Sample records for facilitate high-frequency firing

  1. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells

    PubMed Central

    Gu, Ning; Vervaeke, Koen; Storm, Johan F

    2007-01-01

    Neuronal potassium (K+) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K+ channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K+ channels (in particular the delayed rectifier potassium current (IDR)) and Na+ channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour. PMID:17303637

  2. A model for studying the energetics of sustained high frequency firing

    PubMed Central

    Morris, Catherine E.

    2018-01-01

    Regulating membrane potential and synaptic function contributes significantly to the energetic costs of brain signaling, but the relative costs of action potentials (APs) and synaptic transmission during high-frequency firing are unknown. The continuous high-frequency (200-600Hz) electric organ discharge (EOD) of Eigenmannia, a weakly electric fish, underlies its electrosensing and communication. EODs reflect APs fired by the muscle-derived electrocytes of the electric organ (EO). Cholinergic synapses at the excitable posterior membranes of the elongated electrocytes control AP frequency. Based on whole-fish O2 consumption, ATP demand per EOD-linked AP increases exponentially with AP frequency. Continual EOD-AP generation implies first, that ion homeostatic processes reliably counteract any dissipation of posterior membrane ENa and EK and second that high frequency synaptic activation is reliably supported. Both of these processes require energy. To facilitate an exploration of the expected energy demands of each, we modify a previous excitability model and include synaptic currents able to drive APs at frequencies as high as 600 Hz. Synaptic stimuli are modeled as pulsatile cation conductance changes, with or without a small (sustained) background conductance. Over the full species range of EOD frequencies (200–600 Hz) we calculate frequency-dependent “Na+-entry budgets” for an electrocyte AP as a surrogate for required 3Na+/2K+-ATPase activity. We find that the cost per AP of maintaining constant-amplitude APs increases nonlinearly with frequency, whereas the cost per AP for synaptic input current is essentially constant. This predicts that Na+ channel density should correlate positively with EOD frequency, whereas AChR density should be the same across fish. Importantly, calculated costs (inferred from Na+-entry through Nav and ACh channels) for electrocyte APs as frequencies rise are much less than expected from published whole-fish EOD-linked O2

  3. Effects of high fire frequency in creosote bush scrub vegetation of the Mojave Desert

    USGS Publications Warehouse

    Brooks, M.L.

    2012-01-01

    Plant invasions can increase fire frequency in desert ecosystems where fires were historically infrequent. Although there are many resource management concerns associated with high frequency fire in deserts, fundamental effects on plant community characteristics remain largely unstudied. Here I describe the effects of fire frequency on creosote bush scrub vegetation in the Mojave Desert, USA. Biomass of the invasive annual grass Bromus rubens L. increased following fire, but did not increase further with additional fires. In contrast, density, cover and species richness of native perennial plants each decreased following fire and continued to decrease with subsequent fires, although not as dramatically as after the initial fire. Responses were similar 5 and 14 years post-fire, except that cover of Hymenoclea salsola Torr. & A. Gray and Achnatherum speciosa Trin. & Rupr. both increased in areas burnt once. These results suggest that control of B. rubens may be equally warranted after one, two or three fires, but revegetation of native perennial plants is most warranted following multiple fires. These results are valid within the scope of this study, which is defined as relatively short term vegetation responses (???14 years) to short fire return intervals (6.3 and 7.3 years for the two and three fire frequency levels) within creosote bush scrub of the Mojave Desert. ?? 2012 IAWF.

  4. Fire feedbacks facilitate invasion of pine savannas by Brazilian pepper (Schinus terebinthifolius).

    PubMed

    Stevens, Jens T; Beckage, Brian

    2009-10-01

    * Fire disturbance can mediate the invasion of ecological communities by nonnative species. Nonnative plants that modify existing fire regimes may initiate a positive feedback that can facilitate their continued invasion. Fire-sensitive plants may successfully invade pyrogenic landscapes if they can inhibit fire in the landscape. * Here, we investigated whether the invasive shrub Brazilian pepper (Schinus terebinthifolius) can initiate a fire-suppression feedback in a fire-dependent pine savanna ecosystem in the southeastern USA. * We found that prescribed burns caused significant (30-45%) mortality of Brazilian pepper at low densities and that savannas with more frequent fires contained less Brazilian pepper. However, high densities of Brazilian pepper reduced fire temperature by up to 200 degrees C, and experienced as much as 80% lower mortality. * A cellular automaton model was used to demonstrate that frequent fire may control low-density populations, but that Brazilian pepper may reach a sufficient density during fire-free periods to initiate a positive feedback that reduces the frequency of fire and converts the savanna to an invasive-dominated forest.

  5. Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites

    USGS Publications Warehouse

    Allen, Craig D.; Anderson, R. Scott; Jass, R.B.; Toney, J.L.; Baisan, C.H.

    2008-01-01

    Two primary methods for reconstructing paleofire occurrence include dendrochronological dating of fire scars and stand ages from live or dead trees (extending back centuries into the past) and sedimentary records of charcoal particles from lakes and bogs, providing perspectives on fire history that can extend back for many thousands of years. Studies using both proxies have become more common in regions where lakes are present and fire frequencies are low, but are rare where high-frequency surface fires dominate and sedimentary deposits are primarily bogs and wetlands. Here we investigate sedimentary and fire-scar records of fire in two small watersheds in northern New Mexico, in settings recently characterised by relatively high-frequency fire where bogs and wetlands (Chihuahuen??os Bog and Alamo Bog) are more common than lakes. Our research demonstrates that: (1) essential features of the sedimentary charcoal record can be reproduced between multiple cores within a bog deposit; (2) evidence from both fire-scarred trees and charcoal deposits documents an anomalous lack of fire since ???1900, compared with the remainder of the Holocene; (3) sedimentary charcoal records probably underestimate the recurrence of fire events at these high-frequency fire sites; and (4) the sedimentary records from these bogs are complicated by factors such as burning and oxidation of these organic deposits, diversity of vegetation patterns within watersheds, and potential bioturbation by ungulates. We consider a suite of particular challenges in developing and interpreting fire histories from bog and wetland settings in the Southwest. The identification of these issues and constraints with interpretation of sedimentary charcoal fire records does not diminish their essential utility in assessing millennial-scale patterns of fire activity in this dry part of North America. ?? IAWF 2008.

  6. Sherborne Missile Fire Frequency with Unconstraint Parameters

    NASA Astrophysics Data System (ADS)

    Dong, Shaquan

    2018-01-01

    For the modeling problem of shipborne missile fire frequency, the fire frequency models with unconstant parameters were proposed, including maximum fire frequency models with unconstant parameters, and actual fire frequency models with unconstant parameters, which can be used to calculate the missile fire frequency with unconstant parameters.

  7. Reduced frequency and severity of residential fires following delivery of fire prevention education by on-duty fire fighters: cluster randomized controlled study.

    PubMed

    Clare, Joseph; Garis, Len; Plecas, Darryl; Jennings, Charles

    2012-04-01

    In 2008, Surrey Fire Services, British Columbia, commenced a firefighter-delivered, door-to-door fire-prevention education and smoke alarm examination/installation initiative with the intention of reducing the frequency and severity of residential structure fires in the City of Surrey. High-risk zones within the city were identified and 18,473 home visits were undertaken across seven temporal delivery cohorts (13.8% of non-apartment dwellings in the city). The frequency and severity of fires pre- and post- the home visit intervention was examined in comparison to randomized high-risk cluster controls. Overall, the frequency of fires was found to have reduced in the city overall, however, the reduction in the intervention cohorts was significantly larger than for controls. Furthermore, when fires did occur within the intervention cohorts, smoke detectors were activated more frequently and the fires were confined to the object of origin more often post-home visits. No equivalent pattern was observed for the cluster control. On-duty fire fighters can reduce the frequency and severity of residential fires through targeted, door-to-door distribution of fire prevention education in high-risk areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice

    PubMed Central

    Hadzipasic, Muhamed; Ni, Weiming; Nagy, Maria; Steenrod, Natalie; McGinley, Matthew J.; Kaushal, Adi; Thomas, Eleanor; McCormick, David A.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease prominently featuring motor neuron (MN) loss and paralysis. A recent study using whole-cell patch clamp recording of MNs in acute spinal cord slices from symptomatic adult ALS mice showed that the fastest firing MNs are preferentially lost. To measure the in vivo effects of such loss, awake symptomatic-stage ALS mice performing self-initiated walking on a wheel were studied. Both single-unit extracellular recordings within spinal cord MN pools for lower leg flexor and extensor muscles and the electromyograms (EMGs) of the corresponding muscles were recorded. In the ALS mice, we observed absent or truncated high-frequency firing of MNs at the appropriate time in the step cycle and step-to-step variability of the EMG, as well as flexor-extensor coactivation. In turn, kinematic analysis of walking showed step-to-step variability of gait. At the MN level, the higher frequencies absent from recordings from mutant mice corresponded with the upper range of frequencies observed for fast-firing MNs in earlier slice measurements. These results suggest that, in SOD1-linked ALS mice, symptoms are a product of abnormal MN firing due at least in part to loss of neurons that fire at high frequency, associated with altered EMG patterns and hindlimb kinematics during gait. PMID:27821773

  9. Mapping landscape fire frequency for fire regime condition class

    Treesearch

    Dale A. Hamilton; Wendel J. Hann

    2015-01-01

    Fire Regime Condition Class (FRCC) is a departure index that compares the current amounts of the different vegetation succession classes, fire frequency, and fire severity to historic reference conditions. FRCC assessments have been widely used for evaluating ecosystem status in many areas of the U.S. in reports such as land use plans, fire management plans, project...

  10. Fire frequency effects on fuel loadings in pine-oak forests of the Madrean Province

    Treesearch

    Francisco J. Escobedo; Peter F. Ffolliott; Gerald J. Gottfried; Florentino Garza

    2001-01-01

    Loadings of downed woody fuels in pine-oak forests of the Madrean Province are heavier on sites in southeastern Arizona with low fire frequencies and lower on sites in northeastern Sonora, Mexico, with high fire frequencies. Low fire frequencies in southeastern Arizona are attributed largely to past land uses and the fire suppression policies of land management...

  11. Big data integration shows Australian bush-fire frequency is increasing significantly.

    PubMed

    Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath

    2016-02-01

    Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift.

  12. Big data integration shows Australian bush-fire frequency is increasing significantly

    PubMed Central

    Dutta, Ritaban; Das, Aruneema; Aryal, Jagannath

    2016-01-01

    Increasing Australian bush-fire frequencies over the last decade has indicated a major climatic change in coming future. Understanding such climatic change for Australian bush-fire is limited and there is an urgent need of scientific research, which is capable enough to contribute to Australian society. Frequency of bush-fire carries information on spatial, temporal and climatic aspects of bush-fire events and provides contextual information to model various climate data for accurately predicting future bush-fire hot spots. In this study, we develop an ensemble method based on a two-layered machine learning model to establish relationship between fire incidence and climatic data. In a 336 week data trial, we demonstrate that the model provides highly accurate bush-fire incidence hot-spot estimation (91% global accuracy) from the weekly climatic surfaces. Our analysis also indicates that Australian weekly bush-fire frequencies increased by 40% over the last 5 years, particularly during summer months, implicating a serious climatic shift. PMID:26998312

  13. Predicting fire frequency with chemistry and climate

    Treesearch

    Richard P. Guyette; Michael C. Stambaugh; Daniel C. Dey; Rose-Marie Muzika

    2012-01-01

    A predictive equation for estimating fire frequency was developed from theories and data in physical chemistry, ecosystem ecology, and climatology. We refer to this equation as the Physical Chemistry Fire Frequency Model (PC2FM). The equation was calibrated and validated with North American fire data (170 sites) prior to widespread industrial influences (before ...

  14. Assessing the Roles of Fire Frequency and Precipitation in Determining Woody Plant Expansion in Central U.S. Grasslands

    NASA Astrophysics Data System (ADS)

    Brunsell, N. A.; Van Vleck, E. S.; Nosshi, M.; Ratajczak, Z.; Nippert, J. B.

    2017-10-01

    Woody plant expansion into grasslands and savannas is occurring and accelerating worldwide and often impacts ecosystem processes. Understanding and predicting the environmental and ecological impacts of encroachment has led to a variety of methodologies for assessing its onset, transition, and stability, generally relying on dynamical systems approaches. Here we continue this general line of investigation to facilitate the understanding of the roles of precipitation frequency and intensity and fire frequency on the conversion of grasslands to woody-dominated systems focusing on the central United States. A low-dimensional model with stochastic precipitation and fire disturbance is introduced to examine the complex interactions between precipitation and fire as mechanisms that may suppress or facilitate increases in woody cover. By using Lyapunov exponents, we are able to ascertain the relative control exerted on woody encroachment through these mechanisms. Our results indicate that precipitation frequency is a more important control on woody encroachment than the intensity of individual precipitation events. Fire, however, exerts a much more dominant impact on the limitation of encroachment over the range of precipitation variability considered here. These results indicate that fire management may be an effective strategy to slow the onset of woody species into grasslands. While climate change might predict a reduced potential for woody encroachment in the near future, these results indicate a reduction in woody fraction may be unlikely when considering anthropogenic fire suppression.

  15. Forest-fire model with natural fire resistance.

    PubMed

    Yoder, Mark R; Turcotte, Donald L; Rundle, John B

    2011-04-01

    Observations suggest that contemporary wildfire suppression practices in the United States have contributed to conditions that facilitate large, destructive fires. We introduce a forest-fire model with natural fire resistance that supports this theory. Fire resistance is defined with respect to the size and shape of clusters; the model yields power-law frequency-size distributions of model fires that are consistent with field observations in the United States, Canada, and Australia.

  16. Post-fire regeneration in a Mediterranean pine forest with historically low fire frequency

    NASA Astrophysics Data System (ADS)

    Buhk, Constanze; Götzenberger, Lars; Wesche, Karsten; Gómez, Pedro Sánchez; Hensen, Isabell

    2006-11-01

    Species of Mediterranean vegetation are known to regenerate directly after fire. The phenomenon of autosuccession (direct regeneration) has been found to be often combined with an increase of species richness during the first years after fire due to the high abundance of short-lived herbaceous plants facilitated by plentiful nutrients and light. The high degree of vegetation resilience, which is expressed in terms of autosuccession, has been explained by the selective pressure of fire in historic times. According to existing palaeoecological data, however, the Pinus halepensis forests in the Ricote Mountains (Province of Murcia, SE Spain) did not experience substantial fire impact before the presence of man nor are they especially fire-prone today. Therefore, we studied post-fire regeneration to find out if direct succession is present or if species from pre-fire vegetation are absent during the post-fire regeneration stages. Patterns of succession were deduced from observations made in sample plots on sites of a known regeneration age as well as in adjacent unburnt areas. The results of the vegetation analyses, including a Detrended Correspondence Analysis, indicate that Pinus halepensis forest regeneration after fire resembles autosuccession. As regards the presence of woody species, there is a high percentage similarity on north (83%) and south (70%) facing slopes during the first year after fire vs. reference areas which is due, for example, to direct regeneration of the resprouting Quercus coccifera or seeders like Pinus halepensis or Fumana laevipes. However, if herbaceous species are included in the comparison, the similarity on north-facing sites decreases (to 53%) with the presence of additional species, mainly ruderals like Anagallis arvensis or Reseda phyteuma, and even woody species on the burnt plots. This effect indicates "enhanced autosuccession", which was not found on south-facing sites where overall species richness was very high irrespective of

  17. Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year

    USGS Publications Warehouse

    Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.

    2011-01-01

    Fire frequency, area burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire year. Although area burned is often used to summarize a fire season, burned area may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual area burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual area burned, and cumulative severity were consistent in only 13 of 26 years (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 year means of fire frequency, annual area burned, and the area under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by year compared to aggregation by area. Cumulative severity distributions for each year were best modeled with Weibull functions (all 26 years, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and area-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire year than any single metric.

  18. Study on Structural and Dielectric Properties of Ultra-Low-Fire Integratable Dielectric Film for High-Frequency and Microwave Application

    NASA Astrophysics Data System (ADS)

    Qu, Sheng; Zhang, Jihua; Wu, Kaituo; Wang, Lei; Chen, Hongwei

    2018-03-01

    In this study, ultra-low-fire ceramic composites of Zn2Te3O8-30 wt.%TiTe3O8 (ZTT) were prepared by a solid-state reaction method. Densified at 600°C, the best microwave dielectric properties at 8.5 GHz were measured with the ɛ r , tan δ, Q × f, and τ f as 25.6, 1.5 × 10-4, 56191 GHz and 1.66 ppm/°C, respectively. Thin films of ultra-low-fire ZTT were prepared by a radio-frequency magnetron sputtering method. ZTT films which deposited on Au/NiCr/SiO2/Si (100) substrates at 200°C showed good adhesion. From ultra-low-fire ceramic to ultra-low-fire ZTT thin films, the latter maintained all the good high-frequency dielectric properties of the former: high dielectric constant ( ɛ r ˜ 25) and low dissipation factor (tan δ < 5×10-3), low leakage current density (˜ 10-9 A/cm2) and ultra low processing temperature. These excellent properties of the ultra-low-fire ZTT thin film make it possible to be integrated in MMIC and be applied in the research of GaN and GaAs MOSFET devices.

  19. Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model

    PubMed Central

    Lu, Ting; Wade, Kirstie; Sanchez, Jason Tait

    2017-01-01

    ABSTRACT We have previously shown that late-developing avian nucleus magnocellularis (NM) neurons (embryonic [E] days 19–21) fire action potentials (APs) that resembles a band-pass filter in response to sinusoidal current injections of varying frequencies. NM neurons located in the mid- to high-frequency regions of the nucleus fire preferentially at 75 Hz, but only fire a single onset AP to frequency inputs greater than 200 Hz. Surprisingly, NM neurons do not fire APs to sinusoidal inputs less than 20 Hz regardless of the strength of the current injection. In the present study we evaluated intrinsic mechanisms that prevent AP generation to low frequency inputs. We constructed a computational model to simulate the frequency-firing patterns of NM neurons based on experimental data at both room and near physiologic temperatures. The results from our model confirm that the interaction among low- and high-voltage activated potassium channels (KLVA and KHVA, respectively) and voltage dependent sodium channels (NaV) give rise to the frequency-firing patterns observed in vitro. In particular, we evaluated the regulatory role of KLVA during low frequency sinusoidal stimulation. The model shows that, in response to low frequency stimuli, activation of large KLVA current counterbalances the slow-depolarizing current injection, likely permitting NaV closed-state inactivation and preventing the generation of APs. When the KLVA current density was reduced, the model neuron fired multiple APs per sinusoidal cycle, indicating that KLVA channels regulate low frequency AP firing of NM neurons. This intrinsic property of NM neurons may assist in optimizing response to different rates of synaptic inputs. PMID:28481659

  20. Alternative pathways to landscape transformation: Invasive grasses, burn severity and fire frequency in arid ecosystems

    USGS Publications Warehouse

    Klinger, Robert C.; Brooks, Matthew L.

    2017-01-01

    Arid ecosystems are often vulnerable to transformation to invasive-dominated states following fire, but data on persistence of these states are sparse. The grass/fire cycle is a feedback process between invasive annual grasses and fire frequency that often leads to the formation of alternative vegetation states dominated by the invasive grasses. However, other components of fire regimes, such as burn severity, also have the potential to produce long-term vegetation transformations. Our goal was to evaluate the influence of both fire frequency and burn severity on the transformation of woody-dominated communities to communities dominated by invasive grasses in major elevation zones of the Mojave Desert of western North America.We used a chronosequence design to collect data on herbaceous and woody cover at 229 unburned reference plots and 578 plots that burned between 1972 and 2010. We stratified the plots by elevation zone (low, mid, high), fire frequency (1–3 times) and years post-fire (YPF; 1–5, 6–10, 11–20 and 21–40 YPF). Burn severity for each plot was estimated by the difference normalized burn ratio.We identified two broad post-fire successional pathways. One was an outcome of fire frequency, resulting in a strong potential transformation via the grass/fire cycle. The second pathway was driven by burn severity, the critical aspect being that long-term transformation of a community could occur from just one fire in areas that burned at high or sometimes moderate severity. Dominance by invasive grasses was most likely to occur in low-and high-elevation communities; cover of native herbaceous species was often greater than that of invasive grasses in the mid-elevation zone.Synthesis. Invasive grasses can dominate a site that burned only one time in many decades at high severity, or a site that burned at low severity but multiple times in the same time period. However, high burn severity may predispose areas to more frequent fire because they have

  1. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    PubMed

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (<50 Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  2. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    PubMed Central

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (<50Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  3. The development of enhanced ripple-fire identification methods using high frequency data from Pinedale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, D.; Garbin, H.D.

    1996-01-01

    A technique called ripple fire used in quarry blasts produces modulations in the spectra of these events. The Deployable Seismic Verification System (DSVS) was installed at the Pinedale Seismic Research Facility in Wyoming, an area with a lot of mining activity. DSVS records at frequencies up to 50 Hz and these data provides us with a unique opportunity to determine how well we can discriminate quarry blasts and if there are operational benefits from using high frequency (>20 Hz) data. We have collected a database of 646 events consisting of known earthquakes, known quarry blasts and unknown signals. We havemore » started to calculate preliminary spectrograms if we get the time-independent banding from the quarry blasts, and at what frequencies the banning occurs. We also detail what we hope to accomplish in FY 1996.« less

  4. Effects of dormant-season fire at three different fire frequencies in shortgrass steppe of the southern Great Plains

    Treesearch

    Paulette L. Ford; Carleton S. White

    2008-01-01

    Prior to proceeding with large-scale fire reintroduction as a grassland management option, appropriate fire frequencies need to be determined. This research experimentally tested the effects of dormant-season fire on ground cover and on plant and soil nutrient cycling in shortgrass steppe at three different fire frequencies. The objective was to determine if fire...

  5. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    NASA Astrophysics Data System (ADS)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  6. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest

    USGS Publications Warehouse

    Burton, J.A.; Hallgren, S.W.; Fuhlendorf, S.D.; Leslie, David M.

    2011-01-01

    Ecosystems in the eastern United States that were shaped by fire over thousands of years of anthropogenic burning recently have been subjected to fire suppression resulting in significant changes in vegetation composition and structure and encroachment by invasive species. Renewed interest in use of fire to manage such ecosystems will require knowledge of effects of fire regime on vegetation. We studied the effects of one aspect of the fire regime, fire frequency, on biomass, cover and diversity of understory vegetation in upland oak forests prescribe-burned for 20 years at different frequencies ranging from zero to five fires per decade. Overstory canopy closure ranged from 88 to 96% and was not affected by fire frequency indicating high tolerance of large trees for even the most frequent burning. Understory species richness and cover was dominated by woody reproduction followed in descending order by forbs, C3 graminoids, C4 grasses, and legumes. Woody plant understory cover did not change with fire frequency and increased 30% from one to three years after a burn. Both forbs and C3 graminoids showed a linear increase in species richness and cover as fire frequency increased. In contrast, C4 grasses and legumes did not show a response to fire frequency. The reduction of litter by fire may have encouraged regeneration of herbaceous plants and helped explain the positive response of forbs and C3 graminoids to increasing fire frequency. Our results showed that herbaceous biomass, cover, and diversity can be managed with long-term prescribed fire under the closed canopy of upland oak forests. ?? 2011 Springer Science+Business Media B.V.

  7. Fire frequency in the Interior Columbia River Basin: Building regional models from fire history data

    USGS Publications Warehouse

    McKenzie, D.; Peterson, D.L.; Agee, James K.

    2000-01-01

    Fire frequency affects vegetation composition and successional pathways; thus it is essential to understand fire regimes in order to manage natural resources at broad spatial scales. Fire history data are lacking for many regions for which fire management decisions are being made, so models are needed to estimate past fire frequency where local data are not yet available. We developed multiple regression models and tree-based (classification and regression tree, or CART) models to predict fire return intervals across the interior Columbia River basin at 1-km resolution, using georeferenced fire history, potential vegetation, cover type, and precipitation databases. The models combined semiqualitative methods and rigorous statistics. The fire history data are of uneven quality; some estimates are based on only one tree, and many are not cross-dated. Therefore, we weighted the models based on data quality and performed a sensitivity analysis of the effects on the models of estimation errors that are due to lack of cross-dating. The regression models predict fire return intervals from 1 to 375 yr for forested areas, whereas the tree-based models predict a range of 8 to 150 yr. Both types of models predict latitudinal and elevational gradients of increasing fire return intervals. Examination of regional-scale output suggests that, although the tree-based models explain more of the variation in the original data, the regression models are less likely to produce extrapolation errors. Thus, the models serve complementary purposes in elucidating the relationships among fire frequency, the predictor variables, and spatial scale. The models can provide local managers with quantitative information and provide data to initialize coarse-scale fire-effects models, although predictions for individual sites should be treated with caution because of the varying quality and uneven spatial coverage of the fire history database. The models also demonstrate the integration of

  8. High-frequency fire alters C : N : P stoichiometry in forest litter.

    PubMed

    Toberman, Hannah; Chen, Chengrong; Lewis, Tom; Elser, James J

    2014-07-01

    Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long-term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient-acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every 2 years (2yrB), burning every 4 years (4 yrB) and no burning (NB). C : N ratios in freshly fallen litter were 29-42% higher and C : P ratios were 6-25% lower for 2 yrB than NB during decomposition, with correspondingly lower 2yrB N : P ratios (27-32) than for NB (34-49). Trends in litter soluble and microbial N : P ratios were similar to the overall litter N : P ratios across fire treatments. Consistent with these, the ratio of activities for N-acquiring to P-acquiring enzymes in litter was higher for 2 yrB than NB, whereas 4 yrB was generally intermediate between 2 yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2 yrB (72 ± 2% mass remaining at the end of experiment) than for 4 yrB (59 ± 3%) and NB (62 ± 3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed-age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2 yrB) decoupled N and P cycling, as manifested in litter C : N : P stoichiometry and in microbial biomass N : P ratio and enzymatic activities. Furthermore, these data indicate that fire induced a transient shift to N-limited ecosystem conditions

  9. Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States

    USGS Publications Warehouse

    Busing, Richard T.; Solomon, Allen M.

    2006-01-01

    This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.

  10. An analysis of wildfire frequency and burned area relationships with human pressure and climate gradients in the context of fire regime

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-04-01

    which fire frequency and burnt areas are controlled by either environmental, human, or both factors. Results reveal a noticeable link between fire frequency and human activity, especially in the Northwest area during winter. On the other hand, in the Hinterland and Mediterranean regions, human and climate factors 'work' together in terms of their relationship with fire activity, being the concurrence of high human pressure and favourable climate conditions the main driver. In turn, burned area shows a similar behaviour except in the Hinterland region, were fire-affected area depends mostly on climate factors. Overall, we can conclude that the visual analysis of multidimensional scatterplots has proved to be a powerful tool that facilitates characterization and investigation of fire regimes.

  11. The Influence of Rainfall, Vegetation, Elephants and People on Fire Frequency of Miombo Woodlands, Northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H. H.; Swap, R. J.

    2008-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  12. The influence of rainfall, vegetation, elephants and people on fire frequency of miombo woodlands, northern Mozambique

    NASA Astrophysics Data System (ADS)

    Ribeiro, N. S.; Okin, G. S.; Shugart, H.; Swap, R.

    2007-12-01

    Miombo woodlands are important in southern Africa as they occupy over 50% of the land and, their good and services support a large proportion of people in the region. Anthropogenic fires occur in miombo every year especially in the dry season (May - October). This study explores the influence of annual rainfall, elephant density, human density and corridors, and vegetation on the fire frequency. It was carried out in Niassa Reserve located in northern Mozambique, the largest and more pristine conservation area of miombo woodlands in the world. We used a time series analysis and statistical t-test of MODIS-derived Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) to explore the relationship between biomass and fire frequency. The influence of rainfall, elephants, people and vegetation on fire return was explored using a stepwise logistic regression analysis. The results of this study indicate that fire frequency is higher in places with high biomass at beginning of the dry season. In these areas fire seems to be more intense and to strongly reduce biomass in the late dry season. Land cover is the strongest predictor of fire frequency, but elephant density, annual rainfall and human corridors are also important.

  13. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests

    PubMed Central

    Balch, Jennifer K.; Massad, Tara J.; Brando, Paulo M.; Nepstad, Daniel C.; Curran, Lisa M.

    2013-01-01

    Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4–13.2 stems m−2), but after 6 years, increased mortality and decreased regeneration—primarily of seedlings—led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred—almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes. PMID:23610167

  14. Using ecological forecasting of future vegetation transition and fire frequency change in the Sierra Nevada to assess fire management strategies

    NASA Astrophysics Data System (ADS)

    Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.

    2013-12-01

    Ecological systems may respond in complex manners as climate change progresses. Among the responses, site-level climate conditions may cause a shift in vegetation due to the physiological tolerances of plant species, and the fire return interval may change. Natural resource managers challenged with maintaining ecosystem health need a way to forecast how these processes may affect every location, in order to determine appropriate management actions and prioritize locations for interventions. We integrated climate change-driven vegetation type transitions with projected change in fire frequency for 45,203 km2 of the southern Sierra Nevada, California, containing over 10 land management agencies as well as private lands. This Magnitude of Change (MOC) approach involves classing vegetation types in current time according to their climate envelopes, and identifying which sites will in the future have climates beyond what that vegetation currently occurs in. Independently, fire models are used to determine the change in fire frequency for each site. We examined 82 vegetation types with >50 grid cell occurrences. We found iconic resources such as the giant sequoia, lower slope oak woodlands, and high elevation conifer forests are projected as highly vulnerable by models that project a warmer drier future, but not as much by models that project a warmer future that is not drier than current conditions. Further, there were strongly divergent vulnerabilities of these forest types across land ownership (National Parks versus US Forest Service lands), and by GCM. For example, of 50 giant sequoia (Sequoiadendron giganteum) groves and complexes, all but 3 (on Sierra National Forest) were in the 2 highest levels of risk of climate and fire under the GFDL A2 projection, while 15 groves with low-to-moderate risk were found on both the National Parks and National Forests 18 in the 2 under PCM A2. Landscape projections of potential MOC suggest that the region is likely to experience

  15. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Hawbaker, Todd J; Stewart, Susan I

    2009-06-01

    Periodic wildfire is an important natural process in Mediterranean-climate ecosystems, but increasing fire recurrence threatens the fragile ecology of these regions. Because most fires are human-caused, we investigated how human population patterns affect fire frequency. Prior research in California suggests the relationship between population density and fire frequency is not linear. There are few human ignitions in areas with low population density, so fire frequency is low. As population density increases, human ignitions and fire frequency also increase, but beyond a density threshold, the relationship becomes negative as fuels become sparser and fire suppression resources are concentrated. We tested whether this hypothesis also applies to the other Mediterranean-climate ecosystems of the world. We used global satellite databases of population, fire activity, and land cover to evaluate the spatial relationship between humans and fire in the world's five Mediterranean-climate ecosystems. Both the mean and median population densities were consistently and substantially higher in areas with than without fire, but fire again peaked at intermediate population densities, which suggests that the spatial relationship is complex and nonlinear. Some land-cover types burned more frequently than expected, but no systematic differences were observed across the five regions. The consistent association between higher population densities and fire suggests that regardless of differences between land-cover types, natural fire regimes, or overall population, the presence of people in Mediterranean-climate regions strongly affects the frequency of fires; thus, population growth in areas now sparsely settled presents a conservation concern. Considering the sensitivity of plant species to repeated burning and the global conservation significance of Mediterranean-climate ecosystems, conservation planning needs to consider the human influence on fire frequency. Fine-scale spatial

  16. Use of regionalisation approach to develop fire frequency curves for Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Khastagir, Anirban; Jayasuriya, Niranjali; Bhuyian, Muhammed A.

    2017-11-01

    It is important to perform fire frequency analysis to obtain fire frequency curves (FFC) based on fire intensity at different parts of Victoria. In this paper fire frequency curves (FFCs) were derived based on forest fire danger index (FFDI). FFDI is a measure related to fire initiation, spreading speed and containment difficulty. The mean temperature (T), relative humidity (RH) and areal extent of open water (LC2) during summer months (Dec-Feb) were identified as the most important parameters for assessing the risk of occurrence of bushfire. Based on these parameters, Andrews' curve equation was applied to 40 selected meteorological stations to identify homogenous stations to form unique clusters. A methodology using peak FFDI from cluster averaged FFDIs was developed by applying Log Pearson Type III (LPIII) distribution to generate FFCs. A total of nine homogeneous clusters across Victoria were identified, and subsequently their FFC's were developed in order to estimate the regionalised fire occurrence characteristics.

  17. Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses

    NASA Astrophysics Data System (ADS)

    Turecek, Josef; Jackman, Skyler L.; Regehr, Wade G.

    2017-11-01

    At most synapses in the brain, short-term plasticity dynamically modulates synaptic strength. Rapid frequency-dependent changes in synaptic strength have key roles in sensory adaptation, gain control and many other neural computations. However, some auditory, vestibular and cerebellar synapses maintain constant strength over a wide range of firing frequencies, and as a result efficiently encode firing rates. Despite its apparent simplicity, frequency-invariant transmission is difficult to achieve because of inherent synaptic nonlinearities. Here we study frequency-invariant transmission at synapses from Purkinje cells to deep cerebellar nuclei and at vestibular synapses in mice. Prolonged activation of these synapses leads to initial depression, which is followed by steady-state responses that are frequency invariant for their physiological activity range. We find that synaptotagmin 7 (Syt7), a calcium sensor for short-term facilitation, is present at both synapses. It was unclear why a sensor for facilitation would be present at these and other depressing synapses. We find that at Purkinje cell and vestibular synapses, Syt7 supports facilitation that is normally masked by depression, which can be revealed in wild-type mice but is absent in Syt7 knockout mice. In wild-type mice, facilitation increases with firing frequency and counteracts depression to produce frequency-invariant transmission. In Syt7-knockout mice, Purkinje cell and vestibular synapses exhibit conventional use-dependent depression, weakening to a greater extent as the firing frequency is increased. Presynaptic rescue of Syt7 expression restores both facilitation and frequency-invariant transmission. Our results identify a function for Syt7 at synapses that exhibit overall depression, and demonstrate that facilitation has an unexpected and important function in producing frequency-invariant transmission.

  18. The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS.

    PubMed

    Delvendahl, Igor; Hallermann, Stefan

    2016-11-01

    The speed of neuronal information processing depends on neuronal firing frequency. Here, we describe the evolutionary advantages and ubiquitous occurrence of high-frequency firing within the mammalian nervous system in general. The highest firing frequencies so far have been observed at the cerebellar mossy fiber to granule cell synapse. The mechanisms enabling high-frequency transmission at this synapse are reviewed and compared with other synapses. Finally, information coding of high-frequency signals at the mossy fiber synapse is discussed. The exceptionally high firing frequencies and amenability to high-resolution technical approaches both in vitro and in vivo establish the cerebellar mossy fiber synapse as an attractive model to investigate high-frequency signaling from the molecular up to the network level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. High-frequency stimulation of the medial prefrontal cortex decreases cellular firing in the dorsal raphe

    PubMed Central

    Srejic, Luka R.; Hamani, Clement; Hutchison, William D.

    2017-01-01

    High-frequency deep brain stimulation (HFS-DBS) of the subcallosal cingulate (SCC) region has been investigated as a treatment for refractory forms of depression with a ~50% remission rate in open label studies. However, the therapeutic mechanisms of DBS are still largely unknown. Using anaesthetized Sprague Dawley rats, we recorded neuronal spiking activity in 102 neurons of the dorsal raphe (DR) before, during and after the induction of a 5-min HFS train in the infralimbic region (IL) of the medial pre-frontal cortex (mPFC), the rodent homologue of the human SCC. The majority of DR cells (82%) significantly decreased firing rate during HFS (P < 0.01, 55.7 ± 4.5% of baseline, 35 rats). To assess whether mPFC-HFS mediates inhibition of DR cellular firing by stimulating local GABAergic interneurons, the GABAA antagonist bicuculline (Bic, 100 μM) was injected directly into the DR during HFS. Neurons inhibited by HFS recovered their firing rate during Bic+HFS (P < 0.01, n = 15, seven rats) to levels not different from baseline. Cells that were not affected by HFS did not change firing rate during Bic+HFS (P = 0.968, n = 7, three rats). These results indicate that blocking GABAA reverses HFS-mediated inhibition of DR neurons. As the cells that were not inhibited by HFS were also unaffected by HFS+Bic, they are probably not innervated by local GABA. Taken together, our results suggest that mPFC-HFS may exert a preferential effect on DR neurons with GABAA receptors. PMID:25712703

  20. Modelling fire frequency and area burned across phytoclimatic regions in Spain using reanalysis data and the Canadian Fire Weather Index System

    NASA Astrophysics Data System (ADS)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2013-09-01

    We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990-2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter-annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness

  1. What fire frequency is appropriate for shortleaf pine regeneration and survival?

    Treesearch

    Michael C. Stambaugh; Richard P. Guyette; Daniel C. Dey

    2007-01-01

    Shortleaf pine community restoration requires an answer to the question, "What fire frequency is appropriate for shortleaf pine regeneration and survival?" The answer to this question is one of the most critical to successful restoration through fire management. We used three sources of information from Missouri to determine appropriate burning frequencies: a...

  2. Effects of dendritic load on the firing frequency of oscillating neurons.

    PubMed

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  3. Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons

    PubMed Central

    Johnston, Jamie; Griffin, Sarah J; Baker, Claire; Skrzypiec, Anna; Chernova, Tatanya; Forsythe, Ian D

    2008-01-01

    The medial nucleus of the trapezoid body (MNTB) is specialized for high frequency firing by expression of Kv3 channels, which minimize action potential (AP) duration, and Kv1 channels, which suppress multiple AP firing, during each calyceal giant EPSC. However, the outward K+ current in MNTB neurons is dominated by another unidentified delayed rectifier. It has slow kinetics and a peak conductance of ∼37 nS; it is half-activated at −9.2 ± 2.1 mV and half-inactivated at −35.9 ± 1.5 mV. It is blocked by several non-specific potassium channel antagonists including quinine (100 μm) and high concentrations of extracellular tetraethylammonium (TEA; IC50 = 11.8 mm), but no specific antagonists were found. These characteristics are similar to recombinant Kv2-mediated currents. Quantitative RT-PCR showed that Kv2.2 mRNA was much more prevalent than Kv2.1 in the MNTB. A Kv2.2 antibody showed specific staining and Western blots confirmed that it recognized a protein ∼110 kDa which was absent in brainstem tissue from a Kv2.2 knockout mouse. Confocal imaging showed that Kv2.2 was highly expressed in axon initial segments of MNTB neurons. In the absence of a specific antagonist, Hodgkin–Huxley modelling of voltage-gated conductances showed that Kv2.2 has a minor role during single APs (due to its slow activation) but assists recovery of voltage-gated sodium channels (Nav) from inactivation by hyperpolarizing interspike potentials during repetitive AP firing. Current-clamp recordings during high frequency firing and characterization of Nav inactivation confirmed this hypothesis. We conclude that Kv2.2-containing channels have a distinctive initial segment location and crucial function in maintaining AP amplitude by regulating the interspike potential during high frequency firing. PMID:18511484

  4. Improved fire resistant radio frequency anechoic materials

    NASA Technical Reports Server (NTRS)

    Robinson, D. A.

    1969-01-01

    Protective, flameproof foam covering improves the resistance to fire and surface contamination of low-cost radio frequency absorbing and shielding anechoic materials. This promotes safety of operating personnel and equipment being tested in an otherwise combustible anechoic chamber.

  5. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.

    PubMed

    Baroni, Fabiano; Burkitt, Anthony N; Grayden, David B

    2014-05-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  6. Interplay of Intrinsic and Synaptic Conductances in the Generation of High-Frequency Oscillations in Interneuronal Networks with Irregular Spiking

    PubMed Central

    Baroni, Fabiano; Burkitt, Anthony N.; Grayden, David B.

    2014-01-01

    High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of

  7. Observational evidence on the effects of mega-fires on the frequency of hydrogeomorphic hazards. The case of the Peloponnese fires of 2007 in Greece.

    PubMed

    Diakakis, M; Nikolopoulos, E I; Mavroulis, S; Vassilakis, E; Korakaki, E

    2017-08-15

    Even though rare, mega-fires raging during very dry and windy conditions, record catastrophic impacts on infrastructure, the environment and human life, as well as extremely high suppression and rehabilitation costs. Apart from the direct consequences, mega-fires induce long-term effects in the geomorphological and hydrological processes, influencing environmental factors that in turn can affect the occurrence of other natural hazards, such as floods and mass movement phenomena. This work focuses on the forest fire of 2007 in Peloponnese, Greece that to date corresponds to the largest fire in the country's record that burnt 1773km 2 , causing 78 fatalities and very significant damages in property and infrastructure. Specifically, this work examines the occurrence of flood and mass movement phenomena, before and after this mega-fire and analyses different influencing factors to investigate the degree to which the 2007 fire and/or other parameters have affected their frequency. Observational evidence based on several data sources collected during the period 1989-2016 show that the 2007 fire has contributed to an increase of average flood and mass movement events frequency by approximately 3.3 and 5.6 times respectively. Fire affected areas record a substantial increase in the occurrence of both phenomena, presenting a noticeably stronger increase compared to neighbouring areas that have not been affected. Examination of the monthly occurrence of events showed an increase even in months of the year were rainfall intensity presented decreasing trends. Although no major land use changes has been identified and chlorophyll is shown to recover 2years after the fire incident, differences on the type of vegetation as tall forest has been substituted with lower vegetation are considered significant drivers for the observed increase in flood and mass movement frequency in the fire affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fire occurrence and tussock size modulate facilitation by Ampelodesmos mauritanicus

    NASA Astrophysics Data System (ADS)

    Incerti, Guido; Giordano, Daniele; Stinca, Adriano; Senatore, Mauro; Termolino, Pasquale; Mazzoleni, Stefano; Bonanomi, Giuliano

    2013-05-01

    Facilitation has been reported for a wide range of plant communities, with evidence of interactions between protégé and nurse plants shifting during their ontogenetic cycles. This study showed that large Ampelodesmos mauritanicus tussocks can act as nurse for different species, but only after fire occurrence. Large tussocks are typically composed by an external belt of living tillers surrounding dead standing tillers in the inner area, thus being arranged as a “ring” shape. A low plant diversity in unburned sites, dominated by intact Ampelodesmos tussocks, was related to the intense aboveground competition due to space physical limitation by standing tillers, as well as to the reduction of light availability at ground level. In contrast, after burning, tussocks resprouted only in their external belts, leaving empty inner areas. During post-fire recovery, several species (e.g. Plantago spp., Trifolium spp., Carlina spp.) recolonize the bare soil among different tussocks. On the other hand, a moss (Funaria hygrometrica) and several herbaceous and woody plants (e.g. Spartium junceum, Calicotome villosa, Quercus pubescens subsp. pubescens) were selectively distributed within the ash-full central areas of burned Ampelodesmos tussocks. In summary, the study reported evidence of changing prevalence in the interplay of competition and facilitation effects between small and large Ampelodesmos tussocks, respectively. These results suggest a broad significance of the interactions between fire occurrence and ontogenetic phases of the dominant species in affecting the restoration dynamics of natural plant communities.

  9. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Pellegrini, Adam F. A.; Ahlström, Anders; Hobbie, Sarah E.; Reich, Peter B.; Nieradzik, Lars P.; Staver, A. Carla; Scharenbroch, Bryant C.; Jumpponen, Ari; Anderegg, William R. L.; Randerson, James T.; Jackson, Robert B.

    2018-01-01

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  10. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity.

    PubMed

    Pellegrini, Adam F A; Ahlström, Anders; Hobbie, Sarah E; Reich, Peter B; Nieradzik, Lars P; Staver, A Carla; Scharenbroch, Bryant C; Jumpponen, Ari; Anderegg, William R L; Randerson, James T; Jackson, Robert B

    2018-01-11

    Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the frequency of fires was altered at each site. We find that frequently burned plots experienced a decline in surface soil carbon and nitrogen that was non-saturating through time, having 36 per cent (±13 per cent) less carbon and 38 per cent (±16 per cent) less nitrogen after 64 years than plots that were protected from fire. Fire-driven carbon and nitrogen losses were substantial in savanna grasslands and broadleaf forests, but not in temperate and boreal needleleaf forests. We also observe comparable soil carbon and nitrogen losses in an independent field dataset and in dynamic model simulations of global vegetation. The model study predicts that the long-term losses of soil nitrogen that result from more frequent burning may in turn decrease the carbon that is sequestered by net primary productivity by about 20 per cent of the total carbon that is emitted from burning biomass over the same period. Furthermore, we estimate that the effects of changes in fire frequency on ecosystem carbon storage may be 30 per cent too low if they do not include multidecadal changes in soil carbon, especially in drier savanna grasslands. Future changes in fire frequency may shift ecosystem carbon storage by changing soil carbon pools and nitrogen limitations on plant growth, altering the carbon sink capacity of frequently burning savanna grasslands and broadleaf forests.

  11. Dual-Vivaldi wideband nanoantenna with high radiation efficiency over the infrared frequency band.

    PubMed

    Iluz, Zeev; Boag, Amir

    2011-08-01

    A dual-Vivaldi nanoantenna is proposed to demonstrate the possibility of wideband operation at IR frequencies. The antenna geometry design is guided by the material properties of metals at IR frequencies. According to our numerical results, this nanoantenna has both high radiation efficiency and good impedance-matching properties over a wide frequency band (more than 122%) in the IR frequency band. The design is based on the well-known Vivaldi antenna placed on quartz substrate but operating as a pair instead of a single element. Such a pair of Vivaldi antennas oriented in opposite directions produces the main lobe in the broadside direction (normal to the axes of the antennas) rather than the usual peak gain along the axis (end fire) of a single Vivaldi antenna. The dual-Vivaldi nanoantenna is easy to fabricate in a conventional electron-beam lithography process, and it provides a large number of degrees of freedom, facilitating design for ultra-wideband operation. © 2011 Optical Society of America

  12. The Impact of Increasing Fire Frequency on Forest Transformations in the Zabaikal Region, Southern Siberia

    NASA Astrophysics Data System (ADS)

    Conard, S. G.; Kukavskaya, E. A.; Buryak, L. V.; Shvetsov, E.; Kalenskaya, O. P.; Zhila, S.

    2017-12-01

    The Zabaikal region of southern Siberia is characterized by some of the highest fire activity in Russia. There has been a significant increase of fire frequency and burned area in the region over the last two decades due to a combination of high anthropogenic pressure, decreased funding to the forestry sector, and increased fire danger, which was associated with higher frequency and intensity of extreme weather events. Central and southern parts of the Zabaikal region where population density is higher and road network is relatively more developed are the most disturbed by fires. Larch stands cover the largest proportion of fire-disturbed lands in the region, while the less common pine and birch stands are characterized by higher fire frequency. About 13% (3.9 M ha) of the total forest area in the Zabaikal region was burned more than once in the 20 years from 1996 to 2015, with many sites burned multiple times. Repeat disturbances led to inadequate tree regeneration on all but the moistest sites. Pine stands on dry soils, which are common in the forest-steppe zone, were the most vulnerable. After repeat burns and over large burned sites we observed transformation of the forests to steppe ecosystems. The most likely causes of insufficient forest regeneration are soil overheating, dominance of tall grasses, and lack of nearby seed sources. Extensive tree plantations have potential to mitigate negative fire impacts; however, due to high fire hazard in the recent decade about half of the plantation area has been burned. Changes in the SWVI index were used to assess postfire reforestation based on a combination of satellite and field data. In the southwestern part of the Zabaikal region, we estimated that reforestation had been hampered over 11% of the forest land area. Regional climate models project increasing temperatures and decreasing precipitation across Siberia by the end of the 21st century, with changes in the Zabaikal region projected to be more than twice the

  13. Fire and birds in the southwestern United States

    Treesearch

    Carl E. Bock; William M. Block

    2005-01-01

    Fire is an important ecological force in many southwestern ecosystems, but frequencies, sizes, and intensities of fire have been altered historically by grazing, logging, exotic vegetation, and suppression. Prescribed burning should be applied widely, but under experimental conditions that facilitate studying its impacts on birds and other components of biodiversity....

  14. Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity.

    PubMed

    López-Vázquez, Miguel Ángel; López-Loeza, Elisa; Lajud Ávila, Naima; Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Reyes, Yoana Estrada; Olvera-Cortés, María Esther

    2014-07-05

    Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Frequency of urban building fires as related to daily weather conditions

    Treesearch

    Arthur R. Pirsko; Wallace L. Fons

    1956-01-01

    Daily weather elements of precipitation, wind, mean temperature, relative humidity, and dew-point temperature for selected urban areas (approximately 850,000 population) in the United States are statistically analyzed to determine their correlation with daily number of building fires. The frequency of urban building fires is found to be significantly correlated with...

