Texture Modification of the Shuttle Landing Facility Runway at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Yager, Thomas J.
1996-01-01
This paper describes the test procedures and the selection criteria used in selecting the best runway surface texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-kt crosswinds if desired. This 5-kt increase over the previous 15-kt limit drastically increases landing safety and the ability to make on-time launches to support missions where space station rendezvous is planned.
Texture Modification of the Shuttle Landing Facility Runway at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Yager, Thomas J.
1997-01-01
This paper describes the test procedures and the criteria used in selecting an effective runway-surface-texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-knot crosswinds, if desired. This 5-knot increase over the previous 15-knot limit drastically increases landing safety and the ability to make on-time launches to support missions in which Space Station rendezvous are planned. The paper presents the results of an initial (1988) texture modification to reduce tire spin-up wear and then describes a series of tests that use an instrumented ground-test vehicle to compare tire friction and wear characteristics, at small scale, of proposed texture modifications placed into the SLF runway surface itself. Based on these tests, three candidate surfaces were chosen to be tested at full-scale by using a highly modified and instrumented transport aircraft capable of duplicating full Orbiter landing profiles. The full-scale Orbiter tire testing revealed that tire wear could be reduced approximately by half with either of two candidates. The texture-modification technique using a Humble Equipment Company Skidabrader(trademark) shotpeening machine proved to be highly effective, and the entire SLF runway surface was modified in September 1994. The extensive testing and evaluation effort that preceded the selection of this particular surface-texture-modification technique is described herein.
10 CFR 960.5-2-8 - Surface characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Closure § 960.5-2-8 Surface characteristics. (a) Qualifying condition. The site shall be located such that... could lead to the flooding of surface or underground facilities by the occupancy and modification of...
Bifunctional redox tagging of carbon nanoparticles
NASA Astrophysics Data System (ADS)
Poon, Jeffrey; Batchelor-McAuley, Christopher; Tschulik, Kristina; Palgrave, Robert G.; Compton, Richard G.
2015-01-01
Despite extensive work on the controlled surface modification of carbon with redox moieties, to date almost all available methodologies involve complex chemistry and are prone to the formation of polymerized multi-layer surface structures. Herein, the facile bifunctional redox tagging of carbon nanoparticles (diameter 27 nm) and its characterization is undertaken using the industrial dye Reactive Blue 2. The modification route is demonstrated to be via exceptionally strong physisorption. The modified carbon is found to exhibit both well-defined oxidative and reductive voltammetric redox features which are quantitatively interpreted. The method provides a generic approach to monolayer modifications of carbon and carbon nanoparticle surfaces.
Atmospheric release model for the E-area low-level waste facility: Updates and modifications
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The atmospheric release model (ARM) utilizes GoldSim® Monte Carlo simulation software (GTG, 2017) to evaluate the flux of gaseous radionuclides as they volatilize from E-Area disposal facility waste zones, diffuse into the air-filled soil pores surrounding the waste, and emanate at the land surface. This report documents the updates and modifications to the ARM for the next planned E-Area PA considering recommendations from the 2015 PA strategic planning team outlined by Butcher and Phifer.
NASA Astrophysics Data System (ADS)
Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze
2015-03-01
In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.
NASA Astrophysics Data System (ADS)
Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang
2018-06-01
We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.
The effect of runway surface and braking on Shuttle Orbiter main gear tire wear
NASA Technical Reports Server (NTRS)
Daugherty, Robert H.; Stubbs, Sandy M.
1992-01-01
In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented. Also, in an ongoing program to evaluate the origin of various tire wear phenomenon, a series of tests was conducted to evaluate the effect of braking on tire wear. Finally, a modified tire is discussed in terms of its wear performance under rollout and braking operations.
Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification
Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.
2016-01-01
Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670
Dwivedi, Neeraj; Yeo, Reuben J.; Satyanarayana, Nalam; Kundu, Shreya; Tripathy, S.; Bhatia, C. S.
2015-01-01
A novel scheme of pre-surface modification of media using mixed argon-nitrogen plasma is proposed to improve the protection performance of 1.5 nm carbon overcoats (COC) on media produced by a facile pulsed DC sputtering technique. We observe stable and lower friction, higher wear resistance, higher oxidation resistance, and lower surface polarity for the media sample modified in 70%Ar + 30%N2 plasma and possessing 1.5 nm COC as compared to samples prepared using gaseous compositions of 100%Ar and 50%Ar + 50%N2 with 1.5 nm COC. Raman and X-ray photoelectron spectroscopy results suggest that the surface modification process does not affect the microstructure of the grown COC. Instead, the improved tribological, corrosion-resistant and oxidation-resistant characteristics after 70%Ar + 30%N2 plasma-assisted modification can be attributed to, firstly, the enrichment in surface and interfacial bonding, leading to interfacial strength, and secondly, more effective removal of ambient oxygen from the media surface, leading to stronger adhesion of the COC with media, reduction of media corrosion and oxidation, and surface polarity. Moreover, the tribological, corrosion and surface properties of mixed Ar + N2 plasma treated media with 1.5 nm COCs are found to be comparable or better than ~2.7 nm thick conventional COC in commercial media. PMID:25586898
Facile hydrophobicity/hydrophilicity modification of SMP surface based on metal constrained cracking
NASA Astrophysics Data System (ADS)
Han, Yu; Li, Peng; Zhao, Liangyu; Wang, Wenxin; Leng, Jinsong; Jin, Peng
2015-04-01
This study demonstrates an easy way to change surface characteristics, the water contact angle on styrene based shape memory polymer (SMP) surface alters before and after cracking formation and recovery. The contact angle of water on the original SMP surface is about 85 degree, after coating with Al and then kneading from side face at glass transition temperature Tg, cracking appeared both on Al film and SMP; cooling down and removing the Al film, cracks remain on SMP surface while the contact angle reduced to about 25 degree. When reheated above Tg, the cracks disappeared, and the contact angle go back to about 85 degree. The thin Al film bonded on SMP surface was coated by spurting, that constrains the deformation of SMP. Heating above Tg, there are complex interactions between soft SMP and hard metal film under kneading. The thin metal film cracked first with the considerable deformation of soft polymer, whereafter, the polymer was ripped by the metal cracks thus polymer cracked as well. Cracks on SMP can be fixed cooling down Tg, while reheated, cracks shrinking and the SMP recovers to its original smooth surface. Surface topography changed dramatically while chemical composition showed no change during the deformation and recovery cycle, as presented by SEM and EDS. Furthermore, the wetting cycle is repeatable. This facile method can be easily extended to the hydropobicity/hydrophilicity modification of other stimuli-responsive polymers and put forward many potential applications, such as microfluidic switching and molecule capture and release.
Applications, Surface Modification and Functionalization of Nickel Nanorods
Schrittwieser, Stefan; Reichinger, Daniela; Schotter, Joerg
2017-01-01
The growing number of nanoparticle applications in science and industry is leading to increasingly complex nanostructures that fulfill certain tasks in a specific environment. Nickel nanorods already possess promising properties due to their magnetic behavior and their elongated shape. The relevance of this kind of nanorod in a complex measurement setting can be further improved by suitable surface modification and functionalization procedures, so that customized nanostructures for a specific application become available. In this review, we focus on nickel nanorods that are synthesized by electrodeposition into porous templates, as this is the most common type of nickel nanorod fabrication method. Moreover, it is a facile synthesis approach that can be easily established in a laboratory environment. Firstly, we will discuss possible applications of nickel nanorods ranging from data storage to catalysis, biosensing and cancer treatment. Secondly, we will focus on nickel nanorod surface modification strategies, which represent a crucial step for the successful application of nanorods in all medical and biological settings. Here, the immobilization of antibodies or peptides onto the nanorod surface adds another functionality in order to yield highly promising nanostructures. PMID:29283415
Li, Taohai; Li, Quanguo; Yan, Jing; Li, Feng
2014-04-21
Superhydrophobic and superoleophilic MnWO4:Dy(3+) microbouquets were successfully fabricated via a facile hydrothermal process. The surface morphologies and chemical composition were investigated by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The wettability of the as-synthesized MnWO4:Dy(3+) microbouquet film was studied by measuring the water contact angle (CA). A static CA for water of 165° and a very low sliding angle (SA) were observed, which were closely related to both the MnWO4:Dy(3+) microbouquet structure and chemical modification. Furthermore, the as-prepared MnWO4:Dy(3+) surface showed superhydrophobicity for some corrosive liquids such as aqueous basic and salt solutions.
Surface Modification of ICF Target Capsules by Pulsed Laser Ablation
Carlson, Lane C.; Johnson, Michael A.; Bunn, Thomas L.
2016-06-30
Topographical modifications of spherical surfaces are imprinted on National Ignition Facility (NIF) target capsules by extending the capabilities of a recently developed full surface (4π) laser ablation and mapping apparatus. The laser ablation method combines the precision, energy density and long reach of a focused laser beam to pre-impose sinusoidal modulations on the outside surface of High Density Carbon (HDC) capsules and the inside surface of Glow Discharge Polymer (GDP) capsules. Sinusoidal modulations described in this paper have sub-micron to 10’s of microns vertical scale and wavelengths as small as 30 μm and as large as 200 μm. The modulatedmore » patterns are created by rastering a focused laser fired at discrete capsule surface locations for a specified number of pulses. The computer program developed to create these raster patterns uses inputs such as laser beam intensity profile, the material removal function, the starting surface figure and the desired surface figure. The patterns are optimized to minimize surface roughness. Lastly, in this paper, simulated surfaces are compared with actual ablated surfaces measured using confocal microscopy.« less
Bernstein, Roy; Belfer, Sofia; Freger, Viatcheslav
2011-07-15
Concentration polarization-enhanced radical graft polymerization, a facile surface modification technique, was examined as an approach to reduce bacterial deposition onto RO membranes and thus contribute to mitigation of biofouling. For this purpose an RO membrane ESPA-1 was surface-grafted with a zwitterionic and negatively and positively charged monomers. The low monomer concentrations and low degrees of grafting employed in modifications moderately reduced flux (by 20-40%) and did not affect salt rejection, yet produced substantial changes in surface chemistry, charge and hydrophilicity. The propensity to bacterial attachment of original and modified membranes was assessed using bacterial deposition tests carried out in a parallel plate flow setup using a fluorescent strain of Pseudomonas fluorescens. Compared to unmodified ESPA-1 the deposition (mass transfer) coefficient was significantly increased for modification with the positively charged monomer. On the other hand, a substantial reduction in bacterial deposition rates was observed for membranes modified with zwitterionic monomer and, still more, with very hydrophilic negatively charged monomers. This trend is well explained by the effects of surface charge (as measured by ζ-potential) and hydrophilicity (contact angle). It also well correlated with force distance measurements by AFM using surrogate spherical probes with a negative surface charge mimicking the bacterial surface. The positively charged surface showed a strong hysteresis with a large adhesion force, which was weaker for unmodified ESPA-1 and still weaker for zwitterionic surface, while negatively charged surface showed a long-range repulsion and negligible hysteresis. These results demonstrate the potential of using the proposed surface- modification approach for varying surface characteristics, charge and hydrophilicity, and thus minimizing bacterial deposition and potentially reducing propensity biofouling.
Li, Xiang; Gong, Yun; Zhou, Xiaoqian; Jin, Hui; Yan, Huanhuan; Wang, Shige; Liu, Jun
2016-01-01
Two-dimensional MoS2 nanosheet has been extensively explored as a photothermal agent for tumor regression; however, its surface modification remains a great challenge. Herein, as an alternative to surface polyethylene glycol modification (PEGylation), a facile approach based on “thin-film” strategy has been proposed for the first time to produce soybean phospholipid-encapsulated MoS2 (SP-MoS2) nanosheets. By simply vacuum-treating MoS2 nanosheets/soybean phospholipid/chloroform dispersion in a rotary evaporator, SP-MoS2 nanosheet was successfully constructed. Owing to the steric hindrance of polymer chains, the surface-coated soybean phospholipid endowed MoS2 nanosheets with excellent colloidal stability. Without showing detectable in vitro and in vivo hemolysis, coagulation, and cyto-/histotoxicity, the constructed SP-MoS2 nanosheets showed good photothermal conversion performance and photothermal stability. SP-MoS2 nanosheet was shown to be a promising platform for in vitro and in vivo breast tumor photothermal therapy. The produced SP-MoS2 nanosheets featured low cost, simple fabrication, and good in vivo hemo-/histocompatibility and hold promising potential for future clinical tumor therapy. PMID:27199557
Facile modification of electrospun fibrous structures with antifouling zwitterionic hydrogels.
Xu, Tong; Yang, Jing; Zhang, Jiamin; Zhu, Yingnan; Li, Qingsi; Pan, Chao; Zhang, Lei
2017-12-28
Electrospinning technology can easily produce different shaped fibrous structures, making them highly valuable to various biomedical applications. However, surface contamination of biomolecules, cells, or blood has emerged as a significant challenge to the success of electrospun devices, especially artificial blood vessels, catheters and wound dressings etc. Many efforts have been made to resist the surface non-specific biomolecules or cells adsorption, but most of them require complex pre-treatment processes, hard-to-remove metal catalysts or rigorous reaction conditions. In addition, the stability of antifouling coatings, especially in complex conditions, is still a major concern. In this work, inspired by the interpenetrating polymer network and reinforced concrete structure, an efficient and facile strategy for modifying hydrophobic electrospun meshes and tubes with antifouling zwitterionic hydrogels has been introduced. The resulting products could efficiently resist the adhesion of proteins, cells, or even fresh whole blood. Meanwhile, they could maintain the shapes and mechanical strength of the original electrospun structures. Furthermore, the hydrogel structures could retain stable in a physiological condition for at least 3 months. This paper provided a general antifouling and hydrophilicity surface modification strategy for various fibrous structures, and could be of great value for many biomedical applications where antifouling properties are critical.
Research at NASA's NFAC wind tunnels
NASA Technical Reports Server (NTRS)
Edenborough, H. Kipling
1990-01-01
The National Full-Scale Aerodynamics Complex (NFAC) is a unique combination of wind tunnels that allow the testing of aerodynamic and dynamic models at full or large scale. It can even accommodate actual aircraft with their engines running. Maintaining full-scale Reynolds numbers and testing with surface irregularities, protuberances, and control surface gaps that either closely match the full-scale or indeed are those of the full-scale aircraft help produce test data that accurately predict what can be expected from future flight investigations. This complex has grown from the venerable 40- by 80-ft wind tunnel that has served for over 40 years helping researchers obtain data to better understand the aerodynamics of a wide range of aircraft from helicopters to the space shuttle. A recent modification to the tunnel expanded its maximum speed capabilities, added a new 80- by 120-ft test section and provided extensive acoustic treatment. The modification is certain to make the NFAC an even more useful facility for NASA's ongoing research activities. A brief background is presented on the original facility and the kind of testing that has been accomplished using it through the years. A summary of the modification project and the measured capabilities of the two test sections is followed by a review of recent testing activities and of research projected for the future.
Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito
2009-12-09
We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.
47 CFR 73.1615 - Operation during modification of facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Operation during modification of facilities. 73... modification of facilities. When the licensee of an existing AM, FM, TV or Class A TV station is in the process of modifying existing facilities as authorized by a construction permit and determines it is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe
A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less
Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T
2017-12-15
Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.
Moazzam, Parisa; Razmjou, Amir; Golabi, Mohsen; Shokri, Dariush; Landarani-Isfahani, Amir
2016-09-01
Bacterial adhesion and subsequent biofilm formation on metals such as aluminum (Al) alloys lead to serious issues in biomedical and industrial fields from both an economical and health perspective. Here, we showed that a careful manipulation of Al surface characteristics via a facile two-steps superhydrophobic modification can provide not only biocompatibility and an ability to control protein adsorption and bacterial adhesion, but also address the issue of apparent long-term toxicity of Al-alloys. To find out the roles of surface characteristics, surface modification and protein adsorption on microbial adhesion and biofilm formation, the surfaces were systematically characterized by SEM, EDX, XPS, AFM, FTIR, water contact angle (WCA) goniometry, surface free energy (SFE) measurement, MTT, Bradford, Lowry and microtiter plate assays and also flow-cytometry and potentiostat analyses. Results showed that WCA and SFE changed from 70° to 163° and 36.3 to 0.13 mN m(-1) , respectively. The stable and durable modification led to a substantial reduction in static/dynamic BSA adsorption. The effect of such a treatment on the biofilm formation was analyzed by using three different bacteria of Pseudomonas aeruginosa, Staphylococcus epidermidis, and Staphylococcus aureus. The microtiter plate assay and flow cytometry analysis showed that the modification not only could substantially reduce the bacterial adhesion but this biofouling resistance is independent of bacterium type. An excellent cell viability after exposure of HeLa cells to waters incubated with the modified samples was observed. Finally, the corrosion rate reduced sharply from 856.6 to 0.119 MPY after superhydrophobic modifications, which is an excellent stable corrosion inhibition property. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2220-2233, 2016. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Monty, J. P.; Allen, J. J.; Lien, K.; Chong, M. S.
2011-12-01
A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of `superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements.
NASA Astrophysics Data System (ADS)
Sun, Xuzhuo; Li, Bo; Lu, Mingxia
2017-07-01
Chemical modification of graphene is a promising approach to manipulate its properties for its end applications. Herein we designed a two-step route through chlorination-Grignard reactions to covalently decorate the surface of graphene with adamantane groups. The chemically modified graphene was characterized by Raman spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Chlorination of graphene occurred rapidly, and the substitution of chlorine atoms on chlorinated graphene by adamantane Grignard reagent afforded adamantane graphene in almost quantitative yield. Adamantane groups were found to be covalently bonded to the graphene carbons. The present two-step procedure may provide an effective and facile route for graphene modification with varieties of organic functional groups.
Song, Wentong; Shi, Da; Tao, Shengyang; Li, Zhaoliang; Wang, Yuchao; Yu, Yongxian; Qiu, Jieshan; Ji, Min; Wang, Xinkui
2016-11-01
A facile method is reported to construct monolithic microreactor with high catalytic performance for Knoevenagel reaction. The microreactor is based on hierarchically porous silica (HPS) which has interconnected macro- and mesopores. Then the HPS is surface modified by pyrogallol (PG) polymer. Al(NO3)3 and Mg(NO3)2 are loaded on the surface of HPS through coordination with -OH groups of PG. After thermal treatment, Al(NO3)3 and Mg(NO3)2 are converted Al2O3 and MgO. The as-synthesized catalytic microreactor shows a high and stable performance in Knoevenagel reaction. The microreactor possess large surface area and interconnected pore structures which are beneficial for reactions. Moreover, this economic, facile and eco-friendly surface modification method can be used in loading more metal oxides for more reactions. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Lingling; Chen, Xiaojuan; Liu, Pingsheng; Wang, Jing; Zhu, Haomiao; Li, Li
2018-06-01
A facile procedure to modify glass film with zwitterionic polymers for improving the blood compatibility was introduced. The glass slides were first silanized with 3-methacryloxypropyltrimethoxysilane (MPT) to generate methacrylate groups on the surface. Then, N, N’-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium (DMMSA), a sulfobetaine zwitterionic monomer, was polymerized on the silanized glass substrates by free-radical polymerization in order to graft the zwitterionic polymers onto the substrates. X-ray Photoelectron Spectroscopy (XPS), water contact angle, scanning electron microscope (SEM) and atomic force microscopy (AFM) were utilized to analyze the surface properties of the grafted glass. The blood compatibility of the grafted glass was verified by whole blood contacting and platelet adhesion experiments in vitro. The results showed that the zwitterionic polymers were successfully grafted on the glass surface, and consequently significantly inhibited the platelet adhesion and whole blood cell attachment.
Thermal shock tests with beryllium coupons in the electron beam facility JUDITH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roedig, M.; Duwe, R.; Schuster, J.L.A.
1995-09-01
Several grades of American and Russian beryllium have been tested in high heat flux tests by means of an electron beam facility. For safety reasons, major modifications of the facility had to be fulfilled in advance to the tests. The influence of energy densities has been investigated in the range between 1 and 7 MJ/m{sup 2}. In addition the influence of an increasing number of shots at constant energy density has been studied. For all samples, surface profiles have been measured before and after the experiments. Additional information has been gained from scanning electron microscopy, and from metallography.
Energy Efficiency in Water and Wastewater Facilities
Learn how local governments have achieved sustained energy improvements at their water and wastewater facilities through equipment upgrades, operational modifications, and modifications to facility buildings.
Effects of ionospheric modification on system performance
NASA Astrophysics Data System (ADS)
Ganguly, Suman
1989-12-01
Controlled ionospheric modification can be used for disrupting as well as facilitating communication and radar systems. After briefly describing the results achieved with the present day ionospheric modification facilities, a scenario is presented for the generation of strong and significant ionospheric modification. A few schemes are presented for the development of modern high power facilities using the state of the art technology and then the impact of such facilities on the system performance is described.
Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions.
Avens, Heather J; Randle, Thomas James; Bowman, Christopher N
2008-10-17
Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm(2)) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities.
Polymerization Behavior and Polymer Properties of Eosin-Mediated Surface Modification Reactions
Avens, Heather J.; Randle, Thomas James; Bowman, Christopher N.
2008-01-01
Surface modification by surface-mediated polymerization necessitates control of the grafted polymer film thicknesses to achieve the desired property changes. Here, a microarray format is used to assess a range of reaction conditions and formulations rapidly in regards to the film thicknesses achieved and the polymerization behavior. Monomer formulations initiated by eosin conjugates with varying concentrations of poly(ethylene glycol) diacrylate (PEGDA), N-methyldiethanolamine (MDEA), and 1-vinyl-2-pyrrolidone (VP) were evaluated. Acrylamide with MDEA or ascorbic acid as a coinitiator was also investigated. The best formulation was found to be 40 wt% acrylamide with MDEA which yielded four to eight fold thicker films (maximum polymer thickness increased from 180 nm to 1420 nm) and generated visible films from 5-fold lower eosin surface densities (2.8 vs. 14 eosins/µm2) compared to a corresponding PEGDA formulation. Using a microarray format to assess multiple initiator surface densities enabled facile identification of a monomer formulation that yields the desired polymer properties and polymerization behavior across the requisite range of initiator surface densities. PMID:19838291
Shin, Sung-Ho; Bae, Young Eun; Moon, Hyun Kyung; Kim, Jungkil; Choi, Suk-Ho; Kim, Yongho; Yoon, Hyo Jae; Lee, Min Hyung; Nah, Junghyo
2017-06-27
Triboelectric charging involves frictional contact of two different materials, and their contact electrification usually relies on polarity difference in the triboelectric series. This limits the choices of materials for triboelectric contact pairs, hindering research and development of energy harvest devices utilizing triboelectric effect. A progressive approach to resolve this issue involves modification of chemical structures of materials for effectively engineering their triboelectric properties. Here, we describe a facile method to change triboelectric property of a polymeric surface via atomic-level chemical functionalizations using a series of halogens and amines, which allows a wide spectrum of triboelectric series over single material. Using this method, tunable triboelectric output power density is demonstrated in triboelectric generators. Furthermore, molecular-scale calculation using density functional theory unveils that electrons transferred through electrification are occupying the PET group rather than the surface functional group. The work introduced here would open the ability to tune triboelectric property of materials by chemical modification of surface and facilitate the development of energy harvesting devices and sensors exploiting triboelectric effect.
Modeling of surface roughness effects on glaze ice accretion
NASA Technical Reports Server (NTRS)
Hansman, R. John, Jr.; Yamaguchi, Keiko; Berkowitz, Brian M.; Potapczuk, Mark
1990-01-01
A series of experimental investigations focused on studying the cause and effect of roughness on accreting glaze ice surfaces were conducted. Detailed microvideo observations were made of glaze ice accretions on 1 to 4 inch diameter cylinders in three icing wind tunnels (the Data Products of New England six inch test facility, the NASA Lewis Icing Research Tunnel, and the B. F. Goodrich Ice Protection Research Facility). Infrared thermal video recordings were made of accreting ice surfaces in the Goodrich facility. Distinct zones of surface water behavior were observed; a smooth wet zone in the stagnation region with a uniform water film; a rough zone where surface tension effects caused coalescence of surface water into stationary beads; a horn zone where roughness elements grow into horn shapes; a runback zone where surface water ran back as rivulets; and a dry zone where rime feathers formed. The location of the transition from the smooth to the rough zone was found to migrate with time towards the stagnation point. The behavior of the transition appeared to be controlled by boundary layer transition and bead formation mechanisms at the interface between the smooth and rough zones. Regions of wet ice growth and enhanced heat transfer were clearly visible in the infrared video recordings of glaze ice surfaces. A simple multi-zone modification to the current glaze ice accretion model was proposed to include spatial variability in surface roughness.
New facility for ion beam materials characterization and modification at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.
1988-01-01
The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs.
Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides
Lee, Jeong Heon; Hyun, Hoon; Cross, Conor J.; Henary, Maged; Nasr, Khaled A.; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.
2011-01-01
We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells. PMID:23467787
Modification of silicone elastomer with zwitterionic silane for durable antifouling properties.
Yeh, Shiou-Bang; Chen, Chien-Sheng; Chen, Wen-Yih; Huang, Chun-Jen
2014-09-30
Biofouling on medical devices generally causes adverse complications, such as thrombosis, infection, and pathogenic calcification. Silicone is a widely used material for medical applications. Its surface modification typically encounters undesirable "hydrophobic recovery", leading to deterioration of surface engineering. In this study, we developed a stable superhydrophilic zwitterionic interface on polydimethylsiloxane (PDMS) elastomer by covalent silanization of sulfobetaine silane (SBSi) to resist nonspecific adsorption of bacteria, proteins, and lipids. SBSi is a zwitterionic organosilane assembly, enabling resisting surface reconstruction by forming a cross-linked network and polar segregation. Surface elemental composition was confirmed by X-ray photoelectron spectroscopy (XPS), and the long-term stability of modification was accessed using a contact angle goniometer. The biofouling tests were carried out by exposing substrates to bacterial, protein, and lipid solutions, revealing the excellent bioinertness of SBSi-tailored PDMS, even after 30 day storage in ambient. For the real-world application, we modified commercially available silicone hydrogel contact lenses with developed zwitterionic silane, presenting its antibacterial adhesion property. Moreover, the cytotoxicity of SBSi was accessed with NIH-3T3 fibroblast by the MTT assay, showing negligible cytotoxicity up to a concentration of 5 mM. Consequently, the strategy of surface engineering in this work can effectively retard the "hydrophobic recovery" occurrence and can be applied to other silicone-based medical devices in a facile way.
49 CFR Appendix A to Part 37 - Modifications to Standards for Accessible Transportation Facilities
Code of Federal Regulations, 2011 CFR
2011-10-01
... Transportation Facilities A Appendix A to Part 37 Transportation Office of the Secretary of Transportation...—Modifications to Standards for Accessible Transportation Facilities The Department of Transportation, in § 37.9 of this part, adopts as its regulatory standards for accessible transportation facilities the revised...
Huang, Jingda; Lyu, Shaoyi
2017-01-01
It is a challenge for a superhydrophobic coating to overcome the poor robustness and the rough surface structure that is usually built using inorganic particles that are difficult to degrade. In this study, a robust superhydrophobic coating is facilely prepared by using commercial biodegradable lignin-coated cellulose nanocrystal (L-CNC) particles after hydrophobic modification to build rough surface structures, and by choosing two different adhesives (double-sided tape and quick-setting epoxy) to support adhesion between the L-CNC particles and the substrates. In addition to excellent self-cleaning and water repellence properties, the resulting coatings show outstanding mechanical strength and durability against sandpaper abrasion, finger-wipe, knife-scratch, water jet, UV radiation, high temperature, and acidic and alkali solutions, possessing a wide application prospect. PMID:28906449
Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination
NASA Astrophysics Data System (ADS)
Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin
2016-10-01
Herein we report a simple and facile method to delaminate MXene Ti3C2 multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti3AlC2 and the exfoliation of Ti3AlC2 into Ti3C2 multilayers, followed by Na+ intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti3C2 flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti3C2 sheets disperse well in water and the solutions obey Lambert-Beer's law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti3C2 flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti3C2via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.
NASA Astrophysics Data System (ADS)
Qi, Yanli; Chen, Tingting; Zhang, Jun
2018-03-01
Hydrophobic surface modification is conducted in this study by using additives with long alkyl chains. Several kinds of metallic soaps, such as calcium stearate (CaSt), zinc stearate (ZnSt), magnesium stearate (MgSt) and barium stearate (BaSt) were employed. Polymer matrix is acrylonitrile-styrene-acrylate (ASA) terpolymer due to its wonderful weather resistance property. The surface chemical characterization was studied by Fourier transformed infrared (FTIR) technology and X-ray photoelectron spectroscopy (XPS). Carboxylate (Osbnd Csbnd O-) indexes of composites in both transmittance and reflection modes were calculated according to FTIR results. As to the ratio of carboxylate index in reflection mode to that in transmittance mode, the sample added with 5 wt% ZnSt shows a higher value of 8.77, and a much higher value of 14.47 for the sample added with 10 wt% ZnSt. The corresponding Csbnd C/ Csbnd H /Cdbnd C peak areas of the samples added with 5 wt% or 10 wt% ZnSt are 75.4% and 77.3% respectively, much higher than other samples. This indicates ZnSt is much easier to out-migrate to material surface and therefore is more suitable for hydrophobic surface modification. In particular, the water contact angle of the ASA/ZnSt composite added with 10 wt% ZnSt significantly increased to 127o (40o increase in comparison with pure ASA), successfully converting the surface wettability from hydrophilic to hydrophobic.
Zakumumpa, Henry; Bennett, Sara; Ssengooba, Freddie
2017-04-04
In November 2015, WHO released new treatment guidelines recommending that all diagnosed as HIV positive be enrolled on antiretroviral therapy (ART). Sustaining and expanding ART scale-up programs in resource-limited settings will require adaptations and modifications to traditional ART delivery models to meet the rapid increase in demand. We identify modifications to ART service delivery models by health facilities in Uganda to sustain ART interventions over a 10-year period (2004-2014). A mixed methods approach involving two study phases was adopted. In the first phase, a survey of a nationally representative sample of health facilities (n = 195) in Uganda which were accredited to provide ART between 2004 and 2009 was conducted. The second phase involved semi-structured interviews (n = 18) with ART clinic managers of 6 of the 195 health facilities purposively selected from the first study phase. We adopted a thematic framework consisting of four categories of modifications (format, setting, personnel, and population). The majority of health facilities 185 (95%) reported making modifications to ART interventions between 2004 and 2014. Of the 195 health facilities, 157 (81%) rated the modifications made to ART as "major." Modifications to ART were reported under all the four themes. The quantitative and qualitative findings are integrated and presented under four themes. Format: Reducing the frequency of clinic appointments and pharmacy-only refill programs was identified as important strategies for decongesting ART clinics. Home-based care programs were introduced to reduce provider ART delivery costs. Personnel: Task shifting to non-physician cadre was reported in 181 (93%) of the health facilities. Visits to the ART clinic were rationalized in favor of the sub-population deemed to have more clinical need. Two health facilities focused on patients living nearer the health facilities to align with targets set by external donors. Over the study period, health facilities made several modifications ART interventions to improve fit with their resource-constrained settings thereby promoting long-term sustainability. Further research evaluating the effect of these modifications on patient outcomes and ART delivery costs is recommended. Our findings have implications for the sustainability of ART scale-up programs in Uganda and other resource-limited settings.
JESS facility modification and environmental/power plans
NASA Technical Reports Server (NTRS)
Bordeaux, T. A.
1984-01-01
Preliminary plans for facility modifications and environmental/power systems for the JESS (Joint Exercise Support System) computer laboratory and Freedom Hall are presented. Blueprints are provided for each of the facilities and an estimate of the air conditioning requirements is given.
Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification.
Qiu, Wen-Ze; Yang, Hao-Cheng; Xu, Zhi-Kang
2018-04-27
Mussel-inspired chemistry based on polydopamine (PDA) deposition has been developed as a facile and universal method for the surface modification of various materials. However, the inherent shortcomings of PDA coatings still impede their practical applications in the development of functional materials. In this review, we introduce the recent progress in the emerging dopamine-assisted co-deposition as a one-step strategy for functionalizing PDA-based coatings, and improving them in the aspects of deposition rate, morphology uniformity, surface wettability and chemical stability. The co-deposition mechanisms are categorized and discussed according to the interactions of dopamine or PDA with the introduced co-component. We also emphasize the influence of these interactions on the properties of the resultant PDA-based coatings. Meanwhile, we conclude the representative potential applications of those dopamine-assisted co-deposited coatings in material science, especially including separation membranes and biomaterials. Finally, some important issues and perspectives for theoretical study and applications are briefly discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Casas, Justin; Venkataramasubramani, Meenakshi; Wang, Yanyan; Tang, Liang
2013-01-01
Surface modification of gold nanorods (GNRs) is often problematic due to tightly packed cetyltrimethylammoniumbromide (CTAB) bilayer. Herein, we performed a double phase transfer ligand exchange to achieve displacement of CTAB on nanorods. During the removal, 11-mercaptoundecanoic acid (MUDA) crosslinker is simultaneously assembled on nanorod surfaces to prevent aggregation. The resulting MUDA-GNRs retain the shape and position of plasmon peaks similar to CTAB-capped GNRs. The introduction of carboxyl groups allows covalent conjugation of biological receptors in a facile fashion to construct a robust, label-free biosensor based on localized surface plasmon resonance (LSPR) transduction of biomolecular interaction. More importantly, smaller MUDA layer on the GNRs reduces the distance of target binding to the plasmonic nanostructure interface, leading to a significant enhancement in LSPR assay sensitivity and specificity. Compared to modification using conventional electropolymer adsorption, MUDA-coated gold nanosensor exhibits five times lower detection limit for cardiac troponin I assay with a high selectivity. PMID:23816849
Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue
2017-08-01
Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.
A facile method to modify bentonite nanoclay with silane
NASA Astrophysics Data System (ADS)
Abeywardena, Sujani B. Y.; Perera, Srimala; Nalin de Silva, K. M.; Tissera, Nadeeka P.
2017-07-01
Immobilization of smectite clay onto a desirable surface has received much attention, since its nanospace can be utilized for many applications in material science. Here, we present an efficient method to functionalize surface of bentonite nanoclay (BNC) through the grafting of 3-aminotriethoxysilane (APTES). Infrared spectroscopy and elemental analysis confirmed the presence of organic chains and amine groups in modified nanoclay. XRD analysis confirmed grafting of APTES on the surface of bentonite nanoclay without intercalation. The accomplishment of the surface modification was quantitatively proved by TGA analysis. Modified BNC can covalently couple with different material surfaces, allowing its nanospace to be utilized for intercalation of cations, bio-molecules, and polymeric materials, to be used in advanced military aerospace, pharmaceuticals, and many other commercial applications.
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheryl Morton; Carl Baily; Tom Hill
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
NASA Astrophysics Data System (ADS)
Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.
2006-01-01
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.
NASA Astrophysics Data System (ADS)
Zhang, Shuyou; Cao, Jingjing; Ma, Na; You, Meng; Wang, Xushan; Meng, Jianqiang
2018-01-01
A fast and facile protocol is reported aiming at improving the antifouling property and hemocompatibility of poly(vinylidene fluoride) (PVDF) membranes by tethering PEG hydrogel and zwitterion immobilization. The coated PEG hydrogel was first prepared by interfacial polymerization and tethered on an alkali treated PVDF membrane (PVDFA) surface via a simultaneous thio-ene and thiol-epoxy reaction. Then, the thiol groups of cysteine reacted with the epoxy groups in PEG hydrogel to fabricate the PVDFA-g-Cys membrane. The membrane fabrication was complete within less than 20 min and was conducted in mild conditions. The successful preparation of PVDFA-g-Cys membrane was confirmed by ATR-FTIR and XPS. Raman spectroscopy showed that the hydrogels covalently bonded to the PVDF membrane surface. The membrane retained its mechanical strength after modification. The SEM measurements suggested that the membrane became denser after hydrogel coating, meanwhile, the EDX test verified that the functional species uniformly distributed in the membrane matrix. Water contact angle (WCA), protein adsorption and protein filtration tests showed significant improvements in hydrophilicity and antifouling properties for the modified membrane. The negativity of the membrane surface measured by the streaming potential method provides a basis for protein resistance and hemocompatibility. Moreover, the suppressed platelet adhesion and prolonged plasma coagulant time show that the PVDFA-g-Cys membrane has ultralow thrombotic potential and better hemocompatibility. The reported surface modification method combing thio-ene and thio-epoxy chemistry not only facilitates fabrication of hemocompatible PVDF membrane but also provide an universal chemical platform for multifunctionalization of porous membranes.
Enhancement of surface durability of space materials and structures in LEO environment
NASA Astrophysics Data System (ADS)
Gudimenko, Y.; Ng, R.; Kleiman, J. I.; Iskanderova, Z. A.; Tennyson, R. C.; Hughes, P. C.; Milligan, D.; Grigorevski, A.; Shuiski, M.; Kiseleva, L.; Edwards, D.; Finckenor, M.
2003-09-01
Results of on-going program that involves surface modification treatments of thin polymer films and various organic-based thermal control coatings by an innovative Photosil surface modification technology for space durability improvement are presented, as well as results of ground-based testing in an oxygen plasma asher and in fast atomic oxygen (FAO) beam facility. In addition, independent ground-based FAO + VUV test results from NASA Marshall Space Flight Center (MSFC) are also presented. Recent results are presented to further improve the AO durability of conductive thermal control paints, never previously treated by the Photosil process. The thermal control coatings evaluated in this program represent existing commercially available space-approved materials and experimental coatings, which are still under development. Functional properties and performance characteristics, such as AO stability, thermal optical properties, surface resistivity, and outgassing characteristics of pristine and treated materials were also verified. FAO+VUV exposure tests results revealed that some of the successfully treated materials did not show any mass loss or surface morphology change, thus indicating good protection from the severe oxidative environment. A few complementary surface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) have been used to examine the composition and structure of the protective surface-modified layer.
