrothermal process liquid was observed at about 80 wt% hemicellulose removal; this was accomplished by moderate treatment severities (log R(o)=3.8-4.1). At higher severities (log R(o)=4.7), xylose degradation products, mainly furfural and formic acid, were the predominant chemicals formed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGa

  2. tCRISPRi: tunable and reversible, one-step control of gene expression

    NASA Astrophysics Data System (ADS)

    Li, Xin-Tian; Jun, Yonggun; Erickstad, Michael J.; Brown, Steven D.; Parks, Adam; Court, Donald L.; Jun, Suckjoon

    2016-12-01

    The ability to control the level of gene expression is a major quest in biology. A widely used approach employs deletion of a nonessential gene of interest (knockout), or multi-step recombineering to move a gene of interest under a repressible promoter (knockdown). However, these genetic methods are laborious, and limited for quantitative study. Here, we report a tunable CRISPR-cas system, “tCRISPRi”, for precise and continuous titration of gene expression by more than 30-fold. Our tCRISPRi system employs various previous advancements into a single strain: (1) We constructed a new strain containing a tunable arabinose operon promoter PBAD to quantitatively control the expression of CRISPR-(d)Cas protein over two orders of magnitude in a plasmid-free system. (2) tCRISPRi is reversible, and gene expression is repressed under knockdown conditions. (3) tCRISPRi shows significantly less than 10% leaky expression. (4) Most important from a practical perspective, construction of tCRISPRi to target a new gene requires only one-step of oligo recombineering. Our results show that tCRISPRi, in combination with recombineering, provides a simple and easy-to-implement tool for gene expression control, and is ideally suited for construction of both individual strains and high-throughput tunable knockdown libraries.

  3. Facile synthesis of SnO2/α-Fe2O3 nanocomposite for supercapacitor capacitor applications

    NASA Astrophysics Data System (ADS)

    Rani, B. Jansi; Saravanakumar, B.; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    Facile and economically viable one step hydrothermal route was adapted to synthesis SnO2/α-Fe2O3 nanocomposite with and without hexamine (HMT) as surfactant successfully. The formation of SnO2/α-Fe2O3 nanocomposite was confirmed through XRD, Raman, PL and FTIR studies. The presence of well defined XRD diffraction peaks of both SnO2 and α-Fe2O3 revealed the formation SnO2/α-Fe2O3 nanocomposite. The obtained characteristic Raman active (Eg+Eg+Eu+A2u) mode of vibrations confirmed the formation of SnO2/α-Fe2O3 nanocomposite. Photoluminescence study revealed the emission behavior of the product. Metal oxygen vibrations of Fe-O in both octahedral, tetrahedral sites and Sn-O were confirmed by the bands located at 466, 580 and 673 cm-1 respectively through FTIR. The spherical morphology of the product synthesized with and without the surfactant HMT has been revealed by SEM images. The electrochemical behavior of the product was investigated through CV and EIS studies in 1M Na2SO4 electrolyte solution and obtained the highest specific capacitance of 211.25 F/g at 5 mV for the surfactant assisted product.

  4. One-step assembly of Fe(III)-CMC chelate hydrogel onto nanoneedle-like CuO@Cu membrane with superhydrophilicity for oil-water separation

    NASA Astrophysics Data System (ADS)

    Dai, Jiangdong; Chang, Zhongshuai; Xie, Atian; Zhang, Ruilong; Tian, Sujun; Ge, Wenna; Yan, Yongsheng; Li, Chunxiang; Xu, Wei; Shao, Rong

    2018-05-01

    The research of superhydrophilic interface is developing rapidly, but the preparations of superhydrophilic surfaces through simple methods are still challenging. Herein, we reported a facile, rapid and environmentally-friendly approach for preparing a novel superhydrophilic and underwater superoleophobic membrane via the thermal oxidation of Cu mesh and one-step coordinated assembly of Fe(III)-CMC chelate hydrogel. Superhydrophilicity was attributed to the hydrophilicity of Fe(III)-CMC chelate hydrogel and nanoneedle-like rough structure of CuO@Cu membrane. The membrane was used to separate a variety of oil/water mixtures and exhibited excellent separation performance. Moreover, the membrane exhibited the excellent durability and superior stability against corrosion conditions. We envision that the Fe(III)-CMC@CuO@Cu membrane with good underwater superoleophobicity could provide a candidate not only for oil/water separation but also many other potential applications such as underwater oil manipulation, self-clean, and bio-adhesion control.