  16. Ictal high frequency oscillations distinguish two types of seizure territories in humans

    PubMed Central

    Weiss, Shennan A.; Banks, Garrett P.; McKhann, Guy M.; Goodman, Robert R.; Emerson, Ronald G.; Trevelyan, Andrew J.

    2013-01-01

    High frequency oscillations have been proposed as a clinically useful biomarker of seizure generating sites. We used a unique set of human microelectrode array recordings (four patients, 10 seizures), in which propagating seizure wavefronts could be readily identified, to investigate the basis of ictal high frequency activity at the cortical (subdural) surface. Sustained, repetitive transient increases in high gamma (80–150 Hz) amplitude, phase-locked to the low-frequency (1–25 Hz) ictal rhythm, correlated with strong multi-unit firing bursts synchronized across the core territory of the seizure. These repetitive high frequency oscillations were seen in recordings from subdural electrodes adjacent to the microelectrode array several seconds after seizure onset, following ictal wavefront passage. Conversely, microelectrode recordings demonstrating only low-level, heterogeneous neural firing correlated with a lack of high frequency oscillations in adjacent subdural recording sites, despite the presence of a strong low-frequency signature. Previously, we reported that this pattern indicates a failure of the seizure to invade the area, because of a feedforward inhibitory veto mechanism. Because multi-unit firing rate and high gamma amplitude are closely related, high frequency oscillations can be used as a surrogate marker to distinguish the core seizure territory from the surrounding penumbra. We developed an efficient measure to detect delayed-onset, sustained ictal high frequency oscillations based on cross-frequency coupling between high gamma amplitude and the low-frequency (1–25 Hz) ictal rhythm. When applied to the broader subdural recording, this measure consistently predicted the timing or failure of ictal invasion, and revealed a surprisingly small and slowly spreading seizure core surrounded by a far larger penumbral territory. Our findings thus establish an underlying neural mechanism for delayed-onset, sustained ictal high frequency oscillations, and

  17. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    PubMed Central

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  18. Fire effects on soils in Lake States forests: A compilation of published research to facilitate long-term investigations

    Treesearch

    Jessica Miesel; P. Goebel; R. Corace; David Hix; Randall Kolka; Brian Palik; David Mladenoff

    2012-01-01

    Fire-adapted forests of the Lake States region are poorly studied relative to those of the western and southeastern United States and our knowledge base of regional short- and long-term fire effects on soils is limited. We compiled and assessed the body of literature addressing fire effects on soils in Lake States forests to facilitate the re-measurement of previous...

  19. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers.

    PubMed

    Adelson, D; Lao, L; Zhang, G; Kim, W; Marvizón, J C G

    2009-06-30

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1-10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Adelta-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli.

  20. High-frequency promoter firing links THO complex function to heavy chromatin formation.

    PubMed

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu; Daubenton-Carafa, Yves; Blugeon, Corinne; Lemoine, Sophie; Devaux, Frédéric; Darzacq, Xavier; Libri, Domenico

    2013-11-27

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single-molecule fluorescence in situ hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase occupancy genome wide. We propose that the THO complex is required for tuning the dynamic of gene-nuclear pore association and mRNP release to the same high pace of transcription initiation. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands.

    Treesearch

    D.W. Peterson; P.B. Reich; K.J. Wrage

    2007-01-01

    We measured plant functional group cover and tree canopy cover on permanent plots within a long-term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Understory woody plant cover was highest in unburned woodlands and was negatively correlated with fire...

  2. Fire frequency and tree canopy structure influence plant species diversity in a forest-grassland ecotone

    Treesearch

    David W. Peterson; Peter B. Reich

    2008-01-01

    Disturbances and environmental heterogeneity are two factors thought to influence plant species diversity, but their effects are still poorly understood in many ecosystems. We surveyed understory vegetation and measured tree canopy cover on permanent plots spanning an experimental fire frequency gradient to test fire frequency and tree canopy effects on plant species...

  3. Fire Problems in High-Rise Buildings. California Fire Service Training Program.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Industrial Education.

    Resulting from a conference concerned with high-rise fire problems, this manual has been prepared as a fire department training manual and as a reference for students enrolled in fire service training courses. Information is provided for topics dealing with: (1) Typical Fire Problems in High-Rise Buildings, (2) Heat, (3) Smoke and Fire Gases, (4)…

  4. High resolution fire risk mapping in Italy

    NASA Astrophysics Data System (ADS)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2014-05-01

    The high topographic and vegetation heterogeneity makes Italy vulnerable to forest fires both in the summer and in winter. In particular, northern regions are predominantly characterized by a winter fire regime, mainly due to frequent extremely dry winds from the north, while southern and central regions and the large islands are characterized by a severe summer fire regime, because of the higher temperatures and prolonged lack of precipitation. The threat of wildfires in Italy is not confined to wooded areas as they extend to agricultural areas and urban-forest interface areas. The agricultural and rural areas, in the last century, have been gradually abandoned, especially in areas with complex topography. Many of these areas were subject to reforestation, leading to the spread of pioneer species mainly represented by Mediterranean conifer, which are highly vulnerable to fire. Because of the frequent spread of fire, these areas are limited to the early successional stages, consisting mainly of shrub vegetation; its survival in the competition with the climax species being ensured by the spread of fire itself. Due to the frequency of fire ignition — almost entirely man caused — the time between fires on the same area is at least an order of magnitude less than the time that would allow the establishment of forest climax species far less vulnerable to fire. In view of the limited availability of fire risk management resources, most of which are used in the management of national and regional air services, it is necessary to precisely identify the areas most vulnerable to fire risk. The few resources available can thus be used on a yearly basis to mitigate problems in the areas at highest risk by defining a program of forest management interventions, which is expected to make a significant contribution to the problem in a few years' time. The goal of such detailed planning is to dramatically reduce the costs associated with water bombers fleet management and fire

  5. Influence of fire frequency on carbon consumption in Alaskan blackspruce forests

    NASA Astrophysics Data System (ADS)

    Hoy, E.; Kasischke, E. S.

    2014-12-01

    Increasing temperatures and drier conditions within the boreal forests of Alaska have resulted in increases in burned area and fire frequency, which alter carbon storage and emissions. In particular, analyses of satellite remote sensing data showed that >20% of the area impacted by fires in interior Alaska occurred in areas that had previously burned since 1950 (e.g., short to intermediate interval fires). Field studies showed that in immature black spruce forests ~ 35 to 55 years old organic layers experienced deep burning regardless of topographic position or seasonality of burning, factors that control depth of burning in mature black spruce forests. Here, refinements were made to a carbon consumption model to account for variations in fuel loads and fraction of carbon consumed associated with fire frequency based on quantifying burned area in recently burned sites using satellite imagery. An immature black spruce (Picea mariana) fuel type (including stands of ~0-50 years) was developed which contains new ground-layer carbon consumption values in order to more accurately account for differences between various age classes of black spruce forest. Both versions of the model were used to assess carbon consumption during 100 fire events (over 4.4 x 10^6 ha of burned area) from two recent ultra-large fire years (2004 and 2005). Using the improved model to better attribute fuel type and consumption resulted in higher ground-layer carbon consumption (4.9% in 2004 and 6.8% in 2005) than previously estimated. These adjustments in ground-layer burning resulted in total carbon consumption within 2004 and 2005 of 63.5 and 42.0 Tg of carbon, respectively. Results from this research could be incorporated into larger scale modeling efforts to better assess changes in the climate-fire-vegetation dynamics in interior Alaskan boreal forests, and to understand the impacts of these changes on carbon consumption and emissions.

  6. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increases with the firing frequency of C-fibers

    PubMed Central

    Adelson, David; Lao, Lijun; Zhang, Guohua; Kim, Woojae; Marvizón, Juan Carlos G.

    2009-01-01

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1–10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Aδ-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli. PMID:19336248

  7. Fire in High Buildings. Fire Study No. 21.

    ERIC Educational Resources Information Center

    Galbreath, M.

    Research into and measures of fire protection with regard to high building design are discussed with suggestions for proper building equipment, materials, and planning. The study outlines how smoke and toxic gases spread in high buildings through stairs, service shafts, air handling and heating equipment. The problems of basement fires, means of…

  8. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    PubMed

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-05

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.

  9. Understorey fire frequency and the fate of burned forests in southern Amazonia

    PubMed Central

    Morton, D. C.; Le Page, Y.; DeFries, R.; Collatz, G. J.; Hurtt, G. C.

    2013-01-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km2 between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  10. Prominent facilitation at beta and gamma frequency range revealed with physiological calcium concentration in adult mouse piriform cortex in vitro

    PubMed Central

    Gleizes, Marie; Perrier, Simon P.; Fonta, Caroline

    2017-01-01

    Neuronal activity is characterized by a diversity of oscillatory phenomena that are associated with multiple behavioral and cognitive processes, yet the functional consequences of these oscillations are not fully understood. Our aim was to determine whether and how these different oscillatory activities affect short-term synaptic plasticity (STP), using the olfactory system as a model. In response to odorant stimuli, the olfactory bulb displays a slow breathing rhythm as well as beta and gamma oscillations. Since the firing of olfactory bulb projecting neurons is phase-locked with beta and gamma oscillations, structures downstream from the olfactory bulb should be driven preferentially at these frequencies. We examined STP exhibited by olfactory bulb inputs in slices of adult mouse piriform cortex maintained in vitro in an in vivo-like ACSF (calcium concentration: 1.1 mM). We replaced the presynaptic neuronal firing rate by repeated electrical stimulation (frequency between 3.125 and 100 Hz) applied to the lateral olfactory tract. Our results revealed a considerable enhancement of postsynaptic response amplitude for stimulation frequencies in the beta and gamma range. A phenomenological model of STP fitted to the data suggests that the experimental results can be explained by the interplay between three mechanisms: a short-term facilitation mechanism (time constant ≈160 msec), and two short-term depression mechanisms (recovery time constants <20 msec and ≈140 msec). Increasing calcium concentration (2.2 mM) resulted in an increase in the time constant of facilitation and in a strengthening of the slowest depression mechanism. As a result, response enhancement was reduced and its peak shifted toward the low beta and alpha ranges while depression became predominant in the gamma band. Using environmental conditions corresponding to those that prevail in vivo, our study shows that STP in the lateral olfactory tract to layer Ia synapse allows amplification of

  11. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    NASA Astrophysics Data System (ADS)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments

  12. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    PubMed

    Ficken, Cari D; Wright, Justin P

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  13. Passive fire protection in high density village (case study, Bustaman Semarang)

    NASA Astrophysics Data System (ADS)

    Sukawi, Sukawi; Wahyu Firmandhani, Satriya; Hardiman, Gagoek

    2017-12-01

    Fire hazard is the disaster that always has an unpredictable process of coming. When it comes, its level scope and the magnitude of the effects cannot be predicted. Dense settlements especially in big cities, among others Bustaman Kampong Semarang never escape from physical problems such as flooding and wildfire. If both are compared in dense settlements scope, so that, wild fire is the most potentially catastrophic. It is necessary to do a research on passive fire protection in a village of high density city such as Bustaman. Qualitative research was conducted using descriptive method to conduct observations and interviews in the Bustaman. Bustaman as a high density village, with narrow roads and dense rows of houses. The terraced buildings are also encountered, and found many buildings use combustible material. That environmental conditions can facilitate the propagation of flames in case of fire. To improve the established Bustaman's environment, in terms of the application of passive fire protection systems, it is recommended to utilize the road as the dividing buildings. Need to build the separation wall fireproof in every each series in several units of too long buildings and attempted open space procurement that separates rows of buildings that are too long, and also the replacement of combustible material with a material that is more incombustible.

  14. Fire Fighting from High Altitude

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent; Ambrosia, Vince

    2007-01-01

    A viewgraph presentation on high altitude fire fighting is shown. The topics include: 1) Yellowstone Fire - 1988; 2) 2006 Western States Fire Mission Over-View; 3) AMS-Wildfire Scanner; 4) October 24-25 Mission: Yosemite NP and NF; 5) October 24-25 Mission MODIS Overpass; 6) October 24-25 Mission Highlights; 7) October 28-29 Mission Esperanza Fire, California; 8) Response to the Esperanza Fire in Southern California -- Timeline Oct 27-29 2006; 9) October 28-29 Mission Esperanza Fire Altair Flight Routing; 10) October 28-29 Mission Esperanza Fire Altair Over-Flights; 11) October 28-29 Mission Highlights; 12) Results from the Esperanza Fire Response; 13) 2007 Western States Fire Mission; and 14) Western States UAS Fire Mission 2007

  15. Effects of periodic fire on composition and long-term dynamics of Arkansas upland hardwood forests

    Treesearch

    Martin A. Spetich

    2005-01-01

    Prescribed fire (at historic periodic fire frequencies) is seen as an important but little understood tool in the assortment of management techniques that could help restore oak to Arkansas upland hardwood forests and facilitate the maintenance of these keystone species.

  16. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions

    PubMed Central

    Wright, Justin P.

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system. PMID:29023560

  17. Soil carbon in Australian fire-prone forests determined by climate more than fire regimes.

    PubMed

    Sawyer, Robert; Bradstock, Ross; Bedward, Michael; Morrison, R John

    2018-10-15

    Knowledge of global C cycle implications from changes to fire regime and climate are of growing importance. Studies on the role of the fire regime in combination with climate change on soil C pools are lacking. We used Bayesian modelling to estimate the soil % total C (% C Tot ) and % recalcitrant pyrogenic C (% RPC) from field samples collected using a stratified sampling approach. These observations were derived from the following scenarios: 1. Three fire frequencies across three distinctive climate regions in a homogeneous dry sclerophyll forest in south-eastern Australia over four decades. 2. The effects of different fire intensity combinations from successive wildfires. We found climate had a stronger effect than fire frequency on the size of the estimated mineral soil C pool. The largest soil C pool was estimated to occur under a wet and cold (WC) climate, via presumed effects of high precipitation, an adequate growing season temperature (i.e. resulting in relatively high NPP) and winter conditions sufficiently cold to retard seasonal soil respiration rates. The smallest soil C pool was estimated in forests with lower precipitation but warmer mean annual temperature (MAT). The lower precipitation and higher temperature was likely to have retarded NPP and litter decomposition rates but may have had little effect on relative soil respiration. Small effects associated with fire frequency were found, but both their magnitude and direction were climate dependent. There was an increase in soil C associated with a low intensity fire being followed by a high intensity fire. For both fire frequency and intensity the response of % RPC mirrored that of % C Tot : i.e. it was effectively a constant across all combinations of climate and fire regimes sampled. Copyright © 2018. Published by Elsevier B.V.

  18. Mapping auditory nerve firing density using high-level compound action potentials and high-pass noise masking a

    PubMed Central

    Earl, Brian R.; Chertoff, Mark E.

    2012-01-01

    Future implementation of regenerative treatments for sensorineural hearing loss may be hindered by the lack of diagnostic tools that specify the target(s) within the cochlea and auditory nerve for delivery of therapeutic agents. Recent research has indicated that the amplitude of high-level compound action potentials (CAPs) is a good predictor of overall auditory nerve survival, but does not pinpoint the location of neural damage. A location-specific estimate of nerve pathology may be possible by using a masking paradigm and high-level CAPs to map auditory nerve firing density throughout the cochlea. This initial study in gerbil utilized a high-pass masking paradigm to determine normative ranges for CAP-derived neural firing density functions using broadband chirp stimuli and low-frequency tonebursts, and to determine if cochlear outer hair cell (OHC) pathology alters the distribution of neural firing in the cochlea. Neural firing distributions for moderate-intensity (60 dB pSPL) chirps were affected by OHC pathology whereas those derived with high-level (90 dB pSPL) chirps were not. These results suggest that CAP-derived neural firing distributions for high-level chirps may provide an estimate of auditory nerve survival that is independent of OHC pathology. PMID:22280596

  19. Pharmacological characterization of ionic currents that regulate high-frequency spontaneous activity of electromotor neurons in the weakly electric fish, Apteronotus leptorhynchus.

    PubMed

    Smith, G Troy

    2006-01-01

    The neural circuit that controls the electric organ discharge (EOD) of the brown ghost knifefish (Apteronotus leptorhynchus) contains two spontaneous oscillators. Both pacemaker neurons in the medulla and electromotor neurons (EMNs) in the spinal cord fire spontaneously at frequencies of 500-1,000 Hz to control the EOD. These neurons continue to fire in vitro at frequencies that are highly correlated with in vivo EOD frequency. Previous studies used channel blocking drugs to pharmacologically characterize ionic currents that control high-frequency firing in pacemaker neurons. The goal of the present study was to use similar techniques to investigate ionic currents in EMNs, the other type of spontaneously active neuron in the electromotor circuit. As in pacemaker neurons, high-frequency firing of EMNs was regulated primarily by tetrodotoxin-sensitive sodium currents and by potassium currents that were sensitive to 4-aminopyridine and kappaA-conotoxin SIVA, but resistant to tetraethylammonium. EMNs, however, differed from pacemaker neurons in their sensitivity to some channel blocking drugs. Alpha-dendrotoxin, which blocks a subset of Kv1 potassium channels, increased firing rates in EMNs, but not pacemaker neurons; and the sodium channel blocker muO-conotoxin MrVIA, which reduced firing rates of pacemaker neurons, had no effect on EMNs. These results suggest that similar, but not identical, ionic currents regulate high-frequency firing in EMNs and pacemaker neurons. The differences in the ionic currents expressed in pacemaker neurons and EMNs might be related to differences in the morphology, connectivity, or function of these two cell types.

  20. Facilitating normative judgments of conditional probability: frequency or nested sets?

    PubMed

    Yamagishi, Kimihiko

    2003-01-01

    Recent probability judgment research contrasts two opposing views. Some theorists have emphasized the role of frequency representations in facilitating probabilistic correctness; opponents have noted that visualizing the probabilistic structure of the task sufficiently facilitates normative reasoning. In the current experiment, the following conditional probability task, an isomorph of the "Problem of Three Prisoners" was tested. "A factory manufactures artificial gemstones. Each gemstone has a 1/3 chance of being blurred, a 1/3 chance of being cracked, and a 1/3 chance of being clear. An inspection machine removes all cracked gemstones, and retains all clear gemstones. However, the machine removes 1/2 of the blurred gemstones. What is the chance that a gemstone is blurred after the inspection?" A 2 x 2 design was administered. The first variable was the use of frequency instruction. The second manipulation was the use of a roulette-wheel diagram that illustrated a "nested-sets" relationship between the prior and the posterior probabilities. Results from two experiments showed that frequency alone had modest effects, while the nested-sets instruction achieved a superior facilitation of normative reasoning. The third experiment compared the roulette-wheel diagram to tree diagrams that also showed the nested-sets relationship. The roulette-wheel diagram outperformed the tree diagrams in facilitation of probabilistic reasoning. Implications for understanding the nature of intuitive probability judgments are discussed.

  1. A project in two parts: Developing fire histories for the eastern U.S. and creating a climate-based continental fire frequency model to fill data gaps

    Treesearch

    Richard Guyette; Michael Stambaugh; Daniel Dey

    2011-01-01

    Tree-ring dated fire scars provide long-term records of fire frequency, giving land managers valuable baseline information about the fire regimes that existed prior to Euro-American settlement. However, for the East, fire history data prove difficult to acquire because the generally moister climate of the region causes rapid decay of wood. In an endeavor to fill data...

  2. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill.

    PubMed

    Budde, Katharina B; González-Martínez, Santiago C; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G; Verdú, Miguel; Pausas, Juli G; Heuertz, Myriam

    2017-04-01

    The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits

  3. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill

    PubMed Central

    González-Martínez, Santiago C.; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G.; Verdú, Miguel; Pausas, Juli G.

    2017-01-01

    Background and Aims The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Methods Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Key Results Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. Conclusions An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P

  4. Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada

    Treesearch

    Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk

    2017-01-01

    Climate change in the western United States has increased the frequency of extreme fire weather events and is projected to increase the area burned by wildfire in the coming decades. This changing fire regime, coupled with increased high-severity fire risk from a legacy of fire exclusion, could destabilize forest carbon (C), decrease net ecosystem exchange (...

  5. Epicormic resprouting in fire-prone ecosystems

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2017-01-01

    Many plants resprout from basal buds after disturbance, and this is common in shrublands subjected to high-intensity fires. However, resprouting after fire from epicormic (stem) buds is globally far less common. Unlike basal resprouting, post-fire epicormic resprouting is a key plant adaptation for retention of the arborescent skeleton after fire, allowing rapid recovery of the forest or woodland and leading to greater ecosystem resilience under recurrent high-intensity fires. Here we review the biogeography of epicormic resprouting, the mechanisms of protection, the fire regimes where it occurs, and the evolutionary drivers that shaped this trait. We propose that epicormic resprouting is adaptive in ecosystems with high fire frequency and relatively high productivity, at moderate–high fire intensities.

  6. Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing.

    PubMed

    Román-Cuesta, R M; Carmona-Moreno, C; Lizcano, G; New, M; Silman, M; Knoke, T; Malhi, Y; Oliveras, I; Asbjornsen, H; Vuille, M

    2014-06-01

    Global climate models suggest enhanced warming of the tropical mid and upper troposphere, with larger temperature rise rates at higher elevations. Changes in fire activity are amongst the most significant ecological consequences of rising temperatures and changing hydrological properties in mountainous ecosystems, and there is a global evidence of increased fire activity with elevation. Whilst fire research has become popular in the tropical lowlands, much less is known of the tropical high Andean region (>2000 masl, from Colombia to Bolivia). This study examines fire trends in the high Andes for three ecosystems, the Puna, the Paramo and the Yungas, for the period 1982-2006. We pose three questions: (i) is there an increased fire response with elevation? (ii) does the El Niño- Southern Oscillation control fire activity in this region? (iii) are the observed fire trends human driven (e.g., human practices and their effects on fuel build-up) or climate driven? We did not find evidence of increased fire activity with elevation but, instead, a quasicyclic and synchronous fire response in Ecuador, Peru and Bolivia, suggesting the influence of high-frequency climate forcing on fire responses on a subcontinental scale, in the high Andes. ENSO variability did not show a significant relation to fire activity for these three countries, partly because ENSO variability did not significantly relate to precipitation extremes, although it strongly did to temperature extremes. Whilst ENSO did not individually lead the observed regional fire trends, our results suggest a climate influence on fire activity, mainly through a sawtooth pattern of precipitation (increased rainfall before fire-peak seasons (t-1) followed by drought spells and unusual low temperatures (t0), which is particularly common where fire is carried by low fuel loads (e.g., grasslands and fine fuel). This climatic sawtooth appeared as the main driver of fire trends, above local human influences and fuel build

  7. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    PubMed

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Assessment of Fire Occurrence and Future Fire Potential in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    French, N. H. F.; Jenkins, L. K.; Loboda, T. V.; Bourgeau-Chavez, L. L.; Whitley, M. A.

    2014-12-01

    An analysis of the occurrence of fire in Alaskan tundra was completed using the relatively complete historical record of fire for the region from 1950 to 2013. Spatial fire data for Alaskan tundra regions were obtained from the Alaska Large Fire Database for the region defined from vegetation and ecoregion maps. A detailed presentation of fire records available for assessing the fire regime of the tundra regions of Alaska as well as results evaluating fire size, seasonality, and general geographic and temporal trends is included. Assessment of future fire potential was determined for three future climate scenarios at four locations across the Alaskan tundra using the Canadian Forest Fire Weather Index (FWI). Canadian Earth System Model (CanESM2) weather variables were used for historical (1850-2005) and future (2006-2100) time periods. The database includes 908 fire points and 463 fire polygons within the 482,931 km2 of Alaskan tundra. Based on the polygon database 25,656 km2 (6,340,000 acres) has burned across the six tundra ecoregions since 1950. Approximately 87% of tundra fires start in June and July across all ecoregions. Combining information from the polygon and points data records, the estimated average fire size for fire in the Alaskan Arctic region is 28.1 km2 (7,070 acres), which is much smaller than in the adjacent boreal forest region, averaging 203 km2 for high fire years. The largest fire in the database is the Imuruk Basin Fire which burned 1,680 km2 in 1954 in the Seward Peninsula region (Table 1). Assessment of future fire potential shows that, in comparison with the historical fire record, fire occurrence in Alaskan tundra is expected to increase under all three climate scenarios. Occurrences of high fire weather danger (>10 FWI) are projected to increase in frequency and magnitude in all regions modeled. The changes in fire weather conditions are expected to vary from one region to another in seasonal occurrence as well as severity and frequency

  9. Fire intensity drives post-fire temporal pattern of soil carbon accumulation in Australian fire-prone forests.

    PubMed

    Sawyer, Robert; Bradstock, Ross; Bedward, Michael; Morrison, R John

    2018-01-01

    The impact of fire on global C cycles is considerable but complex. Nevertheless, studies on patterns of soil C accumulation following fires of differing intensity over time are lacking. Our study utilised 15 locations last burnt by prescribed fire (inferred low intensity) and 18 locations last burnt by wildfire (inferred high intensity), with time since fire (TSF) up to 43years, in a homogenous forest type in south eastern Australia. Following a stratified approach to mineral soil sampling, the soil % total C (% C Tot ) and % recalcitrant pyrogenic C (% RPC), were estimated. Generalised additive models indicated increases in % C Tot at TSF >30years in sites last burnt by wildfire. Estimates in sites last subjected to prescribed fire however, remained constant across the TSF chronosequence. There was no significant difference in % C Tot between the different fire types for the first 20years after fire. In the first 10years after wildfires, % RPC was elevated, declining to a minimum at ca. TSF 25years. After prescribed fires, % RPC was unaffected by TSF. Differences in response of % C Tot and % RPC to fire type may reflect the strength of stimulation of early successional processes and extent of charring. The divergent response to fire type in % C Tot was apparent at TSF longer than the landscape average fire return interval (i.e., 15 to 20years). Thus, any attempt to increase C sequestration in soils would require long-term exclusion of fire. Conversely, increased fire frequency is likely to have negligible impact on soil C stocks in these forests. Further investigation of the effects of fire frequency, fire intensity combinations and interaction of fire with other disturbances will enhance prediction of the likely impact of imposed or climatically induced changes to fire regimes on soil C. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synapsin- and Actin-Dependent Frequency Enhancement in Mouse Hippocampal Mossy Fiber Synapses

    PubMed Central

    Owe, Simen G.; Jensen, Vidar; Evergren, Emma; Ruiz, Arnaud; Shupliakov, Oleg; Kullmann, Dimitri M.; Storm-Mathisen, Jon; Walaas, S. Ivar; Hvalby, Øivind

    2009-01-01

    The synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO). A severe reduction in the number of synaptic vesicles situated more than 100 nm away from the presynaptic membrane active zone was found in the synapsin DKO animals. The ultrastructural level gave concomitant reduction in F-actin immunoreactivity observed at the periactive endocytic zone of the MF terminals. Frequency facilitation was normal in synapsin DKO mice at low firing rates (∼0.1 Hz) but was impaired at firing rates within the physiological range (∼2 Hz). Synapses made by associational/commissural fibers showed comparatively small frequency facilitation at the same frequencies. Synapsin-dependent facilitation in MF synapses of WT mice was attenuated by blocking F-actin polymerization with cytochalasin B in hippocampal slices. Synapsin III, selectively seen in MF synapses, is enriched specifically in the area adjacent to the synaptic cleft. This may underlie the ability of synapsin III to promote synaptic depression, contributing to the reduced frequency facilitation observed in the absence of synapsins I and II. PMID:18550596

  11. Rapid response of soil fungal communities to low and high intensity fire

    NASA Astrophysics Data System (ADS)

    Smith, Jane E.; Cowan, Ariel D.; Reazin, Chris; Jumpponen, Ari

    2016-04-01

    Contemporary fires have created high-severity burn areas exceeding historical distributions in forests in the western United States. Until recently, the response of soil ecosystems to high intensity burns has been largely unknown. In complementary studies, we investigated the environmental effect of extreme soil heating, such that occurs with the complete combustion of large down wood during wildfires, on soil fungi and nutrients. We used TRFLP and next generation sequencing (Illumina MiSeq) to investigate the fungal communities. During the burning of large down wood, temperatures lethal to fungi were detected at 0-cm, 5-cm, and 10-cm depths in soils compared to 0-cm depth in soils receiving low intensity broadcast burns. We compared the soil fungal diversity in ten high intensity burned plots paired with adjacent low intensity burned plots before and one week after at 0-10 cm soil depth. Nonmetric Multidimensional Scaling (NMS) ordinations and analyses of taxon frequencies reveal a substantial community turnover and corresponding near complete replacement of the dominant basidiomycetes by ascomycetes in high intensity burns. These coarse-level taxonomic responses were primarily attributable to a few fire-responsive (phoenicoid) fungi, particularly Pyronema sp. and Morchella sp., whose frequencies increased more than 100-fold following high intensity burns. Pinus ponderosa seedlings planted one week post-burn were harvested after four months for EMF root tip analysis. We found: a) greater differences in soil properties and nutrients in high intensity burned soils compared to low intensity burned and unburned soils; b) no differences in EMF richness and diversity; and c) weak differences in community composition based on relative abundance between unburned and either burn treatments. These results confirm the combustion of large downed wood can alter the soil environment directly beneath it. However, an EMF community similar to low burned soils recolonized high

  12. A new forest fire paradigm: The need for high-severity fires

    Treesearch

    Monica L. Bond; Rodney B. Siegel; Richard L. Hutto; Victoria A. Saab; Stephen A. Shunk

    2012-01-01

    Bond, Monica L.; Siegel, Rodney B.; Hutto, Richard L.; Saab, Victoria A.; Shunk, Stephen A. 2012. A new forest fire paradigm: The need for high-severity fires. The Wildlife Professional. Winter 2012: 46-49. During the 2012 fire season from June through August, wildfires in the drought-stricken western and central United States burned more than 3.6 million acres of...

  13. Effects of fire at two frequencies on nitrogen transformations and soil chemistry in a nitrogen-enriched forest landscape

    Treesearch

    R. E. J. Boerner; J. A. Brinkman; E. K. Sutherland

    2004-01-01

    This study reports results of the application of dormant-season prescribed fire at two frequencies (periodic (two fires in 4 years) and annual) at four southern Ohio mixed-oak (Quercus spp.) forest sites to restore the ecosystem functional properties these sites had before the onset of fire suppression and chronic atmospheric deposition. Each forest...

  14. Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies

    PubMed Central

    Sano, Michael B.; Fan, Richard E.; Xing, Lei

    2017-01-01

    Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50–100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25–5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8–6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted. PMID:28106146

  15. Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Fan, Richard E.; Xing, Lei

    2017-01-01

    Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50-100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25-5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8-6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted.

  16. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie

    NASA Astrophysics Data System (ADS)

    Manning, George C.; Baer, Sara G.; Blair, John M.

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI ( P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  17. Effects of Grazing and Fire Frequency on Floristic Quality and its Relationship to Indicators of Soil Quality in Tallgrass Prairie.

    PubMed

    Manning, George C; Baer, Sara G; Blair, John M

    2017-12-01

    Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies (P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI (P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.

  18. Fire occurence (2004)

    Treesearch

    John W. Coulston

    2007-01-01

    Why Is Fire Important? Fire is a powerful, selective regulatory mechanism in forest ecosystems. It is a natural part of the environment, and fireaffected ecosystems depend on a particular frequency and intensity of fire. These ecosystems will remain in their natural state only if the fire regime to which they are adapted is present (Kimmins 1987). The frequency and...

  19. Learning from escaped prescribed fire reviews

    Treesearch

    Anne E. Black; Dave Thomas; James Saveland; Jennifer D. Ziegler

    2011-01-01

    The U.S. wildland fire community has developed a number of innovative methods for conducting a review following escape of a prescribed fire (expanding on the typical regional or local reviews, to include more of a learning focus - expanded After Action Reviews, reviews that incorporate High Reliability Organizing, Facilitated Learning Analyses, etc). The stated purpose...

  20. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Treesearch

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  1. The effects of nicotine exposure and PFC transection on the time-frequency distribution of VTA DA neurons' firing activities.

    PubMed

    Chen, Ting Y; Zhang, Die; Dragomir, Andrei; Akay, Yasemin; Akay, Metin

    2011-05-01

    We investigated the influence of nicotine exposure and prefrontal cortex (PFC) transections on ventral tegmental areas (VTA) dopamine (DA) neurons' firing activities using a time-frequency method based on the continuous wavelet transform (CWT). Extracellular single-unit neural activity was recorded from DA neurons in the VTA area of rats. One group had their PFC inputs to the VTA intact, while the other group had the inputs to VTA bilaterally transected immediate caudal to the PFC. We hypothesized that the systemic nicotine exposure will significantly change the energy distribution in the recorded neural activity. Additionally, we investigated whether the loss of inputs to the VTA caused by the PFC transection resulted in the cancellation of the nicotine' effect on the neurons' firing patterns. The time-frequency representations of VTA DA neurons firing activity were estimated from the reconstructed firing rate histogram. The energy contents were estimated from three frequency bands, which are known to encompass the significant modes of operation of DA neurons. Our results show that systemic nicotine exposure disrupts the energy distribution in PFC-intact rats. Particularly, there is a significant increase in energy contents of the 1-1.5 Hz frequency band. This corresponds to an observed increase in the firing rate of VTA DA neurons following nicotine exposure. Additionally, our results from PFC-transected rats show that there is no change in the energy distribution of the recordings after systemic nicotine exposure. These results indicate that the PFC plays an important role in affecting the activities of VTA DA neurons and that the CWT is a useful method for monitoring the changes in neural activity patterns in both time and frequency domains.

  2. Sensitive high frequency hearing in earless and partially eared harlequin frogs (Atelopus).

    PubMed

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A; Hoke, Kim L

    2018-04-19

    Harlequin frogs, genus Atelopus , communicate at high frequencies despite most species lacking a complete tympanic middle ear that facilitates high frequency hearing in most anurans and other tetrapods. Here we test whether Atelopus are better at sensing high frequency acoustic sound compared to other eared and earless species in the Bufonidae family, determine whether middle ear variation within Atelopus affects hearing sensitivity, and test potential hearing mechanisms in Atelopus We determine that at high frequencies (2000-4000 Hz) Atelopus are 10-34 dB more sensitive than other earless bufonids but are relatively insensitive to mid-range frequencies (900-1500 Hz) compared to eared bufonids. Hearing among Atelopus species is fairly consistent, evidence that the partial middle ears present in a subset of Atelopus species do not convey a substantial hearing advantage. We further demonstrate that Atelopus hearing is not likely facilitated by vibration of the skin overlying the normal tympanic membrane region or the body lung wall, leaving the extratympanic hearing pathways in Atelopus enigmatic. Together these results show Atelopus have sensitive high frequency hearing without the aid of a tympanic middle ear and prompt further study of extratympanic hearing mechanisms in anurans. © 2018. Published by The Company of Biologists Ltd.

  3. Fire management of California shrubland landscapes

    USGS Publications Warehouse

    Keeley, Jon E.

    2002-01-01

    Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.

  4. Fire management of California shrubland landscapes.

    PubMed

    Keeley, Jon E

    2002-03-01

    Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.

  5. Human influence on California fire regimes.

    PubMed

    Syphard, Alexandra D; Radeloff, Volker C; Keeley, Jon E; Hawbaker, Todd J; Clayton, Murray K; Stewart, Susan I; Hammer, Roger B

    2007-07-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  6. Human influence on California fire regimes

    USGS Publications Warehouse

    Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B.

    2007-01-01

    Periodic wildfire maintains the integrity and species composition of many ecosystems, including the mediterranean-climate shrublands of California. However, human activities alter natural fire regimes, which can lead to cascading ecological effects. Increased human ignitions at the wildland-urban interface (WUI) have recently gained attention, but fire activity and risk are typically estimated using only biophysical variables. Our goal was to determine how humans influence fire in California and to examine whether this influence was linear, by relating contemporary (2000) and historic (1960-2000) fire data to both human and biophysical variables. Data for the human variables included fine-resolution maps of the WUI produced using housing density and land cover data. Interface WUI, where development abuts wildland vegetation, was differentiated from intermix WUI, where development intermingles with wildland vegetation. Additional explanatory variables included distance to WUI, population density, road density, vegetation type, and ecoregion. All data were summarized at the county level and analyzed using bivariate and multiple regression methods. We found highly significant relationships between humans and fire on the contemporary landscape, and our models explained fire frequency (R2 = 0.72) better than area burned (R2 = 0.50). Population density, intermix WUI, and distance to WUI explained the most variability in fire frequency, suggesting that the spatial pattern of development may be an important variable to consider when estimating fire risk. We found nonlinear effects such that fire frequency and area burned were highest at intermediate levels of human activity, but declined beyond certain thresholds. Human activities also explained change in fire frequency and area burned (1960-2000), but our models had greater explanatory power during the years 1960-1980, when there was more dramatic change in fire frequency. Understanding wildfire as a function of the

  7. A Lifetime for Fire Safety. Health (High School). Fire Safety for Texans: Fire and Burn Prevention Curriculum Guide.

    ERIC Educational Resources Information Center

    Texas State Commission on Fire Protection, Austin.

    This booklet comprises the high school health component of a series of curriculum guides on fire and burn prevention. It is designed to meet the age-specific needs of ninth and tenth grade students. Objectives include: (1) reviewing comprehensive fire and burn prevention techniques and emergency actions; (2) developing an awareness of fire safety…

  8. Documenting PyroCb Development on High-Intensity Boreal Fires: Implications for the Arctic Atmosphere

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M. D.; Servranckx, R.; Lindsey, D.

    2007-12-01

    The recent confirmation that smoke from high-intensity boreal forest fires can reach the Upper Troposphere/Lower Stratosphere (UTLS) through pyroconvection and be transported long distances has raised concern over the wider-scale environmental impact of boreal fire smoke. This concern is further elevated as climate change projections indicate a significant increase in the frequency and severity of boreal forest fires over the next century. Smoke in the UTLS is frequently transported to the Arctic and may have important implications for the radiative energy budget in the polar region. Soot deposition from fires may lead to enhanced melting of sea ice and glaciers, and the chemical impact of fire emissions at high altitudes is largely unknown. This knowledge gap will be addressed during the International Polar Year (IPY), as boreal fire emissions will be tracked and documented in detail through aerial, satellite and ground-based measurements, as a key component of the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) and ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) projects to be conducted in 2008. A large fire in the Canadian Northwest Territories burned throughout the month of June 2007, in a remote region where forest fires are not actively suppressed, eventually reaching 90,000 hectares in size. This fire was monitored for blowup one week in advance; it erupted into pyroconvection on June 25, 2007. We present an analysis of this event combining satellite data with ground-based measurements to document the development and impact of this classic pyroCb event. Under extreme fire danger conditions, the fire burned close to 20,000 hectares on that day. Fire behavior was consistent with predictions using the Canadian Fire Behavior Prediction System, with the fire spreading at 2.7 km/hr, consuming 33,000 kg of fuel hourly, generating an

  9. The Joint Fire Science Program Fire Exchange Network: Facilitating Knowledge Exchange About Wildland Fire Science Across the U.S.

    NASA Astrophysics Data System (ADS)

    York, A.; Blocksome, C.; Cheng, T.; Creighton, J.; Edwards, G.; Frederick, S.; Giardina, C. P.; Goebel, P. C.; Gucker, C.; Kobziar, L.; Lane, E.; Leis, S.; Long, A.; Maier, C.; Marschall, J.; McGowan-Stinski, J.; Mohr, H.; MontBlanc, E.; Pellant, M.; Pickett, E.; Seesholtz, D.; Skowronski, N.; Stambaugh, M. C.; Stephens, S.; Thode, A.; Trainor, S. F.; Waldrop, T.; Wolfson, B.; Wright, V.; Zedler, P.

    2014-12-01

    The Joint Fire Science Program's (JFSP) Fire Exchange Network is actively working to accelerate the awareness, understanding, and adoption of wildland fire science information by federal, tribal, state, local, and private stakeholders within ecologically similar regions. Our network of 15 regional exchanges provides timely, accurate, and regionally relevant science-based information to assist with fire management challenges. Regional activities, through which we engage fire and resource managers, scientists, and private landowners, include online newsletters and announcements, social media, regionally focused web-based clearinghouses of relevant science, field trips and demonstration sites, workshops and conferences, webinars and online training, and syntheses and fact sheets. Exchanges also help investigators design research that is relevant to regional management needs and assist with technology transfer to management audiences. This poster provides an introduction to and map of the regional exchanges.

  10. Management of fire affected areas. Beyond the environmental question

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo

    2016-04-01

    Fire is considered a natural element of the ecosystems. With exception of the polar areas, fire visited with more or less frequency all the earth biomes, determining the ecosystems characteristics, to the point that several species are fire-dependent to survive and are very resilient to their impact. Fire was a fundamental element for human evolution, which allowed us to cook, manipulation of metals, hunt, protect from predators and clear fields for agriculture. In some extension, we are only humans because of fire. In the last millennium fire was used to shape the landscape as we know today. One good example of this is the Mediterranean environment, a landscape where the ecology is not understood without the presence of fire. Until the end of the first half of the last century, fire was used frequently by farmers to landscape management. However, due to rural abandonment, change of life styles, disconnection with rural environment and lack of understanding of fire role in the ecosystems. The perception of fire changed and nowadays is understood by the population as a threat to the ecosystems, rather than a tool that helped to manage the landscape and help us in our evolution. This change of vision promoted the idea that fire has negative impacts in the ecosystems and should be banned from the nature. Something that is impossible. All these perceptions facilitated the implementation of fire-suppression policies, which today are recognized by science as one of the causes of the occurrence of frequent high-severity wildfires, with important impacts on the ecosystems, economy and society. However, most of the ecosystems can regenerate sooner or later, depending of the fire severity and the ecosystem affected. Thus, fire is not an ecological, but social and economic problem, due to lives loss and the temporary destruction of ecosystems, which local communities depend on. In this context, when we are managing fire affected areas, it goes much beyond environmental

  11. Frequency-Based Spatial Correlation Assessments of the Ares I Subscale Acoustic Model Test Firings

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Houston, J.

    2012-01-01

    The Marshall Space Flight Center has performed a series of test firings to simulate and understand the acoustic environments generated for the Ares I liftoff profiles. Part of the instrumentation package had special sensor groups to assess the acoustic field spatial correlation features for the various test configurations. The spatial correlation characteristics were evaluated for all of the test firings, inclusive of understanding the diffuse to propagating wave amplitude ratios, the acoustic wave decays, and the incident angle of propagating waves across the sensor groups. These parameters were evaluated across the measured frequency spectra and the associated uncertainties for each parameter were estimated.

  12. Progress on the FIReTIP Diagnostic on NSTX-U

    NASA Astrophysics Data System (ADS)

    Scott, Evan; Barchfeld, Robert; Riemenschneider, Paul; Muscatello, Chris; Sohrabi, Mohammad; Domier, Calvin; Ren, Yang; Kaita, Robert; Luhmann, Neville, Jr.; NSTX-U Team

    2016-10-01

    The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system on NSTX-U at the PPPL aims to provide robust, line-averaged electron density measurements. The system consists of three optically-pumped 119 µm methanol lasers, one of which can be tuned via Stark broadening, allowing for uniquely high intermediate frequencies and time resolutions. One of the major goals of FIReTIP is to incorporate it into the NSTX-U plasma control system (PCS) for real-time plasma density feedback control. The front-end optics mounted to Bay G, which shape and position the beam going into the plasma, and internal retroreflector located near Bay B, which facilitates double-pass measurements, are hard-mounted to the NSTX-U vacuum vessel. Because interferometric density measurements are sensitive to vibrational effects, FIReTIP has been upgraded to a two-color interferometer system with the inclusion of a 633 nm laser interferometer for the direct measurement of vibrations and a field programmable gate array (FPGA) for the subsequent subtraction of vibrational effects from the density measurement in real-time. This work is supported by the U.S. Department of Energy Grant DE-FG02-99ER54518.

  13. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  14. Fire frequency, agricultural history and the multivariate control of pine savanna understorey plant diversity

    Treesearch

    Joseph W. Veldman; Lars A. Brudvig; Ellen I. Damschen; John L. Orrock; W. Brett Mattingly; Joan L. Walker

    2014-01-01

    Question: Human-altered disturbance regimes and agricultural land uses are broadly associated with reduced plant species diversity in terrestrial ecosystems. In this study, we seek to understand how fire frequency and agricultural land-use history influence savanna understorey plant diversity through complex relationships (i.e. indirect effects) among multiple...

  15. Failure to suppress low-frequency neuronal oscillatory activity underlies the reduced effectiveness of random patterns of deep brain stimulation.

    PubMed

    McConnell, George C; So, Rosa Q; Grill, Warren M

    2016-06-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for the motor symptoms of Parkinson's disease (PD). However, the mechanisms of action of DBS are unknown. Random temporal patterns of DBS are less effective than regular DBS, but the neuronal basis for this dependence on temporal pattern of stimulation is unclear. Using a rat model of PD, we quantified the changes in behavior and single-unit activity in globus pallidus externa and substantia nigra pars reticulata during high-frequency STN DBS with different degrees of irregularity. Although all stimulus trains had the same average rate, 130-Hz regular DBS more effectively reversed motor symptoms, including circling and akinesia, than 130-Hz irregular DBS. A mixture of excitatory and inhibitory neuronal responses was present during all stimulation patterns, and mean firing rate did not change during DBS. Low-frequency (7-10 Hz) oscillations of single-unit firing times present in hemiparkinsonian rats were suppressed by regular DBS, and neuronal firing patterns were entrained to 130 Hz. Irregular patterns of DBS less effectively suppressed 7- to 10-Hz oscillations and did not regularize firing patterns. Random DBS resulted in a larger proportion of neuron pairs with increased coherence at 7-10 Hz compared with regular 130-Hz DBS, which suggested that long pauses (interpulse interval >50 ms) during random DBS facilitated abnormal low-frequency oscillations in the basal ganglia. These results suggest that the efficacy of high-frequency DBS stems from its ability to regularize patterns of neuronal firing and thereby suppress abnormal oscillatory neural activity within the basal ganglia. Copyright © 2016 the American Physiological Society.

  16. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    PubMed

    Radford, Ian J; Gibson, Lesley A; Corey, Ben; Carnes, Karin; Fairman, Richard

    2015-01-01

    Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity'), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the

  17. Impacts of prescribed fire on ecosystem C and N cycles at Fort Benning Installation, Georgia

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Liu, S.; Tieszen, L.

    2007-12-01

    A critical challenge for the land managers at military installation is to maintain the ecological sustainability of natural resources while meeting the needs of military training. Prescribed ground fire as a land management practice has been used to remove the ground layer plants at Fort Benning for two purposes: to facilitate access for military training, and to maintain and restore fire-adapted longleaf pine communities that are critical habitat for the federally endangered red-cockaded woodpecker (Picoides borealis). Nevertheless, the impacts of prescribed fire on ecosystem processes and health are not well-understood and quantified at the plot to regional scales. Frequent fire may result in ecosystem nitrogen (N) deficiency due to repeated N loss through combustion, volatilization, and leaching, threatening ecosystem sustainability at Fort Benning. On the other hand, N loss may be offset by enhanced symbiotic N2 fixation since fire favors herbaceous legumes by scarifying legume seeds and stimulating germination. Quantifying the impacts of prescribed fire on ecosystem carbon (C) and N cycles is further complicated by interactions and feedbacks among burning, nitrogen inputs, other land use practices (e.g. tree thinning or clear-cutting), and soil properties. In this study, we used the Erosion-Deposition-Carbon Model (EDCM), a process-based biogeochemical model, to simulate C and N dynamic at Fort Benning under different combinations of fire frequency, fire intensity, nitrogen deposition, legume nitrogen input, forest harvesting, and soil sand content. Model simulations indicated that prescribed fire led to nitrogen losses from ecosystems at Fort Benning, especially with high intensity and high frequency fires. Forest harvesting further intensified ecosystem nitrogen limitation, leading to reduced biophysical potential of C sequestration. The adverse impacts of prescribed fire and forest harvesting on C and N cycles were much higher in more sandy soil than in

  18. Facilitation of Memory Encoding in Primate Hippocampus by a Neuroprosthesis that Promotes Task Specific Neural Firing

    PubMed Central

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2014-01-01

    Objective Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s’, aging and dementia resulting from impaired hippocampal function in medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach NHPs trained to perform a short-term delayed match to sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main Results The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for successful encoding of Sample phase information on more difficult DMS trials. This was validated by delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the Sample phase which facilitated task performance in the subsequent delayed Match phase on difficult trials that required more precise encoding of Sample information. Significance These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain. PMID:24216292

  19. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2013-12-01

    Objective. Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s, ageing and dementia resulting from impaired hippocampal function in the medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach. NHPs trained to perform a short-term delayed match-to-sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main results. The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for the successful encoding of sample phase information on more difficult DMS trials. This was validated by the delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the sample phase which facilitated task performance in the subsequent, delayed match phase, on difficult trials that required more precise encoding of sample information. Significance. These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain.