NASA Astrophysics Data System (ADS)
Xu, Xiuwen; Ma, Chunqing; Cheng, Yuanhang; Xie, Yue-Min; Yi, Xueping; Gautam, Bhoj; Chen, Shengmei; Li, Ho-Wa; Lee, Chun-Sing; So, Franky; Tsang, Sai-Wing
2017-08-01
Non-wetting hole transport materials (HTMs) have great potential in facilitating large-sized perovskite crystal growth and enhancing device stability by opposing moisture ingress, However, the severe non-wetting issue limits the wide application of these materials in low-temperature solution-processed inverted planar perovskite solar cells (PVSCs), and corresponding devices are rarely reported. Here, a facile ultraviolet-ozone (UVO) modification method is demonstrated to overcome this issue. By carefully controlling the UVO modification time, the surface wettability of poly-TPD can be tuned without affecting the bulk properties of the film, hence perovskite films with desired grain size and excellent coverage can be deposited via a one-step spin-coating method. Benefiting from the high-quality perovskite, well-matched energy level alignment and hydrophobic property of poly-TPD, the resulting PVSCs show a champion power conversion efficiency of 18.19% with significantly enhanced stability as compared to the PEDOT:PSS counterparts. Moreover, the UVO modification approach also demonstrates its validity when being extended to other hydrophobic HTMs. This work not only provides a general strategy to broaden the selection pool of HTMs for solution-processed inverted planar PVSCs, but also may triggers the exploration of more advanced strategies to make non-wetting HTMs applicable in solution-processed inverted planar PVSCs.
Liu, Y Y; Guo, X L; Zhao, L; Zhu, L; Chen, Z T; Chen, J; Zhang, Y; Sun, L T; Zhao, Y H
2018-06-08
The application of Au nanoparticles (Au NPs) often requires surface modification with chemical surfactants, which dramatically reduce the surface activity and increase the chemical contamination and cost of Au NPs. In this research, we have developed a novel Au NPs/reduced graphene oxide/Ni foam hybrid (Au NPs/RGO/NiF) by in situ reduction through ascorbic acid and replacement reaction. This method is green, facile and efficient. The Au NPs are free of chemical surfactants and are homogeneously distributed on the surface of the RGO/NiF. The as-prepared Au NPs/RGO/NiF hybrid is uniform, stable and exhibits not only a high reduction efficiency for the reduction of 4-nitrophenol with a catalytic kinetic constant of up to 0.46 min -1 (0.15 cm 3 catalysis) but also a sensitive and selective detection of H 2 O 2 with a detection limit of ∼1.60 μM.
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Guo, X. L.; Zhao, L.; Zhu, L.; Chen, Z. T.; Chen, J.; Zhang, Y.; Sun, L. T.; Zhao, Y. H.
2018-06-01
The application of Au nanoparticles (Au NPs) often requires surface modification with chemical surfactants, which dramatically reduce the surface activity and increase the chemical contamination and cost of Au NPs. In this research, we have developed a novel Au NPs/reduced graphene oxide/Ni foam hybrid (Au NPs/RGO/NiF) by in situ reduction through ascorbic acid and replacement reaction. This method is green, facile and efficient. The Au NPs are free of chemical surfactants and are homogeneously distributed on the surface of the RGO/NiF. The as-prepared Au NPs/RGO/NiF hybrid is uniform, stable and exhibits not only a high reduction efficiency for the reduction of 4-nitrophenol with a catalytic kinetic constant of up to 0.46 min‑1 (0.15 cm3 catalysis) but also a sensitive and selective detection of H2O2 with a detection limit of ∼1.60 μM.
Feng, Jingwen; Huang, Hongwei; Yu, Shixin; Dong, Fan; Zhang, Yihe
2016-03-21
The development of high-performance visible-light photocatalysts with a tunable band gap has great significance for enabling wide-band-gap (WBG) semiconductors visible-light sensitive activity and precisely tailoring their optical properties and photocatalytic performance. In this work we demonstrate the continuously adjustable band gap and visible-light photocatalysis activation of WBG BiOIO3via iodine surface modification. The iodine modified BiOIO3 was developed through a facile in situ reduction route by applying BiOIO3 as the self-sacrifice template and glucose as the reducing agent. By manipulating the glucose concentration, the band gap of the as-prepared modified BiOIO3 could be orderly narrowed by generation of the impurity or defect energy level close to the conduction band, thus endowing it with a visible light activity. The photocatalytic assessments uncovered that, in contrast to pristine BiOIO3, the modified BiOIO3 presents significantly boosted photocatalytic properties for the degradation of both liquid and gaseous contaminants, including Rhodamine B (RhB), methyl orange (MO), and ppb-level NO under visible light. Additionally, the band structure evolution as well as photocatalysis mechanism triggered by the iodine surface modification is investigated in detail. This study not only provides a novel iodine surface-modified BiOIO3 for environmental application, but also provides a facile and general way to develop highly efficient visible-light photocatalysts.
Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route
NASA Astrophysics Data System (ADS)
Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng
2015-01-01
Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.
McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.
2006-11-21
A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.
McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA
2011-12-27
A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ligang; University of Chinese Academy of Sciences, Beijing 100049; Liu, Di
2014-11-15
Highlights: • A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. • The texture, electronic and surface property were tuned by acid modification. • Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. • Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant undermore » visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.« less
NASA Technical Reports Server (NTRS)
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z; Lipford, William E; Watkins, Anthony Neal
2016-12-03
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.
Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal
2016-01-01
Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method. PMID:27918493
NASA Technical Reports Server (NTRS)
Dicicco, L. Danielle; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
NASA Technical Reports Server (NTRS)
Dicicco, L. D.; Nowlin, Brent C.; Tirres, Lizet
1992-01-01
The aerodynamic performance of a solid uncooled version of a cooled radial turbine was evaluated in the Small Engine Components Test Facility Turbine rig at the NASA Lewis Research Center. Specifically, an experiment was conducted to rotor surface static pressures. This was the first time surface static pressures had been measured on a radial turbine at NASA Lewis. These pressures were measured by a modified Rotating Data Package (RDP), a standard product manufactured by Scanivalve, Inc. Described here are the RDP, and the modifications that were made, as well as the checkout, installation, and testing procedures. The data presented are compared to analytical results obtained from NASA's MERIDL TSONIC BLAYER (MTSB) code.
NASA Technical Reports Server (NTRS)
Kelly, H. N.; Wieting, A. R.
1984-01-01
A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.
Guo, Jiaqi; Fang, Wenwen; Welle, Alexander; Feng, Wenqian; Filpponen, Ilari; Rojas, Orlando J; Levkin, Pavel A
2016-12-14
Films comprising nanofibrillated cellulose (NFC) are suitable substrates for flexible devices in analytical, sensor, diagnostic, and display technologies. However, some major challenges in such developments include their high moisture sensitivity and the complexity of current methods available for functionalization and patterning. In this work, we present a facile process for tailoring the surface wettability and functionality of NFC films by a fast and versatile approach. First, the NFC films were coated with a layer of reactive nanoporous silicone nanofilament by polycondensation of trichlorovinylsilane (TCVS). The TCVS afforded reactive vinyl groups, thereby enabling simple UV-induced functionalization of NFC films with various thiol-containing molecules via the photo "click" thiol-ene reaction. Modification with perfluoroalkyl thiols resulted in robust superhydrophobic surfaces, which could then be further transformed into transparent slippery lubricant-infused NFC films that displayed repellency against both aqueous and organic liquids with surface tensions as low as 18 mN·m -1 . Finally, transparent and flexible NFC films incorporated hydrophilic micropatterns by modification with OH, NH 2 , or COOH surface groups, enabling space-resolved superhydrophobic-hydrophilic domains. Flexibility, transparency, patternability, and perfect superhydrophobicity of the produced nanocellulose substrates warrants their application in biosensing, display protection, and biomedical and diagnostics devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinerzhagen, F.; Breuer, L.; Bukowska, H.
2016-01-15
The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction undermore » ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.« less
A facile method to fabricate a superhydrophobic surface with biomimetic structure on magnesium alloy
NASA Astrophysics Data System (ADS)
Bai, Zigang; Zhu, Jiyuan
2018-06-01
Superhydrophobic surface was obtained via a convenient two-step method in this paper on magnesium alloy. The microstructured oxide or hydroxide layers were constructed on the Mg alloy though hydrothermal process. The treated sample was modified with low-energy surface material. After modification, the contact angle of water droplet on the surface is higher than 150° which indicates superhydrophobicity. With scanning electron microscope(SEM), mammillaria-herrerae-like rough structure was obtained. The composition of the superhydrophobic film was analyzed by using x-ray Diffraction instrument and Fourier-transform infrared spectrometer. Moreover, the superhydrophobic surface has good stability. The potentiodynamic polarization test shows that the corrosion current density of superhydrophobic surface was 1–2 order of magnitudes smaller than the bare substrate, which means the anti-corrosion performance has been improved significantly. This route offers an environmentally-benign and effective way to fabricate superhydrophobic surface without using complicated equipment and dangerous chemicals.
78 FR 27472 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... Approved For Collection And Use: Airfield lighting and vault. Runway 21 extension--preliminary design...--80 facility modification design and build-out. Access control enhancements. Security fence replacement. Airfield pavement survey. Jet bridge refurbishment. Security checkpoint modification. Friction...
Arslan, Osman; Aytac, Zeynep; Uyar, Tamer
2016-08-03
Electrospun cellulose acetate nanofibers (CA-NF) have been modified with perfluoro alkoxysilanes (FS/CA-NF) for tailoring their chemical and physical features aiming oil-water separation purposes. Strikingly, hybrid FS/CA-NF showed that perfluoro groups are rigidly positioned on the outer surface of the nanofibers providing superhydrophobic characteristic with a water contact angle of ∼155°. Detailed analysis showed that hydrolysis/condensation reactions led to the modification of the acetylated β(1 → 4) linked d-glucose chains of CA transforming it into a superhydrophobic nanofibrous mat. Analytical data have revealed that CA-NF surfaces can be selectively controlled for fabricating the durable, robust and water resistant hybrid electrospun nanofibrous mat. The -OH groups available on the CA structure allowed the basic sol-gel reactions started by the reactive FS hybrid precursor system which can be monitored by spectroscopic analysis. Since alkoxysilane groups on the perfluoro silane compound are capable of reacting for condensation together with the CA, superhydrophobic nanofibrous mat is obtained via electrospinning. This structural modification led to the facile fabrication of the novel oil/water nanofibrous separator which functions effectively demonstrated by hexane/oil and water separation experiments. Perfluoro groups consequently modified the hydrophilic CA nanofibers into superhydrophobic character and therefore FS/CA-NF could be quite practical for future applications like water/oil separators, as well as self-cleaning or water resistant nanofibrous structures.
Sun, Jiazhen; Jiang, Jieke; Bao, Bin; Wang, Si; He, Min; Zhang, Xingye; Song, Yanlin
2016-01-01
In this work, an effective method was developed to fabricate bendable circuits on a polydimethylsiloxane (PDMS) surface by inkjet printing semi-wrapped structures. It is demonstrated that the precured PDMS liquid film could influence the depositing morphology of coalesced silver precursor inkjet droplets. Accordingly, continuous and uniform lines with a semi-wrapped structure were fabricated on the PDMS surface. When the printed silver precursor was reduced to Ag nanoparticles, the fabricated conductive film exhibited good transparency and high bendability. This work presented a facile way to fabricate flexible patterns on a PDMS surface without any complicated modification or special equipment. Meanwhile, an in situ hydrazine reduction of Ag has been reported using the vapor phase method in the fabricating process. PMID:28773374
Deng, Chao; Chen, Yuan; Li, Jinhui; Li, Ying; Li, Huafen
2016-04-01
Although numerous studies have shown the presence of polybrominated diphenyl ethers (PBDEs) in various environmental media, attention to their distribution in the environmental media surrounding industrial facilities is limited. In this study, eight PBDEs congeners (BDE-28, -47, -99, -100, -153, -154, -183, -209) were investigated in surface soils and water samples collected from commercial PBDE manufacturers, flame-retardant plastic modification plants and waste electrical and electronic equipment recycling facilities in China. Analysis of target compounds was performed using the model NCI GC-MS in SIM mode. The concentrations of ∑8PBDEs varied from 193.1 to 22,004.3 ng/L in water samples and from 1209.3 to 226,906 ng/g dry wt in surface soils, respectively. More severe PBDE contamination, when compared with previously reported data, was found in industrial areas in this study. This indicates that these industrial areas are highly polluted with PBDEs. BDE-209 was the predominant congener, accounting for more than 94% in this study, except for a 68.75% portion at one site. Our results show that PBDE manufacturing and flame-retardant plastic modification plants, easily overlooked by the public, are two primary PBDE pollution sources although they affect surrounding areas. Further research is needed, aimed at managing industrial PBDE emissions and eliminating environmental PBDE pollution, to investigate the material flows and environmental fates of PBDEs in all stages of the life cycle.
76 FR 53021 - Public Hearing and Commission Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... Water Supply System, Halls Cross Roads District, Harford County, Md. Modification to conditions of the... Baltimore. Project Facility: Maryland Water Supply System, Halls Cross Roads District, Harford County, Md... Facility: Maryland Water Supply System, Halls Cross Roads District, Harford County, Md. Modification to...
Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.
Liu, Peiming; Huang, Tao; Liu, Pingsheng; Shi, Shufeng; Chen, Qiang; Li, Li; Shen, Jian
2016-10-15
Polyurethane (PU) is a biopolymer that has been commonly used for biomedical applications. However, the biofouling phenomenon on the hydrophobic PU surface is one of the crucial issues that embarrassing its applications. Here, we report a facile & efficient approach to improve the anti-biofouling ability of the PU substrates. Active residues were firstly generated on the PU surface by using the low temperature air-plasma treatment, promoting the immobilization of the atom transfer radical polymerization (ATRP) initiators on the surface. Then, three types of zwitterionic polymer brushes, as well as PEG brushes, have been fabricated on the PU substrates through surface-initiated ATRP (SI-ATRP). Robust surface characterizations that capable of revealing the surface chemistry (including X-ray photoelectron spectroscopy (XPS) and wettability tests), and antifouling evaluations of the PU substrates (protein adsorption, platelet adhesion, and cell adhesion measurements) were performed. Results showed that three types of zwitterionic brushes have been successful grafted on the PU surface, respectively. And the three types of zwitterionic brushes, in general, significantly inhibited the protein adsorption, the platelet adhesion, and the cell adhesion on the PU surface, endowing a significantly improved anti-fouling ability to the PU substrates. Furthermore, we found that this facial zwitterionic surface modification did not compromise the mechanical property of the PU substrates. This strategy could be easily exploited to PU-based biomaterials to improve their performance in many applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation of deflectometry for E-ELT optics.
NASA Astrophysics Data System (ADS)
Sironi, G.; Canestrari, R.; Civitani, M. M.
A deflectometrical facility was developed at Italian National Institute for Astrophysics-OAB in the context of the ASTRI project to characterize free-form segments for Cherenkov optics. The test works as an inverse Ronchi test in combination with a ray-tracing code: the under-test surface is illuminated by a known light pattern and the pattern warped by local surface errors is observed. Knowing the geometry of the system it is possible to retrieve the surface normal vectors. This contribution presents the analysis of the upgrades and of the configuration modifications required to allow the use of deflectometry in the realization of optical components suitable for European Extremely Large Telescope and as a specific case to support the manufacturing of the Multi-conjugate Adaptive Optics Relay (MAORY) module.
Computer-socket manufacturing error: How much before it is clinically apparent?
Sanders, Joan E.; Severance, Michael R.; Allyn, Kathryn J.
2015-01-01
The purpose of this research was to pursue quality standards for computer-manufacturing of prosthetic sockets for people with transtibial limb loss. Thirty-three duplicates of study participants’ normally used sockets were fabricated using central fabrication facilities. Socket-manufacturing errors were compared with clinical assessments of socket fit. Of the 33 sockets tested, 23 were deemed clinically to need modification. All 13 sockets with mean radial error (MRE) greater than 0.25 mm were clinically unacceptable, and 11 of those were deemed in need of sizing reduction. Of the remaining 20 sockets, 5 sockets with interquartile range (IQR) greater than 0.40 mm were deemed globally or regionally oversized and in need of modification. Of the remaining 15 sockets, 5 sockets with closed contours of elevated surface normal angle error (SNAE) were deemed clinically to need shape modification at those closed contour locations. The remaining 10 sockets were deemed clinically acceptable and not in need modification. MRE, IQR, and SNAE may serve as effective metrics to characterize quality of computer-manufactured prosthetic sockets, helping facilitate the development of quality standards for the socket manufacturing industry. PMID:22773260
NASA Astrophysics Data System (ADS)
Liu, Siyang; Chen, Xiang; Zhao, Jiayue; Su, Junming; Zhang, Congcong; Huang, Tao; Wu, Jianhua; Yu, Aishui
2018-01-01
Ni-rich cathode materials attract ongoing interest due to their high specific capacity (∼200 mAh g-1). However, these materials suffer rapid capacity fading when charged to a high voltage and cycled at elevated temperature. In this study, we propose a facile method to reconstruct the surface structure of LiNi0.6Co0.2Mn0.2O2 via Nb modification, which integrates the merits of partial Nb5+ doping in the pristine structure and surface Li3NbO4 coating. The obtained results from Rietveld refinement and high resolution transmission electron microscopy confirm that Nb5+ is partially doped into Li+ sites within the surface lattice. Further ex-situ powder X-ray diffraction and kinetic analysis using electrochemical impedance spectroscopy reveal that Nb modification stabilizes the layered structure and facilitates the charge transfer process. Owing to the robust surface structure, 1 mol% Nb modified LiNi0.6Co0.2Mn0.2O2 delivers a discharge capacity of 160.9 mAh g-1 with 91% capacity retention after 100 cycles at 3.0-4.5 V, whereas the discharge capacity of the pristine sample drops to 139.6 mAh g-1, corresponding to 78% of its initial value. The presence of Nb5+ in the Li layer exhibits positive effects on stability of layered structure, and the surface Li3NbO4 coating layer increases interfacial stability, which results in superior electrochemical performance.
Fuel-Flexible Gas Turbine Combustor Flametube Facility
NASA Technical Reports Server (NTRS)
Little, James E.; Nemets, Stephen A.; Tornabene, Robert T.; Smith, Timothy D.; Frankenfield, Bruce J.; Manning, Stephen D.; Thompson, William K.
2004-01-01
Facility modifications have been completed to an existing combustor flametube facility to enable testing with gaseous hydrogen propellants at the NASA Glenn Research Center. The purpose of the facility is to test a variety of fuel nozzle and flameholder hardware configurations for use in aircraft combustors. Facility capabilities have been expanded to include testing with gaseous hydrogen, along with the existing hydrocarbon-based jet fuel. Modifications have also been made to the facility air supply to provide heated air up to 350 psig, 1100 F, and 3.0 lbm/s. The facility can accommodate a wide variety of flametube and fuel nozzle configurations. Emissions and performance data are obtained via a variety of gas sample probe configurations and emissions measurement equipment.
Surface Modification of Intraocular Lenses
Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin
2016-01-01
Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993
NASA Technical Reports Server (NTRS)
Bjorn, L. C.; Martin, M. L.; Murphy, C. W.; Niebla, J. F., V
1971-01-01
This document defines the facilities, equipment, and operational plans required to support the MSS Program at KSC. Included is an analysis of KSC operations, a definition of flow plans, facility utilization and modifications, test plans and concepts, activation, and tradeoff studies. Existing GSE and facilities that have a potential utilization are identified, and new items are defined where possible. The study concludes that the existing facilities are suitable for use in the space station program without major modification from the Saturn-Apollo configuration.
Lee, Eui-Jong; Deka, Bhaskar Jyoti; Guo, Jiaxin; Woo, Yun Chul; Shon, Ho Kyong; An, Alicia Kyoungjin
2017-09-05
To consolidate the position of membrane distillation (MD) as an emerging membrane technology that meets global water challenges, it is crucial to develop membranes with ideal material properties. This study reports a facile approach for a polyvinylidene fluoride (PVDF) membrane surface modification that is achieved through the coating of the surface with poly(dimethylsiloxane) (PDMS) polymeric microspheres to lower the membrane surface energy. The hierarchical surface of the microspheres was built without any assistance of a nano/microcomposite by combining the rapid evaporation of tetrahydrofuran (THF) and the phase separation from condensed water vapor. The fabricated membrane exhibited superhydrophobicity-a high contact angle of 156.9° and a low contact-angle hysteresis of 11.3°-and a high wetting resistance to seawater containing sodium dodecyl sulfate (SDS). Compared with the control PVDF-hexafluoropropylene (HFP) single-layer nanofiber membrane, the proposed fabricated membrane with the polymeric microsphere layer showed a smaller pore size and higher liquid entry pressure (LEP). When it was tested for the direct-contact MD (DCMD) in terms of the desalination of seawater (3.5% of NaCl) containing SDS of a progressively increased concentration, the fabricated membrane showed stable desalination and partial wetting for the 0.1 and 0.2 mM SDS, respectively.
NASA Technical Reports Server (NTRS)
Croft, W. L.
1986-01-01
The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region.
NASA Astrophysics Data System (ADS)
Oh, Eun-Jin; Hempelmann, Rolf; Nica, Valentin; Radev, Ivan; Natter, Harald
2017-02-01
We present a new and facile method for preparation of nitrogen containing carbon coatings (NCC) on the surface of graphene- and carbon nanotubes (CNT), which has an increased electronic conductivity. The modified carbon system can be used as catalyst support for electrocatalytic applications, especially for polymer electrolyte membrane fuel cells (PEMFC). The surface modification is performed by impregnating carbon structures with a nitrogen containing ionic liquid (IL) with a defined C:N ratio, followed by a thermal treatment under ambient conditions. We investigate the influence of the main experimental parameters (IL amount, temperature, substrate morphology) on the formation of the NCC. Additionally, the structure and the chemical composition of the resulting products are analyzed by electron microscopic techniques (SEM, TEM), energy disperse X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and hot extraction analysis. The modified surface has a nitrogen content of 29 wt% which decreases strongly at temperatures above 600 °C. The new catalyst supports are used for the preparation of PEMFC anodes which are characterized by polarization measurements and electrochemical impedance spectroscopy (EIS). Compared to unmodified graphene and CNT samples the electronic conductivity of the modified systems is increased by a factor of 2 and shows improved mass transport properties.
Simultaneous Surface Modification and Chemical Reduction of Graphene Oxide Using Glucose.
Pan, Hui; Liu, Ruiqi; Li, Guanglong; Wang, Xiaodong; Ding, Tao
2018-05-01
In this paper, we develop a simple and facile approach to prepare graphene nanosheets through chemical reduction with glucose as reducing agent and modification agent. The reduced and modified graphene by glucose (denoted as g-rGO) was characterized with techniques of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), etc. It is found that, besides the desired reduction capability to graphene oxide (denoted as GO), glucose plays an important role as a modifying reagent in stabilizing the as-prepared graphene nanosheets simultaneously and the g-rGO exhibits good dispersibility and stability in water and waterborne polyurethane matrix (denoted as WPU). Moreover, the g-rGO can improve evidently the mechanical properties, weather ability and water resistance of WPU.
Cryogenic Test Capability at Marshall Space Flight Center's X-ray Cryogenic Test Facility
NASA Technical Reports Server (NTRS)
Kegley, Jeffrey; Baker, Mark; Carpenter, Jay; Eng, Ron; Haight, Harlan; Hogue, William; McCracken, Jeff; Siler, Richard; Wright, Ernie
2006-01-01
Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing sub-liquid nitrogen temperature testing since 1999. Optical wavefront measurement, thermal structural deformation, mechanism functional & calibration, and simple cryo-conditioning tests have been completed. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The chamber's payload envelope and the facility s refrigeration capacity have both been increased. Modifications have also been made to the optical instrumentation area improving access for both the installation and operation of optical instrumentation outside the vacuum chamber. The facility's capabilities, configuration, and performance data will be presented.
Runway drainage characteristics related to tire friction performance
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1991-01-01
The capability of a runway pavement to rapidly drain water buildup during periods of precipitation is crucial to minimize tire hydroplaning potential and maintain adequate aircraft ground operational safety. Test results from instrumented aircraft, ground friction measuring vehicles, and NASA Langley's Aircraft Landing Dynamics Facility (ALDF) track have been summarized to indicate the adverse effects of pavement wetness conditions on tire friction performance. Water drainage measurements under a range of rainfall rates have been evaluated for several different runway surface treatments including the transversely grooved and longitudinally grinded concrete surfaces at the Space Shuttle Landing Facility (SLF) runway at NASA Kennedy Space Center in Florida. The major parameters influencing drainage rates and extent of flooding/drying conditions are identified. Existing drainage test data are compared to a previously derived empirical relationship and the need for some modification is indicated. The scope of future NASA Langley research directed toward improving empirical relationships to properly define runway drainage capability and consequently, enhance aircraft ground operational safety, is given.
Magnetic nanoparticles entrapped in siliceous mesocellular foam: a new catalyst support.
Lee, Su Seong; Riduan, Siti Nurhanna; Erathodiyil, Nandanan; Lim, Jaehong; Cheong, Jian Liang; Cha, Junhoe; Han, Yu; Ying, Jackie Y
2012-06-11
γ-Fe(2)O(3) nanoparticles were formed inside the cage-like pores of mesocellular foam (MCF). These magnetic nanoparticles showed a uniform size distribution that could be easily controlled by the MCF pore size, as well as by the hydrocarbon chain length used for MCF surface modification. Throughout the entrapment process, the pore structure and surface area of the MCF remained intact. The resulting magnetic MCF facilitated the immobilization of biocatalysts, homogeneous catalysts, and nanoclusters. Moreover, the MCF allowed for facile catalyst recovery by using a simple magnet. The supported catalysts exhibited excellent catalytic efficiencies that were comparable to their homogeneous counterparts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multifunctional transparent ZnO nanorod films.
Kwak, Geunjae; Jung, Sungmook; Yong, Kijung
2011-03-18
Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered toward a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.
2003-09-05
KENNEDY SPACE CENTER, FLA. - Technicians in the Orbiter Processing Facility oversee removal of one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.
2003-09-05
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to remove one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is suspended overhead. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.
2003-09-05
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered onto a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.
DOT National Transportation Integrated Search
2002-08-09
This document mandates standard lightning protection, transient protection, electrostatic discharge (ESD), grounding, bonding and shielding configurations and procedures for new facilities, facility modifications, facility up grades, new equipment in...
Solitons and ionospheric modification
NASA Technical Reports Server (NTRS)
Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.; Weatherall, J. C.; Goldman, M. V.
1982-01-01
The possibility of Langmuir soliton formation and collapse during ionospheric modification is investigated. Parameters characterizing former facilities, existing facilities, and planned facilities are considered, using a combination of analytical and numerical techniques. At a spatial location corresponding to the exact classical reflection point of the modifier wave, the Langmuir wave evolution is found to be dominated by modulational instability followed by soliton formation and three-dimensional collapse. The earth's magnetic field is found to affect the shape of the collapsing soliton. These results provide an alternative explanation for some recent observations.
Control System Upgrade for a Mass Property Measurement Facility
NASA Technical Reports Server (NTRS)
Chambers, William; Hinkle, R. Kenneth (Technical Monitor)
2002-01-01
The Mass Property Measurement Facility (MPMF) at the Goddard Space Flight Center has undergone modifications to ensure the safety of Flight Payloads and the measurement facility. The MPMF has been technically updated to improve reliability and increase the accuracy of the measurements. Modifications include the replacement of outdated electronics with a computer based software control system, the addition of a secondary gas supply in case of a catastrophic failure to the gas supply and a motor controlled emergency stopping feature instead of a hard stop.
Duan, Chenghao; Luo, Weining; Jiu, Tonggang; Li, Jiangsheng; Wang, Yao; Lu, Fushen
2018-02-15
Recently, ZnCdS nanocrystals (NCs) have attracted intense attention because of their specific optical properties and electrical characteristics. In this paper, a green and facile solution method is reported for the preparation of ZnCdS nanocrystals using dimethylsulfoxide as small molecular ligands. The ZnCdS nanocrystals are used as an interface modification material in the photovoltaic devices. It is found that the modification of ZnCdS on TiO 2 surface not only suppresses the recombination loss of carriers but also reduces the series resistance of TiO 2 /active layer. Consequently, both of the short circuit current (J sc ) and the fill factor (FF) of the solar cells were significantly improved. Power conversion efficiency (PCE) of 7.75% based on TiO 2 /ZnCdS was achieved in contrast to 6.65% of the reference devices based on pure TiO 2 film in organic solar cells. Furthermore, the PCE of perovskite solar cells based on TiO 2 /ZnCdS was observed with 8.3% enhancement compared to that of pure TiO 2 -based ones. Copyright © 2017 Elsevier Inc. All rights reserved.
Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.
Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi
2018-05-03
We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.
Characterization of Surface Modification of Polyethersulfone Membrane
USDA-ARS?s Scientific Manuscript database
Surface modification of polyethersulfone (PES) membrane surface using UV/ozone-treated grafting and interfacial polymerization on membrane surface was investigated in order to improve the resistance of membrane surface to protein adsorption. These methods of surface modification were compared in te...
Chemical analyses of provided samples
NASA Technical Reports Server (NTRS)
Becker, Christopher H.
1993-01-01
Two batches of samples were received and chemical analysis was performed of the surface and near surface regions of the samples by the surface analysis by laser ionization (SALI) method. The samples included four one-inch optics and several paint samples. The analyses emphasized surface contamination or modification. In these studies, pulsed sputtering by 7 keV Ar+ and primarily single-photon ionization (SPI) by coherent 118 nm radiation (at approximately 5 x 10(exp 5) W/cm(sup 2) were used. For two of the samples, also multiphoton ionization (MPI) at 266 nm (approximately 5 x 10(exp 11) W/cm(sup 2) was used. Most notable among the results was the silicone contamination on Mg2 mirror 28-92, and that the Long Duration Exposure Facility (LDEF) paint sample had been enriched in K and Na and depleted in Zn, Si, B, and organic compounds relative to the control paint.
Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils.
Wu, Min; Kuga, Shigenori; Huang, Yong
2008-09-16
We demonstrate a simple, facile approach to the deposition of silver nanoparticles on the surface of cellulose microfibrils with a quasi-one-dimensional arrangement. The process involves the generation of aldehyde groups by oxidizing the surface of cellulose microfibrils and then the assembly of silver nanoparticles on the surface by means of the silver mirror reaction. The linear nature of the microfibrils and the relatively uniform surface chemical modification result in a uniform linear distribution of silver particles along the microfibrils. The effects of various reaction parameters, such as the reaction time for the reduction process and employed starting materials, have been investigated by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Additionally, the products were examined for their electric current-voltage characteristics, the results showing that these materials had an electric conductivity of approximately 5 S/cm, being different from either the oxidated cellulose or bulk silver materials by many orders of magnitude.
Noël, Jean-Marc; Zigah, Dodzi; Simonet, Jacques; Hapiot, Philippe
2010-05-18
A versatile method was used to prepare modified surfaces on which metallic silver nanoparticles are immobilized on an organic layer. The preparation method takes advantage, on one hand, of the activated reactivity of some alkyl halides with Ag-Pd alloys to produce metallic silver nanoparticles and, on the other hand, of the facile production of an anchoring polyphenyl acetate layer by the electrografting of substituted diazonium salts on carbon surfaces. Transport properties inside such modified layers were investigated by cyclic voltammetry, scanning electrochemical microscopy (SECM) in feedback mode, and conducting AFM imaging for characterizing the presence and nature of the conducting pathways. The modification of the blocking properties of the surface (or its conductivity) was found to vary to a large extent on the solvents used for surface examination (H(2)O, CH(2)Cl(2), and DMF).
NASA Astrophysics Data System (ADS)
Chen, Junyu; Liu, Meiying; Huang, Qiang; Jiang, Ruming; Huang, Hongye; Deng, Fengjie; Wen, Yuanqing; Tian, Jianwen; Zhang, Xiaoyong; Wei, Yen
2018-05-01
(Zn/Al) layered double hydroxide (LDH) based fluorescence probes have been facilely fabricated via photo-induced surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, which demonstrated green fluorescence, good biocompatibility and excellent dispersion performance in aqueous solution. The as prepared (Zn/Al)LDH polymeric composites were modified with 2-methacryloyloxyethyl phosphorylcholine (MPC), acrylic acid (AA) and diacroloyl-fluorescein (Ac-Fl). Among them, the comonomers MPC and AA were used to endow their water dispersibility, biocompatibility and potential drug carriers, while the Ac-Fl was served both as the fluorescence signal and photocatalyst for RAFT polymerization. A series of characterization methods, including 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, transmission electronic microscopy, thermogravimetric analyses, X-ray photoelectron spectroscopy were employed to conform the successful of surface modification of LDH through photo-induced surface-initiated RAFT polymerization. Besides, UV-vis absorption spectra and fluorescence spectra were adopted to evaluate the optical characteristics of as prepared (Zn/Al)LDH-co-Poly(MPC-AA-Fl) composites, which exhibited high intense green fluorescence. Furthermore, the endocytosis behavior indicates that (Zn/Al)LDH-co-Poly(MPC-AA-Fl) composites could be potentially used in cell imaging and even drug delivery application for their excellent biocompatibility and all advantages described above.
Surface modification of food contact materials for processing and packaging applications
NASA Astrophysics Data System (ADS)
Barish, Jeffrey A.
This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further work was performed to test the stability of non-fouling material after extended exposure to an alkali detergent or acid sanitizer formulated for clean-in-place procedures in dairy processing facilities. Additionally, the anti-corrosive property of the surface coating was tested on carbon steel against chlorine ions, a common corrosive agent found in the food industry. Accelerated corrosion and long-term chemical exposure studies were conducted to measure the coating stability against the harsh corrosive agents.
Antimicrobial membrane surfaces via efficient polyethyleneimine immobilization and cationization
NASA Astrophysics Data System (ADS)
Qiu, Wen-Ze; Zhao, Zi-Shu; Du, Yong; Hu, Meng-Xin; Xu, Zhi-Kang
2017-12-01
Biofouling control is a major task in membrane separation processes for water treatment and biomedical applications. In this work, N-alkylated polyethylenimine (PEI) is facilely and efficiently introduced onto the membrane surfaces via the co-deposition of catechol (CCh) and PEI, followed by further grafting of PEIs (600 Da, 70 kDa and 750 kDa) and cationization with methyl iodide (CH3I). The physical and chemical properties of the constructed membrane surfaces are characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and water contact angle measurements. Antibacterial assay reveals that the optimized membrane surfaces possess around 95% antibacterial efficiency against Gram-positive Staphylococcus aureus (S. aureus) with weak adhesion of bacteria cells after 24 h of bacterial contact. Additionally, the membrane surfaces also exhibit much enhanced antifouling property during the filtration of opposite charged bovine serum albumin (BSA). These results demonstrate a useful strategy for the surface modification of separation membranes by a kind of antimicrobial and antifouling coating.
Gavrilyuk, Julia; Ban, Hitoshi; Nagano, Masanobu; Hakamata, Wataru; Barbas, Carlos F.
2012-01-01
4-Formylbenzene diazonium hexafluorophosphate (FBDP) is a novel bench-stable crystalline diazonium salt that reacts selectively with tyrosine to install a bioorthogonal aldehyde functionality. Model studies with N-acyl-tyrosine methylamide allowed us to identify conditions optimal for tyrosine ligation reactions with small peptides and proteins. FBDP-based conjugation was used for the facile introduction of small molecule tags, poly(ethylene) glycol chains (PEGylation), and functional small molecules onto model proteins and to label the surface of living cells. PMID:23181702
Gavrilyuk, Julia; Ban, Hitoshi; Nagano, Masanobu; Hakamata, Wataru; Barbas, Carlos F
2012-12-19
4-Formylbenzene diazonium hexafluorophosphate (FBDP) is a novel bench-stable crystalline diazonium salt that reacts selectively with tyrosine to install a bioorthogonal aldehyde functionality. Model studies with N-acyl-tyrosine methylamide allowed us to identify conditions optimal for tyrosine ligation reactions with small peptides and proteins. FBDP-based conjugation was used for the facile introduction of small molecule tags, poly(ethylene glycol) chains (PEGylation), and functional small molecules onto model proteins and to label the surface of living cells.
1998-09-28
The orbiter Atlantis, being towed from the Shuttle Landing Facility toward the Vehicle Assembly Building (VAB) , intersects the morning sun's rays. In the background, to the right of the VAB, are the Orbiter Processing Facility 1 and 2. Atlantis spent 10 months in Palmdale, CA, undergoing extensive inspections and modifications in the orbiter processing facility there. The modifications included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. Atlantis will undergo preparations at KSC in Orbiter Processing Facility 2 for its planned flight in June 1999
NASA Astrophysics Data System (ADS)
Shang, Yanwei; Si, Yang; Raza, Aikifa; Yang, Liping; Mao, Xue; Ding, Bin; Yu, Jianyong
2012-11-01
Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N2 adsorption method has confirmed the major contribution of SiO2 NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification.Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N2 adsorption method has confirmed the major contribution of SiO2 NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification. Electronic supplementary information (ESI) available: Detailed synthesis and structural confirmation of BAF-tfa, FT-IR results, OCA results and Movie S1. See DOI: 10.1039/c2nr33063f
NASA Astrophysics Data System (ADS)
Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun
2017-10-01
Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.