  5. Outward Bound to the Galaxies--One Step at a Time

    ERIC Educational Resources Information Center

    Ward, R. Bruce; Miller-Friedmann, Jaimie; Sienkiewicz, Frank; Antonucci, Paul

    2012-01-01

    Less than a century ago, astronomers began to unlock the cosmic distances within and beyond the Milky Way. Understanding the size and scale of the universe is a continuing, step-by-step process that began with the remarkably accurate measurement of the distance to the Moon made by early Greeks. In part, the authors have ITEAMS (Innovative…

  6. Nitrogen-Functionalized Hydrothermal Carbon Materials by Using Urotropine as the Nitrogen Precursor.

    PubMed

    Straten, Jan Willem; Schleker, Philipp; Krasowska, Małgorzata; Veroutis, Emmanouil; Granwehr, Josef; Auer, Alexander A; Hetaba, Walid; Becker, Sylvia; Schlögl, Robert; Heumann, Saskia

    2018-03-25

    Nitrogen-containing hydrothermal carbon (N-HTC) materials of spherical particle morphology were prepared by means of hydrothermal synthesis with glucose and urotropine as precursors. The molar ratio of glucose to urotropine has been varied to achieve a continuous increase in nitrogen content. By raising the ratio of urotropine to glucose, a maximal nitrogen fraction of about 19 wt % could be obtained. Decomposition products of both glucose and urotropine react with each other; this opens up a variety of possible reaction pathways. The pH has a pronounced effect on the reaction pathway of the corresponding reaction steps. For the first time, a comprehensive analytical investigation, comprising a multitude of analytical tools and instruments, of a series of nitrogen-containing HTC materials was applied. Functional groups and structural motifs identified were analyzed by means of FTIR spectroscopy, thermogravimetric MS, and solid-state NMR spectroscopy. Information on reaction mechanisms and structural details were obtained by electronic structure calculations that were compared with vibrational spectra of polyfuran or polypyrrole-like groups, which represent structural motifs occurring in the present samples. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Role of C–N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route

    PubMed Central

    Permatasari, Fitri Aulia; Aimon, Akfiny Hasdi; Iskandar, Ferry; Ogi, Takashi; Okuyama, Kikuo

    2016-01-01

    Graphene quantum dots (GQDs) containing N atoms were successfully synthesized using a facile, inexpensive, and environmentally friendly hydrothermal reaction of urea and citric acid, and the effect of the GQDs’ C–N configurations on their photoluminescence (PL) properties were investigated. High-resolution transmission electron microscopy (HR-TEM) images confirmed that the dots were spherical, with an average diameter of 2.17 nm. X-ray photoelectron spectroscopy (XPS) analysis indicated that the C–N configurations of the GQDs substantially affected their PL intensity. Increased PL intensity was obtained in areas with greater percentages of pyridinic-N and lower percentages of pyrrolic-N. This enhanced PL was attributed to delocalized π electrons from pyridinic-N contributing to the C system of the GQDs. On the basis of energy electron loss spectroscopy (EELS) and UV-Vis spectroscopy analyses, we propose a PL mechanism for hydrothermally synthesized GQDs. PMID:26876153

  8. Finishing/polishing of composite and compomer restoratives: effectiveness of one-step systems.

    PubMed

    Yap, Adrian U J; Yap, S H; Teo, C K; Ng, J J

    2004-01-01

    This study investigated the surface texture of composite (Z100, 3M ESPE) and compomer (F2000, 3M ESPE) restoratives after treatment with different one-step finishing/polishing systems (One-Gloss [OG], Shofu; PoGo [PG], Dentsply; Sof-Lex Brush [SB], 3M ESPE). The surface roughness obtained was compared to that using a matrix strip [MS], a two-step rubber abrasive (CompoSite [CS], Shofu) and a graded abrasive disk (Super Snap [SS], Shofu) system. Eight specimens (3-mm long x 3-mm wide x 2-mm deep) of each material were made according to manufacturer's instructions. With exception of the MS group, all groups were roughened with 320 grit grinding paper using a lapping device prior to finishing/polishing with the different systems. The mean surface roughness (microm) was measured with a profilometer. Data was subjected to ANOVA/Scheffe's tests and independent samples t-test at significance level 0.05. Mean Ra ranged from 0.22 to 0.32 microm for Z100 and 0.45 to 0.68 for F2000. For both materials, the smoothest surfaces were obtained with MS. The roughest surfaces were observed after treatment with SS and OG for Z100 and F2000, respectively. The effectiveness of the finishing/polishing systems was material dependent. The surface finish produced by PG and SB was superior or comparable to that obtained with CS, SS and OG.