  20. The role of fire in structuring sagebrush habitats and bird communities

    USGS Publications Warehouse

    Knick, S.T.; Holmes, A.L.; Miller, R.F.; Saab, Victoria A.; Powell, Hugo D.W.

    2005-01-01

    Fire is a dominant and highly visible disturbance in sagebrush (Artemisia spp.) ecosystems. In lower elevation, xeric sagebrush communities, the role of fire has changed in recent decades from an infrequent disturbance maintaining a landscape mosaic and facilitating community processes to frequent events that alter sagebrush communities to exotic vegetation, from which restoration is unlikely. Because of cheatgrass invasion, fire-return intervals in these sagebrush ecosystems have decreased from an historical pattern (pre-European settlement) of 30 to >100 yr to 5-15 yr. In other sagebrush communities, primarily higher elevation ecosystems, the lack of fire has allowed transitions to greater dominance by sagebrush, loss of herbaceous understory, and expansion of juniper-pinyon woodlands. Response by birds living in sagebrush habitats to fire was related to the frequency, size, complexity (or patchiness), and severity of the burns. Small-scale fires that left patchy distributions of sagebrush did not influence bird populations. However, large-scale fires that resulted in large grassland expanses and isolated existing sagebrush patches reduced the probability of occupancy by sagebrush-obligate species. Populations of birds also declined in sagebrush ecosystems with increasing dominance by juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands. Our understanding of the effects of fire on sagebrush habitats and birds in these systems is limited. Almost all studies of fire effects on birds have been opportunistic, correlative, and lacking controls. We recommend using the large number of prescribed burns to develop strong inferences about cause-and-effect relationships. Prescribed burning is complicated and highly contentious, particularly in low-elevation, xeric sagebrush communities. Therefore, we need to use the unique opportunities provided by planned burns to understand the spatial and temporal influence of fire on sagebrush landscapes and birds. In particular

  1. Fire-driven alien invasion in a fire-adapted ecosystem

    USGS Publications Warehouse

    Keeley, Jon E.; Brennan, Teresa J.

    2012-01-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels

  2. Fire-driven alien invasion in a fire-adapted ecosystem.

    PubMed

    Keeley, Jon E; Brennan, Teresa J

    2012-08-01

    Disturbance plays a key role in many alien plant invasions. However, often the main driver of invasion is not disturbance per se but alterations in the disturbance regime. In some fire-adapted shrublands, the community is highly resilient to infrequent, high-intensity fires, but changes in the fire regime that result in shorter fire intervals may make these communities more susceptible to alien plant invasions. This study examines several wildfire events that resulted in short fire intervals in California chaparral shrublands. In one study, we compared postfire recovery patterns in sites with different prefire stand ages (3 and 24 years), and in another study we compared sites that had burned once in four years with sites that had burned twice in this period. The population size of the dominant native shrub Adenostoma fasciculatum was drastically reduced following fire in the 3-year sites relative to the 24-year sites. The 3-year sites had much greater alien plant cover and significantly lower plant diversity than the 24-year sites. In a separate study, repeat fires four years apart on the same sites showed that annual species increased significantly after the second fire, and alien annuals far outnumbered native annuals. Aliens included both annual grasses and annual forbs and were negatively correlated with woody plant cover. Native woody species regenerated well after the first fire but declined after the second fire, and one obligate seeding shrub was extirpated from two sites by the repeat fires. It is concluded that some fire-adapted shrublands are vulnerable to changes in fire regime, and this can lead to a loss of native diversity and put the community on a trajectory towards type conversion from a woody to an herbaceous system. Such changes result in alterations in the proportion of natives to non-natives, changes in functional types from deeply rooted shrubs to shallow rooted grasses and forbs, increased fire frequency due to the increase in fine fuels

  3. Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Molly; Roering, Joshua J.

    2009-06-01

    The role of fire in shaping steep, forested landscapes depends on a suite of hydrologic, biologic, and geological characteristics, including the propensity for hydrophobic soil layers to promote runoff erosion during subsequent rainfall events. In the Oregon Coast Range, several studies postulate that fire primarily modulates sediment production via root reinforcement and shallow landslide susceptibility, although few studies have documented post-fire geomorphic response. Here, we describe field observations and topographic analyses for three sites in the central Oregon Coast Range that burned in 1999, 2002, and 2003. The fires generated strongly hydrophobic soil layers that did not promote runoff erosion because the continuity of the layers was interrupted by pervasive discontinuities that facilitated rapid infiltration. At each of our sites, fire generated significant colluvial transport via dry ravel, consistent with other field-based studies in the western United States. Fire-driven dry ravel accumulation in low-order valleys of our Sulphur Creek site equated to a slope-averaged landscape lowering of 2.5 mm. Given Holocene estimates of fire frequency, these results suggest that fire may contribute 10-20% of total denudation across steep, dissected portions of the Oregon Coast Range. In addition, we documented more rapid decline of root strength at our sites than has been observed after timber harvest, suggesting that root strength was compromised prior to fire or that intense heat damaged roots in the shallow subsurface. Given that fire frequencies in the Pacific Northwest are predicted to increase with continued climate change, our findings highlight the importance of fire-induced dry ravel and post-fire debris flow activity in controlling sediment delivery to channels.

  4. Depopulation of rural landscapes exacerbates fire activity in the western Amazon.

    PubMed

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E; Padoch, Christine

    2012-12-26

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes.

  5. Depopulation of rural landscapes exacerbates fire activity in the western Amazon

    PubMed Central

    Uriarte, María; Pinedo-Vasquez, Miquel; DeFries, Ruth S.; Fernandes, Katia; Gutierrez-Velez, Victor; Baethgen, Walter E.; Padoch, Christine

    2012-01-01

    Destructive fires in Amazonia have occurred in the past decade, leading to forest degradation, carbon emissions, impaired air quality, and property damage. Here, we couple climate, geospatial, and province-level census data, with farmer surveys to examine the climatic, demographic, and land use factors associated with fire frequency in the Peruvian Amazon from 2000 to 2010. Although our results corroborate previous findings elsewhere that drought and proximity to roads increase fire frequency, the province-scale analysis further identifies decreases in rural populations as an additional factor. Farmer survey data suggest that increased burn scar frequency and size reflect increased flammability of emptying rural landscapes and reduced capacity to control fire. With rural populations projected to decline, more frequent drought, and expansion of road infrastructure, fire risk is likely to increase in western Amazonia. Damage from fire can be reduced through warning systems that target high-risk locations, coordinated fire fighting efforts, and initiatives that provide options for people to remain in rural landscapes. PMID:23236144

  6. Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons

    PubMed Central

    Williams, Stephen R; Stuart, Greg J

    1999-01-01

    Electrophysiological recordings and pharmacological manipulations were used to investigate the mechanisms underlying the generation of action potential burst firing and its postsynaptic consequences in visually identified rat layer 5 pyramidal neurons in vitro.Based upon repetitive firing properties and subthreshold membrane characteristics, layer 5 pyramidal neurons were separated into three classes: regular firing and weak and strong intrinsically burst firing.High frequency (330 ± 10 Hz) action potential burst firing was abolished or greatly weakened by the removal of Ca2+ (n = 5) from, or by the addition of the Ca2+ channel antagonist Ni2+ (250–500 μm; n = 8) to, the perfusion medium.The blockade of apical dendritic sodium channels by the local dendritic application of TTX (100 nm; n = 5) abolished or greatly weakened action potential burst firing, as did the local apical dendritic application of Ni2+ (1 mm; n = 5).Apical dendritic depolarisation resulted in low frequency (157 ± 26 Hz; n = 6) action potential burst firing in regular firing neurons, as classified by somatic current injection. The intensity of action potential burst discharges in intrinsically burst firing neurons was facilitated by dendritic depolarisation (n = 11).Action potential amplitude decreased throughout a burst when recorded somatically, suggesting that later action potentials may fail to propagate axonally. Axonal recordings demonstrated that each action potential in a burst is axonally initiated and that no decrement in action potential amplitude is apparent in the axon > 30 μm from the soma.Paired recordings (n = 16) from synaptically coupled neurons indicated that each action potential in a burst could cause transmitter release. EPSPs or EPSCs evoked by a presynaptic burst of action potentials showed use-dependent synaptic depression.A postsynaptic, TTX-sensitive voltage-dependent amplification process ensured that later EPSPs in a burst were amplified when generated from

  7. New aspects of firing pattern autocontrol in oxytocin and vasopressin neurones.

    PubMed

    Moos, F; Gouzènes, L; Brown, D; Dayanithi, G; Sabatier, N; Boissin, L; Rabié, A; Richard, P

    1998-01-01

    In the rat, oxytocin (OT) and vasopressin (AVP) neurones exhibit specific electrical activities which are controlled by OT and AVP released from soma and dendrites within the magnocellular hypothalamic nuclei. OT enhances amplitude and frequency of suckling-induced bursts, and changes basal firing characteristics: spike patterning becomes very irregular (spike clusters separated by long silences), firing rate is highly variable, oscillating before facilitated bursts. This unstable behaviour which markedly decreases during hyperosmotic stimulation (interrupting bursting) could be a prerequisite for bursting. The effects of AVP depend on the initial phasic pattern of AVP neurones: AVP excites weakly active neurones (increasing burst duration, decreasing silences) and inhibits highly active neurones; neurones with intermediate phasic activity are unaffected. Thus, AVP ensures all AVP neurones discharge with moderate phasic activity (bursts and silences lasting 20-40 s), known to optimise systemic AVP release. V1a-type receptors are involved in AVP actions. In conclusion, OT and AVP control their respective neurones in a complex manner to favour the patterns of activity which are the best suited for an efficient systemic hormone release.

  8. The human and fire connection

    Treesearch

    Theresa B. Jain

    2014-01-01

    We refer to fire as a natural disturbance, but unlike other disturbances such as forest insects and diseases, fire has had an intimate relationship with humans. Fire facilitated human evolution over two million years ago when our ancestors began to use fire to cook. Fire empowered our furbearers to adapt to cold climates, allowing humans to disperse and settle into...

  9. Native American impacts on fire regimes of the California coastal ranges

    USGS Publications Warehouse

    Keeley, Jon E.

    2002-01-01

    Aim: Native American burning impacts on California shrubland dominated landscapes are evaluated relative to the natural lightning fire potential for affecting landscape patterns. Location: Focus was on the coastal ranges of central and southern California. Methods: Potential patterns of Indian burning were evaluated based upon historical documents, ethnographic accounts, archaeological records and consideration of contemporary land management tactics. Patterns of vegetation distribution in this region were evaluated relative to environmental factors and the resilience of the dominant shrub vegetation to different fire frequencies. Results: Lightning fire frequency in this region is one of the lowest in North America and the density of pre-Columbian populations was one of the highest. Shrublands dominate the landscape throughout most of the region. These woody communities have weak resilience to high fire frequency and are readily displaced by annual grasses and forbs under high fire frequency. Intact shrublands provided limited resources for native Americans and thus there was ample motivation for using fire to degrade this vegetation to an open mosaic of shrubland/grassland, not unlike the agropastoral modification of ecologically related shrublands by Holocene peoples in the Mediterranean Basin. Alien-dominated grasslands currently cover approximately one-quarter of the landscape and less than 1% of these grasslands have a significant native grass presence. Ecological studies in the Californian coastal ranges have failed to uncover any clear soil or climate factors explaining grassland and shrubland distribution patterns. Main conclusions: Coastal ranges of California were regions of high Indian density and low frequency of lightning fires. The natural vegetation dominants on this landscape are shrubland vegetation that often form dense impenetrable stands with limited resources for Native Americans. Natural fire frequencies are not high enough to maintain these

  10. Trends and causes of severity, size, and number of fires in northwestern California, USA.

    PubMed

    Miller, J D; Skinner, C N; Safford, H D; Knapp, E E; Ramirez, C M

    2012-01-01

    Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire size and frequency from 1910 to 2008 (all fires > 40 ha), and the percentage of high-severity in fires from 1987 to 2008 (all fires > 400 ha) on the four national forests of northwestern California. During 1910-2008, mean and maximum fire size and total annual area burned increased, but we found no temporal trend in the percentage of high-severity fire during 1987-2008. The time series of severity data was strongly influenced by four years with region-wide lightning events that burned huge areas at primarily low-moderate severity. Regional fire rotation reached a high of 974 years in 1984 and fell to 95 years by 2008. The percentage of high-severity fire in conifer-dominated forests was generally higher in areas dominated by smaller-diameter trees than in areas with larger-diameter trees. For Douglas-fir forests, the percentage of high-severity fire did not differ significantly between areas that re-burned and areas that only burned once (10% vs. 9%) when re-burned within 30 years. Percentage of high-severity fire decreased to 5% when intervals between first and second fires were > 30 years. In contrast, in both mixed-conifer and fir/high-elevation conifer forests, the percentage of high-severity fire was less when re-burned within 30 years compared to first-time burned (12% vs. 16% for mixed conifer; 11% vs. 19% for fir/high-elevation conifer). Additionally, the percentage of high-severity fire did not differ whether the re-burn interval was less than or greater than 30 years. Years with larger fires and greatest area burned were produced by region-wide lightning events, and characterized by less winter

  11. Mitigating Large Fires in Drossel-Schwabl Forest Fire Models

    NASA Astrophysics Data System (ADS)

    Yoder, M.; Turcotte, D.; Rundle, J.; Morein, G.

    2008-12-01

    We employ variations of the traditional Drossel-Schwabl cellular automata Forest Fire Models (FFM) to study wildfire dynamics. The traditional FFM produces a very robust power law distribution of events, as a function of size, with frequency-size slope very close to -1. Observed data from Australia, the US and northern Mexico suggest that real wild fires closely follow power laws in frequency size with slopes ranging from close to -2 to -1.3 (B.D. Malamud et al. 2005). We suggest two models that, by fracturing and trimming large clusters, reduce the number of large fires while maintaining scale invariance. These fracturing and trimming processes can be justified in terms of real physical processes. For each model, we achieve slopes in the frequency-size relation ranging from approximately -1.77 to -1.06.

  12. Locomotor effects of a low-frequency fire alarm on C57BL/6 male mice: a preliminary study.

    PubMed

    Povroznik, Jessica M; Faith, Robert E; Kessler, Matthew J; Ali, Frank N; Kosik, James; Prince, Stephen; Engler-Chiurazzi, Elizabeth B

    2017-12-01

    Maintaining appropriate acoustic conditions for animal welfare and data collection are crucial in biomedical research facilities. Negative impacts of disruptive sound are known and can include auditory damage, immune function changes, and behavioral alterations. One type of disruptive sound occurring in research facilities is that of fire alarms. To ameliorate this problem, many facilities have incorporated the use of low-frequency fire alarms that emit tones outside the rodent audible range. The impact of these devices has been assumed to be negligible. However, this has yet to be evaluated with controlled behavioral experiments. Thus, our objective was to investigate the impact of low-frequency fire alarm exposure on locomotor behavior in the open field, a test sensitive to acoustic stimuli disruption. Male mice were randomized to three alarm exposure groups (No-Alarm; Alarm-During; and Alarm-After) and placed in individual photobeam-activated locomotor chambers. The Alarm-During group displayed significantly reduced horizontal locomotion, with a trend towards reduced vertical locomotion. These data suggest that a low-frequency brief alarm tone can temporarily disrupt movement, a valuable insight should an alarm be deployed. Further, findings support close collaboration between researchers and institutional facility staff to ensure appropriate acoustic conditions are maintained, whenever possible, for research animals.

  13. Fire structures pine serotiny at different scales.

    PubMed

    Hernández-Serrano, Ana; Verdú, Miguel; González-Martínez, Santiago C; Pausas, Juli G

    2013-12-01

    Serotiny (delayed seed release with the consequent accumulation of a canopy seedbank) confers fitness benefits in environments with crown-fire regimes. Thus, we predicted that serotiny level should be higher in populations recurrently subjected to crown-fires than in populations where crown-fires are rare. In addition, under a high frequency of fires, space and resources are recurrently available, permitting recruitment around each mother to follow the seed rain shadow. Thus, we also predicted spatial aggregation of serotiny within populations. We compared serotiny, considering both the proportion and the age of serotinous cones, in populations living in contrasting fire regimes for two iconic Mediterranean pine species (Pinus halepensis, P. pinaster). We framed our results by quantitatively comparing the strength of the fire-serotiny relationship with previous studies worldwide. For the two species, populations living under high crown-fire recurrence regimes had a higher serotiny level than those populations where the recurrence of crown-fires was low. For P. halepensis (the species with higher serotiny), populations in high fire recurrence regimes had higher fine-scale spatial aggregation of serotiny than those inhabiting low fire recurrence systems. The strength of the observed fire-serotiny relationship in P. halepensis is among the highest in published literature. Fire regime shapes serotiny level among populations, and in populations with high serotiny, recurrent fires maintain a significant spatial structure for this trait. Consequently, fire has long-term evolutionary implications at different scales, emphasizing its prominent role in shaping the ecology of pines.

  14. [The effect of modulators of SK channels on simple spike firing frequency in the discharge of the cerebellar Purkinje cells in laboratory mice].

    PubMed

    Egorova, P A; Karelina, T V; Vlasova, O L; Antonov, S M; Besprozvanny, I B

    2014-01-01

    The effect of CyPPA, a positive modulator of small conductance calcium-activated potassium channels of type 3 and 2 (SK3/SK2), and of NS309, an activator of intermediate and small conductance calcium-activated potassium channels (IK/SK), on the activity of cerebellar Purkinje cells was studied in 2-month-old male mice. The use of 1 mM of CyPPA has led to a decrease of simple spike firing frequency in the discharge of Purkinje cells by 25%, on average, during 1 h after application. At the same time, application of 100 μM of NS309 has promoted a decrease in simple spike firing frequency by 47 %, on average, during 1 h after the beginning of the action. The obtained results confirm the hypothesis that SK channels participate in regulation of simple spike firing frequency in the discharge of Purkinje cells and are responsible for restriction of signal frequency. The effect of NS309 on simple spike firing frequency was more pronounced; therefore, the IK/SK channels may be suggested to play the cardinal role in regulation of spike activity of Purkinje cells. Since increasing simple spike frequency in the discharge of Purkinje cells is observed at many disturbances of motor activity, in particular, at spinocerebellar ataxia, it can be suggested that the studied compounds or substances of similar action are of interest as potential medicinal agents.

  15. Modulatory effects of high-frequency repetitive transcranial magnetic stimulation on the ipsilateral silent period.

    PubMed

    Cincotta, M; Giovannelli, F; Borgheresi, A; Balestrieri, F; Zaccara, G; Inghilleri, M; Berardelli, A

    2006-06-01

    In healthy subjects, suprathreshold repetitive transcranial magnetic stimulation (rTMS) at frequencies >2 Hz prolongs the cortical silent period (CSP) over the course of the train. This progressive lengthening probably reflects temporal summation of the inhibitory interneurons in the stimulated primary motor cortex (M1). In this study, we tested whether high-frequency rTMS also modulates the ipsilateral silent period (ISP). In nine normal subjects, suprathreshold 10-pulse rTMS trains were delivered to the right M1 at frequencies of 3, 5, and 10 Hz during maximal isometric contraction of both first dorsal interosseous muscles. At 10 Hz, the second pulse of the train increased the area of the ISP; the other stimuli did not increase it further. During rTMS at 3 and 5 Hz, the ISP remained significantly unchanged. Control experiments showed that 10-Hz rTMS delivered at subthreshold intensity also increased the ISP. rTMS over the hand motor area did not facilitate ISPs in the biceps muscles. Finally, rTMS-induced ISP facilitation did not outlast the 10-Hz rTMS train. These findings suggest that rTMS at a frequency of 10 Hz potentiates the interhemispheric inhibitory mechanisms responsible for the ISP, partly through temporal summation. The distinct changes in the ISP and CSP suggest that rTMS facilitates intrahemispheric and interhemispheric inhibitory phenomena through separate neural mechanisms. The ISP facilitation induced by high-frequency rTMS is a novel, promising tool to investigate pathophysiological abnormal interhemispheric inhibitory transfer in various neurological diseases.

  16. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides.

    PubMed

    Holz, Andrés; Wood, Sam W; Veblen, Thomas T; Bowman, David M J S

    2015-01-01

    Athrotaxis cupressoides is a slow-growing and long-lived conifer that occurs in the subalpine temperate forests of Tasmania, a continental island to the south of Australia. In 1960-1961, human-ignited wildfires occurred during an extremely dry summer that killed many A. cupressoides stands on the high plateau in the center of Tasmania. That fire year, coupled with subsequent regeneration failure, caused a loss of ca. 10% of the geographic extent of this endemic Tasmanian forest type. To provide historical context for these large-scale fire events, we (i) collected dendroecological, floristic, and structural data, (ii) documented the postfire survival and regeneration of A. cupressoides and co-occurring understory species, and (iii) assessed postfire understory plant community composition and flammability. We found that fire frequency did not vary following the arrival of European settlers, and that A. cupressoides populations were able to persist under a regime of low-to-mid severity fires prior to the 1960 fires. Our data indicate that the 1960 fires were (i) of greater severity than previous fires, (ii) herbivory by native marsupials may limit seedling survival in both burned and unburned A. cupressoides stands, and (iii) the loss of A. cupressoides populations is largely irreversible given the relatively high fuel loads of postfire vegetation communities that are dominated by resprouting shrubs. We suggest that the feedback between regeneration failure and increased flammability will be further exacerbated by a warmer and drier climate causing A. cupressoides to contract to the most fire-proof landscape settings. © 2014 John Wiley & Sons Ltd.

  17. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    USGS Publications Warehouse

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of

  18. Remote Sensing Derived Fire Frequency, Soil Moisture and Ecosystem Productivity Explain Regional Movements in Emu over Australia

    PubMed Central

    Madani, Nima; Kimball, John S.; Nazeri, Mona; Kumar, Lalit; Affleck, David L. R.

    2016-01-01

    Species distribution modeling has been widely used in studying habitat relationships and for conservation purposes. However, neglecting ecological knowledge about species, e.g. their seasonal movements, and ignoring the proper environmental factors that can explain key elements for species survival (shelter, food and water) increase model uncertainty. This study exemplifies how these ecological gaps in species distribution modeling can be addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia. Emus cover a large area during the austral winter. However, their habitat shrinks during the summer months. We show evidence of emu summer habitat shrinkage due to higher fire frequency, and low water and food availability in northern regions. Our findings indicate that emus prefer areas with higher vegetation productivity and low fire recurrence, while their distribution is linked to an optimal intermediate (~0.12 m3 m-3) soil moisture range. We propose that the application of three geospatial data products derived from satellite remote sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an effective representation of emu general habitat requirements, and substantially improves species distribution modeling and representation of the species’ ecological habitat niche across Australia. PMID:26799732

  19. Remote Sensing Derived Fire Frequency, Soil Moisture and Ecosystem Productivity Explain Regional Movements in Emu over Australia.

    PubMed

    Madani, Nima; Kimball, John S; Nazeri, Mona; Kumar, Lalit; Affleck, David L R

    2016-01-01

    Species distribution modeling has been widely used in studying habitat relationships and for conservation purposes. However, neglecting ecological knowledge about species, e.g. their seasonal movements, and ignoring the proper environmental factors that can explain key elements for species survival (shelter, food and water) increase model uncertainty. This study exemplifies how these ecological gaps in species distribution modeling can be addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia. Emus cover a large area during the austral winter. However, their habitat shrinks during the summer months. We show evidence of emu summer habitat shrinkage due to higher fire frequency, and low water and food availability in northern regions. Our findings indicate that emus prefer areas with higher vegetation productivity and low fire recurrence, while their distribution is linked to an optimal intermediate (~0.12 m3 m(-3)) soil moisture range. We propose that the application of three geospatial data products derived from satellite remote sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an effective representation of emu general habitat requirements, and substantially improves species distribution modeling and representation of the species' ecological habitat niche across Australia.

  20. Simulating the effects of frequent fire on southern california coastal shrublands

    USGS Publications Warehouse

    Syphard, A.D.; Franklin, J.; Keeley, J.E.

    2006-01-01

    Fire disturbance is a primary agent of change in the mediterranean-climate chaparral shrublands of southern California, USA. However, fire frequency has been steadily increasing in coastal regions due to ignitions at the growing wildland-urban interface. Although chaparral is resilient to a range of fire frequencies, successively short intervals between fires can threaten the persistence of some species, and the effects may differ according to plant functional type. California shrublands support high levels of biological diversity, including many endangered and endemic species. Therefore, it is important to understand the long-term effects of altered fire regimes on these communities. A spatially explicit simulation model of landscape disturbance and succession (LANDIS) was used to predict the effects of frequent fire on the distribution of dominant plant functional types in a study area administered by the National Park Service. Shrubs dependent on fire-cued seed germination were most sensitive to frequent fire and lost substantial cover to other functional types, including drought-deciduous subshrubs that typify coastal sage scrub and nonnative annual grasses. Shrubs that resprout were favored by higher fire frequencies and gained in extent under these treatments. Due to this potential for vegetation change, caution is advised against the widespread use of prescribed fire in the region. ?? 2006 by the Ecological Society of America.

  1. Fire-climate interactions in the American West since 1400 CE

    NASA Astrophysics Data System (ADS)

    Trouet, Valerie; Taylor, Alan H.; Wahl, Eugene R.; Skinner, Carl N.; Stephens, Scott L.

    2010-02-01

    Despite a strong anthropogenic fingerprint on 20th Century wildland fire activity in the American West, climate remains a main driver. A better understanding of the spatio-temporal variability in fire-climate interactions is therefore crucial for fire management. Here, we present annually resolved, tree-ring based fire records for four regions in the American West that extend back to 1400 CE. In all regions, years with high fire activity were characterized by widespread yet regionally distinct summer droughts. Overall fire activity was high in late Medieval times, when much of the American West was affected by mega-droughts. A distinct decline in fire activity in the late 16th Century corresponds with anomalously low temperatures during the Little Ice Age and a decline in Native American fire use. The high spatiotemporal resolution of our fire record discloses a time-frequency dependent climatic influence on wildfire regimes in the American West that needs to be accounted for in fire models.

  2. Comparing effects of fire modeling methods on simulated fire patterns and succession: a case study in the Missouri Ozarks

    Treesearch

    Jian Yang; Hong S. He; Brian R. Sturtevant; Brian R. Miranda; Eric J. Gustafson

    2008-01-01

    We compared four fire spread simulation methods (completely random, dynamic percolation. size-based minimum travel time algorithm. and duration-based minimum travel time algorithm) and two fire occurrence simulation methods (Poisson fire frequency model and hierarchical fire frequency model) using a two-way factorial design. We examined these treatment effects on...

  3. Highly Flexible Superhydrophobic and Fire-Resistant Layered Inorganic Paper.

    PubMed

    Chen, Fei-Fei; Zhu, Ying-Jie; Xiong, Zhi-Chao; Sun, Tuan-Wei; Shen, Yue-Qin

    2016-12-21

    Traditional paper made from plant cellulose fibers is easily destroyed by either liquid or fire. In addition, the paper making industry consumes a large amount of natural trees and thus causes serious environmental problems including excessive deforestation and pollution. In consideration of the intrinsic flammability of organics and minimizing the effects on the environment and creatures, biocompatible ultralong hydroxyapatite nanowires are an ideal building material for inorganic fire-resistant paper. Herein, a new kind of free-standing, highly flexible, superhydrophobic, and fire-resistant layered inorganic paper has been successfully prepared using ultralong hydroxyapatite nanowires as building blocks after the surface modification with sodium oleate. During the vacuum filtration, ultralong hydroxyapatite nanowires assemble into self-roughened setalike microfibers, avoiding the tedious fabrication process to construct the hierarchical structure; the self-roughened microfibers further form the inorganic paper with a nacrelike layered structure. We have demonstrated that the layered structure can significantly improve the resistance to mechanical destruction of the as-prepared superhydrophobic paper. The as-prepared superhydrophobic and fire-resistant inorganic paper shows excellent nonflammability, liquid repellency to various commercial drinks, high thermal stability, and self-cleaning property. Moreover, we have explored the potential applications of the superhydrophobic and fire-resistant inorganic paper as a highly effective adsorbent for oil/water separation, fire-shielding protector, and writing paper.

  4. Monthly fire behavior patterns

    Treesearch

    Mark J. Schroeder; Craig C. Chandler

    1966-01-01

    From tabulated frequency distributions of fire danger indexes for a nationwide network of 89 stations, the probabilities of four types of fire behavior ranging from 'fire out' to 'critical' were calculated for each month and are shown in map form.

  5. The dynamics of integrate-and-fire: mean versus variance modulations and dependence on baseline parameters.

    PubMed

    Pressley, Joanna; Troyer, Todd W

    2011-05-01

    The leaky integrate-and-fire (LIF) is the simplest neuron model that captures the essential properties of neuronal signaling. Yet common intuitions are inadequate to explain basic properties of LIF responses to sinusoidal modulations of the input. Here we examine responses to low and moderate frequency modulations of both the mean and variance of the input current and quantify how these responses depend on baseline parameters. Across parameters, responses to modulations in the mean current are low pass, approaching zero in the limit of high frequencies. For very low baseline firing rates, the response cutoff frequency matches that expected from membrane integration. However, the cutoff shows a rapid, supralinear increase with firing rate, with a steeper increase in the case of lower noise. For modulations of the input variance, the gain at high frequency remains finite. Here, we show that the low-frequency responses depend strongly on baseline parameters and derive an analytic condition specifying the parameters at which responses switch from being dominated by low versus high frequencies. Additionally, we show that the resonant responses for variance modulations have properties not expected for common oscillatory resonances: they peak at frequencies higher than the baseline firing rate and persist when oscillatory spiking is disrupted by high noise. Finally, the responses to mean and variance modulations are shown to have a complementary dependence on baseline parameters at higher frequencies, resulting in responses to modulations of Poisson input rates that are independent of baseline input statistics.

  6. Limitations imposed on fire PRA methods as the result of incomplete and uncertain fire event data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowlen, Steven Patrick; Hyslop, J. S.

    2010-04-01

    Fire probabilistic risk assessment (PRA) methods utilize data and insights gained from actual fire events in a variety of ways. For example, fire occurrence frequencies, manual fire fighting effectiveness and timing, and the distribution of fire events by fire source and plant location are all based directly on the historical experience base. Other factors are either derived indirectly or supported qualitatively based on insights from the event data. These factors include the general nature and intensity of plant fires, insights into operator performance, and insights into fire growth and damage behaviors. This paper will discuss the potential methodology improvements thatmore » could be realized if more complete fire event reporting information were available. Areas that could benefit from more complete event reporting that will be discussed in the paper include fire event frequency analysis, analysis of fire detection and suppression system performance including incipient detection systems, analysis of manual fire fighting performance, treatment of fire growth from incipient stages to fully-involved fires, operator response to fire events, the impact of smoke on plant operations and equipment, and the impact of fire-induced cable failures on plant electrical circuits.« less

  7. Natural frequencies facilitate diagnostic inferences of managers

    PubMed Central

    Hoffrage, Ulrich; Hafenbrädl, Sebastian; Bouquet, Cyril

    2015-01-01

    In Bayesian inference tasks, information about base rates as well as hit rate and false-alarm rate needs to be integrated according to Bayes’ rule after the result of a diagnostic test became known. Numerous studies have found that presenting information in a Bayesian inference task in terms of natural frequencies leads to better performance compared to variants with information presented in terms of probabilities or percentages. Natural frequencies are the tallies in a natural sample in which hit rate and false-alarm rate are not normalized with respect to base rates. The present research replicates the beneficial effect of natural frequencies with four tasks from the domain of management, and with management students as well as experienced executives as participants. The percentage of Bayesian responses was almost twice as high when information was presented in natural frequencies compared to a presentation in terms of percentages. In contrast to most tasks previously studied, the majority of numerical responses were lower than the Bayesian solutions. Having heard of Bayes’ rule prior to the study did not affect Bayesian performance. An implication of our work is that textbooks explaining Bayes’ rule should teach how to represent information in terms of natural frequencies instead of how to plug probabilities or percentages into a formula. PMID:26157397

  8. Increasing elevation of fire in the Sierra Nevada and implications for forest change

    USGS Publications Warehouse

    Schwartz, Mark W.; Butt, Nathalie; Dolanc, Christopher R.; Holguin, Andrew; Moritz, Max A.; North, Malcolm P.; Safford, Hugh D.; Stephenson, Nathan L.; Thorne, James H.; van Mantgem, Phillip J.

    2015-01-01

    Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we find that the upper elevation extent of those fires has also been increasing. Factors such as fire season climate and fuel build up are recognized potential drivers of changes in fire regimes. Patterns of warming climate and increasing stand density are consistent with both the direction and magnitude of increasing elevation of wildfire. Reduction in high elevation wildfire suppression and increasing ignition frequencies may also contribute to the observed pattern. Historical biases in fire reporting are recognized, but not likely to explain the observed patterns. The four plausible mechanistic hypotheses (changes in fire management, climate, fuels, ignitions) are not mutually exclusive, and likely have synergistic interactions that may explain the observed changes. Irrespective of mechanism, the observed pattern of increasing occurrence of fire in these subalpine forests may have significant impacts on their resilience to changing climatic conditions.

  9. Utilization of geoinformation tools for the development of forest fire hazard mapping system: example of Pekan fire, Malaysia

    NASA Astrophysics Data System (ADS)

    Mahmud, Ahmad Rodzi; Setiawan, Iwan; Mansor, Shattri; Shariff, Abdul Rashid Mohamed; Pradhan, Biswajeet; Nuruddin, Ahmed

    2009-12-01

    A study in modeling fire hazard assessment will be essential in establishing an effective forest fire management system especially in controlling and preventing peat fire. In this paper, we have used geographic information system (GIS), in combination with other geoinformation technologies such as remote sensing and computer modeling, for all aspects of wild land fire management. Identifying areas that have a high probability of burning is an important component of fire management planning. The development of spatially explicit GIS models has greatly facilitated this process by allowing managers to map and analyze variables contributing to fire occurrence across large, unique geographic units. Using the model and its associated software engine, the fire hazard map was produced. Extensive avenue programming scripts were written to provide additional capabilities in the development of these interfaces to meet the full complement of operational software considering various users requirements. The system developed not only possesses user friendly step by step operations to deliver the fire vulnerability mapping but also allows authorized users to edit, add or modify parameters whenever necessary. Results from the model can support fire hazard mapping in the forest and enhance alert system function by simulating and visualizing forest fire and helps for contingency planning.

  10. To burn or not to burn Oriental bittersweet: A fire manager's conundrum

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Murphy, Marilyn K.; Pavlovic, Noel B.; Grundel, Ralph; Weyenberg, Scott A.; Mulconrey, Neal

    2012-01-01

    Oriental bittersweet (Celastrus orbiculatus) is an introduced liana (woody vine) that has invaded much of the Eastern United States and is expanding west into the Great Plains. In forests, it can girdle and damage canopy trees. At Indiana Dunes, we have discovered that it is invading non-forested dune habitats as well. Anecdotal evidence suggests that fire might facilitate its spread, but the relationship between fire and this aggressive invader is poorly understood. We investigated four areas important to fire management of oriental bittersweet, each of which we will briefly summarize here. 1) What fire temperatures cause seed mortality? For seeds, temperatures above 140°C for three minute or more kills the embryo. For fruits, temperatures above 140°C kill the seeds inside after five minutes. While oriental bittersweet fruits ripen in October and November, the seeds are not dispersed until later in the early to mid December. Thus fall fires will not have any impact on the seeds unless perhaps if they are near the ground. Late winter and early spring fires are likely to kill seeds in the top litter at least. Thus spring fire can reduce the pool of seeds available to germinate. 2) Does fire modify habitat susceptibility to invasion? We found that post fire environment had no effect on the emergence and survival of oriental bittersweet, except that the tallest plants, after two years since sowing, were in the control plots. Highest establishment occurred in mesic silt loam prairie and oak forest. Survival was greatest in mesic prairie and greatest biomass occurred in the oak forest. 3) Both fire and cutting can cause oriental bittersweet to resprout and root sucker. Does the resprouting response differ between these two treatments and can a combination of cutting and pre- or post-fire treatment facilitate its removal? Cutting sometimes increased stem density between one and two times, but burning increased density by two or more times depending on the maximum fire

  11. Model cerebellar granule cells can faithfully transmit modulated firing rate signals

    PubMed Central

    Rössert, Christian; Solinas, Sergio; D'Angelo, Egidio; Dean, Paul; Porrill, John

    2014-01-01

    A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit. PMID:25352777

  12. Flexible GaN for High Performance, Strainable Radio Frequency Devices (Postprint)

    DTIC Science & Technology

    2017-11-02

    devices on van der Waals (vdW) layers has been facilitated by the recent avail - ability of high -quality atomically smooth BN and graphene epi- taxial...AFRL-RX-WP-JA-2017-0333 FLEXIBLE GaN FOR HIGH PERFORMANCE, STRAINABLE RADIO FREQUENCY DEVICES (POSTPRINT) Elizabeth A. Moore and Timothy...2. REPORT TYPE 3. DATES COVERED (From - To) 5 April 2017 Interim 8 September 2014 – 5 March 2017 4. TITLE AND SUBTITLE FLEXIBLE GaN FOR HIGH

  13. Wildfire and drought dynamics destabilize carbon stores of fire-suppressed forests.

    PubMed

    Earles, J Mason; North, Malcolm P; Hurteau, Matthew D

    2014-06-01

    Widespread fire suppression and thinning have altered the structure and composition of many forests in the western United States, making them more susceptible to the synergy of large-scale drought and fire events. We examine how these changes affect carbon storage and stability compared to historic fire-adapted conditions. We modeled carbon dynamics under possible drought and fire conditions over a 300-year simulation period in two mixed-conifer conditions common in the western United States: (1) pine-dominated with an active fire regime and (2) fir-dominated, fire suppressed forests. Fir-dominated stands, with higher live- and dead-wood density, had much lower carbon stability as drought and fire frequency increased compared to pine-dominated forest. Carbon instability resulted from species (i.e., fir's greater susceptibility to drought and fire) and stand (i.e., high density of smaller trees) conditions that develop in the absence of active management. Our modeling suggests restoring historic species composition and active fire regimes can significantly increase carbon stability in fire-suppressed, mixed-conifer forests. Long-term management of forest carbon should consider the relative resilience of stand structure and composition to possible increases in disturbance frequency and intensity under changing climate.

  14. Optimizing prescribed fire allocation for managing fire risk in central Catalonia.

    PubMed

    Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina

    2018-04-15

    We used spatial optimization to allocate and prioritize prescribed fire treatments in the fire-prone Bages County, central Catalonia (northeastern Spain). The goal of this study was to identify suitable strategic locations on forest lands for fuel treatments in order to: 1) disrupt major fire movements, 2) reduce ember emissions, and 3) reduce the likelihood of large fires burning into residential communities. We first modeled fire spread, hazard and exposure metrics under historical extreme fire weather conditions, including node influence grid for surface fire pathways, crown fraction burned and fire transmission to residential structures. Then, we performed an optimization analysis on individual planning areas to identify production possibility frontiers for addressing fire exposure and explore alternative prescribed fire treatment configurations. The results revealed strong trade-offs among different fire exposure metrics, showed treatment mosaics that optimize the allocation of prescribed fire, and identified specific opportunities to achieve multiple objectives. Our methods can contribute to improving the efficiency of prescribed fire treatment investments and wildfire management programs aimed at creating fire resilient ecosystems, facilitating safe and efficient fire suppression, and safeguarding rural communities from catastrophic wildfires. The analysis framework can be used to optimally allocate prescribed fire in other fire-prone areas within the Mediterranean region and elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of color on recall in fire prevention signing

    Treesearch

    William S. Folkman

    1964-01-01

    An exploratory experiment, designed to determine the effect of color on recall in fire prevention signing, was conducted on the San Bernardino National Forest. Background color of usual black on light yellow fire prevention signing, was changed to bright, high intensity orange. The change may have affected impact, but did not improve recall. Frequency of exposure to...

  16. Facilitation and Restoration of Cognitive Function in Primate Prefrontal Cortex by a Neuroprosthesis that Utilizes Minicolumn-Specific Neural Firing

    PubMed Central

    Hampson, Robert E.; Gerhardt, Greg A.; Marmarelis, Vasilis; Song, Dong; Opris, Ioan; Santos, Lucas; Berger, Theodore W.; Deadwyler, Sam A.

    2012-01-01

    Problem addressed Maintenance of cognitive control is a major concern for many human disease condition, therefore a major goal of human neuroprosthetics is to facilitate and/or recover cognitive function when such circumstances impair appropriate decision making. Methodology Nonhuman primates trained to perform a delayed match to sample (DMS) were employed to record mini-columnar activity in the prefrontal cortex (PFC) via custom designed conformal multielectrode arrays that provided inter-laminar recordings from neurons in PFC layer 2/3 and layer 5. Such recordings were analyzed via a previously demonstrated nonlinear multi-input multi-output (MIMO) neuroprosthesis in rodents, which extracted and characterized multi-columnar firing patterns during DMS performance. Results The MIMO model verified that the conformal recorded individual PFC minicolumns responded to entrained target selections in patterns critical for successful DMS performance. This allowed substitution of task-related layer 5 neuron firing patterns with electrical stimulation in the same recording regions during columnar transmission from layer 2/3 at the time of target selection. Such stimulation facilitated normal task performance, but more importantly, recovered performance when applied as a neuroprosthesis following pharmacological disruption of decision making in the same task. Significance and potential impact These findings provide the first successful application of a neuroprosthesis in primate brain designed specifically to restore or repair disrupted cognitive function. PMID:22976769

  17. High-fire-risk behavior in critical fire areas

    Treesearch

    William S. Folkman

    1977-01-01

    Observations of fire-related behavior of wildland visitors were made in three types of areas-wilderness, established campground, and built-up commercial and residential areas-within the San Bernardino National Forest, California. Interviews were conducted with all persons so observed. Types of fire-related behavior differed markedly from one area to another, as did the...

  18. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A

    NASA Astrophysics Data System (ADS)

    Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.

    1999-03-01

    Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.

  19. Ring magnet firing angle control

    DOEpatents

    Knott, M.J.; Lewis, L.G.; Rabe, H.H.

    1975-10-21

    A device is provided for controlling the firing angles of thyratrons (rectifiers) in a ring magnet power supply. A phase lock loop develops a smooth ac signal of frequency equal to and in phase with the frequency of the voltage wave developed by the main generator of the power supply. A counter that counts from zero to a particular number each cycle of the main generator voltage wave is synchronized with the smooth AC signal of the phase lock loop. Gates compare the number in the counter with predetermined desired firing angles for each thyratron and with coincidence the proper thyratron is fired at the predetermined firing angle.

  20. Assessing the influence of small fires on trends in fire regime features at mainland Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-04-01

    Small fires, i.e. fires smaller than 1 Ha, represent a huge proportion of total wildfire occurrence in the Mediterranean region. In the case of Spain, around 53% of fires in the period 1988-2013 fall into this category according to the Spanish EGIF statistics. However, the proportion of small fires is not stationary over time. Small fires are usually excluded from most analysis, given the chance of introducing or falling into temporal bias, being almost mandatory in those assessments using data before the 90s. Inconsistences and inhomogeneity problems related to the diversity of criteria and/or registration procedures among Autonomous Regions are found before that date, although it is widely agreed that small fires are consistently registered starting from 1988. Nevertheless, in terms of fire regimen characterization it is important to know to what extent small fires contribute to the overall fire behaviour. The aim of this study is to analyse spatial-temporal trends of several fire features such as total number of fires and burned area, number and burned area of natural and human fires, and the proportion of natural/human cause in the period 1988-2013 at province level (NUTS3). The analysis is conducted at the mainland Spain at annual and seasonal time scales. We are mainly interested in exploring differences in spatial-temporal trends including or excluding small fires and dealing with them separately as well. This allows determining the extent to which small fires may affect fire regime characterization. We employed a Mann-Kendall test for trend detection and Sen's slope to evaluate the magnitude of the change. Both tests were applied for each fire feature aggregated at NUTS3 level for both autumn-winter and spring-summer seasons. Our results show significant changes in the evolution of annual wildfire frequency; especially strong when small fires are accounted for. A similar outcome was observed in natural and human number fires during the spring-summer season

  1. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest

    Treesearch

    Calvin A. Farris; Christopher H. Baisan; Donald A. Falk; Stephen R. Yool; Thomas W. Swetnam

    2010-01-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire...

  2. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years

    PubMed Central

    Kelly, Ryan; Chipman, Melissa L.; Higuera, Philip E.; Stefanova, Ivanka; Brubaker, Linda B.; Hu, Feng Sheng

    2013-01-01

    Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000–3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000–500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate–fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming. PMID:23878258

  3. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years.

    PubMed

    Kelly, Ryan; Chipman, Melissa L; Higuera, Philip E; Stefanova, Ivanka; Brubaker, Linda B; Hu, Feng Sheng

    2013-08-06

    Wildfire activity in boreal forests is anticipated to increase dramatically, with far-reaching ecological and socioeconomic consequences. Paleorecords are indispensible for elucidating boreal fire regime dynamics under changing climate, because fire return intervals and successional cycles in these ecosystems occur over decadal to centennial timescales. We present charcoal records from 14 lakes in the Yukon Flats of interior Alaska, one of the most flammable ecoregions of the boreal forest biome, to infer causes and consequences of fire regime change over the past 10,000 y. Strong correspondence between charcoal-inferred and observational fire records shows the fidelity of sedimentary charcoal records as archives of past fire regimes. Fire frequency and area burned increased ∼6,000-3,000 y ago, probably as a result of elevated landscape flammability associated with increased Picea mariana in the regional vegetation. During the Medieval Climate Anomaly (MCA; ∼1,000-500 cal B.P.), the period most similar to recent decades, warm and dry climatic conditions resulted in peak biomass burning, but severe fires favored less-flammable deciduous vegetation, such that fire frequency remained relatively stationary. These results suggest that boreal forests can sustain high-severity fire regimes for centuries under warm and dry conditions, with vegetation feedbacks modulating climate-fire linkages. The apparent limit to MCA burning has been surpassed by the regional fire regime of recent decades, which is characterized by exceptionally high fire frequency and biomass burning. This extreme combination suggests a transition to a unique regime of unprecedented fire activity. However, vegetation dynamics similar to feedbacks that occurred during the MCA may stabilize the fire regime, despite additional warming.

  4. 43 CFR 9212.2 - Fire prevention orders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.2 Fire prevention orders. (a) To prevent wildfire or facilitate its suppression, an authorized officer...

  5. 43 CFR 9212.2 - Fire prevention orders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.2 Fire prevention orders. (a) To prevent wildfire or facilitate its suppression, an authorized officer...

  6. 43 CFR 9212.2 - Fire prevention orders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.2 Fire prevention orders. (a) To prevent wildfire or facilitate its suppression, an authorized officer...

  7. 43 CFR 9212.2 - Fire prevention orders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) FIRE MANAGEMENT Wildfire Prevention § 9212.2 Fire prevention orders. (a) To prevent wildfire or facilitate its suppression, an authorized officer...

  8. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands

    USGS Publications Warehouse

    Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.

    2007-01-01

    In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.

  9. Fire-severity effects on plant-fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration

    Treesearch

    Rebecca E. Hewitt; Teresa N. Hollingsworth; F. Stuart Chapin III; D. Lee Taylor

    2016-01-01

    Background: Vegetation change in high latitude tundra ecosystems is expected to accelerate due to increased wildfire activity. High-severity fires increase the availability of mineral soil seedbeds, which facilitates recruitment, yet fire also alters soil microbial composition, which could significantly impact seedling establishment.

  10. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest.

    PubMed

    Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W

    2010-09-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire

  11. Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons

    PubMed Central

    Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David

    2007-01-01

    Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na+, delayed-rectifier K+, and slowly inactivating d-type K+ conductances. The model is analyzed using nonlinear dynamical system theory. For small Na+ window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, g d, and it is delayed for larger g d. As g d further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na+ window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their g d and in the strength of their Na+ window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction. PMID:17696606

  12. Mechanisms of firing patterns in fast-spiking cortical interneurons.

    PubMed

    Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David

    2007-08-01

    Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na(+), delayed-rectifier K(+), and slowly inactivating d-type K(+) conductances. The model is analyzed using nonlinear dynamical system theory. For small Na(+) window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na(+) window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their gd and in the strength of their Na(+) window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.