Yang, Yang; Liu, Xuegang; Ye, Gang; Zhu, Shan; Wang, Zhe; Huo, Xiaomei; Matyjaszewski, Krzysztof; Lu, Yuexiang; Chen, Jing
2017-04-19
Developing green and efficient technologies for surface modification of magnetic nanoparticles (MNPs) is of crucial importance for their biomedical and environmental applications. This study reports, for the first time, a novel strategy by integrating metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) with the bioinspired polydopamine (PDA) chemistry for controlled architecture of functional polymer brushes from MNPs. Conformal PDA encapsulation layers were initially generated on the surfaces of MNPs, which served as the protective shells while providing an ideal platform for tethering 2-bromo-2-phenylacetic acid (BPA), a highly efficient initiator. Metal-free PET-ATRP technique was then employed for controlled architecture of poly(glycidyl methacrylate) (PGMA) brushes from the core-shell MNPs by using diverse organic dyes as photoredox catalysts. Impacts of light sources (including UV and visible lights), photoredox catalysts, and polymerization time on the composition and morphology of the PGMA brushes were investigated. Moreover, the versatility of the PGMA-functionalized core-shell MNPs was demonstrated by covalent attachment of ethylenediamine (EDA), a model functional molecule, which afforded the MNPs with improved hydrophilicity, dispersibility, and superior binding ability to uranyl ions. The green methodology by integrating metal-free PET-ATRP with facile PDA chemistry would provide better opportunities for surface modification of MNPs and miscellaneous nanomaterials for biomedical and electronic applications.
On the Development of a Unique Arc Jet Test Apparatus for Control Surface Seal Evaluations
NASA Technical Reports Server (NTRS)
Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Robbie, Malcolm; Baker, Gus; Erker, Arthur
2004-01-01
NASA Glenn has developed a unique test apparatus capable of evaluating control surface seal and flap designs under simulated reentry heating conditions in NASA Johnson's arc jet test facility. The test apparatus is capable of testing a variety of seal designs with a variety of control surface materials and designs using modular components. The flap angle can be varied during testing, allowing modification of the seal environment while testing is in progress. The flap angle is varied using an innovative transmission system which limits heat transfer from the hot flap structure to the motor, all while keeping the components properly aligned regardless of thermal expansion. A combination of active and passive cooling is employed to prevent thermal damage to the test fixture while still obtaining the target seal temperature.
1998-09-28
The orbiter Atlantis is towed away from the Shuttle Landing Facility after returning home from California atop its Shuttle Carrier Aircraft. The orbiter spent 10 months in Palmdale undergoing extensive inspections and modifications in the orbiter processing facility there. The modifications included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. Atlantis will undergo preparations in the Orbiter Processing Facility at KSC for its planned flight in June 1999
Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method
NASA Astrophysics Data System (ADS)
Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong
2018-05-01
With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.
High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.
2007-08-29
High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) theremore » is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.« less
75 FR 43495 - Sunshine Act Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-26
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities..., structures, and components, and (5) safety-related design aspects of new facilities or modifications of existing facilities needed to deliver high-level waste feed. The Board will be prepared to accept any other...
Modification of the contact surfaces for improving the puncture resistance of laminar structures.
Wang, Pengfei; Yang, Jinglei; Li, Xin; Liu, Mao; Zhang, Xin; Sun, Dawei; Bao, Chenlu; Gao, Guangfa; Yahya, Mohd Yazid; Xu, Songlin
2017-07-26
Uncovering energy absorption and surface effects of various penetrating velocities on laminar structures is essential for designing protective structures. In this study, both quasi-static and dynamic penetration tests were systematical conducted on the front surfaces of metal sheets coated with a graphene oxide (GO) solution and other media. The addition of a GO fluid film to the front impact surface aided in increasing the penetration strength, improving the failure extension and dissipating additional energy under a wide-range of indentation velocity, from 3.33 × 10 -5 m/s to 4.42 m/s. The coated -surfaces improved the specific energy dissipation by approximately 15~40% relative to the dry-contact configuration for both single-layer and double-layer configurations, and specific energy dissipations of double-layer configurations were 20~30% higher than those of the single-layer configurations. This treatment provides a facile strategy in changing the contact state for improving the failure load and dissipate additional energy.
Ion Diode Experiments on PBFA-X
NASA Astrophysics Data System (ADS)
Lockner, Thomas
1996-05-01
The PBFA-II pulsed power accelerator at Sandia National Laboratories has been modified to replace the radially focusing ion diode with an extraction ion diode. In the extraction diode mode (PBFA X) the ion beam is generated on the surface of an annular disk and extracted along the cylindrical axis. An additional magnetically insulated transmission line (MITL) has been installed to transmit power from the center to the bottom of the accelerator, where it drives a magnetically insulated extraction ion diode. The modification increases access to the diode and the diagnostics, permitting a higher shot rate, and allows us to study extraction diode technology at a power level near what is required for a high yield facility. The modification also includes reversing the polarity of the top half of the accelerator to permit operation at twice the previous source voltage. In the new configuration the diode could operate at 15 MV and 0.8 MA. This operating point is near the 30 MV, 1.0 MA operating point envisioned for one module of a high yield facility, and will allow the study of intense extraction ion diodes at power levels relevant to such a facility. Experimental results will be presented including MITL coupling studies, beam current density control, discharge cleaning of diode surfaces to reduce the presence of contaminant ions in the source beam, and the effect of anode substrate materials on the purity of the lithium beam. A comparison between predicted and measured radial beam profiles will also be presented, with the predicted profiles obtained from the ATHETA code that solves magnetostatics problems in two dimensions. This work was supported by the US/DOE under contract No. DE-AC04-94AL85000. +In collaboration with R. S. Coats, M. E. Cuneo, M. P. Desjarlias, D. J. Johnson, T. A. Mehlhorn, C. W. Mendel, Jr., P. Menge#, and W. J. Poukey,
Surface Modification of Biomaterials: A Quest for Blood Compatibility
de Mel, Achala; Cousins, Brian G.; Seifalian, Alexander M.
2012-01-01
Cardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility. A great deal of research efforts are attributed towards realising such a surface, which comprise of a range of methods on surface modification. Surface modification methods can be broadly categorized as physicochemical modifications and biological modifications. These modifications aim to modulate platelet responses directly through modulation of thrombogenic proteins or by inducing antithrombogenic biomolecules that can be biofunctionalised onto surfaces or through inducing an active endothelium. Nanotechnology is recognising a great role in such surface modification of cardiovascular implants through biofunctionalisation of polymers and peptides in nanocomposites and through nanofabrication of polymers which will pave the way for finding a closer blood match through haemostasis when developing cardiovascular implants with a greater degree of patency. PMID:22693509
Zhao, Xiaobin; Courtney, James M
2009-07-01
In this article, a novel approach for the surface modification of polymeric biomaterials by the utilization of supramolecules was studied. The supramolecules selected were cyclodextrin inclusion complexes (CICs). The biomaterial selected for surface modification was plasticized poly (vinyl chloride) (PVC-P). Results indicate that when the CICs were blended into PVC-P, they tend to migrate and "anchor" on the surface to achieve a remarkable protein-resistant surface, with improved blood compatibility. In comparison with a physical mixture of cyclodextrins and a "guest" molecule, such as poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO and PPO-PEO-PPO for PVC-P modification, CICs modified PVC-P are more consistent in processing and achieve reproducible surface characteristics. Based on this study, a novel "anchor modification" was proposed regarding CICs modified surface. This "anchor modification" is likely to reduce plasticizer extraction from PVC-P and also can be utilized for the modification of polymers other than PVC-P.
Cycle O (CY 1991) NLS trade studies and analyses, book 2. Part 1: Avionics and systems
NASA Technical Reports Server (NTRS)
Harris, Richard; Kirkland, Zach
1992-01-01
An assessment was conducted to determine the maximum LH2 tank stretch capability based on the constraints of the manufacturing, tooling and facilities at the Michoud Assembly Facility in New Orleans, Louisiana. The maximum tank stretch was determined to be 5 ft. with minor or no modifications, a stretch of 11 ft. with some possible facility modifications and beyond 11 ft. significant new facilities are required. A cost analysis was performed to evaluate the impacts for various stretch lengths. Tasks that were defined to perform trades and studies regarding the best approach to meet requirements for the National Launch System Avionics are also discussed.
USDA-ARS?s Scientific Manuscript database
Protein membrane separation is prone to fouling on the membrane surface resulting from protein adsorption onto the surface. Surface modification of synthetic membranes is one way to reduce fouling. We investigated surface modification of polyethersulfone (PES) as a way of improving hydrophilicity ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulter, R.L.; Klazura, J.; Lesht, B.M.
The Argonne Boundary Layer Experiments (ABLE) facility, located in south central Kansas, east of Wichita, is devoted primarily to investigations of and within the planetary boundary layer (PBL), including the dynamics of the mixed layer during both day and night; effects of varying land use and landform; the interactive role of precipitation, runoff, and soil moisture; storm development; and energy budgets on scales of 10 to 100 km. With an expected lifetime of 10--15 years, the facility is well situated to observe the effects of gradual urbanization on PBL dynamics and structure as the Wichita urban area expands to themore » east and several small municipalities located within the study area expand. Combining the continuous measurements of ABLE with (1) ancillary continuous measurements of, for example, the Atmospheric Radiation Measurement (ARM) program and the Global Energy Water Cycle Experiment (GEWEX) programs and with (2) shorter, more intensive studies within ABLE, such as the Cooperative Atmosphere Surface Exchange Studies (CASES) Program, allows hypothesized features of urbanization, including heat island effects, precipitation enhancement, and modification of the surface energy budget partitioning, to be studied.« less
Xu, Xinyuan; Zhang, Dongyue; Gao, Shangwei; Shiba, Toshikazu; Yuan, Quan; Cheng, Kai; Tan, Hong; Li, Jianshu
2018-06-11
Current implant materials have widespread clinical applications together with some disadvantages, the majority of which are the ease with which infections are induced and difficulty in exhibiting biocompatibility. For the efficient improvement of their properties, the development of interface multifunctional modification in a simple, universal, and environmently benign approach becomes a critical challenge and has acquired the attention of numerous scientists. In this study, a lysozyme-polyphosphate composite coating was fabricated for titanium(Ti)-based biomaterial to obtain a multifunctional surface. This coating was easily formed by sequentially soaking the substrate in reduced-lysozyme and polyphosphate solution. Such a composite coating has shown predominant antibacterial activity against Gram-negative bacteria ( E. coli) and improved cell adhesion, proliferation, and differentiation, which are much better than those of the pure substrate. This facile modification endows the biomaterial with anti-infective and potential bone-regenerative performance for clinical applications of biomaterial implants.
Conversion of an 800 MW oil fired generating unit to burn Orimulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, J.; Halpin, M.; Morgan, D.
1998-07-01
Florida Power and Light Company (FPL) is proposing to convert the two existing 800 megawatt (MW) residual oil fired generating units at its Manatee Plant located in Parrish, Florida, to burn Ormulsion. Ormulsion is the registered trademark name for a mixture of water and a naturally occurring heavy hydrocarbon known as bitumen. Orimulsion, which originates in Venezuela, will be shipped to Port Manatee in double-hulled vessels, stored at FPL's existing Port Manatee Terminal, and transported via FPL's existing fuel pipeline to the Manatee Plant. The proposed conversion involves modifications of the existing fuel handling facilities, enhancements of the boiler heatmore » transfer surfaces and soot blowing system, and addition of new pollution control equipment. The Manatee Orimulsion conversion will result in overall environmental benefits and significant savings to FPL's customers. This paper summarizes the overall objectives of the project and briefly describes these modifications.« less
Conversion of an 800 MW oil fired generating unit to burn Orimulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blum, J.; Halpin, M.; Morgan, D.
1998-04-01
Florida Power & Light Company (FPL) is proposing to convert the two existing 800 megawatt (MW) residual oil fired generating units at its Manatee Plant located in Parrish, Florida, to burn Orimulsion. Orimulsion is the registered trademark name for a mixture of water and a naturally occurring heavy hydrocarbon known as bitumen. Orimulsion, which originates in Venezuela, will be shipped to Port Manatee in double-hulled vessels, stored at FPL`s existing Port Manatee Terminal, and transported via FPL`s existing fuel pipeline to the Manatee Plant. The proposed conversion involves modifications of the existing fuel handling facilities, enhancements of the boiler heatmore » transfer surfaces and soot blowing system, and addition of new pollution control equipment. The Manatee Orimulsion conversion will result in overall environmental benefits and significant savings to FPL`s customers. This paper summarizes the overall objectives of the project and briefly describes these modifications.« less
49 CFR 180.513 - Repairs, alterations, conversions, and modifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Repairs, alterations, conversions, and modifications. 180.513 Section 180.513 Transportation Other Regulations Relating to Transportation (Continued..., alterations, conversions, and modifications. (a) In order to repair tank cars, the tank car facility must...
12 CFR 725.21 - Modification of agreements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Modification of agreements. 725.21 Section 725.21 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS NATIONAL CREDIT UNION ADMINISTRATION CENTRAL LIQUIDITY FACILITY § 725.21 Modification of agreements. The...
Energy and Educational Facilities: Costs and Conservation.
ERIC Educational Resources Information Center
Educational Facilities Labs., Inc., New York, NY.
An analysis of energy costs and conservation in educational facilities in the United States is presented in this report. Tables and text give dollar figures for energy expenditures in education since the first oil embargo. Energy conservation through facilities management and through facilities modification is stressed. Recommendations are…
NASA Astrophysics Data System (ADS)
Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui
2015-05-01
Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.
Gallardo, Alberto; Lujan, Noelia; Reinecke, Helmut; García, Carolina; Campo, Adolfo Del; Rodriguez-Hernandez, Juan
2017-02-21
Facile procedures capable of simultaneously conferring hydrophilicity and tailored topography to surfaces of hydrophobic supports, such as polycarbonate (PC), are very attractive but rare. In this work, we describe a simple methodology to wrinkle PC surfaces after a process of (a) contacting with a photopolymerizable vinylic solution, (b) UV curing of such solutions, and (c) detachment of the formed polymer network, upon swelling in ethanol. The influence of different parameters such as contact lag time between the PC surface and the polymerizable solution, the monomer concentration and type of solvents, as well as the cross-linking degree on the formation of wrinkles, has been studied. The dimensions of the wrinkles can be tailored to some extent by altering the different parameters. Surface chemistry has been analyzed by contact angle measurements and by confocal Raman microscopy. The results are consistent with a chemical alteration of the surface and the formation of an outer hydrogel layer, which is interpenetrated into the PC structure. A mechanism of monomer diffusion and PC swelling that produces surface instabilities and wrinkling is proposed.
1998-09-28
The orbiter Atlantis, being towed from the Shuttle Landing Facility, is reflected in waters from the Banana Creek next to the towway. The orbiter spent 10 months in Palmdale, CA, undergoing extensive inspections and modifications in the orbiter processing facility there. The modifications included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. Atlantis will undergo preparations in the Orbiter Processing Facility at KSC for its planned flight in June 1999
Engineering of the function of diamond-like carbon binding peptides through structural design.
Gabryelczyk, Bartosz; Szilvay, Géza R; Singh, Vivek K; Mikkilä, Joona; Kostiainen, Mauri A; Koskinen, Jari; Linder, Markus B
2015-02-09
The use of phage display to select material-specific peptides provides a general route towards modification and functionalization of surfaces and interfaces. However, a rational structural engineering of the peptides for optimal affinity is typically not feasible because of insufficient structure-function understanding. Here, we investigate the influence of multivalency of diamond-like carbon (DLC) binding peptides on binding characteristics. We show that facile linking of peptides together using different lengths of spacers and multivalency leads to a tuning of affinity and kinetics. Notably, increased length of spacers in divalent systems led to significantly increased affinities. Making multimers influenced also kinetic aspects of surface competition. Additionally, the multivalent peptides were applied as surface functionalization components for a colloidal form of DLC. The work suggests the use of a set of linking systems to screen parameters for functional optimization of selected material-specific peptides.
Experimental study of turbulent structures over hairy poro-elastic surfaces
NASA Astrophysics Data System (ADS)
Couliou, Marie; Hansson, Jonas; van der Wijngaart, Wouter; Lundell, Fredrik; Bagheri, Shervin
2016-11-01
Flows over slender, deformable and dense structures are ubiquitous in both nature and technological applications, ranging from the atmospheric flow over trees to the flow over the over the skin of organisms. In order to create a fundamental understanding of how poro-elatic surface can be used for flow control purposes, our work focuses on the behaviour of wall-bounded turbulent flows over fibrous poro-elastic surfaces. We fabricate the coatings using Off-Stoichiometry-Thiolene-Epoxy (OSTE+) polymers and multidirectional UV-lithography which enables us to design arrays of flexible pillars with various geometrical parameters (aspect ratio, pitch, inclinaison, etc.). We assess the effects of these coatings on an overlying low-Reynolds number turbulent flow using a water-table facility and PIV measurements. In particular, we focus on the modification of near wall turbulent structures in both space and time due to the presence of the poro-elastic coatings.
Mussel inspired polymerized P(TA-TETA) for facile functionalization of carbon nanotube
NASA Astrophysics Data System (ADS)
Si, Shuxian; Gao, Tingting; Wang, Junhao; Liu, Qinze; Zhou, Guowei
2018-03-01
This article describes a novel and effective approach for non-covalent modification of carbon nanotube (CNT) via the mussel inspired polymerization of tannic acid (TA) and triethylenetetramine (TETA) and subsequent surface initiated atom transfer radical polymerization (SI-ATRP). Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photograph were used to study the successful preparation of polymer brush grafted CNT (CNT-P(TA-TETA)-PDMAEMA) composite as well as the pH-responsive behavior of the composite. Furthermore, by amine protonation and in situ reduction, gold nanoparticles were successfully uploaded and the catalytic property of CNT-P(TA-TETA)-PDMAEMA/Au was investigated. We believe that the surface functionalization strategy can be extended to graphene and other substrates, and the surface properties can be regulated by grafting polymer brushes with different functionalities.
Mekki, Ahmed; Samanta, Soumen; Singh, Ajay; Salmi, Zakaria; Mahmoud, Rachid; Chehimi, Mohamed M; Aswal, Dinesh K
2014-03-15
Highly uniform core-shell like multi-walled carbon nanotubes-polyaniline (MWCNT-PANI) nanocomposites were prepared in two steps (i) surface modification of MWCNTs with a 4-aminodiphenylamine group via in situ diazonium generation process; and (ii) polymerization of aniline onto surface modified MWCNTs. This functionalization helped to easily disperse the MWCNTs in acidic solutions; hence it is suitable for the chemical oxidative polymerization of aniline. It was found that MWCNT-PANI nano-composites with higher MWCNTs loading yield PANI chains with more quinoid units than the pure PANI, which results in significant improvement in the conductivity of the composites. This facile approach of synthesizing core-shell nanocomposites highlights the efficiency of the interfacial chemistry of aryl diazonium salts in generating conductive polymer/MWCNT nanocomposites with enhanced conductivity and high surface area. Copyright © 2013 Elsevier Inc. All rights reserved.
This update August 9, 2016 letter from EPA approves, with modifications, the petition from Ring-neck Energy & Feed, LLC, REF Onida facility, with modifications, regarding non-grandfathered ethanol produced through a dry mill process
NASA Technical Reports Server (NTRS)
Roman, Ivan
1995-01-01
In the surfaces correlation study, several different volumetric and drainage measurement techniques for classifying surface texture were evaluated as part of a major study to develop and improve methods for predicting tire friction performance on all types of pavement. The objective of the evaluation was to seek relationships between the different techniques, and to relate those results to surface frictional characteristics. We needed to know how each of the tests could be related to each other. Another of my assigned projects was to make a tire behavior math model for the High Speed Civil Transport (HSCT) using the same methods used for the space shuttle a few years ago. A provided third order equation with two variables was used. This model will also be used for studies with the Boeing 777. Only a few changes will be necessary to adapt it for this other aircraft, which is the newest offered by Boeing. In my final project I was involved with testing the tires for this new aircraft using the Aircraft Landing Dynamics Facility (ALDF) test carriage within the carriage house at LaRC. A 50 inch diameter radial tire manufactured by Michelin Aircraft Tire Corporation had to be tested to double overload of 114,000 pounds. The rated load of each tire is 57,000 pounds, but Boeing required tests assuming failure of a companion tire that could have cost Michelin approximately $12 million to build a facility to provide the required test capability. Here at LaRC, only minimum modifications to the facility were required to perform this specific test.
Kim, Kyung Lock; Park, Kyeng Min; Murray, James; Kim, Kimoon; Ryu, Sung Ho
2018-05-23
Combinatorial post-translational modifications (PTMs), which can serve as dynamic "molecular barcodes", have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
2018-01-01
Combinatorial post-translational modifications (PTMs), which can serve as dynamic “molecular barcodes”, have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
Manjula, P; Boppella, Ramireddy; Manorama, Sunkara V
2012-11-01
A facile and elegant methodology invoking the principles of Green Chemistry for the synthesis of porous tin dioxide nanospheres has been described. The low-temperature (∼50 °C) synthesis of SnO₂ nanoparticles and their self-assembly into organized, uniform, and monodispersed porous nanospheres with high surface area is facilitated by controlling the concentration of glucose, which acts as a stabilizing as well as structure-directing agent. A systematic control on the stannate to glucose molar concentration ratio determines the exact conditions to obtain monodispersed nanospheres, preferentially over random aggregation. Detailed characterization of the structure, morphology, and chemical composition reveals that the synthesized material, 50 nm SnO₂ porous nanospheres possess BET surface area of about 160 m²/g. Each porous nanosphere consists of a few hundred nanoparticles ∼2-3 nm in diameter with tetragonal cassiterite crystal structure. The SnO₂ nanospheres exhibit elevated photocatalytic activity toward methyl orange with good recyclability. Because of the high activity and stability of this photocatalyst, the material is ideal for applications in environmental remediation. Moreover, SnO₂ nanospheres display excellent gas sensing capabilities toward hydrogen. Surface modification of the nanospheres with Pd transforms this sensing material into a highly sensitive and selective room-temperature hydrogen sensor.
Unmanned launch vehicle impacts on existing major facilities : V23
DOT National Transportation Integrated Search
1984-10-18
This study measures the impact on the existing major facilities of Space Launch Complex (SLC-6) to accommodate the launching of an Unmanned Launch Vehicle (ULV). Modifications to the existing facilities were determined for two basic vehicle concepts,...
NASA Astrophysics Data System (ADS)
Ali, Mubarak; Bayer, Veronika; Schiedt, Birgitta; Neumann, Reinhard; Ensinger, Wolfgang
2008-12-01
We have developed a facile and reproducible method for surfactant-controlled track-etching and chemical functionalization of single asymmetric nanochannels in PET (polyethylene terephthalate) membranes. Carboxyl groups present on the channel surface were converted into pentafluorophenyl esters using EDC/PFP (N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/pentafluorophenol) coupling chemistry. The resulting amine-reactive esters were further covalently coupled with ethylenediamine or propylamine in order to manipulate the charge polarity and hydrophilicity of the nanochannels, respectively. Characterization of the modified channels was done by measuring their current-voltage (I-V) curves as well as their permselectivity before and after the chemical modification. The electrostatic/hydrophobic association of bovine serum albumin on the channel surface was observed through the change in rectification behaviour upon the variation of pH values.
Parker, Whadi-Ah; Steyn, Nelia P; Levitt, Naomi S; Lombard, Carl J
2011-08-01
The present study aimed to evaluate the knowledge and practices of public-sector primary-care health professionals and final-year students regarding the role of nutrition, physical activity and smoking cessation (lifestyle modification) in the management of chronic diseases of lifestyle within the public health-care sector. A comparative cross-sectional descriptive quantitative study was conducted in thirty primary health-care facilities and four tertiary institutions offering medical and/or nursing programmes in Cape Town in the Western Cape Metropole. Stratified random sampling, based on geographical location, was used to select the health facilities while convenience sampling was used to select students at the tertiary institutions. A validated self-administered knowledge test was used to obtain data from the health professionals. Differential lifestyle modification knowledge exists among both health professionals and students, with less than 10 % achieving the desired scores of 80 % or higher. The majority of health professionals seem to be promoting the theoretical concepts of lifestyle modification but experience difficulty in providing practical advice to patients. Of the health professionals evaluated, doctors appeared to have the best knowledge of lifestyle modification. Lack of time, lack of patient adherence and language barriers were given as the main barriers to providing lifestyle counselling. The undergraduate curricula of medical and nursing students should include sufficient training on lifestyle modification, particularly practical advice on diet, physical activity and smoking cessation. Health professionals working at primary health-care facilities should be updated by providing lifestyle modification education as part of continuing medical education.
Organic light emitting diode with surface modification layer
Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.
2017-09-12
An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).
Tulsani, Srikanth Reddy; Rath, Arup Kumar
2018-07-15
The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.
Huang, Hongye; Liu, Meiying; Jiang, Ruming; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen
2018-03-01
Due to their excellent chemical stability and remarkable biocompatibility, nanodiamonds (NDs) have received widespread research attention by the biomedical field. The excellent water dispersibility of NDs has significant importance for biomedical applications. Therefore, surface modification of NDs with hydrophilic polymers has been extensively investigated over the past few decades. In this study, we synthesize β-CD containing hyperbranched polymer functionalized ND (ND-β-CD-HPG) composites with high water dispersibility via supramolecular chemistry based on the host-guest interactions between β-Cyclodextrin (β-CD) and adamantine (Ad). The hydroxyl groups of NDs first reacted with 1, 1-adamantanecarbonyl chloride to obtain ND-Ad, which was further functionalized with β-CD containing hyperbranched polymers to form the final ND-β-CD-HPG composites. The successful preparation of ND-β-CD-HPG composites was confirmed by several characterization techniques. Furthermore, the loading and release of the anticancer agent doxorubicin hydrochloride (DOX) on ND-β-CD-HPG composites was also examined to explore its potential in drug delivery. When compared with traditional methods of surface modification of NDs, this method was convenient, fast and efficient. We demonstrated that ND-β-CD-HPG composites have great water dispersibility, low toxicity, high drug-loading capacity and controlled drug-release behavior. Based on these characteristics, ND-β-CD-HPG composites are expected to have high potential for biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Langping; Huang, Lei; Xie, Zhiwen; Wang, Xiaofeng; Tang, Baoyin
2008-02-01
The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, T. C.; Zhu, Q.; Buchholz, D. B.
2015-03-01
The work functions of various amorphous and crystalline transparent conducting oxides (TCO5) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCO5, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanismsmore » associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.« less
NASA Astrophysics Data System (ADS)
Yeh, T. C.; Zhu, Q.; Buchholz, D. B.; Martinson, A. B.; Chang, R. P. H.; Mason, T. O.
2015-03-01
The work functions of various amorphous and crystalline transparent conducting oxides (TCOs) were measured using Kelvin probe. The films, made by pulsed laser deposition, exhibited varying work functions dependent on the composition and deposition parameters. Tin oxide showed the largest work functions of the oxides measured, while zinc oxide showed the lowest. Binary and ternary combinations of the basis TCOs showed intermediate work functions dependent on the endpoint components. Amorphous TCOs, important in OPV and other technological applications, exhibited similar work functions to their crystalline counterparts. UV/ozone treatment of TCOs temporarily increased the work function, consistent with proposed defect mechanisms associated with near-surface changes in carrier content and Fermi level. Finally, a method for facile adjustment of the work function of commercial TCOs by atomic layer deposition (ALD) capping layers was presented, illustrated by the growth of zinc oxide layers on commercial crystalline ITO films.
Environmental monitoring of the orbiter payload bay and Orbiter Processing Facilities
NASA Technical Reports Server (NTRS)
Bartelson, D. W.; Johnson, A. M.
1985-01-01
Contamination control in the Orbiter Processing Facility (OPF) is studied. The clean level required in the OPF is generally clean, which means no residue, dirt, debris, or other extraneous contamination; various methods of maintaining this level of cleanliness are described. The monitoring and controlling of the temperature, relative humidity, and air quality in the OPF are examined. Additional modifications to the OPF to improve contamination control are discussed. The methods used to maintain the payload changeout room at a level of visually clean, no particulates are to be detected by the unaided eye, are described. The payload bay (PLB) must sustain the cleanliness level required for the specific Orbiter's mission; the three levels of clean are defined as: (1) standard, (2) sensitive, and (3) high sensitive. The cleaning and inspection verification required to achieve the desired cleanliness level on a variety of PLB surface types are examined.
28 CFR 36.302 - Modifications in policies, practices, or procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Modifications in policies, practices, or procedures. 36.302 Section 36.302 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION ON THE BASIS OF DISABILITY BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Specific Requirements § 36.302 Modifications in policies, practices, o...
NASA Astrophysics Data System (ADS)
Dien To, Thien; Nguyen, Anh Tuan; Nhat Thanh Phan, Khoa; Thu Thi Truong, An; Doan, Tin Chanh Duc; Mau Dang, Chien
2015-12-01
Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES.
Webster, Megan; Lee, Hae Yang; Pepa, Kristi; Winkler, Nathan; Kretzschmar, Ilona; Castaldi, Marco J
2018-03-01
With the world population expected to reach 8.5 billion by 2030, demand for access to electricity and clean water will grow at unprecedented rates. Municipal solid waste combusted at waste to energy (WtE) facilities decreases waste volume and recovers energy, but yields ash as a byproduct, the beneficial uses of which are actively being investigated. Ash is intrinsically hydrophobic, highly oxidized, and exhibits high melting points and low conductivities. The research presented here explores the potential of ash to be used as an electrode material for a microbial fuel cell (MFC). This application requires increased conductivity and hydrophilicity, and a lowered melting point. Three ash samples were investigated. By applying an electric potential in the range 50-125 V across the ash in the presence of water, several key property changes were observed: lower melting point, a color change within the ash, evidence of changes in surface morphologies of ash particles, and completely wetting water-ash contact angles. We analyzed this system using a variety of analytical techniques including sector field inductively coupled plasma mass spectrometry, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and tensiometry. Ability to make such surface modifications and significant property changes could allow ash to become useful in an application such as an electrode material for a MFC.
NASA Astrophysics Data System (ADS)
Ke, Xiang; Zhou, Xiang; Hao, Gaozi; Xiao, Lei; Liu, Jie; Jiang, Wei
2017-06-01
One of the challenges for the application of energetic materials is their energy-retaining capabilities after long-term storage. In this study, we report a facile method to fabricate superhydrophobic Al/Fe2O3 nanothermite film by combining electrophoretic deposition and surface modification technologies. Different concentrations of dispersion solvents and additives are investigated to optimize the deposition parameters. Meanwhile, the dependence of deposition rates on nanoparticle concentrations is also studied. The surface morphology and chemical composition are characterized by field-emission scanning electron microscopy, X-ray diffraction, X-ray energy-dispersive spectroscopy, and X-ray photoelectron spectroscopy. A static contact angles as high as 156° shows the superhydrophobicity of the nanothermite film. Natural and accelerated aging tests are performed and the thermal behavior is analyzed. Thermal analysis shows that the surface modification contributes to significantly improved energy-release characteristics for both fresh and aged samples, which is supposed to be attributed to the preignition reaction between Al2O3 shell and FAS-17. Superhydrophobic Al/Fe2O3 nanothermite film exhibits excellent long-time storage stability with 83.4% of energy left in natural aging test and 60.5% in accelerated aging test. This study is instructive to the practical applications of nanothermites, especially in highly humid environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the initial period of systems operation, from June 2005 through December 2006. In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). Themore » restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the initial period of operation.« less
Centaur Standard Shroud Test in the Space Power Facility
1973-08-21
The Centaur Standard Shroud prepared for a jettison test in the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station. In the late 1960s NASA engineers were planning the ambitious new Viking mission to send two rover vehicles to the surface of Mars. The Viking rovers were the heaviest payloads ever attempted by the Centaur second-stage rocket. Each Viking was over three times the weight of the Atlas-Centaur’s previous heaviest payload. Consequently, NASA engineers sought to mate the Centaur with the more powerful Titan III booster for the launches. General Dynamics created a new version of the Centaur, D-1T, specifically for Titan. The D-1T’s most significant modification was a completely new shroud designed by Lockheed, called the Centaur Standard Shroud. The conical two-piece covering encapsulated the payload to protect it against adverse conditions and improve the aerodynamics as the launch vehicle passed through the atmosphere. The shroud would be jettisoned when the vehicle reached the edge of space. A string of tests were conducted in Plum Brook’s Nuclear Rocket Dynamics and Control Facility (B-3) during 1973 and 1974. The new shroud performed flawlessly during the actual Viking launches in 1975. Viking 1 and 2 operated on the Martian surface until November 1982 and April 1980, respectively.
NASA Astrophysics Data System (ADS)
Kamiya, Hidehiro; Iijima, Motoyuki
2010-08-01
Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.
Surface modification to prevent oxide scale spallation
Stephens, Elizabeth V; Sun, Xin; Liu, Wenning; Stevenson, Jeffry W; Surdoval, Wayne; Khaleel, Mohammad A
2013-07-16
A surface modification to prevent oxide scale spallation is disclosed. The surface modification includes a ferritic stainless steel substrate having a modified surface. A cross-section of the modified surface exhibits a periodic morphology. The periodic morphology does not exceed a critical buckling length, which is equivalent to the length of a wave attribute observed in the cross section periodic morphology. The modified surface can be created using at least one of the following processes: shot peening, surface blasting and surface grinding. A coating can be applied to the modified surface.
NASA Astrophysics Data System (ADS)
Wang, Ping; Lu, Yanggang; Wang, Xuefei; Yu, Huogen
2017-01-01
Highly efficient TiO2 photocatalysts co-modified by amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst (referred to as Ni(OH)2-Ti(IV)/TiO2) were prepared by facile two-step process which was the initial formation of amorphous Ti(IV) on the TiO2 surface via hydrolysis method and the following formation of Ni(OH)2 via precipitation reaction. It was found that the Ni(OH)2-Ti(IV)/TiO2 showed obviously high hydrogen-production performance. When the amount of Ni(OH)2 and Ti(IV) was 1 wt% and 0.1 wt%, respectively, the hydrogen-production rate of the resultant Ni(OH)2-Ti(IV)/TiO2 reached 7280.04 μmol h-1 g-1, which was significantly higher than that of TiO2, Ti(IV)/TiO2 and Ni(OH)2/TiO2 by a factor of 215, 63 and 1.8, respectively. Moreover, it was found that Ni(OH)2-Ti(IV)/TiO2 photocatalyst preserved a steady and highly efficient H2-production performance during repeated tests and also exhibited a high transient photocurrent density. The enhanced hydrogen-production performance of Ni(OH)2-Ti(IV)/TiO2 can be attributed to the synergistic effect of Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst to simultaneously accelerate the interfacial transfer of photogenerated holes and electrons. The present surface modification of dual cocatalysts can be regarded as one of the ideal strategies for the preparation of highly efficient hydrogen-production materials in view of their abundance, low cost and facile method.
1983-09-21
The Department of Health and Human Services (HHS) adds a new section to regulations for making and guaranteeing loans for construction and modernization of hospitals and medical facilities and to regulations for guaranteeing loans for the construction of teaching facilities for health professions personnel. Under these regulations HHS will not approve the modification of the terms of an existing loan guaranteed under Title VI or Title VII of the Public Health Service (PHS) Act if the modification would permit use of the guarantee (or guaranteed loan) as collateral for tax-exempt financing.
NASA Astrophysics Data System (ADS)
Jadhav, Vidya
2015-09-01
Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0> orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 1017 cm-3 were irradiated at 100 MeV Fe7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 1010-1 × 1014 ions cm-2. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet-visible-NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 1013, 5 × 1013 and 1 × 1014 ions cm-2, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 1013 ion cm-2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E1, E1 + Δ and E2 band gaps in all irradiated samples.
Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.
Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang
2011-06-01
Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces.
47 CFR 101.83 - Modification of station license.
Code of Federal Regulations, 2010 CFR
2010-10-01
... that remain co-primary under the provisions of § 101.147(r) may not make modifications to their systems that increase interference to satellite earth stations, or result in a facility that would be more...
47 CFR 101.83 - Modification of station license.
Code of Federal Regulations, 2013 CFR
2013-10-01
... that remain co-primary under the provisions of § 101.147(r) may not make modifications to their systems that increase interference to satellite earth stations, or result in a facility that would be more...
47 CFR 101.83 - Modification of station license.
Code of Federal Regulations, 2014 CFR
2014-10-01
... that remain co-primary under the provisions of § 101.147(r) may not make modifications to their systems that increase interference to satellite earth stations, or result in a facility that would be more...
47 CFR 101.83 - Modification of station license.
Code of Federal Regulations, 2012 CFR
2012-10-01
... that remain co-primary under the provisions of § 101.147(r) may not make modifications to their systems that increase interference to satellite earth stations, or result in a facility that would be more...
47 CFR 101.83 - Modification of station license.
Code of Federal Regulations, 2011 CFR
2011-10-01
... that remain co-primary under the provisions of § 101.147(r) may not make modifications to their systems that increase interference to satellite earth stations, or result in a facility that would be more...
EERE: Alternative Fuels Data Center Home Page
facility safe with a first-of-its-kind CNG Maintenance Facility Modifications Handbook. Find Fleet & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Locate Stations Search
Lu, Qing; Zhang, Weina; Wang, Zhihui; Yu, Guangxia; Yuan, Yuan; Zhou, Yikai
2013-01-07
A facile electrochemical sensor for the determination of nonylphenol (NP) was fabricated in this work. Cetyltrimethylammonium bromide (CTAB), which formed a bilayer on the surface of the carbon paste (CP) electrode, displayed a remarkable enhancement effect for the electrochemical oxidation of NP. Moreover, the oxidation peak current of NP at the CTAB/CP electrode demonstrated a linear relationship with NP concentration, which could be applied in the direct determination of NP. Some experimental parameters were investigated, such as external solution pH, mode and time of accumulation, concentration and modification time of CTAB and so on. Under optimized conditions, a wide linear range from 1.0 × 10(-7) mol·L(-1) to 2.5 × 10(-5) mol·L(-1) was obtained for the sensor, with a low limit of detection at 1.0 × 10(-8) mol·L(-1). Several distinguishing advantages of the as-prepared sensor, including facile fabrication, easy operation, low cost and so on, suggest a great potential for its practical applications.