  9. Effect of air-blowing duration on the bond strength of current one-step adhesives to dentin.

    PubMed

    Fu, Jiale; Saikaew, Pipop; Kawano, Shimpei; Carvalho, Ricardo M; Hannig, Matthias; Sano, Hidehiko; Selimovic, Denis

    2017-08-01

    To evaluate the influence of different air-blowing durations on the micro-tensile bond strength (μTBS) of five current one-step adhesive systems to dentin. One hundred and five caries-free human molars and five current one-step adhesive systems were used: ABU (All Bond Universal, Bisco, Inc.), CUB (CLEARFIL™ Universal Bond, Kuraray), GPB (G-Premio BOND, GC), OBA (OptiBond All-in-one, Kerr) and SBU (Scotchbond Universal, 3M ESPE). The adhesives were applied to 600 SiC paper-flat dentin surfaces according to each manufacturer's instructions and were air-dried with standard, oil-free air pressure of 0.25MPa for either 0s, 5s, 15s or 30s before light-curing. Bond strength to dentin was determined by using μTBS test after 24h of water storage. The fracture pattern on the dentin surface was analyzed by SEM. The resin-dentin interface of untested specimens was visualized by panoramic SEM image. Data from μTBS were analyzed using two-way ANOVA (adhesive vs. air-blowing time), and Games-Howell (a=0.05). Two-way ANOVA revealed a significant effect of materials (p=0.000) and air-blowing time (p=0.000) on bond strength to dentin. The interaction between factors was also significantly different (p=0.000). Maximum bond strength for each system were recorded, OBA/15s (76.34±19.15MPa), SBU/15s (75.18±12.83MPa), CUB/15s (68.23±16.36MPa), GPB/30s (55.82±12.99MPa) and ABU/15s (44.75±8.95MPa). The maximum bond strength of OBA and SUB were significantly higher than that of GPB and ABU (p<0.05). The bond strength of the current one-step adhesive systems is material-dependent (p=0.000), and was influenced by air-blowing duration (p=0.000). For the current one-step adhesive systems, higher bond strengths could be achieved with prolonged air-blowing duration between 15-30s. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Influence of phase inversion on the formation and stability of one-step multiple emulsions.

    PubMed

    Morais, Jacqueline M; Rocha-Filho, Pedro A; Burgess, Diane J

    2009-07-21

    A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the first time, the significance of the ultralow surface tension point on multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory ,and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.

  11. Integrating palliative care in long-term care facilities across Europe (PACE): protocol of a cluster randomized controlled trial of the 'PACE Steps to Success' intervention in seven countries.

    PubMed

    Smets, Tinne; Onwuteaka-Philipsen, Bregje B D; Miranda, Rose; Pivodic, Lara; Tanghe, Marc; van Hout, Hein; Pasman, Roeline H R W; Oosterveld-Vlug, Mariska; Piers, Ruth; Van Den Noortgate, Nele; Wichmann, Anne B; Engels, Yvonne; Vernooij-Dassen, Myrra; Hockley, Jo; Froggatt, Katherine; Payne, Sheila; Szczerbińska, Katarzyna; Kylänen, Marika; Leppäaho, Suvi; Barańska, Ilona; Gambassi, Giovanni; Pautex, Sophie; Bassal, Catherine; Deliens, Luc; Van den Block, Lieve

    2018-03-12

    Several studies have highlighted the need for improvement in palliative care delivered to older people long-term care facilities. However, the available evidence on how to improve palliative care in these settings is weak, especially in Europe. We describe the protocol of the PACE trial aimed to 1) evaluate the effectiveness and cost-effectiveness of the 'PACE Steps to Success' palliative care intervention for older people in long-term care facilities, and 2) assess the implementation process and identify facilitators and barriers for implementation in different countries. We will conduct a multi-facility cluster randomised controlled trial in Belgium, Finland, Italy, the Netherlands, Poland, Switzerland and England. In total, 72 facilities will be randomized to receive the 'Pace Steps to Success intervention' or to 'care as usual'. Primary outcome at resident level: quality of dying (CAD-EOLD); and at staff level: staff knowledge of palliative care (Palliative Care Survey). resident's quality of end-of-life care, staff self-efficacy, self-perceived educational needs, and opinions on palliative care. Economic outcomes: direct costs and quality-adjusted life years (QALYs). Measurements are performed at baseline and after the intervention. For the resident-level outcomes, facilities report all deaths of residents in and outside the facilities over a previous four-month period and structured questionnaires are sent to (1) the administrator, (2) staff member most involved in care (3) treating general practitioner, and (4) a relative. For the staff-level outcomes, all staff who are working in the facilities are asked to complete a structured questionnaire. A process evaluation will run alongside the effectiveness evaluation in the intervention group using the RE-AIM framework. The lack of high quality trials in palliative care has been recognized throughout the field of palliative care research. This cross-national cluster RCT designed to evaluate the impact of the