  13. The Pictorial Fire Stroop: a measure of processing bias for fire-related stimuli.

    PubMed

    Gallagher-Duffy, Joanne; MacKay, Sherri; Duffy, Jim; Sullivan-Thomas, Meara; Peterson-Badali, Michele

    2009-11-01

    Fire interest is a risk factor for firesetting. This study tested whether a fire-specific emotional Stroop task can effectively measure an information-processing bias for fire-related stimuli. Clinic-referred and nonreferred adolescents (aged 13-16 years) completed a pictorial "Fire Stroop," as well as a self-report fire interest questionnaire and several control tasks. Results showed (a) comparatively greater fire-specific attentional bias among referred adolescent firesetters, (b) a negative relationship between Fire Stroop attentional bias and self-reported fire interest, and (c) positive correspondence between Fire Stroop attentional bias and self-reported firesetting frequency. These findings suggest that instruments that measure an automatic bias for fire-specific stimuli may usefully supplement self-report measures in the assessment and understanding of firesetting behavior.

  14. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests.

    PubMed

    Bowman, David M J S; Murphy, Brett P; Neyland, Dominic L J; Williamson, Grant J; Prior, Lynda D

    2014-03-01

    Obligate seeder trees requiring high-severity fires to regenerate may be vulnerable to population collapse if fire frequency increases abruptly. We tested this proposition using a long-lived obligate seeding forest tree, alpine ash (Eucalyptus delegatensis), in the Australian Alps. Since 2002, 85% of the Alps bioregion has been burnt by several very large fires, tracking the regional trend of more frequent extreme fire weather. High-severity fires removed 25% of aboveground tree biomass, and switched fuel arrays from low loads of herbaceous and litter fuels to high loads of flammable shrubs and juvenile trees, priming regenerating stands for subsequent fires. Single high-severity fires caused adult mortality and triggered mass regeneration, but a second fire in quick succession killed 97% of the regenerating alpine ash. Our results indicate that without interventions to reduce fire severity, interactions between flammability of regenerating stands and increased extreme fire weather will eliminate much of the remaining mature alpine ash forest. © 2013 John Wiley & Sons Ltd.

  15. Previous fires moderate burn severity of subsequent wildland fires in two large western US wilderness areas

    Treesearch

    Sean A. Parks; Carol Miller; Cara R. Nelson; Zachary A. Holden

    2014-01-01

    Wildland fire is an important natural process in many ecosystems. However, fire exclusion has reduced frequency of fire and area burned in many dry forest types, which may affect vegetation structure and composition, and potential fire behavior. In forests of the western U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological...

  16. Ecological effects of the Hayman Fire - Part 1: Historical (pre-1860) and current (1860-2002) fire regimes

    Treesearch

    William H. Romme; Thomas T. Veblen; Merrill R. Kaufmann; Rosemary Sherriff; Claudia M. Regan

    2003-01-01

    To address historical and current fire regimes in the Hayman landscape, we first present the concepts of “historical range of variability” and ”fire regime” to provide the necessary conceptual tools for evaluating fire occurrence, fire behavior, and fire effects. Next we summarize historical (pre-1860) fire frequency and fire effects for the major forest types of the...

  17. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    NASA Astrophysics Data System (ADS)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  18. Northwest California National Forests fire severity monitoring 1987-2008

    Treesearch

    Jay D. Miller; Carl N. Skinner; Hugh D. Safford; Eric E. Knapp; Carlos M. Ramirez

    2012-01-01

    Research in the last several years has indicated that the frequency of large fires is on the rise in western US forests. Although fire size and frequency are important, they do not necessarily provide information concerning the effects of fire on ecosystems, as ecosystems differ in ecological and evolutionary relationships with fire. Our study focused on the four...

  19. High-frequency, high-intensity photoionization

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  20. Fire in Ghana's dry forest: Causes, frequency, effects and management interventions

    Treesearch

    Sandra Opoku Agyemang; Michael Muller; Victor Rex Barnes

    2015-01-01

    This paper describes the number of fires, area burned, causes and seasonality of fires over a ten year period from 2002-2012 and investigates different fire management strategies and their effectiveness in the Afram headwaters forest reserve in Ghana. Data were collected from interviews of stakeholders in two communities adjacent to the reserve, and from 2002-2012 fire...

  1. Bird communities following high-severity fire: Response to single and repeat fires in a mixed-evergreen forest, Oregon, USA

    Treesearch

    Joseph B. Fontaine; Daniel C. Donato; W. Douglas Robinson; Beverly E. Law; J. Boone Kauffman

    2009-01-01

    Fire is a widespread natural disturbance agent in most conifer-dominated forests. In light of climate change and the effects of fire exclusion, single and repeated high-severity (stand-replacement) fires have become prominent land management issues. We studied bird communities using point counting in the Klamath-Siskiyou ecoregion of Oregon, USA at various points in...

  2. Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China

    NASA Astrophysics Data System (ADS)

    Xiao, Xiayun; Haberle, Simon G.; Shen, Ji; Xue, Bin; Burrows, Mark; Wang, Sumin

    2017-06-01

    A high-resolution, continuous 18.5 kyr (1 kyr = 1000 cal yr BP) macroscopic charcoal record from Qinghai Lake in southwestern Yunnan Province, China, reveals postglacial fire frequency and variability history. The results show that three periods with high-frequency and high-severity fires occurred during the periods 18.5-15.0, 13.0-11.5, and 4.3-0.8 ka, respectively. This record was compared with major pollen taxa and pollen diversity indices from the same core, and tentatively related to the regional climate proxy records with the aim to separate climate- from human-induced fire activity, and discuss vegetation-fire-climate interactions. The results suggest that fire was mainly controlled by climate before 4.3 ka and by the combined actions of climate and humans after 4.3 ka. Before 4.3 ka, high fire activity corresponded to cold and dry climatic conditions, while warm and humid climatic conditions brought infrequent and weak fires. Fire was an important disturbance factor and played an important role in forest dynamics around the study area. Vegetation responses to fire after 4.3 ka are not consistent with those before 4.3 ka, suggesting that human influence on vegetation and fire regimes may have become more prevalent after 4.3 ka. The comparisons between fire activity and vegetation reveal that evergreen oaks are flammable plants and fire-tolerant taxa. Alnus is a fire-adapted taxon and a nonflammable plant, but density of Alnus forest is a key factor to decide its fire resistance. The forests dominated by Lithocarpus/Castanopsis and/or tropical trees and shrubs are not easy to ignite, but Lithocarpus/Castanopsis and tropical trees and shrubs are fire-sensitive taxa. Fire appears to be unfavourable to plant diversity in the study area.

  3. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event

    USGS Publications Warehouse

    Lydersen, Jamie M; Collins, Brandon M.; Brooks, Matthew L.; Matchett, John R.; Shive, Kristen L.; Povak, Nicholas A.; Kane, Van R.; Smith, Douglas F.

    2017-01-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate severity wildfire reduced the prevalence of high severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. Proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high fire severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience.

  4. Uncertainty and risk in wildland fire management: a review.

    PubMed

    Thompson, Matthew P; Calkin, Dave E

    2011-08-01

    Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to treatments, and of spatiotemporal dynamics involving disturbance regimes and climate change. This work attempts to systematically align sources of uncertainty with the most appropriate decision support methodologies, in order to facilitate cost-effective, risk-based wildfire planning efforts. We review the state of wildfire risk assessment and management, with a specific focus on uncertainties challenging implementation of integrated risk assessments that consider a suite of human and ecological values. Recent advances in wildfire simulation and geospatial mapping of highly valued resources have enabled robust risk-based analyses to inform planning across a variety of scales, although improvements are needed in fire behavior and ignition occurrence models. A key remaining challenge is a better characterization of non-market resources at risk, both in terms of their response to fire and how society values those resources. Our findings echo earlier literature identifying wildfire effects analysis and value uncertainty as the primary challenges to integrated wildfire risk assessment and wildfire management. We stress the importance of identifying and characterizing uncertainties in order to better quantify and manage them. Leveraging the most appropriate decision support tools can facilitate wildfire risk assessment and ideally improve decision-making. Published by Elsevier Ltd.

  5. Monitoring post-fire changes in species composition and stand structure in boreal forests using high-resolution, 3-D aerial drone data and Landsat

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Morton, D. C.; Cook, B.; Andersen, H. E.; Mack, M. C.

    2017-12-01

    The growing frequency and severity of boreal forest fires has important consequences for fire carbon emissions and ecosystem composition. Severe fires are typically associated with high degrees of both canopy and soil organic layer (SOL) consumption, particularly in black spruce stands. Complete canopy consumption can decrease the likelihood of spruce regeneration due to reduced viability of the aerial seedbank. Deeper burning of the SOL increases fire emissions and can expose mineral soil that promotes colonization by broadleaf species. There is mounting evidence that a disturbance-driven shift from spruce to broadleaf forests may indicate an ecological state change with feedbacks to regional and global climate. If post-fire successional dynamics can be characterized at an ecosystem scale using remote sensing data, we will be better equipped to constrain carbon and energy fluxes from SOL losses and albedo changes. In this study, we used Landsat time series, very high-resolution structure-from-motion (SFM) drone imagery, and field measurements to investigate post-fire regrowth 13 years after the 2004 Taylor Complex (TC) fires in interior Alaska. Twenty-seven TC plots span a gradient of moisture conditions and burn severity as estimated by loss of SOL. A range of variables potentially governing seedling species dominance (e.g., moisture status, distance to seed sources) have been collected systematically over the years following fire. In July 2017, we additionally collected < 2 cm resolution drone imagery over 25 of the TC plots. We processed these highly overlapped, nadir-view and oblique angle photos into extremely dense (>700 pts/m2) RGB-colored point clouds using SFM techniques. With these point clouds and high resolution orthomosaics, we estimated: 1) snag heights and biomass, 2) remnant snag fine branching, and 3) species and structure of shrubs and groundcover that have regrown since fire. We additionally assembled a dense Landsat time series arranged by day

  6. ZrP nanoplates based fire-fighting foams stabilizer

    NASA Astrophysics Data System (ADS)

    Zhang, Lecheng; Cheng, Zhengdong; Li, Hai

    2015-03-01

    Firefighting foam, as a significant innovation in fire protection, greatly facilitates extinguishments for liquid pool fire. Recently, with developments in LNG industry, high-expansion firefighting foams are also used for extinguishing LNG fire or mitigating LNG leakage. Foam stabilizer, an ingredient in fire-fighting foam, stabilizes foam bubbles and maintains desired foam volume. Conventional foam stabilizers are organic molecules. In this work, we developed a inorganic based ZrP (Zr(HPO4)2 .H2O, Zirconium phosphate) plates functionalized as firefighting foam stabilizer, improving firefighting foam performance under harsh conditions. Several tests were conducted to illustrate performance. The mechanism for the foam stabilization is also proposed. Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA. Mary Kay O'Connor Process Safety Center, Texas A&M University, College Station, TX, 77843-3122

  7. Stability, Bistability, and Critical Thresholds in Fire-prone Forested Landscapes: How Frequency and Intensity of Disturbance Interact and Influence Forest Cover

    NASA Astrophysics Data System (ADS)

    Miller, A. D.

    2015-12-01

    Many aspects of disturbance processes can have large impacts on the composition of plant communities, and associated changes in land cover type in turn have biogeochemical feedbacks to climate. In particular, changes to disturbance regimes can potentially change the number and stability of equilibrial states, and plant community states can differ dramatically in their carbon (C) dynamics, energy balance, and hydrology. Using the Klamath region of northern California as a model system, we present a theoretical analysis of how changes to climate and associated fire dynamics can disrupt high-carbon, long-lived conifer forests and replace them with shrub-chaparral communities that have much lower biomass and are more pyrogenic. Specifically, we develop a tractable model of plant community dynamics, structured by size class, life-history traits, lottery-type competition, and species-specific responses to disturbance. We assess the stability of different states in terms of disturbance frequency and intensity, and quantitatively partition long-term low-density population growth rates into mechanisms that influence critical transitions from stable to bistable behavior. Our findings show how different aspects of disturbance act and interact to control competitive outcomes and stable states, hence ecosystem-atmosphere C exchange. Forests tend to dominate in low frequency and intensity regimes, while shrubs dominate at high fire frequency and intensity. In other regimes, the system is bistable, and the fate of the system depends both on initial conditions and random chance. Importantly, the system can cross a critical threshold where hysteresis prevents easy return to the prior forested state. We conclude that changes in disturbance-recovery dynamics driven by projected climate change can shift this system away from forest dominated in the direction of shrub-dominated landscape. This will result in a large net C release from the landscape, and alter biophysical ecosystem

  8. Early fire history near Papineau lake, Ontario

    Treesearch

    Daniel C. Dey; Richard P. Guyette

    1996-01-01

    Research that defines the role of fire in upland red oak-pine ecosystems in central Ontario is being conducted by the Great Lakes-St. Lawrence Silviculture program. Site-specific fire histories are being developed that document fire frequency, fire behavior, fire effects on forest regeneration and grwoth, and the influnce of human activites on fire disturbances. This...

  9. Increasing elevation of fire in the Sierra Nevada and implications for forest change

    Treesearch

    Mark W. Schwartz; Nathalie Butt; Christopher R. Dolanc; Andrew Holguin; Max A. Moritz; Malcolm P. North; Hugh D. Safford; Nathan L. Stephenson; James H. Thorne; Phillip J. van Mantgem

    2015-01-01

    Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we...

  10. Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection.

    PubMed

    Lee, Kwangjae; Shim, Young-Seok; Song, Young Geun; Han, Soo Deok; Lee, Youn-Sung; Kang, Chong-Yun

    2017-02-07

    A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD) technique is used to make the highly porous structure such as nanocolumns (NCs) of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO₂, WO₃ and In₂O₃ NCs) is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides) (PVC) decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C), the resistances of the metal-oxide NCs are abruptly changed and SnO₂ NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p -type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C). The response time of SnO₂ NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection.

  11. Fire recurrence effects on aboveground plant and soil carbon stocks in Mediterranean shrublands with Aleppo pine

    NASA Astrophysics Data System (ADS)

    Herman, J.; den Ouden, J.; Mohren, G. M. J.; Retana, J.; Serrasolses, I.

    2009-04-01

    greatest impact on aboveground plant carbon stocks. Aboveground plants in control plots amounted to 8652 g m-2C, of which 93 % was stored in trees, while carbon storage in the most frequently burned sites was only 509 g m-2C. Shrub carbon varied barely between fire frequencies, corroborating the high resilience of resprouting shrub species to fire recurrence. The most striking result was the immense decrease in Aleppo pine carbon stock which varied between 7770 g m-2in control plots and 25.6 g m-2in 3-fires plots. Differences between control and burned plots are principally explained by the age of the plots. The decrease in Aleppo pine carbon stock within burned plots was not associated with a growth reduction, but was due to a decrease in stem density. The results indeed indicate that the recruitment of Aleppo pine on more frequently burned plots is obstructed due to cumulative effects of short fire return-intervals (

  12. Cross-scale analysis of fire regimes

    Treesearch

    Donald A. Falk; Carol Miller; Donald McKenzie; Anne E. Black

    2007-01-01

    Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire...

  13. Risk management of emergency service vehicle crashes in the United States fire service: process, outputs, and recommendations.

    PubMed

    Bui, David P; Pollack Porter, Keshia; Griffin, Stephanie; French, Dustin D; Jung, Alesia M; Crothers, Stephen; Burgess, Jefferey L

    2017-11-17

    Emergency service vehicle crashes (ESVCs) are a leading cause of death in the United States fire service. Risk management (RM) is a proactive process for identifying occupational risks and reducing hazards and unwanted events through an iterative process of scoping hazards, risk assessment, and implementing controls. We describe the process, outputs, and lessons learned from the application of a proactive RM process to reduce ESVCs in US fire departments. Three fire departments representative of urban, suburban, and rural geographies, participated in a facilitated RM process delivered through focus groups and stakeholder discussion. Crash reports from department databases were reviewed to characterize the context, circumstances, hazards and risks of ESVCs. Identified risks were ranked using a risk matrix that considered risk likelihood and severity. Department-specific control measures were selected based on group consensus. Interviews, and focus groups were used to assess acceptability and utility of the RM process and perceived facilitators and barriers of implementation. Three to six RM meetings were conducted at each fire department. There were 7.4 crashes per 100 personnel in the urban department and 10.5 per 100 personnel in the suburban department; the rural department experienced zero crashes. All departments identified emergency response, backing, on scene struck by, driver distraction, vehicle/road visibility, and driver training as high or medium concerns. Additional high priority risks varied by department; the urban department prioritized turning and rear ending crashes; the suburban firefighters prioritized inclement weather/road environment and low visibility related crashes; and the rural volunteer fire department prioritized exiting station, vehicle failure, and inclement weather/road environment related incidents. Selected controls included new policies and standard operating procedures to reduce emergency response, cameras to enhance driver

  14. Developing an assessment of fire-setting to guide treatment in secure settings: the St Andrew's Fire and Arson Risk Instrument (SAFARI).

    PubMed

    Long, Clive G; Banyard, Ellen; Fulton, Barbara; Hollin, Clive R

    2014-09-01

    Arson and fire-setting are highly prevalent among patients in secure psychiatric settings but there is an absence of valid and reliable assessment instruments and no evidence of a significant approach to intervention. To develop a semi-structured interview assessment specifically for fire-setting to augment structured assessments of risk and need. The extant literature was used to frame interview questions relating to the antecedents, behaviour and consequences necessary to formulate a functional analysis. Questions also covered readiness to change, fire-setting self-efficacy, the probability of future fire-setting, barriers to change, and understanding of fire-setting behaviour. The assessment concludes with indications for assessment and a treatment action plan. The inventory was piloted with a sample of women in secure care and was assessed for comprehensibility, reliability and validity. Staff rated the St Andrews Fire and Risk Instrument (SAFARI) as acceptable to patients and easy to administer. SAFARI was found to be comprehensible by over 95% of the general population, to have good acceptance, high internal reliability, substantial test-retest reliability and validity. SAFARI helps to provide a clear explanation of fire-setting in terms of the complex interplay of antecedents and consequences and facilitates the design of an individually tailored treatment programme in sympathy with a cognitive-behavioural approach. Further studies are needed to verify the reliability and validity of SAFARI with male populations and across settings.

  15. Effects of fire frequency on long-term development of an oak-hickory forest in Missouri, U.S.A.

    Treesearch

    Benjamin O. Knapp; Michael A. Hullinger; John M. Kabrick

    2017-01-01

    Repeated prescribed burning over long timescales has some predictable effects on forest structure and composition, but multi-decadal patterns of stand dynamics and successional change with different fire frequencies have rarely been described. We used longitudinal data from a prescribed burning study conducted over a 63-year period to quantify stand structure (stem...

  16. High-speed uncooled MWIR hostile fire indication sensor

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.

    2011-06-01

    Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.

  17. Assessment of the Utility of the Advanced Himawari Imager to Detect Active Fire Over Australia

    NASA Astrophysics Data System (ADS)

    Hally, B.; Wallace, L.; Reinke, K.; Jones, S.

    2016-06-01

    Wildfire detection and attribution is an issue of importance due to the socio-economic impact of fires in Australia. Early detection of fires allows emergency response agencies to make informed decisions in order to minimise loss of life and protect strategic resources in threatened areas. Until recently, the ability of land management authorities to accurately assess fire through satellite observations of Australia was limited to those made by polar orbiting satellites. The launch of the Japan Meteorological Agency (JMA) Himawari-8 satellite, with the 16-band Advanced Himawari Imager (AHI-8) onboard, in October 2014 presents a significant opportunity to improve the timeliness of satellite fire detection across Australia. The near real-time availability of images, at a ten minute frequency, may also provide contextual information (background temperature) leading to improvements in the assessment of fire characteristics. This paper investigates the application of the high frequency observation data supplied by this sensor for fire detection and attribution. As AHI-8 is a new sensor we have performed an analysis of the noise characteristics of the two spectral bands used for fire attribution across various land use types which occur in Australia. Using this information we have adapted existing algorithms, based upon least squares error minimisation and Kalman filtering, which utilise high frequency observations of surface temperature to detect and attribute fire. The fire detection and attribution information provided by these algorithms is then compared to existing satellite based fire products as well as in-situ information provided by land management agencies. These comparisons were made Australia-wide for an entire fire season - including many significant fire events (wildfires and prescribed burns). Preliminary detection results suggest that these methods for fire detection perform comparably to existing fire products and fire incident reporting from relevant

  18. A comprehensive reconstruction of Alaskan Arctic fire history over the last 30,000 years as inferred from a novel multi-proxy suite of organic geochemical and paleoecological methodology.

    NASA Astrophysics Data System (ADS)

    Vachula, R. S.; Longo, W. M.; Reinert, S. T.; Russell, J. M.; Huang, Y.

    2016-12-01

    The frequency and spatial extent of tundra fires have increased contemporaneously with anthropogenic climate change in the Arctic. These fires threaten the stability of permafrost carbon stores, subsistence resources, and ecosystem nutrient cycling and are thus important components of rapidly changing Arctic systems. Future projections of tundra fire rely upon reconstructions of fire regime and ecosystem response to climatic variations of the past. High resolution lake sediment records from Northern Alaska have facilitated important insights into the dynamic relationships between fire, climate, and vegetation throughout the Holocene. However, our understanding of how fire regimes in this region have responded to climate on glacial-interglacial timescales remains speculative. We present a 30,000 year fire history reconstruction from Lake E5, a small lake in the northern foothills of the Brooks Range. Our reconstruction, inferred from sedimentary charcoal particles, polycyclic aromatic hydrocarbons (PAHs), and bulk sediment Black Carbon (BC) content, offers unique insights into how Arctic terrestrial ecosystems of the past and present have interacted with climate on glacial-interglacial time scales via the mechanism of fire. This unique approach pairs traditional (charcoal) and novel (PAHs and BC) proxies and thereby (1) allows for a simultaneous interpretation of local and regional fire history (2) quantifies the abundance of all sizes of all byproducts of incomplete combustion and (3) gains insights into relative changes in combustion temperature, fire severity, and fuel type. While traditional methods would focus on a narrow range of the size spectrum of the physical and chemical byproducts of fire (charcoal particles >0.15 mm), the suite of methods used in this study facilitates a more holistic and comprehensive fire history reconstruction from the E5 sediment record. Results indicate that moisture and vegetation variations were likely the primary drivers of fire

  19. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest

    Treesearch

    Ryan B. Walker; Jonathan D. Coop; Sean A. Parks; Laura Trader

    2018-01-01

    Extensive high-severity wildfires have driven major losses of ponderosa pine and mixed-conifer forests in the southwestern United States, in some settings catalyzing enduring conversions to nonforested vegetation types. Management interventions to reduce the probability of stand-replacing wildfire have included mechanical fuel treatments, prescribed fire, and wildfire...

  20. σ2-Adaptin Facilitates Basal Synaptic Transmission and Is Required for Regenerating Endo-Exo Cycling Pool Under High-Frequency Nerve Stimulation in Drosophila.

    PubMed

    Choudhury, Saumitra Dey; Mushtaq, Zeeshan; Reddy-Alla, Suneel; Balakrishnan, Sruthi S; Thakur, Rajan S; Krishnan, Kozhalmannom S; Raghu, Padinjat; Ramaswami, Mani; Kumar, Vimlesh

    2016-05-01

    The functional requirement of adapter protein 2 (AP2) complex in synaptic membrane retrieval by clathrin-mediated endocytosis is not fully understood. Here we isolated and functionally characterized a mutation that dramatically altered synaptic development. Based on the aberrant neuromuscular junction (NMJ) synapse, we named this mutation angur (a Hindi word meaning "grapes"). Loss-of-function alleles of angur show more than twofold overgrowth in bouton numbers and a dramatic decrease in bouton size. We mapped the angur mutation to σ2-adaptin, the smallest subunit of the AP2 complex. Reducing the neuronal level of any of the subunits of the AP2 complex or disrupting AP2 complex assembly in neurons phenocopied the σ2-adaptin mutation. Genetic perturbation of σ2-adaptin in neurons leads to a reversible temperature-sensitive paralysis at 38°. Electrophysiological analysis of the mutants revealed reduced evoked junction potentials and quantal content. Interestingly, high-frequency nerve stimulation caused prolonged synaptic fatigue at the NMJs. The synaptic levels of subunits of the AP2 complex and clathrin, but not other endocytic proteins, were reduced in the mutants. Moreover, bone morphogenetic protein (BMP)/transforming growth factor β (TGFβ) signaling was altered in these mutants and was restored by normalizing σ2-adaptin in neurons. Thus, our data suggest that (1) while σ2-adaptin facilitates synaptic vesicle (SV) recycling for basal synaptic transmission, its activity is also required for regenerating SVs during high-frequency nerve stimulation, and (2) σ2-adaptin regulates NMJ morphology by attenuating TGFβ signaling. Copyright © 2016 by the Genetics Society of America.

  1. Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.

    PubMed

    Levick, Shaun R; Asner, Gregory P; Smit, Izak P J

    2012-12-01

    Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.

  2. Applications of Living Fire PRA models to Fire Protection Significance Determination Process in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin

    2004-07-01

    The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involvemore » the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process

  3. Evaluation of a chemical proxy for fire intensity: A potential tool for studying fire-climate feedbacks

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; White, J. D.; Von Bargen, J.; Yao, J.

    2015-12-01

    The legacy of wildfire is recorded in the geologic record, due to the stability of charcoal. Well-preserved charcoal is abundant in paleo-soils and sediments, documenting paleo-fires affecting even the earliest land plants. The dominant role of fire in shaping the biosphere is evidenced by some 40% of the land surface which is occupied by fire-prone and fire-adapted biomes: boreal forest, savanna, grassland, and Mediterranean shrubland. While fire ecologists appreciate the role that fire played in the evolution of these ecosystems, and climate scientists appreciate the role of these biomes in the regulation of Earth's climate, our understanding of the system of fire-vegetation-climate feedbacks is poor. This knowledge gap exists because we lack tools for evaluating change in fire regimes of the past for which climate proxy records exist. Fire regime is a function of fire frequency and fire intensity. Although fire frequency estimates are available from laminated sediment and tree ring records, tools for estimating paleo-fire intensity are lacking. We have recently developed a chemical proxy for fire intensity that is based upon the molecular structure of charcoal, assessed using solid-state nuclear magnetic resonance (NMR) spectroscopy. The molecular dimensions of aromatic domains in charcoal increased linearly (R2 = 0.9) with the intensity (temperature x duration) of heating. Our initial field-based validation in prescribed fires shows a promising correlation (R2 = 0.7) between the proxy-based estimates and thermistor-based measurements of fire intensity. This presentation will discuss the competencies and potential limitations of this novel proxy.

  4. Thalamic reticular cells firing modes and its dependency on the frequency and amplitude ranges of the current stimulus.

    PubMed

    Hernandez, Oscar; Hernandez, Lilibeth; Vera, David; Santander, Alcides; Zurek, Eduardo

    2015-01-01

    The neurons of the Thalamic Reticular Nucleus (TRNn) respond to inputs in two activity modes called burst and tonic firing and both can be observed in different physiological states. The functional states of the thalamus depend in part on the properties of synaptic transmission between the TRNn and the thalamocortical and corticothalamic neurons. A dendrite can receive inhibitory and excitatory postsynaptic potentials. The novelties presented in this paper can be summarized as follows: First, it shows, through a computational simulation, that the burst and tonic firings observed in the TRNn soma could be explained as a product of random synaptic inputs on the distal dendrites, the tonic firings are generated by random excitatory stimuli, and the burst firings are generated by two different types of stimuli: inhibitory random stimuli, and a combination of inhibitory (from TRNn) and excitatory (from corticothalamic and thalamocortical neurons) random stimuli; second, according to in vivo recordings, we have found that the burst observed in the TRNn soma has graduate properties that are proportional to the stimuli frequency; and third, a novel method for showing in a quantitative manner the accelerando-decelerando pattern is proposed.

  5. Fire Island National Seashore : alternative transportation study.

    DOT National Transportation Integrated Search

    2011-12-31

    As part of its General Management Plan (GMP) process, Fire Island National Seashore (FIIS) seeks to develop a long-term management model to protect Fire Islands resources, while facilitating a safe, rewarding, and relevant experience for the publi...

  6. Fire regimes, past and present

    Treesearch

    Carl N. Skinner; Chiru Chang

    1996-01-01

    Fire has been an important ecosystem process in the Sierra Nevada for thousands of years. Before the area was settled in the 1850s, fires were generally frequent throughout much of the range. The frequency and severity of these fires varied spatially and temporally depending upon climate, elevation, topography, vegetation, edaphic conditions, and human cultural...

  7. High-severity fire: evaluating its key drivers and mapping its probability across western US forests

    NASA Astrophysics Data System (ADS)

    Parks, Sean A.; Holsinger, Lisa M.; Panunto, Matthew H.; Jolly, W. Matt; Dobrowski, Solomon Z.; Dillon, Gregory K.

    2018-04-01

    Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we used boosted regression trees to model high-severity fire as a function of live fuel, topography, climate, and fire weather. We found that live fuel, on average, was the most important factor driving high-severity fire among ecoregions (average relative influence = 53.1%) and was the most important factor in 14 of 19 ecoregions. Fire weather was the second most important factor among ecoregions (average relative influence = 22.9%) and was the most important factor in five ecoregions. Climate (13.7%) and topography (10.3%) were less influential. We also predicted the probability of high-severity fire, were a fire to occur, using recent (2016) satellite imagery to characterize live fuel for a subset of ecoregions in which the model skill was deemed acceptable (n = 13). These ‘wall-to-wall’ gridded ecoregional maps provide relevant and up-to-date information for scientists and managers who are tasked with managing fuel and wildland fire. Lastly, we provide an example of the predicted likelihood of high-severity fire under moderate and extreme fire weather before and after fuel reduction treatments, thereby demonstrating how our framework and model predictions can potentially serve as a performance metric for land management agencies tasked with reducing hazardous fuel across large landscapes.

  8. Factors affecting fuel break effectiveness in the control of large fires on the Los Padres National Forest, California

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.; Brennan, Teresa J.

    2011-01-01

    As wildfires have increased in frequency and extent, so have the number of homes developed in the wildland-urban interface. In California, the predominant approach to mitigating fire risk is construction of fuel breaks, but there has been little empirical study of their role in controlling large fires.We constructed a spatial database of fuel breaks on the Los Padres National Forest in southern California to better understand characteristics of fuel breaks that affect the behaviour of large fires and to map where fires and fuel breaks most commonly intersect. We evaluated whether fires stopped or crossed over fuel breaks over a 28-year period and compared the outcomes with physical characteristics of the sites, weather and firefighting activities during the fire event. Many fuel breaks never intersected fires, but others intersected several, primarily in historically fire-prone areas. Fires stopped at fuel breaks 46% of the time, almost invariably owing to fire suppression activities. Firefighter access to treatments, smaller fires and longer fuel breaks were significant direct influences, and younger vegetation and fuel break maintenance indirectly improved the outcome by facilitating firefighter access. This study illustrates the importance of strategic location of fuel breaks because they have been most effective where they provided access for firefighting activities.

  9. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  10. Anthropogenic fire drives the evolution of seed traits.

    PubMed

    Gómez-González, Susana; Torres-Díaz, Cristian; Bustos-Schindler, Carlos; Gianoli, Ernesto

    2011-11-15

    Fire is a major disturbance affecting ecosystems worldwide. Phylogenetic studies have shown that the evolution of seed persistence (fire resistance) is associated with fire frequency or severity. However, the existence of specific seed traits resulting from natural selection mediated by fire remains a key question in plant evolution. We evaluated the role of fire in the evolution of seed traits from a microevolutionary perspective, using as a study system a native forb from the Chilean matorral, where fire is a novel, anthropogenic disturbance. We show that anthropogenic fires are shaping the evolution of seed traits such as pubescence and shape. Among-population variation in seed pubescence, shape, and pericarp thickness was strongly associated with fire frequency, and within a population, fire selected those plants with more pubescent seeds, thicker pericarps, and less rounded seeds. Seed pubescence and shape were shown to be heritable traits. Our findings provide insights into the understanding of the evolution of seed traits in fire-prone environments and demonstrate that human-made fires can be driving evolutionary changes in plant species from ecosystems where fires do not occur naturally.

  11. Dopamine neurons in the ventral tegmental area fire faster in adolescent rats than in adults.

    PubMed

    McCutcheon, James E; Conrad, Kelly L; Carr, Steven B; Ford, Kerstin A; McGehee, Daniel S; Marinelli, Michela

    2012-09-01

    Adolescence may be a period of vulnerability to drug addiction. In rats, elevated firing activity of ventral tegmental area (VTA) dopamine neurons predicts enhanced addiction liability. Our aim was to determine if dopamine neurons are more active in adolescents than in adults and to examine mechanisms underlying any age-related difference. VTA dopamine neurons fired faster in adolescents than in adults as measured with in vivo extracellular recordings. Dopamine neuron firing can be divided into nonbursting (single spikes) and bursting activity (clusters of high-frequency spikes). Nonbursting activity was higher in adolescents compared with adults. Frequency of burst events did not differ between ages, but bursts were longer in adolescents than in adults. Elevated dopamine neuron firing in adolescent rats was also observed in cell-attached recordings in ex vivo brain slices. Using whole cell recordings, we found that passive and active membrane properties were similar across ages. Hyperpolarization-activated cation currents and small-conductance calcium-activated potassium channel currents were also comparable across ages. We found no difference in dopamine D2-class autoreceptor function across ages, although the high baseline firing in adolescents resulted in autoreceptor activation being less effective at silencing neurons. Finally, AMPA receptor-mediated spontaneous excitatory postsynaptic currents occurred at lower frequency in adolescents; GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents occurred at both lower frequency and smaller amplitude in adolescents. In conclusion, VTA dopamine neurons fire faster in adolescence, potentially because GABA tone increases as rats reach adulthood. This elevation of firing rate during adolescence is consistent with it representing a vulnerable period for developing drug addiction.

  12. The Use of High-Frequency Percussive Ventilation for Whole-Lung Lavage: A Case Report.

    PubMed

    Kinthala, Sudhakar; Liang, Mark; Khusid, Felix; Harrison, Sebron

    2018-04-23

    Whole-lung lavage (WLL) remains the gold standard in the treatment of pulmonary alveolar proteinosis. However, anesthetic management during WLL can be challenging because of the risk of intraoperative hypoxemia and various cardiorespiratory complications of 1-lung ventilation. Here, we describe a novel strategy involving the application of high-frequency percussive ventilation using a volumetric diffusive respirator (VDR-4) during WLL in a 47-year-old woman with pulmonary alveolar proteinosis. Our observations suggest that high-frequency percussive ventilation is a potentially effective ventilation strategy during WLL that may reduce the risk of hypoxemia and facilitate lavage.

  13. Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography, and forest structure

    Treesearch

    Van R. Kane; C. Alina Cansler; Nicholas A. Povak; Jonathan T. Kane; Robert J. McGaughey; James A. Lutz; Derek J. Churchill; Malcolm P. North

    2015-01-01

    Recent and projected increases in the frequency and severity of large wildfires in the western U.S. makes understanding the factors that strongly affect landscape fire patterns a management priority for optimizing treatment location. We compared the influence of variations in the local environment on burn severity patterns on the large 2013 Rim fire that burned under...

  14. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  15. Humans, Topograpghy, and Wildland Fire: The Ingredients for Long-term Patterns in Ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography, and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These factors can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  16. Humans, topography, and wildland fire: The ingredients for long-term patterns in ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography,and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These facters can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  17. Holocene fire, vegetation, and climate dynamics inferred from charcoal and pollen record in the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Wenwei; Zhao, Yan; Qin, Feng

    2017-10-01

    Understanding fire history and its driving mechanisms can provide valuable insights into present fire regime (intensity, severity and frequency), the interplay between vegetation and fire, and trigger of fire activities. Here we reconstruct the Holocene fire history in the Zoige Basin on the eastern Tibetan Plateau, on the basis of sedimentary micro-charcoal record over the last 10.0 ka (1 ka = 1000 cal yr BP) and discuss the influences of vegetation and climate on fire dynamics. Our results show that regional fire was active at 10.0-3.3 ka and a significant decrease in fire activity characterized the period after 3.3 ka. The high regional fire frequency at 10.0-3.3 ka is consistent with the forested landscape suggested by high affinity scores of cool mixed forest biome (mainly consisted of spruce), implying that fire dynamics during this period was generally controlled by the variations of arboreal biomass and summer temperature. During 6.3-4.6 ka the prevailing Asian summer monsoon provided increased moisture to this region and thus suppressed fire activities to an extent, despite the availability of abundant biomass. Declined tree biomass after 3.3 ka probably accounted for the decreased fire activities. In addition, two successive fire events at ca. 3.5-3.3 ka were likely responsible for the subsequent abrupt decline of forest components in the landscape.

  18. Exploring spatial-temporal dynamics of fire regime features in mainland Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-10-01

    This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).

  19. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model.

    PubMed

    Keeley, Jon E; Zedler, Paul H

    2009-01-01

    We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10,000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (> or = 50,000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of

  20. Large, high-intensity fire events in Southern California shrublands: Debunking the fine-grain age patch model

    USGS Publications Warehouse

    Keeley, J.E.; Zedler, P.H.

    2009-01-01

    We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (???50 000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine

  1. High-resolution infrared thermography for capturing wildland fire behaviour - RxCADRE 2012

    Treesearch

    Joseph J. O’Brien; E. Louise Loudermilk; Benjamin Hornsby; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; J. Kevin Hiers; Casey Teske; Roger D. Ottmar

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our...

  2. Frequency, Expected Effects, Obstacles, and Facilitators of Disclosure of Patient Safety Incidents: A Systematic Review

    PubMed Central

    2017-01-01

    Objectives We performed a systematic review to assess and aggregate the available evidence on the frequency, expected effects, obstacles, and facilitators of disclosure of patient safety incidents (DPSI). Methods We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for this systematic review and searched PubMed, Scopus, and the Cochrane Library for English articles published between 1990 and 2014. Two authors independently conducted the title screening and abstract review. Ninety-nine articles were selected for full-text reviews. One author extracted the data and another verified them. Results There was considerable variation in the reported frequency of DPSI among medical professionals. The main expected effects of DPSI were decreased intention of the general public to file medical lawsuits and punish medical professionals, increased credibility of medical professionals, increased intention of patients to revisit and recommend physicians or hospitals, higher ratings of quality of care, and alleviation of feelings of guilt among medical professionals. The obstacles to DPSI were fear of medical lawsuits and punishment, fear of a damaged professional reputation among colleagues and patients, diminished patient trust, the complexity of the situation, and the absence of a patient safety culture. However, the factors facilitating DPSI included the creation of a safe environment for reporting patient safety incidents, as well as guidelines and education for DPSI. Conclusions The reported frequency of the experience of the general public with DPSI was somewhat lower than the reported frequency of DPSI among medical professionals. Although we identified various expected effects of DPSI, more empirical evidence from real cases is required. PMID:28372351

  3. 29 CFR Appendix A to Subpart L of... - Fire Protection

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., amount, and frequency of training and education will be as varied as are the purposes for which fire... should be qualified to train fire brigade members and demonstrate skills in communication, methods of... situations including “wet drills” and, when feasible, extinguishment of actual mock fires. Frequency of...

  4. 29 CFR Appendix A to Subpart L of... - Fire Protection

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., amount, and frequency of training and education will be as varied as are the purposes for which fire... should be qualified to train fire brigade members and demonstrate skills in communication, methods of... situations including “wet drills” and, when feasible, extinguishment of actual mock fires. Frequency of...

  5. 29 CFR Appendix A to Subpart L of... - Fire Protection

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., amount, and frequency of training and education will be as varied as are the purposes for which fire... should be qualified to train fire brigade members and demonstrate skills in communication, methods of... situations including “wet drills” and, when feasible, extinguishment of actual mock fires. Frequency of...

  6. 29 CFR Appendix A to Subpart L of... - Fire Protection

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., amount, and frequency of training and education will be as varied as are the purposes for which fire... should be qualified to train fire brigade members and demonstrate skills in communication, methods of... situations including “wet drills” and, when feasible, extinguishment of actual mock fires. Frequency of...

  7. Fire Safety for Consumers. Economics (High School). Fire Safety for Texans: Fire and Burn Prevention Curriculum Guide.

    ERIC Educational Resources Information Center

    Texas State Commission on Fire Protection, Austin.

    This booklet comprises the high school economics component of a series of curriculum guides on fire and burn prevention. It is designed to meet the age-specific needs of eleventh and twelfth grade students. Objectives include: (1) developing an awareness of adult responsibilities to preserve family, property, and economy; (2) preparing for…

  8. Fire Impacts on the Mojave Desert Ecosystem: Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenstermaker Lynn

    2012-01-01

    The Nevada National Security Site (NNSS) is located within the Mojave Desert, which is the driest region in North America. Precipitation on the NNSS varies from an annual average of 130 millimeters (mm; 5.1 inches) with a minimum of 47 mm (1.9 inches) and maximum of 328 mm (12.9 inches) over the past 15 year period to an annual average of 205 mm (8.1 inches) with an annual minimum of 89 mm (3.5 inches) and maximum of 391 mm (15.4 inches) for the same time period; for a Frenchman Flat location at 970 meters (m; 3182 feet) and a Pahutemore » Mesa location at 1986 m (6516 feet), respectively. The combination of aridity and temperature extremes has resulted in sparsely vegetated basins (desert shrub plant communities) to moderately vegetated mountains (mixed coniferous forest plant communities); both plant density and precipitation increase with increasing elevation. Whereas some plant communities have evolved under fire regimes and are dependent upon fire for seed germination, plant communities within the Mojave Desert are not dependent on a fire regime and therefore are highly impacted by fire (Brown and Minnich, 1986; Brooks, 1999). As noted by Johansen (2003) natural range fires are not prevalent in the Mojave and Sonoran Deserts because there is not enough vegetation present (too many shrub interspaces) to sustain a fire. Fire research and hence publications addressing fires in the Southwestern United States (U.S.) have therefore focused on forest, shrub-steppe and grassland fires caused by both natural and anthropogenic ignition sources. In the last few decades, however, invasion of mid-elevation shrublands by non-native Bromus madritensis ssp. rubens and Bromus tectorum (Hunter, 1991) have been highly correlated with increased fire frequency (Brooks and Berry, 2006; Brooks and Matchett, 2006). Coupled with the impact of climate change, which has already been shown to be playing a role in increased forest fires (Westerling et al., 2006), it is likely that the

  9. Decadal time-scale monitoring of forest fires in Similipal Biosphere Reserve, India using remote sensing and GIS.

    PubMed

    Saranya, K R L; Reddy, C Sudhakar; Rao, P V V Prasada; Jha, C S

    2014-05-01

    Analyzing the spatial extent and distribution of forest fires is essential for sustainable forest resource management. There is no comprehensive data existing on forest fires on a regular basis in Biosphere Reserves of India. The present work have been carried out to locate and estimate the spatial extent of forest burnt areas using Resourcesat-1 data and fire frequency covering decadal fire events (2004-2013) in Similipal Biosphere Reserve. The anomalous quantity of forest burnt area was recorded during 2009 as 1,014.7 km(2). There was inconsistency in the fire susceptibility across the different vegetation types. The spatial analysis of burnt area shows that an area of 34.2 % of dry deciduous forests, followed by tree savannah, shrub savannah, and grasslands affected by fires in 2013. The analysis based on decadal time scale satellite data reveals that an area of 2,175.9 km(2) (59.6 % of total vegetation cover) has been affected by varied rate of frequency of forest fires. Fire density pattern indicates low count of burnt area patches in 2013 estimated at 1,017 and high count at 1,916 in 2004. An estimate of fire risk area over a decade identifies 12.2 km(2) is experiencing an annual fire damage. Summing the fire frequency data across the grids (each 1 km(2)) indicates 1,211 (26 %) grids are having very high disturbance regimes due to repeated fires in all the 10 years, followed by 711 grids in 9 years and 418 in 8 years and 382 in 7 years. The spatial database offers excellent opportunities to understand the ecological impact of fires on biodiversity and is helpful in formulating conservation action plans.

  10. Fires at storage sites of organic materials, waste fuels and recyclables.

    PubMed

    Ibrahim, Muhammad Asim; Alriksson, Stina; Kaczala, Fabio; Hogland, William

    2013-09-01

    During the last decade, the European Union has enforced the diversion of organic wastes and recyclables to waste management companies operating incineration plants, composting plants and recycling units instead of landfills. The temporary storage sites have been established as a buffer against fluctuations in energy demand throughout the year. Materials also need to be stored at temporary storage sites before recovery and recycling. However, regulations governing waste fuel storage and handling have not yet been developed, and, as a result, companies have engaged in risky practices that have resulted in a high number of fire incidents. In this study, a questionnaire survey was distributed to 249 of the 400 members of Avfall Sverige (Swedish Waste Management Association), which represents the waste management of 95% of the Swedish population. Information regarding 122 storage facilities owned by 69 companies was obtained; these facilities were responsible for the storage of 47% of the total treated waste (incineration + digestion + composting) in 2010 in Sweden. To identify factors related to fire frequency, the questionnaire covered the amounts of material handled and burnt per year, financial losses due to fires, storage duration, storage method and types of waste. The results show that 217 fire incidents corresponded to 170 kilotonnes of material burnt and cumulative losses of 49 million SEK (€4.3 million). Fire frequency and amount of material burnt per fire was found to be dependent upon type of management group (waste operator). Moreover, a correlation was found between fire frequency and material recycled during past years. Further investigations of financial aspects and externalities of fire incidents are recommended.

  11. Past agricultural land use and present-day fire regimes can interact to determine the nature of seed predation.

    PubMed

    Stuhler, John D; Orrock, John L

    2016-06-01

    Historical agriculture and present-day fire regimes can have significant effects on contemporary ecosystems. Although past agricultural land use can lead to long-term changes in plant communities, it remains unclear whether these persistent land-use legacies alter plant-consumer interactions, such as seed predation, and whether contemporary disturbance (e.g., fire) alters the effects of historical agriculture on these interactions. We conducted a study at 27 sites distributed across 80,300 ha in post-agricultural and non-agricultural longleaf pine woodlands with different degrees of fire frequency to test the hypothesis that past and present-day disturbances that alter plant communities can subsequently alter seed predation. We quantified seed removal by arthropods and rodents for Tephrosia virginiana and Vernonia angustifolia, species of conservation interest. We found that the effects of land-use history and fire frequency on seed removal were contingent on granivore guild and microhabitat characteristics. Tephrosia virginiana removal was greater in low fire frequency sites, due to greater seed removal by rodents. Although overall removal of V. angustifolia did not differ among habitats, rodents removed more seeds than arthropods at post-agricultural sites and non-agricultural sites with low fire frequencies, but not at non-agricultural sites with high fire frequencies. Land-use history and fire frequency also affected the relationship between microhabitat characteristics and removal of V. angustifolia. Our results suggest that historical agriculture and present-day fire regimes may alter seed predation by shifting the impact of rodent and arthropod seed predators among habitats, with potential consequences for the establishment of rare plant species consumed by one or both predators.

  12. Design and fabrication of metal-insulator-metal diode for high frequency applications

    NASA Astrophysics Data System (ADS)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  13. Comparison of post-fire seedling establishment between scrub communities in mediterranean and non-mediterranean climate ecosystems

    USGS Publications Warehouse

    Carrington, M.E.; Keeley, J.E.

    1999-01-01

    I Both fire regimes and the conditions under which fires occur vary widely. Abiotic conditions (such as climate) in combination with fire season, frequency and intensity could influence vegetation responses to fire. A variety of adaptations facilitate post-fire recruitment in mediterranean climate ecosystems, but responses of other communities are less well known. We evaluated the importance of climate by comparing sites with mediterranean and subtropical climates. 2 We used paired burned and mature sites in chamise chaparral, mixed chaparral and coastal sage scrub (California), and rosemary scrub, sand pine scrub and sand-hill (Florida), to test whether (i) patterns of pre-fire and post-fire seedling recruitment are more similar between communities within a region than between regions, and (ii) post-fire stimulation of seedling establishment is greater in regions with marked fire-induced contrasts in abiotic site characteristics. 3 Post-fire seedling densities were more similar among sites within climatic regions than between regions. Both seedling densities and proportions of species represented by seedlings after fires were generally higher in California. 4 The only site characteristic showing a pre-fire-post-fire contrast was percentage open canopy, and the effect was greater in California than in Florida. Soil properties were unaffected by fire. 5 Mediterranean climate ecosystems in other regions have nutrient-poor soils similar to our subtropical Florida sites, but show post-fire seedling recruitment patterns more similar to the nutrient-rich sites in California. Climate therefore appears to play a more major role than soil characteristics.