2003-12-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, KSC employee Gene Peavler works in the wheel area on the orbiter Discovery. The vehicle has undergone Orbiter Major Modifications in the past year. Discovery is scheduled to fly on mission STS-121 to the International Space Station.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 1 2013-10-01 2013-10-01 false What modifications and auxiliary aids and services... modifications and auxiliary aids and services are required at terminals and other landside facilities for... of auxiliary aids and services. To the extent that this information is not available to these...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 1 2014-10-01 2014-10-01 false What modifications and auxiliary aids and services... modifications and auxiliary aids and services are required at terminals and other landside facilities for... of auxiliary aids and services. To the extent that this information is not available to these...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 1 2012-10-01 2012-10-01 false What modifications and auxiliary aids and services... modifications and auxiliary aids and services are required at terminals and other landside facilities for... of auxiliary aids and services. To the extent that this information is not available to these...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakudo, N.; Ikenaga, N.; Ikeda, F.
2011-01-07
Dry sterilization of polymeric material is developed. The technique utilizes the plasma-based ion implantation which is same as for surface modification of polymers. Experimental data for sterilization are obtained by using spores of Bacillus subtilis as samples. On the other hand we previously showed that the surface modification enhanced the gas barrier characteristics of plastic bottles. Comparing the implantation conditions for the sterilization experiment with those for the surface modification, we find that both sterilization and surface modification are simultaneously performed in a certain range of implantation conditions. This implies that the present bottling system for plastic vessels will bemore » simplified and streamlined by excluding the toxic peroxide water that has been used in the traditional sterilization processes.« less
NASA Astrophysics Data System (ADS)
Reza, M. S.; Aqida, S. N.; Ismail, I.
2018-03-01
This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eder, D C; Anderson, R W; Bailey, D S
2009-10-05
The generation of neutron/gamma radiation, electromagnetic pulses (EMP), debris and shrapnel at mega-Joule class laser facilities (NIF and LMJ) impacts experiments conducted at these facilities. The complex 3D numerical codes used to assess these impacts range from an established code that required minor modifications (MCNP - calculates neutron and gamma radiation levels in complex geometries), through a code that required significant modifications to treat new phenomena (EMSolve - calculates EMP from electrons escaping from laser targets), to a new code, ALE-AMR, that is being developed through a joint collaboration between LLNL, CEA, and UC (UCSD, UCLA, and LBL) for debrismore » and shrapnel modelling.« less
NASA Astrophysics Data System (ADS)
Barr, Jeffrey D.; Gressler, William; Sebag, Jacques; Seriche, Jaime; Serrano, Eduardo
2016-07-01
The civil work, site infrastructure and buildings for the summit facility of the Large Synoptic Survey Telescope (LSST) are among the first major elements that need to be designed, bid and constructed to support the subsequent integration of the dome, telescope, optics, camera and supporting systems. As the contracts for those other major subsystems now move forward under the management of the LSST Telescope and Site (T and S) team, there has been inevitable and beneficial evolution in their designs, which has resulted in significant modifications to the facility and infrastructure. The earliest design requirements for the LSST summit facility were first documented in 2005, its contracted full design was initiated in 2010, and construction began in January, 2015. During that entire development period, and extending now roughly halfway through construction, there continue to be necessary modifications to the facility design resulting from the refinement of interfaces to other major elements of the LSST project and now, during construction, due to unanticipated field conditions. Changes from evolving interfaces have principally involved the telescope mount, the dome and mirror handling/coating facilities which have included significant variations in mass, dimensions, heat loads and anchorage conditions. Modifications related to field conditions have included specifying and testing alternative methods of excavation and contending with the lack of competent rock substrate where it was predicted to be. While these and other necessary changes are somewhat specific to the LSST project and site, they also exemplify inherent challenges related to the typical timeline for the design and construction of astronomical observatory support facilities relative to the overall development of the project.
USGS Research Helps the County of Los Angeles Address New Arsenic Standards
Nickles, James
2008-01-01
In January 2006, the U.S. Environmental Protection Agency (USEPA) enacted stringent standards on arsenic in drinking water. The new limitsraised concerns about wells in the Antelope Valley of northern Los Angeles County that had high levels of naturally occurring arsenic. To meet the new standard, Los Angeles County Waterworks District No. 40, part of the Los Angeles County Department of Public Works, considered building arsenic-removal facilities at a cost of nearly $34 million. Instead, the District initiated a well-modification project that was based on the findings of a U.S. Geological Survey (USGS) scientific investigation. Using a well flowmeter and down-hole sampler - invented by USGS scientists ? the study team found that high-arsenic levels were concen-trated in the deepest portions of the wells, 600 feet or more below the land surface. Using this finding, the District implemented a well modification pilot project where the deep portions of five wells were sealed off permanently, while preserving the ability to pump high-quality water from the upper sections. Well screens in the upper sections were first cleaned using an innovative sonic technique to increase the yield of high-quality water. The deeper sections then were sealed using micro-fine cement technology. The District now pumps water that meets the new USEPA standard for arsenic from the affected wells. Arsenic concentrations are lower by an average of 84 percent, while well yield is lower by only 24 percent. The total cost of the modification project for the five wells was $608,580; a one-time net savings of 550 percent over construction of an arsenic-removal facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zonghai; Amine, Khalil; Belharouak, Ilias
An active material for an electrochemical device wherein a surface of the active material is modified by a surface modification agent, wherein the surface modification agent is an organometallic compound.
Manual for Accessibility: [Conference, Meeting, and Lodging Facilities]. Revised.
ERIC Educational Resources Information Center
National Rehabilitation Association, Alexandria, VA.
This illustrated manual and survey forms are designed to be used by organizations, hotel and restaurant associations, interested individuals and others as a guide for selecting accessible conference, meeting, and lodging facilities. The guidelines can also be used with existing facilities to identify specific modifications and accommodations. The…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... emergency operating procedures (EOP), and site survey monitoring that support modification of emergency plan... Power Company; Notice of Consideration of Issuance of Amendment to Facility Operating License, Proposed... Regulatory Commission (the Commission) is considering issuance of an amendment to Facility Operating License...
Modifications to the NRAD Reactor, 1977 to present
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, A.A.; Pruett, D.P.; Heidel, C.C.
1986-01-01
Argonne National Laboratory-West, operated by the University of Chicago, is located near Idaho Falls, ID, on the Idaho National Engineering laboratory Site. ANL-West performs work in support of the Liquid Metal Fast Breeder Reactor Program (LMFBR) sponsored by the United States Department of Energy. The NRAD reactor is located at the Argonne Site within the Hot Fuel Examination Facility/North, a large hot cell facility where both non-destructive and destructive examinations are performed on highly irradiated reactor fuels and materials in support of the LMFBR program. The NRAD facility utilizes a 250-kW TRIGA reactor and is completely dedicated to neutron radiographymore » and the development of radiography techniques. Criticality was first achieved at the NRAD reactor in October of 1977. Since that time, a number of modifications have been implemented to improve operational efficiency and radiography production. This paper describes the modifications and changes that significantly improved operational efficiency and reliability of the reactor and the essential auxiliary reactor systems.« less
Surface modification of porous titanium with rice husk as space holder
NASA Astrophysics Data System (ADS)
Wang, Xinsheng; Hou, Junjian; Liu, Yanpei
2018-06-01
Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.
Al decorated ZnO thin-film photoanode for SPR-enhanced photoelectrochemical water splitting
NASA Astrophysics Data System (ADS)
Li, Hongxia; Li, Xin; Dong, Wei; Xi, Junhua; Wu, Xin
2018-06-01
Photoelectrochemical (PEC) water splitting has been considered to be a promising approach to ease the energy and environmental crisis. Herein, Al decorated ZnO thin films are successfully achieved through a facile dc magnetron-sputtering method followed with Al evaporation for further enhanced PEC performance. The Al/ZnO thin film with 60 s Al evaporating time exhibits the highest photocurrent density under AM1.5G and visible light irradiation, which are more than 5 and 3 times as the pure ZnO film, respectively. Such surface modification by Al not only enlarges the visible light absorption based on surface plasmonic resonance effect, but facilitates the charge separation and transportation at the electrode/electrolyte interface. Finally, a possible mechanism is proposed for the photocatalytic activity enhancement of Al/ZnO thin film photoanode.
NASA Astrophysics Data System (ADS)
Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei
2015-05-01
A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.
NASA Astrophysics Data System (ADS)
Urbaniak, Daniel J.
2004-11-01
In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens via a burst effect. Improved surface characterization methods were another aspect of this research. New nanomechanical testing techniques were developed and used to evaluate the viscoelastic surface mechanical properties of low modulus surface-modified specimens. Dynamic nanoindentation characterization techniques were designed to measure the storage modulus and loss modulus of compliant viscoelastic substrate surfaces. The results of these experiments were compared with modulus data obtained by conventional dynamic mechanical spectroscopy. Nanoscratch testing methods were also developed that qualitatively compared the abrasion resistance of surface-modified substrates. (Abstract shortened by UMI.)
Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.
Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal
2014-04-01
This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.
Advances in the surface modification techniques of bone-related implants for last 10 years
Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop
2014-01-01
At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626
Surface Development and Test Facility (SDTF) New R&D Simulator for Airport Operations
NASA Technical Reports Server (NTRS)
Dorighi, Nancy S.
1997-01-01
A new simulator, the Surface Development and Test Facility (SDTF) is under construction at the NASA Ames Research Center in Mountain View, California. Jointly funded by the FAA (Federal Aviation Administration) and NASA, the SDTF will be a testbed for airport surface automation technologies of the future. The SDTF will be operational in the third quarter of 1998. The SDTF will combine a virtual tower with simulated ground operations to allow evaluation of new technologies for safety, effectiveness, reliability, and cost benefit. The full-scale level V tower will provide a seamless 360 degree high resolution out-the-window view, and a full complement of ATC (air traffic control) controller positions. The imaging system will be generated by two fully-configured Silicon Graphics Onyx Infinite Reality computers, and will support surface movement of up to 200 aircraft and ground vehicles. The controller positions, displays and consoles can be completely reconfigured to match the unique layout of any individual airport tower. Dedicated areas will accommodate pseudo-airport ramp controllers, pseudo-airport operators, and pseudo-pilots. Up to 33 total personnel positions will be able to participate in simultaneous operational scenarios. A realistic voice communication infrastructure will emulate the intercom and telephone communications of a real airport tower. Multi-channel audio and video recording and a sophisticated data acquisition system will support a wide variety of research and development areas, such as evaluation of automation tools for surface operations, human factors studies, integration of terminal area and airport technologies, and studies of potential airport physical and procedural modifications.
Single-step process to improve the mechanical properties of carbon nanotube yarn.
Evora, Maria Cecilia; Lu, Xinyi; Hiremath, Nitilaksha; Kang, Nam-Goo; Hong, Kunlun; Uribe, Roberto; Bhat, Gajanan; Mays, Jimmy
2018-01-01
Carbon nanotube (CNT) yarns exhibit low tensile strength compared to conventional high-performance carbon fibers due to the facile sliding of CNTs past one another. Electron beam (e-beam) irradiation was employed for in a single-step surface modification of CNTs to improve the mechanical properties of this material. To this end, CNT yarns were simultaneously functionalized and crosslinked using acrylic acid (AA) and acrylonitrile (AN) in an e-beam irradiation process. The chemical modification of CNT yarns was confirmed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). The best improvement in mechanical properties was achieved on a sample treated with an aqueous solution of AA and subsequent irradiation. CNT yarn treatment with AA enhanced the strength (444.5 ± 68.4 MPa) by more than 75% and the modulus (21.5 ± 0.6 GPa) by more than 144% as compared to untreated CNT yarn (strength 251 ± 26.5 MPa and modulus 8.8 ± 1.2 GPa).
Single-step process to improve the mechanical properties of carbon nanotube yarn
Lu, Xinyi; Hiremath, Nitilaksha; Kang, Nam-Goo; Hong, Kunlun; Uribe, Roberto; Bhat, Gajanan; Mays, Jimmy
2018-01-01
Carbon nanotube (CNT) yarns exhibit low tensile strength compared to conventional high-performance carbon fibers due to the facile sliding of CNTs past one another. Electron beam (e-beam) irradiation was employed for in a single-step surface modification of CNTs to improve the mechanical properties of this material. To this end, CNT yarns were simultaneously functionalized and crosslinked using acrylic acid (AA) and acrylonitrile (AN) in an e-beam irradiation process. The chemical modification of CNT yarns was confirmed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). The best improvement in mechanical properties was achieved on a sample treated with an aqueous solution of AA and subsequent irradiation. CNT yarn treatment with AA enhanced the strength (444.5 ± 68.4 MPa) by more than 75% and the modulus (21.5 ± 0.6 GPa) by more than 144% as compared to untreated CNT yarn (strength 251 ± 26.5 MPa and modulus 8.8 ± 1.2 GPa). PMID:29527431
10 CFR 55.61 - Modification and revocation of licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... operation of the facility. (5) For the sale, use or possession of illegal drugs, or refusal to participate in the facility drug and alcohol testing program, or a confirmed positive test for drugs, drug...
10 CFR 55.61 - Modification and revocation of licenses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... operation of the facility. (5) For the sale, use or possession of illegal drugs, or refusal to participate in the facility drug and alcohol testing program, or a confirmed positive test for drugs, drug...
10 CFR 55.61 - Modification and revocation of licenses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... operation of the facility. (5) For the sale, use or possession of illegal drugs, or refusal to participate in the facility drug and alcohol testing program, or a confirmed positive test for drugs, drug...
10 CFR 55.61 - Modification and revocation of licenses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... operation of the facility. (5) For the sale, use or possession of illegal drugs, or refusal to participate in the facility drug and alcohol testing program, or a confirmed positive test for drugs, drug...
10 CFR 55.61 - Modification and revocation of licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... operation of the facility. (5) For the sale, use or possession of illegal drugs, or refusal to participate in the facility drug and alcohol testing program, or a confirmed positive test for drugs, drug...
Microscale surface modifications for heat transfer enhancement.
Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C
2013-10-09
In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.
Plasma assisted surface coating/modification processes - An emerging technology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1987-01-01
A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.
Plasma assisted surface coating/modification processes: An emerging technology
NASA Technical Reports Server (NTRS)
Spalvins, T.
1986-01-01
A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.
40 CFR 147.2927 - Permit modification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... are substantial changes to the facility or activity which occurred after permit issuance that justify... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Permit modification. 147.2927 Section 147.2927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2008-01-01
Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2007-01-01
Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjith, K. S.; Kumar, D. Ranjith; Kumar, R. T. Rajendra, E-mail: rtrkumar@buc.edu.in
2015-06-24
We demonstrated the development of coupled semiconductor in the form of hybrid heterostructures for significant advancement in catalytic functional materials. In this article, we report the preparation of vertically aligned core shell ZnO-EuS nanorod photocatalyst arrays by a simple chemical solution process followed by sulfudation process. The XRD pattern confirmed formation of the hexagonal wurtzite structure of ZnO and cubic nature of the EuS. Cross sectional FESEM images show vertical rod array structure, and the size of the nanorods ranges from 80 to 120 nm. UV-Vis DRS spectra showed that the optical absorption of ZnO was significantly enhanced to the visiblemore » region by modification with EuS surfaces. TEM study confirmed that the surface of ZnO was drastically improved by the modification with EuS nanoparticle. The catalytic activity of EuS−ZnO core shell nanorod arrays were evaluated by the photodegradation of Methylene Blue (MB) dye under visible irradiation. The results revealed that the photocatalytic activity of EuS−ZnO was much higher than that of ZnO under natural sunlight. EuS−ZnO was found to be stable and reusable without appreciable loss of catalytic activity up to four consecutive cycles.« less
Shang, Yanwei; Si, Yang; Raza, Aikifa; Yang, Liping; Mao, Xue; Ding, Bin; Yu, Jianyong
2012-12-21
Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO(2) NPs). By employing the F-PBZ/SiO(2) NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N(2) adsorption method has confirmed the major contribution of SiO(2) NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification.
Renovation of the hot press in the Plutonium Experimental Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.W.; Nelson, G.H.
1990-03-05
The Plutonium Experimental Facility (PEF) will be used to develop a new fuel pellet fabrication process and to evaluate equipment upgrades. The facility was used from 1978 until 1982 to optimize the parameters for fuel pellet production using a process which was developed at Los Alamos National Laboratory. The PEF was shutdown and essentially abandoned until mid-1987 when the facility renovations were initiated by the Actinide Technology Section (ATS) of SRL. A major portion of the renovation work was related to the restart of the hot press system. This report describes the renovations and modifications which were required to restartmore » the PEF hot press. The primary purpose of documenting this work is to help provide a basis for Separations to determine the best method of renovating the hot press in the Plutonium Fuel Fabrication (PuFF) facility. This report also includes several SRL recommendations concerning the renovation and modification of the PuFF hot press. 4 refs.« less
Qu, Na; Li, Feng; Shao, Bo; Shao, Jie; Zhai, Guijin; Wang, Fuyi; Zhu, Ben-Zhan
2016-10-17
The phenolic hydroxyl group of tyrosine residue plays a crucial role in the structure and function of many proteins. However, little study has been reported about its modification by chemical agents under physiological conditions. In this study, we found, unexpectedly, that the phenolic hydroxyl group of tyrosine can be rapidly and efficiently modified by tetrafluoro-1,4-benzoquinone and other polyhalogenated quinones, which are the major genotoxic and carcinogenic quinoid metabolites of polyhalogenated aromatic compounds. The modification was found to be mainly due to the formation of a variety of fluoroquinone-O-tyrosine conjugates and their hydroxylated derivatives via nucleophilic substitution pathway. Analogous modifications were observed for tyrosine-containing peptides. Further studies showed that the blockade of the reactive phenolic hydroxyl group of tyrosine in the substrate peptide, even by very low concentration of tetrafluoro-1,4-benzoquinone, can prevent the kinase catalyzed tyrosine phosphorylation. This is the first report showing the exceptionally facile chemical modification of the phenolic hydroxyl group of tyrosine by polyhalogenated quinones under normal physiological conditions, which may have potential biological and toxicological implications.
40 CFR 270.42 - Permit modification at the request of the permittee.
Code of Federal Regulations, 2014 CFR
2014-07-01
... storage in tanks or containers, or in containment buildings in accordance with 40 CFR part 268; (C) To...) Performance Track member facilities. The following procedures apply to Performance Track member facilities... Track member facilities must have complied with the requirements of § 264.15(b)(5) in order to request a...
40 CFR 270.42 - Permit modification at the request of the permittee.
Code of Federal Regulations, 2011 CFR
2011-07-01
... storage in tanks or containers, or in containment buildings in accordance with 40 CFR part 268; (C) To...) Performance Track member facilities. The following procedures apply to Performance Track member facilities... Track member facilities must have complied with the requirements of § 264.15(b)(5) in order to request a...
40 CFR 270.42 - Permit modification at the request of the permittee.
Code of Federal Regulations, 2013 CFR
2013-07-01
... storage in tanks or containers, or in containment buildings in accordance with 40 CFR part 268; (C) To...) Performance Track member facilities. The following procedures apply to Performance Track member facilities... Track member facilities must have complied with the requirements of § 264.15(b)(5) in order to request a...
40 CFR 270.42 - Permit modification at the request of the permittee.
Code of Federal Regulations, 2012 CFR
2012-07-01
... storage in tanks or containers, or in containment buildings in accordance with 40 CFR part 268; (C) To...) Performance Track member facilities. The following procedures apply to Performance Track member facilities... Track member facilities must have complied with the requirements of § 264.15(b)(5) in order to request a...
NASA Technical Reports Server (NTRS)
Wieland, P. O.; Roman, M. C.; Miller, L.
2007-01-01
On board the International Space Station, heat generated by the crew and equipment is removed by the internal active thermal control system to maintain a comfortable working environment and prevent equipment overheating. Test facilities simulating the internal active thermal control system (IATCS) were constructed at the Marshall Space Flight Center as part of the sustaining engineering activities to address concerns related to operational issues, equipment capability, and reliability. A full-scale functional simulator of the Destiny lab module IATCS was constructed and activated prior to launch of Destiny in 2001. This facility simulates the flow and thermal characteristics of the flight system and has a similar control interface. A subscale simulator was built, and activated in 2000, with special attention to materials and proportions of wetted surfaces to address issues related to changes in fluid chemistry, material corrosion, and microbial activity. The flight issues that have arisen and the tests performed using the simulator facilities are discussed in detail. In addition, other test facilities at the MSFC have been used to perform specific tests related to IATCS issues. Future testing is discussed as well as potential modifications to the simulators to enhance their utility.
NASA Astrophysics Data System (ADS)
Chakradhar, R. P. S.; Kumar, V. Dinesh; Rao, J. L.; Basu, Bharathibai J.
2011-08-01
Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63 mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ˜108°, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155° and less than 5° respectively. The surface properties such as surface free energy ( γp), interfacial free energy ( γpw), and the adhesive work ( Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.
Self-assembly of large-scale crack-free gold nanoparticle films using a ‘drain-to-deposit’ strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Guang; Hallinan, Daniel T.
2016-04-26
Gold nanoparticles are widely studied due to the ease of controlled synthesis, facile surface modification, and interesting physical properties. However, a technique for depositing large-area, crack-free monolayers on solid substrates is lacking. Herein is presented a method for accomplishing this. Spherical gold nanoparticles were synthesized as an aqueous dispersion. Assembly into monolayers and ligand exchange occurred simultaneously at an organic/aqueous interface. Then the monolayer film was deposited onto arbitrary solid substrates by slowly pumping out the lower, aqueous phase. This allowed the monolayer film (and liquid–liquid interface) to descend without significant disturbance, eventually reaching substrates contained in the aqueous phase.more » The resulting macroscopic quality of the films was found to be superior to films transferred by Langmuir techniques. The surface plasmon resonance and Raman enhancement of the films were evaluated and found to be uniform across the surface of each film.« less
Synthesis of Monodispersed Ag-Doped Bioactive Glass Nanoparticles via Surface Modification
Kozon, Dominika; Zheng, Kai; Boccardi, Elena; Liu, Yufang; Liverani, Liliana; Boccaccini, Aldo R.
2016-01-01
Monodispersed spherical Ag-doped bioactive glass nanoparticles (Ag-BGNs) were synthesized by a modified Stöber method combined with surface modification. The surface modification was carried out at 25, 60, and 80 °C, respectively, to investigate the influence of processing temperature on particle properties. Energy-dispersive X-ray spectroscopy (EDS) results indicated that higher temperatures facilitate the incorporation of Ag. Hydroxyapatite (HA) formation on Ag-BGNs was detected upon immersion of the particles in simulated body fluid for 7 days, which indicated that Ag-BGNs maintained high bioactivity after surface modification. The conducted antibacterial assay confirmed that Ag-BGNs had an antibacterial effect on E. coli. The above results thereby suggest that surface modification is an effective way to incorporate Ag into BGNs and that the modified BGNs can remain monodispersed as well as exhibit bioactivity and antibacterial capability for biomedical applications. PMID:28773349
Covalent Surface Modifications of Carbon Nanotubes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavia Sanders, Adriana; O'Bryan, Greg
A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.
NASA Astrophysics Data System (ADS)
Daima, Hemant K.; Selvakannan, P. R.; Kandjani, Ahmad E.; Shukla, Ravi; Bhargava, Suresh K.; Bansal, Vipul
2013-12-01
We illustrate a new strategy to improve the antibacterial potential of silver nanoparticles (AgNPs) by their surface modification with the surface corona of biologically active polyoxometalates (POMs). The stable POM surface corona was achieved by utilising zwitterionic tyrosine amino acid as a pH-switchable reducing and capping agent of AgNPs. The general applicability of this approach was demonstrated by developing surface coronas of phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) around AgNPs. Our investigations on Gram negative bacterium Escherichia coli demonstrate that in conjugation with AgNPs, the surface corona of POMs enhances the physical damage to the bacterial cells due to synergistic antibacterial action of AgNPs and POMs, and the ability of tyrosine-reduced AgNPs (AgNPsY) to act as an excellent carrier and stabiliser for the POMs. The further extension of this study towards Gram positive bacterium Staphylococcus albus showed a similar toxicity pattern, whereas these nanomaterials were found to be biocompatible for PC3 epithelial mammalian cells, suggesting the potential of these materials towards specific antimicrobial targeting for topical wound healing applications. The outcomes of this work show that facile tailorability of nanostructured surfaces may play a considerable role in controlling the biological activities of different nanomaterials.We illustrate a new strategy to improve the antibacterial potential of silver nanoparticles (AgNPs) by their surface modification with the surface corona of biologically active polyoxometalates (POMs). The stable POM surface corona was achieved by utilising zwitterionic tyrosine amino acid as a pH-switchable reducing and capping agent of AgNPs. The general applicability of this approach was demonstrated by developing surface coronas of phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) around AgNPs. Our investigations on Gram negative bacterium Escherichia coli demonstrate that in conjugation with AgNPs, the surface corona of POMs enhances the physical damage to the bacterial cells due to synergistic antibacterial action of AgNPs and POMs, and the ability of tyrosine-reduced AgNPs (AgNPsY) to act as an excellent carrier and stabiliser for the POMs. The further extension of this study towards Gram positive bacterium Staphylococcus albus showed a similar toxicity pattern, whereas these nanomaterials were found to be biocompatible for PC3 epithelial mammalian cells, suggesting the potential of these materials towards specific antimicrobial targeting for topical wound healing applications. The outcomes of this work show that facile tailorability of nanostructured surfaces may play a considerable role in controlling the biological activities of different nanomaterials. Electronic supplementary information (ESI) available: XRD analysis (Fig. S1); cytotoxicity profile (Fig. S2) and optical images of human PC3 cells (Fig. S3) treated with nanomaterials; FTIR vibrational modes arising from different materials (Table S1); and relative concentrations of Ag and POMs present in modified AgNPs used for biological studies (Table S2). See DOI: 10.1039/c3nr03806h
Laser modification of macroscopic properties of metal surface layer
NASA Astrophysics Data System (ADS)
Kostrubiec, Franciszek
1995-03-01
Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
28 CFR 91.3 - General eligibility requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...
30 CFR 285.703 - What reports must I submit for project modifications and repairs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Facility Design, Fabrication, and Installation Reports § 285.703 What reports must I submit for...
NASA Technical Reports Server (NTRS)
Kegley, Jeffrey; Haight, Harlan; Hogue, William; Carpenter, Jay; Siler, Richard; Wright, Ernie; Eng, Ron; Baker, Mark; McCracken, Jeff
2005-01-01
Marshall Space Flight Center's X-ray & Cryogenic Test Facility (XRCF) has been performing optical wavefront testing and thermal structural deformation testing at subliquid nitrogen cryogenic temperatures since 1999. Recent modifications have been made to the facility in support of the James Webb Space Telescope (JWST) program. The test article envelope and the chamber's refrigeration capacity have both been increased. A new larger helium-cooled enclosure has been added to the existing enclosure increasing both the cross-sectional area and the length. This new enclosure is capable of supporting six JWST Primary Mirror Segment Assemblies. A second helium refrigeration system has been installed essentially doubling the cooling capacity available at the facility. Modifications have also been made to the optical instrumentation area. Improved access is now available for both the installation and operation of optical instrumentation outside the vacuum chamber. Chamber configuration, specifications, and performance data will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglund, T.; Ranney, J.T.; Babb, C.L.
2000-10-01
The initial design criteria of the MSW to ethanol facility have been completed along with preliminary site identification and layouts for the processing facility. These items are the first step in evaluating the feasibility of this co-located facility. Pilot facility design and modification are underway for the production and dewatering of the lignin fuel. Major process equipment identification has been completed and several key unit operations will be accomplished on rental equipment. Equipment not available for rental or at TVA has been ordered and facility modification and shakedown will begin in October. The study of the interface and resulting impactsmore » on the TVA Colbert facility are underway. The TVA Colbert fossil plant is fully capable of providing a reliable steam supply for the proposed Masada waste processing facility. The preferred supply location in the Colbert steam cycle has been identified as have possible steam pipeline routes to the Colbert boundary. Additional analysis is underway to fully predict the impact of the steam supply on Colbert plant performance and to select a final steam pipeline route.« less
49 CFR Appendix A to Part 37 - Modifications to Standards for Accessible Transportation Facilities
Code of Federal Regulations, 2010 CFR
2010-10-01
... steps may have to travel compared to the general public. 406.8—Modification to 406 of Appendix D to 36... rail, commuter rail, and intercity rail systems where it is not operationally or structurally feasible...
NASA Astrophysics Data System (ADS)
Zhang, Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu, Yaqin
2009-07-01
In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3O 4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C dbnd O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3O 4 hybrids was discussed.
Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo
2012-10-01
Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fabrication and surface-modification of implantable microprobes for neuroscience studies
NASA Astrophysics Data System (ADS)
Cao, H.; Nguyen, C. M.; Chiao, J. C.
2012-06-01
In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.
Root Surface Bio-modification with Erbium Lasers- A Myth or a Reality??
Lavu, Vamsi; Sundaram, Subramoniam; Sabarish, Ram; Rao, Suresh Ranga
2015-01-01
The objective of this literature review was to critically review the evidence available in the literature regarding the expediency of erbium family of lasers for root bio modification as a part of periodontal therapy. The literature search was performed on the Pubmed using MeSH words such as "lasers/therapeutic use, scaling, dental calculus, tooth root/anatomy and histology, ultrasonic therapy". The studies were screened and were grouped as follows: those evaluating a) efficacy for calculus removal with the Erbium family of laser b) root surface changes following Er YAG and Er Cr YSGG application c) comparative studies of the Er YAG, Er Cr YSGG lasers versus conventional methods of root surface modification d) Bio compatibility of root surface following Erbium laser treatment e) Studies on the combined efficacy of laser root modification with conventional methods towards root surface bio-modification f) Studies on effectiveness of root surface bio-modification prior to root coverage procedures. In conclusion, the erbium family has a proven anti-bacterial action, predictable calculus removal, minimal root substance removal, and appears to favor cell attachment. The Erbium family of lasers appears to be a useful adjunct for the management of periodontal disease. PMID:25713635
A Modular Approach To Study Protein Adsorption on Surface Modified Hydroxyapatite.
Ozhukil Kollath, Vinayaraj; Van den Broeck, Freya; Fehér, Krisztina; Martins, José C; Luyten, Jan; Traina, Karl; Mullens, Steven; Cloots, Rudi
2015-07-13
Biocompatible inorganic nano- and microcarriers can be suitable candidates for protein delivery. This study demonstrates facile methods of functionalization by using nanoscale linker molecules to change the protein adsorption capacity of hydroxyapatite (HA) powder. The adsorption capacity of bovine serum albumin as a model protein has been studied with respect to the surface modifications. The selected linker molecules (lysine, arginine, and phosphoserine) can influence the adsorption capacity by changing the electrostatic nature of the HA surface. Qualitative and quantitative analyses of linker-molecule interactions with the HA surface have been performed by using NMR spectroscopy, zeta-potential measurements, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Additionally, correlations to theoretical isotherm models have been calculated with respect to Langmuir and Freundlich isotherms. Lysine and arginine increased the protein adsorption, whereas phosphoserine reduced the protein adsorption. The results show that the adsorption capacity can be controlled with different functionalization, depending on the protein-carrier selections under consideration. The scientific knowledge acquired from this study can be applied in various biotechnological applications that involve biomolecule-inorganic material interfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoluminescence of CuInS2 nanocrystals: effect of surface modification
NASA Astrophysics Data System (ADS)
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin
2011-09-01
We have synthesized highly luminescent Cu-In-S(CIS) nanocrystals (NCs) by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS NCs with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS NCs was above 50%, which is 10 times higher than the initial QY of CIS NCs before surface modification (QY=3%). Detailed study on the luminescence mechanism implies that etching of the surface of NCs by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are known to be major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S NCs with less toxic and highly stable precursors. Investigation with the timeand the temperature-dependent photoluminescence showed that the trap related emission was minimized by surface modification and the donor-acceptor pair recombination was enhanced by controlling copper stoichiometry.xb
30 CFR 71.403 - Waiver of surface facilities requirements; posting of waiver.
Code of Federal Regulations, 2014 CFR
2014-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.403 Waiver of surface facilities requirements; posting of... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Waiver of surface facilities requirements...
30 CFR 71.403 - Waiver of surface facilities requirements; posting of waiver.
Code of Federal Regulations, 2012 CFR
2012-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.403 Waiver of surface facilities requirements; posting of... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Waiver of surface facilities requirements...
30 CFR 71.403 - Waiver of surface facilities requirements; posting of waiver.
Code of Federal Regulations, 2013 CFR
2013-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.403 Waiver of surface facilities requirements; posting of... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Waiver of surface facilities requirements...
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Application for waiver of surface facilities...
30 CFR 71.403 - Waiver of surface facilities requirements; posting of waiver.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.403 Waiver of surface facilities requirements; posting of... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Waiver of surface facilities requirements...
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Application for waiver of surface facilities...
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Application for waiver of surface facilities...
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Application for waiver of surface facilities...
22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 ...
22. Photocopy of engineering drawing. MODIFICATION TO LAUNCH COMPLEX 17 MOBILE SERVICE TOWER 'A'-MECHANICAL, PROPULSION DRIVE TRUCKS AND KEY PLAN, MARCH 1967. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
2004-01-22
KENNEDY SPACE CENTER, FLA. - Standing on a workstand (at left) in the Orbiter Processing Facility is Stephanie Stilson, NASA vehicle manager for Discovery. She is being filmed for a special feature on the KSC Web about the recent Orbiter Major Modification period on Discovery, which included inspection, modifications and reservicing of most systems onboard, plus installation of a Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.” The orbiter is now being prepared for eventual launch on a future mission.
2004-01-22
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Stephanie Stilson, NASA vehicle manager for Discovery, stands in front of a leading edge on the wing of Discovery. She is being filmed for a special feature on the KSC Web about the recent Orbiter Major Modification period on Discovery, which included inspection, modifications and reservicing of most systems onboard, plus installation of a Multifunction Electronic Display Subsystem (MEDS) - a state-of-the-art “glass cockpit.” The orbiter is now being prepared for eventual launch on a future mission.
A behavior modification training program for staff working with drug addicts.
Cheek, F E; Tomarchio, T; Burtle, V; Moss, H; McConnell, D
1975-01-01
This paper described a Behavior Modification Training Program, emphasizing self-control, for staff working with drug addicts. The program, which is primarily geared toward the training of paraprofessionals, takes place in ten 1-1/2 hour sessions and includes an overview of behavior modification as well as instruction in techniques of relaxation, desensitization, self-image improvement, behavior analysis, behavior control, assertive training, rational thinking, and how to set up and run similar behavior modification training programs for staff and patients. Since this training began at the New Jersey Neuropsychiatric Institute in November 1971, a total of 898 staff members, mostly paraprofessionals working with addicts, alcoholics, mentally ill patients, and inmates, including 53 from our own institution, 576 persons from other facilities in New Jersey, and 269 from facilities in other states, have been trained, while 2,021 patients have been trained in similar programs. Most of this training has been accomplished by paraprofessionals. Preliminary evaluation data have been promising and the response of participants enthusiastic.
NASA Technical Reports Server (NTRS)
Swenson, B. L.; Edsinger, L. E.
1977-01-01
The preliminary feasibility of remote high-resolution infrared imagery of the space shuttle orbiter lower surface during entry to obtain accurate measurements of aerodynamic heat transfer to that vehicle was examined. In general, it was determined that such such images can be taken from an existing aircraft/telescope system (the C-141 AIRO) with a minimum modification or addition of systems using available technology. These images will have a spatial resolution of about 0.3 m and a temperature resolution much better than 2.5 percent. The data from these images will be at conditions and at a scale not reproducible in ground based facilities and should aid in the reduction of the prudent factors of safety required to account for phenomenological uncertainties on the thermal protection system design. Principal phenomena to be observed include laminar heating, boundary-layer transition, turbulent heating, surface catalysis, and flow separation and reattachment.
Polymer-metal hybrid transparent electrodes for flexible electronics
NASA Astrophysics Data System (ADS)
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-03-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq-1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides.
Polymer-metal hybrid transparent electrodes for flexible electronics
Kang, Hongkyu; Jung, Suhyun; Jeong, Soyeong; Kim, Geunjin; Lee, Kwanghee
2015-01-01
Despite nearly two decades of research, the absence of ideal flexible and transparent electrodes has been the largest obstacle in realizing flexible and printable electronics for future technologies. Here we report the fabrication of ‘polymer-metal hybrid electrodes’ with high-performance properties, including a bending radius <1 mm, a visible-range transmittance>95% and a sheet resistance <10 Ω sq−1. These features arise from a surface modification of the plastic substrates using an amine-containing nonconjugated polyelectrolyte, which provides ideal metal-nucleation sites with a surface-density on the atomic scale, in combination with the successive deposition of a facile anti-reflective coating using a conducting polymer. The hybrid electrodes are fully functional as universal electrodes for high-end flexible electronic applications, such as polymer solar cells that exhibit a high power conversion efficiency of 10% and polymer light-emitting diodes that can outperform those based on transparent conducting oxides. PMID:25790133
A Phase-Separation Route to Synthesize Porous CNTs with Excellent Stability for Na+ Storage.
Chen, Zhi; Wang, Taihong; Zhang, Ming; Cao, Guozhong
2017-06-01
Porous carbon nanotubes (CNTs) are obtained by removing MoO 2 nanoparticles from MoO 2 @C core@shell nanofibers which are synthesized by phase-segregation via a single-needle electrospinning method. The specific surface area of porous CNTs is 502.9 m 2 g -1 , and many oxygen-containing functional groups (COH, CO) are present. As anodes for sodium-ion batteries, the porous CNT electrode displays excellent rate performance and cycling stability (110 mA h g -1 after 1200 cycles at 5 A g -1 ). Those high properties can be attributed to the porous structure and surface modification to steadily store Na + with high capacity. The work provides a facile and broadly applicable way to fabricate the porous CNTs and their composites for batteries, catalysts, and fuel cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo
2018-03-01
Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.