  12. The Biogeochemistry of Sulfur in Hydrothermal Systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Rogers, K. L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. Understanding how sulfur became prevalent in biochemical processes and many biomolecules requires knowledge of the reaction properties of sulfur-bearing compounds. We have previously estimated thermodynamic data for thiols, the simplest organic sulfur compounds, at elevated temperatures and pressures. If life began in hydrothermal environments, it is especially important to understand reactions at elevated temperatures among sulfur-bearing compounds and other organic molecules essential for the origin and persistence of life. Here we examine reactions that may have formed amino acids with thiols as reaction intermediates in hypothetical early Earth hydrothermal environments. (There are two amino acids, cysteine and methionine, that contain sulfur.) Our calculations suggest that significant amounts of some amino acids were produced in early Earth hydrothermal fluids, given reasonable concentrations H2, NH3, H2S and CO. For example, preliminary results indicate that glycine activities as high as 1 mmol can be reached in these systems at 100 C. Alanine formation from propanethiol is also a favorable reaction. On the other hand, the calculated equilibrium log activities of cysteine and serine from propanethiol are -21 and -19, respectively, at 100 C. These results

  13. Facile Synthesis of Vanadium-Doped Ni3S2 Nanowire Arrays as Active Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Qu, Yuanju; Yang, Mingyang; Chai, Jianwei; Tang, Zhe; Shao, Mengmeng; Kwok, Chi Tat; Yang, Ming; Wang, Zhenyu; Chua, Daniel; Wang, Shijie; Lu, Zhouguang; Pan, Hui

    2017-02-22

    Ni 3 S 2 nanowire arrays doped with vanadium(V) are directly grown on nickel foam by a facile one-step hydrothermal method. It is found that the doping can promote the formation of Ni 3 S 2 nanowires at a low temperature. The doped nanowires show excellent electrocatalytic performance toward hydrogen evolution reaction (HER), and outperform pure Ni 3 S 2 and other Ni 3 S 2 -based compounds. The stability test shows that the performance of V-doped Ni 3 S 2 nanowires is improved and stabilized after thousands of linear sweep voltammetry test. The onset potential of V-doped Ni 3 S 2 nanowire can be as low as 39 mV, which is comparable to platinum. The nanowire has an overpotential of 68 mV at 10 mA cm -2 , a relatively low Tafel slope of 112 mV dec -1 , good stability and high Faradaic efficiency. First-principles calculations show that the V-doping in Ni 3 S 2 extremely enhances the free carrier density near the Fermi level, resulting in much improved catalytic activities. We expect that the doping can be an effective way to enhance the catalytic performance of metal disulfides in hydrogen evolution reaction and V-doped Ni 3 S 2 nanowire is one of the most promising electrocatalysts for hydrogen production.

  14. Efficient, ultra-high-affinity chromatography in a one-step purification of complex proteins

    PubMed Central

    Vassylyeva, Marina N.; Klyuyev, Sergiy; Vassylyev, Alexey D.; Wesson, Hunter; Zhang, Zhuo; Renfrow, Matthew B.; Wang, Hengbin; Higgins, N. Patrick; Chow, Louise T.; Vassylyev, Dmitry G.

    2017-01-01

    Protein purification is an essential primary step in numerous biological studies. It is particularly significant for the rapidly emerging high-throughput fields, such as proteomics, interactomics, and drug discovery. Moreover, purifications for structural and industrial applications should meet the requirement of high yield, high purity, and high activity (HHH). It is, therefore, highly desirable to have an efficient purification system with a potential to meet the HHH benchmark in a single step. Here, we report a chromatographic technology based on the ultra-high-affinity (Kd ∼ 10−14–10−17 M) complex between the Colicin E7 DNase (CE7) and its inhibitor, Immunity protein 7 (Im7). For this application, we mutated CE7 to create a CL7 tag, which retained the full binding affinity to Im7 but was inactivated as a DNase. To achieve high capacity, we developed a protocol for a large-scale production and highly specific immobilization of Im7 to a solid support. We demonstrated its utility with one-step HHH purification of a wide range of traditionally challenging biological molecules, including eukaryotic, membrane, toxic, and multisubunit DNA/RNA-binding proteins. The system is simple, reusable, and also applicable to pulldown and kinetic activity/binding assays. PMID:28607052