  14. Anthropogenic fire drives the evolution of seed traits

    PubMed Central

    Gómez-González, Susana; Torres-Díaz, Cristian; Bustos-Schindler, Carlos; Gianoli, Ernesto

    2011-01-01

    Fire is a major disturbance affecting ecosystems worldwide. Phylogenetic studies have shown that the evolution of seed persistence (fire resistance) is associated with fire frequency or severity. However, the existence of specific seed traits resulting from natural selection mediated by fire remains a key question in plant evolution. We evaluated the role of fire in the evolution of seed traits from a microevolutionary perspective, using as a study system a native forb from the Chilean matorral, where fire is a novel, anthropogenic disturbance. We show that anthropogenic fires are shaping the evolution of seed traits such as pubescence and shape. Among-population variation in seed pubescence, shape, and pericarp thickness was strongly associated with fire frequency, and within a population, fire selected those plants with more pubescent seeds, thicker pericarps, and less rounded seeds. Seed pubescence and shape were shown to be heritable traits. Our findings provide insights into the understanding of the evolution of seed traits in fire-prone environments and demonstrate that human-made fires can be driving evolutionary changes in plant species from ecosystems where fires do not occur naturally. PMID:22065739

  15. Fire forbids fifty-fifty forest

    PubMed Central

    Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E.; Flores, Bernardo M.; Xu, Chi; Scheffer, Marten

    2018-01-01

    Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse. PMID:29351323

  16. Fire forbids fifty-fifty forest.

    PubMed

    van Nes, Egbert H; Staal, Arie; Hantson, Stijn; Holmgren, Milena; Pueyo, Salvador; Bernardi, Rafael E; Flores, Bernardo M; Xu, Chi; Scheffer, Marten

    2018-01-01

    Recent studies have interpreted patterns of remotely sensed tree cover as evidence that forest with intermediate tree cover might be unstable in the tropics, as it will tip into either a closed forest or a more open savanna state. Here we show that across all continents the frequency of wildfires rises sharply as tree cover falls below ~40%. Using a simple empirical model, we hypothesize that the steepness of this pattern causes intermediate tree cover (30‒60%) to be unstable for a broad range of assumptions on tree growth and fire-driven mortality. We show that across all continents, observed frequency distributions of tropical tree cover are consistent with this hypothesis. We argue that percolation of fire through an open landscape may explain the remarkably universal rise of fire frequency around a critical tree cover, but we show that simple percolation models cannot predict the actual threshold quantitatively. The fire-driven instability of intermediate states implies that tree cover will not change smoothly with climate or other stressors and shifts between closed forest and a state of low tree cover will likely tend to be relatively sharp and difficult to reverse.

  17. Aboriginal hunting buffers climate-driven fire-size variability in Australia's spinifex grasslands.

    PubMed

    Bliege Bird, Rebecca; Codding, Brian F; Kauhanen, Peter G; Bird, Douglas W

    2012-06-26

    Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet-dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes.

  18. Pulsed-High Field/High-Frequency EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  19. Smouldering Fires in the Earth System

    NASA Astrophysics Data System (ADS)

    Rein, G.

    2012-04-01

    Smouldering fires, the slow, low-temperature, flameless burning, represent the most persistent type of combustion phenomena and the longest continuously fires on Earth system. Indeed, smouldering mega-fires of peatlands occur with some frequency during the dry session in, for example, Indonesia, Canada, Russia, UK and USA. Smouldering fires propagate slowly through organic layers of the ground and can reach depth >5 m if large cracks, natural piping or channel systems exist. It threatens to release sequestered carbon deep into the soil. Once ignited, they are particularly difficult to extinguish despite extensive rains, weather changes or fire-fighting attempts, and can persist for long periods of time (months, years) spreading deep and over extensive areas. Recent figures at the global scale estimate that average annual greenhouse gas emissions from smouldering fires are equivalent to 15% of man-made emissions. These fires are difficult or impossible to detect with current remote sensing methods because the chemistry is significantly different, their thermal radiation signature is much smaller, and the plume is much less buoyant. These wildfires burn fossil fuels and thus are a carbon-positive fire phenomena. This creates feedbacks in the climate system because soil moisture deficit and self-heating are enchanted under warmer climate scenarios and lead to more frequent fires. Warmer temperatures at high latitudes are resulting in more frequent Artic fires. Unprecedented permafrost thaw is leaving large soil carbon pools exposed to smouldering fires for the fist time since millennia. Although interactions between flaming fires and the Earth system have been a central focus, smouldering fires are as important but have received very little attention. DBut differences with flaming fires are important. This paper reviews the current knowledge on smouldering fires in the Earth system regarding combustion dynamics, damage to the soil, emissions, remote sensing and

  20. Mid-21st- century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    Treesearch

    Karin L. Riley; Rachel A. Loehman

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st- century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains....

  1. Comparing fire severity models from post-fire and pre/post-fire differenced imagery

    USDA-ARS?s Scientific Manuscript database

    Wildland fires are common in rangelands worldwide. The potential for high severity fires to affect long-term changes in rangelands is considerable, and for this reason assessing fire severity shortly after the fire is critical. Such assessments are typically carried out following Burned Area Emergen...

  2. Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.

    2013-03-01

    Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.

  3. Seasonal Distribution of African Savanna Fires

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.

    1992-01-01

    Savannas consist of a continuous layer of grass interspersed with scattered trees or shrubs, and cover approx. 10 million square kilometers of tropical Africa. African savanna fires, almost all resulting from human activities, may produce as much as a third of the total global emissions from biomass burning. Little is known, however, about the frequency and location of these fires, and the area burned each year. Emissions from African savanna burning are known to be transported over the mid-Atlantic, south Pacific and Indian oceans; but to study fully the transport of regional savanna burning and the seasonality of the atmospheric circulation must be considered simultaneously. Here we describe the temporal and spatial distribution of savanna fires over the entire African continent, as determined from night-time satellite imagery. We find that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires will aid monitoring of the climatically important trace gases emitted from burning biomass.

  4. The impact of a 2 X CO2 climate on lightning-caused fires

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1994-01-01

    Future climate change could have significant repercussions for lightning-caused wildfires. Two empirical fire models are presented relating the frequency of lightning fires and the area burned by these fires to the effective precipitation and the frequency of thunderstorm activity. One model deals with the seasonal variations in lightning fires, while the second model deals with the interannual variations of lightning fires. These fire models are then used with the Goddard Institute for Space Studies General Circulation Model to investigate possible changes in fire frequency and area burned in a 2 X CO2 climate. In the United States, the annual mean number of lightning fires increases by 44%, while the area burned increases by 78%. On a global scale, the largest increase in lightning fires can be expected in untouched tropical ecosystems where few natural fires occur today.

  5. Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Gu, Huaguang

    2017-06-01

    Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.

  6. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  7. Fire Regime and Land Abandonment in European Russia: Case Study of Smolensk Oblast

    NASA Astrophysics Data System (ADS)

    Krylov, A.; McCarty, J. L.; Potapov, P.; Turubanova, S.; Prishchepov, A. V.; Manisha, A.; Romanenkov, V.; Rukhovitch, D.; Koroleva, P.; Hansen, M.

    2014-12-01

    Fires in anthropogenically-dominated landscapes are generally attributed to ecosystem management, agriculture, and policy drivers. In European Russia, fire mainly occurring on agricultural lands, wetlands, and abandoned lands. In the agricultural practice in Russia prescribed fires are believed to increase pasture and hay productivity, suppress trees and shrub expansion, and reduce fire hazards, with fire frequency fire dependent on land use and agricultural practices. The large-scale socio-economic transition since the fall of the Soviet Union has led to changes in land use and land management, including land abandonment and changing agricultural practices. In June 2014, an extensive field campaign was completed in the Smolensk Oblast, located approximately two hundred kilometers west of Moscow on the border with Belarus. Our field sampling was based on circa 1985 Landsat-based forest cover map (Potapov et al., 2014). Points were randomly selected from the non-forested class of the 1985 classification, prior to the collapse of the Soviet Union. Of total field collects, 55% points were sampled on land in either early or late stage of abandonment, 15% from actively cropped fields, and 30% from hay or pasture. Fire frequency was calculated for the 108 field points using 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) active fire data for years 2000-2014. Also we calculated percent of points burned in spring 2014 using 30 m Landsat 8 Operational Land Imager (OLI) data to derive burn scars. Actively cropped fields had lowest burn frequency while abandoned lands - early and late stage abandonment - had highest frequency. Fire frequency was significantly higher on wet soils than dry soils, with no relationship between fire frequency and tree canopy cover. We hypothesize, higher fire frequency on abandoned lands was likely due to greater fuel loads and because of traditional belief in rural Russia that fire is efficient way to suppress tree and shrub expansion.

  8. A New Application to Facilitate Post-Fire Recovery and Rehabilitation in Savanna Ecosystems

    NASA Technical Reports Server (NTRS)

    Carroll, Mark L.; Schnase, John L.; Weber, Keith T.; Brown, Molly E.; Gill, Roger L.; Haskett, George W.; Gardner, Tess A.

    2013-01-01

    The U.S. government spends an estimated $3billion per year to fight forest fires in the United States. Post-fire rehabilitation activities represent a small but essential portion of that total. The Rehabilitation Capability Convergence for Ecosystem Recovery (RECOVER) system is currently under development for Savanna ecosystems in the western U.S. The prototype of this system has been built and will have realworld testing during the summer 2013 fire season. When fully deployed, the RECOVER system will provide the emergency rehabilitation teams with critical and timely information for management decisions regarding stabilization and rehabilitation strategies.

  9. Seasonal distribution of African savanna fires

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.

    1992-01-01

    The temporal and spatial distribution of savanna fires over the entire African continent, as determined from nighttime satellite imagery, is described. It is found that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires is helpful in the monitoring of climatically important trace gases emitted from burning biomass.

  10. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird).

    PubMed

    Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.

  11. Seasonal changes in the human alteration of fire regimes beyond the climate forcing

    NASA Astrophysics Data System (ADS)

    Fréjaville, Thibaut; Curt, Thomas

    2017-03-01

    Human activities have altered fire regimes for millennia by suppressing or enhancing natural fire activity. However, whether these anthropogenic pressures on fire activity have exceeded and will surpass climate forcing still remains uncertain. We tested if, how and the extent to which seasonal fire activity in southern France has recently (1976-2009) deviated from climate-expected trends. The latter were simulated using an ensemble of detrended fire-climate models. We found both seasonal and regional contrasts in climatic effects through a mixture of drought-driven and fuel-limited fire regimes. Dry contemporary conditions chiefly drove fire frequency and burned area, although higher fire activity was related to wetter conditions in the last three years. Surprisingly, the relative importance of preceding wet conditions was higher in winter than in summer, illustrating the strong potential dependency of regional fire-climate relationships on the human use and control of fires. In the Mediterranean mountains, warm winters and springs favour extensive fires in the following dry summer. These results highlight that increasing dryness with climate change could have antagonistic effects on fire regime by leading to larger fires in summer (moisture-limited), but lower fire activity in winter (fuel-limited fire regime). Furthermore, fire trends have significantly diverged from climatic expectations, with a strong negative alteration in fire activity in the Mediterranean lowlands and the summer burned area in the mountains. In contrast, alteration of winter fire frequency in the Mediterranean and Temperate mountains has shifted from positive to negative (or null) trends during the mid-1990s, a period when fire suppression policy underwent major revisions. Our findings demonstrate that changes in land-use and fire suppression policy have probably exceeded the strength of climate change effects on changing fire regime in southern Europe, making regional predictions of future

  12. ENSO controls interannual fire activity in southeast Australia

    NASA Astrophysics Data System (ADS)

    Mariani, M.; Fletcher, M.-S.; Holz, A.; Nyman, P.

    2016-10-01

    El Niño-Southern Oscillation (ENSO) is the main mode controlling the variability in the ocean-atmosphere system in the South Pacific. While the ENSO influence on rainfall regimes in the South Pacific is well documented, its role in driving spatiotemporal trends in fire activity in this region has not been rigorously investigated. This is particularly the case for the highly flammable and densely populated southeast Australian sector, where ENSO is a major control over climatic variability. Here we conduct the first region-wide analysis of how ENSO controls fire activity in southeast Australia. We identify a significant relationship between ENSO and both fire frequency and area burnt. Critically, wavelet analyses reveal that despite substantial temporal variability in the ENSO system, ENSO exerts a persistent and significant influence on southeast Australian fire activity. Our analysis has direct application for developing robust predictive capacity for the increasingly important efforts at fire management.

  13. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data

    PubMed Central

    Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A.; Román, Miguel O.

    2018-01-01

    Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (< 100m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high- burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus

  14. Early Spring Post-Fire Snow Albedo Dynamics in High Latitude Boreal Forests Using Landsat-8 OLI Data

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Erb, Angela M.; Schaaf, Crystal B.; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A.; Roman, Miguel O.

    2016-01-01

    Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (less than 100 m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high-burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500 m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will

  15. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data.

    PubMed

    Wang, Zhuosen; Erb, Angela M; Schaaf, Crystal B; Sun, Qingsong; Liu, Yan; Yang, Yun; Shuai, Yanmin; Casey, Kimberly A; Román, Miguel O

    2016-11-01

    Taking advantage of the improved radiometric resolution of Landsat-8 OLI which, unlike previous Landsat sensors, does not saturate over snow, the progress of fire recovery progress at the landscape scale (< 100m) is examined. High quality Landsat-8 albedo retrievals can now capture the true reflective and layered character of snow cover over a full range of land surface conditions and vegetation densities. This new capability particularly improves the assessment of post-fire vegetation dynamics across low- to high- burn severity gradients in Arctic and boreal regions in the early spring, when the albedos during recovery show the greatest variation. We use 30 m resolution Landsat-8 surface reflectances with concurrent coarser resolution (500m) MODIS high quality full inversion surface Bidirectional Reflectance Distribution Functions (BRDF) products to produce higher resolution values of surface albedo. The high resolution full expression shortwave blue sky albedo product performs well with an overall RMSE of 0.0267 between tower and satellite measures under both snow-free and snow-covered conditions. While the importance of post-fire albedo recovery can be discerned from the MODIS albedo product at regional and global scales, our study addresses the particular importance of early spring post-fire albedo recovery at the landscape scale by considering the significant spatial heterogeneity of burn severity, and the impact of snow on the early spring albedo of various vegetation recovery types. We found that variations in early spring albedo within a single MODIS gridded pixel can be larger than 0.6. Since the frequency and severity of wildfires in Arctic and boreal systems is expected to increase in the coming decades, the dynamics of albedo in response to these rapid surface changes will increasingly impact the energy balance and contribute to other climate processes and physical feedback mechanisms. Surface radiation products derived from Landsat-8 data will thus

  16. Fire effects on the cheatgrass seed bank pathogen Pyrenophora semeniperda

    Treesearch

    Julie Beckstead; Laura E. Street; Susan E. Meyer; Phil S. Allen

    2011-01-01

    The generalist fungal pathogen Pyrenophora semeniperda occurs primarily in cheatgrass (Bromus tectorum) seed banks, where it causes high mortality. We investigated the relationship between this pathogen and its cheatgrass host in the context of fire, asking whether burning would facilitate host escape from the pathogen or increase host vulnerability. We used a series...

  17. [Effects of fire recurrence on fire behaviour in cork oak woodlands (Quercus suber L.) and Mediterranean shrublands over the last fifty years].

    PubMed

    Schaffhauser, Alice; Pimont, François; Curt, Thomas; Cassagne, Nathalie; Dupuy, Jean-Luc; Tatoni, Thierry

    2015-12-01

    Past fire recurrence impacts the vegetation structure, and it is consequently hypothesized to alter its future fire behaviour. We examined the fire behaviour in shrubland-forest mosaics of southeastern France, which were organized along a range of fire frequency (0 to 3-4 fires along the past 50 years) and had different time intervals between fires. The mosaic was dominated by Quercus suber L. and Erica-Cistus shrubland communities. We described the vegetation structure through measurements of tree height, base of tree crown or shrub layer, mean diameter, cover, plant water content and bulk density. We used the physical model Firetec to simulate the fire behaviour. Fire intensity, fire spread, plant water content and biomass loss varied significantly according to fire recurrence and vegetation structure, mainly linked to the time since the last fire, then the number of fires. These results confirm that past fire recurrence affects future fire behaviour, with multi-layered vegetation (particularly high shrublands) producing more intense fires, contrary to submature Quercus woodlands that have not burnt since 1959 and that are unlikely to reburn. Further simulations, with more vegetation scenes according to shrub and canopy covers, will complete this study in order to discuss the fire propagation risk in heterogeneous vegetation, particularly in the Mediterranean area, with a view to a local management of these ecosystems. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Abiotic and biotic influences on Bromus tectoreum invasion and Artemisia tridentata recovery after fire

    Treesearch

    Lea Condon; Peter J. Weisberg; Jeanne C. Chambers

    2011-01-01

    Native sagebrush ecosystems in the Great Basin (western USA) are often invaded following fire by exotic Bromus tectorum (cheatgrass), a highly flammable annual grass. Once B. tectorum is established, higher fire frequencies can lead to local extirpation of Artemisia tridentata ssp. vaseyana (mountain big sagebrush) and have cascading effects on sagebrush ecosystems and...

  19. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.

    PubMed

    Harvey, Brian J; Donato, Daniel C; Turner, Monica G

    2016-09-01

    Increasing rates of natural disturbances under a warming climate raise important questions about how multiple disturbances interact. Escalating wildfire activity in recent decades has resulted in some forests re-burning in short succession, but how the severity of one wildfire affects that of a subsequent wildfire is not fully understood. We used a field-validated, satellite-derived, burn-severity atlas to assess interactions between successive wildfires across the US Northern Rocky Mountains a 300,000-km 2 region dominated by fire-prone forests. In areas that experienced two wildfires between 1984 and 2010, we asked: (1) How do overall frequency distributions of burn-severity classes compare between first and second fires? (2) In a given location, how does burn severity of the second fire relate to that of the first? (3) Do interactions between successive fires vary by forest zone or the interval between fires? (4) What factors increase the probability of burning twice as stand-replacing fire? Within the study area, 138,061 ha burned twice between 1984 and 2010. Overall, frequency distributions of burn severity classes (low, moderate, high; quantified using relativized remote sensing indices) were similar between the first and second fires; however burn severity was 5-13% lower in second fires on average. Negative interactions between fires were most pronounced in lower-elevation forests and woodlands, when fire intervals were <10 yr, and when burn severity was low in the first fire. When the first fire burned as high severity and fire intervals exceeded 10-12 yr, burn-severity interactions switched from negative to positive, with high-severity fire begetting subsequent high-severity fire. Locations most likely to experience successive stand-replacing fires were high-elevation forests, which are adapted to high-severity fire, and areas conducive to abundant post-fire tree regeneration. Broadly similar severities among short-interval "re-burns" and other

  20. Therapeutic mechanisms of high-frequency stimulation in Parkinson's disease and neural restoration via loop-based reinforcement.

    PubMed

    Santaniello, Sabato; McCarthy, Michelle M; Montgomery, Erwin B; Gale, John T; Kopell, Nancy; Sarma, Sridevi V

    2015-02-10

    High-frequency deep brain stimulation (HFS) is clinically recognized to treat parkinsonian movement disorders, but its mechanisms remain elusive. Current hypotheses suggest that the therapeutic merit of HFS stems from increasing the regularity of the firing patterns in the basal ganglia (BG). Although this is consistent with experiments in humans and animal models of Parkinsonism, it is unclear how the pattern regularization would originate from HFS. To address this question, we built a computational model of the cortico-BG-thalamo-cortical loop in normal and parkinsonian conditions. We simulated the effects of subthalamic deep brain stimulation both proximally to the stimulation site and distally through orthodromic and antidromic mechanisms for several stimulation frequencies (20-180 Hz) and, correspondingly, we studied the evolution of the firing patterns in the loop. The model closely reproduced experimental evidence for each structure in the loop and showed that neither the proximal effects nor the distal effects individually account for the observed pattern changes, whereas the combined impact of these effects increases with the stimulation frequency and becomes significant for HFS. Perturbations evoked proximally and distally propagate along the loop, rendezvous in the striatum, and, for HFS, positively overlap (reinforcement), thus causing larger poststimulus activation and more regular patterns in striatum. Reinforcement is maximal for the clinically relevant 130-Hz stimulation and restores a more normal activity in the nuclei downstream. These results suggest that reinforcement may be pivotal to achieve pattern regularization and restore the neural activity in the nuclei downstream and may stem from frequency-selective resonant properties of the loop.

  1. Low and High-Frequency Field Potentials of Cortical Networks ...

    EPA Pesticide Factsheets

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  2. Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    PubMed Central

    Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian

    2016-01-01

    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664

  3. Axonal properties determine somatic firing in a model of in vitro CA1 hippocampal sharp wave/ripples and persistent gamma oscillations

    PubMed Central

    Traub, Roger D.; Schmitz, Dietmar; Maier, Nikolaus; Whittington, Miles A.; Draguhn, Andreas

    2012-01-01

    Evidence has been presented that CA1 pyramidal cells, during spontaneous in vitro sharp wave/ripple (SPW-R) complexes, generate somatic action potentials that originate in axons. ‘Participating’ (somatically firing) pyramidal cells fire (almost always) at most once during a particular SPW-R whereas non-participating cells virtually never fire during an SPW-R. Somatic spikelets were small or absent, while ripple-frequency EPSCs and IPSCs occurred during the SPW-R in pyramidal neurons. These experimental findings could be replicated with a network model in which electrical coupling was present between small pyramidal cell axonal branches. Here, we explore this model in more depth. Factors that influence somatic participation include: (i) the diameter of axonal branches that contain coupling sites to other axons, because firing in larger branches injects more current into the main axon, increasing antidromic firing probability; (ii) axonal K+ currents; and (iii) somatic hyperpolarization and shunting. We predict that portions of axons fire at high frequency during SPW-R, while somata fire much less. In the model, somatic firing can occur by occasional generation of full action potentials in proximal axonal branches, which are excited by high-frequency spikelets. When the network contains phasic synaptic inhibition, at the axonal gap junction site, gamma oscillations result, again with more frequent axonal firing than somatic firing. Combining the models, so as to generate gamma followed by sharp waves, leads to strong overlap between the population of cells firing during gamma the population of cells firing during a subsequent sharp wave, as observed in vivo. PMID:22697272

  4. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    PubMed

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands

    PubMed Central

    Bliege Bird, Rebecca; Codding, Brian F.; Kauhanen, Peter G.

    2012-01-01

    Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet–dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes. PMID:22689979

  6. Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA

    PubMed Central

    Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

    2013-01-01

    Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

  7. Microbial community recovery post-fire in a high elevation mixed conifer catchment in response to varied precipitation regime.

    NASA Astrophysics Data System (ADS)

    Fairbanks, D.; Cook, C.; Chorover, J.; Gallery, R. E.; Rich, V. I.

    2016-12-01

    Fire frequency and severity are increasing across the western United States with enormous impacts on regional carbon and nutrient cycling. Central to the understanding of ecosystem recovery are the microbial communities that transform nutrients in the environment. Temporal changes in precipitation patterns influence the stress response of resident microbiota, in combination with abiotic controls, and in part, controls ecosystem level CO2 and greenhouse gas flux. We explored the relationship between timing of precipitation, terrestrial nutrient cycles on microbial ecology post- fire by sampling across a topographic gradient from two adjacent mountain catchments (north and south-facing) in a high elevation mixed conifer forest three years following a high severity fire disturbance. To best understand microbial community response and recovery to a) a major fire disturbance and b) pulsed precipitation dynamics we analyzed the 16S ribosomal rRNA community metrics, seven hydrolytic enzyme activities, biomass carbon and nitrogen and geochemical parameters following snowmelt, pre and post-monsoon. Six sites were sampled from each catchment across a topographic transect from surface (0-10 cm) and deep (30-40 cm) soil profiles. Samples taken from the south facing catchment were co-located with CO2, O2, redox (platinum electrode) and temperature probes. Results show greater greenhouse gas flux in the convergent zones of the landscape occurring at deeper depths with simultaneous oxygen consumption. These results can be used to integrate our understanding of `hot spots' as a function of landscape position and the pulse coupling of precipitation dynamics influencing the stress response of microbes and the co-occurring nutrient cycling.

  8. Evidence for nonuniform permafrost degradation after fire in boreal landscapes

    USGS Publications Warehouse

    Minsley, Burke J.; Pastick, Neal J.; Wylie, Bruce K.; Brown, Dana R.N.; Kass, M. Andy

    2016-01-01

    Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. We present a combination of multiscale remote sensing, geophysical, and field observations that reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost. Along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska, subsurface electrical resistivity and nuclear magnetic resonance data indicate locations where permafrost appears to be resilient to disturbance from fire, areas where warm permafrost conditions exist that may be most vulnerable to future change, and also areas where permafrost has thawed. High-resolution geophysical data corroborate remote sensing interpretations of near-surface permafrost and also add new high-fidelity details of spatial heterogeneity that extend from the shallow subsurface to depths of about 10 m. Results show that postfire impacts on permafrost can be variable and depend on multiple factors such as fire severity, soil texture, soil moisture, and time since fire.

  9. Fire protection for launch facilities using machine vision fire detection

    NASA Astrophysics Data System (ADS)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  10. Fire protection for launch facilities using machine vision fire detection

    NASA Technical Reports Server (NTRS)

    Schwartz, Douglas B.

    1993-01-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  11. Trends and causes of severity, size, and number of fires in northwestern California, USA

    Treesearch

    J. D. Miller; Carl Skinner; H. D. Safford; Eric E. Knapp; C. M. Ramirez

    2012-01-01

    Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire...

  12. PREFER: a European service providing forest fire management support products

    NASA Astrophysics Data System (ADS)

    Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George

    2015-06-01

    PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.

  13. Holocene fire history in Western China - relationships with climate and human impact, and the role of fire in vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Cui, Q.

    2015-12-01

    It is well recognised that studies of past fire regimes and their causes (human and/or climatic) are useful to understand the long-term ecological effects of fire on vegetation communities. Further, information on the long-term fire history and its effect on vegetation dynamics may provide useful insights for vegetation management in fragile eco-environment of Western China. The main aim of this study is to quantitatively reconstruct high-resolution fire history in West China based on charcoal records from peatlands in Zoige basin (Tibet) and Altai Mountains (Xinjiang). We investigate the long-term relationships between fire, climate, human-impact and the history of biodiversity based on four Holocene macro- and micro- charcoal records and a synthesis on previously published pollen data and geochemistry data. Three hypotheses based on global charcoal records and former studies on palaeofire carried out in China need to be test by this study: 1) during early-mid Holocene period, fire frequency in the study area is relative low and best explained by the changes of regional climate; 2) during the late Holocene, fire activities in the study area increased might due to impacts of the human activities over the climate changes, and human activities is responsible for the temporal and spatial variations in fire regime; 3) the difference of fire histories can be explained by the difference of vegetation composition at site.

  14. Modeling fire behavior on tropical islands with high-resolution weather data

    Treesearch

    John W. Benoit; Francis M. Fujioka; David R. Weise

    2009-01-01

    In this study, we consider fire behavior simulation in tropical island scenarios such as Hawaii and Puerto Rico. The development of a system to provide real-time fire behavior prediction in Hawaii is discussed. This involves obtaining fuels and topography information at a fine scale, as well as supplying daily high-resolution weather forecast data for the area of...

  15. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M.

    2008-06-01

    A high-resolution sedimentary charcoal record from Lago dell'Accesa in southern Tuscany reveals numerous changes in fire regime over the last 11.6 kyr cal. BP and provides one of the longest gap-free series from Italy and the Mediterranean region. Charcoal analyses are coupled with gamma density measurements, organic-content analyses, and pollen counts to provide data about sedimentation and vegetation history. A comparison between fire frequency and lake-level reconstructions from the same site is used to address the centennial variability of fire regimes and its linkage to hydrological processes. Our data reveal strong relationships among climate, fire, vegetation, and land-use and attest to the paramount importance of fire in Mediterranean ecosystems. The mean fire interval (MFI) for the entire Holocene was estimated to be 150 yr, with a minimum around 80 yr and a maximum around 450 yr. Between 11.6 and 3.6 kyr cal. BP, up to eight high-frequency fire phases lasting 300-500 yr generally occurred during shifts towards low lake-level stands (ca 11,300, 10,700, 9500, 8700, 7600, 6200, 5300, 3400, 1800 and 1350 cal. yr BP). Therefore, we assume that most of these shifts were triggered by drier climatic conditions and especially a dry summer season that promoted ignition and biomass burning. At the beginning of the Holocene, high climate seasonality favoured fire expansion in this region, as in many other ecosystems of the northern and southern hemispheres. Human impact affected fire regimes and especially fire frequencies since the Neolithic (ca 8000-4000 cal. yr BP). Burning as a consequence of anthropogenic activities became more frequent after the onset of the Bronze Age (ca 3800-3600 cal. yr BP) and appear to be synchronous with the development of settlements in the region, slash-and-burn agriculture, animal husbandry, and mineral exploitation. The anthropogenic phases with maximum fire activity corresponded to greater sensitivity of the vegetation and triggered

  16. Fire dynamics and implications for nitrogen cycling in boreal forests

    USGS Publications Warehouse

    Harden, J.W.; Mack, M.; Veldhuis, H.; Gower, S.T.

    2003-01-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  17. A Global Classification of Contemporary Fire Regimes

    NASA Astrophysics Data System (ADS)

    Norman, S. P.; Kumar, J.; Hargrove, W. W.; Hoffman, F. M.

    2014-12-01

    Fire regimes provide a sensitive indicator of changes in climate and human use as the concept includes fire extent, season, frequency, and intensity. Fires that occur outside the distribution of one or more aspects of a fire regime may affect ecosystem resilience. However, global scale data related to these varied aspects of fire regimes are highly inconsistent due to incomplete or inconsistent reporting. In this study, we derive a globally applicable approach to characterizing similar fire regimes using long geophysical time series, namely MODIS hotspots since 2000. K-means non-hierarchical clustering was used to generate empirically based groups that minimized within-cluster variability. Satellite-based fire detections are known to have shortcomings, including under-detection from obscuring smoke, clouds or dense canopy cover and rapid spread rates, as often occurs with flashy fuels or during extreme weather. Such regions are free from preconceptions, and the empirical, data-mining approach used on this relatively uniform data source allows the region structures to emerge from the data themselves. Comparing such an empirical classification to expectations from climate, phenology, land use or development-based models can help us interpret the similarities and differences among places and how they provide different indicators of changes of concern. Classifications can help identify where large infrequent mega-fires are likely to occur ahead of time such as in the boreal forest and portions of the Interior US West, and where fire reports are incomplete such as in less industrial countries.

  18. The Effects of Wildfire on Mortality and Resources for an Arboreal Marsupial: Resilience to Fire Events but Susceptibility to Fire Regime Change

    PubMed Central

    Banks, Sam C.; Knight, Emma J.; McBurney, Lachlan; Blair, David; Lindenmayer, David B.

    2011-01-01

    Background Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. Methodology/Principal Findings We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. Conclusions/Significance Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous

  19. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  20. Geographic Mapping as a Tool for Identifying Communities at High Risk for Fires.

    PubMed

    Fahey, Erin; Lehna, Carlee; Hanchette, Carol; Coty, Mary-Beth

    2016-01-01

    The purpose of this study was to evaluate whether the sample of older adults in a home fire safety (HFS) study captured participants living in the areas at highest risk for fire occurrence. The secondary aim was to identify high risk areas to focus future HFS interventions. Geographic information systems software was used to identify census tracts where study participants resided. Census data for these tracts were compared with participant data based on seven risk factors (ie, age greater than 65 years, nonwhite race, below high school education, low socioeconomic status, rented housing, year home built, home value) previously identified in a fire risk model. The distribution of participants and census tracts among risk categories determined how well higher risk census tracts were sampled. Of the 46 census tracts where the HFS intervention was implemented, 78% (n = 36) were identified as high or severe risk according to the fire risk model. Study participants' means for median annual family income (P < .0001) and median home value (P < .0001) were significantly lower than the census tract means (n = 46), indicating participants were at higher risk of fire occurrence. Of the 92 census tracts identified as high or severe risk in the entire county, the study intervention was implemented in 39% (n = 36), indicating 56 census tracts as potential areas for future HFS interventions. The Geographic information system-based fire risk model is an underutilized but important tool for practice that allows community agencies to develop, plan, and evaluate their outreach efforts and ensure the most effective use of scarce resources.

  1. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  2. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  3. Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement

    PubMed Central

    Santaniello, Sabato; McCarthy, Michelle M.; Montgomery, Erwin B.; Gale, John T.; Kopell, Nancy; Sarma, Sridevi V.

    2015-01-01

    High-frequency deep brain stimulation (HFS) is clinically recognized to treat parkinsonian movement disorders, but its mechanisms remain elusive. Current hypotheses suggest that the therapeutic merit of HFS stems from increasing the regularity of the firing patterns in the basal ganglia (BG). Although this is consistent with experiments in humans and animal models of Parkinsonism, it is unclear how the pattern regularization would originate from HFS. To address this question, we built a computational model of the cortico-BG-thalamo-cortical loop in normal and parkinsonian conditions. We simulated the effects of subthalamic deep brain stimulation both proximally to the stimulation site and distally through orthodromic and antidromic mechanisms for several stimulation frequencies (20–180 Hz) and, correspondingly, we studied the evolution of the firing patterns in the loop. The model closely reproduced experimental evidence for each structure in the loop and showed that neither the proximal effects nor the distal effects individually account for the observed pattern changes, whereas the combined impact of these effects increases with the stimulation frequency and becomes significant for HFS. Perturbations evoked proximally and distally propagate along the loop, rendezvous in the striatum, and, for HFS, positively overlap (reinforcement), thus causing larger poststimulus activation and more regular patterns in striatum. Reinforcement is maximal for the clinically relevant 130-Hz stimulation and restores a more normal activity in the nuclei downstream. These results suggest that reinforcement may be pivotal to achieve pattern regularization and restore the neural activity in the nuclei downstream and may stem from frequency-selective resonant properties of the loop. PMID:25624501

  4. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

    PubMed Central

    Westerling, Anthony L.; Turner, Monica G.; Smithwick, Erica A. H.; Romme, William H.; Ryan, Michael G.

    2011-01-01

    Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. We developed a suite of statistical models that related monthly climate data (1972–1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains; these models were cross-validated and then used with downscaled (∼12 km × 12 km) climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation (the time to burn an area equal to the landscape area) reduced to <30 y from the historical 100–300 y for most of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally synchronous fires increase. Our findings suggest a shift to novel fire–climate–vegetation relationships in Greater Yellowstone by midcentury because fire frequency and extent would be inconsistent with persistence of the current suite of conifer species. The predicted new fire regime would transform the flora, fauna, and ecosystem processes in this landscape and may indicate similar changes for other subalpine forests. PMID:21788495

  5. Post-fire reconstructions of fire intensity from fire severity data: quantifying the role of spatial variability of fire intensity on forest dynamics

    NASA Astrophysics Data System (ADS)

    Baker, Patrick; Oborne, Lisa

    2015-04-01

    Large, high-intensity fires have direct and long-lasting effects on forest ecosystems and present a serious threat to human life and property. However, even within the most catastrophic fires there is important variability in local-scale intensity that has important ramifications for forest mortality and regeneration. Quantifying this variability is difficult due to the rarity of catastrophic fire events, the extreme conditions at the time of the fires, and their large spatial extent. Instead fire severity is typically measured or estimated from observed patterns of vegetation mortality; however, differences in species- and size-specific responses to fires often makes fire severity a poor proxy for fire intensity. We developed a statistical method using simple, plot-based measurements of individual tree mortality to simultaneously estimate plot-level fire intensity and species-specific mortality patterns as a function of tree size. We applied our approach to an area of forest burned in the catastrophic Black Saturday fires that occurred near Melbourne, Australia, in February 2009. Despite being the most devastating fire in the past 70 years and our plots being located in the area that experienced some of the most intense fires in the 350,000 ha fire complex, we found that the estimated fire intensity was highly variable at multiple spatial scales. All eight tree species in our study differed in their susceptibility to fire-induced mortality, particularly among the largest size classes. We also found that seedling height and species richness of the post-fire seedling communities were both positively correlated with fire intensity. Spatial variability in disturbance intensity has important, but poorly understood, consequences for the short- and long-term dynamics of forests in the wake of catastrophic wildfires. Our study provides a tool to estimate fire intensity after a fire has passed, allowing new opportunities for linking spatial variability in fire intensity to

  6. Repeated prescribed fires decrease stocks and change attributes of coarse woody debris in a temperate eucalypt forest.

    PubMed

    Aponte, Cristina; Tolhurst, Kevin G; Bennett, Lauren T

    2014-07-01

    Previous studies have found negligible effects of single prescribed fires on coarse woody debris (CWD), but the cumulative effects of repeated low-intensity prescribed fires are unknown. This represents a knowledge gap for environmental management because repeated prescribed fires are a key tool for mitigating wildfire risk, and because CWD is recognized as critical to forest biodiversity and functioning. We examined the effects of repeated low-intensity prescribed fires on the attributes and stocks of (fallen) CWD in a mixed-species eucalypt forest of temperate Australia. Prescribed fire treatments were a factorial combination of two seasons (Autumn, Spring) and two frequencies (three yearly High, 10 yearly Low), were replicated over five study areas, and involved two to seven low-intensity fires over 27 years. Charring due to prescribed fires variously changed carbon and nitrogen concentrations and C to N ratios of CWD pieces depending on decay class, but did not affect mean wood density. CWD biomass and C and N stocks were significantly less in Fire than Control treatments. Decreases in total CWD C stocks of -8 Mg/ha in Fire treatments were not balanced by minor increases in pyrogenic (char) C (-0.3 Mg/ha). Effects of prescribed fire frequency and season included significantly less C and N stocks in rotten CWD in High than Low frequency treatments, and in the largest CWD pieces in Autumn than Spring treatments. Our study demonstrates that repeated low-intensity prescribed fires have the potential to significantly decrease CWD stocks, in pieces of all sizes and particularly decayed pieces, and to change CWD chemical attributes. CWD is at best a minor stock of pyrogenic C under such fire regimes. These findings suggest a potential trade-off in the management of temperate eucalypt forests between sustained reduction of wildfire risk, and the consequences of decreased CWD C stocks, and of changes in CWD as a habitat and biogeochemical substrate. Nonetheless

  7. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-05-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In this study, 16 simulations are conducted using WRF-Fire to examine the sensitivity of resolving VDLS to spatial resolution and atmosphere-fire coupling within the WRF-Fire model framework. The horizontal grid spacing is varied between 25 and 90 m, and the two-way atmosphere-fire coupling is either enabled or disabled. At high spatial resolution, the atmosphere-fire coupling increases the peak uphill and lateral spread rate by a factor of up to 2.7 and 9.5. The enhancement of the uphill and lateral spread rate diminishes at coarser spatial resolution, and VDLS is not modelled for a horizontal grid spacing of 90 m. The laterally spreading fire fronts become the dominant contributors of the extreme pyro-convection. The resolved fire-induced vortices responsible for driving the lateral spread in the coupled simulations have non-zero vorticity along each unit vector direction, and develop due to an interaction between the background winds and vertical return circulations generated at the flank of the fire front as part of the pyro-convective updraft. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to reproduce VDLS within the current WRF-Fire model framework.

  8. Hydrological Dynamics, Fire History and Carbon Accumulation in the Last Millennium in Western Siberia Reconstructed from a High Resolution Ombrotrophic Peat Archive

    NASA Astrophysics Data System (ADS)

    Lamentowicz, M.; Slowinski, M. M.; Marcisz, K.; Kolaczek, P.; Neumann, M.; Kaliszan, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Fialkiewicz-Koziel, B.; Jassey, V.; Laggoun-Defarge, F.

    2014-12-01

    Northern peatlands are important sinks of carbon. However, ongoing climate change and human impact trigger emission of the stored carbon into the atmosphere. Because of the progressive disturbances there is an urgent need to recognize these processes in space and time. We investigated a profile from a Mukhrino bog located close to the Mukhrino Field Station, about 20 km from Khanty-Mansiysk (60°54' N, 68°42' E). One meter peat core was subsampled in one-centimeter intervals. Pollen, testate amoebae, plant macrofossils, bulk density and carbon content were analyzed in high-resolution to reconstruct hydrology, droughts and carbon accumulation rates during the last 1200 years. We hypothesize that continental bogs of Siberia have been existing in under summer drought stress during the last millennium and hydrological change (dry shift) is also reflected in local fires. Palaeoecological work was accompanied by surface sampling to collect testate amoebae training set for transfer function development. These microorganisms have been scarcely studied in this part of the world. Redundancy analysis (RDA) showed that 23.7% of variance is explained by the model. Furthermore, water table appeared to be the most significant variable for sampled communities. Testate amoebae calibration data set performed the reliably using weighted averaging model (RMSEPboot=7.9, R2boot=0.74). According to our quantitative reconstruction, higher charcoal influx was inferred between AD 1975 and 1990 what suggests higher fire frequency. However, water table was the lowest between AD 1150 and AD 1965. The data show lack of correlation between peatland wetness and regional fires. Consequently, it suggests that peatland hydrological dynamics might be independent from fires frequency, as fires were caused by recent human activities in concomitance with the positive Arctic Oscillation Index during the last decade.

  9. Long-term effects of fire and fire-return interval on population structure and growth of longleaf pine (Pinus palustris)

    Treesearch

    Chelcy R. Ford; Emily S. Minor; Gordon A. Fox

    2010-01-01

    We investigated the effect of fire and fire frequency on stand structure and longleaf pine (Pinus palustris P. Mill.) growth and population demography in an experimental research area in a southwest Florida sandhill community. Data were collected from replicated plots that had prescribed fire-return intervals of 1, 2, 5, or 7 years or were left...

  10. Analysis of the ability of large-scale reanalysis data to define Siberian fire danger in preparation for future fire prediction

    NASA Astrophysics Data System (ADS)

    Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate

  11. NASA 2007 Western States Fire Missions (WSFM)

    NASA Technical Reports Server (NTRS)

    Buoni, Greg

    2008-01-01

    This viewgraph presentation describes the Western states Fire Missions (WSFM) that occurred in 2007. The objectives of this mission are: (1) Demonstrate capabilities of UAS to overfly and collect sensor data on widespread fires throughout Western US. (1) Demonstrate long-endurance mission capabilities (20-hours+). (2) Image multiple fires (greater than 4 fires per mission), to showcase extendable mission configuration and ability to either linger over key fires or station over disparate regional fires. (3) Demonstrate new UAV-compatible, autonomous sensor for improved thermal characterization of fires. (4) Provide automated, on-board, terrain and geo-rectified sensor imagery over OTH satcom links to national fire personnel and Incident commanders. (5) Deliver real-time imagery to (within 10-minutes of acquisition). (6) Demonstrate capabilities of OTS technologies (GoogleEarth) to serve and display mission-critical sensor data, coincident with other pertinent data elements to facilitate information processing (WX data, ground asset data, other satellite data, R/T video, flight track info, etc).

  12. Performance of high temperature heat flux plates and soil moisture probes during controlled surface fires

    Treesearch

    W. J. Massman; J. M. Frank; S. M. Massman; W. D. Shepperd

    2003-01-01

    Natural and prescribed fires play an important role in managing and maintaining most ecosystems in the western United States. The high soil temperatures associated with fire influence forests and their ability to regenerate after a fire by altering soil properties and soil chemistry and by killing microbes, plant roots, and seeds. Because prescribed fire is frequently...

  13. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  14. ALMA High Frequency Techniques

    NASA Astrophysics Data System (ADS)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  15. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    USGS Publications Warehouse

    Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  16. Pine regeneration following wildland fire

    Treesearch

    Katherine J. Elliott; James M. Vose; Alan S. White

    2008-01-01

    Pine regeneration following wildland fire continues to be a serious problem across the western and southeastern U.S. Frequency of large wildfires has increased over the last several decades and restoration of these burned areas is a major problem confronting land managers. Prescribed fires are used primarily to reduce heavy fuel loads and secondarily to reduce...

  17. Cool echidnas survive the fire.

    PubMed

    Nowack, Julia; Cooper, Christine Elizabeth; Geiser, Fritz

    2016-04-13

    Fires have occurred throughout history, including those associated with the meteoroid impact at the Cretaceous-Palaeogene (K-Pg) boundary that eliminated many vertebrate species. To evaluate the recent hypothesis that the survival of the K-Pg fires by ancestral mammals was dependent on their ability to use energy-conserving torpor, we studied body temperature fluctuations and activity of an egg-laying mammal, the echidna (Tachyglossus aculeatus), often considered to be a 'living fossil', before, during and after a prescribed burn. All but one study animal survived the fire in the prescribed burn area and echidnas remained inactive during the day(s) following the fire and substantially reduced body temperature during bouts of torpor. For weeks after the fire, all individuals remained in their original territories and compensated for changes in their habitat with a decrease in mean body temperature and activity. Our data suggest that heterothermy enables mammals to outlast the conditions during and after a fire by reducing energy expenditure, permitting periods of extended inactivity. Therefore, torpor facilitates survival in a fire-scorched landscape and consequently may have been of functional significance for mammalian survival at the K-Pg boundary. © 2016 The Author(s).

  18. Fire regimes and vegetation responses in two Mediterranean-climate regions

    USGS Publications Warehouse

    Montenegro, G.; Ginocchio, R.; Segura, A.; Keely, J.E.; Gomez, M.

    2004-01-01

    Wildfires resulting from thunderstorms are common in some Mediterranean-climate regions, such as southern California, and have played an important role in the ecology and evolution of the flora. Mediterranean-climate regions are major centers for human population and thus anthropogenic impacts on fire regimes may have important consequences on these plant formations. However, changes in fire regimes may have different impacts on Mediterranean type-ecosystems depending on the capability of plants to respond to such perturbations. Therefore, we compare here fire regimes and vegetation responses of two Mediterranean-climate regions which differ in wildfire regimes and history of human occupation, the central zone of Chile (matorral) and the southern area of California in United States (chaparral). In Chile almost all fires result from anthropogenic activities, whereas lightning fires resulting from thunderstorms are frequent in California. In both regions fires are more frequent in summer, due to high accumulation of dry plant biomass for ignition. Humans have markedly increased fires frequency both in the matorral and chaparral, but extent of burned areas has remained unaltered, probably due to better fire suppression actions and a decline in the built-up of dry plant fuel associated to increased landscape fragmentation with less flammable agricultural and urban developments. As expected, post-fire plant regeneration responses differs between the matorral and chaparral due to differences in the importance of wildfires as a natural evolutionary force in the system. Plants from the chaparral show a broader range of post-fire regeneration responses than the matorral, from basal resprouting, to lignotuber resprouting, and to fire-stimulated germination and flowering with fire-specific clues such as heat shock, chemicals from smoke or charred wood. Plants from the matorral have some resprouting capabilities after fire, but these probably evolved from other environmental

  19. Short- and long-term effects of fire on carbon in US dry temperate forest systems

    USGS Publications Warehouse

    Hurteau, Matthew D.; Brooks, Matthew L.

    2011-01-01

    Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  20. Highly-efficient, frequency-tripled Nd:YAG laser for spaceborne LIDARs

    NASA Astrophysics Data System (ADS)

    Treichel, R.; Hoffmann, H.-D.; Luttmann, J.; Morasch, V.; Nicklaus, K.; Wührer, C.

    2017-11-01

    For a spaceborne lidar a highly reliable, long living and efficient laser source is absolutely essential. Within the frame of the development of a laser source for the backscatter lidar ATLID, which will be flown on EarthCare mission, we setup and tested a predevelopment model of an injection-seeded, diode pumped, frequency tripled, pulsed high power Nd:YAG MOPA laser operating nominally at 100 Hz pulse repetition frequency. We also tested the burst operation mode. The excellent measured performance parameter will be introduced. The oscillator rod is longitudinally pumped from both sides. The oscillator has been operated with three cavity control methods: "Cavity Dither", "Pound-Drever-Hall" and "Adaptive Ramp & Fire". Especially the latter method is very suitable to operate the laser in harsh vibrating environment such in airplanes. The amplifier bases on the InnoSlab design concept. The constant keeping of a moderate fluence in the InnoSlab crystal permits excellent possibilities to scale the pulse energy to several 100 mJ. An innovative pump unit and optics makes the laser performance insensitive to inhomogeneous diode degradation and allows switching of additional redundant diodes. Further key features have been implemented in a FM design concept. The operational lifetime is extended by the implementation of internal redundancies for the most critical parts. The reliability is increased due to the higher margin onto the laser induced damage threshold by a pressurized housing. Additionally air-to-vacuum effects becomes obsolete. A high efficient heat removal concept has been implemented.