NASA Astrophysics Data System (ADS)
Yuan, Conghui; Xu, Yiting; Luo, Weiang; Zeng, Birong; Qiu, Wuhui; Liu, Jie; Huang, Huiling; Dai, Lizong
2012-05-01
Core-shell nanospheres (CSNSs) with hydrophobic cores and hydrophilic shells were fabricated via a simple mini-emulsion polymerization for the stabilization of platinum nanoparticles (Pt-NPs). The CSNSs showed extremely high loading capacity of Pt-NPs (the largest loading amount of the Pt-NPs was about 49.2 wt%). Importantly, the Pt-NPs/CSNSs nanocomposites had unexpected stability in aqueous solution. DLS results revealed that the CSNSs loaded with Pt-NPs exhibited almost no aggregation after standing for a long time . However, the Pt-NPs immobilized on the CSNSs were not straitlaced: they could transport and redistribute between CSNSs freely when the environmental temperature was higher than the melting point of the CSNS shell. Owing to their excellent stability in aqueous solution, the surface of the Pt-NPs/CSNSs nanocomposites could be further decorated easily. For example, polyaniline (PANI)-coated Pt-NPs/CSNSs, nickel (Ni)-coated Pt-NPs/CSNSs and PANI/Pt-NPs dual-layer hollow nanospheres were facilely fabricated from the Pt-NPs/CSNS nanocomposites.
Liu, Kang; Bu, Yanru; Zheng, Yuanhui; Jiang, Xuchuan; Yu, Aibing; Wang, Huanting
2017-03-08
Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Barakat, Hala; Saunier, Johanna; Aymes Chodur, Caroline; Aubert, Pascal; Vigneron, Jackie; Etcheberry, Arnaud; Yagoubi, Najet
2013-11-01
A cyclo-olefin copolymer was subjected to an e-beam ionizing treatment. Two doses were studied: one corresponding to the recommended dose for the sterilization of pharmaceutical packaging (25 kGy), and a greater one to enhance the modifications caused by the treatment (150 kGy). The surface modifications were studied by X-ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM). The roughness and the wettability of the surface were enhanced by the treatment. The consequences of the surface modifications on the drug interaction with the polymer were studied. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Fenske, Richard J.
1982-01-01
Physical educators and correctional administrators need to reassess the types of programs and facilities needed that will be advantageous to the inmate while modifying the program to complement the goals of the correctional institution. (JOW)
Recent development of nanoparticles for molecular imaging
NASA Astrophysics Data System (ADS)
Kim, Jonghoon; Lee, Nohyun; Hyeon, Taeghwan
2017-10-01
Molecular imaging enables us to non-invasively visualize cellular functions and biological processes in living subjects, allowing accurate diagnosis of diseases at early stages. For successful molecular imaging, a suitable contrast agent with high sensitivity is required. To date, various nanoparticles have been developed as contrast agents for medical imaging modalities. In comparison with conventional probes, nanoparticles offer several advantages, including controllable physical properties, facile surface modification and long circulation time. In addition, they can be integrated with various combinations for multimodal imaging and therapy. In this opinion piece, we highlight recent advances and future perspectives of nanomaterials for molecular imaging. This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru
2018-05-01
Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.
New electron beam facility for R&D and production at acsion industries
NASA Astrophysics Data System (ADS)
Lopata, V. J.; Barnard, J. W.; Saunders, C. B.; Stepanik, T. M.
2003-08-01
Since its incorporation in 1998, Acsion Industries Inc. has been working with clients to develop industrial uses of electron processing for improving products and manufacturing processes. Acsion has promoted this technology for sterilizing medical devices and pharmaceuticals, for treating wood pulp in the viscose/rayon process, for reducing pathogens in food and animal feed, and for curing advanced composites for the aerospace industry. As a result of significant developments in its composite curing programs, Acsion has recently made major modifications to its facility to increase its production and R&D capabilities. These modifications are described in this paper.
Daima, Hemant K; Selvakannan, P R; Kandjani, Ahmad E; Shukla, Ravi; Bhargava, Suresh K; Bansal, Vipul
2014-01-21
We illustrate a new strategy to improve the antibacterial potential of silver nanoparticles (AgNPs) by their surface modification with the surface corona of biologically active polyoxometalates (POMs). The stable POM surface corona was achieved by utilising zwitterionic tyrosine amino acid as a pH-switchable reducing and capping agent of AgNPs. The general applicability of this approach was demonstrated by developing surface coronas of phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) around AgNPs. Our investigations on Gram negative bacterium Escherichia coli demonstrate that in conjugation with AgNPs, the surface corona of POMs enhances the physical damage to the bacterial cells due to synergistic antibacterial action of AgNPs and POMs, and the ability of tyrosine-reduced AgNPs (AgNPs(Y)) to act as an excellent carrier and stabiliser for the POMs. The further extension of this study towards Gram positive bacterium Staphylococcus albus showed a similar toxicity pattern, whereas these nanomaterials were found to be biocompatible for PC3 epithelial mammalian cells, suggesting the potential of these materials towards specific antimicrobial targeting for topical wound healing applications. The outcomes of this work show that facile tailorability of nanostructured surfaces may play a considerable role in controlling the biological activities of different nanomaterials.
PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.
Nady, Norhan
2016-04-18
A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.
Sustainable environmental nanotechnology using nanoparticle surface modification.
Reactive nanomaterials used for environmental remediation require surface modification to make them mobile in the subsurface. Nanomaterials released into the environment inadvertently without an engineered surface coating will acquire one (e.g. adsorption of natural organic matt...
Rao, Prashanth J; Pelletier, Matthew H; Walsh, William R; Mobbs, Ralph J
2014-05-01
The clinical outcome of lumbar spinal fusion is correlated with achievement of bony fusion. Improving interbody implant bone on-growth and in-growth may enhance fusion, limiting pseudoarthrosis, stress shielding, subsidence and implant failure. Polyetheretherketone (PEEK) and titanium (Ti) are commonly selected for interbody spacer construction. Although these materials have desirable biocompatibility and mechanical properties, they require further modification to support osseointegration. Reports of extensive research on this topic are available in biomaterial-centric published reports; however, there are few clinical studies concerning surface modification of interbody spinal implants. The current article focuses on surface modifications aimed at fostering osseointegration from a clinician's point of view. Surface modification of Ti by creating rougher surfaces, modifying its surface topography (macro and nano), physical and chemical treatment and creating a porous material with high interconnectivity can improve its osseointegrative potential and bioactivity. Coating the surface with osteoconductive materials like hydroxyapatite (HA) can improve osseointegration. Because PEEK spacers are relatively inert, creating a composite by adding Ti or osteoconductive materials like HA can improve osseointegration. In addition, PEEK may be coated with Ti, effectively bio-activating the coating. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.
Crystal Nucleation Using Surface-Energy-Modified Glass Substrates.
Nordquist, Kyle A; Schaab, Kevin M; Sha, Jierui; Bond, Andrew H
2017-08-02
Systematic surface energy modifications to glass substrates can induce nucleation and improve crystallization outcomes for small molecule active pharmaceutical ingredients (APIs) and proteins. A comparatively broad probe for function is presented in which various APIs, proteins, organic solvents, aqueous media, surface energy motifs, crystallization methods, form factors, and flat and convex surface energy modifications were examined. Replicate studies ( n ≥ 6) have demonstrated an average reduction in crystallization onset times of 52(4)% (alternatively 52 ± 4%) for acetylsalicylic acid from 91% isopropyl alcohol using two very different techniques: bulk cooling to 0 °C using flat surface energy modifications or microdomain cooling to 4 °C from the interior of a glass capillary having convex surface energy modifications that were immersed in the solution. For thaumatin and bovine pancreatic trypsin, a 32(2)% reduction in crystallization onset times was demonstrated in vapor diffusion experiments ( n ≥ 15). Nucleation site arrays have been engineered onto form factors frequently used in crystallization screening, including microscope slides, vials, and 96- and 384-well high-throughput screening plates. Nucleation using surface energy modifications on the vessels that contain the solutes to be crystallized adds a layer of useful variables to crystallization studies without requiring significant changes to workflows or instrumentation.
Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation.
Inam Ul Ahad; Bartnik, Andrzej; Fiedorowicz, Henryk; Kostecki, Jerzy; Korczyc, Barbara; Ciach, Tomasz; Brabazon, Dermot
2014-09-01
Polymeric biomaterials are being widely used for the treatment of various traumata, diseases and defects in human beings due to ease in their synthesis. As biomaterials have direct interaction with the extracellular environment in the biological world, biocompatibility is a topic of great significance. The introduction or enhancement of biocompatibility in certain polymers is still a challenge to overcome. Polymer biocompatibility can be controlled by surface modification. Various physical and chemical methods (e.g., chemical and plasma treatment, ion implantation, and ultraviolet irradiation etc.) are in use or being developed for the modification of polymer surfaces. However an important limitation in their employment is the alteration of bulk material. Different surface and bulk properties of biomaterials are often desirable for biomedical applications. Because extreme ultraviolet (EUV) radiation penetration is quite limited even in low density mediums, it could be possible to use it for surface modification without influencing the bulk material. This article reviews the degree of biocompatibility of different polymeric biomaterials being currently employed in various biomedical applications, the surface properties required to be modified for biocompatibility control, plasma and laser ablation based surface modification techniques, and research studies indicating possible use of EUV for enhancing biocompatibility. © 2013 Wiley Periodicals, Inc.
Surface modifications with Lissajous trajectories using atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu
2015-09-14
In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.
Surface modification of cellulose fibers: towards wood composites by biomimetics.
Gradwell, Sheila E; Renneckar, Scott; Esker, Alan R; Heinze, Thomas; Gatenholm, Paul; Vaca-Garcia, Carlos; Glasser, Wolfgang
2004-01-01
A biomimetic approach was taken for studying the adsorption of a model copolymer (pullulan abietate, DS 0.027), representing the lignin-carbohydrate complex, to a model surface for cellulose fibers (Langmuir-Blodgett thin films of regenerated cellulose). Adsorption results were assayed using surface plasmon resonance spectroscopy (SPR) and atomic force microscopy (AFM). Rapid, spontaneous, and desorption-resistant surface modification resulted. This effort is viewed as a critical first step towards the permanent surface modification of cellulose fibers with a layer of molecules amenable to either enzymatic crosslinking for improved wood composites or thermoplastic consolidation.
Surface Modification of Silicon Nanoparticles by an "Ink" Layer for Advanced Lithium Ion Batteries.
Wu, Fang; Wang, Hao; Shi, Jiayuan; Yan, Zongkai; Song, Shipai; Peng, Bangheng; Zhang, Xiaokun; Xiang, Yong
2018-06-13
Owing to its high specific capacity, silicon is considered as a promising anode material for lithium ion batteries (LIBs). However, the synthesis strategies for previous silicon-based anode materials with a delicate hierarchical structure are complicated or hazardous. Here, Prussian blue analogues (PBAs), widely used in ink, are deposited on the silicon nanoparticle surface (PBAs@Si-450) to modify silicon nanoparticles with transition metal atoms and a N-doped carbon layer. A facile and green synthesis procedure of PBAs@Si-450 nanocomposites was carried out in a coprecipitation process, combined with a thermal treatment process at 450 °C. As-prepared PBAs@Si-450 delivers a reversible charge capacity of 725.02 mAh g -1 at 0.42 A g -1 after 200 cycles. Moreover, this PBAs@Si-450 composite exhibits an exceptional rate performance of ∼1203 and 263 mAh g -1 at current densities of 0.42 and 14 A g -1 , respectively, and fully recovered to 1136 mAh g -1 with the current density returning to 0.42 A g -1 . Such a novel architecture of PBAs@Si-450 via a facile fabrication process represents a promising candidate with a high-performance silicon-based anode for LIBs.
SP-100 ground engineering system test site description and progress update
NASA Astrophysics Data System (ADS)
Baxter, William F.; Burchell, Gail P.; Fitzgibbon, Davis G.; Swita, Walter R.
1991-01-01
The SP-100 Ground Engineering System Test Site will provide the facilities for the testing of an SP-100 reactor, which is technically prototypic of the generic design for producing 100 kilowatts of electricity. This effort is part of the program to develop a compact, space-based power system capable of producing several hundred kilowatts of electrical power. The test site is located on the U.S. Department of Energy's Hanford Site near Richland, Washington. The site is minimizing capital equipment costs by utilizing existing facilities and equipment to the maximum extent possible. The test cell is located in a decommissioned reactor containment building, and the secondary sodium cooling loop will use equipment from the Fast Flux Test Facility plant which has never been put into service. Modifications to the facility and special equipment are needed to accommodate the testing of the SP-100 reactor. Definitive design of the Ground Engineering System Test Site facility modifications and systems is in progress. The design of the test facility and the testing equipment will comply with the regulations and specifications of the U.S. Department of Energy and the State of Washington.
Investigation of surface halide modification of nitrile butadiene rubber
NASA Astrophysics Data System (ADS)
Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.
2017-12-01
The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
2008-01-01
The surface of a poly(ethylene naphthalate) (PEN) substrate was modified by atomic hydrogen annealing (AHA). In this method, a PEN substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. The properties of the surface-modification layer by AHA were evaluated by spectroscopic ellipsometry. It is found that the thickness of the modified layer was 5 nm and that the modification layer has a low refractive index compared with the PEN substrate. The modification layer relates to the reduction reaction of the PEN substrate by AHA.
NASA Astrophysics Data System (ADS)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.; Kummari, Venkata C.; Pandey, Bimal; Deoli, Naresh T.; Lakshantha, Wickramaarachchige J.; Mulware, Stephen J.; Baxley, Jacob; Manuel, Jack E.; Pacheco, Jose L.; Szilasi, Szabolcs; Weathers, Duncan L.; Reinert, Tilo; Glass, Gary A.; Duggan, Jerry L.; McDaniel, Floyd D.
2013-07-01
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. For the low-energy beam line, the ion energy can be varied from ˜20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, Bibhudutta; Dhoubhadel, Mangal S.; Poudel, Prakash R.
2013-07-03
The Ion Beam Modification and Analysis Laboratory (IBMAL) at the University of North Texas includes several accelerator facilities with capabilities of producing a variety of ion beams from tens of keV to several MeV in energy. The four accelerators are used for research, graduate and undergraduate education, and industrial applications. The NEC 3MV Pelletron tandem accelerator has three ion sources for negative ions: He Alphatross and two different SNICS-type sputter ion sources. Presently, the tandem accelerator has four high-energy beam transport lines and one low-energy beam transport line directly taken from the negative ion sources for different research experiments. Formore » the low-energy beam line, the ion energy can be varied from {approx}20 to 80 keV for ion implantation/modification of materials. The four post-acceleration beam lines include a heavy-ion nuclear microprobe; multi-purpose PIXE, RBS, ERD, NRA, and broad-beam single-event upset; high-energy ion implantation line; and trace-element accelerator mass spectrometry. The NEC 3MV single-ended Pelletron accelerator has an RF ion source mainly for hydrogen, helium and heavier inert gases. We recently installed a capacitive liner to the terminal potential stabilization system for high terminal voltage stability and high-resolution microprobe analysis. The accelerator serves a beam line for standard RBS and RBS/C. Another beamline for high energy focused ion beam application using a magnetic quadrupole lens system is currently under construction. This beam line will also serve for developmental work on an electrostatic lens system. The third accelerator is a 200 kV Cockcroft-Walton accelerator with an RF ion source. The fourth accelerator is a 2.5 MV Van de Graaff accelerator, which was in operation for last several decades is currently planned to be used mainly for educational purpose. Research projects that will be briefly discussed include materials synthesis/modification for photonic, electronic, and magnetic applications, surface sputtering and micro-fabrication of materials, development of high-energy ion microprobe systems, and educational and outreach activities.« less
Beemsterboer Section 114 Information Request - Mar. 5, 2014
Modification to earlier letter requiring Beemsterboer Slag Corporation to submit information about its facility at 2900 East 100th St. in Chicago, IL. As the petroleum coke (pet coke) facility is an emission source, it must comply with the Clean Air Act.
40 CFR 60.540 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for the Rubber Tire Manufacturing Industry § 60.540 Applicability and designation of affected... each of the following affected facilities in rubber tire manufacturing plants that commence... cementing operation in rubber tire manufacturing plants that commenced construction, modification, or...
76 FR 75913 - Notice of Lodging of Modification of Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... (``Regulated Bacteria'') and to comply with interim effluent limitations for those pollutants. The proposed Modification provides new, more stringent interim effluent limitations for Regulated Bacteria and requires... effluent limitations for Regulated Bacteria set forth in the Facility's National Pollutant Discharge...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... facilities: New compressor station (Redd Farm Compressor Station) on Columbia's existing Line 1570 in... setting; Modifications to the Smithfield Compressor Station consisting of upgrades to the existing... coolers; Modifications to the Glenville Compressor Station by installing two gas-fired turbines, each...
24 CFR 880.607 - Termination of tenancy and modification of lease.
Code of Federal Regulations, 2012 CFR
2012-04-01
... CONSTRUCTION Management § 880.607 Termination of tenancy and modification of lease. (a) Applicability. The... leased premises and related facilities; interfere with the management of the building or have an adverse... HUD regulations. (Approved by the Office of Management and Budget under control number 2502-0204) [44...
24 CFR 880.607 - Termination of tenancy and modification of lease.
Code of Federal Regulations, 2013 CFR
2013-04-01
... CONSTRUCTION Management § 880.607 Termination of tenancy and modification of lease. (a) Applicability. The... leased premises and related facilities; interfere with the management of the building or have an adverse... HUD regulations. (Approved by the Office of Management and Budget under control number 2502-0204) [44...
24 CFR 880.607 - Termination of tenancy and modification of lease.
Code of Federal Regulations, 2014 CFR
2014-04-01
... CONSTRUCTION Management § 880.607 Termination of tenancy and modification of lease. (a) Applicability. The... leased premises and related facilities; interfere with the management of the building or have an adverse... HUD regulations. (Approved by the Office of Management and Budget under control number 2502-0204) [44...
2018-03-30
Modifications and upgrades are underway inside the Astronaut Crew Quarters in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The crew quarters are being prepared for the next generation of space explorers. The historic facility housed Apollo and space shuttle astronauts before and after their missions into space.
40 CFR 60.32e - Designated facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... modification was commenced on or before March 16, 1998. (2) For which construction was commenced after June 20, 1996 but no later than December 1, 2008, or for which modification is commenced after March 16, 1998... only pathological waste, low-level radioactive waste, and/or chemotherapeutic waste (all defined in...
24 CFR 880.607 - Termination of tenancy and modification of lease.
Code of Federal Regulations, 2011 CFR
2011-04-01
... CONSTRUCTION Management § 880.607 Termination of tenancy and modification of lease. (a) Applicability. The... lease; or (B) Repeated minor violations of the lease that disrupt the livability of the building... leased premises and related facilities; interfere with the management of the building or have an adverse...
Nuclear thermal propulsion test facility requirements and development strategy
NASA Technical Reports Server (NTRS)
Allen, George C.; Warren, John; Clark, J. S.
1991-01-01
The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.
30 CFR 71.500 - Sanitary toilet facilities at surface work sites; installation requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sanitary Toilet Facilities at Surface Worksites of Surface...): Sanitary toilet facilities for surface work areas of underground mines are subject to the provisions of... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Sanitary toilet facilities at surface work...
30 CFR 71.500 - Sanitary toilet facilities at surface work sites; installation requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sanitary Toilet Facilities at Surface Worksites of Surface...): Sanitary toilet facilities for surface work areas of underground mines are subject to the provisions of... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Sanitary toilet facilities at surface work...
30 CFR 71.500 - Sanitary toilet facilities at surface work sites; installation requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sanitary Toilet Facilities at Surface Worksites of Surface...): Sanitary toilet facilities for surface work areas of underground mines are subject to the provisions of... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Sanitary toilet facilities at surface work...
30 CFR 71.500 - Sanitary toilet facilities at surface work sites; installation requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sanitary Toilet Facilities at Surface Worksites of Surface...): Sanitary toilet facilities for surface work areas of underground mines are subject to the provisions of... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Sanitary toilet facilities at surface work...
Enhanced luminescence of Cu-In-S nanocrystals by surface modification.
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin; Shin, Pyung-Woo
2012-04-01
We have synthesized highly luminescent Cu-In-S nanocrystals by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS nanocrystals with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS nanocrystals was above 50%, which is more than 10 times higher than the initial QY of CIS nanocrystals before surface modification (QY = 3%). Detailed study on the luminescence mechanism implies that etching of the surface of nanocrystals by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S nanocrystals with less toxic and highly stable precursors.
Nanoscale Surface Modifications of Orthopaedic Implants: State of the Art and Perspectives
Staruch, RMT; Griffin, MF; Butler, PEM
2016-01-01
Background: Orthopaedic implants such as the total hip or total knee replacement are examples of surgical interventions with postoperative success rates of over 90% at 10 years. Implant failure is associated with wear particles and pain that requires surgical revision. Improving the implant - bone surface interface is a key area for biomaterial research for future clinical applications. Current implants utilise mechanical, chemical or physical methods for surface modification. Methods: A review of all literature concerning the nanoscale surface modification of orthopaedic implant technology was conducted. Results: The techniques and fabrication methods of nanoscale surface modifications are discussed in detail, including benefits and potential pitfalls. Future directions for nanoscale surface technology are explored. Conclusion: Future understanding of the role of mechanical cues and protein adsorption will enable greater flexibility in surface control. The aim of this review is to investigate and summarise the current concepts and future directions for controlling the implant nanosurface to improve interactions. PMID:28217214
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn Kidman
2008-10-01
This document constitutes an addendum to the July 2003, Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications.
A general strategy for the ultrafast surface modification of metals.
Shen, Mingli; Zhu, Shenglong; Wang, Fuhui
2016-12-07
Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.
Sustainable steric stabilization of colloidal titania nanoparticles
NASA Astrophysics Data System (ADS)
Elbasuney, Sherif
2017-07-01
A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This manuscript revealed the state of the art for the real development of stable colloidal mono-dispersed particles with controlled surface properties.
1989-01-01
FEB 2 2 1990 Stephen Walter Andrews, D.M.D. The University of North Carolina at Chapel Hill Department of Orthodontics School of Dentistry 1989 Robert...PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) (UNCLASSIFIED) SURFACE MODIFICATION OF ORTHODONTIC ...Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE AFIT/CI "OVERPRINT" SURFACE MODIFICATION OF ORTHODONTIC BRACKET MODELS VIA ION
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
Anthropogenic modification of the earth's surface is discussed in two problem areas: (1) land use changes and overgrazing, and how it affects albedo and land surface-atmosphere interactions, and (2) water and land surface pollution, especially oil slicks. A literature survey evidences the importance of these problems. The need for monitoring is stressed, and it is suggested that with some modifications to the sensors, ERTS (Landsat) series satellites can provide approximate monitoring information. The European Landsat receiving station in Italy will facilitate data collection for the tasks described.
Surface modification of ethylene-co-tetrafluoroethylene copolymer (ETFE) by plasma
NASA Astrophysics Data System (ADS)
Inagaki, N.
2003-08-01
Surface modification of ETFE surfaces by remote H 2, O 2 and Ar plasmas were investigated from the viewpoint of selective modification of CH 2-CH 2 or CF 2-CF 2 component. The remote H 2 and Ar plasmas modified effectively ETFE surfaces into hydrophilic, but the remote O 2 plasma did not. The remote H 2 plasma interacted with CF 2 component rather than CH 2 component in ETFE. The remote O 2 plasma interacted with CH 2 component as well as CF 2 component in ETFE chains.
Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains.
Pinto, S; Alves, P; Santos, A C; Matos, C M; Oliveiros, B; Gonçalves, S; Gudiña, E; Rodrigues, L R; Teixeira, J A; Gil, M H
2011-09-15
Depending on the final application envisaged for a given biomaterial, many surfaces must be modified before use. The material performance in a biological environment is mainly mediated by its surface properties that can be improved using suitable modification methods. The aim of this work was to coat poly(dimethyl siloxane) (PDMS) surfaces with biosurfactants (BSs) and to evaluate how these compounds affect the PDMS surface properties. BSs isolated from four probiotic strains (Lactococcus lactis, Lactobacillus paracasei, Streptococcus thermophilus A, and Streptococcus thermophilus B) were used. Bare PDMS and PDMS coated with BSs were characterized by contact angle measurements, infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The influence of the surface modifications on the materials blood compatibility was studied through thrombosis and hemolysis assays. The cytotoxicity of these materials was tested against rat peritoneal macrophages. AFM results demonstrated the successful coating of the surfaces. Also, by contact angle measurements, an increase of the coated surfaces hydrophilicity was seen. Furthermore, XPS analysis indicated a decrease of the silicon content at the surface, and ATR-FTIR results showed the presence of BS characteristic groups as a consequence of the modification. All the studied materials revealed no toxicity and were found to be nonhemolytic. The proposed approach for the modification of PDMS surfaces was found to be effective and opens new possibilities for the application of these surfaces in the biomedical field. Copyright © 2011 Wiley Periodicals, Inc.
Kim, Wansun; Kim, Yeon-Hee; Park, Hun-Kuk; Choi, Samjin
2015-12-23
We introduce a novel, facile, rapid, low-cost, highly reproducible, and power-free synthesizable fabrication method of paper-based silver nanoparticle (AgNP) immersed surface-enhanced Raman scattering (SERS) platform, known as the successive ionic layer absorption and reaction (SILAR) method. The rough and porous properties of the paper led to direct synthesis of AgNPs on the surface as well as in the paper due to capillary effects, resulting in improved plasmon coupling with interparticles and interlayers. The proposed SERS platform showed an enhancement factor of 1.1 × 10(9), high reproducibility (relative standard deviation of 4.2%), and 10(-12) M rhodamine B highly sensitive detection limit by optimizing the SILAR conditions including the concentration of the reactive solution (20/20 mM/mM AgNO3/NaBH4) and the number of SILAR cycles (six). The applicability of the SERS platform was evaluated using two samples including human cervical fluid for clinical diagnosis of human papillomavirus (HPV) infection, associated with cervical cancer, and a malachite green (MG) solution for fungicide and parasiticide in aquaculture, associated with human carcinogenesis. The AgNP-immersed SERS-functionalized platform using the SILAR technique allowed for high chemical structure sensitivity without additional tagging or chemical modification, making it a good alternative for early clinical diagnosis of HPV infection and detection of MG-activated human carcinogenesis.
NASA Astrophysics Data System (ADS)
Zhao, Ping; Zhou, Qi; Yan, Chunjie; Luo, Wenjun
2017-03-01
Kaolinite (KLN) was successfully decorated by polyacrylic acid (PAA) brushes via a facile ‘one-step’ manner in this study. This process was achieved by heterogeneous esterification between carboxyl on the PAA chains and hydroxyl on the KLN in the presence of Al3+ as catalyst. The prepared composite (denoted as PAA-g-KLN) was characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction pattern (XRD), Field emission scanning electron microscopy (FE-SEM) and thermogravimetry (TG) to confirm the successful grafting of PAA brushes on the surface of KLN. Subsequently, the PAA-g-KLN was used as adsorbent for the removal of Cu2+ from wastewater. Due to the introduction of abundant and highly accessible carboxyl groups on the surface of kaolinite, PAA-g-KLN exhibited an enhanced adsorption performance than raw kaolinite, which could be up to 32.45 mg·g-1 at 45 °C with a fast adsorption kinetic. Theoretical models analysis revealed that Langmuir isotherm model and the pseudo second-order model were more suitable for well elucidation of the experimental data. In addition, the regeneration experiment showed that the PAA-g-KLN could still keep a satisfactory adsorption capacity (>65%) by being reused for 6 consecutive cycles. The study provides an easy and rapid method for surface polyelectrolyte modification on inorganic mineral as a promising adsorbent to remove Cu2+ from aqueous solution.
NASA Astrophysics Data System (ADS)
Gao, Jiefeng; Song, Xin; Huang, Xuewu; Wang, Ling; Li, Bei; Xue, Huaiguo
2018-05-01
Non-solvent assisted electrospinning was proposed for fabricating Polymethylmethacrylate (PMMA) microspheres and fibers with a hollow core and porous shell, which could be used for oil adsorption and oil/water separation. Propanediol was chosen as the non-solvent because of its high surface tension and viscosity as well as large phase separation tendency with polymer, which was beneficial to the formation of both the hollow core and porous shell during the electrospinning. With the increase of the polymer solution concentration, the microsphere gradually evolved to the bead-on-string geometry and finally to a continuous fiber form, indicating the transition from electro-spraying to electrospinning. The hollow core and dense surface pores enhanced the hydrophobicity, oleophilicity, permeability, and specific surface area of the fibers, and hence imparted the fibrous mat a high oil adsorption capacity. When the porous hollow microspheres were electro-sprayed onto the stainless steel mesh followed by the PDMS modification, the modified mesh became super-hydrophobic and super-oleophilic with the contact angle of 153° and sliding angle of 4°. The as-prepared mesh showed rapid oil/water separation with high efficiency and excellent recycling performance. The flux for separation of oil/water mixture could reach as high as 11,000 L m-2 h-1. This facile non-solvent assisted electrospinning method provides a new avenue for preparation of multifunctional porous materials which possess potential applications in large-scale oil/water separation.
10 CFR 835.1002 - Facility design and modifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...
10 CFR 835.1002 - Facility design and modifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...
10 CFR 835.1002 - Facility design and modifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...
10 CFR 835.1002 - Facility design and modifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...
10 CFR 835.1002 - Facility design and modifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
....1002 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Design and Control § 835.1002... occupational exposure is maintained ALARA in developing and justifying facility design and physical controls... in § 835.202. (c) Regarding the control of airborne radioactive material, the design objective shall...
Modification of Ti6Al4V surface by diazonium compounds
NASA Astrophysics Data System (ADS)
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-01
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid.
Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-01
This DOE standard gives design and evaluation criteria for natural phenomena hazards (NPH) effects as guidance for implementing the NPH mitigation requirements of DOE 5480.28. Goal of the criteria is to assure that DOE facilities can withstand the effects of earthquakes, extreme winds, tornadoes, flooding, etc. They apply to the design of new facilities and the evaluation of existing facilities; they may also be used for modification and upgrading of the latter.
Surface modification for interaction study with bacteria and preosteoblast cells
NASA Astrophysics Data System (ADS)
Song, Qing
Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted on the polyelectrolyte modified HA scaffolds. The mineralized scaffolds stimulated osteogenesis of preosteoblast cells compared with the control HA scaffolds. Therefore, the surface modification through vapor deposition of polyelectrolytes and polymer-controlled mineralization can improve osteoinduction of bone materials. In summary, the iCVD-mediated surface modification is a simple and promising approach to biofunctionalizing various structured substrates and generating antimicrobial and biocompatible biomaterials.
Zhu, Jun; Hiltz, Jonathan; Tefashe, Ushula M; Mauzeroll, Janine; Lennox, R Bruce
2018-06-21
The chemical modification of an sp 2 hybridized carbon surface in a controllable manner is very challenging but also crucial for many applications. An inverse electron demand Diels-Alder (IEDDA) reaction using microcontact printing technique is introduced to spatially control the modification of a highly ordered pyrolytic graphite (HOPG) surface under ambient conditions. The covalent modification was characterized by Raman spectroscopy, XPS, and SECM. Tetrazine derivatives can effectively react with an HOPG surface and with microcontact printing methods resulting in spatially patterned surfaces being produced with micrometer-scale resolution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-05-01
Fluorescent silica nanoparticles (FSNPs) have been extensively investigated for various biomedical applications in recently years. However, the aggregation of organic dyes in silica nanoparticles also leads the significant fluorescence quenching owing to the aggregation caused quenching effects of organic dyes. Herein, we developed a rather facile strategy to fabricate FSNPs with desirable fluorescent properties through non-covalent incorporation of fluorophores with aggregation-induced emission (AIE) feature into silica nanoparticles, which were subsequently modified with functional polymers. The resultant FSNPs polymer nanocomposites (named as FSNPs-poly(IA-co-PEGMA)) exhibited uniform spherical morphology, high water dispersiity, and bright red fluorescence. Cytotoxicity results indicate that FSNPs-poly(IA-co-PEGMA) possess excellent biocompatibility. Cell uptake behavior suggests FSNPs-poly(IA-co-PEGMA) are of great potential for biological imaging applications. Taken together, we have reported a facile method for the fabrication of FSNPs through non-covalent encapsulation using an AIE-active dye. These FSNPs can be further functionalized with functional polymers through ring-opening reaction and the resultant FSNPs-poly(IA-co-PEGMA) showed great potential for biological imaging. More importantly, we believe that many other functional components could also be integrated into these FSNPs through the facile ring-opening reaction. Therefore, this method should be a facile and general tool for fabrication of polymer functionalized AIE-active FSNPs.
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Henderson, Brenda S.
2005-01-01
The NASA Langley Research Center Low Speed Aeroacoustic Wind Tunnel is a premier facility for model-scale testing of jet noise reduction concepts at realistic flow conditions. However, flow inside the open jet test section is less than optimum. A Construction of Facilities project, scheduled for FY 05, will replace the flow collector with a new design intended to reduce recirculation in the open jet test section. The reduction of recirculation will reduce background noise levels measured by a microphone array impinged by the recirculation flow and will improve flow characteristics in the open jet tunnel flow. In order to assess the degree to which this modification is successful, background noise levels and tunnel flow are documented, in order to establish a baseline, in this report.
Heavy Gas Conversion of the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Corliss, James M.; Cole, Stanley, R.
1998-01-01
The heavy gas test medium has recently been changed in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research Center. A NASA Construction of Facilities project has converted the TDT heavy gas from dichlorodifluoromethane (R12) to 1,1,1,2 tetrafluoroethane (R134a). The facility s heavy gas processing system was extensively modified to implement the conversion to R134a. Additional system modifications have improved operator interfaces, hardware reliability, and quality of the research data. The facility modifications included improvements to the heavy gas compressor and piping, the cryogenic heavy gas reclamation system, and the heavy gas control room. A series of wind tunnel characterization and calibration tests are underway. Results of the flow characterization tests show the TDT operating envelope in R134a to be very similar to the previous operating envelope in R12.
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completedmore » and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.« less
Synergistic effect of nanotopography and bioactive ions on peri-implant bone response
Su, Yingmin; Komasa, Satoshi; Li, Peiqi; Nishizaki, Mariko; Chen, Luyuan; Terada, Chisato; Yoshimine, Shigeki; Nishizaki, Hiroshi; Okazaki, Joji
2017-01-01
Both bioactive ion chemistry and nanoscale surface modifications are beneficial for enhanced osseointegration of endosseous implants. In this study, a facile synthesis approach to the incorporation of bioactive Ca2+ ions into the interlayers of nanoporous structures (Ca-nano) formed on a Ti6Al4V alloy surface was developed by sequential chemical and heat treatments. Samples with a machined surface and an Na+ ion-incorporated nanoporous surface (Na-nano) fabricated by concentrated alkali and heat treatment were used in parallel for comparison. The bone response was investigated by microcomputed tomography assessment, sequential fluorescent labeling analysis, and histological and histomorphometric evaluation after 8 weeks of implantation in rat femurs. No significant differences were found in the nanotopography, surface roughness, or crystalline properties of the Ca-nano and Na-nano surfaces. Bone–implant contact was better in the Ca-nano and Na-nano implants than in the machined implant. The Ca-nano implant was superior to the Na-nano implant in terms of enhancing the volume of new bone formation. The bone formation activity consistently increased for the Ca-nano implant but ceased for the Na-nano implant in the late healing stage. These results suggest that Ca-nano implants have promising potential for application in dentistry and orthopedics. PMID:28184162
Surface and interface modification science and technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.-H.
1999-07-19
Surface modification of solids is of scientific and technological interest due to its significant benefits in a wide variety of applications. Various coatings applications such as corrosion protection and electrical insulators and conductors are required for proper engineering design based on geometrical relationships between interfaces and on thermodynamic/kinetic considerations for the development of surface modifications. This paper will explore three basic examples: the proton conductor BaCeO{sub 3}, high-temperature protective coatings, and epitaxial relationships between interfaces.
Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid.