  15. Water column imaging on hydrothermal vent in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  16. High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach

    PubMed Central

    Cao, Derang; Li, Hao; Pan, Lining; Li, Jianan; Wang, Xicheng; Jing, Panpan; Cheng, Xiaohong; Wang, Wenjie; Wang, Jianbo; Liu, Qingfang

    2016-01-01

    We have demonstrated the synthesis of γ-Fe2O3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nano-particles is proposed, and DMF as a polar solvent may slower the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe2O3 nano-particles were investigated systematically, and the pure γ-Fe2O3 nano-particles obtained at 200 °C display uniform morphology good magnetic property. The saturation magnetization of obtained pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity. PMID:27581732

  17. Thread-like supercapacitors based on one-step spun nanocomposite yarns.

    PubMed

    Meng, Qinghai; Wang, Kai; Guo, Wei; Fang, Jin; Wei, Zhixiang; She, Xilin

    2014-08-13

    Thread-like electronic devices have attracted great interest because of their potential applications in wearable electronics. To produce high-performance, thread-like supercapacitors, a mixture of stable dispersions of single-walled carbon nanotubes and conducting polyaniline nanowires are prepared. Then, the mixture is spun into flexible yarns with a polyvinyl alcohol outer sheath by a one-step spinning process. The composite yarns show excellent mechanical properties and high electrical conductivities after sufficient washing to remove surfactants. After applying a further coating layer of gel electrolyte, two flexible yarns are twisted together to form a thread-like supercapacitor. The supercapacitor based on these two yarns (SWCNTs and PAniNWs) possesses a much higher specific capacitance than that based only on pure SWCNTs yarns, making it an ideal energy-storage device for wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Useful Ingredients Recovery from Sewage Sludge by using Hydrothermal Reaction

    NASA Astrophysics Data System (ADS)

    Suzuki, Koichi; Moriyama, Mika; Yamasaki, Yuki; Takahashi, Yui; Inoue, Chihiro

    2006-05-01

    Hydrothermal treatment of sludge from a sewage treatment plant was conducted to obtain useful ingredients for culture of specific microbes which can reduce polysulfide ion into sulfide ion and/or hydrogen sulfide. Several additives such as acid, base, and oxidizer were added to the hydrothermal reaction of excess sludge to promote the production of useful materials. After hydrothermal treatment, reaction solution and precipitation were qualitatively and quantitatively analyzed and estimated the availability as nutrition in cultural medium. From the results of product analysis, most of organic solid in sewage was basically decomposed by hydrothermal hydrolysis and transformed into oily or water-soluble compounds. Bacterial culture of sulfate-reducing bacteria (SRB) showed the good results in multiplication with medium which was obtained from hydrothermal treatment of sewage sludge with magnesium or calcium hydroxide and hydrogen peroxide.

  19. Utilizing a library of synthetic affinity ligands for the enrichment, depletion and one-step purification of leech proteins.

    PubMed

    Dong, Dexian; Gui, Yanli; Chen, Dezhao; Li, Rongxiu

    2008-01-01

    Although the concept of affinity purification using synthetic ligands had been utilized for many years, there are few articles related to this research area, and they focus only on the affinity purification of specific protein by a defined library of synthetic ligands. This study presents the design and construction of a 700-member library of synthetic ligands in detail. We selected 297 ligand columns from a 700-member library of synthetic ligands to screen leech protein extract. Of the 297, 154 columns had an enrichment effect, 83 columns had a depletion effect, 36 columns had a one-step purification effect, and 58 columns had a one-step purification via flowthrough effect. The experimental results achieved by this large library of affinity ligands provide solid convincing data for the theory that affinity chromatography could be used for the enrichment of proteins that are present in low abundance, the depletion of high abundance proteins, and one-step purification of special proteins. 2008 John Wiley & Sons, Ltd

  20. Rare Earth Element Concentrations in Submarine Hydrothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in submarine hydrothermal fluids from Alarcon Rise, East Pacific Rise, REE concentrations in submarine hydrothermal fluids from Pescadero Basin, Gulf of California, and the Cleft vent field, southern Juan de Fuca Ridge. Data are not corrected to zero Mg.