  1. A comparison of charcoal measurements for reconstruction of Mediterranean paleo-fire frequency in the mountains of Corsica

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Carcaillet, Christopher; Dezileau, Laurent; Ali, Adam A.; Bradshaw, Richard H. W.

    2013-05-01

    Fire-history reconstructions inferred from sedimentary charcoal records are based on measuring sieved charcoal fragment area, estimating fragment volume, or counting fragments. Similar fire histories are reconstructed from these three approaches for boreal lake sediment cores, using locally defined thresholds. Here, we test the same approach for a montane Mediterranean lake in which taphonomical processes might differ from boreal lakes through fragmentation of charcoal particles. The Mediterranean charcoal series are characterized by highly variable charcoal accumulation rates. Results there indicate that the three proxies do not provide comparable fire histories. The differences are attributable to charcoal fragmentation. This could be linked to fire type (crown or surface fires) or taphonomical processes, including charcoal transportation in the catchment area or in the sediment. The lack of correlation between the concentration of charcoal and of mineral matter suggests that fragmentation is not linked to erosion. Reconstructions based on charcoal area are more robust and stable than those based on fragment counts. Area-based reconstructions should therefore be used instead of the particle-counting method when fragmentation may influence the fragment abundance.

  2. Coal-fired high performance power generating system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can bemore » achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.« less

  3. Fire-severity effects on plant-fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration.

    PubMed

    Hewitt, Rebecca E; Hollingsworth, Teresa N; Stuart Chapin Iii, F; Lee Taylor, D

    2016-05-11

    Vegetation change in high latitude tundra ecosystems is expected to accelerate due to increased wildfire activity. High-severity fires increase the availability of mineral soil seedbeds, which facilitates recruitment, yet fire also alters soil microbial composition, which could significantly impact seedling establishment. We investigated the effects of fire severity on soil biota and associated effects on plant performance for two plant species predicted to expand into Arctic tundra. We inoculated seedlings in a growth chamber experiment with soils collected from the largest tundra fire recorded in the Arctic and used molecular tools to characterize root-associated fungal communities. Seedling biomass was significantly related to the composition of fungal inoculum. Biomass decreased as fire severity increased and the proportion of pathogenic fungi increased. Our results suggest that effects of fire severity on soil biota reduces seedling performance and thus we hypothesize that in certain ecological contexts fire-severity effects on plant-fungal interactions may dampen the expected increases in tree and shrub establishment after tundra fire.

  4. Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in U.S. fire-prone forests.

    PubMed

    Fontaine, Joseph B; Kennedy, Patricia L

    2012-07-01

    Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire surrogates (forest thinning), and fire and fire surrogate combined treatments in the most extensively studied fire-prone, forested biome (forests of the United States). Effect sizes (magnitude of response) and their 95% confidence limits (response consistency) were estimated for each species-by-treatment combination with two or more observations. We found 41 studies of 119 bird and 17 small-mammal species that examined short-term responses (< or =4 years) to thinning, low/moderate- and high-severity fire, and thinning plus prescribed fire; data on other taxa and at longer time scales were too sparse to permit quantitative assessment. At the stand scale (<50 ha), thinning and low/moderate-severity fire demonstrated similar response patterns in these forests. Combined thinning plus prescribed fire produced a higher percentage of positive responses. High-severity fire provoked stronger responses, with a majority of species possessing higher or lower effect sizes relative to fires of lower severity. In the short term and at fine spatial scales, fire surrogate forest-thinning treatments appear to effectively mimic low/moderate-severity fire, whereas low/moderate-severity fire is not a substitute for high-severity fire. The varied response of taxa to each of the four conditions considered makes it clear that the full range of fire-based disturbances (or their surrogates) is

  5. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-09-01

    Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere-fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to model VLS with WRF-Fire.

  6. Mapping burn severity, pine beetle infestation, and their interaction at the High Park Fire

    NASA Astrophysics Data System (ADS)

    Stone, Brandon

    North America's western forests are experiencing wildfire and mountain pine beetle (MPB) disturbances that are unprecedented in the historic record, but it remains unclear whether and how MPB infestation influences post-infestation fire behavior. The 2012 High Park Fire burned in an area that's estimated to have begun a MPB outbreak cycle within five years before the wildfire, resulting in a landscape in which disturbance interactions can be studied. A first step in studying these interactions is mapping regions of beetle infestation and post-fire disturbance. We implemented an approach for mapping beetle infestation and burn severity using as source data three 5 m resolution RapidEye satellite images (two pre-fire, one post-fire). A two-tiered methodology was developed to overcome the spatial limitations of many classification approaches through explicit analyses at both pixel and plot level. Major land cover classes were photo-interpreted at the plot-level and their spectral signature used to classify 5 m images. A new image was generated at 25 m resolution by tabulating the fraction of coincident 5 m pixels in each cover class. The original photo interpretation was then used to train a second classification using as its source image the new 25 m image. Maps were validated using k-fold analysis of the original photo interpretation, field data collected immediately post-fire, and publicly available classifications. To investigate the influence of pre-fire beetle infestation on burn severity within the High Park Fire, we fit a log-linear model of conditional independence to our thematic maps after controlling for forest cover class and slope aspect. Our analysis revealed a high co-occurrence of severe burning and beetle infestation within high elevation lodgepole pine stands, but did not find statistically significant evidence that infected stands were more likely to burn severely than similar uninfected stands. Through an inspection of the year-to-year changes in

  7. Fire As A Weapon: High Rise Structures

    DTIC Science & Technology

    2017-12-01

    Trade Center, Happyland fire, Taj Mahal Fire, fire bombing , inferno terror, terrorist arsonists, counter-terrorism, arson attacks 15. NUMBER OF PAGES...kill civilians throughout the building without the attackers setting bombs throughout. However, the literature does not reflect the emerging threat...requiring the expertise to build bombs or anything of that nature; in other words, everyone can burn a house down, but it takes time and skill to blow it up

  8. Factors affecting the sprouting of shortleaf pine rootstock following prescribed fire

    Treesearch

    Curtis J. Lilly; Rodney E. Will; Charles G. Tauer; James M. Guldin; Martin A. Spetich

    2012-01-01

    Shortleaf pine (Pinus echinata) is a fire dependent species that is declining across the southeastern US. Its unique basal crook is an adaptation that protects dormant buds from fire and facilitates prolific sprouting of seedling rootstocks following top-kill. Understanding what influences shortleaf pine sprouting after fire could greatly increase success of natural...

  9. Towards improved quantification of post-fire conifer mortality and recovery: Impacts of fire radiative flux on seedling and mature tree mortality, physiology, and growth

    NASA Astrophysics Data System (ADS)

    Sparks, A. M.; Kolden, C.; Smith, A. M.

    2016-12-01

    Fire activity, in terms of intensity, frequency, and total area burned, is expected to increase with changing climate. A challenge for landscape level assessment of fire effects, termed burn severity, is that current assessments provide very little information regarding vegetation physiological performance and recovery, limiting our understanding of fire effects on ecosystem services such as carbon storage/cycling. To address these limitations, we evaluated an alternative dose-response methodology for quantifying fire effects that attempts to bridge fire combustion dynamics and ecophysiology. Specifically, we conducted a highly controlled, laboratory assessment of seedling response to increasing doses of fire radiative energy applied through surface fires, for two western U.S. conifer species. Seedling physiology and spectral reflectance were acquired pre- and up to 1 year post-fire. Post-fire mortality, physiological performance, and spectral reflectance were strongly related with fire radiative energy density (FRED: J m-2) dose. To examine how these relationships change with tree size and age, we conducted small prescribed fires at the tree scale (35 m2) in a mature conifer stand. Radial growth and resin duct defenses were assessed on the mature conifer trees following the prescribed fires. Differences in dose-response relationships between seedlings and mature trees indicate the importance of fire behavior (e.g., flaming-dominated versus smoldering-dominated combustion) in characterizing these relationships. Ultimately, these results suggest that post-fire impacts on growth of surviving seedlings and mature trees require modes of heat transfer to impact tree canopies.

  10. Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs.

    PubMed

    Santin, Joseph M; Hartzler, Lynn K

    2015-06-15

    Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK. Am J Physiol Regul Integr Comp Physiol 305: R1451-R1464, 2013). This suggests an unlikely role for I h in generating cold activation, but led us to hypothesize that inhibition of I h by cooling functions as a physiological brake to limit the cold-activated response. Using whole cell electrophysiology in brain slices, we employed 2 mM Cs(+) (an I h antagonist) to isolate the role of I h in spontaneous firing and cold activation in neurons recorded with either control or I h agonist (cyclic AMP)-containing artificial intracellular fluid. I h did not contribute to the membrane potential (V m) and spontaneous firing at 20°C. Although voltage-clamp analysis confirmed that cooling inhibits I h, its lack of involvement in setting baseline firing and V m precluded its ability to regulate cold activation as hypothesized. In contrast, neurons dialyzed with cAMP exhibited greater baseline firing frequencies at 20°C due to I h activation. Our hypothesis was supported when the starting level of I h was enhanced by elevating cAMP because cold activation was converted to more ordinary cold inhibition. These findings indicate that situations leading to enhancement of I h facilitate firing at 20°C, yet the hyperpolarization associated with inhibiting a depolarizing cation current by cooling blunts the net V m response to cooling to oppose normal cold-depolarizing factors. This suggests that the influence of I h activation state on neuronal firing varies in the poikilothermic neuronal environment. Copyright © 2015 the American Physiological Society.

  11. High Frequency Radar Astronomy With HAARP

    DTIC Science & Technology

    2003-01-01

    High Frequency Radar Astronomy With HAARP Paul Rodriguez Naval Research Laboratory Information Technology Division Washington, DC 20375, USA Edward...a period of several years, the High frequency Active Auroral Research Program ( HAARP ) transmitting array near Gakona, Alaska, has increased in total...high frequency (HF) radar facility used for research purposes. The basic science objective of HAARP is to study nonlinear effects associated with

  12. Post-fire vegetation and fuel development influences fire severity patterns in reburns.

    PubMed

    Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M

    2016-04-01

    In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.

  13. A system to evaluate fire impacts from simulated fire behavior in Mediterranean areas of Central Chile.

    PubMed

    Castillo, Miguel E; Molina, Juan R; Rodríguez Y Silva, Francisco; García-Chevesich, Pablo; Garfias, Roberto

    2017-02-01

    Wildfires constitute the greatest economic disruption to Mediterranean ecosystems, from a socio-economic and ecological perspective (Molina et al., 2014). This study proposes to classify fire intensity levels based on potential fire behavior in different types of Mediterranean vegetation types, using two geographical scales. The study considered >4 thousand wildfires over a period of 25years, identifying fire behavior on each event, based on simulations using "KITRAL", a model developed in Chile in 1993 and currently used in the entire country. Fire intensity values allowed results to be classified into six fire effects categories (levels), each of them with field indicators linking energy values with damage related to burned vegetation and wildland urban interface zone. These indicators also facilitated a preliminary assessment of wildfire impact on different Mediterranean land uses and, are therefore, a useful tool to prioritize future interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Davis Fire: Fire behavior and fire effects analysis

    Treesearch

    LaWen T. Hollingsworth

    2010-01-01

    The Davis Fire presents an interesting example of fire behavior in subalpine fir, partially dead lodgepole pine with multiple age classes, and moist site Douglas-fir vegetation types. This has been summer of moderate temperatures and intermittent moisture that has kept live herbaceous and live woody moistures fairly high and dead fuel moistures at a moderate level....

  15. Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhao, E-mail: zhao.deng@foxmail.com; Waltz, R. E.

    2015-05-15

    This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively testedmore » over a range of relative ion cyclotron frequency 10 < Ω*{sup  }< 100 where Ω*{sup  }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup  }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup  }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup  }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup  }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of

  16. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    USGS Publications Warehouse

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  17. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands.

    PubMed

    Meng, Ran; Dennison, Philip E; D'Antonio, Carla M; Moritz, Max A

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.

  18. Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands

    PubMed Central

    Meng, Ran; Dennison, Philip E.; D’Antonio, Carla M.; Moritz, Max A.

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery. PMID:25337785

  19. Assessing high reliability practices in the wildland fire community

    Treesearch

    Anne E. Black; Kathleen Sutcliffe; Michelle Barton; Deirdre Dether

    2008-01-01

    The Office of Inspector General's 2006 audit of Forest Service fire management operations added yet another voice to the growing chorus calling on the Federal wildland fire community to get more fire on the ground (OIG 2006). The 1995 National Fire Plan and the 2001 Implementation Plan identify the critical role of wildland fire use in reducing hazardous fuels...

  20. Seasonality of Fire Weather Strongly Influences Fire Regimes in South Florida Savanna-Grassland Landscapes

    PubMed Central

    Platt, William J.; Orzell, Steve L.; Slocum, Matthew G.

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993–2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997–2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  1. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    PubMed

    Platt, William J; Orzell, Steve L; Slocum, Matthew G

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993-2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997-2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  2. MODIS NDVI Response Following Fires in Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, G.; Kovacs, K.; Kharuk, V. I.

    2003-01-01

    The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.

  3. The 3000-4000 cal. BP anthropogenic shift in fire regime in the French Pyrenees.

    NASA Astrophysics Data System (ADS)

    Rius, D.; Vannière, B.; Galop, D.; Richard, H.

    2009-04-01

    Fire is a key disturbing agent in a wide range of ecosystems: boreal biome (Pitkanen, 2000), Mediterranean area (Colombaroli et al., 2008) as well as temperate European mountain zones (Tinner et al., 1999). During the Holocene, climate may control fire regime by both ignition and fire spread-favouring conditions (i.e. composition, structure and moisture of biomass) whereas man may change charcoal accumulation patterns through type and intensity of agro-pastoral activities. In western and Mediterranean Europe, single sites charcoal analysis recorded the anthropogenic forcing over fire regime broadly between the mid and the late-Holocene. Turner et al (2008) showed that climate and fire had been disconnected since 1700 cal. BP in Turkey. In central Swiss, Mean Fire Interval decreased by two times 2000 years ago due to increasing human impact (Stahli et al., 2006). In Italy, climate and man have had a combined influence on fire-hazard since ca 4000 cal. BP (Vannière et al., 2008). In the Pyrenees Mountains, the linkage between agro-pastoral practices and fire could be dated back to ca 4000-3000 cal. BP with a clear succession of a clearance phase (high fire frequency) followed by a quite linear trend throughout Middle Ages and Modern times corresponding to a change in fire use (Vanniere et al., 2001; Galop et al., 2002, Rius et al., in press). The quantification of fire regimes parameters such as frequency with robust methodological tools (Inferred Fire Frequency, Mean Fire Interval) is needed to understand and characterise such shifts. Here we present two sequences from the Lourdes basin (col d'Ech peat bog) and from the occidental Pyrenees (Gabarn peat bog), which cover the last 9000 years with high temporal resolution. The main goals of this study were to (1) assess control factors of fire regime throughout the lateglacial and Holocene (climate and/or man) on the local scale, (2) evidence the local/regional significance of these control factors , (3) discuss the

  4. Fire regime, not time-since-fire, affects soil fungal community diversity and composition in temperate grasslands.

    PubMed

    Egidi, Eleonora; McMullan-Fisher, Sapphire; Morgan, John W; May, Tom; Zeeman, Ben; Franks, Ashley E

    2016-09-01

    Frequent burning is commonly undertaken to maintain diversity in temperate grasslands of southern Australia. How burning affects below-ground fungal community diversity remains unknown. We show, using a fungal rDNA metabarcoding approach (Illumina MiSeq), that the fungal community composition was influenced by fire regime (frequency) but not time-since-fire. Fungal community composition was resilient to direct fire effects, most likely because grassland fires transfer little heat to the soil. Differences in the fungal community composition due to fire regime was likely due to associated changes that occur in vegetation with recurrent fire, via the break up of obligate symbiotic relationships. However, fire history only partially explains the observed dissimilarity in composition among the soil samples, suggesting a distinctiveness in composition in each grassland site. The importance of considering changes in soil microbe communities when managing vegetation with fire is highlighted. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The role of fire in deep time ecosystems

    NASA Astrophysics Data System (ADS)

    Scott, Andrew C.; Bond, William J.; Collinson, Margaret E.; Glasspool, Ian J.; Brown, Sarah; Braman, Dennis R.

    2010-05-01

    Fires are very widespread in the world today and fire has also been common in the deep past. Fire is important in structuring contemporary World vegetation maintaining extensive open vegetation where the climate has the potential to support closed forests. The influence of fire on the structure of vegetation and plant traits present in a community vary depending on the fire regime. The fire regime is the characteristic pattern of fire frequency, severity (amount of biomass removed) and spatial extent. Fire regimes depend on the synergy between external physical factors and the properties of vegetation. Changes in the fire regime can be brought about by changes in external conditions such as climate, but also by changes in vegetation such as changes in flammability or productivity that influence the amount of fuel. For example, invasion of grasses into closed wooded habitats has initiated a ‘grass fire cycle' in many parts of the world triggering cascading changes in vegetation structure and composition from forest to open grassland or savanna woodland. The spread of flammable invasive species, especially grasses, has even altered fire regimes of fire-dependent flammable communities causing catastrophic ecosystem changes. We suggest that the spread of angiosperms in the Cretaceous was promoted by the development of novel fire regimes linked to the evolution of novel, highly productive (and flammable) plants. Within the limits of physical constraints on fire occurrence, Cretaceous angiosperms would have initiated a positive feedback analogous to the grass-fire cycle rapidly accumulating fuel that promoted more frequent fires, which maintained open habitats in which rapid growth-traits of angiosperms would be most favoured promoting rapid fuel accumulation etc. Frequent fires would have altered vegetation structure and composition both by increasing mortality rates of fire-damaged trees and reducing recruitment rates of seedlings and saplings where fires recurred

  6. Climatic and human controls on the late Holocene fire history of northern Israel

    NASA Astrophysics Data System (ADS)

    Quintana Krupinski, N. B.; Nishri, A.; Street, J. H.; Paytan, A.

    2011-12-01

    Long-term fire histories provide insight into the effects of climate, ecology and human influence on fire activity. Fire records can be expanded beyond the period of historical record using accumulation rates of large charcoal particles and soot black carbon (BC) in lacustrine sediments: charcoal accumulation peaks indicate local to regional fire events, while increased deposition of BC may document regional-scale burning. To determine which factors exert the greatest control over changes in fire frequency at different times, this study compares late Holocene fire records from Lake Kinneret (the Sea of Galilee), Israel to local and regional records of climate and human activity. We show that fire frequency decreased during the past 3010 years from 3-4 fire events per 400 years between 3010 - 2620 y.b.p. to 0-2 fire events per 400 years from 750 y.b.p. to present. Human modification of the landscape during periods of high population (e.g. forest clearing, agriculture, settlement expansion and industry) appears to have been the greatest contributor to increased fire activity in the semi-arid southern Levant region during the late Holocene, though aridity may also have contributed to higher fire activity. However, during much of the study period, climate and human activity were interrelated, so while human activity may have been the greater control on fire activity, the effect of climate may have been both direct and indirect (through climate-related changes in population), making it sometimes difficult to distinguish the two controls. Projections of increasing aridification of the region combined with a heavy impact on the landscape from a large modern population suggest that increased fire activity may occur in the region in the near future.

  7. Sensitivity to spatial and temporal scale and fire regime inputs in deriving fire regime condition class

    Treesearch

    Linda Tedrow; Wendel J. Hann

    2015-01-01

    The Fire Regime Condition Class (FRCC) is a composite departure measure that compares current vegetation structure and fire regime to historical reference conditions. FRCC is computed as the average of: 1) Vegetation departure (VDEP) and 2) Regime (frequency and severity) departure (RDEP). In addition to the FRCC rating, the Vegetation Condition Class (VCC) and Regime...

  8. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  9. The Subharmonic Behavior and Thresholds of High Frequency Ultrasound Contrast Agents

    NASA Astrophysics Data System (ADS)

    Allen, John

    2016-11-01

    Ultrasound contrast agents are encapsulated micro-bubbles used for diagnostic and therapeutic biomedical ultrasound. The agents oscillate nonlinearly about their equilibrium radii upon sufficient acoustic forcing and produce unique acoustic signatures that allow them to be distinguished from scattering from the surrounding tissue. The subharmonic response occurs below the fundamental and is associated with an acoustic pressure threshold. Subharmonic imaging using ultrasound contrast agents has been established for clinical applications at standard diagnostic frequencies typically below 20 MHz. However, for emerging applications of high frequency applications (above 20 MHz) subharmonic imaging is an area of on-going research. The effects of attenuation from tissue are more significant and the characterization of agents is not as well understood. Due to specificity and control production, polymer agents are useful for high frequency applications. In this study, we highlight novel measurement techniques to measure and characterize the mechanical properties of the shell of polymer contrast agents. The definition of the subharmonic threshold is investigated with respect to mono-frequency and chirp forcing waveforms which have been used to achieve optimal subharmonic content in the backscattered signal. Time frequency analysis using the Empirical Mode Decomposition (EMD) and the Hilbert-Huang transform facilitates a more sensitive and robust methodology for characterization of subharmonic content with respect to non-stationary forcing. A new definition of the subharmonic threshold is proposed with respect to the energy content of the associated adaptive basis decomposition. Additional studies with respect to targeted agent behavior and cardiovascular disease are discussed. NIH, ONR.

  10. High-frequency toneburst-evoked ABR latency-intensity functions in sensorineural hearing-impaired humans.

    PubMed

    Fausti, S A; Olson, D J; Frey, R H; Henry, J A; Schaffer, H I; Phillips, D S

    1995-01-01

    The latency-intensity functions (LIFs) of ABRs elicited by high-frequency (8, 10, 12, and 14 kHz) toneburst stimuli were evaluated in 20 subjects with confirmed 'moderate' high-frequency sensorineural hearing loss. Wave V results from clicks and tonebursts revealed all intra- and intersession data to be reliable (p > 0.05). Linear regression curves were highly significant (p < or = 0.0001), indicating linear relationships for all stimuli analyzed. Comparisons between the linear regression curves from a previously reported normal-hearing subject group and this sensorineural hearing-impaired group showed no significant differences. This study demonstrated that tonebursts at 8, 10, and 12 kHz evoked ABRs which decreased in latency as a function of increasing intensity and that these LIFs were consistent and orderly (14 kHz was not determinable). These results will contribute information to facilitate the establishment of change criteria used to predict change in hearing during treatment with ototoxic medications.

  11. Predicting fire impact from plant traits?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Ottink, Roos; Zylstra, Philip; Cornelissen, Hans; Fernandes, Paulo

    2017-04-01

    Fire can considerably increase the landscape's vulnerability to flooding and erosion, which is in part caused by fire-induced soil heating, vegetation removal and resulting hydrological changes. While the magnitude of these fire effects and ecosystem responses is frequently studied, there is still little attention for the fundamental mechanisms that drive these changes. One example is on the effect of plants: while it is known that plants can alter the fire environment, there is a major knowledge gap regarding the fundamental mechanisms by which vegetation mediates fire impact on soil and hydrology. Essential to identifying these mechanisms is consideration of the effects of vegetation on flammability and fire behaviour, which are studied both in ecology and traditional fire science. Here we discuss the challenges of integrating these very distinct fields and the potential benefits of this integration for improved understanding of fire effects on soil and hydrology. We furthermore present results of a study in which we assessed the spatial drivers controlling the proportion of live and dead fuel in a natural park in northern Portugal, and evaluated the impacts on the spatial variability of fire behaviour and potential soil heating using BehavePlus modeling. Better understanding of the role of (spatial variability in) plant traits on fire impact can facilitate the development of risk maps to ultimately help predict and mitigate fire risk and impact across landscapes.

  12. The relative immunity of high-frequency transposed stimuli to low-frequency binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2004-05-01

    We have recently demonstrated that high-frequency transposed stimuli, having envelopes designed to provide high-frequency channels with information similar to that normally available in only low-frequency channels, yield threshold-ITDs and extents of laterality comparable to those obtained with conventional low-frequency stimuli. This enhanced potency of ITDs conveyed by high-frequency transposed stimuli, as compared to conventional high-frequency stimuli, suggested to us that ITDs conveyed by transposed stimuli might be relatively immune to the presence of low-frequency binaural interferers. To investigate this issue, threshold-ITDs and extents of laterality were measured with a variety of conventional and transposed targets centered at 4 kHz. The targets were presented either in the presence or absence of a simultaneously gated diotic noise centered at 500 Hz, the interferer. As expected, the presence of the low-frequency interferer resulted in substantially elevated threshold-ITDs and reduced extents of laterality for the conventional high-frequency stimuli. In contrast, these interference effects were either greatly attenuated or absent for ITDs conveyed by the high-frequency transposed targets. The results will be discussed in the context of current models of binaural interference. [Work supported by NIH DC 04147, NIH DC04073, NIH DC 002304.

  13. Comparing different approaches for an effective monitoring of forest fires based on MSG/SEVIRI images

    NASA Astrophysics Data System (ADS)

    Laneve, Giovanni

    2010-05-01

    The remote sensing sensors on board of geostationary satellite, as consequence of the high frequency of the observations, allow, in principle, the monitoring of these phenomena characterized by a fast dynamics. The only condition for is that the events to be monitored should be enough strong to be recognizable notwithstanding the low spatial resolution of the present geostationary systems (MSG/SEVIRI, GOES Imager, MTSAT). Apart from meteorological phenomena other events, like those associated with forest fires and/or volcanic eruption, are characterized by a very fast dynamics. These events are also associated with a very strong signal that make them observable by geostationary satellite in a quasi-continuous way. However, in order to make possible the detection of small fires by using the low resolution multi-spectral imagery provided by geostationary sensor like SEVIRI (3x3 km2 at the equator) new algorithms, capable to exploit it high observation frequency, has been developed. This paper is devoted to show the results obtained by comparing some of these algorithms trying to highlight their advantages and limits. The algorithms herein considered are these developed by CRPSM (SFIDE®), UNIBAS/CNR (RST-FIRES) and ESA-ESRIN (MDIFRM). In general, the new approaches proposed by each one of them are capable to promptly detect small fires making possible an operational utilization of the satellite based fire detection system in the fire fighting phases. In fact, these algorithms are quite different from these introduced in the past and specifically devoted to fire detection using low resolution multi-spectral imagery on LEO (Low Earth Orbit) satellite. Thanks to these differences they are capable of detecting sub-hectare (0.2 ha) forest fires providing an useful instrument for monitoring quasi-continuously forest fires, estimating the FRP (Fire Radiative Power), evaluating the burned biomass, retrieving the emission in the atmosphere.

  14. On the use of high-frequency SCADA data for improved wind turbine performance monitoring

    NASA Astrophysics Data System (ADS)

    Gonzalez, E.; Stephen, B.; Infield, D.; Melero, J. J.

    2017-11-01

    SCADA-based condition monitoring of wind turbines facilitates the move from costly corrective repairs towards more proactive maintenance strategies. In this work, we advocate the use of high-frequency SCADA data and quantile regression to build a cost effective performance monitoring tool. The benefits of the approach are demonstrated through the comparison between state-of-the-art deterministic power curve modelling techniques and the suggested probabilistic model. Detection capabilities are compared for low and high-frequency SCADA data, providing evidence for monitoring at higher resolutions. Operational data from healthy and faulty turbines are used to provide a practical example of usage with the proposed tool, effectively achieving the detection of an incipient gearbox malfunction at a time horizon of more than one month prior to the actual occurrence of the failure.

  15. A grass-fire cycle eliminates an obligate-seeding tree in a tropical savanna.

    PubMed

    Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P

    2014-11-01

    A grass-fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha(-1)). Experimental fires, with fuel loads >10 t·ha(-1), typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota.

  16. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna

    PubMed Central

    Bowman, David M J S; MacDermott, Harry J; Nichols, Scott C; Murphy, Brett P

    2014-01-01

    A grass–fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha−1). Experimental fires, with fuel loads >10 t·ha−1, typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota. PMID:25505543

  17. FireBird - a small satellite fire monitoring mission: Status and first results

    NASA Astrophysics Data System (ADS)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  18. High Background Ozone Events in the Houston-Galveston-Brazoria Area: Effects from Central American Fires

    NASA Astrophysics Data System (ADS)

    Lei, R.; Wang, S. C.; Yang, S.; Wang, Y.; Talbot, R. W.

    2016-12-01

    The policy-relevant background (PRB) ozone is defined by the U.S. Environmental Protection Agency (EPA) as the surface ozone mixing ratio that would occur over the U.S. without North American anthropogenic emission influences. PRB ozone over the Houston-Galveston-Brazoria (HGB) area may be affected by foreign sources due to its unique geographical location and meteorology. Our monitoring data revealed several high ozone events over HGB area which might be caused by Central American fire during the years of 2013-2015. To qualify the effects from Central American fire, we estimated the US, Central American and worldwide background over HGB area during those events using the GEOS-Chem global 3-D model. Anomalies in fire emissions leading to high PRB ozone were mapped through spatiotemporal sampling of the Fire INventory from NCAR (FINN) along background trajectories of air masses affecting the HGB area prior to and during the selected high PRB ozone days. Daily HGB PRB ozone estimated by researchers at the Texas Commission on Environmental Quality (TCEQ) was used as the data source to validate model results. Results showed that contribution of emission from Central American to HGB PRB ozone could be tripled during fire events compared to non-impacted fire days. Besides fire emissions from Central American, different types of meteorological events (e.g., cold fronts and thunderstorms) and high local photochemical production (e.g., heat waves and stagnation) are also found associated with high PRB ozone in HGB area during these events. Thus we imply that synthetic contribution from foreign sources and local meteorology to HGB PRB ozone warrants further investigated.

  19. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in

  20. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed Central

    Baker, William L.

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984–2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984–2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046–2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire

  1. Multi-trophic resilience of boreal lake ecosystems to forest fires.

    PubMed

    Lewis, Tyler L; Lindberg, Mark S; Schmutz, Joel A; Bertram, Mark R

    2014-05-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll a levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  2. Multi-trophic resilience of boreal lake ecosystems to forest fires

    USGS Publications Warehouse

    Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Bertram, M.R.

    2014-01-01

    Fires are the major natural disturbance in the boreal forest, and their frequency and intensity will likely increase as the climate warms. Terrestrial nutrients released by fires may be transported to boreal lakes, stimulating increased primary productivity, which may radiate through multiple trophic levels. Using a before-after-control-impact (BACI) design, with pre- and postfire data from burned and unburned areas, we examined effects of a natural fire across several trophic levels of boreal lakes, from nutrient and chlorophyll levels, to macroinvertebrates, to waterbirds. Concentrations of total nitrogen and phosphorus were not affected by the fire. Chlorophyll levels were also unaffected, likely reflecting the stable nutrient concentrations. For aquatic invertebrates, we found that densities of three functional feeding groups did not respond to the fire (filterers, gatherers, scrapers), while two groups increased (shredders, predators). Amphipods accounted for 98% of shredder numbers, and we hypothesize that fire-mediated habitat changes may have favored their generalist feeding and habitat ecology. This increase in amphipods may, in turn, have driven increased predator densities, as amphipods were the most numerous invertebrate in our lakes and are commonly taken as prey. Finally, abundance of waterbird young, which feed primarily on aquatic invertebrates, was not affected by the fire. Overall, ecosystems of our study lakes were largely resilient to forest fires, likely due to their high initial nutrient concentrations and small catchment sizes. Moreover, this resilience spanned multiple trophic levels, a significant result for ecologically similar boreal regions, especially given the high potential for increased fires with future climate change.

  3. 12,000-Years of fire regime drivers in the lowlands of Transylvania (Central-Eastern Europe): a data-model approach

    NASA Astrophysics Data System (ADS)

    Feurdean, A.; Liakka, J.; Vannière, B.; Marinova, E.; Hutchinson, S. M.; Mosburgger, V.; Hickler, T.

    2013-12-01

    The usefulness of sedimentary charcoal records to document centennial to millennial scale trends in aspects of fire regimes (frequency, severity) is widely acknowledged, yet the long-term variability in these regimes is poorly understood. Here, we use a high-resolution, multi-proxy analysis of a lacustrine sequence located in the lowlands of Transylvania (NW Romania), alongside global climate simulations in order to disentangle the drivers of fire regimes in this dry climatic region of Central-Eastern Europe. Periods of greater fire activity and frequency occurred between 10,700 and 7100 cal yr BP (mean Fire Interval = mFI 112 yr), and between 3300 and 700 cal yr BP (mFI 150 yr), whereas intervals of lower fire activity were recorded between 12,000 and 10,700 cal yr BP (mFI 217 yr), 7100 and 3300 cal yr BP (mFI 317 yr), and over last 700 years (no fire events detected). We found good correlations between simulated early summer (June, July) soil moisture content and near-surface air temperature with fire activity, particularly for the early to mid Holocene. A climate-fire relationship is further supported by local hydrological changes, i.e., lake level and runoff fluctuations. Fuel limitation, as a result of arid and strongly seasonal climatic conditions, led to low fire activity before 10,700 cal yr BP. However, fires were most frequent during climatically drier phases for the remaining, fuel-sufficient, part of the Holocene. Our results also suggest that the occurrence of more frequent fires in the early Holocene has kept woodlands open, promoted grassland abundance and sustained a more flammable ecosystem (mFI < 150 years) whereas the decline in fire risk under cooler and wetter climate conditions (mFI = 317 years) favoured woodland development. From 3300 cal yr BP, human impacts clearly were partly responsible for changes in fire activity, first increasing fire frequency and severity in periods with fire-favourable climatic conditions (halving the mFI from 300

  4. Fire safety

    Treesearch

    Robert H. White; Mark A. Dietenberger

    1999-01-01

    Fire safety is an important concern in all types of construction. The high level of national concern for fire safety is reflected in limitations and design requirements in building codes. These code requirements are discussed in the context of fire safety design and evaluation in the initial section of this chapter. Since basic data on fire behavior of wood products...

  5. Fire, Fuel Composition and Resilience Threshold in Subalpine Ecosystem

    PubMed Central

    Blarquez, Olivier; Carcaillet, Christopher

    2010-01-01

    Background Forecasting the effects of global changes on high altitude ecosystems requires an understanding of the long-term relationships between biota and forcing factors to identify resilience thresholds. Fire is a crucial forcing factor: both fuel build-up from land-abandonment in European mountains, and more droughts linked to global warming are likely to increase fire risks. Methods To assess the vegetation response to fire on a millennium time-scale, we analyzed evidence of stand-to-local vegetation dynamics derived from sedimentary plant macroremains from two subalpine lakes. Paleobotanical reconstructions at high temporal resolution, together with a fire frequency reconstruction inferred from sedimentary charcoal, were analyzed by Superposed Epoch Analysis to model plant behavior before, during and after fire events. Principal Findings We show that fuel build-up from arolla pine (Pinus cembra) always precedes fires, which is immediately followed by a rapid increase of birch (Betula sp.), then by ericaceous species after 25–75 years, and by herbs after 50–100 years. European larch (Larix decidua), which is the natural co-dominant species of subalpine forests with Pinus cembra, is not sensitive to fire, while the abundance of Pinus cembra is altered within a 150-year period after fires. A long-term trend in vegetation dynamics is apparent, wherein species that abound later in succession are the functional drivers, loading the environment with fuel for fires. This system can only be functional if fires are mainly driven by external factors (e.g. climate), with the mean interval between fires being longer than the minimum time required to reach the late successional stage, here 150 years. Conclusion Current global warming conditions which increase drought occurrences, combined with the abandonment of land in European mountain areas, creates ideal ecological conditions for the ignition and the spread of fire. A fire return interval of less than 150 years

  6. Effects of dormant and growing season burning on surface fuels and potential fire behavior in northern Florida longleaf pine (Pinus palustris) flatwoods

    Treesearch

    James B. Cronan; Clinton S. Wright; Maria Petrova

    2015-01-01

    Prescribed fire is widely used to manage fuels in high-frequency, low-severity fire regimes including pine flatwoods of the southeastern USA where prescribed burning during the growing season (the frost-free period during the calendar year) has become more common in recent decades. Growing season prescribed fires address ecological management objectives that focus on...

  7. Investigation of rare and low-frequency variants using high-throughput sequencing with pooled DNA samples

    PubMed Central

    Wang, Jingwen; Skoog, Tiina; Einarsdottir, Elisabet; Kaartokallio, Tea; Laivuori, Hannele; Grauers, Anna; Gerdhem, Paul; Hytönen, Marjo; Lohi, Hannes; Kere, Juha; Jiao, Hong

    2016-01-01

    High-throughput sequencing using pooled DNA samples can facilitate genome-wide studies on rare and low-frequency variants in a large population. Some major questions concerning the pooling sequencing strategy are whether rare and low-frequency variants can be detected reliably, and whether estimated minor allele frequencies (MAFs) can represent the actual values obtained from individually genotyped samples. In this study, we evaluated MAF estimates using three variant detection tools with two sets of pooled whole exome sequencing (WES) and one set of pooled whole genome sequencing (WGS) data. Both GATK and Freebayes displayed high sensitivity, specificity and accuracy when detecting rare or low-frequency variants. For the WGS study, 56% of the low-frequency variants in Illumina array have identical MAFs and 26% have one allele difference between sequencing and individual genotyping data. The MAF estimates from WGS correlated well (r = 0.94) with those from Illumina arrays. The MAFs from the pooled WES data also showed high concordance (r = 0.88) with those from the individual genotyping data. In conclusion, the MAFs estimated from pooled DNA sequencing data reflect the MAFs in individually genotyped samples well. The pooling strategy can thus be a rapid and cost-effective approach for the initial screening in large-scale association studies. PMID:27633116

  8. Dynamics of excitatory synaptic components in sustained firing at low rates.

    PubMed

    Wyart, Claire; Cocco, Simona; Bourdieu, Laurent; Léger, Jean-Francois; Herr, Catherine; Chatenay, Didier

    2005-06-01

    Sustained firing is necessary for the persistent activity associated with working memory. The relative contributions of the reverberation of excitation and of the temporal dynamics of the excitatory postsynaptic potential (EPSP) to the maintenance of activity are difficult to evaluate in classical preparations. We used simplified models of synchronous excitatory networks, hippocampal autapses and pairs, to study the synaptic mechanisms underlying firing at low rates. Calcium imaging and cell attached recordings showed that these neurons spontaneously fired bursts of action potentials that lasted for seconds over a wide range of frequencies. In 2-wk-old cells, the median firing frequency was low (11 +/- 8.8 Hz), whereas in 3- to 4-wk-old cells, it decreased to a very low value (2 +/- 1.3 Hz). In both cases, we have shown that the slowest synaptic component supported firing. In 2-wk-old autapses, antagonists of N-methyl-d-aspartate receptors (NMDARs) induced rare isolated spikes showing that the NMDA component of the EPSP was essential for bursts at low frequency. In 3- to 4-wk-old neurons, the very low frequency firing was maintained without the NMDAR activation. However EGTA-AM or alpha-methyl-4-carboxyphenylglycine (MCPG) removed the very slow depolarizing component of the EPSP and prevented the sustained firing at very low rate. A metabotropic glutamate receptor (mGluR)-activated calcium sensitive conductance is therefore responsible for a very slow synaptic component associated with firing at very low rate. In addition, our observations suggested that the asynchronous release of glutamate might participate also in the recurring bursting.

  9. Average stand age from forest inventory plots does not describe historical fire regimes in ponderosa pine and mixed-conifer forests of western North America

    Treesearch

    Jens T. Stevens; Hugh D. Safford; Malcolm P. North; Jeremy S. Fried; Andrew N. Gray; Peter M. Brown; Christopher R. Dolanc; Solomon Z. Dobrowski; Donald A. Falk; Calvin A. Farris; Jerry F. Franklin; Peter Z. Fulé; R. Keala Hagmann; Eric E. Knapp; Jay D. Miller; Douglas F. Smith; Thomas W. Swetnam; Alan H. Taylor; Julia A. Jones

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests...

  10. Modeling fuels and fire effects in 3D: Model description and applications

    Treesearch

    Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn

    2016-01-01

    Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...

  11. Response of birds to fire in the American southwest

    Treesearch

    Carl E. Bock; William M. Block

    2005-01-01

    Fire was a common prehistoric disturbance in most southwestern grasslands, oak savannas, and coniferous forests, but not in Sonoran and Mojave desertscrub, or in riparian ecosystems. Prescribed burning should be applied, but under experimental conditions that facilitate studying its impacts on birds and other components of biodiversity. Fire plays a critical role in...

  12. Fire impacts on European Boreal soils: A review

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Oliva, Marc; Cerda, Artemi

    2016-04-01

    Fire is an important natural disturbance in boreal ecosystems, fundamental to understand plant distribution (Ryan, 2002; Wallenius et al., 2004; Granstrom, 2001). Nevertheless, nowadays the intense and successful, fire suppression measures are changing their ecological role (Pereira et al., 2013a,b). This is consequence of the lack of understanding of stakeholders and decision makers about the role of the fire in the ecosystems (Mierasukas and Pereira, 2013; Pereira et al., 2016). This fire suppression measures are increasing the amount of fuel accumulation and the risk of severe wildfires, which can increase of frequency and severity in a context of climate change. Fire is a good tool for landscape management and restoration of degraded ecosystems (Toivanen and Kotiaho, 2007). Fire is considered a soil forming factor (Certini, 2014) and in boreal environments it has been observed that low fire severities, do not change importantly soil properties, mean fire severities induce positive impacts on soil, since add an important amounts of nutrients into soil profile and high severity fires had negative impacts due to the high consumption of organic matter (Vanha-Majamaa et al., 2007; Pereira et al., 2014). References Certini, G., 2014. Fire as a soil-forming factor. Ambio, 43, 191-195 Granstrom A. 2001. Fire management for biodiversity in the European Boreal forest. Scandinavian Journal of Forest Research 3: 62-69. Mierauskas, P., Pereira, P. (2013) Stakeholders perception about prescribed fire use in Lithuania. First results, Flamma, 4(3), 157-161. Pereira, P., Cerdà, A., Jordán, A., Bolutiene, V., Úbeda, X., Pranskevicius, M., Mataix-Solera, J. (2013) Spatio-temporal vegetation recuperation after a grassland fire in Lithuania, Procedia Environmental Sciences, 19:856-864 Pereira, P., Mierauskas, P., Ubeda, X., Mataix-Solera, J.,Cerda, A. (2012) Fire in protected areas - the effect of the protection and importance of fire management, Environmental Research

  13. High-frequency - Spinal Cord Stimulation.

    PubMed

    Rapcan, R; Mlaka, J; Venglarcik, M; Vinklerova, V; Gajdos, M; Illes, R

    2015-01-01

    Our clinical experience with high - frequency SCS for FBSS in patients with predominant low back pain is presented. After a trial period, 100 % (21 out of 21) of patients with FBSS with predominant low back pain reported a significant improvement in visual analog scale (VAS) pain score and underwent permanent implantation of the high - frequency SCS system. SCS trials lasted 7-14 days (median 9 days). SCS leads were mostly positioned at the T8-10 or T8-12 vertebral levels . We used both single and dual lead placement. VAS, patient satisfaction, patient performance status, opioid consumption and complication rate were assessed for the period of 12 months. The mean VAS score before implantation (8.7) compared to VAS 12 months after implantation (4.0) was significantly lower (CI95[3.9-5.4], p < 0.001). There was a significant improvement in performance status when comparing PS before implantation (3.0) and 12 months after implantation (1.8) (CI95[0.9-1.6], p < 0.001). The mean patient satisfaction scores (PSS) did not differ throughout the whole one year follow-up period. Our group of 21 patients with implanted high - frequency SCS systems reported significant low back pain and leg pain relief within the period of 12 months as well as significant improvement in their performance status. We had a special subgroup of 5 patients with regular change of frequencies between high frequency and conventional frequency (with paresthesia) also with significant leg and low back pain relief (Tab. 2, Fig. 1, Ref. 8). Text in PDF www.elis.sk.

  14. Effects of fire on fish populations: Landscape perspectives on persistance of native fishes and nonnative fish invasions

    USGS Publications Warehouse

    Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.

    2003-01-01

    Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but

  15. Cortical firing and sleep homeostasis.

    PubMed

    Vyazovskiy, Vladyslav V; Olcese, Umberto; Lazimy, Yaniv M; Faraguna, Ugo; Esser, Steve K; Williams, Justin C; Cirelli, Chiara; Tononi, Giulio

    2009-09-24

    The need to sleep grows with the duration of wakefulness and dissipates with time spent asleep, a process called sleep homeostasis. What are the consequences of staying awake on brain cells, and why is sleep needed? Surprisingly, we do not know whether the firing of cortical neurons is affected by how long an animal has been awake or asleep. Here, we found that after sustained wakefulness cortical neurons fire at higher frequencies in all behavioral states. During early NREM sleep after sustained wakefulness, periods of population activity (ON) are short, frequent, and associated with synchronous firing, while periods of neuronal silence are long and frequent. After sustained sleep, firing rates and synchrony decrease, while the duration of ON periods increases. Changes in firing patterns in NREM sleep correlate with changes in slow-wave activity, a marker of sleep homeostasis. Thus, the systematic increase of firing during wakefulness is counterbalanced by staying asleep.

  16. Suomi NPP VIIRS active fire product status

    NASA Astrophysics Data System (ADS)

    Ellicott, E. A.; Csiszar, I. A.; Schroeder, W.; Giglio, L.; Wind, B.; Justice, C. O.

    2012-12-01

    We provide an overview of the evaluation and development of the Active Fires product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (SNPP) satellite during the first year of on-orbit data. Results from the initial evaluation of the standard SNPP Active Fires product, generated by the SNPP Interface Data Processing System (IDPS), supported the stabilization of the VIIRS Sensor Data Record (SDR) product. This activity focused in particular on the processing of the dual-gain 4 micron VIIRS M13 radiometric measurements into 750m aggregated data, which are fundamental for active fire detection. Following the VIIRS SDR product's Beta maturity status in April 2012, correlative analysis between VIIRS and near-simultaneous fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System Aqua satellite confirmed the expected relative detection rates driven primarily by sensor differences. The VIIRS Active Fires Product Development and Validation Team also developed a science code that is based on the latest MODIS Collection 6 algorithm and provides a full spatially explicit fire mask to replace the sparse array output of fire locations from a MODIS Collection 4 equivalent algorithm in the current IDPS product. The Algorithm Development Library (ADL) was used to support the planning for the transition of the science code into IDPS operations in the future. Product evaluation and user outreach was facilitated by a product website that provided end user access to fire data in user-friendly format over North America as well as examples of VIIRS-MODIS comparisons. The VIIRS fire team also developed an experimental product based on 375m VIIRS Imagery band measurements and provided high quality imagery of major fire events in US. By August 2012 the IDPS product achieved Beta maturity, with some known and documented shortfalls related to the processing of

  17. Fire and climate variation in western North America from fire-scar and tree-ring networks

    Treesearch

    Donald A. Falk; E. K. Heyerdahl; P. M. Brown; T. W. Swetnam; E. K. Sutherland; Z. Gedalof; L. Yocom; T. J. Brown

    2010-01-01

    Fire regimes (i.e., the pattern, frequency and intensity of fire in a region) reflect a complex interplay of bottom-up and top-down controls (Lertzman et al., 1998; Mc Kenzie et al., in press). Bottom-up controls include local variations in topographic, fuel and weather factors at the time of a burn (e.g., fuel moisture and continuity, ignition density and local wind...

  18. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  19. Characterizing Predictability of Fire Occurrence in Tropical Forests and Grasslands: The Case of Puerto Rico

    Treesearch

    Ana Carolina Monmany; William Gould; Maria Jose Andrade-Nunez; Grizelle Gonzalez; Maya Quinones

    2017-01-01

    Global estimates of fire frequency indicate that over 70% of active fires occur in the tropics, and the size and frequency of fires are increasing every year. The majority of fires in the tropics are an unintended consequence of current land-use practices that promotes the establishment of grass and shrubland communities, which are more flammable and more adapted to...

  20. A NASA-NOAA Update on Global Fire Monitoring Capabilities for Studying Fire-Climate Interactions: Focus on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Gutman, G.; Csiszar, I.