Ma, Fengcang; Chen, Sai; Liu, Ping; Geng, Fang; Li, Wei; Liu, Xinkuan; He, Daihua; Pan, Deng
2016-05-01
Poly-L-lactide (PLLA) is a biodegradable polymer and used widely. Incorporation of beta tricalcium phosphate (β-TCP) into PLLA can enhance its osteoinductive properties. But the interfacial layer between β-TCP particles with PLLA matrix is easy to be destroyed due to inferior interfacial compatibility of the organic/inorganic material. In this work, a method of β-TCP surface modification with stearic acid was investigated to improve the β-TCP/PLLA biomaterial. The effects of surface modification on the β-TCP were investigated by FTIR, XPS, TGA and CA. It was found that the stearic acid reacted with β-TCP and oxhydryl was formed during the surface modification. Hydrophilicity of untreated or modified β-TCP/PLLA composite was increased by the addition of 10 wt.% β-TCP, but it decreased as the addition amount increased from 10 wt.% to 20 wt.%. Two models were suggested to describe the effect of β-TCP concentration on CA of the composites. Mechanical properties of β-TCP/PLLA composites were tested by bending and tensile tests. Fractures of the composites after mechanical test were observed by SEM. It was found that surface modification with stearic acid improved bending and tensile strengths of the β-TCP/PLLA composites obviously. The SEM results indicated that surface modification decreased the probability of interface debonding between fillers and matrix under load. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Yanfei; Wang, Zhenqing; Li, Hao; Sun, Min; Wang, Fangxin; Chen, Bingjie
2018-01-01
In this paper, a new shape memory alloy (SMA) hybrid basalt fibre reinforced polymer (BFRP) composite laminate was fabricated and a new surface modification method with both silane coupling agent KH550 and Al2O3 nanoparticles was conducted to enhance the interface performance. The mechanical performance of BFRP composite laminates with and without SMA fibres and the influence of SMA surface modification were studied in this paper. Different SMA fibre surface treatment methods, including etching with both H2SO4 and NaOH, modification with the silane coupling agent KH550 and new modification method with both KH550 and Al2O3 nanoparticles, were conducted to enhance the bonding between the SMA fibres and polymer matrix. Scanning electron microscopy (SEM) was used to observe the micromorphology of the SMA fibre surfaces exposed to different treatments and the damage morphology of composite laminates. The mechanical performance of the composites was investigated with tensile, three-point bending and low-velocity impact tests to study the influence of embedded SMA fibres and the different surface modifications of the SMA fibres. The results demonstrated that the embedded Ni-Ti SMA fibres can significantly enhance the mechanical performance of BFRP composite laminates. SMA fibres modified with both the silane coupling agent KH550 and Al2O3 nanoparticles illustrate the best mechanical performance among all samples. PMID:29300321
NASA Astrophysics Data System (ADS)
Tsoncheva, Tanya; Genova, Izabela; Paneva, Daniela; Dimitrov, Momtchil; Tsyntsarski, Boyko; Velinov, Nicolay; Ivanova, Radostina; Issa, Gloria; Kovacheva, Daniela; Budinova, Temenujka; Mitov, Ivan; Petrov, Narzislav
2015-10-01
Ordered mesoporous silica of SBA-15 type and activated carbon, prepared from waste biomass (peach stones), are used as host matrix of nanosized iron and cobalt particles. The effect of preparation procedure on the state of loaded nanoparticles is in the focus of investigation. The obtained materials are characterized by Boehm method, low temperature physisorption of nitrogen, XRD, UV-Vis, FTIR, Mossbauer spectroscopy and temperature programmed reduction with hydrogen. The catalytic behaviour of the samples is tested in methanol decomposition. The dispersion, oxidative state and catalytic behaviour of loaded cobalt and iron nanoparticles are successfully tuned both by the nature of porous support and the metal precursor used during the samples preparation. Facile effect of active phase deposition from aqueous solution of nitrate precursors is assumed for activated carbon support. For the silica based materials the catalytic activity could be significantly improved when cobalt acetylacetonate is used during the modification. The complex effect of pore topology and surface functionality of different supports on the active phase formation is discussed.
A general strategy for the ultrafast surface modification of metals
Shen, Mingli; Zhu, Shenglong; Wang, Fuhui
2016-01-01
Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments. PMID:27924909
30 CFR 585.703 - What reports must I submit for project modifications and repairs?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What reports must I submit for project modifications and repairs? 585.703 Section 585.703 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER...
30 CFR 585.703 - What reports must I submit for project modifications and repairs?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What reports must I submit for project modifications and repairs? 585.703 Section 585.703 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER...
30 CFR 585.703 - What reports must I submit for project modifications and repairs?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What reports must I submit for project modifications and repairs? 585.703 Section 585.703 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER...
47 CFR 101.55 - Considerations involving transfer or assignment applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (d) If a proposed transfer of radio facilities is incidental to a sale or other facilities or merger... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers, Modifications, Conditions and Forfeitures § 101.55 Considerations involving transfer or assignment applications. (a) Except...
47 CFR 101.55 - Considerations involving transfer or assignment applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (d) If a proposed transfer of radio facilities is incidental to a sale or other facilities or merger... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers, Modifications, Conditions and Forfeitures § 101.55 Considerations involving transfer or assignment applications. (a) Except...
47 CFR 101.55 - Considerations involving transfer or assignment applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (d) If a proposed transfer of radio facilities is incidental to a sale or other facilities or merger... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers, Modifications, Conditions and Forfeitures § 101.55 Considerations involving transfer or assignment applications. (a) Except...
47 CFR 101.55 - Considerations involving transfer or assignment applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (d) If a proposed transfer of radio facilities is incidental to a sale or other facilities or merger... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers, Modifications, Conditions and Forfeitures § 101.55 Considerations involving transfer or assignment applications. (a) Except...
47 CFR 101.55 - Considerations involving transfer or assignment applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (d) If a proposed transfer of radio facilities is incidental to a sale or other facilities or merger... SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses License Transfers, Modifications, Conditions and Forfeitures § 101.55 Considerations involving transfer or assignment applications. (a) Except...
Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra
2016-02-15
Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.
Recent modifications and calibration of the Langley low-turbulence pressure tunnel
NASA Technical Reports Server (NTRS)
Mcghee, R. J.; Beasley, W. D.; Foster, J. M.
1984-01-01
Modifications to the Langley Low-Turbulence Pressure Tunnel are presented and a calibration of the mean flow parameters in the test section is provided. Also included are the operational capability of the tunnel and typical test results for both single-element and multi-element airfoils. Modifications to the facility consisted of the following: replacement of the original cooling coils and antiturbulence screens and addition of a tunnel-shell heating system, a two dimensional model-support and force-balance system, a sidewall boundary layer control system, a remote-controlled survey apparatus, and a new data acquisition system. A calibration of the mean flow parameters in the test section was conducted over the complete operational range of the tunnel. The calibration included dynamic-pressure measurements, Mach number distributions, flow-angularity measurements, boundary-layer characteristics, and total-pressure profiles. In addition, test-section turbulence measurements made after the tunnel modifications have been included with these calibration data to show a comparison of existing turbulence levels with data obtained for the facility in 1941 with the original screen installation.
Damage-free polymer surface modification employing inward-type plasma
NASA Astrophysics Data System (ADS)
Kanou, Ryo; Suga, Hiroshi; Utsumi, Hideyuki; Takahashi, Satoshi; Shirayama, Yuya; Watanabe, Norimichi; Petit, Stèphane; Shimizu, Tetsuo
2017-08-01
Inward-type plasmas, which spread upstream against the gas flow in the capillary tube where the gas is discharged, can react with samples placed near the entrance of such a capillary tube. In this study, surface modification of polymer surfaces is conducted using inward plasma. The modification is also done by conventional microplasma jet, and the modified surfaces with two plasma techniques are characterized by contact angle measurement, X-ray photoemission spectroscopy (XPS), and atomic force microscopy (AFM). Although inward-plasma-treated surfaces are less hydrophilic than conventional plasma-treated ones, they are still sufficiently hydrophilic for surface coatings. In addition, it turns out that the polymer surfaces irradiated with the inward plasma yield much smoother surfaces than those treated with the conventional plasma jet. Thus, the inward plasma treatment is a viable technique when the surface flatness is crucial, such as for the surface coating of plastic lenses.
NASA Astrophysics Data System (ADS)
Roevens, Annelore; Van Dijck, Jeroen G.; Geldof, Davy; Blockhuys, Frank; Prelot, Benedicte; Zajac, Jerzy; Meynen, Vera
2017-09-01
To alter the versatility of interactions at its surface, TiO2 is modified with organophosphonic acids (PA). A thorough understanding of the role of all synthesis conditions is necessary to achieve controlled functionalization. This study reports on the effect of using water, toluene and their mixtures when performing the modification of TiO2 with PA. Sorption and calorimetry measurements of surface interactions with various probing species clearly indicate that, by grafting PA in water, clear differences appear in the distribution of organic groups on the surface. Also the functional group of the PA determines the impact of using water as solvent. Modification in toluene results in a higher modification degree for propylphosphonic acid (3PA), as the solvent-solute interaction may hinder the grafting with phenylphosphonic acid (PhPA) in toluene. Water is preferred as solvent for PhPA modification as stabilizing π-OH interactions enhance surface grafting overcoming the competitive interaction of water at the surface as observed with 3PA. By using water in toluene mixtures for the functionalization of TiO2 with 3PA, the degree of functionalization is higher than when only water or toluene is used. Furthermore, adding small amounts of water leads to the formation of titanium propylphosphonates, next to surface grafting.
Impact of Dental Implant Surface Modifications on Osseointegration
Smeets, Ralf; Stadlinger, Bernd; Schwarz, Frank; Beck-Broichsitter, Benedicta; Jung, Ole; Precht, Clarissa; Kloss, Frank; Gröbe, Alexander; Heiland, Max
2016-01-01
Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions. PMID:27478833
Antibacterial Drug Releasing Materials by Post-Polymerization Surface Modification
NASA Astrophysics Data System (ADS)
Chng, Shuyun; Moloney, Mark G.; Wu, Linda Y. L.
Functional materials are available by the post-polymerization surface modification of diverse polymers in a three-step process mediated, firstly, by carbene insertion chemistry, secondly, by diazonium coupling, and thirdly by modification with a remotely tethered spiropyran unit, and these materials may be used for the reversible binding and release of Penicillin V. Surface loading densities of up to 0.19mmol/g polymer are achievable, leading to materials with higher loading densities and release behavior relative to unmodified controls, and observable antibacterial biocidal activity.
Surface Modification of Nonwoven fabrics by Atmospheric Brush Plasma
NASA Astrophysics Data System (ADS)
Oksuz, Lutfi; Uygun, Emre; Bozduman, Ferhat; Yurdabak Karaca, Gozde; Asan, Orkun Nuri; Uygun Oksuz, Aysegul
2017-10-01
Polypropylene nonwoven fabrics (PPNF) are used in disposable absorbent articles, such as diapers, feminine care products, wipes. PPNF need to be wettable by water or aqueous-based liquid. Plasma surface treatment/modification has turned out to be a well-accepted method since it offers superior surface property enhancement than other chemical methods. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical application. The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of two different nonwoven surfaces.
Liu, Caihong; Lee, Jongho; Ma, Jun; Elimelech, Menachem
2017-02-21
In this study, we demonstrate a highly antifouling thin-film composite (TFC) membrane by grafting a zwitterionic polymer brush via atom-transfer radical-polymerization (ATRP), a controlled, environmentally benign chemical process. Initiator molecules for polymerization were immobilized on the membrane surface by bioinspired catechol chemistry, leading to the grafting of a dense zwitterionic polymer brush layer. Surface characterization revealed that the modified membrane exhibits reduced surface roughness, enhanced hydrophilicity, and lower surface charge. Chemical force microscopy demonstrated that the modified membrane displayed foulant-membrane interaction forces that were 1 order of magnitude smaller than those of the pristine TFC membrane. The excellent fouling resistance imparted by the zwitterionic brush layer was further demonstrated by significantly reduced adsorption of proteins and bacteria. In addition, forward osmosis fouling experiments with a feed solution containing a mixture of organic foulants (bovine-serum albumin, alginate, and natural organic matter) indicated that the modified membrane exhibited significantly lower water flux decline compared to the pristine TFC membrane. The controlled architecture of the zwitterionic polymer brush via ATRP has the potential for a facile antifouling modification of a wide range of water treatment membranes without compromising intrinsic transport properties.
40 CFR 257.3-2 - Endangered species.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Endangered Species Act. (2) Destruction or adverse modification means a direct or indirect alteration of... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Endangered species. 257.3-2 Section... Disposal Facilities and Practices § 257.3-2 Endangered species. (a) Facilities or practices shall not cause...
40 CFR 257.3-2 - Endangered species.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Endangered Species Act. (2) Destruction or adverse modification means a direct or indirect alteration of... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Endangered species. 257.3-2 Section... Disposal Facilities and Practices § 257.3-2 Endangered species. (a) Facilities or practices shall not cause...
40 CFR 257.3-2 - Endangered species.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Endangered Species Act. (2) Destruction or adverse modification means a direct or indirect alteration of... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Endangered species. 257.3-2 Section... Disposal Facilities and Practices § 257.3-2 Endangered species. (a) Facilities or practices shall not cause...
40 CFR 257.3-2 - Endangered species.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Endangered Species Act. (2) Destruction or adverse modification means a direct or indirect alteration of... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Endangered species. 257.3-2 Section... Disposal Facilities and Practices § 257.3-2 Endangered species. (a) Facilities or practices shall not cause...
30 CFR 285.705 - When must I use a Certified Verification Agent (CVA)?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CVA)? 285.705 Section 285.705 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... the Facility Design Report, the Fabrication and Installation Report, and the Project Modifications and...
41 CFR 101-39.102-1 - Records, facilities, personnel, and appropriations.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., TRANSPORTATION, AND MOTOR VEHICLES 39-INTERAGENCY FLEET MANAGEMENT SYSTEMS 39.1-Establishment, Modification, and Discontinuance of Interagency Fleet Management Systems § 101-39.102-1 Records, facilities, personnel, and appropriations. (a) If GSA decides to establish a fleet management system, GSA, with the assistance of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... tons per day of municipal solid waste (MSW). This action corrects an error in the regulatory language... per day of municipal solid waste (MSW), and for which construction, reconstruction, or modification... Municipal Waste Combustor (LMWC) Emissions From Existing Facilities; Correction AGENCY: Environmental...
40 CFR 60.750 - Applicability, designation of affected facility, and delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards of Performance for Municipal Solid Waste Landfills § 60.750 Applicability, designation of affected facility, and delegation of authority. (a) The provisions of this subpart apply to each municipal solid waste landfill that commenced construction, reconstruction or modification on or after May 30, 1991...
40 CFR 60.750 - Applicability, designation of affected facility, and delegation of authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards of Performance for Municipal Solid Waste Landfills § 60.750 Applicability, designation of affected facility, and delegation of authority. (a) The provisions of this subpart apply to each municipal solid waste landfill that commenced construction, reconstruction or modification on or after May 30, 1991...
49 CFR 37.43 - Alteration of transportation facilities by public entities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... of a facility containing a primary function, the entity shall make the alteration in such a manner... involve primary functions include, but are not necessarily limited to, ticket purchase and collection... primary function area (without regard to the costs of accessibility modifications). (2) Costs that may be...
49 CFR 37.43 - Alteration of transportation facilities by public entities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... of a facility containing a primary function, the entity shall make the alteration in such a manner... involve primary functions include, but are not necessarily limited to, ticket purchase and collection... primary function area (without regard to the costs of accessibility modifications). (2) Costs that may be...
49 CFR 37.43 - Alteration of transportation facilities by public entities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... of a facility containing a primary function, the entity shall make the alteration in such a manner... involve primary functions include, but are not necessarily limited to, ticket purchase and collection... primary function area (without regard to the costs of accessibility modifications). (2) Costs that may be...
49 CFR 37.43 - Alteration of transportation facilities by public entities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... of a facility containing a primary function, the entity shall make the alteration in such a manner... involve primary functions include, but are not necessarily limited to, ticket purchase and collection... primary function area (without regard to the costs of accessibility modifications). (2) Costs that may be...
Modification of Ti6Al4V surface by diazonium compounds.
Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam
2018-02-15
Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO 2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid. Copyright © 2017 Elsevier B.V. All rights reserved.
Surface Modification of Melamine-Formaldehyde (MF-R) Macroparticles in Complex Plasma
NASA Astrophysics Data System (ADS)
Semenov, A. V.; Pergament, A. L.; Scherbina, A. I.; Pikalev, A. A.
2018-04-01
The surface modification of melamine-formaldehyde (MF-R) macroparticles (4.12 ± 0.09 μm in diameter) in dc glow discharges in neon, argon, and an argon-oxygen mixture (90% Ar, 10% O2) was studied experimentally. The macroparticles were treated in the discharge plasma for 10, 20, 40, and 60 min. The macroparticles were placed in ordered plasma-dust structures and then extracted from them. The results of atomic force microscopy of the surface profile are presented. Quantitative data on destruction of the surface layer and aspects of its modification are discussed. The amount of substance removed from the particle surface for the exposure time was calculated using the fractal analysis method.
Wang, Shuqin; Deng, Wenfang; Yang, Lu; Tan, Yueming; Xie, Qingji; Yao, Shouzhuo
2017-07-26
Cu-MOF nanoparticles with an average diameter of 550 nm were synthesized from 2-aminoterephthalic acid and Cu(NO 3 ) 2 by a mixed solvothermal method. The Cu-MOF nanoparticles can show peroxidase-like activity that can catalyze 3,3',5,5'-tetramethylbenzidine to produce a yellow chromogenic reaction in the presence of H 2 O 2 . The presence of abundant amine groups on the surfaces of Cu-MOF nanoparticles enables facile modification of Staphylococcus aureus (S. aureus) aptamer on Cu-MOF nanoparticles. By combining Cu-MOF-catalyzed chromogenic reaction with aptamer recognition and magnetic separation, a simple, sensitive, and selective colorimetric method for the detection of S. aureus was developed.
Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.
Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu
2011-01-04
Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.
Study of Perfluorophosphonic Acid Surface Modifications on Zinc Oxide Nanoparticles.
Quiñones, Rosalynn; Shoup, Deben; Behnke, Grayce; Peck, Cynthia; Agarwal, Sushant; Gupta, Rakesh K; Fagan, Jonathan W; Mueller, Karl T; Iuliucci, Robbie J; Wang, Qiang
2017-11-28
In this study, perfluorinated phosphonic acid modifications were utilized to modify zinc oxide (ZnO) nanoparticles because they create a more stable surface due to the electronegativity of the perfluoro head group. Specifically, 12-pentafluorophenoxydodecylphosphonic acid, 2,3,4,5,6-pentafluorobenzylphosphonic acid, and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid have been used to form thin films on the nanoparticle surfaces. The modified nanoparticles were then characterized using infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. Dynamic light scattering and scanning electron microscopy-energy dispersive X-ray spectroscopy were utilized to determine the particle size of the nanoparticles before and after modification, and to analyze the film coverage on the ZnO surfaces, respectively. Zeta potential measurements were obtained to determine the stability of the ZnO nanoparticles. It was shown that the surface charge increased as the alkyl chain length increases. This study shows that modifying the ZnO nanoparticles with perfluorinated groups increases the stability of the phosphonic acids adsorbed on the surfaces. Thermogravimetric analysis was used to distinguish between chemically and physically bound films on the modified nanoparticles. The higher weight loss for 12-pentafluorophenoxydodecylphosphonic acid and (1H,1H,2H,2H-perfluorododecyl)phosphonic acid modifications corresponds to a higher surface concentration of the modifications, and, ideally, higher surface coverage. While previous studies have shown how phosphonic acids interact with the surfaces of ZnO, the aim of this study was to understand how the perfluorinated groups can tune the surface properties of the nanoparticles.
Ota, Misaki; Hirota, Yuichiro; Uchida, Yoshiaki; Sakamoto, Yasuhiro; Nishiyama, Norikazu
2018-06-12
Carbon dioxide (CO 2 ) capture and storage (CCS) technologies have been attracting attention in terms of tackling with global warming. To date, various CO 2 capture technologies including solvents, membranes, cryogenics, and solid adsorbents have been proposed. Currently, a liquid adsorption method for CO 2 using amine solution (monoethanolamine) has been practically used. However, this liquid phase CO 2 adsorption process requires heat regeneration, and it can cause many problems such as corrosion of equipment and degradation of the solution. Meanwhile, solid adsorption methods using porous materials are more advantageous over the liquid method at these points. In this context, we here evaluated if hydrogen titanate (H 2 Ti 3 O 7 ) nanotubes and the surface modification effectively capture CO 2 . For this aim, we first developed a facile synthesis method of H 2 Ti 3 O 7 nanotubes different from any conventional methods. Briefly, they were converted from the precursors-amorphous TiO 2 nanoparticles at room temperature (25 °C). We then determined the outer and the inner diameters of the H 2 Ti 3 O 7 nanotubes as 3.0 and 0.7 nm, respectively. It revealed that both values were much smaller than the reported ones; thus the specific surface area showed the highest value (735 m 2 /g). Next, the outer surface of H 2 Ti 3 O 7 nanotubes was modified using ethylenediamine to examine if CO 2 adsorption capacity increases. The ethylendiamine-modified H 2 Ti 3 O 7 nanotubes showed a higher CO 2 adsorption capacity (50 cm 3 /g at 0 °C, 100 kPa). We finally concluded that the higher CO 2 adsorption capacity could be explained, not only by the high specific surface area of the nanotubes but also by tripartite hydrogen bonding interactions among amines, CO 2 , and OH groups on the surface of H 2 Ti 3 O 7 .
Coating Methods for Surface Modification of Ammonium Nitrate: A Mini-Review
Elzaki, Baha I.; Zhang, Yue Jun
2016-01-01
Using ammonium nitrate (AN) as a propellant oxidizer is limited due to its hygroscopicity. This review consolidated the available information of various issues pertaining to the coating methods of the surface modification of ammonium nitrate for reducing its hygroscopicity. Moreover this review summarizes the recent advances and issues involved in ammonium nitrate surface modification by physical, chemical and encapsulation coating methods to reduce the hygroscopicity. Furthermore, coating materials, process conditions, and the hygroscopicity test conditions are extensively discussed along, with summaries of the advantages and disadvantages of each coating method. Our findings indicated that the investigation and development of anti-hygroscopicity of AN, and the mechanisms of surface modification by coating urgently require further research in order to further reduce the hygroscopicity. Therefore, this review is useful to researchers concerned with the improvement of ammonium salts’ anti-hygroscopicity. PMID:28773625
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility Bay 2, the nose cap of space shuttle Endeavour is prepared for installation of thermal protection system blankets. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Thunder Energy Inc. received approval from the Alberta Energy and Utilities Board for modification of an existing gas plant to process sour gas, and also applied for permission to increase the hydrogen sulfide content of its existing pipelines in the Kelsey area. This report presents the views of Thunder Energy, the Board, and various intervenors at a hearing held to consider objections to the plant approval and matters related to the application. Issues considered include the need for sour gas processing, the need for the plant modification as opposed to the feasibility of using existing sour gas processing facilities, environmentalmore » impacts, and the requirements for notification of industry in the area. The report concludes with the Board`s decision.« less
The use of NUREGs 1199 and 1200 in the Illinois LLW licensing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinger, J.G.; Harmon, D.F.
1991-12-31
This paper will describe how the LLW licensing staff of the Illinois Department of Nuclear Safety used NRC`s NUREG 1199, NUREG 1200, NUREG 1300 and Regulatory Guide 4.18 in its licensing program for reviewing and evaluating a LLW disposal facility license application. The paper will discuss how Illinois guidance documents were prepared based on modifications made to these NRC documents which were necessary to take into account site and facility specific considerations, as well as changes required by Illinois statutes and regulatory codes. The paper will review the recent revisions (January 1991) to NUREG 1199 and 1200 and the importancemore » of these revisions. The paper will also discuss recommended modifications to these NRC documents and provide an update on the status of the Department`s review and evaluation of an application for a license to site, construct and operate a LLW disposal facility in Illinois.« less
Supersonic CO electric-discharge lasers
NASA Technical Reports Server (NTRS)
Hason, R. K.; Mitchner, M.; Stanton, A.
1975-01-01
Laser modeling activity is described which involved addition of an option allowing N2 as a second diatomic gas. This option is now operational and a few test cases involving N2/CO mixtures were run. Results from these initial test cases are summarized. In the laboratory, a CW double-discharge test facility was constructed and tested. Features include: water-cooled removable electrodes, O-ring construction to facilitate cleaning and design modifications, increased discharge length, and addition of a post-discharge observation section. Preliminary tests with this facility using N2 yielded higher power loadings than obtained in the first-generation facility. Another test-section modification, recently made and as yet untested, will permit injection of secondary gases into the cathode boundary layer. The objective will be to vary and enhance the UV emission spectrum from the auxiliary discharge, thereby influencing the level of photoionization in the main discharge region.
Surface Characterization Techniques: An Overview
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
2002-01-01
To understand the benefits that surface modifications provide, and ultimately to devise better ones, it is necessary to study the physical, mechanical, and chemical changes they cause. This chapter surveys classical and leading-edge developments in surface structure and property characterization methodologies. The primary emphases are on the use of these techniques as they relate to surface modifications, thin films and coatings, and tribological engineering surfaces and on the implications rather than the instrumentation.
Rezaei, Masoud; Tamjid, Elnaz; Dinari, Ali
2017-10-11
Besides the wide applications of titanium and its alloys for orthopedic and biomedical implants, the biocompatible nature of titanium has emerged various surface modification techniques to enhance its bioactivity and osteointegration with living tissues. In this work, we present a new procedure for nanoscale surface modification of titanium implants by integration of magnesium-rich islands combined with controlled formation of pores and refinement of the surface grain structure. Through severe plastic deformation of the titanium surface with fine magnesium hydride powder, Mg-rich islands with varying sizes ranging from 100 nm to 1000 nm can be integrated inside a thin surface layer (100-500 µm) of the implant. Selective etching of the surface forms a fine structure of surface pores which their average size varies in the range of 200-500 nm depending on the processing condition. In vitro biocompatibility and hemocompatibility assays show that the Mg-rich islands and the induced surface pores significantly enhance cell attachment and biocompatibility without an adverse effect on the cell viability. Therefore, severe plastic integration of Mg-rich islands on titanium surface accompanying with porosification is a new and promising procedure with high potential for nanoscale modification of biomedical implants.
Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong
2015-08-07
Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.
PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes
Nady, Norhan
2016-01-01
A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)—is presented. PMID:27096873
Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian
2015-11-01
Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry. Copyright © 2015 Elsevier Ltd. All rights reserved.
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... flush toilet facilities. 71.400 Section 71.400 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE... installations and at the surface worksites of such mine. (Note: Sanitary facilities at surface work areas of...
NASA Astrophysics Data System (ADS)
Velayi, Elmira; Norouzbeigi, Reza
2018-05-01
Superhydrophobic ZnO surfaces with reversibly tunable wettability were fabricated on stainless steel meshes via a facile chemical bath deposition method just by regulating the micro/nano structured ZnO needles without using chemical post modifications. The obtained surfaces can be easily and reversibly switched between superhydrophobic and superhydrophilic/underwater superoleophobic characteristics by altering the annealing temperatures. As-prepared sample exhibited long-term superhydrophobic properties with a water contact angle (WCA) of 163.8° ± 1.8° and contact angle hysteresis (CAH) of 1.1° ± 0.8°. The SEM, XRD, XPS and Raman analyses were employed to characterize the morphological features and surface chemistry of the prepared samples. SEM images showed the formation of ZnO micro/nanoneedles with a diameter of ∼90 nm on the substrate. The superhydrophobic ZnO surface was switched to highly hydrophilic and underwater superoleophobic properties with an oil contact angle (OCA) of about 172.5° after being annealed at 400 °C in air for 30 min and restored to superhydrophobic state again by altering the annealing temperature to 150 °C. Mechanical durability of the ZnO superhydrophobic surface was tested by an abrasion test. Results confirmed that the prepared surface exhibited an excellent robustness after 20 abrasion cycles under the pressure of 4.7 kPa.
Research on dental implant and its industrialization stage
NASA Astrophysics Data System (ADS)
Dongjoon, Yang; Sukyoung, Kim
2017-02-01
Bone cell attachment to Ti implant surfaces is the most concerned issue in the clinical implant dentistry. Many attempts to achieve the fast and strong integration between bone and implant have been tried in many ways, such as selection of materials (for example, Ti, ZrO2), shape design of implant (for example, soft tissue level, bone level, taped or conical, etc), and surface modification of implants (for example, roughed. coated, hybrid), etc. Among them, a major consideration is the surface design of dental implants. The surface with proper structural characteristics promotes or induces the desirable responses of cells and tissues. To obtain such surface which has desirable cell and tissue response, a variety of surface modification techniques has been developed and employed for many years. In this review, the method and trend of surface modification will be introduced and explained in terms of the surface topography and chemistry of dental implants.
Santander, Sonia; Alcaine, Clara; Lyahyai, Jaber; Pérez, Maria Angeles; Rodellar, Clementina; Doblaré, Manuel; Ochoa, Ignacio
2012-01-01
Interaction between cells and implant surface is crucial for clinical success. This interaction and the associated surface treatment are essential for achieving a fast osseointegration process. Several studies of different topographical or chemical surface modifications have been proposed previously in literature. The Biomimetic Advanced Surface (BAS) topography is a combination of a shot blasting and anodizing procedure. Macroroughness, microporosity of titanium oxide and Calcium/Phosphate ion deposition is obtained. Human mesenchymal stem cells (hMCSs) response in vitro to this treatment has been evaluated. The results obtained show an improved adhesion capacity and a higher proliferation rate when hMSCs are cultured on treated surfaces. This biomimetic modification of the titanium surface induces the expression of osteblastic differentiation markers (RUNX2 and Osteopontin) in the absence of any externally provided differentiation factor. As a main conclusion, our biomimetic surface modification could lead to a substantial improvement in osteoinduction in titanium alloy implants.
Fluorescence-Doped Particles for Simultaneous Temperature and Velocity Imaging
NASA Technical Reports Server (NTRS)
Danehy, Paul M.; Tiemsin, Pacita I.; Wohl, Chrostopher J.; Verkamp, Max; Lowe, T.; Maisto, P.; Byun, G.; Simpson, R.
2012-01-01
Polystyrene latex microspheres (PSLs) have been used for particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements for several decades. With advances in laser technologies, instrumentation, and data processing, the capability to collect more information about fluid flow beyond velocity is possible using new seed materials. To provide additional measurement capability, PSLs were synthesized with temperature-sensitive fluorescent dyes incorporated within the particle. These multifunctional PSLs would have the greatest impact if they could be used in large scale facilities with minimal modification to the facilities or the existing instrumentation. Consequently, several potential dyes were identified that were amenable to existing laser systems currently utilized in wind tunnels at NASA Langley Research Center as well as other wind and fluid (water) tunnels. PSLs incorporated with Rhodamine B, dichlorofluorescein (DCF, also known as fluorescein 548 or fluorescein 27) and other dyes were synthesized and characterized for morphology and spectral properties. The resulting particles were demonstrated to exhibit fluorescent emission, which would enable determination of both fluid velocity and temperature. They also would allow near-wall velocity measurements whereas laser scatter from surfaces currently prevents near-wall measurements using undoped seed materials. Preliminary results in a wind tunnel facility located at Virginia Polytechnic Institute and State University (Virginia Tech) have verified fluorescent signal detection and temperature sensitivity of fluorophore-doped PSLs.
Wang, Kai; Luo, Ying
2013-07-08
As one important category of biological molecules on the cell surface and in the extracellular matrix (ECM), glycosaminoglycans (GAGs) have been widely studied for biomedical applications. With the understanding that the biological functions of GAGs are driven by the complex dynamics of physiological and pathological processes, methodologies are desired to allow the elucidation of cell-GAG interactions with molecular level precision. In this study, a microtiter plate-based system was devised through a new surface modification strategy involving polydopamine (PDA) and GAG molecules functionalized with hydrazide chemical groups. A small library of GAGs including hyaluronic acid (with different molecular weights), heparin, and chondroitin sulfate was successfully immobilized via defined binding sites onto the microtiter plate surface under facile aqueous conditions. The methodology then allowed parallel studies of the GAG-modified surfaces in a high-throughput format. The results show that immobilized GAGs possess distinct properties to mediate protein adsorption, cell adhesion, and inflammatory responses, with each property showing dependence on the type and molecular weight of specific GAG molecules. The PDA-assisted immobilization of hydrazide-functionalized GAGs allows biomimetic attachment of GAG molecules and retains their bioactivity, providing a new methodology to systematically probe fundamental cell-GAG interactions to modulate the bioactivity and biocompatibility of biomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, Shinji; Takeuchi, Ryuji; Salden, Walter
2007-07-01
A hydrogeological conceptual model has been developed based on pressure responses observed at multilevel pressure monitoring zones in seven boreholes and surface tilt data in and around the Mizunami Underground Research Laboratory site. Pressure changes caused by some earthquakes, cross-hole hydraulic testing, and shaft excavation activities are considered. Surface tilt has been measured from the half way of the shaft excavation phase. The shaft excavation has been commenced from July 2003 with two shafts (Main shaft and Ventilation shaft). By the end of October 2005, discharging of water in the shafts has been halted at the depths of 172 mmore » and 191 m respectively to allow modifications to be made to the water treatment facility due to an excess of F and B concentration in the water. This results in the recovery of the groundwater levels and filling of the underground workings. Beginning in February 2006 pumping has been resumed and the underground workings have been re-occupied. Continuous groundwater pressure and surface tilt measurements with some numerical analysis during the shaft excavation phase show the existence of the flow barrier fault predicted from the surface-based investigation phase and hydraulic parameter around the shafts. (authors)« less
Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.
1994-01-01
Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.
Evaluation of modified titanium surfaces physical and chemical characteristics
NASA Astrophysics Data System (ADS)
Lukaszewska-Kuska, Magdalena; Leda, Bartosz; Gajdus, Przemyslaw; Hedzelek, Wieslaw
2017-11-01
Development of dental implantology is focused, among other things, on devising active surface of the implant, conditioning acceleration of the implant's integration with the bone. Increased roughness, characteristic for group of implants with developed surface, altered topography and chemically modified implant's surface determines increased implants stability. In this study four different titanium surfaces modifications: turned (TS); aluminium oxide-blasted (Al2O3); resorbable material blasted (RBM); sandblast and then etched with a mixture of acids (SAE), were evaluated in terms of surfaces topography and chemical composition prior to in vivo analysis. Topography analysis revealed two groups: one with smooth, anisotropic, undeveloped TS surface and the second group with remaining surfaces presenting rough, isotropic, developed surfaces with added during blasting procedure aluminium for Al2O3 and calcium and phosphorus for RBM. Physical and chemical modifications of titanium surface change its microstructure (typical for SAE) and increase its roughness (highest for Al2O3-blasted and RBM surfaces). The introduced modifications develop titanium surface - 10 times for SAE surfaces, 16 times for Al2O3-blasted surfaces, and 20 times for RBM surfaces.
Summary of operations and performance of the Murdock site restoration project in 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the second full year of system operation, from January 1 through December 31, 2007. Performance in June 2005 through December 2006 was reported previously (Argonne 2007). In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters of amore » small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). The restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. The annual performance reports for the Murdock project assemble information that will become part of the five-year review and evaluation of the remediation effort. This review will occur in 2010. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the current period of operation. A gallery of photographs of the Murdock project is in Appendix A. A brief videorecording of the trees in high-wind conditions is on the compact disc (CD) inside the back cover of this document.« less
Summary of operations and performance of the Murdock site restoration project in 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
This document summarizes the performance of the groundwater and surface water restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Murdock, Nebraska, during the third full year of system operation, from January 1 through December 31, 2008. Performance in June 2005 through December 2007 was reported previously (Argonne 2007, 2008). In the Murdock project, several innovative technologies are being used to remove carbon tetrachloride contamination from a shallow aquifer underlying the town, as well as from water naturally discharged to the surface at the headwaters ofmore » a small creek (a tributary to Pawnee Creek) north of the town (Figure 1.1). The restoration activities at Murdock are being conducted by the CCC/USDA as a non-time-critical removal action under the regulatory authority and supervision of the U.S. Environmental Protection Agency (EPA), Region VII. Argonne National Laboratory assisted the CCC/USDA by providing technical oversight for the restoration effort and facilities during this review period. Included in this report are the results of all sampling and monitoring activities performed in accord with the EPA-approved Monitoring Plan for this site (Argonne 2006), as well as additional investigative activities conducted during the review period. The annual performance reports for the Murdock project assemble information that will become part of the five-year review and evaluation of the remediation effort. This review will occur in 2010. This document presents overviews of the treatment facilities (Section 2) and site operations and activities (Section 3), then describes the groundwater, surface water, vegetation, and atmospheric monitoring results (Section 4) and modifications and costs during the review period (Section 5). Section 6 summarizes the current period of operation. A gallery of photographs of the Murdock project is in Appendix A.« less
Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan
2016-07-01
Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. Copyright © 2016 Elsevier Ltd. All rights reserved.
1998-09-28
Seen from behind, the orbiter Atlantis approaches the entrance of Orbiter Processing Facility 2 (OPF-2) where it will undergo preparations for its planned flight in June 1999. Atlantis spent 10 months in Palmdale, CA, undergoing extensive inspections and modifications in the orbiter processing facility there. The modifications included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. OPF-2 consists of a 2,700-square-meter (29,000 square ft.) high bay. The building measures 29 meters (95 ft). high, 121 meters (397 ft.) long and 71 meters (233 ft.) wide
1998-09-28
Seen from behind, the orbiter Atlantis moves into the Orbiter Processing Facility 2 (OPF-2) where it will undergo preparations for its planned flight in June 1999. Atlantis spent 10 months in Palmdale, CA, undergoing extensive inspections and modifications in the orbiter processing facility there. The modifications included several upgrades enabling it to support International Space Station missions, such as adding an external airlock for ISS docking missions and installing thinner, lighter thermal protection blankets for weight reduction which will allow it to haul heavier cargo. OPF-2 consists of two 2,700-square-meter (29,000 square feet) high bays. It measures 29 meters (95 ft). high, 121 meters (397 ft) long and 71 meters (233 ft) wide
1999-09-24
KENNEDY SPACE CENTER, FLA. -- From the Shuttle Landing Facility, the orbiter Columbia leaves Kennedy Space Center on the back of a Boeing 747 Shuttle Carrier Aircraft on a ferry flight to Palmdale, Calif. Columbia, the oldest of four orbiters in NASA's fleet, will undergo extensive inspections and modifications in Boeing's Orbiter Assembly Facility during a nine-month orbiter maintenance down period (OMDP), the second in its history. Orbiters are periodically removed from flight operations for an OMDP. Columbia's first was in 1994. Along with more than 100 modifications on the vehicle, Columbia will be the second orbiter to be outfitted with the multifunctional electronic display system, or "glass cockpit." Columbia is expected to return to KSC in July 2000
Luo, Jianmei; Chi, Meiling; Wang, Hongyu; He, Huanhuan; Zhou, Minghua
2013-12-01
A convenient and promising alternative to surface modification of carbon mesh anode was fulfilled by electrochemical oxidation in the electrolyte of nitric acid or ammonium nitrate at ambient temperature. It was confirmed that such an anode modification method was low cost and effective not only in improving the efficiency of power generation in microbial fuel cells (MFCs) for synthetic wastewater treatment, but also helping to reduce the period for MFCs start-up. The MFCs with anode modification in electrolyte of nitric acid performed the best, achieving a Coulombic efficiency enhancement of 71 %. As characterized, the electrochemical modification resulted in the decrease of the anode potential and internal resistance but the increase of current response and nitrogen-containing and oxygen-containing functional groups on the carbon surface, which might contribute to the enhancement on the performances of MFCs.
Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum
NASA Astrophysics Data System (ADS)
Liu, Chengjun; Zhao, Qing; Wang, Yeguang; Shi, Peiyang; Jiang, Maofa
2016-01-01
In order to obtain hydrophobic whisker for preparing polymeric composite product, the calcium sulfate whisker (CSW) prepared from flue gas desulfurization (FGD) gypsum by hydrothermal synthesis was modified by various surfactants, and the effects of some modification conditions on the hydrophobic property of CSW were investigated in this study. Sodium stearate was considered to be a suitable surfactant and its reasonable dosage was 2% of ethanol solvent. Both physical and chemical absorptions were found in the surface modification process, and the later one was suggested to preferentially occur on the CSW surface. Moreover, modifying temperature, modifying duration, and agitation speed were experimentally found to have a remarkable influence on the modification behavior. Active ratio reached 0.845 when the modification process was conducted under reasonable conditions obtained in the current work. Finally, polypropylene sheet products were prepared from modified CSW showing an excellence mechanical property.
36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... that have been incorporated to minimize loss. The report should make specific reference to appropriate.... Retrofitting may require modifications to the piping system to ensure that adequate water capacity and pressure... storage facilities, boiler rooms or rooms containing equipment operating with a fuel supply (such as...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... National Environmental Policy Act of 1969 (NEPA), the Council on Environmental Quality Regulations (40 CFR... resulting from proposed modifications and design changes to the San Ysidro LPOE Improvements Project. The... inspection facilities, a pedestrian bridge, and a new southbound pedestrian crossing facility on the east...
NASA Technical Reports Server (NTRS)
Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)
2001-01-01
The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... operation of natural gas facilities in Sheridan County and Campbell County, Wyoming and modification of underground storage facilities at its Baker Storage Reservoir in Fallon County, Montana. The details of... firm storage deliverability from its Baker Storage Reservoir that it will use to make up for declining...
Effects of sterilization processes on NiTi alloy: surface characterization.
Thierry, B; Tabrizian, M; Savadogo, O; Yahia, L
2000-01-01
Sterilization is required for using any device in contact with the human body. Numerous authors have studied device properties after sterilization and reported on bulk and surface modifications of many materials after processing. These surface modifications may in turn influence device biocompatibility. Still, data are missing on the effect of sterilization procedures on new biomaterials such as nickel-titanium (NiTi). Herein we report on the effect of dry heat, steam autoclaving, ethylene oxide, peracetic acid, and plasma-based sterilization techniques on the surface properties of NiTi. After processing electropolished NiTi disks with these techniques, surface analyses were performed by Auger electron spectroscopy (AES), atomic force microscopy (AFM), and contact angle measurements. AES analyses revealed a higher Ni concentration (6-7 vs. 1%) and a slightly thicker oxide layer on the surface for heat and ethylene oxide processed materials. Studies of surface topography by AFM showed up to a threefold increase of the surface roughness when disks were dry heat sterilized. An increase of the surface energy of up to 100% was calculated for plasma treated surfaces. Our results point out that some surface modifications are induced by sterilization procedures. Further work is required to assess the effect of these modifications on biocompatibility, and to determine the most appropriate methods to sterilize NiTi. Copyright 2000 John Wiley & Sons, Inc.
Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis.
Weng, Bo; Lu, Kang-Qiang; Tang, Zichao; Chen, Hao Ming; Xu, Yi-Jun
2018-04-18
Recently, loading ligand-protected gold (Au) clusters as visible light photosensitizers onto various supports for photoredox catalysis has attracted considerable attention. However, the efficient control of long-term photostability of Au clusters on the metal-support interface remains challenging. Herein, we report a simple and efficient method for enhancing the photostability of glutathione-protected Au clusters (Au GSH clusters) loaded on the surface of SiO 2 sphere by utilizing multifunctional branched poly-ethylenimine (BPEI) as a surface charge modifying, reducing and stabilizing agent. The sequential coating of thickness controlled TiO 2 shells can further significantly improve the photocatalytic efficiency, while such structurally designed core-shell SiO 2 -Au GSH clusters-BPEI@TiO 2 composites maintain high photostability during longtime light illumination conditions. This joint strategy via interfacial modification and composition engineering provides a facile guideline for stabilizing ultrasmall Au clusters and rational design of Au clusters-based composites with improved activity toward targeting applications in photoredox catalysis.
Soft chemical synthesis of silicon nanosheets and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Hideyuki; Ikuno, Takashi
2016-12-15
Two-dimensional silicon nanomaterials are expected to show different properties from those of bulk silicon materials by virtue of surface functionalization and quantum size effects. Since facile fabrication processes of large area silicon nanosheets (SiNSs) are required for practical applications, a development of soft chemical synthesis route without using conventional vacuum processes is a challenging issue. We have recently succeeded to prepare SiNSs with sub-nanometer thicknesses by exfoliating layered silicon compounds, and they are found to be composed of crystalline single-atom-thick silicon layers. In this review, we present the synthesis and modification methods of SiNSs. These SiNSs have atomically flat andmore » smooth surfaces due to dense coverage of organic moieties, and they are easily self-assembled in a concentrated state to form a regularly stacked structure. We have also characterized the electron transport properties and the electronic structures of SiNSs. Finally, the potential applications of these SiNSs and organic modified SiNSs are also reviewed.« less
Effect of Surface Imperfections and Excrescences on the Crossflow Instability
NASA Astrophysics Data System (ADS)
Tufts, Matthew; Duncan, Glen, Jr.; Crawford, Brian; Reed, Helen; Saric, William
2012-11-01
Presented is analysis of the planned SWIFTER experiment to be flown on Texas A&M University's O-2A aircraft. Simultaneous control of the crossflow and streamwise boundary-layer instabilities is a challenge for laminar flow control on swept wings. Solving this problem is an active area of research, with a specific need to quantify the effect of surface imperfections and outer mold line excrescences on crossflow instabilities. The SWIFTER test article is a modification of a prior-tested flight model, with the additional capability of creating controlled excrescences in flight. Using a finite-element Navier-Stokes solution and a spectrally accurate boundary-layer solver, coupled with linear and nonlinear stability analyses, we show that the flow field over the test article is well suited to this study. Results are compared with flight data. The work is supported by the Air Force Research Laboratory through General Dynamics Information Technology, Inc. under sub Agreement No USAF-3446-11-50-SC-01 and the Texas A&M Supercomputing Facility.
Space environment effects on polymers in low earth orbit
NASA Astrophysics Data System (ADS)
Grossman, E.; Gouzman, I.
2003-08-01
Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. The low earth orbit (LEO) space environment includes hazards such as atomic oxygen, UV radiation, ionizing radiation (electrons, protons), high vacuum, plasma, micrometeoroids and debris, as well as severe temperature cycles. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The high vacuum induces material outgassing (e.g. low-molecular weight residues, plasticizers and additives) and consequent contamination of nearby surfaces. The present work reviews the LEO space environment constituents and their interactions with polymers. Examples of degradation of materials exposed in ground simulation facilities are presented. The issues discussed include the erosion mechanisms of polymers, formation of contaminants and their interaction with the space environment, and protection of materials from the harsh space environment.
Mitigating oil spills in the water column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barry, Edward; Libera, Joseph A.; Mane, Anil U.
The scale and scope of uncontrolled oil spills can be devastating. Diverse marine environments and fragile ecologies are some of the most susceptible to the many ill effects, while the economic costs can be crippling. A notoriously difficult challenge with no known technological solution is the successful removal of oil dispersed in the water column. Here, we address this problem through cheap and reusable oil sorbents based on the chemical modification of polymer foams. Interfacial chemistry was optimized and subsequently tested in a simulated marine environment at the National Oil Spill Response Research & Renewable Energy Test Facility, Ohmsett. Wemore » find favorable performance for surface oil mitigation and, for the first time, demonstrate the advanced sorbent's efficiency and efficacy at pilot scale in extraction of crude oil and refined petroleum products dispersed in the water column. As a result, this is a potentially disruptive technology, opening a new field of environmental science focused on sub-surface pollutant sequestration.« less
Mitigating oil spills in the water column
Barry, Edward; Libera, Joseph A.; Mane, Anil U.; ...
2017-10-05
The scale and scope of uncontrolled oil spills can be devastating. Diverse marine environments and fragile ecologies are some of the most susceptible to the many ill effects, while the economic costs can be crippling. A notoriously difficult challenge with no known technological solution is the successful removal of oil dispersed in the water column. Here, we address this problem through cheap and reusable oil sorbents based on the chemical modification of polymer foams. Interfacial chemistry was optimized and subsequently tested in a simulated marine environment at the National Oil Spill Response Research & Renewable Energy Test Facility, Ohmsett. Wemore » find favorable performance for surface oil mitigation and, for the first time, demonstrate the advanced sorbent's efficiency and efficacy at pilot scale in extraction of crude oil and refined petroleum products dispersed in the water column. As a result, this is a potentially disruptive technology, opening a new field of environmental science focused on sub-surface pollutant sequestration.« less
NASA Technical Reports Server (NTRS)
Shelley, Richard; Ross, William L., Sr.
1993-01-01
The Auxiliary Power Unit (APU) fuel (hydrazine) tanks were removed from the Columbia Shuttle during major modification of the vehicle, because of long-term hydrazine compatibility concerns. The three tanks had been in service for 11 years. As part of an effort to determine whether the useful life of the fuel tanks can be extended, examination of the ethylene propylene rubber (EPR) diaphragm and the metal casing from one of the APU tanks was required. NASA Johnson Space Center Propulsion and Power Division requested the NASA Johnson Space Center White Sands Test Facility to examine the EPR diaphragm for signs of degradation that might limit the life of its function in the APU tank and to examine the metal casing for signs of surface corrosion. No appreciable degradation of the EPR diaphragm was noted. A decrease in the tensile properties was found, but tensile failure is considered unlikely because the metal casing constrains the diaphragm, preventing it from elongating more than a few percent. The titanium casing showed no evidence of surface corrosion.
Liang, Meijuan; Ren, Yi; Zhang, Haijuan; Ma, Yunxia; Niu, Xiaoying; Chen, Xingguo
2017-09-01
Heteroatom-doped carbon nanoparticles (CNPs) have attracted considerable attention due to an effective improvement in their intrinsic properties. Here, a facile and simple synthesis of nitrogen, boron co-doped carbon nanoparticles (NB-CNPs) from a sole precursor, 3-aminophenylboronic acid, was performed via a one-step solid-phase approach. Because of the presence of boronic acid, NB-CNPs can be used directly as a fluorescent probe for glucose. Based on a boronic acid-triggered specific reaction, we developed a simple NB-CNP probe without surface modification for the detection of glucose. When glucose was introduced, the fluorescence of NB-CNPs was suppressed through a surface-quenching states mechanism. Obvious fluorescence quenching allowed the highly sensitive determination of glucose with a limit of detection of 1.8 μM. Moreover, the proposed method has been successfully used to detect glucose in urine from people with diabetes, suggesting potential application in sensing glucose. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Binh Pham, Van; ThanhTung Pham, Xuan; Nhat Khoa Phan, Thanh; Thanh Tuyen Le, Thi; Chien Dang, Mau
2015-12-01
We present a facile technique that only uses conventional micro-techniques and two size-reduction steps to fabricate wafer-scale silicon nanowire (SiNW) with widths of 200 nm. Initially, conventional lithography was used to pattern SiNW with 2 μm width. Then the nanowire width was decreased to 200 nm by two size-reduction steps with isotropic wet etching. The fabricated SiNW was further investigated when used with nanowire field-effect sensors. The electrical characteristics of the fabricated SiNW devices were characterized and pH sensitivity was investigated. Then a simple and effective surface modification process was carried out to modify SiNW for subsequent binding of a desired receptor. The complete SiNW-based biosensor was then used to detect alpha-fetoprotein (AFP), one of the medically approved biomarkers for liver cancer diagnosis. Electrical measurements showed that the developed SiNW biosensor could detect AFP with concentrations of about 100 ng mL-1. This concentration is lower than the necessary AFP concentration for liver cancer diagnosis.
Modeling polyvinyl chloride Plasma Modification by Neural Networks
NASA Astrophysics Data System (ADS)
Wang, Changquan
2018-03-01
Neural networks model were constructed to analyze the connection between dielectric barrier discharge parameters and surface properties of material. The experiment data were generated from polyvinyl chloride plasma modification by using uniform design. Discharge voltage, discharge gas gap and treatment time were as neural network input layer parameters. The measured values of contact angle were as the output layer parameters. A nonlinear mathematical model of the surface modification for polyvinyl chloride was developed based upon the neural networks. The optimum model parameters were obtained by the simulation evaluation and error analysis. The results of the optimal model show that the predicted value is very close to the actual test value. The prediction model obtained here are useful for discharge plasma surface modification analysis.
Volumetrical Characterization of Sheet Molding Compounds
Calvimontes, Alfredo; Grundke, Karina; Müller, Anett
2010-01-01
For a comprehensive study of Sheet Molding Compound (SMC) surfaces, topographical data obtained by chromatic confocal imaging were submitted systematically for the development of a profile model to understand the formation of cavities on the surface. In order to qualify SMC surfaces and to predict their coatability, a characterization of cavities is applied. To quantify the effect of surface modification treatments, a new parameter (Surface Relative Smooth) is presented, applied and probed. The parameter proposed can be used for any surface modification of any solid material. PMID:28883370
NASA Astrophysics Data System (ADS)
Hayes, Heather J.
1999-11-01
Three distinct heterogeneous polymer modification reactions are explored in this work. The first is a bulk reaction commonly conducted on polyolefins---the free radical addition of maleic anhydride. This reaction was run using supercritical carbon dioxide (SC CO2) as the solvent. The second was the chemical surface modification of an amorphous fluorocopolymer of tetrafluoroethylene and a perfluorodioxole monomer (Teflon AF). Several reactions were explored to reduce the surface of the fluorocopolymer for the enhancement of wettability. The last modification was also on Teflon AF and involved the physical modification of the surface through the transport polymerization of xylylene in order to synthesize a novel bilayer membrane. The bulk maleation of poly-4-methyl-1-pentene (PMP) was the focus of the first project. SC CO2 was utilized as both solvent and swelling agent to promote this heterogeneous reaction and led to successful grafting of anhydride groups on both PMP and linear low density polyethylene. Varying the reaction conditions and reagent concentrations allowed optimization of the reaction. The grafted anhydride units were found to exist as single maleic and succinic grafts, and the PMP became crosslinked upon maleation. The surface of a fluoropolymer can be difficult to alter. An examination of three reactions was made to determine the reactivity of Teflon AF: sodium naphthalenide treatment (Na-Nap), aluminum metal modification through deposition and dissolution, and mercury/ammonia photosensitization. The fluorocopolymer with the lower perfluorodioxole percentage was found to be more reactive towards modification with the Na-Nap treatment. The other modification reactions appeared to be nearly equally reactive toward both fluorocopolymers. The functionality of the Na-Nap-treated surface was examined in detail with the use of several derivatization reactions. In the final project, an asymmetric gas separation membrane was synthesized using Teflon AF as the highly permeable support layer and chemical vapor deposited poly(p-xylylene) (PPX) as the thin selective layer. This bilayer membrane has oxygen and nitrogen permeability values close to those predicted by the series resistance model. To enhance the weak adhesive bond between Teflon AF and PPX, Na-Nap reduction was used to modify the Teflon AF surface prior to the vapor deposition polymerization of di-p-xylylene monomer.
Water-wettable polypropylene fibers by facile surface treatment based on soy proteins.
Salas, Carlos; Genzer, Jan; Lucia, Lucian A; Hubbe, Martin A; Rojas, Orlando J
2013-07-24
Modification of the wetting behavior of hydrophobic surfaces is essential in a variety of materials, including textiles and membranes that require control of fluid interactions, adhesion, transport processes, sensing, etc. This investigation examines the enhancement of wettability of an important class of textile materials, viz., polypropylene (PP) fibers, by surface adsorption of different proteins from soybeans, including soy flour, isolate,glycinin, and β-conglycinin. Detailed investigations of soy adsorption from aqueous solution (pH 7.4, 25 °C) on polypropylene thin films is carried out using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). A significant amount of protein adsorbs onto the PP surfaces primarily due to hydrophobic interactions. We establish that adsorption of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA) onto PP surfaces prior to the protein deposition dramatically enhances its adsorption. The adsorption of proteins from native (PBS buffer, pH 7.4, 25 °C) and denatured conditions (PBS buffer, pH 7.4, 95 °C) onto DODA-treated PP leads to a high coverage of the proteins on the PP surface as confirmed by a significant improvement in water wettability. A shift in the contact angle from 128° to completely wettable surfaces (≈0°) is observed and confirmed by imaging experiments conducted with fluorescence tags. Furthermore, the results from wicking tests indicate that hydrophobic PP nonwovens absorb a significant amount of water after protein treatment, i.e., the PP-modified surfaces become completely hydrophilic.
Rudolph, Andreas; Teske, Michael; Illner, Sabine; Kiefel, Volker; Sternberg, Katrin; Grabow, Niels; Wree, Andreas; Hovakimyan, Marina
2015-01-01
Purpose Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Materials and Methods Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Results Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Conclusion Surface modification of polymers can provide a useful approach to enhance their biocompatibility. For clinical application, attempts should be made to stabilize the plasma modification and use it for coupling of biomolecules to accelerate the re-endothelialization of stent surfaces in vivo. PMID:26641662
Design and Shielding of Radiotherapy Treatment Facilities; IPEM Report 75, 2nd Edition
NASA Astrophysics Data System (ADS)
Horton, Patrick; Eaton, David
2017-07-01
Design and Shielding of Radiotherapy Treatment Facilities provides readers with a single point of reference for protection advice to the construction and modification of radiotherapy facilities. The book assembles a faculty of national and international experts on all modalities including megavoltage and kilovoltage photons, brachytherapy and high-energy particles, and on conventional and Monte Carlo shielding calculations. This book is a comprehensive reference for qualified experts and radiation-shielding designers in radiation physics and also useful to anyone involved in the design of radiotherapy facilities.
Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology
Sandak, Jakub; Goli, Giacomo; Cetera, Paola; Sandak, Anna; Cavalli, Alberto; Todaro, Luigi
2017-01-01
The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87. The objective quantification of the surface quality was also done by means of a three dimensions (3D) surface scanner for the whole range of grain orientations. Visual assessment and 3D surface analysis showed a good agreement in terms of conclusions. The best quality of the wood surface was obtained when machining thermally modified samples. The positive effect of the material modification was apparent when cutting deodar cedar, black pine and black poplar in unfavorable conditions (i.e., against the grain). The difference was much smaller for an easy-machinability specie such as Italian alder. The use of dull tools resulted in the worst surface quality. Thermal modification has shown a very positive effect when machining with dull tools, leading to a relevant increment of the final surface smoothness. PMID:28772480
Machinability of Minor Wooden Species before and after Modification with Thermo-Vacuum Technology.
Sandak, Jakub; Goli, Giacomo; Cetera, Paola; Sandak, Anna; Cavalli, Alberto; Todaro, Luigi
2017-01-28
The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87. The objective quantification of the surface quality was also done by means of a three dimensions (3D) surface scanner for the whole range of grain orientations. Visual assessment and 3D surface analysis showed a good agreement in terms of conclusions. The best quality of the wood surface was obtained when machining thermally modified samples. The positive effect of the material modification was apparent when cutting deodar cedar, black pine and black poplar in unfavorable conditions (i.e., against the grain). The difference was much smaller for an easy-machinability specie such as Italian alder. The use of dull tools resulted in the worst surface quality. Thermal modification has shown a very positive effect when machining with dull tools, leading to a relevant increment of the final surface smoothness.
Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide
NASA Astrophysics Data System (ADS)
Bai, Liqiang; Zhu, Liangjun; Min, Sijia; Liu, Lin; Cai, Yurong; Yao, Juming
2008-03-01
The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B ( CB) antimicrobial peptide, (NH 2)-NGIVKAGPAIAVLGEAAL-CONH 2, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC·HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI).
NASA Astrophysics Data System (ADS)
Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María
2017-08-01
Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.
NASA Astrophysics Data System (ADS)
Cao, Jiliang; Wang, Chaoxia
2017-05-01
Multifunctional silk fabrics with electrical conductive, anti-ultraviolet and water repellent were successfully prepared by surface modification with graphene oxide (GO). The yellow-brown GO deposited on the surface of silk fabric was converted into graphitic black reduced graphene (RGO) by sodium hydrosulfite. The surface properties of silk fabrics were changed by repeatedly RGO coating process, which have been proved by SEM and XPS. The SEM results showed that the RGO sheets were successive form a continuously thin film on the surface of silk fabrics, and the deposition of GO or RGO also can be proved by XPS. The electrical conductivity was tested by electrical surface resistance value of the silk fabric, the surface resistance decreased with increasing of RGO surface modification times, and a low surface resistance value reached to 3.24 KΩ cm-1 after 9 times of modification, indicating the silk obtained excellent conductivity. The UPF value of one time GO modification silk fabric (silk-1RGO) was enhanced significantly to 24.45 in comparison to 10.40 of original silk. The contact angle of RGO coating silk samples was all above of 120°. The durability of RGO coated silk fabrics was tested by laundering. The electrical surface resistance of silk-4RGO (65.74 KΩ cm-1), silk-6RGO (15.54 KΩ cm-1) and silk-8RGO (3.86 KΩ cm-1) fabrics was up to 86.82, 22.30 and 6.57 KΩ cm-1 after 10 times of standard washing, respectively. The UPF value, contact angle and color differences of RGO modified silk fabric slightly changed before and after 10 times of standard washing. Therefore, the washing fastness of electric conduction, anti-ultraviolet and water repellent multifunctional silk fabrics was excellent.
ERIC Educational Resources Information Center
Comiskey, Vincent P.; And Others
Provided are some of the guidelines used in the Village School Behavior Modification Program for children with behavior problems in Bergen County, New Jersey. Included are definitions of the terms "emotionally disturbed" and "socially maladjusted", descriptions of some behavior modification techniques used, copies of forms and…
ERIC Educational Resources Information Center
New York State Commission on Quality of Care for the Mentally Disabled, Albany.
This report examines issues concerned with the use of aversive behavior modification techniques in actual treatment practices at one intermediate care facility for the mentally retarded. The review of these practices reveals how, once the philosophy of using aversives takes hold at a program (to deal with seemingly intractable behaviors), its…
40 CFR Table 2 to Subpart Ooo - Stack Emission Limits for Affected Facilities With Capture Systems
Code of Federal Regulations, 2010 CFR
2010-07-01
... 60.671) that commenced construction, modification, or reconstruction after August 31, 1983 but before April 22, 2008 0.05 g/dscm (0.022 gr/dscf) a 7 percent for dry control devices b An initial performance....670 and 60.671) that commence construction, modification, or reconstruction on or after April 22, 2008...
77 FR 27804 - Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... modification to the auxiliary cooling tower and the addition of two 60-gallon lube oil tanks associated with... modification of the auxiliary cooling tower and the addition of two 60-gallon lube oil tanks for the new radial... Mississippi River water is the Southeast Wood Fiber company located at the Claiborne County Port facility, 0.8...
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility Bay 2, United Space Alliance technician Michael Vanwart installs thermal protection system blankets in the nose cap of space shuttle Endeavour. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility bay 2, United Space Alliance technician Michael Vanwart prepares to install thermal protection system blankets in the nose cap of space shuttle Endeavour. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
2005-11-30
KENNEDY SPACE CENTER, FLA. - In Orbiter Processing Facility Bay 2, United Space Alliance technician Michael Vanwart installs thermal protection system blankets in the nose cap of space shuttle Endeavour. Endeavour recently came out of a nearly two-year Orbiter Major Modification period which began in December 2003. Engineers and technicians spent 900,000 hours performing 124 modifications to the vehicle. These included all recommended return-to-flight safety modifications, bonding more than 1,000 thermal protection system tiles and inspecting more than 150 miles of wiring throughout the orbiter. Shuttle major modification periods are scheduled at regular intervals to enhance safety and performance, infuse new technology, and allow for thorough inspections of the airframe and wiring of the vehicles. This was the second of these modification periods performed entirely at Kennedy Space Center. Endeavour's previous modification was completed in March 1997.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... Information Collection; Application for Waiver of Surface Sanitary Facilities' Requirements (Pertaining to... for Waiver of Surface Sanitary Facilities' Requirements (Pertaining to Coal Mines). DATES: All...-3 require coal mine operators to provide bathing facilities, clothing change rooms, and sanitary...
30 CFR 71.404 - Application for waiver of surface facilities requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements. 71.404 Section 71.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS... Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a...
Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources
NASA Astrophysics Data System (ADS)
Kulevoy, Timur V.; Chalyhk, Boris B.; Fedin, Petr A.; Sitnikov, Alexey L.; Kozlov, Alexander V.; Kuibeda, Rostislav P.; Andrianov, Stanislav L.; Orlov, Nikolay N.; Kravchuk, Konstantin S.; Rogozhkin, Sergey V.; Useinov, Alexey S.; Oks, Efim M.; Bogachev, Alexey A.; Nikitin, Alexander A.; Iskandarov, Nasib A.; Golubev, Alexander A.
2016-02-01
Metal Vapor Vacuum Arc (MEVVA) ion source (IS) is a unique tool for production of high intensity metal ion beam that can be used for material surface modification. From the other hand, the duoplasmatron ion source provides the high intensity gas ion beams. The MEVVA and duoplasmatron IS developed in Institute for Theoretical and Experimental Physics were used for the reactor steel surface modification experiments. Response of ferritic-martensitic steel specimens on titanium and nitrogen ions implantation and consequent vacuum annealing was investigated. Increase in microhardness of near surface region of irradiated specimens was observed. Local chemical analysis shows atom mixing and redistribution in the implanted layer followed with formation of ultrafine precipitates after annealing.
Surface modification using low energy ground state ion beams
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)
1990-01-01
A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.
Surface modification of biodegradable magnesium and its alloys for biomedical applications
Tian, Peng; Liu, Xuanyong
2015-01-01
Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues heal. Moreover, rapid degradation of the magnesium-based implants will also cause some adverse effects to their surrounding environment, such as local gas cavity around the implant, local alkalization and magnesium ion enrichment, which will reduce the integration between implant and tissue. So, in order to obtain better performance of magnesium-based implants in clinical trials, special alloy designs and surface modifications are prerequisite. Actually, when a magnesium-based implant is inserted in vivo, corrosion firstly happens at the implant-tissue interface and the biological response to implant is also determined by the interaction at this interface. So the surface properties, such as corrosion resistance, hemocompatibility and cytocompatibility of the implant, are critical for their in vivo performance. Compared with alloy designs, surface modification is less costly, flexible to construct multi-functional surface and can prevent addition of toxic alloying elements. In this review, we would like to summarize the current investigations of surface modifications of magnesium and its alloys for biomedical application. The advantages/disadvantages of different surface modification methods are also discussed as a suggestion for their utilization. PMID:26816637
Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok
2016-06-01
Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Euromir '95: first results from the Dustwatch-P detectors of the european space exposure facility
NASA Astrophysics Data System (ADS)
Shrine, N. R. G.; McDonnell, J. A. M.; Burchell, M. J.; Gardner, D. J.; Jolly, H. S.; Ratcliff, P. R.; Thomson, R.
A small, passive, retrievable dust detector/collector experiment (Dustwatch-P), based on thin foil and aerogel capture cells has been developed at the University of Kent by the Unit for Space Sciences & Astrophysics (USSA). It was mounted in the European Space Exposure Facility (ESEF) designed by the Institut d'Astrophysique Spatial (Orsay, France) and flown on the joint ESA/Russian Space Agency EuroMir '95 mission. The experiment sampled micrometeoroids and space debris in the immediate vicinity of a large space facility (Mir) and offers the opportunity for detailed particle characterisation by intact capture. Dustwatch-P was housed in 2 ESEF cassettes, each contained: 1849mm^2 of aluminium foil capture cells, 2.4mum and 5mum thick respectively, mounted above a pure copper plate; 8450mm^2 of 12mm thick silica aerogel (density of 0.1 g/cm^3 and pore size of approximately 0.07mum). 8650mm^2 of experiment-holder surfaces (highly polished 6061-T6 aluminium alloy) were also used for detection. The foils and experiment-holder surfaces readily give a flux measurement for comparison to previous data with chemical classification of any impactor residues. The aerogel was intended to capture, with minimal modification, incident hypervelocity particles. Dustwatch-P was exposed to the space environment when the ESEF cassettes were opened during Mir EVA's on the 20/21 October '95. The cassettes were hermetically sealed in space for return to Earth in February '96. We present the first results of post-flight analysis. A hypervelocity perforation has been found in each foil and a region of ejecta impacts indicating a large impact in the vicinity. This impact rate gives a higher flux than expected, possibly due to a debris cloud.
Surface modification of protein enhances encapsulation in chitosan nanoparticles
NASA Astrophysics Data System (ADS)
Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael
2018-04-01
Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.
Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.
Wang, Zhengmu; Zhang, Hongbin; Chu, Axel J; Jackson, John; Lin, Karen; Lim, Chinten James; Lange, Dirk; Chiao, Mu
2018-04-01
Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature, an analogous scaffold of double network hydrogel was fabricated by creating a poly(2-hydroxyethyl methacrylate) (pHEMA) network in the porous structure of alginate hydrogels. The resulting hydrogel possessed hierarchical NN structure and showed significantly improved mechanical strength but still maintained high elasticity comparable to soft tissues due to a mutual strengthening effect between the two networks. The tough hydrogel is also self-lubricated, exhibiting a surface friction coefficient comparable with polydimethylsiloxane (PDMS) substrates lubricated by a commercial aqueous lubricant (K-Y Jelly) and other low surface friction hydrogels. Additional properties of this hydrogel include high hydrophilicity, good biocompatibility, tunable cell adhesion and bacterial resistance after incorporation of silver nanoparticles. Firm bonding of the hydrogel on silicone substrates could be achieved through facile chemical modification, thus enabling the use of this hydrogel as a versatile coating material for biomedical applications. In this study, we developed a tough hydrogel by crosslinking HEMA monomers in alginate hydrogels and forming a well-organized structure of hierarchical nested network (NN). Different from most reported stretchable alginate-based hydrogels, the NN hydrogel shows higher compressive strength but retains comparable softness to alginate counterparts. This work further demonstrated the good integration of the tough hydrogel with silicone substrates through chemical modification and micropillar structures. Other properties including surface friction, biocompatibility and bacterial resistance were investigated and the hydrogel shows a great promise as a versatile coating material for biomedical applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prucha, R. H.; Dayton, C. S.; Hawley, C. M.
2002-12-01
The Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, a former Department of Energy nuclear weapons manufacturing facility, is currently undergoing closure. The natural semi-arid interaction between surface and subsurface flow at RFETS is complex and complicated by the industrial modifications to the flow system. Using a substantial site data set, a distributed parameter, fully-integrated hydrologic model was developed to assess the hydrologic impact of different hypothetical site closure configurations on the current flow system and to better understand the integrated hydrologic behavior of the system. An integrated model with this level of detail has not been previously developed in a semi-arid area, and a unique, but comprehensive, approach was required to calibrate and validate the model. Several hypothetical scenarios were developed to simulate hydrologic effects of modifying different aspects of the site. For example, some of the simulated modifications included regrading the current land surface, changing the existing surface channel network, removing subsurface trenches and gravity drain flow systems, installing a slurry wall and geotechnical cover, changing the current vegetative cover, and converting existing buildings and pavement to permeable soil areas. The integrated flow model was developed using a rigorous physically-based code so that realistic design parameters can simulate these changes. This code also permitted evaluation of changes to complex integrated hydrologic system responses that included channelized and overland flow, pond levels, unsaturated zone storage, groundwater heads and flow directions, and integrated water balances for key areas. Results generally show that channel flow offsite decreases substantially for different scenarios, while groundwater heads generally increase within the reconfigured industrial area most of which is then discharged as evapotranspiration. These changes have significant implications to site closure and operation.
Investigation of the antibiofilm capacity of peptide-modified stainless steel
Cao, Pan; Li, Wen-Wu; Morris, Andrew R.; Horrocks, Paul D.; Yuan, Cheng-Qing
2018-01-01
Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml−1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research. PMID:29657809
Investigation of the antibiofilm capacity of peptide-modified stainless steel.
Cao, Pan; Li, Wen-Wu; Morris, Andrew R; Horrocks, Paul D; Yuan, Cheng-Qing; Yang, Ying
2018-03-01
Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml -1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research.
NASA Astrophysics Data System (ADS)
Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun
2014-03-01
Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.
WIPP Hazardous Waste Facility Permit Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehrman, B.; Most, W.
2006-07-01
The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification requestmore » that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)« less
Beshkar, Farshad; Khojasteh, Hossein; Salavati-Niasari, Masoud
2017-01-01
In this work we have demonstrated a facile formation of CuO nanostructures on copper substrates by the oxidation of copper foil in ethylene glycol (EG) at 80 °C. On immersing a prepared CuO film into a solution containing 0.1 g Zn(acac)2 in 20 mL EG for 8 h, ZnO flower-like microstructures composed of hierarchical three-dimensional (3D) aggregated nanoparticles and spherical architectures were spontaneously formed at 100 °C. The as-synthesized thin films and 3D microstructures were characterized using XRD, SEM, and EDS techniques. The effects of sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG) 6000 as surfactants and stabilizers on the morphology of the CuO and ZnO structures were discussed. Possible growth mechanisms for the controlled organization of primary building units into CuO nanostructures and 3D flower-like ZnO architectures were proposed. The hydrophobic property of the products was characterized by means of water contact angle measurement. After simple surface modification with stearic acid and PDMS, the resulting films showed hydrophobic and even superhydrophobic characteristics due to their special surface energy and nano-microstructure morphology. Importantly, stable superhydrophobicity with a contact angle of 153.5° was successfully observed for CuO-ZnO microflowers after modification with PDMS. The electrochemical impedance measurements proved that the anticorrosion efficiency for the CuO/ZnO/PDMS sample was about 99%. PMID:28773056
Beshkar, Farshad; Khojasteh, Hossein; Salavati-Niasari, Masoud
2017-06-25
In this work we have demonstrated a facile formation of CuO nanostructures on copper substrates by the oxidation of copper foil in ethylene glycol (EG) at 80 °C. On immersing a prepared CuO film into a solution containing 0.1 g Zn(acac)₂ in 20 mL EG for 8 h, ZnO flower-like microstructures composed of hierarchical three-dimensional (3D) aggregated nanoparticles and spherical architectures were spontaneously formed at 100 °C. The as-synthesized thin films and 3D microstructures were characterized using XRD, SEM, and EDS techniques. The effects of sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG) 6000 as surfactants and stabilizers on the morphology of the CuO and ZnO structures were discussed. Possible growth mechanisms for the controlled organization of primary building units into CuO nanostructures and 3D flower-like ZnO architectures were proposed. The hydrophobic property of the products was characterized by means of water contact angle measurement. After simple surface modification with stearic acid and PDMS, the resulting films showed hydrophobic and even superhydrophobic characteristics due to their special surface energy and nano-microstructure morphology. Importantly, stable superhydrophobicity with a contact angle of 153.5° was successfully observed for CuO-ZnO microflowers after modification with PDMS. The electrochemical impedance measurements proved that the anticorrosion efficiency for the CuO/ZnO/PDMS sample was about 99%.
Diffusion pump modification promotes self-cleansing and high efficiency
NASA Technical Reports Server (NTRS)
Buggele, A. E.
1975-01-01
Modifications eliminate contaminant substances from pump fluid during operation, which are principal causes of torpidity on evaporative surface. Diffusion pump is also acting as still. Resulting 100 percent vigorous working surface provides much greater molecular throughput and greatly improved efficiency.
30 CFR 75.1712-2 - Location of surface facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Location of surface facilities. 75.1712-2...
30 CFR 75.1712-2 - Location of surface facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Location of surface facilities. 75.1712-2...
30 CFR 75.1712-2 - Location of surface facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Location of surface facilities. 75.1712-2...
30 CFR 75.1712-2 - Location of surface facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Location of surface facilities. 75.1712-2...
30 CFR 75.1712-2 - Location of surface facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Location of surface facilities. 75.1712-2... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1712-2 Location of surface facilities. Bathhouses, change rooms, and sanitary toilet facilities shall be in a location...
Surface modification of titanium and titanium alloys by ion implantation.
Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han
2010-05-01
Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.
Preparation of Mach-Zehnder interferometric photonic biosensors by inkjet printing technology
NASA Astrophysics Data System (ADS)
Strasser, Florian; Melnik, Eva; Muellner, Paul; Jiménez-Meneses, Pilar; Nechvile, Magdalena; Koppitsch, Guenther; Lieberzeit, Peter; Laemmerhofer, Michael; Heer, Rudolf; Hainberger, Rainer
2017-05-01
Inkjet printing is a versatile method to apply surface modification procedures in a spatially controlled, cost-effective and mass-fabrication compatible manner. Utilizing this technology, we investigate two different approaches for functionalizing label-free optical waveguide based biosensors: a) surface modification with amine-based functional polymers (biotin-modified polyethylenimine (PEI-B)) employing active ester chemistry and b) modification with dextran based hydrogel thin films employing photoactive benzophenone crosslinker moieties. Whereas the modification with PEI-B ensures high receptor density at the surface, the hydrogel films can serve both as a voluminous matrix binding matrix and as a semipermeable separation layer between the sensor surface and the sample. We use the two surface modification strategies both individually and in combination for binding studies towards the detection of the protein inflammation biomarker, C-reactive protein (CRP). For the specific detection of CRP, we compare two kinds of capture molecules, namely biotinylated antibodies and biotinylated CRP-specific DNA based aptamers. Both kinds of capture molecules were immobilized on the PEI-B by means of streptavidin-biotin affinity binding. As transducer, we use an integrated four-channel silicon nitride (Si3N4) waveguide based Mach-Zehnder interferometric (MZI) photonic sensing platform operating at a wavelength of 850nm (TM-mode).