    2012-04-01

    The global, long-term effects of fires are not well understood and we are learning more every year about its global impacts and potential feedbacks to climate change. The frequency, intensity, severity, and emissions of fires may be changing as a result of climate warming as has been manifested by the observations in northern Eurasia. The climate-fire interaction may produce important societal and environmental impacts in the long run. NASA and NOAA have been developing long-term fire datasets and improving systems to monitor active fires, study fire severity, fire growth, emissions into the atmosphere, and fire effects on carbon stocks. Almost every year there are regions in the world that experience particularly severe fires. For example, less than two years ago the European part of Russia was the focus of attention due to the anomalous heat and dry wave with record high temperatures that caused wildfires rage for weeks and that led to thousands of deaths. The fires also have spread to agricultural land and damaged crops, causing sharp increases of global wheat commodity prices. Remote sensing observations are widely used to monitor fire occurrence, fire spread; smoke dispersion, and atmospheric pollutant levels. In the context of climate warming and acute interest to large-scale emissions from various land-cover disturbances studying spatial-temporal dynamics of forest fire activity is critical. NASA supports several activities related to fires and the Earth system. These include GOFC-GOLD Fire Project Office at University of Maryland and the Rapid Response System for global fire monitoring. NASA has funded many research projects on biomass burning, which cover various geographic regions of the world and analyze impacts of fires on atmospheric carbon in support of REDD initiative, as well as on atmospheric pollution with smoke. Monitoring active fires, studying their severity and burned areas, and estimating fire-induced atmospheric emissions has been the

  1. Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.

    PubMed

    Harvey, Jill E; Smith, Dan J; Veblen, Thomas T

    2017-09-01

    This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management

  2. Masking of low-frequency signals by high-frequency, high-level narrow bands of noisea

    PubMed Central

    Patra, Harisadhan; Roup, Christina M.; Feth, Lawrence L.

    2011-01-01

    Low-frequency masking by intense high-frequency noise bands, referred to as remote masking (RM), was the first evidence to challenge energy-detection models of signal detection. Its underlying mechanisms remain unknown. RM was measured in five normal-hearing young-adults at 250, 350, 500, and 700 Hz using equal-power, spectrally matched random-phase noise (RPN) and low-noise noise (LNN) narrowband maskers. RM was also measured using equal-power, two-tone complex (TC2) and eight-tone complex (TC8). Maskers were centered at 3000 Hz with one or two equivalent rectangular bandwidths (ERBs). Masker levels varied from 80 to 95 dB sound pressure level in 5 dB steps. LNN produced negligible masking for all conditions. An increase in bandwidth in RPN yielded greater masking over a wider frequency region. Masking for TC2 was limited to 350 and 700 Hz for one ERB but shifted to only 700 Hz for two ERBs. A spread of masking to 500 and 700 Hz was observed for TC8 when the bandwidth was increased from one to two ERBs. Results suggest that high-frequency noise bands at high levels could generate significant low-frequency masking. It is possible that listeners experience significant RM due to the amplification of various competing noises that might have significant implications for speech perception in noise. PMID:21361445

  3. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    PubMed

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  4. Iron in the Fire: Searching for Fire's Magnetic Fingerprint using Controlled Heating Experiments, High-Resolution FORCs, IRM Coercivity Spectra, and Low-Temperature Remanence Experiments

    NASA Astrophysics Data System (ADS)

    Lippert, P. C.; Reiners, P. W.

    2014-12-01

    Evidence for recent climate-wildfire linkages underscores the need for better understanding of relationships between wildfire and major climate shifts in Earth history, which in turn offers the potential for prognoses for wildfire and human adaptations to it. In particular, what are the links between seasonality and wildfire frequency and severity, and what are the feedbacks between wildfire, landscape evolution, and biogeochemical cycles, particularly the carbon and iron cycles? A key first step in addressing these questions is recovering well-described wildfire records from a variety of paleolandscapes and paleoclimate regimes. Although charcoal and organic biomarkers are commonly used indicators of fire, taphonomic processes and time-consuming analytical preparations often preclude their routine use in some environments and in high-stratigraphic resolution paleowildfire surveying. The phenomenological relationship between fire and magnetic susceptibility can make it a useful surveying tool, but increased magnetic susceptibility in sediments is not unique to fire, and thus limits its diagnostic power. Here we utilize component-specific rock magnetic methods and analytical techniques to identify the rock magnetic fingerprint of wildfire. We use a custom-designed air furnace, a series of iron-free laboratory soils, natural saprolites and soils, and fuels from Arizona Ponderosa pine forests and grasslands to simulate wildfire in a controlled and monitored environment. Soil-ash residues and soil and fuel controls were then characterized using First Order Reversal Curve (FORC) patterns, DC backfield IRM coercivity spectra, low-temperature SIRM demagnetization behavior, and low-temperature cycling of room-temperature SIRM behavior. We will complement these magnetic analyses with high-resolution TEM of magnetic extracts. Here we summarize the systematic changes to sediment magnetism as pyrolitized organic matter is incorporated into artificial and natural soils. These

  5. Reconstruction of fire history of the Yukon-Kuskokwim Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Sae-lim, J.; Mann, P. J.; Russell, J. M.; Natali, S.; Vachula, R. S.; Schade, J. D.; Holmes, R. M.

    2017-12-01

    Wildfire is an important disturbance in Arctic ecosystems and can cause abrupt perturbations in global carbon cycling and atmospheric chemistry. Over the next few decades, arctic fire frequency, intensity and extent is projected to increase due to anthropogenic climate change, as regional air temperatures are increasing at more than twice the global average. In order to more accurately predict the anthropogenic impacts of climate change on tundra fire regimes, it is critical to have detailed knowledge of the natural frequency and extent of past wildfires. However, reliable historical records only extend back a few hundred years, whereas climatic shifts have affected fire regimes for thousands of years. In this work we analyzed a lake sediment core collected from the Yukon-Kuskokwim (YK) Delta, Alaska, a region that has recently experienced fire and is predicted to see increasing fire frequency in the near future. Our primary lake site is situated adjacent to recent burned areas, providing a `calibration' point and also attesting to the sensitivity of the sites. We used charcoal counts alongside geochemical measurements (C:N, 13C, 15N, 210Pb, X-ray fluorescence analyses of elemental chemistry) to reconstruct past fire history and ecosystem responses during the late Holocene. Average C (%C) and N concentrations (%N) in the core were 8.10 ±0.74% and 0.48 ±0.05%, resulting in C:N ratios of 16.80 ±0.74. The values are generally stable, with no obvious trend in C, N or C:N with depth; however, fluctuations in sediment composition in other nearby lake sediment cores possibly suggests shifts in lake conditions (oxic, anoxic) over time that might result from paleofires. This study provides a baseline for estimated fire return intervals in the YK Delta that will support more accurate projections of tundra fire frequencies under a changing climate.

  6. High frequency magnetostrictive transducers for waveguide applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua Earl; Taylor, Steven Cheney; Rempe, Joy Lynn

    A high frequency magnetostrictive transducer includes a magnetostrictive rod or wire inserted co-axially into a driving coil, wherein the driving coil includes a coil arrangement with a plurality of small coil segments along the magnetostrictive rod or wire; wherein frequency operation of the high frequency magnetostrictive transducer is controlled by a length of the small coil segments and a material type of the magnetostrictive rod or wire. This design of the high frequency magnetostrictive transducer retains the beneficial aspects of the magnetostrictive design, while reducing its primary drawback, lower frequency operation.

  7. Synergistic effects of fire and elephants on arboreal animals in an African savanna.

    PubMed

    Pringle, Robert M; Kimuyu, Duncan M; Sensenig, Ryan L; Palmer, Todd M; Riginos, Corinna; Veblen, Kari E; Young, Truman P

    2015-11-01

    findings confirm the importance of fire × elephant interactions in structuring arboreal wildlife populations. Where habitat modification by megaherbivores facilitates co-occurring species, fire may amplify these effects in the short term by increasing the frequency or intensity of herbivory, leading to synergy. In the longer term, tree mortality due to both top kill by fire and toppling by large herbivores may reduce overall microhabitat availability, eliminating the synergy. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  8. Cross-Language Distributions of High Frequency and Phonetically Similar Cognates

    PubMed Central

    Schepens, Job; Dijkstra, Ton; Grootjen, Franc; van Heuven, Walter J. B.

    2013-01-01

    The coinciding form and meaning similarity of cognates, e.g. ‘flamme’ (French), ‘Flamme’ (German), ‘vlam’ (Dutch), meaning ‘flame’ in English, facilitates learning of additional languages. The cross-language frequency and similarity distributions of cognates vary according to evolutionary change and language contact. We compare frequency and orthographic (O), phonetic (P), and semantic similarity of cognates, automatically identified in semi-complete lexicons of six widely spoken languages. Comparisons of P and O similarity reveal inconsistent mappings in language pairs with deep orthographies. The frequency distributions show that cognate frequency is reduced in less closely related language pairs as compared to more closely related languages (e.g., French-English vs. German-English). These frequency and similarity patterns may support a better understanding of cognate processing in natural and experimental settings. The automatically identified cognates are available in the supplementary materials, including the frequency and similarity measurements. PMID:23675449

  9. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liqiu, Wei, E-mail: weiliqiu@gmail.com, E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  10. Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire

    NASA Astrophysics Data System (ADS)

    Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.

    2017-12-01

    Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.

  11. Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice.

    PubMed

    Lee, Sukchan; Ahmed, Touqeer; Lee, Soojung; Kim, Huisu; Choi, Sukwoo; Kim, Duk-Soo; Kim, Sang Jeong; Cho, Jeiwon; Shin, Hee-Sup

    2011-12-25

    The mediodorsal thalamic nucleus has been implicated in the control of memory processes. However, the underlying neural mechanism remains unclear. Here we provide evidence for bidirectional modulation of fear extinction by the mediodorsal thalamic nucleus. Mice with a knockout or mediodorsal thalamic nucleus-specific knockdown of phospholipase C β4 exhibited impaired fear extinction. Mutant mediodorsal thalamic nucleus neurons in slices showed enhanced burst firing accompanied by increased T-type Ca(2+) currents; blocking of T channels in vivo rescued the fear extinction. Tetrode recordings in freely moving mice revealed that, during extinction, the single-spike (tonic) frequency of mediodorsal thalamic nucleus neurons increased in wild-type mice, but was static in mutant mice. Furthermore, tonic-evoking microstimulations of the mediodorsal thalamic nucleus, contemporaneous with the extinction tones, rescued fear extinction in mutant mice and facilitated it in wild-type mice. In contrast, burst-evoking microstimulation suppressed extinction in wild-type mice, mimicking the mutation. These results suggest that the firing mode of the mediodorsal thalamic nucleus is critical for the modulation of fear extinction.

  12. Simulating the influences of various fire regimes on caribou winter habitat

    USGS Publications Warehouse

    Rupp, T. Scott; Olson, Mark; Adams, Layne G.; Dale, Bruce W.; Joly, Kyle; Henkelman, Jonathan; Collins, William B.; Starfield, Anthony M.

    2006-01-01

    Caribou are an integral component of high‐latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long‐term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5‐fold increase in the area burned annually and an associated 41% decrease in the amount of spruce–lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.

  13. A fire history derived from Pinus resinosa Ait. for the Islands of Eastern Lac La Croix, Minnesota, USA.

    PubMed

    Johnson, Lane B; Kipfmueller, Kurt F

    2016-06-01

    We reconstructed fire occurrence near a fur-trade era canoe travel corridor (used ca. 1780-1802) in the Quetico-Superior region west of Lake Superior to explore the possibility of human influence on pre-fire suppression rates of fire occurrence. Our research objectives were to (1) examine the spatial and temporal patterns of fire in the study area, (2) test fires' strength of association with regional drought, and (3) assess whether reconstructed fire frequencies could be explained by observed rates of lightning fire ignition over the modern period of record. We developed a 420-year fire history for the eastern portion of Lac La Croix in the Boundary Waters Canoe Area Wilderness (BWCAW). Seventy-one fire-scarred samples were collected from remnant Pinus resinosa Ait. (red pine) stumps and logs from thirteen distinct island and three mainland forest stands. Collectively these samples contained records of 255 individual fire scars representing 79 fire events from 1636 to 1933 (study area mean fire intervals [MFI] 3.8 yr). Reconstructed fires were spatially and temporally asynchronous and not strongly associated with regional drought (P > 0.05). When compared to the conservative, tree-ring reconstructed estimate of historical fire occurrence and modern lightning-caused fires (1929-2012), a noticeable change in the distribution and frequency of fires within the study area was evident with only two lightning-ignited island fires since 1934 in the study area. Our results suggest a high likelihood that indigenous land use contributed to surface fire ignitions within our study area and highlights the importance of examining the potential effects of past indigenous land use when determining modern approaches to fire and wilderness management in fire-adapted ecosystems.

  14. Fire and aquatic ecosystems in forested biomes of North America

    USGS Publications Warehouse

    Gresswell, Robert E.

    1999-01-01

    Synthesis of the literature suggests that physical, chemical, and biological elements of a watershed interact with long-term climate to influence fire regime, and that these factors, in concordance with the postfire vegetation mosaic, combine with local-scale weather to govern the trajectory and magnitude of change following a fire event. Perturbation associated with hydrological processes is probably the primary factor influencing postfire persistence of fishes, benthic macroinvertebrates, and diatoms in fluvial systems. It is apparent that salmonids have evolved strategies to survive perturbations occurring at the frequency of wildland fires (100a??102 years), but local populations of a species may be more ephemeral. Habitat alteration probably has the greatest impact on individual organisms and local populations that are the least mobile, and reinvasion will be most rapid by aquatic organisms with high mobility. It is becoming increasingly apparent that during the past century fire suppression has altered fire regimes in some vegetation types, and consequently, the probability of large stand-replacing fires has increased in those areas. Current evidence suggests, however, that even in the case of extensive high-severity fires, local extirpation of fishes is patchy, and recolonization is rapid. Lasting detrimental effects on fish populations have been limited to areas where native populations have declined and become increasingly isolated because of anthropogenic activities. A strategy of protecting robust aquatic communities and restoring aquatic habitat structure and life history complexity in degraded areas may be the most effective means for insuring the persistence of native biota where the probability of large-scale fires has increased.

  15. Ecological strategies in california chaparral: Interacting effects of soils, climate, and fire on specific leaf area

    USGS Publications Warehouse

    Anacker, Brian; Rajakaruna, Nishanta; Ackerly, David; Harrison, Susan; Keeley, Jon E.; Vasey, Michael

    2011-01-01

    Background: High values of specific leaf area (SLA) are generally associated with high maximal growth rates in resource-rich conditions, such as mesic climates and fertile soils. However, fire may complicate this relationship since its frequency varies with both climate and soil fertility, and fire frequency selects for regeneration strategies (resprouting versus seeding) that are not independent of resource-acquisition strategies. Shared ancestry is also expected to affect the distribution of resource-use and regeneration traits.Aims: We examined climate, soil, and fire as drivers of community-level variation in a key functional trait, SLA, in chaparral in California.Methods: We quantified the phylogenetic, functional, and environmental non-independence of key traits for 87 species in 115 plots.Results: Among species, SLA was higher in resprouters than seeders, although not after phylogeny correction. Among communities, mean SLA was lower in harsh interior climates, but in these climates it was higher on more fertile soils and on more recently burned sites; in mesic coastal climates, mean SLA was uniformly high despite variation in soil fertility and fire history.Conclusions: We conclude that because important correlations exist among both species traits and environmental filters, interpreting the functional and phylogenetic structure of communities may require an understanding of complex interactive effects.

  16. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia.

    PubMed

    Crippa, P; Castruccio, S; Archer-Nicholls, S; Lebron, G B; Kuwata, M; Thota, A; Sumin, S; Butt, E; Wiedinmyer, C; Spracklen, D V

    2016-11-16

    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.

  17. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia

    PubMed Central

    Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G. B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D. V.

    2016-01-01

    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153–17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality. PMID:27848989

  18. Frequency and season of prescribed fire affect understory plant communities in longleaf pine stands

    Treesearch

    James D. Haywood

    2012-01-01

    Prescribed fire research on the Kisatchie National Forest in Louisiana spanned the last 7 decades and led to a greater understanding of fire behavior and the importance of fire in longleaf pine (Pinus palustris Mill.) stands. Early research focused on management of the bluestem (Andropogon spp. and Schizachyrium...

  19. Geophysical evidence for non-uniform permafrost degradation after fire across boreal landscapes

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Pastick, N. J.; Wylie, B. K.; Brown, D. N.; Kass, A.

    2015-12-01

    Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. We present a combination of multi-scale remote sensing, geophysical, and field observations that reveal details of both near-surface (<1 m) and deeper impacts of fire on permafrost. Along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska, subsurface imaging indicates locations where permafrost appears to be resilient to disturbance from fire, areas where warm permafrost conditions exist that may be most vulnerable to future change, and also where permafrost has thawed. High-resolution geophysical data corroborate remote sensing interpretations of near-surface permafrost, and also add new high-fidelity details of spatial heterogeneity that extend from the shallow subsurface to depths of about 10 m. Data collected along each transect include observations of active layer thickness (ALT), organic layer thickness (OLT), plant species cover, electrical resistivity tomography (ERT), and downhole Nuclear Magnetic Resonance (NMR) measurements. Results show that post-fire impacts on permafrost can be variable, and depend on multiple factors such as fire severity, soil texture, and soil moisture.

  20. A simple method to compare firing pin marks using stereomicroscope and Microsoft office (Windows 8) tools.

    PubMed

    Suresh, R

    2017-08-01

    Pertinent marks of fired cartridge cases such as firing pin, breech face, extractor, ejector, etc. are used for firearm identification. A non-standard semiautomatic pistol and four .22rim fire cartridges (head stamp KF) is used for known source comparison study. Two test fired cartridge cases are examined under stereomicroscope. The characteristic marks are captured by digital camera and comparative analysis of striation marks is done by using different tools available in the Microsoft word (Windows 8) of a computer system. The similarities of striation marks thus obtained are highly convincing to identify the firearm. In this paper, an effort has been made to study and compare the striation marks of two fired cartridge cases using stereomicroscope, digital camera and computer system. Comparison microscope is not used in this study. The method described in this study is simple, cost effective, transport to field study and can be equipped in a crime scene vehicle to facilitate immediate on spot examination. The findings may be highly helpful to the forensic community, law enforcement agencies and students. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Economic vulnerability of timber resources to forest fires.

    PubMed

    y Silva, Francisco Rodríguez; Molina, Juan Ramón; González-Cabán, Armando; Machuca, Miguel Ángel Herrera

    2012-06-15

    The temporal-spatial planning of activities for a territorial fire management program requires knowing the value of forest ecosystems. In this paper we extend to and apply the economic valuation principle to the concept of economic vulnerability and present a methodology for the economic valuation of the forest production ecosystems. The forest vulnerability is analyzed from criteria intrinsically associated to the forest characterization, and to the potential behavior of surface fires. Integrating a mapping process of fire potential and analytical valuation algorithms facilitates the implementation of fire prevention planning. The availability of cartography of economic vulnerability of the forest ecosystems is fundamental for budget optimization, and to help in the decision making process. Published by Elsevier Ltd.

  2. Temporal scaling behavior of forest and urban fires

    NASA Astrophysics Data System (ADS)

    Wang, J.; Song, W.; Zheng, H.; Telesca, L.

    2009-04-01

    It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the

  3. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  4. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    PubMed

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.

  5. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot

    PubMed Central

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-01-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires. PMID:26473720

  6. High severity fires, positive fire feedbacks and alternative stable states in Athrotaxis rainforest ecosystems in western Tasmania.

    NASA Astrophysics Data System (ADS)

    Holz, A.; Wood, S.; Fletcher, M. S.; Ward, C.; Hopf, F.; Veblen, T. T.; Bowman, D. M. J. S.

    2016-12-01

    Recurrent landscape fires present a powerful selective force on plant regeneration strategies that form a continuum between vegetative resprouters and obligate seeders. In the latter case, reduction of the interval between fires, combined with factors that affect plant traits and regeneration dynamics can drive plant population to local extinction. Here we use Athrotaxis selaginoides, a relict fire-sensitive Gondwanan tree species that occurs in western Tasmania, as model system to investigate the putative impacts of climate change and variability and human management of fire. We integrate landscape ecology (island-wide scale), with field survey and dendrochronology (stand-scale) and sedimentary records (watershed and landscape-scales) to garner a better understanding of the timing and impact of landscape fire on the vegetation dynamics of Athrotaxis at multiple scales. Across the species range sedimentary charcoal and pollen concentrations indicate that the recovery time since the last fire has consistently lengthened over the last 10,000 yrs. Stand-scale tree-age and fire-scar reconstructions suggest that populations of the Athrotxis have survive very infrequent landscape fires over the last 4-6 centuries, but that fire severity has increased following European colonization causing population collapse of Athrotaxis and an associate shift in stand structure and composition that favor resprouter species over obligate seeders. Overall our findings suggest that the resistance to fires and postfire recovery of populations of A. selaginoides have gradually declined throughout the Holocene and rapidly declined after Europeans altered fire regimes, a trend that matches the fate other Gondwanan conifers in temperate rainforests elsewhere in the southern Hemisphere.

  7. Amplitude modulation reduces loudness adaptation to high-frequency tones.

    PubMed

    Wynne, Dwight P; George, Sahara E; Zeng, Fan-Gang

    2015-07-01

    Long-term loudness perception of a sound has been presumed to depend on the spatial distribution of activated auditory nerve fibers as well as their temporal firing pattern. The relative contributions of those two factors were investigated by measuring loudness adaptation to sinusoidally amplitude-modulated 12-kHz tones. The tones had a total duration of 180 s and were either unmodulated or 100%-modulated at one of three frequencies (4, 20, or 100 Hz), and additionally varied in modulation depth from 0% to 100% at the 4-Hz frequency only. Every 30 s, normal-hearing subjects estimated the loudness of one of the stimuli played at 15 dB above threshold in random order. Without any amplitude modulation, the loudness of the unmodulated tone after 180 s was only 20% of the loudness at the onset of the stimulus. Amplitude modulation systematically reduced the amount of loudness adaptation, with the 100%-modulated stimuli, regardless of modulation frequency, maintaining on average 55%-80% of the loudness at onset after 180 s. Because the present low-frequency amplitude modulation produced minimal changes in long-term spectral cues affecting the spatial distribution of excitation produced by a 12-kHz pure tone, the present result indicates that neural synchronization is critical to maintaining loudness perception over time.

  8. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses.

    PubMed

    Helassa, Nordine; Dürst, Céline D; Coates, Catherine; Kerruth, Silke; Arif, Urwa; Schulze, Christian; Wiegert, J Simon; Geeves, Michael; Oertner, Thomas G; Török, Katalin

    2018-05-22

    Glutamatergic synapses display a rich repertoire of plasticity mechanisms on many different time scales, involving dynamic changes in the efficacy of transmitter release as well as changes in the number and function of postsynaptic glutamate receptors. The genetically encoded glutamate sensor iGluSnFR enables visualization of glutamate release from presynaptic terminals at frequencies up to ∼10 Hz. However, to resolve glutamate dynamics during high-frequency bursts, faster indicators are required. Here, we report the development of fast (iGlu f ) and ultrafast (iGlu u ) variants with comparable brightness but increased K d for glutamate (137 μM and 600 μM, respectively). Compared with iGluSnFR, iGlu u has a sixfold faster dissociation rate in vitro and fivefold faster kinetics in synapses. Fitting a three-state model to kinetic data, we identify the large conformational change after glutamate binding as the rate-limiting step. In rat hippocampal slice culture stimulated at 100 Hz, we find that iGlu u is sufficiently fast to resolve individual glutamate release events, revealing that glutamate is rapidly cleared from the synaptic cleft. Depression of iGlu u responses during 100-Hz trains correlates with depression of postsynaptic EPSPs, indicating that depression during high-frequency stimulation is purely presynaptic in origin. At individual boutons, the recovery from depression could be predicted from the amount of glutamate released on the second pulse (paired pulse facilitation/depression), demonstrating differential frequency-dependent filtering of spike trains at Schaffer collateral boutons. Copyright © 2018 the Author(s). Published by PNAS.

  9. Larch Forests of Middle Siberia: Long-Term Trends in Fire Return Intervals

    NASA Technical Reports Server (NTRS)

    Kharuk, Viacheslav I.; Dvinskaya, Mariya L.; Petrov, Ilya A.; Im, Sergei T.; Ranson, Kenneth J.

    2016-01-01

    Fire history within the northern larch forests of Central Siberia was studied (65+degN). Fires within this area are predominantly caused by lightning strikes rather than human activity. Mean fire return intervals (FRIs) were found to be 112 +/- 49 years (based on firescars) and 106 +/- 36 years (based on firescars and tree natality dates). FRIs were increased with latitude increase and observed to be about 80 years at 64N, about 200 years near the Arctic Circle and about 300 years nearby the northern range limit of larch stands (approx.71+degN). Northward FRIs increase correlated with incoming solar radiation (r = -0.95). Post- Little Ice Age (LIA) warming (after 1850) caused approximately a doubling of fire events (in comparison with a similar period during LIA). The data obtained support a hypothesis of climate-induced fire frequency increase. Keywords Fire ecology Fire history Fire frequency Siberian wildfires Larch forests Climate change

  10. Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2016-07-01

    The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-­dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-­fire regeneration. In this study the use of multi-­temporal remote sensing image Alsat-­1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-­1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.

  11. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  12. Humans, Fires, and Forests - Social science applied to fire management

    Treesearch

    Hanna J. Cortner; Donald R. Field; Pam Jakes; James D. Buthman

    2003-01-01

    The 2000 and 2002 fire seasons resulted in increased political scrutiny of the nation's wildland fire threats, and given the fact that millions of acres of lands are still at high risk for future catastrophic fire events, the issues highlighted by the recent fire seasons are not likely to go away any time soon. Recognizing the magnitude of the problem, the...

  13. New high-frequency weldable polyolefin films.

    PubMed

    Kelch, R

    2000-05-01

    There is an increasing desire for plastic films that can be sealed using high-frequency energy. Tests on new high-frequency polyolefin film structures are reported, which compare them with the characteristics and performance of poly(vinyl chloride), ethylene-vinyl acetate and thermoplastic polyurethane films.

  14. Characterizing fire-related spatial patterns in fire-prone ecosystems using optical and microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Henry, Mary Catherine

    The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.

  15. Ecological legacies of Indigenous fire management in high-latitude coastal temperate rainforests, Canada

    NASA Astrophysics Data System (ADS)

    Hoffman, K.; Lertzman, K. P.; Starzomski, B. M.

    2016-12-01

    Anthropogenic burning is considered to have little impact on coastal temperate rainforest fire regimes in the Pacific Northwest (PNW) of North America, yet few long-term fire histories have been reconstructed in these forests. We use a multidisciplinary approach to reconstruct the ecological impact, scale, and legacies of historic fire regime variability in high-latitude coastal temperate rainforests located in British Columbia, Canada. We map seven centuries of fire activity with fire scars and records of stand establishment, and examine patterns in the distribution and composition of vegetation to assess whether fire was historically used as a tool for resource management. We conduct a paired study of 20 former Indigenous habitation and control sites across a 100 km2 island group to relate historic fire activity with long-term patterns of human land use and contemporary lightning strike densities. Fires were significantly associated with the locations of former Indigenous habitation sites, low and mixed in severity, and likely intentionally used to influence the composition and structure of vegetation, thus increasing the productivity of culturally important plants such as western redcedar, berry-producing shrubs, and bracken fern. Centuries of repeated anthropogenic burning have resulted in a mosaic of vegetation types in different stages of succession. These data are directly relevant to the management of contemporary forests as they do not support the widespread contention that old growth coastal temperate rainforests in this region are pristine landscapes where fire is rare, but more likely the result of long-term human land use practices.

  16. Assessing accuracy of a probabilistic model for very large fire in the Rocky Mountains: A High Park Fire case study

    NASA Astrophysics Data System (ADS)

    Stavros, E.; Abatzoglou, J. T.; Larkin, N.; McKenzie, D.; Steel, A.

    2012-12-01

    Across the western United States, the largest wildfires account for a major proportion of the area burned and substantially affect mountain forests and their associated ecosystem services, among which is pristine air quality. These fires commandeer national attention and significant fire suppression resources. Despite efforts to understand the influence of fuel loading, climate, and weather on annual area burned, few studies have focused on understanding what abiotic factors enable and drive the very largest wildfires. We investigated the correlation between both antecedent climate and in-situ biophysical variables and very large (>20,000 ha) fires in the western United States from 1984 to 2009. We built logistic regression models, at the spatial scale of the national Geographic Area Coordination Centers (GACCs), to estimate the probability that a given day is conducive to a very large wildfire. Models vary in accuracy and in which variables are the best predictors. In a case study of the conditions of the High Park Fire, neighboring Fort Collins, Colorado, occurring in early summer 2012, we evaluate the predictive accuracy of the Rocky Mountain model.

  17. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    NASA Astrophysics Data System (ADS)

    Padalia, H.; Mondal, P. P.

    2014-11-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.

  18. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  19. Metastability and Inter-Band Frequency Modulation in Networks of Oscillating Spiking Neuron Populations

    PubMed Central

    Bhowmik, David; Shanahan, Murray

    2013-01-01

    Groups of neurons firing synchronously are hypothesized to underlie many cognitive functions such as attention, associative learning, memory, and sensory selection. Recent theories suggest that transient periods of synchronization and desynchronization provide a mechanism for dynamically integrating and forming coalitions of functionally related neural areas, and that at these times conditions are optimal for information transfer. Oscillating neural populations display a great amount of spectral complexity, with several rhythms temporally coexisting in different structures and interacting with each other. This paper explores inter-band frequency modulation between neural oscillators using models of quadratic integrate-and-fire neurons and Hodgkin-Huxley neurons. We vary the structural connectivity in a network of neural oscillators, assess the spectral complexity, and correlate the inter-band frequency modulation. We contrast this correlation against measures of metastable coalition entropy and synchrony. Our results show that oscillations in different neural populations modulate each other so as to change frequency, and that the interaction of these fluctuating frequencies in the network as a whole is able to drive different neural populations towards episodes of synchrony. Further to this, we locate an area in the connectivity space in which the system directs itself in this way so as to explore a large repertoire of synchronous coalitions. We suggest that such dynamics facilitate versatile exploration, integration, and communication between functionally related neural areas, and thereby supports sophisticated cognitive processing in the brain. PMID:23614040

  20. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  1. A stochastic Forest Fire Model for future land cover scenarios assessment

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Fiorucci, P.; Holmes, T. P.

    2010-10-01

    Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  2. A GIS-based framework for evaluating investments in fire management: Spatial allocation of recreation values

    Treesearch

    Kenneth A. Baerenklau; Armando González-Cabán; Catrina I. Páez; Edgard Chávez

    2009-01-01

    The U.S. Forest Service is responsible for developing tools to facilitate effective and efficient fire management on wildlands and urban-wildland interfaces. Existing GIS-based fire modeling software only permits estimation of the costs of fire prevention and mitigation efforts as well as the effects of those efforts on fire behavior. This research demonstrates how the...

  3. An injection seeded single frequency Nd:YAG Q-switched laser with precisely controllable laser pulse firing time

    NASA Astrophysics Data System (ADS)

    Wu, Frank F.; Khizhnyak, Anatoliy; Markov, Vladimir

    2010-02-01

    We have realized a single frequency Q-switched Nd:YAG laser with precisely controllable lasing time and thus enabled synchronization of multi-laser systems. The use of injection seeding to the slave ring oscillator results in unidirectional Q-switched laser oscillation with suppression of bidirectional Q-switched oscillation that otherwise would be initiated from spontaneous emission if the seeding laser is not present. Under normal condition, the cavity is high in loss during the pumping period; then a Pockels cell opens the cavity to form the pulse build up, with a second Pockels cell to perform cavity dumping, generating the Q-switched pulse output with optimized characteristics. The two Pockels cells can be replaced by a single unit if an adjustable gated electrical pulse is applied to the Pockels cell in which the pulse front is used to open the cavity and the falling edge to dump the laser pulse. Proper selection of the pump parameters and Pockels-cell gating enables operation of the system in a mode in which the Q-switched pulse can be formed only under the seeding condition. The advantage of the realized regime is in stable laser operation with no need in adjustment of the seeded light wavelength and the mode of the cavity. It is found that the frequency of the Q-switched laser radiation matches well to the injected seeded laser mode. By using two-stage amplifiers, an output energy better than 300 mJ has been achieved in MOPA configuration without active control of the cavity length and with pulse width adjustability from several nanoseconds to 20 ns. The Q-switched oscillator operates not only at precisely controlled firing time but also can be tuned over wide range. This will enable multi-laser systems synchronization and frequency locking down each other if necessary.

  4. Identifying the location of fire refuges in wet forest ecosystems.

    PubMed

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential

  5. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2016-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  6. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2017-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  7. Transient Stability and Frequency Response of the US Western Interconnection Under Conditions of High Wind and Solar Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan

    The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrationsmore » of wind and solar generation. The main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less

  8. Transient Stability and Frequency Response of the Us Western Interconnection Under Conditions of High Wind and Solar Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Kara; Miller, Nicholas W.; Shao, Miaolei

    Adding large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. Our paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of windmore » and solar generation. Moreover, the main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less

  9. Fire Prevention Efforts in the Northwest

    Treesearch

    A.W. Lindenmuth; J.J. Keetch

    1952-01-01

    The frequency of forest fires in 13 northeastern states dropped about one-half from 1943 to 1950, exclusive of the fluctuations due to weather. The average downward trend and the annual observations from which the trend is determined are shown graphically in the lower chart on the other side of this page. Each dot on the chart is the ratio of fire occurrence (actual...

  10. Fire in the eastern United States: influence on wildlife habitat

    Treesearch

    D. H. Van Lear; R. F. Harlow

    2002-01-01

    Fire is a major influence shaping wildlife habitats in the eastern United States. Lightning- and Indian-ignited fires burned frequently and extensively over the pre-Columbian landscape and shaped the character of numerous ecosystems. Depending upon the frequency, intensity, and severity of the fires, various assemblages of plants developed along environmental gradients...

  11. Canopy-derived fuels drive patterns of in-fire energy release and understory plant mortality in a longleaf pine ( Pinus palustris ) sandhill in northwest Florida, USA

    Treesearch

    Joseph J. O' Brien; E. Louise Loudermilk; J. Kevin Hiers; Scott Pokswinski; Benjamin Hornsby; Andrew Hudak; Dexter Strother; Eric Rowell; Benjamin C. Bright

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about ecological fire effects. Although the correlation between fire frequency and plant biological diversity in frequently burned ...

  12. The control of locomotor frequency by excitation and inhibition

    PubMed Central

    Li, Wen-Chang; Moult, Peter R

    2012-01-01

    Every type of neural rhythm has its own operational range of frequency. Neuronal mechanisms underlying rhythms at different frequencies, however, are poorly understood. We use a simple aquatic vertebrate, the two day old Xenopus tadpole, to investigate how the brainstem and spinal circuits generate swimming rhythms of different speeds. We first determined that the basic motor output pattern was not altered with varying swimming frequencies. The firing reliability of different types of rhythmic neuron involved in swimming was then analysed. The results showed that there was a drop in the firing reliability in some inhibitory interneurons when fictive swimming slowed. We have recently established that premotor excitatory interneurons (descending interneurons; dINs) are critical in rhythmically driving activity in the swimming circuit. Voltage-clamp recordings from dINs showed higher frequency swimming correlated with stronger background excitation and phasic inhibition, but did not correlate with phasic excitation. Two parallel mechanisms have been proposed for tadpole swimming maintenance: post-inhibition rebound firing and NMDA receptor (NMDAR) dependent pace-maker firing in dINs. Rebound tests in dINs in this study showed that greater background depolarization and phasic inhibition led to faster rebound firing. Higher depolarization was previously shown to accelerate dIN pace-maker firing in the presence of NMDA. Here we show that enhancing dIN background excitation during swimming speeds up fictive swimming frequency whilst weakening phasic inhibition without changing background excitation slows down swimming rhythms. We conclude that both strong background excitation and phasic inhibition can promote faster tadpole swimming. PMID:22553028

  13. Determination of pumper truck intervention ratios in zones with high fire potential by using geographical information system

    NASA Astrophysics Data System (ADS)

    Aricak, Burak; Kucuk, Omer; Enez, Korhan

    2014-01-01

    Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.

  14. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    NASA Astrophysics Data System (ADS)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  15. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    PubMed

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    The carbon stability of fire-tolerant forests is often assumed but less frequently assessed, limiting the potential to anticipate threats to forest carbon posed by predicted increases in forest fire activity. Assessing the carbon stability of fire-tolerant forests requires multi-indicator approaches that recognize the myriad ways that fires influence the carbon balance, including combustion, deposition of pyrogenic material, and tree death, post-fire decomposition, recruitment, and growth. Five years after a large-scale wildfire in southeastern Australia, we assessed the impacts of low- and high-severity wildfire, with and without prescribed fire (≤10 yr before), on carbon stocks in multiple pools, and on carbon stability indicators (carbon stock percentages in live trees and in small trees, and carbon stocks in char and fuels) in fire-tolerant eucalypt forests. Relative to unburned forest, high-severity wildfire decreased short-term (five-year) carbon stability by significantly decreasing live tree carbon stocks and percentage stocks in live standing trees (reflecting elevated tree mortality), by increasing the percentage of live tree carbon in small trees (those vulnerable to the next fire), and by potentially increasing the probability of another fire through increased elevated fine fuel loads. In contrast, low-severity wildfire enhanced carbon stability by having negligible effects on aboveground stocks and indicators, and by significantly increasing carbon stocks in char and, in particular, soils, indicating pyrogenic carbon accumulation. Overall, recent preceding prescribed fire did not markedly influence wildfire effects on short-term carbon stability at stand scales. Despite wide confidence intervals around mean stock differences, indicating uncertainty about the magnitude of fire effects in these natural forests, our assessment highlights the need for active management of carbon assets in fire-tolerant eucalypt forests under contemporary fire regimes

  16. Interactions among wildland fires in a long-established Sierra Nevada natural fire area

    USGS Publications Warehouse

    Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.

    2009-01-01

    We investigate interactions between successive naturally occurring fires, and assess to what extent the environments in which fires burn influence these interactions. Using mapped fire perimeters and satellite-based estimates of post-fire effects (referred to hereafter as fire severity) for 19 fires burning relatively freely over a 31-year period, we demonstrate that fire as a landscape process can exhibit self-limiting characteristics in an upper elevation Sierra Nevada mixed conifer forest. We use the term 'self-limiting' to refer to recurring fire as a process over time (that is, fire regime) consuming fuel and ultimately constraining the spatial extent and lessening fire-induced effects of subsequent fires. When the amount of time between successive adjacent fires is under 9 years, and when fire weather is not extreme (burning index <34.9), the probability of the latter fire burning into the previous fire area is extremely low. Analysis of fire severity data by 10-year periods revealed a fair degree of stability in the proportion of area burned among fire severity classes (unchanged, low, moderate, high). This is in contrast to a recent study demonstrating increasing high-severity burning throughout the Sierra Nevada from 1984 to 2006, which suggests freely burning fires over time in upper elevation Sierra Nevada mixed conifer forests can regulate fire-induced effects across the landscape. This information can help managers better anticipate short- and long-term effects of allowing naturally ignited fires to burn, and ultimately, improve their ability to implement Wildland Fire Use programs in similar forest types. ?? 2008 Springer Science+Business Media, LLC.

  17. Motorcoach Fire Safety Analysis.

    DOT National Transportation Integrated Search

    2009-07-01

    This purpose of this study was to collect and analyze information from Government, industry, and media sources on the causes, frequency, and severity of motorcoach fires in the U.S., and to identify potential risk reduction measures. The Volpe Center...

  18. Pine regeneration following wildland fire (P-53)

    Treesearch

    Katherine J. Elliott; James M. Vose; Alan S. White

    2008-01-01

    Pine regeneration following wildland fire continues to be a serious problem across the western and southeastern U.S. Frequency of large wildfires has increased over the last several decades and restoration of these burned areas is a major problem confronting land managers. Prescribed fires are used primarily to reduce heavy fuel loads and secondarily to reduce...

  19. The Fire-Walker’s High: Affect and Physiological Responses in an Extreme Collective Ritual

    PubMed Central

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual. PMID:24586315

  20. Fire resistant PV shingle assembly

    DOEpatents

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  1. Evaluating implementation of a fire-prevention injury prevention briefing in children's centres: Cluster randomised controlled trial.

    PubMed

    Deave, Toity; Hawkins, Adrian; Kumar, Arun; Hayes, Mike; Cooper, Nicola; Watson, Michael; Ablewhite, Joanne; Coupland, Carol; Sutton, Alex; Majsak-Newman, Gosia; McDaid, Lisa; Goodenough, Trudy; Beckett, Kate; McColl, Elaine; Reading, Richard; Kendrick, Denise

    2017-01-01

    Many developed countries have high mortality rates for fire-related deaths in children aged 0-14 years with steep social gradients. Evidence-based interventions to promote fire safety practices exist, but the impact of implementing a range of these interventions in children's services has not been assessed. We developed an Injury Prevention Briefing (IPB), which brought together evidence about effective fire safety interventions and good practice in delivering interventions; plus training and facilitation to support its use and evaluated its implementation. We conducted a cluster randomised controlled trial, with integrated qualitative and cost-effectiveness nested studies, across four study sites in England involving children's centres in disadvantaged areas; participants were staff and families attending those centres. Centres were stratified by study site and randomised within strata to one of three arms: IPB plus facilitation (IPB+), IPB only, usual care. IPB+ centres received initial training and facilitation at months 1, 3, and 8. Baseline data from children's centres were collected between August 2011 and January 2012 and follow-up data were collected between June 2012 and June 2013. Parent baseline data were collected between January 2012 and May 2012 and follow-up data between May 2013 and September 2013. Data comprised baseline and 12 month parent- and staff-completed questionnaires, facilitation contact data, activity logs and staff interviews. The primary outcome was whether families had a plan for escaping from a house fire. Treatment arms were compared using multilevel models to account for clustering by children's centre. 1112 parents at 36 children's centres participated. There was no significant effect of the intervention on families' possession of plans for escaping from a house fire (adjusted odds ratio (AOR) IPB only vs. usual care: 0.93, 95%CI 0.58, 1.49; AOR IPB+ vs. usual care 1.41, 95%CI 0.91, 2.20). However, significantly more families in

  2. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  3. Management of south Texas shrublands with prescribed fire

    Treesearch

    C. Wayne Hanselka; D. Lynn Drawe; D.C. III Ruthven

    2007-01-01

    The Rio Grande Plains (RGP) and Coastal Prairie (CP) of South Texas is the southernmost extension of the Great Plains Grasslands. Fire, along with other climatic variables, such as drought, presumably maintained mesquite (Prosopis glandulosa Torr.) savannas and interspersed grasslands of pre- European settlement South Texas. Frequency of fire...

  4. Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis1,2,3

    PubMed Central

    Catoni, Nicholas

    2015-01-01

    Abstract High-frequency oscillations (HFOs) are an intriguing potential biomarker for epilepsy, typically categorized according to peak frequency as either ripples (100–250 Hz) or fast ripples (>250 Hz). In the hippocampus, fast ripples were originally thought to be more specific to epileptic tissue, but it is still very difficult to distinguish which HFOs are caused by normal versus pathological brain activity. In this study, we use a computational model of hippocampus to investigate possible network mechanisms underpinning normal ripples, pathological ripples, and fast ripples. Our results unify several prior findings regarding HFO mechanisms, and also make several new predictions regarding abnormal HFOs. We show that HFOs are generic, emergent phenomena whose characteristics reflect a wide range of connectivity and network input. Although produced by different mechanisms, both normal and abnormal HFOs generate similar ripple frequencies, underscoring that peak frequency is unable to distinguish the two. Abnormal ripples are generic phenomena that arise when input to pyramidal cells overcomes network inhibition, resulting in high-frequency, uncoordinated firing. In addition, fast ripples transiently and sporadically arise from the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal conditions do not require any specific network structure to produce coherent HFOs, as even completely asynchronous activity is capable of producing abnormal ripples and fast ripples in this manner. These results provide a generic, network-based explanation for the link between pathological ripples and fast ripples, and a unifying description for the entire spectrum from normal ripples to pathological fast ripples. PMID:26146658

  5. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    PubMed

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  6. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    PubMed Central

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  7. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F.

    2009-01-01

    Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focussed on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread, could be the first indication of more frequent fire. We examined the relationship between snowpack and the ignition and size of fires that occurred in Yosemite National Park, California (area 3027 km2), between 1984 and 2005. During this period, 1870 fires burned 77 718 ha. Decreased spring snowpack exponentially increased the number of lightning-ignited fires. Snowpack mediated lightning-ignited fires by decreasing the proportion of lightning strikes that caused lightning-ignited fires and through fewer lightning strikes in years with deep snowpack. We also quantified fire severity for the 103 fires >40 ha with satellite fire-severity indices using 23 years of Landsat Thematic Mapper data. The proportion of the landscape that burned at higher severities and the complexity of higher-severity burn patches increased with the log10 of annual area burned. Using one snowpack forecast, we project that the number of lightning-ignited fires will increase 19.1% by 2020 to 2049 and the annual area burned at high severity will increase 21.9%. Climate-induced decreases in snowpack and the concomitant increase in fire severity suggest that existing assumptions may be understated-fires may become more frequent and more severe. ?? IAWF 2009.

  8. High frequency ultrasound: a new frontier for ultrasound.

    PubMed

    Shung, K; Cannata, Jonathan; Qifa Zhou, Member; Lee, Jungwoo

    2009-01-01

    High frequency ultrasonic imaging is considered by many to be the next frontier in ultrasonic imaging because higher frequencies yield much improved spatial resolution by sacrificing the depth of penetration. It has many clinical applications including visualizing blood vessel wall, anterior segments of the eye and skin. Another application is small animal imaging. Ultrasound is especially attractive in imaging the heart of a small animal like mouse which has a size in the mm range and a heart beat rate faster than 600 BPM. A majority of current commercial high frequency scanners often termed "ultrasonic backscatter microscope or UBM" acquire images by scanning single element transducers at frequencies between 50 to 80 MHz with a frame rate lower than 40 frames/s, making them less suitable for this application. High frequency linear arrays and linear array based ultrasonic imaging systems at frequencies higher than 30 MHz are being developed. The engineering of such arrays and development of high frequency imaging systems has been proven to be highly challenging. High frequency ultrasound may find other significant biomedical applications. The development of acoustic tweezers for manipulating microparticles is such an example.

  9. 46 CFR 28.820 - Fire pumps, fire mains, fire hydrants, and fire hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fire pumps, fire mains, fire hydrants, and fire hoses... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.820 Fire pumps, fire mains, fire hydrants, and fire hoses. (a) Each vessel must be equipped with a self-priming, power driven fire...

  10. Fire Protection for Buildings

    ERIC Educational Resources Information Center

    Edmunds, Jane

    1972-01-01

    Reviews attack on fire safety in high rise buildings made by a group of experts representing the iron and steel industry at a recent conference. According to one expert, fire problems are people oriented, which calls for emphasis on fire prevention rather than reliance on fire suppression and for fire pretection to be built into a structure.…

  11. Crown physiology and growth of sapling longleaf pine after fire

    Treesearch

    Mary Anne Sword Sayer; Eric A. Kuehler

    2005-01-01

    Fire affects foliage and thus, whole-crown C fixation potential. When repeated throughout a rotation, therefore, fire has a potential impact on stemwood growth and C allocation among the foliage, stem and roots. Depending on frequency and intensity, prescribed fire causes foliage damage that may lead to a long-term reduction in stand growth. Past research, however, is...

  12. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  13. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  14. Application of remote sensing and geographical information system in mapping forest fire risk zone at Bhadra wildlife sanctuary, India.

    PubMed

    Sowmya, S V; Somashekar, R K

    2010-11-01

    Fire is the most spectacular natural disturbance that affects the forest ecosystem composition and diversity. Fire has a devastating effect on the landscape and its impact is felt at every level of the ecosystem and it is possible to map forest fire risk zone and thereby minimize the frequency of fire. There is a need for supranational approaches that analyze wide scenarios of factors involved and global fire effects. Fires can be monitored and analyzed over large areas in a timely and cost effective manner by using satellite imagery. Also Geographical Information System (GIS) can be used effectively to demarcate the fire risk zone map. Bhadra wildlife Sanctuary located in Kamataka, India was selected for this study. Vegetation, slope, distance from roads, settlements parameters were derived for a study area using topographic maps and field information. The Remote Sensing (RS) and Geographical Information System (GIS)-based forest fire risk model of the study area appeared to be highly compatible with the actual fire-affected sites. The temporal satellite data from 1989 to2006 have been analyzed to map the burnt areas. These classes were weighted according to their influence on forest fire. Four categories of fire risk regions such as Low, Moderate, High and Very high fire intensity zones were identified. It is predicted that around 10.31% of the area falls undermoderate risk zone.

  15. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  16. Catastrophic Fires in Russian Forests

    NASA Astrophysics Data System (ADS)

    Sukhinin, A. I.; McRae, D. J.; Stocks, B. J.; Conard, S. G.; Hao, W.; Soja, A. J.; Cahoon, D.

    2010-12-01

    We evaluated the contribution of catastrophic fires to the total burned area and the amount of tree mortality in Russia since the 1970’s. Such fires occurred in the central regions of European Russia (1972, 1976, 1989, 2002, 2010), Khabarovsk krai (1976, 1988, 1998), Amur region (1997-2002), Republics of Yakutia and Tuva (2002), Magadan and Kamchatka oblast (1984, 2001, 2010), and Irkutsk, Chita, Amur regions, Buryat, Agin national districts (2003, 2007-08). We define a catastrophic fire as a single high-severity fire that covers more than 10,000 ha and results in total consumption of the litter and humus layers and in high tree mortality, or the simultaneous occurrence of several high-severity fires in a given region with a total area exceeding 10,000 km2. Fires on this scale can cause substantial economic, social and environmental effects, with regional to global impacts. We hypothesize that there is a positive feedback between anticyclone growth and energy release from wildfires burning over large areas. Usually the first blocking anticyclone appears in June in Russia, bringing with it dry weather that increases fire hazard. The anticyclonic pattern has maximum activity in the end of July and disappears around the middle of August. When high fire activity occurs, the anticyclone may strengthen and develop a blocking character that prevents cyclonic patterns from moving into anticyclone-dominated areas, where the fire danger index may be more than six times the average maximum. The likelihood of uncontrolled fire situations developing increases greatly when the fire number and burned area exceed critical values as a function of conditions that favor high intensity fires. In such situations fire suppression by regional forest protection services becomes impossible and federal resources are required. If the appearance of a blocking anticyclone is forecast, active fire prevention and suppression of small fires (most of which appear to be human caused) is critical

  17. Motorcoach fire safety analysis : the causes, frequency, and severity of motorcoach fires in the United States

    DOT National Transportation Integrated Search

    2012-06-28

    The Federal Motor Carrier Safety Administrations (FMCSA) mission is to reduce crashes, injuries, and fatalities on our nations roads involving motor vehicles, and to further its work the agency set out to identify ways to reduce motorcoach fire...

  18. Electromagnetic inhibition of high frequency thermal bonding machine

    NASA Astrophysics Data System (ADS)

    He, Hong; Zhang, Qing-qing; Li, Hang; Zhang, Da-jian; Hou, Ming-feng; Zhu, Xian-wei

    2011-12-01

    The traditional high frequency thermal bonding machine had serious radiation problems at dominant frequency, two times frequency and three times frequency. Combining with its working principle, the problems of electromagnetic compatibility were studied, three following measures were adopted: 1.At the head part of the high frequency thermal bonding machine, resonant circuit attenuator was designed. The notch groove and reaction field can make the radiation being undermined or absorbed; 2.The electromagnetic radiation shielding was made for the high frequency copper power feeder; 3.Redesigned the high-frequency oscillator circuit to reduce the output of harmonic oscillator. The test results showed that these measures can make the output according with the national standard of electromagnetic compatibility (GB4824-2004-2A), the problems of electromagnetic radiation leakage can be solved, and good social, environmental and economic benefits would be brought.

  19. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    PubMed

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  20. A new parameterization of the post-fire snow albedo effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2013-12-01

    Mountain snowpack serves as an important natural reservoir of water: recharging aquifers, sustaining streams, and providing important ecosystem services. Reduced snowpacks and earlier snowmelt have been shown to affect fire size, frequency, and severity in the western United States. In turn, wildfire disturbance affects patterns of snow accumulation and ablation by reducing canopy interception, increasing turbulent fluxes, and modifying the surface radiation balance. Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of pyrogenic carbon particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. Although the post-fire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. The objective of this study was to parameterize the post-fire snow albedo effect due to BWD deposition on snow to better represent forest fire disturbance in modeling of snow-dominated hydrologic regimes. Based on empirical results from winter experiments, in-situ snow monitoring, and remote sensing data from a recent forest fire in the Oregon High Cascades, we characterized the post-fire snow albedo effect, and developed a simple parameterization of snowpack albedo decay in the post-fire forest environment. We modified the recession coefficient in the algorithm: α = α0 + K exp (-nr) where α = snowpack albedo, α0 = minimum snowpack albedo (≈0.4), K = constant (≈ 0.44), -n = number of days since last major snowfall, r = recession coefficient [Rohrer and Braun, 1994]. Our parameterization quantified BWD deposition and snow albedo decay rates and

  1. A method for determining fire history in coniferous forests in the Mountain West

    Treesearch

    Stephen F. Arno; Kathy M. Sneck

    1977-01-01

    Describes a method for determining historic fire frequency, intensity, and size from cross sections collected from fire-scarred trees and tree age classes determined through increment borings. Tells how to interpret the influence of fire in stand composition and structure and how to identify effects of modern fire suppression.

  2. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA

    Treesearch

    James A. Lutz; Jan W. van Wagtendonk; Andrea E. Thode; Jay D. Miller; Jerry F. Franklin

    2009-01-01

    Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focused on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread,...

  3. Fire severity and ecosytem responses following crown fires in California shrublands

    USGS Publications Warehouse

    Keeley, J.E.; Brennan, T.; Pfaff, A.H.

    2008-01-01

    Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses.Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining >50% of the variation in severity.Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly short-lived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types.Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire.A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a site

  4. Fire severity and ecosytem responses following crown fires in California shrublands.

    PubMed

    Keeley, Jon E; Brennan, Teresa; Pfaff, Anne H

    2008-09-01

    Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses. Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining > 50% of the variation in severity. Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly shortlived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types. Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire. A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a

  5. Spatially explicit modeling of mixed-severity fire regimes and landscape dynamics

    Treesearch

    Michael C. Wimberly; Rebecca S.H. Kennedy

    2008-01-01

    Simulation models of disturbance and succession are being increasingly applied to characterize landscape composition and dynamics under natural fire regimes, and to evaluate alternative management strategies for ecological restoration and fire hazard reduction. However, we have a limited understanding of how landscapes respond to changes in fire frequency, and about...

  6. Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive.

    PubMed

    Richardson, Magnus J E

    2007-08-01

    Integrate-and-fire models are mainstays of the study of single-neuron response properties and emergent states of recurrent networks of spiking neurons. They also provide an analytical base for perturbative approaches that treat important biological details, such as synaptic filtering, synaptic conductance increase, and voltage-activated currents. Steady-state firing rates of both linear and nonlinear integrate-and-fire models, receiving fluctuating synaptic drive, can be calculated from the time-independent Fokker-Planck equation. The dynamic firing-rate response is less easy to extract, even at the first-order level of a weak modulation of the model parameters, but is an important determinant of neuronal response and network stability. For the linear integrate-and-fire model the response to modulations of current-based synaptic drive can be written in terms of hypergeometric functions. For the nonlinear exponential and quadratic models no such analytical forms for the response are available. Here it is demonstrated that a rather simple numerical method can be used to obtain the steady-state and dynamic response for both linear and nonlinear models to parameter modulation in the presence of current-based or conductance-based synaptic fluctuations. To complement the full numerical solution, generalized analytical forms for the high-frequency response are provided. A special case is also identified--time-constant modulation--for which the response to an arbitrarily strong modulation can be calculated exactly.

  7. Post-fire Water Quality Response and Associated Physical Drivers

    NASA Astrophysics Data System (ADS)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response

  8. High-frequency hearing impairment assessed with cochlear microphonics.

    PubMed

    Zhang, Ming

    2012-09-01

    Cochlear microphonic (CM) measurements may potentially become a supplementary approach to otoacoustic emission (OAE) measurements for assessing low-frequency cochlear functions in the clinic. The objective of this study was to investigate the measurement of CMs in subjects with high-frequency hearing loss. Currently, CMs can be measured using electrocochleography (ECochG or ECoG) techniques. Both CMs and OAEs are cochlear responses, while auditory brainstem responses (ABRs) are not. However, there are inherent limitations associated with OAE measurements such as acoustic noise, which can conceal low-frequency OAEs measured in the clinic. However, CM measurements may not have these limitations. CMs were measured in human subjects using an ear canal electrode. The CMs were compared between the high-frequency hearing loss group and the normal-hearing control group. Distortion product OAEs (DPOAEs) and audiogram were also measured. The DPOAE and audiogram measurements indicate that the subjects were correctly selected for the two groups. Low-frequency CM waveforms (CMWs) can be measured using ear canal electrodes in high-frequency hearing loss subjects. The difference in amplitudes of CMWs between the high-frequency hearing loss group and the normal-hearing group is insignificant at low frequencies but significant at high frequencies.

  9. Studying interregional wildland fire engine assignments for large fire suppression

    Treesearch

    Erin J. Belval; Yu Wei; David E. Calkin; Crystal S. Stonesifer; Matthew P. Thompson; John R. Tipton

    2017-01-01

    One crucial component of large fire response in the United States (US) is the sharing of wildland firefighting resources between regions: resources from regions experiencing low fire activity supplement resources in regions experiencing high fire activity. An important step towards improving the efficiency of resource sharing and related policies is to develop a better...

  10. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  11. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  12. Fire regime in Mediterranean ecosystem

    NASA Astrophysics Data System (ADS)

    Biondi, Guido; Casula, Paolo; D'Andrea, Mirko; Fiorucci, Paolo

    2010-05-01

    The analysis of burnt areas time series in Mediterranean regions suggests that ecosystems characterising this area consist primarily of species highly vulnerable to the fire but highly resilient, as characterized by a significant regenerative capacity after the fire spreading. In a few years the area burnt may once again be covered by the same vegetation present before the fire. Similarly, Mediterranean conifer forests, which often refers to plantations made in order to reforest the areas most severely degraded with high erosion risk, regenerate from seed after the fire resulting in high resilience to the fire as well. Only rarely, and usually with negligible damages, fire affects the areas covered by climax species in relation with altitude and soil types (i.e, quercus, fagus, abies). On the basis of these results, this paper shows how the simple Drossel-Schwabl forest fire model is able to reproduce the forest fire regime in terms of number of fires and burned area, describing whit good accuracy the actual fire perimeters. The original Drossel-Schwabl model has been slightly modified in this work by introducing two parameters (probability of propagation and regrowth) specific for each different class of vegetation cover. Using model selection methods based on AIC, the model with the optimal number of classes with different fire behaviour was selected. Two different case studies are presented in this work: Regione Liguria and Regione Sardegna (Italy). Both regions are situated in the center of the Mediterranean and are characterized by a high number of fires and burned area. However, the two regions have very different fire regimes. Sardinia is affected by the fire phenomenon only in summer whilst Liguria is affected by fires also in winter, with higher number of fires and larger burned area. In addition, the two region are very different in vegetation cover. The presence of Mediterranean conifers, (Pinus Pinaster, Pinus Nigra, Pinus halepensis) is quite spread in

  13. Surgical fires, a clear and present danger.

    PubMed

    Yardley, I E; Donaldson, L J

    2010-04-01

    A surgical fire is potentially devastating for a patient. Fire has been recognised as a potential complication of surgery for many years. Surgical fires continue to happen with alarming frequency. We present a review of the literature and an examination of possible solutions to this problem. The PubMed and Medline databases from 1948 onwards were searched using the subject headings "operating rooms", "fire", "safety" and "safety management". "Surgical fire" was also searched as a keyword. Relevant references from articles were obtained. Fire occurs when the three elements of the fire triad, fuel, oxidiser and ignition coincide. Surgical fires are unusual in the absence of an oxygen-enriched atmosphere. The ignition source is most commonly diathermy but lasers carry a relatively greater risk. The majority of fires occur during head and neck surgery. This is due to the presence of oxygen and the extensive use of lasers. The risk of fire can be reduced with an awareness of the risk and good communication. Surgery will always carry a risk of fire. Reducing this risk requires a concerted effort from all team members. Copyright 2010 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  14. Spike Phase Locking in CA1 Pyramidal Neurons depends on Background Conductance and Firing Rate

    PubMed Central

    Broiche, Tilman; Malerba, Paola; Dorval, Alan D.; Borisyuk, Alla; Fernandez, Fernando R.; White, John A.

    2012-01-01

    Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency-response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane-potential fluctuations in the living animal. To investigate the frequency-response characteristics of CA1 pyramidal neurons in the presence of high conductance and voltage fluctuations, we performed dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons with noisy stimuli that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent data analysis, we determined action potential phase-locking profiles with respect to background conductance, average firing rate, and frequency of the sinusoidal component. We found that background conductance and firing rate qualitatively change the phase-locking profiles of CA1 pyramidal neurons vs. frequency. In particular, higher average spiking rates promoted band-pass profiles, and the high-conductance state promoted phase-locking at frequencies well above what would be predicted from changes in the membrane time constant. Mechanistically, spike-rate adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping the different phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively change their synchronization properties in response to global changes in activity associated with different behavioral states. PMID:23055508

  15. Temporal trends in mammal responses to fire reveals the complex effects of fire regime attributes.

    PubMed

    Lindenmayer, David B; Blanchard, Wade; MacGregor, Christopher; Barton, Philip; Banks, Sam C; Crane, Mason; Michael, Damian; Okada, Sachiko; Berry, Laurence; Florance, Daniel; Gill, Malcolm

    2016-03-01

    Fire is a major ecological process in many ecosystems worldwide. We sought to identify which attributes of fire regimes affect temporal change in the presence and abundance of Australian native mammals. Our detailed study was underpinned by time series data on 11 mammal species at 97 long-term sites in southeastern Australia between 2003 and 2013. We explored how temporal aspects of fire regimes influenced the presence and conditional abundance of species. The key fire regime components examined were: (1) severity of a major fire in 2003, (2) interval between the last major fire (2003) and the fire prior to that, and (3) number of past fires. Our long-term data set enabled quantification of the interactions between survey year and each fire regime variable: an ecological relationship missing from temporally restricted studies. We found no evidence of any appreciable departures from the assumption of independence of the sites. Multiple aspects of fire regimes influenced temporal variation in the presence and abundance of mammals. The best models indicated that six of the 11 species responded to two or more fire regime variables, with two species influenced by all three fire regime attributes. Almost all species responded to time since fire, either as an interaction with survey year or as a main effect. Fire severity or its interaction with survey year was important for most terrestrial rodents. The number of fires at a site was significant for terrestrial rodents and several other species. Our findings contain evidence of the effects on native mammals of heterogeneity in fire regimes. Temporal response patterns of mammal species were influenced by multiple fire regime attributes, often in conjunction with survey year. This underscores the critical importance of long-term studies of biota that are coupled with data sets characterized by carefully documented fire history, severity, and frequency. Long-term studies are essential to predict animal responses to fires and

  16. Prescribed Fire In the Interface: Separating The People From The Trees

    Treesearch

    David T. Butry; John M. Pye; Jeffrey P. Prestemon

    2002-01-01

    Land managers in Florida rely on prescribed fire to prepare sites for regeneration, improve wildlife habitats, reduce vegetative competition, facilitate timber management activities, and mitigate wildfire risk. More than one million acres of land is scheduled for prescribed fire each year in Florida, nearly five times more than the area burned by wildfires. However,...

  17. Post-fire regeneration across a fire severity gradient in the southern Cascades

    Treesearch

    Justin Crotteau; Morgan Varner; Martin Ritchie

    2012-01-01

    Large scale, high-severity fires are increasing in the western United States. Despite this trend, there have been few studies investigating post-fire tree regeneration. We established a study in the footprint of the 2000 Storrie Fire, a 23,000 ha wildfire that occurred in northern California, USA. We used a stratified sampling design to quantify post-fire vegetation...

  18. Rapid Response Tools and Datasets for Post-fire Erosion Modeling: Lessons Learned from the Rock House and High Park Fires

    NASA Astrophysics Data System (ADS)

    Miller, Mary Ellen; Elliot, William E.; MacDonald, Lee H.

    2013-04-01

    for the U.S. Environmental Protection Agency this preparatory work was done for much of Colorado, and in June 2012 the High Park wildfire in north central Colorado burned over 340 km2. The data layers for the entire burn area were quickly assembled and the spatially explicit runoff and erosion modeling was completed in less than three days. The resulting predictions were then used by the BAER team to quantify downstream risks and delineate priority areas for different post-fire treatments. These two contrasting case studies demonstrate the feasibility and the value of preparing datasets and modeling tools ahead of time. In recognition of this, the U.S. National Aeronautic and Space Administration has agreed to fund a pilot project to demonstrate the utility of acquiring and preparing the necessary data layers for fire-prone wildlands across the western U.S. A similar modeling and data acquisition approach could be followed

  19. Black-tailed prairie dog (Cynomys ludovicianus) response to seasonality and frequency of fire

    Treesearch

    Felicia D. Archuleta

    2014-01-01

    Fragmentation of the landscape, habitat loss, and fire suppression, all a result of European settlement and activities, have precipitated both the decline of Black-tailed prairie dog (Cynomys ludovicianus) populations and the occurrence of fire throughout the Great Plains, including the Shortgrass steppe of northeastern New Mexico. The presence of Black-tailed prairie...

  20. 350 years of fire-climate-human interactions in a Great Lakes sandy outwash plain

    Treesearch

    Richard Guyette; Michael Stambaugh; Daniel C. Dey; Joseph Marschall; Jay Saunders; John Lampereur

    2016-01-01

    Throughout much of eastern North America, quantitative records of historical fire regimes and interactions with humans are absent. Annual resolution fire scar histories provide data on fire frequency, extent, and severity, but also can be used to understand fire-climate-human interactions. This study used tree-ring dated fire scars from red pines (Pinus...

  1. The World Trade Center bombing: injury prevention strategies for high-rise building fires.

    PubMed

    Quenemoen, L E; Davis, Y M; Malilay, J; Sinks, T; Noji, E K; Klitzman, S

    1996-06-01

    The WTC disaster provided an opportunity to look for ways to prevent morbidity among occupants of high-rise buildings during fires. This paper first describes the overall morbidity resulting from the explosion and fire, and second, presents the results of a case-control study carried out to identify risk factors for smoke-related morbidity. The main ones include: increased age, presence of a pre-existing cardio-pulmonary condition, entrapment in a lift and prolonged evacuation time. Study results point to the importance of the following safety systems during high-rise building fires: smoke-control systems with separate emergency power sources; lift-cars, lift-car position-monitoring systems, and lift-car communication systems with separate emergency power sources; two-way emergency communication systems on all floors and in stairwells; stairwells with emergency lighting and designed for the rapid egress of crowds; evacuation systems/equipment to assist in the evacuation of vulnerable people (elderly, infirm). Also important are evacuation plans that include regularly scheduled safety training and evacuation drills.

  2. Global Characterization of Biomass-Burning Patterns using Satellite Measurements of Fire Radiative Energy

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Giglio, Louis; Wooster, Martin J.; Remer, Lorraine A.

    2008-01-01

    Remote sensing is the most practical means of measuring energy release from large open-air biomass burning. Satellite measurement of fire radiative energy (FRE) release rate or power (FRP) enables distinction between fires of different strengths. Based on a 1-km resolution fire data acquired globally by the MODerate-resolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites from 2000 to 2006, instanteaneous FRP values ranged between 0.02 MW and 1866 MW, with global daily means ranging between 20 and 40 MW. Regionally, at the Aqua-MODIS afternoon overpass, the mean FRP values for Alaska, Western US, Western Australia, Quebec and the rest of Canada are significantly higher than these global means, with Quebec having the overall highest value of 85 MW. Analysis of regional mean FRP per unit area of land (FRP flux) shows that a peak fire season in certain regions, fires can be responsible for up to 0.2 W/m(sup 2) at peak time of day. Zambia has the highest regional monthly mean FRP flux of approximately 0.045 W/m(sup 2) at peak time of day and season, while the Middle East has the lowest value of approximately 0.0005 W/m(sup 2). A simple scheme based on FRP has been devised to classify fires into five categories, to facilitate fire rating by strength, similar to earthquakes and hurricanes. The scheme uses MODIS measurements of FRP at 1-km resolution as follows: catagory 1 (less than 100 MW), category 2 (100 to less than 500 MW), category 3 (500 to less than 1000 MW), category 4 (1000 to less than 1500 MW), catagory 5 (greater than or equal to 1500 MW). In most regions of the world, over 90% of fires fall into category 1, while only less than 1% fall into each of categories 3 to 5, although these proportions may differ significantly from day to day and by season. The frequency of occurence of the larger fires is region specific, and could not be explained by ecosystem type alone. Time-series analysis of the propertions of higher category

  3. Response of bird species densities to habitat structure and fire history along a Midwestern open-forest gradient

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas were historically common but are currently rare in the Midwestern United States. We assessed possible associations of bird species with savannas and other threatened habitats in the region by relating fire frequency and vegetation characteristics to seasonal densities of 72 bird species distributed across an open-forest gradient in northwestern Indiana. About one-third of the species did not exhibit statistically significant relationships with any combination of seven vegetation characteristics that included vegetation cover in five vertical strata, dead tree density, and tree height. For 40% of the remaining species, models best predicting species density incorporated tree density. Therefore, management based solely on manipulating tree density may not be an adequate strategy for managing bird populations along this open-forest gradient. Few species exhibited sharp peaks in predicted density under habitat conditions expected in restored savannas, suggesting that few savanna specialists occur among Midwestern bird species. When fire frequency, measured over fifteen years, was added to vegetation characteristics as a predictor of species density, it was incorporated into models for about one-quarter of species, suggesting that fire may modify habitat characteristics in ways that are important for birds but not captured by the structural habitat variables measured. Among those species, similar numbers had peaks in predicted density at low, intermediate, or high fire frequency. For species suggested by previous studies to have a preference for oak savannas along the open-forest gradient, estimated density was maximized at an average fire return interval of about one fire every three years. ?? The Cooper Ornithological Society 2007.

  4. Estimates of CO2 from fires in the United States: implications for carbon management.

    PubMed

    Wiedinmyer, Christine; Neff, Jason C

    2007-11-01

    Fires emit significant amounts of CO2 to the atmosphere. These emissions, however, are highly variable in both space and time. Additionally, CO2 emissions estimates from fires are very uncertain. The combination of high spatial and temporal variability and substantial uncertainty associated with fire CO2 emissions can be problematic to efforts to develop remote sensing, monitoring, and inverse modeling techniques to quantify carbon fluxes at the continental scale. Policy and carbon management decisions based on atmospheric sampling/modeling techniques must account for the impact of fire CO2 emissions; a task that may prove very difficult for the foreseeable future. This paper addresses the variability of CO2 emissions from fires across the US, how these emissions compare to anthropogenic emissions of CO2 and Net Primary Productivity, and the potential implications for monitoring programs and policy development. Average annual CO2 emissions from fires in the lower 48 (LOWER48) states from 2002-2006 are estimated to be 213 (+/- 50 std. dev.) Tg CO2 yr-1 and 80 (+/- 89 std. dev.) Tg CO2 yr-1 in Alaska. These estimates have significant interannual and spatial variability. Needleleaf forests in the Southeastern US and the Western US are the dominant source regions for US fire CO2 emissions. Very high emission years typically coincide with droughts, and climatic variability is a major driver of the high interannual and spatial variation in fire emissions. The amount of CO2 emitted from fires in the US is equivalent to 4-6% of anthropogenic emissions at the continental scale and, at the state-level, fire emissions of CO2 can, in some cases, exceed annual emissions of CO2 from fossil fuel usage. The CO2 released from fires, overall, is a small fraction of the estimated average annual Net Primary Productivity and, unlike fossil fuel CO2 emissions, the pulsed emissions of CO2 during fires are partially counterbalanced by uptake of CO2 by regrowing vegetation in the decades

  5. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues

    PubMed Central

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E.

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene. PMID:27438267

  6. Seed Pubescence and Shape Modulate Adaptive Responses to Fire Cues.

    PubMed

    Gómez-González, Susana; Ojeda, Fernando; Torres-Morales, Patricio; Palma, Jazmín E

    2016-01-01

    Post-fire recruitment by seeds is regarded as an adaptive response in fire-prone ecosystems. Nevertheless, little is known about which heritable seed traits are functional to the main signals of fire (heat and smoke), thus having the potential to evolve. Here, we explored whether three seed traits (pubescence, dormancy and shape) and fire regime modulate seed response to fire cues(heat and smoke). As a model study system, we used Helenium aromaticum (Asteraceae), a native annual forb from the Chilean matorral, where fires are anthropogenic. We related seed trait values with fitness responses (germination and survival) after exposure to heat-shock and smoke experimental treatments on seeds from 10 H. aromaticum wild populations. We performed a phenotypic selection experiment to examine the relationship of seed traits with post-treatment fitness within a population (adaptive hypothesis). We then explored whether fire frequency in natural habitats was associated with trait expression across populations, and with germination and survival responses to experimental fire-cues. We found that populations subjected to higher fire frequency had, in average, more rounded and pubescent seeds than populations from rarely burned areas. Populations with more rounded and pubescent seeds were more resistant to 80°C heat-shock and smoke treatments.There was correlated selection on seed traits: pubescent-rounded or glabrouscent-elongated seeds had the highest probability of germinating after heat-shock treatments. Seed pubescence and shape in H. aromaticum are heritable traits that modulate adaptive responses to fire. Our results provide new insights into the process of plant adaptation to fire and highlight the relevance of human-made fires as a strong evolutionary agent in the Anthropocene.

  7. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 6, April--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degree}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degree}F. The system is based on a pyrolyzing processmore » that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.« less

  8. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.

    PubMed

    Chen, Guifen; King, John Andrew; Lu, Yi; Cacucci, Francesca; Burgess, Neil

    2018-06-18

    We present a mouse virtual reality (VR) system which restrains head-movements to horizontal rotations, compatible with multi-photon imaging. This system allows expression of the spatial navigation and neuronal firing patterns characteristic of real open arenas (R). Comparing VR to R: place and grid, but not head-direction, cell firing had broader spatial tuning; place, but not grid, cell firing was more directional; theta frequency increased less with running speed; whereas increases in firing rates with running speed and place and grid cells' theta phase precession were similar. These results suggest that the omni-directional place cell firing in R may require local-cues unavailable in VR, and that the scale of grid and place cell firing patterns, and theta frequency, reflect translational motion inferred from both virtual (visual and proprioceptive) and real (vestibular translation and extra-maze) cues. By contrast, firing rates and theta phase precession appear to reflect visual and proprioceptive cues alone. © 2018, Chen et al.

  9. [Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].

    PubMed

    Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai

    2012-07-01

    Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.

  10. Fire management, managed relocation, and land conservation options for long-lived obligate seeding plants under global changes in climate, urbanization, and fire regime.

    PubMed

    Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M

    2014-08-01

    Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional

  11. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  12. Seasonal Forecasting of Fires across Southern Borneo, 1997-2010

    NASA Astrophysics Data System (ADS)

    Spessa, Allan; Field, Robert; Kaiser, Johannes; Langner, Andreas; Moore, Jonathan; Pappenberger, Florian; Siegert, Florian; Weber, Ulrich

    2014-05-01

    Wildfire is a fundamental Earth System process, affecting almost all biogeochemical cycles, and all vegetated biomes. Fires are naturally rare in humid tropical forests, and tropical trees are generally killed by even low-intensity fires. However, fire activity in the tropics has increased markedly over the past 15-20 years, especially in Indonesia, Amazonia, and more recently, central Africa also. Since fire is the prime tool for clearing land in the tropics, it not surprising that the increase in fire activity is strongly associated with increased levels of deforestation, which is driven mainly by world-wide demand for timber and agricultural commodities. The consequences of deforestation fires for biodiversity conservation and emissions of greenhouse gases and aerosols are enormous. For example, carbon emissions from tropical biomass burning are around 20% of annual average global fossil fuel emissions. The destructive fires in Indonesia during the exceptionally strong El Niño-induced drought in late 1997 and early 1998 rank as some of the largest peak emissions events in recorded history. Past studies estimate about 1Gt of carbon was released to the atmosphere from the Indonesian fires in 1997 (which were mostly concentrated in carbon-rich forested peatlands). This amount is equivalent to about 14% of the average global annual fossil fuel emissions released during the 1990s. While not as large as the 1997-98 events, significant emissions from biomass burning have also been recorded in other (less severe) El Niño years across Indonesia, in particular, 2002, 2004, 2006 and 2009-2010. Recent climate modelling studies indicate that the frequency of El Niño events may increase under future climate change, affecting many tropical countries, including Indonesia. An increased drought frequency plus a projected increase in population and land use pressures in Indonesia, imply there will be even more fires and emissions in future across the region. However, while

  13. High frequency oscillations in brain hemodynamic response

    NASA Astrophysics Data System (ADS)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  14. High-frequency applications of high-temperature superconductor thin films

    NASA Astrophysics Data System (ADS)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  15. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China].

    PubMed

    Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi

    2017-01-01

    The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly

  16. Characterization of the Primary Metabolome of Brachystegia boehmii and Colophospermum mopane under Different Fire Regimes in Miombo and Mopane African Woodlands.

    PubMed

    Duvane, Jossias A; Jorge, Tiago F; Maquia, Ivete; Ribeiro, Natasha; Ribeiro-Barros, Ana I F; António, Carla

    2017-01-01

    Miombo and Mopane are ecological and economic important woodlands from Africa, highly affected by a combination of climate change factors, and anthropogenic fires. Although most species of these ecosystems are fire tolerant, the mechanisms that lead to adaptive responses (metabolic reconfiguration) are unknown. In this context, the aim of this study was to characterize the primary metabolite composition of typical legume trees from these ecosystems, namely, Brachystegia boehmii (Miombo) and Colophospermum mopane (Mopane) subjected to different fire regimes. Fresh leaves from each species were collected in management units and landscapes across varied fire frequencies in the Niassa National Reserve (NNR) and Limpopo National Park (LNP) in Mozambique. Primary metabolites were extracted and analyzed with a well-established gas chromatography time-of-flight mass spectrometry metabolomics platform (GC-TOF-MS). In B. boehmii , 39 primary metabolites were identified from which seven amino acids, two organic acids and two sugars increased significantly, whereas in C. mopane , 41 primary metabolites were identified from which eight amino acids, one sugar and two organic acids significantly increased with increasing fire frequency. The observed changes in the pool of metabolites of C. mopane might be related to high glycolytic and tricarboxylic acid (TCA) rate, which provided increased levels of amino acids and energy yield. In B. boehmii , the high levels of amino acids might be due to inhibition of protein biosynthesis. The osmoprotectant and reactive oxygen species (ROS) scavenging properties of accumulated metabolites in parallel with a high-energy yield might support plants survival under fire stress.

  17. Edge fires drive the shape and stability of tropical forests.

    PubMed

    Hébert-Dufresne, Laurent; Pellegrini, Adam F A; Bhat, Uttam; Redner, Sidney; Pacala, Stephen W; Berdahl, Andrew M

    2018-06-01

    In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  18. The dynamics of fire regimes in tropical peatlands in Central Kalimantan, Borneo

    NASA Astrophysics Data System (ADS)

    Hoscilo, Agata; Page, Susan; Tansey, Kevin

    2010-05-01

    As a carbon-rich ecosystem, tropical peatland contributes significantly to terrestrial carbon storage and stability of the global carbon cycle. Vast areas of tropical peatland in SE Asia are degraded by the increasingly intensive scale of human activities, illustrated by high rates of deforestation, poor land-use management, selective illegal logging, and frequently repeated fires. Analysis of time-series satellite images performed in this study confirmed that fire regimes have dramatically changed in tropical peatlands over the last three decades (1973-2005). The study was conducted in the southern part of Central Kalimantan (Indonesian Borneo). We found that there was an evident increase in fire frequency and a decline in the fire return interval after implementation of the Mega Rice Project (1997-2005). Up until 1997, fires had affected a relatively small area, in total 23% of the study area, and were largely related to land clearance. This situation changed significantly during the last decade (1997-2005), when the widespread, intensive fires of 1997 affected a much larger area. Five years later, in 2002, extensive fires returned, affecting again 22% of the study area. Then, in 2004 and 2005, a further large area of peatland was on fire. Fire frequency analysis showed that during the period 1997-2005, around 45% of the study area was subject to multiple fires, with 37% burnt twice and 8% burnt three or more times. Near-annual occurrence of fire events reduces the rate and nature of vegetation regrowth. Hence, we observed a shift in the fire fuel type and amount over the period of investigation. After 1997, the fire fuel shifted from mainly peat swamp forest biomass towards non-woody biomass, dominated by regenerating vegetation, mainly ferns and a few trees. This secondary vegetation has been shown to be fire prone, although fire propagation is slower than in forest and restricted by both low fuel quality and load. Furthermore, we investigated the interaction

  19. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    PubMed

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  20. Drainage and Agriculture Impacts onf Fire Frequency in a Southern Illinois Forested Bottomland.

    Treesearch

    John L. Nelson; Charles M. Ruffner; John W. Groninger; Ray A. Souter

    2008-01-01

    Postsettlement (1909–2003) fire history of a forested bottomland in the Mississippi Embayment of southern Illinois, USA, was determined using fire-scar analysis. The study area is a forested bottomland hardwood site, with remnant pockets of the dominant presettlement bald cypress – tupelo (1919, with agricultural clearing and abandonment varying throughout the...

  1. Projecting climate-driven increases in North American fire activity

    NASA Astrophysics Data System (ADS)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2013-12-01

    Climate regulates fire activity through controls on vegetation productivity (fuels), lightning ignitions, and conditions governing fire spread. In many regions of the world, human management also influences the timing, duration, and extent of fire activity. These coupled interactions between human and natural systems make fire a complex component of the Earth system. Satellite data provide valuable information on the spatial and temporal dynamics of recent fire activity, as active fires, burned area, and land cover information can be combined to separate wildfires from intentional burning for agriculture and forestry. Here, we combined satellite-derived burned area data with land cover and climate data to assess fire-climate relationships in North America between 2000-2012. We used the latest versions of the Global Fire Emissions Database (GFED) burned area product and Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate data to develop regional relationships between burned area and potential evaporation (PE), an integrated dryness metric. Logistic regression models were developed to link burned area with PE and individual climate variables during and preceding the fire season, and optimal models were selected based on Akaike Information Criterion (AIC). Overall, our model explained 85% of the variance in burned area since 2000 across North America. Fire-climate relationships from the era of satellite observations provide a blueprint for potential changes in fire activity under scenarios of climate change. We used that blueprint to evaluate potential changes in fire activity over the next 50 years based on twenty models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). All models suggest an increase of PE under low and high emissions scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively), with largest increases in projected burned area across the western US and central Canada. Overall, near

  2. Born of fire - restoring sagebrush steppe

    USGS Publications Warehouse

    Pyke, David A.

    2002-01-01

    Fire is a natural feature of sagebrush grasslands in the Great Basin. The invasion of exotic annual grasses, such as Bromus tectorum (cheatgrass), has changed the environment in these ecosystems. Invasive annual grasses provide a dense and continuous source of fuel that extends the season for fires and increases the frequency of fires in the region. Frequent fires eventually eliminate the native sagebrush. These annual grasses also change soil nutrients, especially carbon and nitrogen, such that invasive annual grasses are favored over the native plants. The Forest and Rangeland Ecosystem Science Center of the U.S. Geological Survey (USGS) is studying how to reduce the problems caused by these invasive annual grasses and restore native sagebrush grasslands. The areas of research include understanding disturbance regimes, especially fire, discerning the role of nutrients in restoring native plants, determining the potential to restore forbs important for wildlife, and ascertaining the past and present use of native and nonnative plants in revegetation projects.

  3. The climate space of fire regimes in north-western North America

    USGS Publications Warehouse

    Whitman, Ellen; Batllori, Enric; Parisien, Marc-André; Miller, Carol; Coop, Jonathan D.; Krawchuk, Meg A.; Chong, Geneva W.; Haire, Sandra L.

    2015-01-01

    Aim. Studies of fire activity along environmental gradients have been undertaken, but the results of such studies have yet to be integrated with fire-regime analysis. We characterize fire-regime components along climate gradients and a gradient of human influence. Location. We focus on a climatically diverse region of north-western North America extending from northern British Columbia, Canada, to northern Utah and Colorado, USA.Methods. We used a multivariate framework to collapse 12 climatic variables into two major climate gradients and binned them into 73 discrete climate domains. We examined variation in fire-regime components (frequency, size, severity, seasonality and cause) across climate domains. Fire-regime attributes were compiled from existing databases and Landsat imagery for 1897 large fires. Relationships among the fire-regime components, climate gradients and human influence were examined through bivariate regressions. The unique contribution of human influence was also assessed.Results. A primary climate gradient of temperature and summer precipitation and a secondary gradient of continentality and winter precipitation in the study area were identified. Fire occupied a distinct central region of such climate space, within which fire-regime components varied considerably. We identified significant interrelations between fire-regime components of fire size, frequency, burn severity and cause. The influence of humans was apparent in patterns of burn severity and ignition cause.Main conclusions. Wildfire activity is highest where thermal and moisture gradients converge to promote fuel production, flammability and ignitions. Having linked fire-regime components to large-scale climate gradients, we show that fire regimes – like the climate that controls them – are a part of a continuum, expanding on models of varying constraints on fire activity. The observed relationships between fire-regime components, together with the distinct role of climatic

  4. Post-fire redistribution of soil carbon and nitrogen at a grassland-shrubland ecotone

    USGS Publications Warehouse

    Wang, Guan; Li, Junran; Ravi, Sujith; Dukes, David; Gonzales, Howell B.; Sankey, Joel B.

    2018-01-01

    The rapid conversion of grasslands into shrublands has been observed in many arid and semiarid regions worldwide. Studies have shown that fire can provide certain forms of reversibility for shrub-grass transition due to resource homogenization and shrub mortality, especially in the early stages of shrub encroachment. Field-level post-fire soil resource redistribution has rarely been tested. Here we used prescribed fire in a shrubland-grassland transition zone in the northern Chihuahuan Desert to test the hypothesis that fire facilitates the remobilization of nutrient-enriched soil from shrub microsites to grass and bare microsites and thereby reduces the spatial heterogeneity of soil resources. Results show that the shrub microsites had the lowest water content compared to grass and bare microsites after fire, even when rain events occurred. Significant differences of total soil carbon (TC) and total soil nitrogen (TN) among the three microsites disappeared one year after the fire. The spatial autocorrelation distance increased from 1~2 m, approximately the mean size of an individual shrub canopy, to over 5 m one year after the fire for TC and TN. Patches of high soil C and N decomposed one year after the prescribed fire. Overall, fire stimulates the transfer of soil C and N from shrub microsites to nutrient-depleted grass and bare microsites. Such a redistribution of soil C and N, coupled with the reduced soil water content under the shrub canopies, suggests that fire might influence the competition between shrubs and grasses, leading to a higher grass, compared to shrub, coverage in this ecotone.

  5. Extremely high frequency RF effects on electronics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less

  6. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  7. Large-Scale Controls and Characteristics of Fire Activity in Central Chile, 2001-2015

    NASA Astrophysics Data System (ADS)

    McWethy, D. B.; Pauchard, A.; García, R.; Holz, A.; González, M.; Veblen, T. T.; Stahl, J.

    2016-12-01

    In recent decades, fire activity has increased in many ecosystems worldwide, even where fuel conditions and natural ignitions historically limited fire activity, and this increase begs questions of whether climate change, land-use change, and/or altered vegetation are responsible. Increased frequency of large fires in these settings has been attributed to drier-than-average summers and longer fire seasons as well as fuel accumulation related to ENSO events, raising concerns about the trajectory of post-fire vegetation dynamics and future fire regimes. In temperate and Mediterranean forests of central Chile, recent large fires associated with altered ecosystems, climate variability and land-use change highlight the risk and hazard of increasing fire activity yet the causes and consequences are poorly understood. To better understand characteristics of recent fire activity, key drivers of fire occurrence and the spatial probability of wildfire we examined the relationship between fire activity derived from MODIS satellite imagery and biophysical, land-cover and land-use variables. The probability of fire occurrence and annual area burned was best predicted by seasonal precipitation, annual temperature and land cover type. The likelihood of fire occurrence was greatest in Matorral shrublands, agricultural lands (including pasture lands) and Pinus and Eucalyptus plantations, highlighting the importance of vegetation type and fuel flammability as a critical control on fire activity. Our results suggest that land-use change responsible for the widespread presence of highly flammable vegetation and projections for continued warming and drying will likely combine to promote the occurrence of large fires in central Chile in the future.

  8. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    NASA Astrophysics Data System (ADS)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  9. Fire Return Interval Within the Northern Boundary of the Larch Forest

    NASA Technical Reports Server (NTRS)

    Kharuk, V. I.; Dvinskaya, M. L.; Ranson, K. J.

    2011-01-01

    Larch (Larix spp.) dominant forests compose a large proportion of the forests of Russia (i.e., about 40% of forested areas). These forests range from the Yenisei ridge on the west to the Pacific Ocean on the east, and from Lake Baikal on the south to the 73rd parallel in the north. Larch stands comprise the world s northern most forest at Ary-Mas (72 deg 28' N, 102 deg 15' E). Larch dominated forests occupy about 70% of the permafrost areas in Siberia. Larch forms high closure stands as well as open forests, and is found mainly over permafrost, where other tree species barely survive. Wildfires are typical for this territory with the majority occurring as ground fires due to low crown closure. Due to the thin active layer in permafrost soils and a dense lichen-moss cover, ground fires may cause stand mortality. The vast areas of larch-dominant forests is generally considered as a "carbon sink"; however, positive long-term temperature trends at higher latitudes are expected to result in an increase of fire frequency, and thus may convert this area to a source for greenhouse gases. There are recent observations regarding the increase of fire frequency within non-protected territories. Surprisingly, there are few publications on fire chronoseqences for the huge forested territory between the Ural Mountains and the Pacific Ocean. Also there is a general understanding that bimodal (late spring -- early summer and late summer-beginning of fall) fire seasonal distribution in the south becomes uni-modal (late spring -- early summer) in the north. The purpose of this study is to investigate the wildfire history at the northern edge of the zone of larch dominance.

  10. High-Frequency Percussive Ventilation Revisited

    DTIC Science & Technology

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  11. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    NASA Astrophysics Data System (ADS)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    and the MODIS AOD seen in the corresponding plume. Analysis was performed for plumes extracted from 31 study sites covering 10,000km2each, during 10 consecutive days, for the 2011 southern Africa fire season. Compensation factors associated with undetected low FRP fires was based on extraction and application of frequency density function shape parameters, characterized by analyzing 4 years (2009-2013) of MSG-SEVIRI FRP data in 0.5o degree cells. Using the derived emission coefficients and compensation factors we estimate Total Particulate Matter (TPM) emissions for 2011 on a daily basis and 0.25o spatial resolution across southern Africa. Preliminary results show agreement between our derived emission coefficients and those of past studies following similar methods but with MODIS FRP data, and our annual TPM estimate is in reasonable agreement with those of other emission inventories based on burned area approaches. The proposed approach shows strong potential to be applied to other regions, and also to other geostationary satellite FRP products. Once the smoke emissions coefficients have been derived via comparison to the AOD data, the method requires only the FRP data, which is available at very high temporal frequency from geostationary orbit. Therefore our approach can provide near real time smoke emissions estimates which are essential for operational activities such as NRT smoke dispersion modeling and air quality forecasting.

  12. Assessing accuracy of point fire intervals across landscapes with simulation modelling

    Treesearch

    Russell A. Parsons; Emily K. Heyerdahl; Robert E. Keane; Brigitte Dorner; Joseph Fall

    2007-01-01

    We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of...

  13. Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop

    Treesearch

    Robert F. Powers

    2007-01-01

    Many federal forests are at risk to catastrophic wild fire owing to past management practices and policies. Mangers of these forests face the immense challenge of making their forests resilient to wild fire, and the problem is complicated by the specter of climate change that may affect wild fire frequency and intensity. Some of the Nation’s leading...

  14. Fire Suppression and Response

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.

    2004-01-01

    This report is concerned with the following topics regarding fire suppression:What is the relative effectiveness of candidate suppressants to extinguish a representative fire in reduced gravity, including high-O2 mole fraction, low -pressure environments? What are the relative advantages and disadvantages of physically acting and chemically-acting agents in spacecraft fire suppression? What are the O2 mole fraction and absolute pressure below which a fire cannot exist? What effect does gas-phase radiation play in the overall fire and post-fire environments? Are the candidate suppressants effective to extinguish fires on practical solid fuels? What is required to suppress non-flaming fires (smoldering and deep seated fires) in reduced gravity? How can idealized space experiment results be applied to a practical fire scenario? What is the optimal agent deployment strategy for space fire suppression?

  15. Emergency Response Fire-Imaging UAS Missions over the Southern California Wildfire Disaster

    NASA Technical Reports Server (NTRS)

    DelFrate, John H.

    2008-01-01

    Objectives include: Demonstrate capabilities of UAS to overfly and collect sensor data on widespread fires throughout Western US. Demonstrate long-endurance mission capabilities (20-hours+). Image multiple fires (greater than 4 fires per mission), to showcase extendable mission configuration and ability to either linger over key fires or station over disparate regional fires. Demonstrate new UAV-compatible, autonomous sensor for improved thermal characterization of fires. Provide automated, on-board, terrain and geo-rectified sensor imagery over OTH satcom links to national fire personnel and Incident commanders. Deliver real-time imagery (within 10-minutes of acquisition). Demonstrate capabilities of OTS technologies (GoogleEarth) to serve and display mission-critical sensor data, coincident with other pertinent data elements to facilitate information processing (WX data, ground asset data, other satellite data, R/T video, flight track info, etc).

  16. Emergency Response Fire-Imaging UAS Missions over the Southern California Wildfire Disaster

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2007-01-01

    Objectives include: Demonstrate capabilities of UAS to overfly and collect sensor data on widespread fires throughout Western US. Demonstrate long-endurance mission capabilities (20-hours+). Image multiple fires (greater than 4 fires per mission), to showcase extendable mission configuration and ability to either linger over key fires or station over disparate regional fires. Demonstrate new UAV-compatible, autonomous sensor for improved thermal characterization of fires. Provide automated, on-board, terrain and geo-rectified sensor imagery over OTH satcom links to national fire personnel and Incident commanders. Deliver real-time imagery (within 10-minutes of acquisition). Demonstrate capabilities of OTS technologies (GoogleEarth) to serve and display mission-critical sensor data, coincident with other pertinent data elements to facilitate information processing (WX data, ground asset data, other satellite data, R/T video, flight track info, etc).

  17. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  18. Holocene vegetation and fire regimes in subalpine and mixed conifer forests, southern Rocky Mountains, USA

    USGS Publications Warehouse

    Anderson, R. Scott; Allen, Craig D.; Toney, J.L.; Jass, R.B.; Bair, A.N.

    2008-01-01

    Our understanding of the present forest structure of western North America hinges on our ability to determine antecedent forest conditions. Sedimentary records from lakes and bogs in the southern Rocky Mountains of Colorado and New Mexico provide information on the relationships between climate and vegetation change, and fire history since deglaciation. We present a new pollen record from Hunters Lake (Colorado) as an example of a high-elevation vegetation history from the southern Rockies. We then present a series of six sedimentary records from ???2600 to 3500-m elevation, including sites presently at the alpine?subalpine boundary, within the Picea engelmannii?Abies lasiocarpa forest and within the mixed conifer forest, to determine the history of fire in high-elevation forests there. High Artemisia and low but increasing percentages of Picea and Pinus suggest vegetation prior to 13 500 calendar years before present (cal yr BP) was tundra or steppe, with open spruce woodland to ???11 900 cal yr BP. Subalpine forest (Picea engelmannii, Abies lasiocarpa) existed around the lake for the remainder of the Holocene. At lower elevations, Pinus ponderosa and/or contorta expanded 11 900 to 10 200 cal yr BP; mixed conifer forest expanded ???8600 to 4700 cal yr BP; and Pinus edulis expanded after ???4700 cal yr BP. Sediments from lake sites near the alpine?subalpine transition contained five times less charcoal than those entirely within subalpine forests, and 40 times less than bog sites within mixed conifer forest. Higher fire episode frequencies occurred between ???12 000 and 9000 cal yr BP (associated with the initiation or expansion of south-west monsoon and abundant lightning, and significant biomass during vegetation turnover) and at ???2000?1000 cal yr BP (related to periodic droughts during the long-term trend towards wetter conditions and greater biomass). Fire episode frequencies for subalpine?alpine transition and subalpine sites were on average 5 to 10 fire

  19. Climate change, fire management, and ecological services in the southwestern US

    USGS Publications Warehouse

    Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.

    2014-01-01

    The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem

  20. Conditions inside fisher dens during prescribed fires; what is the risk posed by spring underburns?

    Treesearch

    Craig M. Thompson; Kathryn L. Purcell

    2016-01-01

    The use of spring prescribed fires to reduce accumulated fuel loads in western forests and facilitate the return of natural fire regimes is a controversial topic. While spring burns can be effective at reducing fuel loads and restoring heterogeneous landscapes, concerns exist over the potential impacts of unnaturally-timed fires to native species. To protect native...