40 CFR 60.110b - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... an attachment to the notification required by 40 CFR 65.5(b). [52 FR 11429, Apr. 8, 1987, as amended... designation of affected facility. (a) Except as provided in paragraph (b) of this section, the affected..., reconstruction, or modification is commenced after July 23, 1984. (b) This subpart does not apply to storage...
40 CFR 60.110b - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... an attachment to the notification required by 40 CFR 65.5(b). [52 FR 11429, Apr. 8, 1987, as amended... designation of affected facility. (a) Except as provided in paragraph (b) of this section, the affected..., reconstruction, or modification is commenced after July 23, 1984. (b) This subpart does not apply to storage...
40 CFR 60.110b - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... an attachment to the notification required by 40 CFR 65.5(b). [52 FR 11429, Apr. 8, 1987, as amended... designation of affected facility. (a) Except as provided in paragraph (b) of this section, the affected..., reconstruction, or modification is commenced after July 23, 1984. (b) This subpart does not apply to storage...
40 CFR 60.110b - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... an attachment to the notification required by 40 CFR 65.5(b). [52 FR 11429, Apr. 8, 1987, as amended... designation of affected facility. (a) Except as provided in paragraph (b) of this section, the affected..., reconstruction, or modification is commenced after July 23, 1984. (b) This subpart does not apply to storage...
40 CFR 60.110b - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... an attachment to the notification required by 40 CFR 65.5(b). [52 FR 11429, Apr. 8, 1987, as amended... designation of affected facility. (a) Except as provided in paragraph (b) of this section, the affected..., reconstruction, or modification is commenced after July 23, 1984. (b) This subpart does not apply to storage...
1991-10-01
Agency FFA Federal Facilities Agreement FFCA Federal Facilities Compliance Agreement FGD Flue Gas Desulfurization FIFRA Federal Insecticide, Fungicide...carrying out response. If none, state why. EXAMPLE: Gas barriers used to control and contain vapor emissions. Runoff contained by excavating ditch...NPDES PERMITS 20-2 2006 WATER QUALITY STANDARDS 20-2 2007 POLLUTION CONTROL TECHNOLOGY 20-3 2008 TECHNOLOGY VARIANCE AND MODIFICATIONS 20-4 2009
30 CFR 250.905 - How do I get approval for the installation, modification, or repair of my platform?
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONTINENTAL SHELF Platforms and Structures Platform Approval Program § 250.905 How do I get approval for the...) Application cover letter Proposed structure designation, lease number, area, name, and block number, and the type of facility your facility (e.g., drilling, production, quarters). The structure designation must...
Land-atmosphere interactions over the continental United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Xubin
This paper briefly discusses four suggested modifications for land surface modeling in climate models. The impact of the modifications on climate simulations is analyzed with the Biosphere-Atmosphere Transfer Scheme (BATS) land surface model. It is found that the modifications can improve BATS simulations. In particular, the sensitivity of BATS to the prescribed value of physical root fraction which cannot be observed from satellite remote sensing or field experiments is improved. These modifications significantly reduce the excessive summer land surface temperature over the continental United States simulated by the National Center for Atmospheric Research Community Climate Model (CCM2) coupled with BATS.more » A land-atmosphere interaction mechanism involving energy and water cycles is proposed to explain the results. 9 refs., 1 fig.« less
NASA Technical Reports Server (NTRS)
Levine, S. R.; Grisaffe, S. J.
1972-01-01
Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.
NASA Astrophysics Data System (ADS)
Wang, Suhuan; Liu, Jianguo; Lv, Ming; Zeng, Xiaoyan
2014-09-01
In this paper, a low-cost, high-efficiency and high-flexibility surface modification technology for polymer materials was achieved at high laser scanning speeds (600-1000 mm s-1) and using an all-solid state, Q-switched, high-average power, and nanosecond pulse ultraviolet (355 nm wavelength) laser. During the surface modification of a very important engineering plastic, i.e., black bisphenol A polycarbonate (BAPC) board, it was found that different laser parameters (e.g., laser fluence and pulse frequency) were able to result in different surface microstructures (e.g., many tiny protuberances or a porous microstructure with periodical V-type grooves). After the modification, although the total relative content of the oxygen-containing groups (e.g., Csbnd O and COO-) on the BAPC surface increased, however, the special microstructures played a deciding role in the surface properties (e.g., contact angle and surface energy) of the BAPC. The change trend of the water contact angle on the BAPC surface was with an obvious increase, that of the diiodomethane contact angle was with a most decrease, and that of the ethylene glycol contact angle was between the above two. It showed that the wetting properties of the three liquids on the modified BAPC surface were different. Basing on the measurements of the contact angles of the three liquids, and according to the Young equation and the Lifshitz van der Waals and Lewis acid-base theory, the BAPC surface energy after the modification was calculated. The results were that, in a broad range of laser fluences, pulse frequencies and scanning speeds, the surface energy had a significant increase (e.g., from the original of about 44 mJ m-2 to the maximum of about 70 mJ m-2), and the higher the laser pulse frequency, the more significant the increase. This would be very advantageous to fabricate the high-quality micro-devices and micro-systems on the modified surface.
Laser surface modification of AZ31B Mg alloy for bio-wettability.
Ho, Yee-Hsien; Vora, Hitesh D; Dahotre, Narendra B
2015-02-01
Magnesium alloys are the potential degradable materials for load-bearing implant application due to their comparable mechanical properties to human bone, excellent bioactivity, and in vivo non-toxicity. However, for a successful load-bearing implant, the surface of bio-implant must allow protein absorption and layer formation under physiological environment that can assist the cell/osteoblast growth. In this regard, surface wettability of bio-implant plays a key role to dictate the quantity of protein absorption. In light of this, the main objective of the present study was to produce favorable bio-wettability condition of AZ31B Mg alloy bio-implant surface via laser surface modification technique under various laser processing conditions. In the present efforts, the influence of laser surface modification on AZ31B Mg alloy surface on resultant bio-wettability was investigated via contact-angle measurements and the co-relationships among microstructure (grain size), surface roughness, surface energy, and surface chemical composition were established. In addition, the laser surface modification technique was simulated by computational (thermal) model to facilitate the prediction of temperature and its resultant cooling/solidification rates under various laser processing conditions for correlating with their corresponding composition and phase evolution. These predicted thermal properties were later used to correlate with the corresponding microstructure, chemical composition, and phase evolution via experimental analyses (X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua
2016-12-01
Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.
Wang, Tieyan; Chen, Qixian; Lu, Hongguang; Li, Wei; Li, Zaifen; Ma, Jianbiao; Gao, Hui
2016-08-17
The dilemma of poly(ethylene glycol) surface modification (PEGylation) inspired us to develop an intracellularly sheddable PEG palisade for synthetic delivery systems. Here, we attempted to conjugate PEG to polyethylenimine (PEI) through tandem linkages of disulfide-bridge susceptible to cytoplasmic reduction and an azobenzene/cyclodextrin inclusion complex responsive to external photoirradiation. The subsequent investigations revealed that facile PEG detachment could be achieved in endosomes upon photoirradiation, consequently engendering exposure of membrane-disruptive PEI for facilitated endosome escape. The liberated formulation in the cytosol was further subjected to complete PEG detachment relying on disulfide cleavage in the reductive cytosol, thus accelerating dissociation of electrostatically assembled PEI/DNA polyplex to release DNA by means of polyion exchange reaction with intracellularly charged species, ultimately contributing to efficient gene expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindell, M.A.; Grape, S.; Haekansson, A.
The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakestmore » barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)« less
NASA Astrophysics Data System (ADS)
Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.
2017-09-01
The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.
NASA Astrophysics Data System (ADS)
Mishra, Sanjeev Kumar; Prasad, K. Durga
2018-07-01
Understanding surface modifications at landing site during spacecraft landing on planetary surfaces is important for planetary missions from scientific as well as engineering perspectives. An attempt has been made in this work to numerically investigate the disturbance caused to the lunar surface during soft landing. The variability of eject velocity of dust, eject mass flux rate, ejecta amount etc. has been studied. The effect of lander hovering time and hovering altitude on the extent of disturbance is also evaluated. The study thus carried out will help us in understanding the surface modifications during landing thereby making it easier to plan a descent trajectory that minimizes the extent of disturbance. The information about the extent of damage will also be helpful in interpreting the data obtained from experiments carried on the lunar surface in vicinity of the lander.
Surface Modified TiO2 Obscurants for Increased Safety and Performance
2012-11-01
based obscurant devices in performance. 15. SUBJECT TERMS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification...hexamethyldimethoxysilane IR Infrared wavelength LabRAM Lab scale Resonant Acoustic Mixer from Resodyn Corporation LPM Liters Per Minute M106 Currently fielded (Army...trinitrophloroglucinol UV-Vis Ultraviolet-visible wavelengths KEYWORDS Obscurant, visible, IR , smoke, TiO2, aerosol, particle, surface modification
Chen, Weimin; Xu, Yicheng; Shi, Shukai; Cao, Yizhong; Chen, Minzhi; Zhou, Xiaoyan
2018-02-02
The presence of non-poplar extracts, cutin, and wax layer in the wheat straw outer surface (WOS) greatly limit its application in bio-composite preparation. In this study, a dielectric-barrier-discharge plasma using water vapor as feeding gas was used to fast modify the WOS. The morphology, free radical concentrations, surface chemical components, and contact angles of WOS before and after plasma modification were investigated. Wheat straw was further prepared into wheat straw-based composites (WSC) and its bonding strength was evaluated by a paper tension meter. The results showed that water vapor plasma leads to the appearance of surface roughness, the generation of massive free radicals, and the introduction of oxygen-containing groups. In addition, both initial and equilibrium contact angle and the surface total free energy were significantly increased after plasma modification. These results synergistically facilitate the spread and permeation of adhesive onto the WOS and thus improve the bonding strength of all prepared WSCs. A good linear relationship between bonding strength and surface roughness parameters, contact angles, and total free energy were observed. In general, this study provided a time-saving and cost-effective modification method to realize WSC manufacture.
Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting
Rattan, Rahul; Bhattacharjee, Somnath; Zong, Hong; Swain, Corban; Siddiqui, Muneeb A.; Visovatti, Scott H.; Kanthi, Yogendra; Desai, Sajani; Pinsky, David J.; Goonewardena, Sascha N.
2017-01-01
The surface properties of nanoparticles (NPs) are a major factor that influences how these nanomaterials interact with biological systems. Interactions between NPs and macrophages of the reticuloendothelial system (RES) can reduce the efficacy of NP diagnostics and therapeutics. Traditionally, to limit NP clearance by the RES system, the NP surface is neutralized with molecules like poly(ethylene glycol) (PEG) which are known to resist protein adsorption and RES clearance. Unfortunately, PEG modification is not without drawbacks including difficulties with the synthesis and associations with immune reactions. To overcome some of these obstacles, we neutralized the NP surface by acetylation and compared this modification to PEGylation for RES clearance and tumor-specific targeting. We found that acetylation was comparable to PEGylation in reducing RES clearance. Additionally, we found that dendrimer acetylation did not impact folic acid (FA)-mediated targeting of tumor cells whereas PEG surface modification reduced the targeting ability of the NP. These results clarify the impact of different NP surface modifications on RES clearance and cell-specific targeting and provide insights into the design of more effective NPs. PMID:28705434
1999-09-24
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, egrets along the runway take flight as the orbiter Columbia leaves Kennedy Space Center on the back of a Boeing 747 Shuttle Carrier Aircraft on a ferry flight to Palmdale, Calif. Columbia, the oldest of four orbiters in NASA's fleet, will undergo extensive inspections and modifications in Boeing's Orbiter Assembly Facility during a nine-month orbiter maintenance down period (OMDP), the second in its history. Orbiters are periodically removed from flight operations for an OMDP. Columbia's first was in 1994. Along with more than 100 modifications on the vehicle, Columbia will be the second orbiter to be outfitted with the multifunctional electronic display system, or "glass cockpit." Columbia is expected to return to KSC in July 2000
1999-09-24
KENNEDY SPACE CENTER, FLA. -- The Boeing 747 Shuttle Carrier Aircraft, with the orbiter Columbia strapped to its back, waits at the Shuttle Landing Facility for clear weather to take off for its final destination, Palmdale, Calif. The oldest of four orbiters in NASA's fleet, Columbia is being ferried to Palmdale to undergo extensive inspections and modifications in Boeing's Orbiter Assembly Facility. The nine-month orbiter maintenance down period (OMDP) is the second in Columbia's history. Orbiters are periodically removed from flight operations for an OMDP. Columbia's first was in 1994. Along with more than 100 modifications on the vehicle, Columbia will be the second orbiter to be outfitted with the multifunctional electronic display system, or "glass cockpit." Columbia is expected to return to KSC in July 2000
Mazloum-Ardakani, Mohammad; Barazesh, Behnaz; Khoshroo, Alireza; Moshtaghiun, Mohammad; Sheikhha, Mohammad Hasan
2018-06-01
In this work we report the synthesis of a stable composite with excellent electrical properties, on the surface of a biosensor. Conductive polymers offer both high electrical conductivity and mechanical strength. Many reports have focused on synthesizing conductive polymers with the aid of high-cost enzymes. In the current work we introduce a novel electrochemical, one-step, facile and cost effective procedure for synthesizing poly (catechol), without using expensive enzymes. The poly (catechol) conductivity was enhanced by modification with graphene sheets and biosynthesized gold nanoparticles. Four different robust methods, DPV, EIS, CV and chronoamperometry, were used to monitor the biosensor modifications. The peak currents of the catechol (an electroactive probe) were linearly related to the logarithm of the concentrations of target DNA in the range 100.0 μM to 10.0 pM, with a detection limit of 1.0 pM for the DNA strand. The current work investigates a new, stable composite consisting of conductive polymers and nanoparticles, which was applied to the detection of acute lymphoblastic leukemia. Copyright © 2018 Elsevier B.V. All rights reserved.
Modified Facile Synthesis for Quantitatively Fluorescent Carbon Dots.
Hou, Xiaofang; Hu, Yin; Wang, Ping; Yang, Liju; Al Awak, Mohamad M; Tang, Yongan; Twara, Fridah K; Qian, Haijun; Sun, Ya-Ping
2017-10-01
A simple yet consequential modification was made to the popular carbonization processing of citric acid - polyethylenimine precursor mixtures to produce carbon dots (CDots). The modification was primarily on pushing the carbonization processing a little harder at a higher temperature, such as the hydrothermal processing condition of around 330 °C for 6 hours. The CDots thus produced are comparable in spectroscopic and other properties to those obtained in other more controlled syntheses including the deliberate chemical functionalization of preprocessed and selected small carbon nanoparticles, demonstrating the consistency in CDots and reaffirming their general definition as carbon nanoparticles with surface passivation by organic or other species. Equally significant is the finding that the modified processing of citric acid - polyethylenimine precursor mixtures could yield CDots of record-setting fluorescence performance, approaching the upper limit of being quantitatively fluorescent. Thus, the reported work serves as a demonstration on not only the need in selecting the right processing conditions and its associated opportunities in one-pot syntheses of CDots, but also the feasibility in pursuing the preparation of quantitatively fluorescent CDots, which represents an important milestone in the development and understanding of these fluorescent carbon nanomaterials.
Laser-induced Greenish-Blue Photoluminescence of Mesoporous Silicon Nanowires
Choi, Yan-Ru; Zheng, Minrui; Bai, Fan; Liu, Junjun; Tok, Eng-Soon; Huang, Zhifeng; Sow, Chorng-Haur
2014-01-01
Solid silicon nanowires and their luminescent properties have been widely studied, but lesser is known about the optical properties of mesoporous silicon nanowires (mp-SiNWs). In this work, we present a facile method to generate greenish-blue photoluminescence (GB-PL) by fast scanning a focused green laser beam (wavelength of 532 nm) on a close-packed array of mp-SiNWs to carry out photo-induced chemical modification. The threshold of laser power is 5 mW to excite the GB-PL, whose intensity increases with laser power in the range of 5–105 mW. The quenching of GB-PL comes to occur beyond 105 mW. The in-vacuum annealing effectively excites the GB-PL in the pristine mp-SiNWs and enhances the GB-PL of the laser-modified mp-SiNWs. A complex model of the laser-induced surface modification is proposed to account for the laser-power and post-annealing effect. Moreover, the fast scanning of focused laser beam enables us to locally tailor mp-SiNWs en route to a wide variety of micropatterns with different optical functionality, and we demonstrate the feasibility in the application of creating hidden images. PMID:24820533
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Bathing facilities; change rooms; sanitary...
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Bathing facilities; change rooms; sanitary...
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Bathing facilities; change rooms; sanitary...
30 CFR 71.400 - Bathing facilities; change rooms; sanitary flush toilet facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... WORK AREAS OF UNDERGROUND COAL MINES Surface Bathing Facilities, Change Rooms, and Sanitary Flush Toilet Facilities at Surface Coal Mines § 71.400 Bathing facilities; change rooms; sanitary flush toilet... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Bathing facilities; change rooms; sanitary...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specifiedmore » in Title 40, Code of Federal Regulations (CFR) {section}270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below.« less
Protein mass analysis of histones.
Galasinski, Scott C; Resing, Katheryn A; Ahn, Natalie G
2003-09-01
Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.
Surface modification of malachite with ethanediamine and its effect on sulfidization flotation
NASA Astrophysics Data System (ADS)
Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming
2018-04-01
Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.
NASA Astrophysics Data System (ADS)
Buchkremer, S.; Klocke, F.
2017-01-01
Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.
Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L
2007-03-06
In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).
NASA Astrophysics Data System (ADS)
Khodakov, Dmitriy A.; Thredgold, Leigh D.; Lenehan, Claire E.; Andersson, Gunther A.; Kobus, Hilton; Ellis, Amanda V.
2011-12-01
Poly(dimethylsiloxane) (PDMS) is an elastomeric material used for microfluidic devices and is especially suited to medical and forensic applications. This is due to its relatively low cost, ease of fabrication, excellent optical transmission characteristics and its ability to support electroosmotic flow, required during electrophoretic separations. These aspects combined with its large range of surface modification chemistries, make PDMS an attractive substrate in microfluidic devices for, in particular, DNA separation. Here, we report the successful wet chemical surface modification of PDMS microchannels using a simple three step method to produce an isothiocyanate-terminated surface. Initially, PDMS was oxygen plasma treated to produce a silanol-terminated surface, this was then reacted with 3-aminopropyltriethoxysilane with subsequent reaction of the now amine-terminated surface with p-phenylenediisothiocyanate. Water contact angle measurements both before and after modification showed a reduction in hydrophobicity from 101o for native PDMS to 94o for the isothiocyante-terminated PDMS. The isothiocyanate-terminated surface was then coupled with an amineterminated single-stranded DNA (ssDNA) oligonucleotide capture probe via a thiourea linkage. Confirmation of capture probe attachment was observed using fluorescent microscopy after hybridization of the capture probes with fluorescently labeled complimentary ssDNA oligonucleotides.
Pyun, Young Sik; Suh, Chang Min; Yamaguchi, Tokutaro; Im, Jong Soon; Kim, Jun Hyong; Amanov, Auezhan; Park, Jeong Hyeon
2012-07-01
Ultrasonic nanocrystal surface modification (UNSM) technology is a novel surface modification technology that can improve the mechanical and tribological properties of interacting surfaces in relative motion. UNSM treatment was utilized to improve the wear resistance fatigue strength of slim bearing rings made of SAE52100 bearing steel without damaging the raceway surfaces. In this study, wear and fatigue results that were subjected to different impact loads of the UNSM treatment were investigated and compared with those of the untreated specimen. The microhardness of the UNSM-treated specimens increased by about 20%, higher than that of the untreated specimens. The X-ray diffraction analysis showed that a compressive residual stress of more than 1,000 MPa was induced after the UNSM treatment. Also, electron backscatter diffraction analysis was used to study the surface structure and nanograin refinement. The results showed that the rolling contact fatigue life and the rotary bending fatigue strength of the UNSM-treated specimens increased by about 80% and 31%, respectively, compared to those of the untreated specimen. These results might be attributed to the increased microhardness, the induced compressive residual stress, and the nanocrystal structure modification after the UNSM treatment. In addition, the fracture surface analysis showed that the fish eye crack initiation phenomenon was observed after the UNSM treatment.
30 CFR 57.4430 - Surface storage facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...
30 CFR 57.4430 - Surface storage facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Surface storage facilities. 57.4430 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4430 Surface storage facilities. The requirements of this standard apply to surface areas only. (a) Storage tanks for flammable or combustible...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierman, S.R.; Graf, W.A.; Kass, M.
1960-07-29
Design panameters are presented for phases of the facility to reprocess low-enrichment fuels from nonproduction reactors. Included are plant flowsheets and equipment layouts for fuel element dissolution, centrifugation, solution adjustment, and waste handling. Also included are the basic design criteria for the supporting facilities which service these phases and all other facilites located in the vicinity of the selected building (Bldg. 221-U). (J.R.D.)
Gas and water recycling system for IOC vivarium experiments
NASA Technical Reports Server (NTRS)
Nitta, K.; Otsubo, K.
1986-01-01
Water and gas recycling units designed as one of the common experiment support system for the life science experiment facilities used in the Japanese Experiment Module are discussed. These units will save transportation and operation costs for the life science experiments in the space station. These units are also designed to have interfaces so simple that the connection to another life science experiment facilities such as the Research Animal Holding Facility developed by the Rockheed Missiles and Space Company can be easily done with small modification.
Shuttle mission simulator baseline definition report, volume 1
NASA Technical Reports Server (NTRS)
Burke, J. F.; Small, D. E.
1973-01-01
A baseline definition of the space shuttle mission simulator is presented. The subjects discussed are: (1) physical arrangement of the complete simulator system in the appropriate facility, with a definition of the required facility modifications, (2) functional descriptions of all hardware units, including the operational features, data demands, and facility interfaces, (3) hardware features necessary to integrate the items into a baseline simulator system to include the rationale for selecting the chosen implementation, and (4) operating, maintenance, and configuration updating characteristics of the simulator hardware.
Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A
2014-01-01
The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.
NASA Astrophysics Data System (ADS)
Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.
2017-05-01
During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.
Code JEF Facilities Engineering Home Page for the Internet
NASA Technical Reports Server (NTRS)
Mahaffey, Valerie A.; Harrison, Marla J. (Technical Monitor)
1995-01-01
There are always many activities going on in JEF. We work on and manage the Construction of Facilities (C of F) projects at NASA-Ames. We are constantly designing or analyzing a new facility or project, or a modification to an existing facility. Every day we answer numerous questions about engineering policy, codes and standards, we attend design reviews, we count dollars and we make sure that everything at the Center is designed and built according to good engineering judgment. In addition, we study literature and attend conferences to make sure that we keep current on new legislation and standards.
Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces
NASA Astrophysics Data System (ADS)
Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo
2016-02-01
Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.
Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg(0) adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mn (x+) , and O=C-OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg(0). Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.
Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously. PMID:25309948
Specific modification of polysulfone with cluster bombardment with assistance of Ar ion irradiation
NASA Astrophysics Data System (ADS)
Xu, Guochun; Hibino, Y.; Awazu, K.; Tanihara, M.; Imanishi, Y.
2000-02-01
Objective: To develop a rapid method for the modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation with a multi-source cluster deposition apparatus. These surfaces mimicking the structure of heparin, a bioactive molecule, have a high anti-thrombosis property. Experimental Design: Polysulfone film, setting on a turning holder, was irradiated by Ar ions during bombardment with ammonium sulfamate clusters. The Ar ion source serves for the activation of a polymer surface and a cluster ion source supplies ammonium sulfamate molecules to react with the activated surface. After thorough washing with de-ionized sterile water, the modified surfaces were evaluated in terms of the contact angle of water, elemental composition, and binding state on electron spectroscopy for chemical analysis and platelet adhesion with platelet rich plasma. Results: The modification of polysulfone decreased the contact angle of water on surfaces from 82.6 ° down to 34.5 °. Ammonium, amine, sulfate, and thiophene combinations were formed on the modified surfaces. The adhesion numbers of the platelet were decreased to one tenth compared to the original surface. The same process was also applied to other polymers such as polyethylene, polypropylene, and polystyrene and similar outcomes were also observed. Conclusion: The primary studies showed successful modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation. Since the same concept can also be applied to other materials with various substrates, combined with the features of no solvent and no topographic changes, this method might be developed into a promising way for modification of polymeric materials.
NASA Astrophysics Data System (ADS)
Huang, Bin; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Shen, Li; Wang, Jiexi
2014-04-01
The degradation of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material is successfully suppressed via a facile in situ oxidizing-coating method. KMnO4 is used as not only a Mn source but also an oxidant. X-ray diffraction (XRD) and scanning electron microscope (SEM) results demonstrate that the structure and morphology of the KMnO4-pretreated sample are the same as the pristine one. X-ray photoelectron spectroscopy (XPS) confirms that the valence state of Mn is +4 and the Ni3+ ions are partly reduced to Ni2+ when the material is doped with Mn4+. Besides, the Mn4+ ions are proved to distribute uniformly on the surface of the materials particles through energy dispersive spectrometer (EDS) and EDS elemental mapping. And it is confirmed that the concentration of Ni in the outer layer is reduced by the Mn-surface-modification. From the electrochemical characterizations, it is confirmed that the presence of tetravalent Mn at the surface can suppress the capacity fading during charge-discharge cycles, even under elevated temperature and overcharge conditions, and can prevent the material from deterioration during storage in air.
Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors
NASA Astrophysics Data System (ADS)
Lang, Jun-Wei; Yan, Xing-Bin; Yuan, Xiao-Yan; Yang, Jie; Xue, Qun-Ji
Highly ordered, three-dimensional (3D) cubic mesoporous carbon CMK-8 is prepared by a facile nanocasting approach using cubic mesoporous silica KIT-6 as starting template. Afterwards, in order to increase the active sites of surface electrochemical reactions and promote the wettability in aqueous electrolyte, a chemical surface modification is carried out on the CMK-8 by nitric acid treatment. Two electrodes are prepared from the CMK-8 and the acid-modified CMK-8 (H-CMK-8) and used as the active materials for supercapacitors. The unique 3D mesoporous network combined with high specific surface area makes the nano-channel surfaces of the CMK-8 carbon favorable for charging the electric double-layer, resulting in that the CMK-8 and the H-CMK-8 electrodes both show well supercapacitive properties. Furthermore, the specific capacitance of the CMK-8 can be further improved by acid treatment, so that the H-CMK-8 exhibits the largest specific capacitance of 246 F g -1 at a current density of 0.625 A g -1 in 2 M KOH electrolyte. Also, the two carbon electrodes both exhibit good cycling stability and lifetime. Therefore, based on the above investigations, such CMK-8 carbon, especially H-CMK-8 carbon can be a potential candidate for supercapacitors.
NASA Astrophysics Data System (ADS)
Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing
2016-07-01
A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.
NASA Astrophysics Data System (ADS)
Yu, Haiyuan; Bi, Xiaofang
2018-04-01
Realization of the effective Si penetration at a lower processing temperature is a challenge, but of significance in reducing the strict requirements for the equipment and realizing cost-cutting in production. In this work, we have modified the surface microstructure of Fe-3 wt%Si alloy by using surface mechanical attrition treatment. The modified surface microstructure is characteristic of nanocrystalline, which is found to significantly enhance the efficiency of subsequent Si penetration into the alloy, and successively leading to the decrease of penetration temperature up to 200 °C. As a consequence, the Si gradient distribution across thickness can be readily controlled by changing penetration time, and FeSi alloys with various gradients are prepared by chemical vapor deposition along with subsequent annealing process. The dependence of magnetic and mechanical properties on Si gradient for demonstrates that the increase of Si gradient reduces core losses, especially at higher frequencies, and meanwhile improves ductility of FeSi alloys as well. The mechanism underlying the effect of Si gradient is clarified by combining magnetostriction measurement and domain structure observations. This work provides a facile and effective way for achieving gradient FeSi alloys with good magnetic property and ductility.
Mahjoubi, Hesameddin; Kinsella, Joseph M; Murshed, Monzur; Cerruti, Marta
2014-07-09
Scaffolds made with synthetic polymers such as polyesters are commonly used in bone tissue engineering. However, their hydrophobicity and the lack of specific functionalities make their surface not ideal for cell adhesion and growth. Surface modification of these materials is thus crucial to enhance the scaffold's integration in the body. Different surface modification techniques have been developed to improve scaffold biocompatibility. Here we show that diazonium chemistry can be used to modify the outer and inner surfaces of three-dimensional poly(D,L-lactic acid) (PDLLA) scaffolds with phosphonate groups, using a simple two-step method. By changing reaction time and impregnation procedure, we were able to tune the concentration of phosphonate groups present on the scaffolds, without degrading the PDLLA matrix. To test the effectiveness of this modification, we immersed the scaffolds in simulated body fluid, and characterized them with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and infrared spectroscopy. Our results showed that a layer of hydroxyapatite particles was formed on all scaffolds after 2 and 4 weeks of immersion; however, the precipitation was faster and in larger amounts on the phosphonate-modified than on the bare PDLLA scaffolds. Both osteogenic MC3T3-E1 and chondrogenic ATDC5 cell lines showed increased cell viability/metabolic activity when grown on a phosphonated PDLLA surface in comparison to a control PDLLA surface. Also, more calcium-containing minerals were deposited by cultures grown on phosphonated PDLLA, thus showing the pro-mineralization properties of the proposed modification. This work introduces diazonium chemistry as a simple and biocompatible technique to modify scaffold surfaces, allowing to covalently and homogeneously bind a number of functional groups without degrading the scaffold's polymeric matrix.
Augmented liver targeting of exosomes by surface modification with cationized pullulan.
Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko
2017-07-15
Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse liver injury model, the modification of PKH-labeled exosomes with pullulan enabled increased accumulation of PKH specifically in the injured liver. Furthermore the greater therapeutic effects against the liver injury compared with unmodified original exosomes was observed. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Takayama, Yukiya; Kusamori, Kosuke; Hayashi, Mika; Tanabe, Noriko; Matsuura, Satoru; Tsujimura, Mari; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira
2017-12-05
Mesenchymal stem cells (MSCs) have various functions, making a significant contribution to tissue repair. On the other hand, the viability and function of MSCs are not lasting after an in vivo transplant, and the therapeutic effects of MSCs are limited. Although various chemical modification methods have been applied to MSCs to improve their viability and function, most of conventional drug modification methods are short-term and unstable and cause cytotoxicity. In this study, we developed a method for long-term drug modification to C3H10T1/2 cells, murine mesenchymal stem cells, without any damage, using the avidin-biotin complex method (ABC method). The modification of NanoLuc luciferase (Nluc), a reporter protein, to C3H10T1/2 cells by the ABC method lasted for at least 14 days in vitro without major effects on the cellular characteristics (cell viability, cell proliferation, migration ability, and differentiation ability). Moreover, in vivo, the surface Nluc modification to C3H10T1/2 cells by the ABC method lasted for at least 7 days. Therefore, these results indicate that the ABC method may be useful for long-term surface modification of drugs and for effective MSC-based therapy.
Coating Systems for Magnesium-Based Biomaterials — State of the Art
NASA Astrophysics Data System (ADS)
Waterman, J.; Staiger, M. P.
Magnesium and its alloys have the potential to be used for biodegradable orthopedic implants. However, the corrosion rate in physiological conditions is too high for most applications. For this reason, surface modification to slow the corrosion rate is of great interest. Such modifications must remain biologically compatible as well as protective in corrosive environments. What follows is a brief review of recent research in inorganic coatings and surface modifications to create coatings for magnesium-based biomaterials.
NASA Astrophysics Data System (ADS)
Bagheri, H.; Aliofkhazraei, M.; Forooshani, H. Mojiri; Rouhaghdam, A. Sabour
2018-04-01
In the present study, two-stage process for the fabrication of superhydrophobic Ni-Cu-TiO2 nanocomposite coatings on the copper substrate has been introduced. Surface modification was performed on the electrodeposited coatings by myristic acid-ethanol solution to achieve superhydrophobicity. Additionally, in order to further study the roughness effect, instead of addition of copper ions in electrodeposition bath, three substrates were roughened by electrochemical etching method. Water repellency properties were studied through measurement of static and dynamic contact angles, and performing bouncing test, self-cleaning and water-jet evaluation. The samples were electrodeposited in various current densities, and the highest corrosion resistance and water repellency properties were obtained for the sample which was electrodeposited in two consecutive steps and modified by a fatty acid called myristic acid (which significantly reduces surface energy of the coating). The highest water contact angle (161°) and the lowest contact angle hysteresis (3°) were obtained for the sample which was coated by 10 mA/cm2 (144 min) and 20 mA/cm2 (18 min), respectively. Since this approach does not require any sophisticated equipment and materials, it shows promising future in the fabrication of superhydrophobic coatings.
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-01-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius. PMID:28008987
NASA Astrophysics Data System (ADS)
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-12-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.
Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy.
Kiel-Jamrozik, Marta; Szewczenko, Janusz; Basiaga, Marcin; Nowińska, Katarzyna
2015-01-01
The aim of the presented research was to find a combination of surface modification methods of implants made of the Ti-6Al-4V ELI alloy, that lead to formation of effective barrier for metallic ions that may infiltrate into solution. To this end, the following tests were carried out: roughness measurement, the voltamperometric tests (potentiodynamic and potentiostatic), and the ion infiltration test. The electropolishing process resulted in the lowering of surface roughness in comparison with mechanical treatment of the surface layer. The anodization process and steam sterilization increased corrosion resistance regardless of the mechanical treatment or electropolishing. The crevice corrosion tests revealed that independent of the modification method applied, the Ti-6Al-4V ELI alloy has excellent crevice corrosion resistance. The smallest quantity of ions infiltrated to the solution was observed for surface modification consisting in the mechanical treatment and anodization with the potential of 97 V. Electric parameters deter- mined during studies were the basis for effectiveness estimation of particular surface treatment methods. The research has shown that the anodization process significantly influences the pitting corrosion resistance of the Ti-6Al-4V ELI alloy independent of the previous surface treatment methods (mechanical and electrochemical). The surface layer after such modification is a protective barrier for metallic ions infiltrated to solution and protects titanium alloy against corrosive environment influence.
NASA Technical Reports Server (NTRS)
Rivers, Melissa B.; Wahls, Richard A.
1999-01-01
This paper gives the results of a grid study, a turbulence model study, and a Reynolds number effect study for transonic flows over a high-speed aircraft using the thin-layer, upwind, Navier-Stokes CFL3D code. The four turbulence models evaluated are the algebraic Baldwin-Lomax model with the Degani-Schiff modifications, the one-equation Baldwin-Barth model, the one-equation Spalart-Allmaras model, and Menter's two-equation Shear-Stress-Transport (SST) model. The flow conditions, which correspond to tests performed in the NASA Langley National Transonic Facility (NTF), are a Mach number of 0.90 and a Reynolds number of 30 million based on chord for a range of angle-of-attacks (1 degree to 10 degrees). For the Reynolds number effect study, Reynolds numbers of 10 and 80 million based on chord were also evaluated. Computed forces and surface pressures compare reasonably well with the experimental data for all four of the turbulence models. The Baldwin-Lomax model with the Degani-Schiff modifications and the one-equation Baldwin-Barth model show the best agreement with experiment overall. The Reynolds number effects are evaluated using the Baldwin-Lomax with the Degani-Schiff modifications and the Baldwin-Barth turbulence models. Five angles-of-attack were evaluated for the Reynolds number effect study at three different Reynolds numbers. More work is needed to determine the ability of CFL3D to accurately predict Reynolds number effects.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must include your name and... with proposed modifications. The proposal would provide an additional 110 boat slips and 32 personal watercraft (PWC) lifts to the facility. The expanded facility would represent a total of 14 docks, 232 boat...
NASA Technical Reports Server (NTRS)
Bourke, M. C.
2003-01-01
MOC images indicate that aeolian ridges may mask and even obliterate primary depositional surfaces on Mars. This modification increases the difficulty in mapping the recent geological history of the planet. An analogue study in central Australia demonstrates how patterns in aeolian dunes, formed over abandoned fluvial surfaces, can be used to detect buried fluvial features.
Applications of Modeling and Simulation for Flight Hardware Processing at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Marshall, Jennifer L.
2010-01-01
The Boeing Design Visualization Group (DVG) is responsible for the creation of highly-detailed representations of both on-site facilities and flight hardware using computer-aided design (CAD) software, with a focus on the ground support equipment (GSE) used to process and prepare the hardware for space. Throughout my ten weeks at this center, I have had the opportunity to work on several projects: the modification of the Multi-Payload Processing Facility (MPPF) High Bay, weekly mapping of the Space Station Processing Facility (SSPF) floor layout, kinematics applications for the Orion Command Module (CM) hatches, and the design modification of the Ares I Upper Stage hatch for maintenance purposes. The main goal of each of these projects was to generate an authentic simulation or representation using DELMIA V5 software. This allowed for evaluation of facility layouts, support equipment placement, and greater process understanding once it was used to demonstrate future processes to customers and other partners. As such, I have had the opportunity to contribute to a skilled team working on diverse projects with a central goal of providing essential planning resources for future center operations.
Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications
This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...